[go: up one dir, main page]

WO2018047485A1 - Power module and inverter device - Google Patents

Power module and inverter device Download PDF

Info

Publication number
WO2018047485A1
WO2018047485A1 PCT/JP2017/026653 JP2017026653W WO2018047485A1 WO 2018047485 A1 WO2018047485 A1 WO 2018047485A1 JP 2017026653 W JP2017026653 W JP 2017026653W WO 2018047485 A1 WO2018047485 A1 WO 2018047485A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
insulating substrate
path layer
conduction path
power module
Prior art date
Application number
PCT/JP2017/026653
Other languages
French (fr)
Japanese (ja)
Inventor
清太 岩橋
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2018538267A priority Critical patent/JPWO2018047485A1/en
Publication of WO2018047485A1 publication Critical patent/WO2018047485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/18Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • This embodiment relates to a power module and an inverter device.
  • a power semiconductor module in which a power element (chip) including a semiconductor device such as an insulated gate bipolar transistor (IGBT) is molded with a resin has been known. Yes. Since the semiconductor device generates heat in the operation state, it is general to dissipate heat by disposing a heat sink or a cooler such as a heat sink or fin on the back surface side to cool the semiconductor device.
  • a power element chip
  • IGBT insulated gate bipolar transistor
  • a configuration in which a metal block is arranged on a chip to be electrically and thermally connected to the upper surface side is common.
  • This embodiment provides a power module and an inverter device that can efficiently dissipate heat.
  • a first insulating substrate, a semiconductor device mounted on the first insulating substrate and generating heat during operation, and the semiconductor device facing the first insulating substrate A second insulating substrate disposed; one end disposed on the semiconductor device; the other end connected to an electrode pattern formed on the first insulating substrate to transmit an electrical signal; and the semiconductor
  • a power module including one end disposed on a device, the other end connected to the second insulating substrate, and a heat conduction path layer that conducts heat of the semiconductor device to the second insulating substrate.
  • a first insulating substrate having a front surface and a back surface, a semiconductor device mounted on the front surface side of the first insulating substrate and generating heat during operation, and the semiconductor device
  • a second insulating substrate disposed opposite to the first insulating substrate and having a front surface and a back surface; and a second insulating substrate disposed on a surface opposite to the surface facing the semiconductor device of the second insulating substrate.
  • the electrode pattern from the side Power module comprising a block structure integral to be connected is provided.
  • a power module including a heat conduction path layer connected to a substrate and conducting heat of the semiconductor device to the first cooler.
  • an inverter device that performs power conversion using a power module in which a circuit including a semiconductor device connected between a power supply terminal and a reference terminal is formed
  • the power module includes a first insulating substrate, the semiconductor device mounted on the first insulating substrate and generating heat during operation, and a surface opposite to the surface facing the semiconductor device on the semiconductor device, A second insulating substrate disposed opposite to the first insulating substrate, one end connected to an electrode pad formed on the semiconductor device, and the other end connected to an electrode pattern formed on the first insulating substrate
  • An electric conduction path layer for passing a current from the semiconductor device to the electrode pattern without passing through the second insulating substrate, one end being disposed on the semiconductor device, and the other end being the front side
  • a heat conduction path layer connected to the second insulation substrate side and conducting heat of the semiconductor device to the second insulation substrate, at least the semiconductor device, the electrical conduction path layer, and the heat conduction path layer;
  • An inverter device is provided that includes a mold resin that seals
  • FIG. 3 is a schematic cross-sectional structure diagram of the power module according to the first embodiment, taken along line II in FIG.
  • FIG. (A) A power module according to a first modification of the first embodiment, which is a schematic cross-sectional structure diagram taken along the line II-II in FIG. 4 (b), and (b) the first embodiment.
  • FIG. 5A is a power module according to a second modification of the first embodiment, and is a schematic cross-sectional structure diagram taken along the line III-III in FIG. 5B.
  • FIG. 5B is a diagram of the first embodiment.
  • transmits and shows a part of power module which concerns on a 2nd modification.
  • a power module according to a third modification of the first embodiment which is a schematic cross-sectional structure diagram taken along the line IV-IV in FIG. 6 (b), and (b) the first embodiment.
  • a power module according to the third embodiment which is a schematic sectional view taken along line VI-VI in FIG. 8 (b), and (b) one of the power modules according to the third embodiment.
  • transmits and shows a part.
  • the power module which concerns on 3rd Embodiment is made into a model case, and the result at the time of simulating about thermal resistance is shown, (a) Simulation at the time of applying SiC (Silicon Carbide) to a post part Results, (b) Simulation results when Cu (Copper) is applied to the post part.
  • a power module according to a second modification of the third embodiment which is a schematic cross-sectional structure diagram taken along line VII-VII in FIG. 13 (b), and (b) the third embodiment.
  • FIG. 15A is a power module according to a fourth modification of the third embodiment, and is a schematic cross-sectional structure diagram taken along line IX-IX in FIG. 15B.
  • FIG. 15B is a diagram of the third embodiment.
  • transmits and shows a part of power module which concerns on a 4th modification.
  • FIG. 15A is a power module according to a fourth modification of the third embodiment, and is a schematic cross-sectional structure diagram taken along line IX-IX in FIG. 15B.
  • FIG. 15B is a diagram of the third embodiment.
  • transmits and shows a part of power module which concerns on a 4th modification.
  • FIG. 18 is a schematic cross-sectional structure diagram of the power module according to the fourth embodiment, taken along line XX of FIG.
  • the typical cross-section figure of the power module which concerns on the comparative example 2.
  • FIG. The typical cross-section figure of the power module which concerns on the 1st application example of embodiment.
  • FIG. 3 is a schematic cross-sectional structure diagram of a SiC MOSFET that is an example of a semiconductor device applicable to the power module according to the embodiment and includes a source pad electrode SP and a gate pad electrode GP.
  • FIG. 5 is a schematic cross-sectional structure diagram of an IGBT including an emitter pad electrode EP and a gate pad electrode GP, which is an example of a semiconductor device applicable to the power module according to the embodiment.
  • FIG. 4 is a schematic cross-sectional structure diagram of a SiC DI (Double-Implanted) MOSFET, which is an example of a semiconductor device applicable to the power module according to the embodiment.
  • SiC DI Double-Implanted
  • FIG. 1 illustrates a case where the present invention is applied to a 1 in 1 (one in one type) module type PM 10.
  • FIG. 2A shows a schematic plan configuration showing a part of the PM 10 according to the first embodiment
  • FIG. 2B shows a semiconductor device (chip) Q1.
  • a schematic circuit configuration of the PM 10 according to the first embodiment when a SiC MOSFET is applied is shown.
  • the schematic cross-sectional structure of the PM 10 shown in FIG. 1 is, for example, along the line II in FIG. Further, in the schematic planar pattern configuration of FIG. 2A, the description of the upper cooler (first cooler) 30U and the upper ceramic substrate (second insulating substrate) 21U is omitted.
  • the semiconductor device Q1 for example, a case where up to five chips (MOSFETs) Q that can be connected in parallel are mounted in one module is illustrated.
  • the upper ceramic substrate 21U side of the PM 10 is defined as the U (UP) side
  • the lower ceramic substrate (first insulating substrate) 21D side is defined as the D (DOWN) side. This definition is the same in the description of the comparative example described later.
  • the PM 10 according to the first embodiment is disposed on the semiconductor module 20 in which the semiconductor device Q ⁇ b> 1 is sealed with the mold resin 33 and the upper surface 20 a on the U side of the semiconductor module 20.
  • An upper cooler 30U and a lower cooler (second cooler) 30D disposed on the lower surface 20b on the D side of the semiconductor module 20 facing the upper surface 20a are provided.
  • the semiconductor module 20 includes an upper ceramic substrate 21U and a lower ceramic substrate 21D that are arranged to face the semiconductor device Q1, and a conduction path layer 35 that is arranged on the upper surface of the semiconductor device Q1.
  • a mold resin 33, a positive power input terminal electrode P, and a negative power input terminal electrode N are provided.
  • the lower ceramic substrate 21D includes a conductive layer 23D and a conductive layer 24D (first electrode pattern 24D1 and second electrode pattern 24D2) in which a metal foil such as copper (for example, a first copper plate layer) is laminated via an insulating layer 22D.
  • the upper ceramic substrate 21U includes a conductive layer 23U and a conductive layer 24U in which a metal foil such as copper (for example, a second copper plate layer) is laminated via an insulating layer 22U.
  • the first conductive layer 24D and the second conductive layer 24U face each other and are arranged substantially in parallel.
  • an AMB Active Metal Brazed, Active Metal Bond
  • an organic insulating resin layer may be applied instead of a DBC (Direct Bonding Copper) substrate, a DBA (Direct Brazed Aluminum) substrate, or a DBC substrate.
  • the D side of the semiconductor device Q1 is mounted and the base end portion of the positive power supply input terminal electrode P is joined.
  • the negative power supply input terminal electrode The base end portion of N is joined, and the distal end side of the bridge portion (electric conduction path layer) 35C of the conduction path layer 35 is connected.
  • G1 is a gate terminal (gate signal lead terminal) of the semiconductor device Q1
  • D1 is a semiconductor device Q1 connected to the positive power supply input terminal electrode P.
  • the drain terminal S1 is a source terminal of the semiconductor device Q1 connected to the negative power supply input terminal electrode N.
  • the conduction path layer 35 includes, for example, a bridge part 35C for establishing the electrical path C and a post part (thermal conduction path layer) 35T for establishing the heat dissipation path T.
  • the base end side of the conductive path layer 35 for example, the base end side of the post portion 35T is connected to the upper surface (U side) of the semiconductor device Q1. Further, the front end side of the post portion 35T is connected to the conductive layer 24U on the D side of the upper ceramic substrate 21U.
  • the post portion 35T has, for example, a columnar electrode structure with a substantially rectangular plane, and has a substantially uniform thickness on the distal end side and the proximal end side.
  • the conductive path layer 35 extends in a horizontal direction from an I-shaped post portion 35T disposed substantially perpendicular to the upper ceramic substrate 21U or the lower ceramic substrate 21D and, for example, a middle portion of the side surface thereof. And a bridge portion 35C having a substantially L-shaped (or inverted L-shaped) plug structure that is deformed to the lower ceramic substrate 21D side for connection to the second electrode pattern 24D2.
  • the bridge portion 35 ⁇ / b> C is not limited to a substantially L-shape, and may be provided with a substantially U-shaped (or inverted U-shaped) plug structure, for example.
  • the bridge portion 35C and the post portion 35T may have an integrated block structure, or the bridge portion 35C and the post portion 35T may have a separate divided structure. good.
  • the conductive path layer 35 for example, a layered structure in which the post part 35T is laminated on the bridge part 35C may be provided.
  • the bridge part 35C and the post part 35T may be provided with the same constituent member, or the bridge part 35C and the post part 35T may be provided with different constituent members.
  • the bridge portion 35C may include one component member or a plurality of component members.
  • the post portion 35T may include one component member, or may include a plurality of component members, or may include a plurality of layer electrode structures.
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the bridge portion 35C includes Cu (Copper), and the post portion 35T includes SiC or Cu.
  • the bridge portion 35C a member having higher electrical conductivity than the post portion 35T, for example, any one of Cu, Al (aluminum), and Ag (silver) is desirable, and the post portion 35T is more than the bridge portion 35C.
  • a member having high thermal conductivity for example, SiC (silicon carbide), Cu, Ag, carbon, or graphite is desirable.
  • the conduction path layer 35 has a vertical size A smaller than a horizontal size B, for example, as shown in FIG. This is because the cooling performance is improved and the heat dissipation characteristics are improved.
  • the semiconductor device Q1 is mounted on the first electrode pattern 24D1 of the conductive layer 24D on the lower ceramic substrate 21D.
  • the semiconductor device Q1 is arranged such that the U side is a source electrode (source pad electrode) and the D side is a drain electrode (for other semiconductor devices Q1, Q2, Q3, Q4, Q5, and Q6, which will be described later). Is the same).
  • the semiconductor device Q1 may be mounted on the lower ceramic substrate 21D in a flip chip.
  • the semiconductor device Q1 is not limited to being connected in parallel up to 5 chips (MOSFET Q ⁇ 5), and a part of the 5 chips may be used for a diode.
  • the U-side conductive layer 23U on the upper ceramic substrate 21U and the D-side conductive layer 23D on the lower ceramic substrate 21D are exposed to the outside. In this way, the outer periphery of the semiconductor device Q1 is sealed with the mold resin 33.
  • the lower cooler 30D is joined to the D-side conductive layer 23D (lower surface 20b) of the lower ceramic substrate 21D exposed from the mold resin 33, and the U-side conductive layer 23U of the upper ceramic substrate 21U exposed from the mold resin 33.
  • the upper cooler 30U is joined to the (upper surface 20a).
  • an air-cooled heat radiator such as a heat sink, a heat radiation fin, or a heat radiation pin, or a water-cooled cooler can be applied.
  • the PM 10 includes a first insulating substrate 21D, a semiconductor device Q1 mounted on the first insulating substrate 21D and generating heat during operation, and the first insulating substrate 21D on the semiconductor device Q1.
  • the second insulating substrate 21U disposed opposite to the semiconductor device Q1, one end disposed on the semiconductor device Q1, and the other end connected to the electrode pattern 24D2 formed on the first insulating substrate 21D to transmit an electric signal A path layer (bridge portion 35C) and a heat conduction path layer having one end disposed on the semiconductor device Q1 and the other end connected to the second insulating substrate 21U to conduct the heat of the semiconductor device to the second insulating substrate side (Post part 35T).
  • first cooling for cooling the heat from the heat conduction path layer 35T via the second insulating substrate 22U which is disposed on the surface opposite to the surface facing the first insulating substrate 22D of the second insulating substrate 22U.
  • An instrument 30U may be further provided.
  • a second cooler 30D is disposed on the surface of the first insulating substrate 22D opposite to the surface on which the semiconductor device Q1 is mounted to cool the heat of the semiconductor device Q1 via the first insulating substrate 22D. You may have.
  • the first insulating substrate 22D further includes a first conductive layer 24D disposed on a surface side on which the semiconductor device Q1 is mounted and having a first electrode pattern 24D1 and a second electrode pattern 24D2, and the semiconductor device Q1
  • the electric conduction path layer 35C is mounted on the first electrode pattern 24D1, and connects between the pad electrode formed on the upper surface of the semiconductor device Q1 and the second electrode pattern 24D2.
  • the second insulating substrate 22U is further provided with a second conductive layer 24U disposed on the surface facing the first insulating substrate 22D and facing the first conductive layer 24D, and the heat conduction path layer 35T is formed of the semiconductor device Q1.
  • the pad electrode disposed on the upper surface and the second conductive layer 24U are connected, and the heat of the semiconductor device Q1 can be conducted to the second insulating substrate 22U side.
  • the PM 10 includes a first insulating substrate 22D having a front surface and a back surface, a semiconductor device Q1 mounted on the front surface side of the first insulating substrate 22D and generating heat during operation, and the semiconductor device Q1.
  • the second insulating substrate 22U is disposed opposite to the first insulating substrate 22D and has a front surface and a back surface, and the first insulating substrate 22U is disposed on the surface opposite to the surface facing the semiconductor device Q1.
  • the cooler 30U one end disposed on the semiconductor device Q1, and the other end connected to the electrode pattern 24D2 formed on the first insulating substrate 22D to transmit an electrical signal, and one end to the semiconductor device A heat conduction path layer 35T disposed on Q1 and having the other end connected to the second insulating substrate 22U to conduct the heat of the semiconductor device Q1 to the first cooler 30U.
  • 5C may have a block structure integral connected from the side of the heat conducting path layer 35T to the electrode pattern 24d2.
  • the conduction path layer 35 which has the bridge
  • the post part 35T and the bridge part 35C on the upper surface of the semiconductor device Q1 in the PM10 having a so-called double-sided cooling structure in which the upper cooler 30U and the lower cooler 30D are arranged above and below the semiconductor module 20,
  • the heat of the semiconductor device Q1 is mainly effectively led to the upper cooler 30U side along the post part 35T, and the current of the semiconductor device Q1 is mainly sent along the bridge part 35C to the second electrode pattern 24D2. Will be effectively guided to the side.
  • the semiconductor device Q1 can be efficiently cooled in the vertical direction.
  • the PM 10 that can efficiently dissipate heat.
  • the PM 10 according to the first embodiment is not limited to the double-sided cooling structure, and may be a single-sided (upper surface) cooling structure in which the upper cooler 30U is disposed only on the semiconductor module 20, for example, The device 30D can be omitted.
  • Comparative Example 1 A schematic cross-sectional structure of PM10A according to Comparative Example 1 is expressed as shown in FIG.
  • a columnar electrode (metal block) 36 is provided between the upper surface (U side) of the semiconductor device Q1 and the conductive layer 24U on the D side of the upper ceramic substrate 21U.
  • the columnar electrode (metal block) 37 connects the conductive layer 24U on the D side of the upper ceramic substrate 21U and the second electrode pattern 24D2 of the conductive layer 24D on the U side of the lower ceramic substrate 21D, respectively.
  • the heat of the semiconductor device Q1 is mainly guided to the upper cooler 30U side via the columnar electrode 36 (heat radiation path T1), and the current of the semiconductor device Q1 is Then, after being led to the upper ceramic substrate 21U side via the columnar electrode 36, it is led to the second electrode pattern 24D2 side via the columnar electrode 37 (electrical path C1).
  • the electric path C1 is one of the heat dissipation paths T1. Therefore, the heat generated by Joule heat hinders heat dissipation and causes deterioration of characteristics.
  • FIG. 4A A schematic cross-sectional structure of the PM 10 according to the first modification of the first embodiment is expressed as shown in FIG. 4A, and a part of the PM 10 corresponding to the II-II line in FIG.
  • FIG. 4A A schematic planar pattern configuration that is transmitted through is represented as shown in FIG.
  • the PM 10 according to the first modification of the first embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 351.
  • the conductive path layer 351 is provided with respect to the upper ceramic substrate 21U or the lower ceramic substrate 21D.
  • An I-shaped post portion 351T arranged substantially vertically, for example, extending horizontally from the base end side along the upper surface of the semiconductor device Q1, and the lower portion for connection with the second electrode pattern 24D2
  • a bridge portion 351C having a substantially L-shaped (or inverted L-shaped) plug structure that is deformed to the ceramic substrate 21D side.
  • the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment. It is possible to provide a possible structure, and it is possible to provide the PM 10 that can efficiently dissipate heat.
  • the bridge portion 351C and the post portion 351T have an integrated block structure, or It may have a separate structure.
  • the conductive path layer 351 for example, a layered structure in which the post portion 351T is stacked on the bridge portion 351C may be provided.
  • the bridge portion 351C and the post portion 351T may be provided with the same constituent member or different constituent members.
  • the bridge portion 351C may include one component member or a plurality of component members.
  • the post portion 351T may include one component member, a plurality of component members, or a plurality of layer electrode structures.
  • the post portion 351T for example, in a cross-sectional view, has any one of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape.
  • the bridge portion 351C includes Cu
  • the post portion 351T includes SiC or Cu.
  • the conductive path layer 351 desirably has a size A in the vertical direction smaller than a size B in the horizontal direction.
  • FIG. 5A A schematic cross-sectional structure of the PM 10 according to the second modification of the first embodiment is expressed as shown in FIG. 5A, and a part of the PM 10 corresponding to the line III-III in FIG.
  • a schematic plane pattern configuration that is shown through is expressed as shown in FIG.
  • the PM 10 according to the second modification of the first embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 352.
  • the conductive path layer 352 is provided with respect to the upper ceramic substrate 21U or the lower ceramic substrate 21D.
  • the I-shaped post portion 352T arranged substantially vertically, for example, extends horizontally from the front end side along the lower surface of the second conductive layer 24U, and is connected to the second electrode pattern 24D2.
  • a bridge portion 352C having a substantially L-shaped (or inverted L-shaped) plug structure that is deformed to the lower ceramic substrate 21D side.
  • the heat dissipation path T and the electric path C are separated as in the case of the PM 10 according to the first embodiment. It is possible to provide a possible structure, and it is possible to provide the PM 10 that can efficiently dissipate heat.
  • the bridge portion 352C and the post portion 352T have an integrated block structure, or It may have a separate structure.
  • a layered structure in which the post portion 352T is stacked on the bridge portion 352C may be provided.
  • the bridge portion 352C and the post portion 352T may be provided with the same constituent member or different constituent members.
  • the bridge portion 352C may include one component member or a plurality of component members.
  • the post portion 352T may include one component member, a plurality of component members, or a plurality of layer electrode structures.
  • the post portion 352T for example, in a cross-sectional view, has any one of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape.
  • the bridge portion 352C includes Cu
  • the post portion 352T includes SiC or Cu.
  • the conductive path layer 352 desirably has a size A in the vertical direction smaller than a size B in the horizontal direction.
  • FIG. 6A A schematic cross-sectional structure of the PM 10 according to the third modification example of the first embodiment is expressed as shown in FIG. 6A, and a part of the PM 10 corresponding to the IV-IV line in FIG.
  • a schematic plane pattern configuration that is transmitted through is represented as shown in FIG.
  • the PM 10 according to the third modification of the first embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 353.
  • the conductive path layer 353 is provided with respect to the upper ceramic substrate 21U or the lower ceramic substrate 21D.
  • An I-shaped post portion 353T arranged substantially vertically, and, for example, in the horizontal direction along the upper surface of the semiconductor device Q1 and the lower surface of the conductive layer 24U with its width (height from the base end side to the tip end side)
  • a bridge portion 353C having a substantially L-shaped (or inverted L-shaped) plug structure that is extended and deformed toward the lower ceramic substrate 21D for connection to the second electrode pattern 24D2.
  • the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment. It is possible to provide a possible structure, and it is possible to provide the PM 10 that can efficiently dissipate heat.
  • the bridge portion 353C and the post portion 353T are integrated block structure, or It may have a separate structure.
  • a layered structure in which the post portion 353T is stacked on the bridge portion 353C may be provided.
  • the bridge portion 353C and the post portion 353T may be provided with the same constituent member or different constituent members.
  • the bridge portion 353C may include one component member or a plurality of component members.
  • the post portion 353T may include one constituent member, a plurality of constituent members, or a plurality of layer electrode structures.
  • the post portion 353T for example, in a cross-sectional view, has any one of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape.
  • the bridge portion 353C includes Cu
  • the post portion 353T includes SiC or Cu.
  • the conduction path layer 353 preferably has a size A in the vertical direction smaller than a size B in the horizontal direction.
  • FIG. 7A A schematic cross-sectional structure of the PM 10 according to the second embodiment is represented as shown in FIG. 7A, and shows a part of the PM 10 corresponding to the line VV in FIG. 7A.
  • a schematic planar pattern configuration is expressed as shown in FIG.
  • the PM 10 according to the second embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 35.
  • the conductive path layer 35 is disposed substantially perpendicular to the upper ceramic substrate 21U or the lower ceramic substrate 21D.
  • the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment, so that the structure can dissipate heat more efficiently. Therefore, it is possible to provide the PM 10 that can efficiently dissipate heat.
  • the bridge portion 35C includes Cu
  • the post portion 35T includes SiC (or Cu). That is, the bridge portion 35C and the post portion 35T may be provided with the same constituent member or different constituent members.
  • the bridge portion 35C may include one component member or a plurality of component members.
  • the post portion 35T may be provided with one constituent member, a plurality of constituent members, or a plurality of layer electrode structures.
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
  • FIG. 8A A schematic cross-sectional structure of the PM 10 according to the third embodiment is represented as shown in FIG. 8A, and shows a part of the PM 10 corresponding to the VI-VI line of FIG. 8A.
  • a schematic planar pattern configuration is expressed as shown in FIG.
  • FIG. 1 a schematic bird's-eye view configuration that shows a part of the PM 10 according to the third embodiment is shown as shown in FIG.
  • the PM 10 according to the third embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 35.
  • the conductive path layer 35 is extended in the horizontal direction along the upper surface of the semiconductor device Q1, for example.
  • Corresponding I-shaped post portions 35T are disposed on the base end side of the bridge portion 35C.
  • the PM 10 includes a first insulating substrate 22D, a semiconductor device Q1 mounted on the first insulating substrate 22D and generating heat during operation, and the first insulating substrate 22D on the semiconductor device Q1.
  • a second insulating substrate 22U disposed opposite to the semiconductor device Q1, a first cooler 30U disposed on the surface of the second insulating substrate 22U opposite to the surface facing the semiconductor device Q1, and one end on the semiconductor device Q1
  • the other end side is connected to the electrode pattern 24D2 formed on the first insulating substrate 22D to transmit an electric signal
  • the electric conduction path layer 35C is laminated on the second insulating substrate 22U side of the electric conduction path layer 35C.
  • the heat conduction path layer 35T connected to the second insulating substrate 22U and conducting the heat of the semiconductor device Q1 to the first cooler 30U may be provided.
  • the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment, so that the structure can dissipate heat more efficiently. Therefore, it is possible to provide the PM 10 that can efficiently dissipate heat.
  • the bridge portion 35C includes Cu
  • the post portion 35T includes SiC (or Cu). That is, the bridge portion 35C and the post portion 35T may be provided with the same constituent member or different constituent members.
  • the bridge portion 35C may include one component member or a plurality of component members.
  • the post portion 35T may be provided with one constituent member, a plurality of constituent members, or a plurality of layer electrode structures.
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
  • the size (W1) of the first electrode pattern 24D1 and the second electrode pattern 24D2 is 10 mm square, and the size (W2) of the semiconductor device Q1. was 5 mm square.
  • the distance (W3) between the first electrode pattern 24D1 and the second electrode pattern 24D2 and the distance (W4) from the end of the semiconductor device Q1 of the post portion 35T were set to 1 mm and 1 mm, respectively.
  • the upper cooler 30U and the lower cooler 30D employ, for example, a heat sink, and the material is Al, the thickness is 1 mm, and the thermal conductivity is 2.37 (W / mK).
  • the material of the conductive layer 23U / conductive layer 23D is Cu, the thickness is 0.3 mm, and the thermal conductivity is 402 (W / mK).
  • the material of 22D is SiN (silicon nitride film), the thickness is 0.3 mm, the thermal conductivity is 90 (W / mK), the material of the conductive layer 24U / conductive layer 24D is Cu, the thickness is 0.3 mm, the thermal conductivity Was 402 (W / mK).
  • the thickness of the post portion 35T is SiC
  • the thermal conductivity is 450 (W / mK)
  • the thickness is 1 0.0 mm and thermal conductivity of 402 (W / mK).
  • the bridge portion 35C is made of Cu, has a thickness of 0.1 mm, and a thermal conductivity of 402 (W / mK).
  • the main material was SiC
  • the thickness was 0.35 mm
  • the thermal conductivity was 450 (W / mK).
  • the heat generation amount of the entire chip was 700 W
  • the peripheral heat insulation and the outer surface temperature of the upper cooler 30U and the lower cooler 30D serving as boundary conditions were 65 ° C.
  • an evaluation junction temperature Tjmax is 182.565 ° C.
  • the thermal resistance R th is 0.168 (W / K) It is.
  • evaluation junction temperature Tjmax is the 184.869 ° C.
  • the thermal resistance R th is 0.171 (W / K).
  • the thermal resistance can be improved by about 2% as compared with the case of configuring with the Cu.
  • the bridge portion 35C and the post portion 35T divide the heat dissipation path T and the electrical path C and configure the post portion 35T with SiC (bridge portion).
  • 35C is composed of Cu), and further improvement in thermal resistance is possible.
  • the PM 10 according to the first modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
  • the conduction path layer 35 has, for example, a substantially U-shaped (or substantially inverted U-shaped) plug structure.
  • the bridge portion 35C and a square post portion 35T arranged in a stacked manner on a part of the upper surface of the bridge portion 35C are provided.
  • the post portion 35T of the conduction path layer 35 is made of SiC (the bridge portion 35C is made of Cu), so that the thermal resistance can be further improved. Become.
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
  • FIG. 13A A schematic cross-sectional structure of the PM 10 according to the second modification of the third embodiment is expressed as shown in FIG. 13A, and a part of the PM 10 corresponding to the VII-VII line in FIG.
  • a schematic plane pattern configuration that is transmitted through is represented as shown in FIG.
  • the PM 10 according to the second modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
  • the conductive path layer 35 has, for example, a substantially U shape (or an inverted U shape).
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
  • FIG. 14A A schematic cross-sectional structure of the PM 10 according to the third modification of the third embodiment is represented as shown in FIG. 14A, and a part of the PM 10 corresponding to the line VIII-VIII in FIG.
  • a schematic plane pattern configuration shown through is represented as shown in FIG.
  • the PM 10 according to the third modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
  • the conductive path layer 35 has, for example, a substantially L shape (or an inverted L shape).
  • the post part 35T of the conductive path layer 35 is made of SiC (the bridge part 35C is made of Cu), so that the thermal resistance can be further improved. Become.
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
  • FIG. 15A A schematic cross-sectional structure of the PM 10 according to the fourth modification example of the third embodiment is represented as shown in FIG. 15A, and a part of the PM 10 corresponding to the IX-IX line in FIG.
  • a schematic plane pattern configuration shown through is represented as shown in FIG.
  • the PM 10 according to the fourth modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
  • the conductive path layer 35 is, for example, substantially U-shaped (or inverted U-shaped).
  • the post part 35T of the conductive path layer 35 is made of SiC (the bridge part 35C is made of Cu), so that the thermal resistance can be further improved. Become.
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
  • the semiconductor power device is used and applied to a 1 ⁇ ⁇ ⁇ in 1 module type power module.
  • a 1 ⁇ ⁇ ⁇ in 1 module type power module for example, 2 in 1 (two-in-one) Type) module, 4 in 1 (four-in-one type) module, 6 in 1 (six-in-one type) module, 7 in 1 (seven-in-one type) module with snubber capacitor etc. in 6 in 1 module, 8 in 1 (eight)
  • a power module that constitutes any one of an in-one type module, a 12 in 1 (twelve-in-one type) module, or a 14 in 1 (fourteen-in-one type) module.
  • FIG. 16 illustrates a case where the present invention is applied to a 2-in-1 module type PM10.
  • FIG. 17A shows a schematic plan configuration showing a part of the PM 10 according to the fourth embodiment
  • FIG. 17B shows a semiconductor device (chip) Q 1.
  • a schematic circuit configuration when a SiC MOSFET is applied is shown as Q4.
  • the schematic cross-sectional structure of the PM 10 shown in FIG. 16 is, for example, along the line XX in FIG.
  • the description of the upper cooler (first cooler) 30U and the upper ceramic substrate (second insulating substrate) 21U is omitted.
  • the PM 10 according to the fourth embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the semiconductor module 20 (semiconductor devices Q1 and Q4).
  • the PM 10 according to the fourth embodiment includes a semiconductor module 20 in which semiconductor devices Q1 and Q4 in which a plurality of chips are connected in parallel are sealed with a mold resin 33, as shown in FIGS.
  • the semiconductor device Q1 is disposed on the first electrode pattern 24D1 of the conductive layer 24D on the lower ceramic substrate 21D, and the semiconductor device Q4 is disposed on the second electrode pattern 24D2 of the conductive layer 24D on the lower ceramic substrate 21D. .
  • the lower ceramic substrate 21D has conductive layers 23D and 24D (first electrode pattern 24D1 and second electrode pattern 24D2) in which a metal foil such as copper (for example, a first copper plate layer) is laminated via an insulating layer 22D.
  • conductive layers 23D and 24D first electrode pattern 24D1 and second electrode pattern 24D2 in which a metal foil such as copper (for example, a first copper plate layer) is laminated via an insulating layer 22D.
  • a third electrode pattern 24D3, gate signal electrode patterns 1 and 5, and source signal electrode patterns 3 and 7) are provided.
  • the upper ceramic substrate 21U has conductive layers 23U and 24U (first electrode pattern 24U1 and second electrode pattern 24U2) in which a metal foil such as copper (for example, a second copper plate layer) is laminated via an insulating layer 22U. Is provided.
  • the lower ceramic substrate 21D and the upper ceramic substrate 21U are arranged such that the first conductive layer 24D and the second conductive layer 24U face each other.
  • the SiC MOSFETs Q1 and Q4 are connected in series between the power supply input terminal electrodes P and N, and the connection point between the SiC MOSFETs Q1 and Q4 is used as the output terminal OUT (output terminal electrode O).
  • G1 is a gate terminal (lead terminal for gate signal) of the semiconductor device Q1
  • D1 is a drain terminal of the semiconductor device Q1
  • S1 is a source terminal of the semiconductor device Q1.
  • G4 is a gate terminal (lead terminal for gate signal) of the semiconductor device Q4
  • D4 is a drain terminal of the semiconductor device Q4
  • S4 is a source terminal of the semiconductor device Q4.
  • the upper surface of the semiconductor device Q1 (U side) is a base end side of the conductive path layers 35 1, for example, the connection base end side of the post portion 35T of the I-shaped Has been. Further, the tip side of the post portion 35T is connected to the first electrode pattern 24U1 of the second conductive layer 24U on the D side of the upper ceramic substrate 21U.
  • the bridge portion 35C extending in a horizontal direction from a middle portion of the side surface of the post portion 35T and having a substantially L-shaped (or inverted L-shaped) plug structure has a lower ceramic substrate on the tip side. It is connected to the second electrode pattern 24D2 of the U-side conductive layer 24D on 21D.
  • the upper surface (U side) of the semiconductor device Q4 is a base end side of the conductive path layers 35 2, for example, the base end side of the post portion 35T of the I-shape is connected. Further, the tip side of the post portion 35T is connected to the second electrode pattern 24U2 of the conductive layer 24U on the D side of the upper ceramic substrate 21U.
  • the bridge portion 35C extending in a horizontal direction from a middle portion of the side surface of the post portion 35T and having a substantially L-shaped (or inverted L-shaped) plug structure has a lower ceramic substrate on the tip side.
  • the U-side conductive layer 24D on the 21D is connected to the third electrode pattern 24D3.
  • the bridge part 35C and the post part 35T are integrated as in the case of the conduction path layer 35 applied to the PM 10 according to the first embodiment. It may be provided with a block structure or a separate type divided structure.
  • the bridge portion 35C and the post portion 35T may be provided with the same constituent member or different constituent members.
  • conduction path layers 35 1 and 35 4 for example, a layered structure in which post portions 35T are stacked on the bridge portion 35C may be provided.
  • the bridge portion 35C may include one component member or a plurality of component members.
  • the post portion 35T may include one component member, a plurality of component members, or a plurality of layer electrode structures.
  • the post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
  • the bridge portion 35C includes Cu
  • the post portion 35T includes SiC or Cu.
  • the conductive path layers 35 1 and 354 4 desirably have a vertical size A smaller than a horizontal size B, as in the first embodiment.
  • Comparative Example 2 A schematic cross-sectional structure of PM10A according to Comparative Example 2 is expressed as shown in FIG. The basic structure is the same as that of the PM 10 according to the fourth embodiment.
  • the heat of the semiconductor devices Q1 and Q4 is mainly led to the upper cooler 30U side through the columnar electrodes 36 1 and 36 2 , but the semiconductor devices Q1 and Q4 The current is mainly guided to the upper ceramic substrate 21U side through the columnar electrodes 36 1 and 36 2 and then the second electrode pattern 24D2 and the third electrode pattern 24D3 side through the columnar electrodes 37 1 and 37 2. Will be led to.
  • the semiconductor power device includes a Si-based IGBT, a Si-based MOSFET, a SiC-based MOSFET, a SiC-based IGBT, a hybrid element of a SiC-based MOSFET and a SiC-based IGBT, GaN Any one of the system FETs or a plurality of these different ones may be provided.
  • the post part 35T stacked on the bridge part 35C may be configured to have an inverted trapezoidal shape.
  • the post part 35 ⁇ / b> T stacked on the bridge part 35 ⁇ / b> C may be configured to have an inversely tapered shape.
  • the post part 35T stacked on the bridge part 35C may be configured to have a reverse step taper shape.
  • the post portion 35T stacked on the bridge portion 35C may be configured to have a structure in which a plurality of layer electrodes are stacked in a reverse step taper shape.
  • FIG. 23 is a schematic circuit representation of a SiC MOSFET of 1 in 1 module, which is a PM 50 according to the embodiment.
  • FIG. 23 shows a diode DI connected in reverse parallel to the MOSFET Q.
  • the main electrode of the MOSFET Q is represented by a drain terminal DT and a source terminal ST.
  • the diode DI may be omitted by using a parasitic diode, or a Schottky diode may be connected in parallel with the diode DI.
  • the PM 50 according to the embodiment has, for example, a 1 in 1 module configuration.
  • a single MOSFET Q formed by connecting a plurality of MOSFETs in parallel is built in one module.
  • five chips (MOSFETs ⁇ 5) can be mounted, and up to five MOSFETs Q can be connected in parallel. A part of the five chips can be mounted for the diode DI.
  • a sense MOSFET Qs is connected in parallel to the MOSFET Q.
  • the sense MOSFET Qs is formed as a fine transistor in the same chip as the MOSFET Q.
  • SS is a source sense terminal
  • CS is a current sense terminal
  • G is a gate signal terminal.
  • a sense MOSFET Qs is formed as a fine transistor in the same chip.
  • the semiconductor module 20 is applicable to the PM 10 according to the fourth embodiment, and is a semiconductor package device in which two semiconductor devices Q1 and Q4 are sealed in one mold resin 33, so-called two.
  • the in 1 type module will be described.
  • the circuit configuration of a 2-in-1 module 50T to which an SiC MOSFET is applied is expressed as shown in FIG. 25, for example.
  • the 2-in-1 module 50T has a configuration of a half-bridge built-in module in which two SiC MOSFETs Q1 and Q4 are built in as one module.
  • the module can be regarded as one large transistor, but the built-in transistor may be one chip or a plurality of chips as shown in FIG. 2 or FIG.
  • the modules include 1 in 1, 2 in 1, 4 in 1, 6 in 1, etc.
  • a module including two sets of modules shown in FIG. A module containing two sets of in 1 is called a 6 in 1 module having three sets of 4 in 1 and 2 in 1.
  • the 2-in-1 module 50T includes two SiC MOSFETs Q1 and Q4 and diodes D1 and D4 connected in reverse parallel to the SiC MOSFETs Q1 and Q4 as a single module.
  • G1 is a lead terminal for a gate signal of the SiC MOSFET Q1
  • S1 is a lead terminal for a source signal of the SiC MOSFET Q1.
  • G4 is a lead terminal for the gate signal of the SiC MOSFET Q4, and S4 is a lead terminal for the source signal of the SiC MOSFET Q4.
  • P is a positive power input terminal electrode
  • N is a negative power input terminal electrode
  • O is an output terminal electrode
  • (Device structure) 4 is an example of semiconductor devices Q1 and Q4 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, and is a schematic diagram of the SiC MOSFET 110 including the source pad electrode SP and the gate pad electrode GP.
  • the cross-sectional structure is expressed as shown in FIG.
  • SiC MOSFET 110 includes a semiconductor substrate 126 made of an n ⁇ high resistance layer, a p body region 128 formed on the surface side of semiconductor substrate 126, and a source formed on the surface of p body region 128. Connected to region 130, gate insulating film 132 disposed on the surface of semiconductor substrate 126 between p body region 128, gate electrode 138 disposed on gate insulating film 132, source region 130, and p body region 128 Source electrode 134, n + drain region 124 disposed on the back surface opposite to the front surface of semiconductor substrate 126, and drain electrode 136 connected to n + drain region 124.
  • the gate pad electrode GP is connected to the gate electrode 138 disposed on the gate insulating film 132, and the source pad electrode SP is connected to the source electrode 134 connected to the source region 130 and the p body region 128. Further, as shown in FIG. 26, the gate pad electrode GP and the source pad electrode SP are disposed on a passivation interlayer insulating film 144 that covers the surface of the SiC MOSFET 110.
  • a fine transistor structure may be formed in the semiconductor substrate 126 below the gate pad electrode GP and the source pad electrode SP.
  • the source pad electrode SP may be extended and disposed on the interlayer insulating film 144 for passivation.
  • the SiC MOSFET 110 is composed of a planar gate type n-channel vertical SiC MOSFET. However, as shown in FIG. 29 described later, the trench gate type n-channel vertical SiC T (Trench) MOSFET 110 is used. It may be configured.
  • a GaN-based FET or the like can be employed instead of the SiC MOSFET 110.
  • the semiconductor devices Q1 to Q6 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments have a wide band gap of, for example, 1.1 eV to 8 eV.
  • a semiconductor called a mold can be used.
  • IGBT 110A includes a semiconductor substrate 126 made of an n ⁇ high resistance layer, a p body region 128 formed on the surface side of semiconductor substrate 126, and an emitter region formed on the surface of p body region 128. 130E, a gate insulating film 132 disposed on the surface of the semiconductor substrate 126 between the p body regions 128, a gate electrode 138 disposed on the gate insulating film 132, and the emitter regions 130E and the p body regions 128.
  • the gate pad electrode GP is connected to the gate electrode 138 disposed on the gate insulating film 132, and the emitter pad electrode EP is connected to the emitter electrode 134E connected to the emitter region 130E and the p body region 128.
  • the gate pad electrode GP and the emitter pad electrode EP are disposed on a passivation interlayer insulating film 144 that covers the surface of the IGBT 110A.
  • a fine-structure IGBT structure may be formed in the semiconductor substrate 126 below the gate pad electrode GP and the emitter pad electrode EP.
  • the emitter pad electrode EP may be arranged to extend on the interlayer insulating film 144 for passivation.
  • the IGBT 110A is composed of a planar gate type n-channel vertical IGBT, but may be composed of a trench gate type n-channel vertical IGBT or the like.
  • SiC power devices such as SiC DIMOSFET and SiC TMOSFET, or GaN power devices such as GaN high electron mobility transistors (HEMT) are applicable.
  • power devices such as Si-based MOSFETs and IGBTs are also applicable.
  • ⁇ SiC DIMOSFET ⁇ 28 is an example of a semiconductor device applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, and a schematic cross-sectional structure of the SiC DIMOSFET 110 is expressed as shown in FIG.
  • the SiC DIMOSFET 110 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments includes a semiconductor substrate 126 made of an n ⁇ high resistance layer, a semiconductor substrate 126 P body region 128 formed on the front surface side, n + source region 130 formed on the surface of p body region 128, and gate insulating film 132 disposed on the surface of semiconductor substrate 126 between p body regions 128, The gate electrode 138 disposed on the gate insulating film 132, the source electrode 134 connected to the source region 130 and the p body region 128, and the n + drain region disposed on the back surface opposite to the surface of the semiconductor substrate 126. 124 and a drain electrode 136 connected to the n + drain region 124.
  • SiC DIMOSFET 110 has a p body region 128 and an n + source region 130 formed on the surface of p body region 128 formed by double ion implantation (DII), and source pad electrode SP is connected to source region 130. And to the source electrode 134 connected to the p body region 128.
  • DII double ion implantation
  • the gate pad electrode GP is connected to the gate electrode 138 disposed on the gate insulating film 132. Further, as shown in FIG. 28, the source pad electrode SP and the gate pad electrode GP are arranged on the passivation interlayer 144 so as to cover the surface of the SiC DIMOSFET 110.
  • a depletion layer as shown by a broken line is formed in a semiconductor substrate 126 made of an n ⁇ high resistance layer sandwiched between p body regions 128.
  • a channel resistance R JFET due to the JFET) effect is formed.
  • a body diode BD is formed between the p body region 128 and the semiconductor substrate 126 as shown in FIG.
  • ⁇ SiC TMOSFET ⁇ 29 is an example of a semiconductor device applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, and a schematic cross-sectional structure of the SiC TMOSFET 110 is expressed as shown in FIG.
  • an SiC TMOSFET 110 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments includes an n-layer semiconductor substrate 126N and a surface side of the semiconductor substrate 126N.
  • a drain region 124 and a drain electrode 136 connected to the n + drain region 124 are provided. .
  • SiC TMOSFET 110 has a trench gate electrode 138TG formed through a gate insulating film 132 and interlayer insulating films 144U and 144B in a trench penetrating p body region 128 and extending to semiconductor substrate 126N. Electrode SP is connected to source electrode 134 connected to source region 130 and p body region 128.
  • the gate pad electrode GP is connected to the trench gate electrode 138TG disposed on the gate insulating film 132. Further, as shown in FIG. 29, the source pad electrode SP and the gate pad electrode GP are disposed on the passivation interlayer insulating film 144U so as to cover the surface of the SiC TMOSFET 110.
  • the channel resistance R JFET associated with the junction FET (JFET) effect like the SiC DIMOSFET is not formed.
  • a body diode BD is formed between the p body region 128 and the semiconductor substrate 126N, as in FIG.
  • a three-phase AC inverter 140 configured using the PM 10 according to the first to fourth embodiments, using a SiC MOSFET as a semiconductor device, and a snubber capacitor between a power supply terminal PL and a ground (reference) terminal NL
  • a circuit configuration example in which C is connected is expressed as shown in FIG.
  • the inductance L represents the inductance of the wiring.
  • the value of the surge voltage Ldi / dt varies depending on the value of the inductance L, but the surge voltage Ldi / dt is superimposed on the power source E.
  • the surge voltage Ldi / dt can be absorbed by the snubber capacitor C connected between the power supply terminal PL and the ground terminal NL.
  • the inverter device to which PM10 according to the present embodiment is applied may have the following configuration, for example.
  • the inverter device performs power conversion using the power module PM10 in which a circuit including the semiconductor device Q1 connected between the power supply terminal PL and the reference terminal NL is formed, and the power module PM10 includes the first insulation.
  • the second insulating substrate 22U arranged in this manner and one end connected to the electrode pad formed on the semiconductor device Q1, and the other end connected to the electrode pattern 24D2 formed on the first insulating substrate 22D, the semiconductor device Q1 Current conduction path layer 35C that flows current from the first electrode to the electrode pattern 24D2 without passing through the second insulating substrate 22U, and one end of which is a semiconductor device.
  • the other end side is connected to the second insulating substrate 22U side, and includes a heat conduction path layer 35T for transferring the heat of the semiconductor device Q1 to the second insulating substrate 22U, and at least the semiconductor device Q1 and the electric conduction
  • the road layer 35C, the heat conduction path layer 35T, and a mold resin for sealing a part of each terminal may be provided.
  • a three-phase AC inverter 140 includes a PM 152 driven by a gate drive unit 150, a three-phase AC motor unit 154 connected to the output of each PM, and a power supply or storage battery that supplies power to the circuit.
  • PM 152 is connected to an inverter circuit that outputs U-phase, V-phase, and W-phase corresponding to U-phase, V-phase, and W-phase of three-phase AC motor unit 154.
  • the gate drive unit 150 is connected to each gate of each of the SiC MOSFETs Q1 and Q4, the SiC MOSFETs Q2 and Q5, and the SiC MOSFETs Q3 and Q6.
  • the PM 152 is connected between a plus terminal (+) P and a minus terminal ( ⁇ ) N of a converter 148 to which a power source or a storage battery (E) 146 is connected, and includes SiC MOSFETs Q 1 and Q 4, Q 2 and Q 5 having inverter configurations, and Q3 and Q6 are provided. Free wheel diodes D1 to D6 are connected in antiparallel between the source and drain of the SiC MOSFETs Q1 to Q6, respectively.
  • a power module and an inverter device capable of efficiently dissipating heat can be realized. That is, in the power module, since the heat dissipation path T and the electrical path C are separated, a structure capable of efficiently dissipating heat can be achieved.
  • the PM according to each embodiment is for in-vehicle use, for example, more efficient heat dissipation is possible, so while ensuring higher safety with higher performance and higher functionality, Development of a highly efficient system becomes possible.
  • the mold type power module may be, for example, a mold type power module having a four-terminal structure.
  • the semiconductor module applicable to the PM according to the present embodiment is not limited to a resin-molded mold type power module, but can also be applied to a power module (semiconductor package device) packaged by a case type package. It is.
  • the present embodiment includes various embodiments that are not described here.
  • the PM of the present embodiment can be used in various semiconductor module manufacturing technologies such as IGBT modules, diode modules, and MOS modules (Si, SiC, GaN), and HEV (Hybrid Electric Vehicle) / EV with particularly large heat generation. It can be applied to inverters for (Electric ⁇ ⁇ ⁇ ⁇ ⁇ Vehicle), inverters and converters for industrial use, and can be applied to a wide range of application fields.
  • Semiconductor device P Positive power supply input terminal electrode N . Negative power supply input terminal electrode O . Output terminal electrode PL . Power supply terminal NL ... Reference terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

A power module (10) is provided with: a lower ceramic substrate (21D); a semiconductor device Q1 which is mounted on the lower ceramic substrate (21D) and generates heats during operation; an upper ceramic substrate (21U) disposed on the semiconductor device Q1 so as to face the lower ceramic substrate (21D); a bridge section (35C) which transmits an electrical signal and is connected to an electrode pattern (24D2), one end of which is disposed on the semiconductor device Q1 and the other end of which is formed on the lower ceramic substrate (21D); and a post section (35T), one end of which is disposed on the semiconductor device Q1 and the other end of which is connected to the upper ceramic substrate (21U), the post section (35T) conducting heat from the semiconductor device Q1 to a second insulation substrate (22U). A power module and inverter device capable of efficiently dissipating heat are provided.

Description

パワーモジュールおよびインバータ装置Power module and inverter device
 本実施の形態は、パワーモジュールおよびインバータ装置に関する。 This embodiment relates to a power module and an inverter device.
 パワーモジュールの1つとして、従来から、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)のような半導体デバイスを含むパワー素子(チップ)の外囲が樹脂でモールドされたパワー半導体モジュールが知られている。動作状態において、半導体デバイスは発熱するため、裏面側にヒートシンクやフィンなどの放熱器や冷却器を配置して放熱させ、半導体デバイスを冷却するのが一般的である。 As one of power modules, a power semiconductor module in which a power element (chip) including a semiconductor device such as an insulated gate bipolar transistor (IGBT) is molded with a resin has been known. Yes. Since the semiconductor device generates heat in the operation state, it is general to dissipate heat by disposing a heat sink or a cooler such as a heat sink or fin on the back surface side to cool the semiconductor device.
 特に、モジュールの上下の両面に冷却器を配置した両面冷却構造においては、チップ上に金属ブロックを配置することで、電気的、熱的に上面側と接続する構成が一般的である。 In particular, in a double-sided cooling structure in which coolers are arranged on both upper and lower sides of a module, a configuration in which a metal block is arranged on a chip to be electrically and thermally connected to the upper surface side is common.
特開2007-311441号公報JP 2007-31441 A 特開2013-179229号公報JP 2013-179229 A 特開2010-140969号公報JP 2010-140969 A
 しかしながら、この両面冷却構造において、電気的、熱的な経路が同一経路である場合、ジュール熱による発熱が、放熱を妨げてしまい、特性を悪化させる。 However, in this double-sided cooling structure, when the electrical and thermal paths are the same path, heat generated by Joule heat hinders heat dissipation and deteriorates the characteristics.
 本実施の形態は、効率的に放熱可能なパワーモジュールおよびインバータ装置を提供する。 This embodiment provides a power module and an inverter device that can efficiently dissipate heat.
 本実施の形態の一態様によれば、第1絶縁基板と、前記第1絶縁基板上に搭載されて動作時に発熱する半導体デバイスと、前記半導体デバイス上に、前記第1絶縁基板に対向して配置された第2絶縁基板と、前記半導体デバイス上に一端が配置され、他端側が前記第1絶縁基板に形成された電極パターンに接続されて電気信号を伝送する電気伝導路層と、前記半導体デバイス上に一端が配置され、他端側が前記第2絶縁基板に接続されて前記半導体デバイスの熱を前記第2絶縁基板側に伝導する熱伝導路層とを備えるパワーモジュールが提供される。 According to one aspect of the present embodiment, a first insulating substrate, a semiconductor device mounted on the first insulating substrate and generating heat during operation, and the semiconductor device facing the first insulating substrate A second insulating substrate disposed; one end disposed on the semiconductor device; the other end connected to an electrode pattern formed on the first insulating substrate to transmit an electrical signal; and the semiconductor There is provided a power module including one end disposed on a device, the other end connected to the second insulating substrate, and a heat conduction path layer that conducts heat of the semiconductor device to the second insulating substrate.
 また、本実施の形態の他の態様によれば、表面と裏面とを有する第1絶縁基板と、前記第1絶縁基板の前記表面側に搭載されて動作時に発熱する半導体デバイスと、前記半導体デバイス上に、前記第1絶縁基板に対向して配置され、表面と裏面とを有する第2絶縁基板と、前記第2絶縁基板の前記半導体デバイスに対向する面と反対側の面に配置された第1冷却器と、一端が前記半導体デバイス上に配置され、他端側が前記第1絶縁基板に形成された電極パターンに接続されて電気信号を伝送する電気伝導路層と、一端が前記半導体デバイス上に配置され、他端側が前記第2絶縁基板に接続されて前記半導体デバイスの熱を前記第1冷却器に伝導する熱伝導路層とを備え、前記電気伝導路層は、前記熱伝導路層の側面から前記電極パターンに接続される一体型のブロック構造を備えるパワーモジュールが提供される。 According to another aspect of the present embodiment, a first insulating substrate having a front surface and a back surface, a semiconductor device mounted on the front surface side of the first insulating substrate and generating heat during operation, and the semiconductor device A second insulating substrate disposed opposite to the first insulating substrate and having a front surface and a back surface; and a second insulating substrate disposed on a surface opposite to the surface facing the semiconductor device of the second insulating substrate. 1 cooler, one end disposed on the semiconductor device, the other end connected to an electrode pattern formed on the first insulating substrate and transmitting an electrical signal, and one end on the semiconductor device A heat conduction path layer that is connected to the second insulating substrate and conducts heat of the semiconductor device to the first cooler, wherein the electrical conduction path layer is the heat conduction path layer. The electrode pattern from the side Power module comprising a block structure integral to be connected is provided.
 また、本実施の形態の他の態様によれば、第1絶縁基板と、前記第1絶縁基板上に搭載されて動作時に発熱する半導体デバイスと、前記半導体デバイス上に、前記第1絶縁基板に対向して配置された第2絶縁基板と、前記第2絶縁基板の前記半導体デバイスに対向する面と反対側の面に配置された第1冷却器と、一端が前記半導体デバイス上に配置され、他端側が前記第1絶縁基板に形成された電極パターン接続されて電気信号を伝送する電気伝導路層と、前記電気伝導路層の前記第2絶縁基板側に積層化配置され、前記第2絶縁基板に接続されて前記半導体デバイスの熱を前記第1冷却器に伝導する熱伝導路層とを備えるパワーモジュールが提供される。 According to another aspect of the present embodiment, the first insulating substrate, the semiconductor device mounted on the first insulating substrate and generating heat during operation, the semiconductor device on the first insulating substrate, A second insulating substrate disposed oppositely, a first cooler disposed on a surface of the second insulating substrate opposite to the surface facing the semiconductor device, and one end disposed on the semiconductor device; The other end side is connected to the electrode pattern formed on the first insulating substrate and transmits an electric signal, and the second insulating substrate is laminated on the second insulating substrate side of the electric conduction layer. There is provided a power module including a heat conduction path layer connected to a substrate and conducting heat of the semiconductor device to the first cooler.
 また、本実施の形態の他の態様によれば、電源端子と基準端子との間に接続された半導体デバイスを含む回路が形成されたパワーモジュールを用いて電力変換を行うインバータ装置であって、前記パワーモジュールは、第1絶縁基板と、前記第1絶縁基板上に搭載されて動作時に熱を発生する前記半導体デバイスと、前記半導体デバイス上に、前記半導体デバイスに対向する面と反対側に、前記第1絶縁基板に対向して配置された第2絶縁基板と、一端が前記半導体デバイス上に形成された電極パッドに接続され、他端側が前記第1絶縁基板に形成された電極パターンに接続され、前記半導体デバイスからの電流を前記第2絶縁基板を介さずに前記電極パターンに流す電気伝導路層と、一端が前記半導体デバイス上に配置され、他端側が前記第2絶縁基板側に接続され、前記半導体デバイスの熱を前記第2絶縁基板に伝える熱伝導路層とを備え、少なくとも前記半導体デバイスと、前記電気伝導路層と、前記熱伝導路層と、前記各端子の一部を封止するモールド樹脂を備えるインバータ装置が提供される。 Further, according to another aspect of the present embodiment, an inverter device that performs power conversion using a power module in which a circuit including a semiconductor device connected between a power supply terminal and a reference terminal is formed, The power module includes a first insulating substrate, the semiconductor device mounted on the first insulating substrate and generating heat during operation, and a surface opposite to the surface facing the semiconductor device on the semiconductor device, A second insulating substrate disposed opposite to the first insulating substrate, one end connected to an electrode pad formed on the semiconductor device, and the other end connected to an electrode pattern formed on the first insulating substrate An electric conduction path layer for passing a current from the semiconductor device to the electrode pattern without passing through the second insulating substrate, one end being disposed on the semiconductor device, and the other end being the front side A heat conduction path layer connected to the second insulation substrate side and conducting heat of the semiconductor device to the second insulation substrate, at least the semiconductor device, the electrical conduction path layer, and the heat conduction path layer; An inverter device is provided that includes a mold resin that seals a part of each terminal.
 本実施の形態によれば、効率的に放熱可能なパワーモジュールおよびインバータ装置を提供可能である。 According to this embodiment, it is possible to provide a power module and an inverter device that can efficiently dissipate heat.
第1の実施の形態に係るパワーモジュールであって、図2(a)のI-I線に沿う模式的断面構造図。FIG. 3 is a schematic cross-sectional structure diagram of the power module according to the first embodiment, taken along line II in FIG. (a)第1の実施の形態に係るパワーモジュールの一部を透過して示す模式的平面構成図、(b)第1の実施の形態に係るパワーモジュールの模式的回路表現図。(A) The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on 1st Embodiment, (b) The typical circuit representation figure of the power module which concerns on 1st Embodiment. 比較例1に係るパワーモジュールの模式的断面構造図。The typical cross-section figure of the power module which concerns on the comparative example 1. FIG. (a)第1の実施の形態の第1変形例に係るパワーモジュールであって、図4(b)のII-II線に沿う模式的断面構造図、(b)第1の実施の形態の第1変形例に係るパワーモジュールの一部を透過して示す模式的平面構成図。(A) A power module according to a first modification of the first embodiment, which is a schematic cross-sectional structure diagram taken along the line II-II in FIG. 4 (b), and (b) the first embodiment. The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on a 1st modification. (a)第1の実施の形態の第2変形例に係るパワーモジュールであって、図5(b)のIII-III線に沿う模式的断面構造図、(b)第1の実施の形態の第2変形例に係るパワーモジュールの一部を透過して示す模式的平面構成図。FIG. 5A is a power module according to a second modification of the first embodiment, and is a schematic cross-sectional structure diagram taken along the line III-III in FIG. 5B. FIG. 5B is a diagram of the first embodiment. The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on a 2nd modification. (a)第1の実施の形態の第3変形例に係るパワーモジュールであって、図6(b)のIV-IV線に沿う模式的断面構造図、(b)第1の実施の形態の第3変形例に係るパワーモジュールの一部を透過して示す模式的平面構成図。(A) A power module according to a third modification of the first embodiment, which is a schematic cross-sectional structure diagram taken along the line IV-IV in FIG. 6 (b), and (b) the first embodiment. The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on a 3rd modification. (a)第2の実施の形態に係るパワーモジュールであって、図7(b)のV-V線に沿う模式的断面構造図、(b)第2の実施の形態に係るパワーモジュールの一部を透過して示す模式的平面構成図。(A) A power module according to the second embodiment, which is a schematic sectional view taken along line VV in FIG. 7 (b), and (b) one of the power modules according to the second embodiment. The typical plane block diagram which permeate | transmits and shows a part. (a)第3の実施の形態に係るパワーモジュールであって、図8(b)のVI-VI線に沿う模式的断面構造図、(b)第3の実施の形態に係るパワーモジュールの一部を透過して示す模式的平面構成図。(A) A power module according to the third embodiment, which is a schematic sectional view taken along line VI-VI in FIG. 8 (b), and (b) one of the power modules according to the third embodiment. The typical plane block diagram which permeate | transmits and shows a part. 第3の実施の形態に係るパワーモジュールの模式的鳥瞰構成図。The typical bird's-eye view block diagram of the power module which concerns on 3rd Embodiment. 第3の実施の形態に係るパワーモジュールをモデルケースとして、各構成部の材料、厚み、熱伝導率の具体例について示す図。The figure shown about the specific example of the material of each structure part, thickness, and heat conductivity by making the power module which concerns on 3rd Embodiment into a model case. 第3の実施の形態に係るパワーモジュールをモデルケースとして、熱抵抗についてシミュレーションを行った際の結果を対比して示すもので、(a)ポスト部にSiC(Silicon Carbide)を適用した場合のシミュレーション結果、(b)ポスト部にCu(Copper)を適用した場合のシミュレーション結果。The power module which concerns on 3rd Embodiment is made into a model case, and the result at the time of simulating about thermal resistance is shown, (a) Simulation at the time of applying SiC (Silicon Carbide) to a post part Results, (b) Simulation results when Cu (Copper) is applied to the post part. 第3の実施の形態の第1変形例に係るパワーモジュールの模式的断面構造図。The typical cross-section figure of the power module which concerns on the 1st modification of 3rd Embodiment. (a)第3の実施の形態の第2変形例に係るパワーモジュールであって、図13(b)のVII-VII線に沿う模式的断面構造図、(b)第3の実施の形態の第2変形例に係るパワーモジュールの一部を透過して示す模式的平面構成図。(A) A power module according to a second modification of the third embodiment, which is a schematic cross-sectional structure diagram taken along line VII-VII in FIG. 13 (b), and (b) the third embodiment. The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on a 2nd modification. (a)第3の実施の形態の第3変形例に係るパワーモジュールであって、図14(b)のVIII-VIII線に沿う模式的断面構造図、(b)第3の実施の形態の第3変形例に係るパワーモジュールの一部を透過して示す模式的平面構成図。(A) A power module according to a third modification of the third embodiment, which is a schematic sectional view taken along line VIII-VIII of FIG. 14 (b), and (b) of the third embodiment. The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on a 3rd modification. (a)第3の実施の形態の第4変形例に係るパワーモジュールであって、図15(b)のIX-IX線に沿う模式的断面構造図、(b)第3の実施の形態の第4変形例に係るパワーモジュールの一部を透過して示す模式的平面構成図。FIG. 15A is a power module according to a fourth modification of the third embodiment, and is a schematic cross-sectional structure diagram taken along line IX-IX in FIG. 15B. FIG. 15B is a diagram of the third embodiment. The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on a 4th modification. 第4の実施の形態に係るパワーモジュールであって、図17(a)のX-X線に沿う模式的断面構造図。FIG. 18 is a schematic cross-sectional structure diagram of the power module according to the fourth embodiment, taken along line XX of FIG. (a)第4の実施の形態に係るパワーモジュールの一部を透過して示す模式的平面構成図、(b)第4の実施の形態に係るパワーモジュールの模式的回路表現図。(A) The typical plane block diagram which permeate | transmits and shows a part of power module which concerns on 4th Embodiment, (b) The typical circuit representation figure of the power module which concerns on 4th Embodiment. 比較例2に係るパワーモジュールの模式的断面構造図。The typical cross-section figure of the power module which concerns on the comparative example 2. FIG. 実施の形態の第1適用例に係るパワーモジュールの模式的断面構造図。The typical cross-section figure of the power module which concerns on the 1st application example of embodiment. 実施の形態の第2適用例に係るパワーモジュールの模式的断面構造図。The typical cross-section figure of the power module which concerns on the 2nd application example of embodiment. 実施の形態の第3適用例に係るパワーモジュールの模式的断面構造図。The typical cross-section figure of the power module which concerns on the 3rd application example of embodiment. 実施の形態の第4適用例に係るパワーモジュールの模式的断面構造図。The typical cross-section figure of the power module which concerns on the 4th example of application of embodiment. 実施の形態に係るパワーモジュールの例であって、ワンインワン型(1 in 1)モジュールのSiC MOSFET(Metal Oxide Semiconductor Field Effect Transistor)の模式的回路表現図。It is an example of the power module which concerns on embodiment, Comprising: The typical circuit representation figure of SiC MOSFET (Metal | Oxide | Semiconductor | Field | Effect | Transistor) of a one-in-one type (1? In? 1) module. 実施の形態に係るパワーモジュールの例であって、1 in 1モジュールのSiC MOSFETの詳細回路表現図。It is an example of the power module which concerns on embodiment, and is a detailed circuit representation figure of SiC MOSFET of 1? In? 1 module. 実施の形態に係るパワーモジュールの例であって、ツーインワン型(2 in 1)モジュールのSiC MOSFETの模式的回路表現図。It is an example of the power module which concerns on embodiment, Comprising: The typical circuit representation figure of SiC MOSFET of a two-in-one type (2 (in 1) module. 実施の形態に係るパワーモジュールに適用可能な半導体デバイスの例であって、ソースパッド電極SP、ゲートパッド電極GPを含む、SiC MOSFETの模式的断面構造図。FIG. 3 is a schematic cross-sectional structure diagram of a SiC MOSFET that is an example of a semiconductor device applicable to the power module according to the embodiment and includes a source pad electrode SP and a gate pad electrode GP. 実施の形態に係るパワーモジュールに適用可能な半導体デバイスの例であって、エミッタパッド電極EP、ゲートパッド電極GPを含む、IGBTの模式的断面構造図。FIG. 5 is a schematic cross-sectional structure diagram of an IGBT including an emitter pad electrode EP and a gate pad electrode GP, which is an example of a semiconductor device applicable to the power module according to the embodiment. 実施の形態に係るパワーモジュールに適用可能な半導体デバイスの例であって、SiC DI(Double Implanted)MOSFETの模式的断面構造図。FIG. 4 is a schematic cross-sectional structure diagram of a SiC DI (Double-Implanted) MOSFET, which is an example of a semiconductor device applicable to the power module according to the embodiment. 実施の形態に係るパワーモジュールに適用可能な半導体デバイスの例であって、SiC T(Trench)MOSFETの模式的断面構造図。It is an example of the semiconductor device applicable to the power module which concerns on embodiment, Comprising: The typical cross-section figure of SiC T (Trench) MOSFET. 実施の形態に係るパワーモジュールを用いて構成した3相交流インバータの回路構成において、SiC MOSFETを適用し、電源端子PL・接地端子NL間にスナバコンデンサを接続した回路構成例。The circuit structural example which applied the SiC MOSFET and connected the snubber capacitor between the power supply terminal PL and the ground terminal NL in the circuit structure of the three-phase alternating current inverter comprised using the power module which concerns on embodiment. 実施の形態に係るパワーモジュールを用いて構成した3相交流インバータにおいて、SiC MOSFETを適用した模式的回路構成図。The typical circuit block diagram which applied SiC MOSFET in the three-phase alternating current inverter comprised using the power module which concerns on embodiment.
 次に、図面を参照して、本実施の形態について説明する。以下に説明する図面の記載において、同一または類似の部分には同一または類似の符号を付している。ただし、図面は模式的なものであり、各構成部品の厚みと平面寸法との関係などは現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Next, the present embodiment will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness of each component and the planar dimensions is different from the actual one. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. In addition, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 また、以下に示す実施の形態は、技術的思想を具体化するための装置や方法を例示するものであって、各構成部品の材質、形状、構造、配置などを特定するものではない。この実施の形態は、特許請求の範囲において、種々の変更を加えることができる。 Further, the embodiment described below exemplifies an apparatus and method for embodying the technical idea, and does not specify the material, shape, structure, arrangement, etc. of each component. This embodiment can be modified in various ways within the scope of the claims.
 [実施の形態]
 (第1の実施の形態)
 第1の実施の形態に係るパワーモジュール(Power Module:以下「PM」と記す)10の模式的断面構造は、図1に示すように表される。なお、図1には、1 in 1(ワンインワン型)モジュールタイプのPM10に適用した場合が例示されている。
[Embodiment]
(First embodiment)
A schematic cross-sectional structure of a power module (hereinafter referred to as “PM”) 10 according to the first embodiment is expressed as shown in FIG. FIG. 1 illustrates a case where the present invention is applied to a 1 in 1 (one in one type) module type PM 10.
 また、図2(a)には、第1の実施の形態に係るPM10の一部を透過して示す模式的平面構成が示され、図2(b)には、半導体デバイス(チップ)Q1として、SiC MOSFETを適用した場合の第1の実施の形態に係るPM10の模式的回路構成が示されている。 Further, FIG. 2A shows a schematic plan configuration showing a part of the PM 10 according to the first embodiment, and FIG. 2B shows a semiconductor device (chip) Q1. A schematic circuit configuration of the PM 10 according to the first embodiment when a SiC MOSFET is applied is shown.
 なお、図1に示されたPM10の模式的断面構造は、例えば、図2(a)のI-I線に沿ったものとなっている。また、図2(a)の模式的平面パターン構成においては、特に、上部冷却器(第1冷却器)30Uおよび上部セラミック基板(第2絶縁基板)21Uの記載を省略している。また、半導体デバイスQ1の一例として、例えば、1つのモジュール内に最大で5個まで並列接続可能なチップ(MOSFET)Qを搭載した場合を例示している。 Note that the schematic cross-sectional structure of the PM 10 shown in FIG. 1 is, for example, along the line II in FIG. Further, in the schematic planar pattern configuration of FIG. 2A, the description of the upper cooler (first cooler) 30U and the upper ceramic substrate (second insulating substrate) 21U is omitted. As an example of the semiconductor device Q1, for example, a case where up to five chips (MOSFETs) Q that can be connected in parallel are mounted in one module is illustrated.
 ここで、以下の説明においては、PM10の上部セラミック基板21U側をU(UP)側、下部セラミック基板(第1絶縁基板)21D側をD(DOWN)側と定義する。この定義は、後述する比較例の説明においても同様である。 Here, in the following description, the upper ceramic substrate 21U side of the PM 10 is defined as the U (UP) side, and the lower ceramic substrate (first insulating substrate) 21D side is defined as the D (DOWN) side. This definition is the same in the description of the comparative example described later.
 第1の実施の形態に係るPM10は、図1および図2に示すように、半導体デバイスQ1をモールド樹脂33によって封止した半導体モジュール20と、半導体モジュール20のU側の上面20aに配置された上部冷却器30Uと、上面20aに対向する、半導体モジュール20のD側の下面20bに配置された下部冷却器(第2冷却器)30Dとを備える。 As shown in FIGS. 1 and 2, the PM 10 according to the first embodiment is disposed on the semiconductor module 20 in which the semiconductor device Q <b> 1 is sealed with the mold resin 33 and the upper surface 20 a on the U side of the semiconductor module 20. An upper cooler 30U and a lower cooler (second cooler) 30D disposed on the lower surface 20b on the D side of the semiconductor module 20 facing the upper surface 20a are provided.
 半導体モジュール20は、図1に示すように、半導体デバイスQ1の上下に対向して配置された上部セラミック基板21Uおよび下部セラミック基板21Dと、半導体デバイスQ1の上面に配置された伝導路層35と、モールド樹脂33と、正側電源入力端子電極Pと、負側電源入力端子電極Nとを備える。 As shown in FIG. 1, the semiconductor module 20 includes an upper ceramic substrate 21U and a lower ceramic substrate 21D that are arranged to face the semiconductor device Q1, and a conduction path layer 35 that is arranged on the upper surface of the semiconductor device Q1. A mold resin 33, a positive power input terminal electrode P, and a negative power input terminal electrode N are provided.
 下部セラミック基板21Dは、絶縁層22Dを介して銅などの金属箔(例えば、第1銅プレート層)が積層された導電層23D・導電層24D(第1電極パターン24D1・第2電極パターン24D2)を備え、上部セラミック基板21Uは、絶縁層22Uを介して銅などの金属箔(例えば、第2銅プレート層)が積層された導電層23U・導電層24Uを備える。 The lower ceramic substrate 21D includes a conductive layer 23D and a conductive layer 24D (first electrode pattern 24D1 and second electrode pattern 24D2) in which a metal foil such as copper (for example, a first copper plate layer) is laminated via an insulating layer 22D. The upper ceramic substrate 21U includes a conductive layer 23U and a conductive layer 24U in which a metal foil such as copper (for example, a second copper plate layer) is laminated via an insulating layer 22U.
 上部セラミック基板21Uおよび下部セラミック基板21Dは、第1導電層24Dと第2導電層24Uとが対向し、ほぼ平行に配置される。 In the upper ceramic substrate 21U and the lower ceramic substrate 21D, the first conductive layer 24D and the second conductive layer 24U face each other and are arranged substantially in parallel.
 上部セラミック基板21Uおよび下部セラミック基板21Dとしては、例えば、AMB(Active Metal Brazed、Active Metal Bond)基板などを適用可能である。または、例えば、DBC(Direct Bonding Copper)基板、DBA(Direct Brazed Aluminum)基板、若しくはDBC基板の代わりに有機絶縁樹脂層を適用するようにしても良い。 As the upper ceramic substrate 21U and the lower ceramic substrate 21D, for example, an AMB (Active Metal Brazed, Active Metal Bond) substrate or the like is applicable. Alternatively, for example, an organic insulating resin layer may be applied instead of a DBC (Direct Bonding Copper) substrate, a DBA (Direct Brazed Aluminum) substrate, or a DBC substrate.
 第1電極パターン24D1上には、半導体デバイスQ1のD側が搭載されると共に、正側電源入力端子電極Pの基端部が接合され、第2電極パターン24D2上には、負側電源入力端子電極Nの基端部が接合されると共に、伝導路層35のブリッジ部(電気伝導路層)35Cの先端側が接続されている。 On the first electrode pattern 24D1, the D side of the semiconductor device Q1 is mounted and the base end portion of the positive power supply input terminal electrode P is joined. On the second electrode pattern 24D2, the negative power supply input terminal electrode The base end portion of N is joined, and the distal end side of the bridge portion (electric conduction path layer) 35C of the conduction path layer 35 is connected.
 なお、図2(b)に示すように、SiC MOSFETを適用した場合、G1は半導体デバイスQ1のゲート端子(ゲート信号用のリード端子)、D1は正側電源入力端子電極Pにつながる半導体デバイスQ1のドレイン端子、S1は負側電源入力端子電極Nにつながる半導体デバイスQ1のソース端子である。 As shown in FIG. 2B, when an SiC MOSFET is applied, G1 is a gate terminal (gate signal lead terminal) of the semiconductor device Q1, and D1 is a semiconductor device Q1 connected to the positive power supply input terminal electrode P. The drain terminal S1 is a source terminal of the semiconductor device Q1 connected to the negative power supply input terminal electrode N.
 ここで、伝導路層35は、例えば、電気経路Cを確立するためのブリッジ部35Cと、放熱経路Tを確立するためのポスト部(熱伝導路層)35Tとを備える。 Here, the conduction path layer 35 includes, for example, a bridge part 35C for establishing the electrical path C and a post part (thermal conduction path layer) 35T for establishing the heat dissipation path T.
 第1の実施の形態に係るPM10の場合、半導体デバイスQ1の上面(U側)には、伝導路層35の基端側である、例えば、ポスト部35Tの基端側が接続されている。また、このポスト部35Tの先端側は、上部セラミック基板21UのD側の導電層24Uに接続されている。ポスト部35Tは、例えば、平面がほぼ方形の柱状電極構造を有し、先端側と基端側とでほぼ均一な太さとなっている。 In the PM 10 according to the first embodiment, the base end side of the conductive path layer 35, for example, the base end side of the post portion 35T is connected to the upper surface (U side) of the semiconductor device Q1. Further, the front end side of the post portion 35T is connected to the conductive layer 24U on the D side of the upper ceramic substrate 21U. The post portion 35T has, for example, a columnar electrode structure with a substantially rectangular plane, and has a substantially uniform thickness on the distal end side and the proximal end side.
 すなわち、伝導路層35は、上部セラミック基板21Uまたは下部セラミック基板21Dに対し、ほぼ垂直に配置されたI字形状のポスト部35Tと、例えば、その側面の中途の部分から水平方向に延出され、第2電極パターン24D2との接続のために下部セラミック基板21D側に変形された、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部35Cとを備える。 That is, the conductive path layer 35 extends in a horizontal direction from an I-shaped post portion 35T disposed substantially perpendicular to the upper ceramic substrate 21U or the lower ceramic substrate 21D and, for example, a middle portion of the side surface thereof. And a bridge portion 35C having a substantially L-shaped (or inverted L-shaped) plug structure that is deformed to the lower ceramic substrate 21D side for connection to the second electrode pattern 24D2.
 ブリッジ部35Cは、ほぼL字形状に限らず、例えば、ほぼU字(または、逆U字)形状のプラグ構造を備えるようにしても良い。 The bridge portion 35 </ b> C is not limited to a substantially L-shape, and may be provided with a substantially U-shaped (or inverted U-shaped) plug structure, for example.
 なお、伝導路層35としては、例えば、ブリッジ部35Cとポスト部35Tとが一体型のブロック構造を備える、若しくはブリッジ部35Cとポスト部35Tとが別体型の分割構造を備えるものであっても良い。 As the conduction path layer 35, for example, the bridge portion 35C and the post portion 35T may have an integrated block structure, or the bridge portion 35C and the post portion 35T may have a separate divided structure. good.
 また、伝導路層35としては、例えば、ブリッジ部35C上にポスト部35Tが積層された積層構造を備えるものであっても良い。 Further, as the conductive path layer 35, for example, a layered structure in which the post part 35T is laminated on the bridge part 35C may be provided.
 また、伝導路層35としては、例えば、ブリッジ部35Cとポスト部35Tとが同一の構成部材を備える、若しくはブリッジ部35Cとポスト部35Tとが異なる構成部材を備えるものであっても良い。 Further, as the conductive path layer 35, for example, the bridge part 35C and the post part 35T may be provided with the same constituent member, or the bridge part 35C and the post part 35T may be provided with different constituent members.
 また、伝導路層35としては、例えば、ブリッジ部35Cが1つの構成部材を備える、若しくは複数の構成部材を備えるものであっても良い。 Further, as the conductive path layer 35, for example, the bridge portion 35C may include one component member or a plurality of component members.
 また、伝導路層35としては、例えば、ポスト部35Tが1つの構成部材を備える、または複数の構成部材を備える、若しくは複数の層電極構造を備えるものであっても良い。 Further, as the conduction path layer 35, for example, the post portion 35T may include one component member, or may include a plurality of component members, or may include a plurality of layer electrode structures.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 第1の実施の形態に係るPM10に適用可能な伝導路層35としては、例えば、ブリッジ部35CはCu(Copper)を備え、ポスト部35TはSiCまたはCuを備える。 As the conductive path layer 35 applicable to the PM 10 according to the first embodiment, for example, the bridge portion 35C includes Cu (Copper), and the post portion 35T includes SiC or Cu.
 すなわち、ブリッジ部35Cとしては、ポスト部35Tよりも電気伝導率の高い部材、例えば、Cu、Al(アルミニウム)、Ag(銀)のいずれかが望ましく、ポスト部35Tとしては、ブリッジ部35Cよりも熱伝導率の高い部材、例えば、SiC(シリコンカーバイド)、Cu、Ag、カーボン、グラファイトのいずれかが望ましい。 That is, as the bridge portion 35C, a member having higher electrical conductivity than the post portion 35T, for example, any one of Cu, Al (aluminum), and Ag (silver) is desirable, and the post portion 35T is more than the bridge portion 35C. A member having high thermal conductivity, for example, SiC (silicon carbide), Cu, Ag, carbon, or graphite is desirable.
 また、伝導路層35は、例えば図1に示すように、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。冷却性能を高め、放熱特性がより良好となるからである。 Further, it is desirable that the conduction path layer 35 has a vertical size A smaller than a horizontal size B, for example, as shown in FIG. This is because the cooling performance is improved and the heat dissipation characteristics are improved.
 ここで、半導体デバイスQ1は、下部セラミック基板21D上の導電層24Dの第1電極パターン24D1上に搭載される。基本的に、半導体デバイスQ1は、U側がソース電極(ソースパッド電極)、D側がドレイン電極となるように配置される(後述する、他の半導体デバイスQ1・Q2・Q3・Q4・Q5・Q6についても同様である)。 Here, the semiconductor device Q1 is mounted on the first electrode pattern 24D1 of the conductive layer 24D on the lower ceramic substrate 21D. Basically, the semiconductor device Q1 is arranged such that the U side is a source electrode (source pad electrode) and the D side is a drain electrode (for other semiconductor devices Q1, Q2, Q3, Q4, Q5, and Q6, which will be described later). Is the same).
 なお、半導体デバイスQ1の搭載は、下部セラミック基板21D上にフリップチップに配置されていても良い。 The semiconductor device Q1 may be mounted on the lower ceramic substrate 21D in a flip chip.
 また、半導体デバイスQ1は、図2(a)に示すように、5チップ(MOSFET Q×5)まで並列接続するものに限らず、また、5チップの一部をダイオード用としても良い。 Further, as shown in FIG. 2A, the semiconductor device Q1 is not limited to being connected in parallel up to 5 chips (MOSFET Q × 5), and a part of the 5 chips may be used for a diode.
 第1の実施の形態に係るPM10に適用可能な半導体モジュール20においては、上部セラミック基板21U上のU側の導電層23Uと下部セラミック基板21D上のD側の導電層23Dとを外部に露出させるようにして、半導体デバイスQ1の外囲がモールド樹脂33によって封止されている。 In the semiconductor module 20 applicable to the PM 10 according to the first embodiment, the U-side conductive layer 23U on the upper ceramic substrate 21U and the D-side conductive layer 23D on the lower ceramic substrate 21D are exposed to the outside. In this way, the outer periphery of the semiconductor device Q1 is sealed with the mold resin 33.
 そして、モールド樹脂33より露出する下部セラミック基板21DのD側の導電層23D(下面20b)には下部冷却器30Dが接合され、モールド樹脂33より露出する上部セラミック基板21UのU側の導電層23U(上面20a)には上部冷却器30Uが接合される。 The lower cooler 30D is joined to the D-side conductive layer 23D (lower surface 20b) of the lower ceramic substrate 21D exposed from the mold resin 33, and the U-side conductive layer 23U of the upper ceramic substrate 21U exposed from the mold resin 33. The upper cooler 30U is joined to the (upper surface 20a).
 上部冷却器30Uおよび下部冷却器30Dは、例えば、ヒートシンクや放熱フィンまたは放熱ピンなどの空冷式の放熱器、若しくは水冷式冷却器を適用できる。 As the upper cooler 30U and the lower cooler 30D, for example, an air-cooled heat radiator such as a heat sink, a heat radiation fin, or a heat radiation pin, or a water-cooled cooler can be applied.
 すなわち、第1の実施の形態に係るPM10は、第1絶縁基板21Dと、第1絶縁基板21D上に搭載されて動作時に発熱する半導体デバイスQ1と、半導体デバイスQ1上に、第1絶縁基板21Dに対向して配置された第2絶縁基板21Uと、半導体デバイスQ1上に一端が配置され、他端側が第1絶縁基板21Dに形成された電極パターン24D2に接続されて電気信号を伝送する電気伝導路層(ブリッジ部35C)と、半導体デバイスQ1上に一端が配置され、他端側が第2絶縁基板21Uに接続されて前記半導体デバイスの熱を前記第2絶縁基板側に伝導する熱伝導路層(ポスト部35T)とを備える。 That is, the PM 10 according to the first embodiment includes a first insulating substrate 21D, a semiconductor device Q1 mounted on the first insulating substrate 21D and generating heat during operation, and the first insulating substrate 21D on the semiconductor device Q1. The second insulating substrate 21U disposed opposite to the semiconductor device Q1, one end disposed on the semiconductor device Q1, and the other end connected to the electrode pattern 24D2 formed on the first insulating substrate 21D to transmit an electric signal A path layer (bridge portion 35C) and a heat conduction path layer having one end disposed on the semiconductor device Q1 and the other end connected to the second insulating substrate 21U to conduct the heat of the semiconductor device to the second insulating substrate side (Post part 35T).
 また、第2絶縁基板22Uの第1絶縁基板22Dに対向する面と反対側の面に配置されて熱伝導路層35Tからの熱を第2絶縁基板22Uを介して冷却するための第1冷却器30Uをさらに備えていても良い。 In addition, the first cooling for cooling the heat from the heat conduction path layer 35T via the second insulating substrate 22U, which is disposed on the surface opposite to the surface facing the first insulating substrate 22D of the second insulating substrate 22U. An instrument 30U may be further provided.
 また、第1絶縁基板22Dの半導体デバイスQ1が搭載された面と反対側の面に配置されて半導体デバイスQ1の熱を第1絶縁基板22Dを介して冷却するための第2冷却器30Dをさらに備えていても良い。 Further, a second cooler 30D is disposed on the surface of the first insulating substrate 22D opposite to the surface on which the semiconductor device Q1 is mounted to cool the heat of the semiconductor device Q1 via the first insulating substrate 22D. You may have.
 また、第1絶縁基板22Dの半導体デバイスQ1が搭載された面側に配置され、第1電極パターン24D1と第2電極パターン24D2とを有する第1導電層24Dをさらに備え、半導体デバイスQ1は、第1電極パターン24D1上に搭載され、電気伝導路層35Cは、半導体デバイスQ1の上面に形成されたパッド電極と第2電極パターン24D2との間を接続する。 The first insulating substrate 22D further includes a first conductive layer 24D disposed on a surface side on which the semiconductor device Q1 is mounted and having a first electrode pattern 24D1 and a second electrode pattern 24D2, and the semiconductor device Q1 The electric conduction path layer 35C is mounted on the first electrode pattern 24D1, and connects between the pad electrode formed on the upper surface of the semiconductor device Q1 and the second electrode pattern 24D2.
 また、第2絶縁基板22Uの第1絶縁基板22Dに対向する面側に配置され、第1導電層24Dと対向する第2導電層24Uをさらに備え、熱伝導路層35Tは、半導体デバイスQ1の上面に配置されたパッド電極と第2導電層24Uとの間を接続し、半導体デバイスQ1の熱を第2絶縁基板22U側に伝導することができる。 Further, the second insulating substrate 22U is further provided with a second conductive layer 24U disposed on the surface facing the first insulating substrate 22D and facing the first conductive layer 24D, and the heat conduction path layer 35T is formed of the semiconductor device Q1. The pad electrode disposed on the upper surface and the second conductive layer 24U are connected, and the heat of the semiconductor device Q1 can be conducted to the second insulating substrate 22U side.
 第1の実施の形態に係るPM10は、表面と裏面とを有する第1絶縁基板22Dと、第1絶縁基板22Dの表面側に搭載されて動作時に発熱する半導体デバイスQ1と、半導体デバイスQ1上に、第1絶縁基板22Dに対向して配置され、表面と裏面とを有する第2絶縁基板22Uと、第2絶縁基板22Uの半導体デバイスQ1に対向する面と反対側の面に配置された第1冷却器30Uと、一端が半導体デバイスQ1上に配置され、他端側が第1絶縁基板22Dに形成された電極パターン24D2に接続されて電気信号を伝送する電気伝導路層35Cと、一端が半導体デバイスQ1上に配置され、他端側が第2絶縁基板22Uに接続されて半導体デバイスQ1の熱を第1冷却器30Uに伝導する熱伝導路層35Tとを備え、記電気伝導路層35Cは、熱伝導路層35Tの側面から電極パターン24D2に接続される一体型のブロック構造を備えていても良い。 The PM 10 according to the first embodiment includes a first insulating substrate 22D having a front surface and a back surface, a semiconductor device Q1 mounted on the front surface side of the first insulating substrate 22D and generating heat during operation, and the semiconductor device Q1. The second insulating substrate 22U is disposed opposite to the first insulating substrate 22D and has a front surface and a back surface, and the first insulating substrate 22U is disposed on the surface opposite to the surface facing the semiconductor device Q1. The cooler 30U, one end disposed on the semiconductor device Q1, and the other end connected to the electrode pattern 24D2 formed on the first insulating substrate 22D to transmit an electrical signal, and one end to the semiconductor device A heat conduction path layer 35T disposed on Q1 and having the other end connected to the second insulating substrate 22U to conduct the heat of the semiconductor device Q1 to the first cooler 30U. 5C may have a block structure integral connected from the side of the heat conducting path layer 35T to the electrode pattern 24d2.
 このように、第1の実施の形態に係るPM10によれば、半導体デバイスQ1の上面上にブリッジ部35Cとポスト部35Tとを有する伝導路層35を配置し、放熱経路Tと電気経路Cとを分けるようにしたので、より効率的に放熱可能な構造とすることができる。 Thus, according to PM10 which concerns on 1st Embodiment, the conduction path layer 35 which has the bridge | bridging part 35C and the post part 35T is arrange | positioned on the upper surface of the semiconductor device Q1, and the heat dissipation path | route T and the electrical path | route C Therefore, it is possible to provide a structure that can dissipate heat more efficiently.
 すなわち、半導体モジュール20の上下に、上部冷却器30U・下部冷却器30Dを配置した、いわゆる両面冷却構造のPM10において、半導体デバイスQ1の上面にポスト部35Tとブリッジ部35Cとを配置したことによって、半導体デバイスQ1の熱は、主に、ポスト部35Tに沿って上部冷却器30U側へと効果的に導かれ、半導体デバイスQ1の電流は、主に、ブリッジ部35Cに沿って第2電極パターン24D2側へと効果的に導かれるようになる。 That is, by arranging the post part 35T and the bridge part 35C on the upper surface of the semiconductor device Q1 in the PM10 having a so-called double-sided cooling structure in which the upper cooler 30U and the lower cooler 30D are arranged above and below the semiconductor module 20, The heat of the semiconductor device Q1 is mainly effectively led to the upper cooler 30U side along the post part 35T, and the current of the semiconductor device Q1 is mainly sent along the bridge part 35C to the second electrode pattern 24D2. Will be effectively guided to the side.
 これにより、第1の実施の形態に係るPM10においては、半導体デバイスQ1を、その上下方向より効率良く冷却することが可能となる。 Thereby, in the PM 10 according to the first embodiment, the semiconductor device Q1 can be efficiently cooled in the vertical direction.
 したがって、第1の実施の形態によれば、効率的に放熱可能なPM10を提供することができる。 Therefore, according to the first embodiment, it is possible to provide the PM 10 that can efficiently dissipate heat.
 なお、第1の実施の形態に係るPM10においては、両面冷却構造に限らず、例えば半導体モジュール20上にのみ上部冷却器30Uが配置された片面(上面)冷却構造とすることもでき、下部冷却器30Dの省略が可能となる。 Note that the PM 10 according to the first embodiment is not limited to the double-sided cooling structure, and may be a single-sided (upper surface) cooling structure in which the upper cooler 30U is disposed only on the semiconductor module 20, for example, The device 30D can be omitted.
 (比較例1)
 比較例1に係るPM10Aの模式的断面構造は、図3に示すように表される。
(Comparative Example 1)
A schematic cross-sectional structure of PM10A according to Comparative Example 1 is expressed as shown in FIG.
 比較例1に係るPM10Aの場合、例えば図3に示すように、半導体デバイスQ1の上面(U側)と上部セラミック基板21UのD側の導電層24Uとの間が、柱状電極(金属ブロック)36によって、上部セラミック基板21UのD側の導電層24Uと下部セラミック基板21DのU側の導電層24Dの第2電極パターン24D2との間が、柱状電極(金属ブロック)37によって、それぞれ接続されている。 In the case of PM10A according to Comparative Example 1, for example, as shown in FIG. 3, a columnar electrode (metal block) 36 is provided between the upper surface (U side) of the semiconductor device Q1 and the conductive layer 24U on the D side of the upper ceramic substrate 21U. Thus, the columnar electrode (metal block) 37 connects the conductive layer 24U on the D side of the upper ceramic substrate 21U and the second electrode pattern 24D2 of the conductive layer 24D on the U side of the lower ceramic substrate 21D, respectively. .
 すなわち、比較例1に係るPM10Aにおいては、半導体デバイスQ1の熱は、主に、柱状電極36を介して上部冷却器30U側へと導かれ(放熱経路T1)、半導体デバイスQ1の電流は、主に、柱状電極36を介して上部セラミック基板21U側へと導かれた後、柱状電極37を介して第2電極パターン24D2側へと導かれる(電気経路C1)。 That is, in the PM 10A according to the comparative example 1, the heat of the semiconductor device Q1 is mainly guided to the upper cooler 30U side via the columnar electrode 36 (heat radiation path T1), and the current of the semiconductor device Q1 is Then, after being led to the upper ceramic substrate 21U side via the columnar electrode 36, it is led to the second electrode pattern 24D2 side via the columnar electrode 37 (electrical path C1).
 このように、両面冷却構造のPM10Aにおいて、半導体デバイスQ1上に金属ブロック36を配置し、熱的および電気的に上部セラミック基板21Uと接続する構成とした場合、電気経路C1が放熱経路T1の一部と同一経路となっているため、ジュール熱による発熱が放熱の妨げとなり、特性の悪化を招く。 Thus, in the PM10A having the double-sided cooling structure, when the metal block 36 is disposed on the semiconductor device Q1 and is connected to the upper ceramic substrate 21U thermally and electrically, the electric path C1 is one of the heat dissipation paths T1. Therefore, the heat generated by Joule heat hinders heat dissipation and causes deterioration of characteristics.
 (第1の実施の形態の第1変形例)
 第1の実施の形態の第1変形例に係るPM10の模式的断面構造は、図4(a)に示すように表され、図4(a)のII-II線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図4(b)に示すように表される。
(First modification of the first embodiment)
A schematic cross-sectional structure of the PM 10 according to the first modification of the first embodiment is expressed as shown in FIG. 4A, and a part of the PM 10 corresponding to the II-II line in FIG. A schematic planar pattern configuration that is transmitted through is represented as shown in FIG.
 すなわち、第1の実施の形態の第1変形例に係るPM10は、伝導路層351の構成を除けば、第1の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the first modification of the first embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 351.
 第1の実施の形態の第1変形例に係るPM10の場合、図4(a)および図4(b)に示すように、伝導路層351は、上部セラミック基板21Uまたは下部セラミック基板21Dに対し、ほぼ垂直に配置されたI字形状のポスト部351Tと、例えば、その基端側から半導体デバイスQ1の上面に沿って水平方向に延出され、第2電極パターン24D2との接続のために下部セラミック基板21D側に変形された、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部351Cとを備える。 In the case of the PM 10 according to the first modification of the first embodiment, as shown in FIGS. 4A and 4B, the conductive path layer 351 is provided with respect to the upper ceramic substrate 21U or the lower ceramic substrate 21D. An I-shaped post portion 351T arranged substantially vertically, for example, extending horizontally from the base end side along the upper surface of the semiconductor device Q1, and the lower portion for connection with the second electrode pattern 24D2 A bridge portion 351C having a substantially L-shaped (or inverted L-shaped) plug structure that is deformed to the ceramic substrate 21D side.
 第1の実施の形態の第1変形例によれば、第1の実施の形態に係るPM10の場合と同様に、放熱経路Tと電気経路Cとを分けるようにしたので、より効率的に放熱可能な構造とすることが可能となり、効率的に放熱可能なPM10を提供することができる。 According to the first modification of the first embodiment, the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment. It is possible to provide a possible structure, and it is possible to provide the PM 10 that can efficiently dissipate heat.
 なお、伝導路層351としては、第1の実施の形態に係るPM10に適用された伝導路層35の場合と同様に、例えば、ブリッジ部351Cとポスト部351Tとが一体型のブロック構造、若しくは別体型の分割構造を備えるものであっても良い。 As the conductive path layer 351, for example, as in the case of the conductive path layer 35 applied to the PM 10 according to the first embodiment, for example, the bridge portion 351C and the post portion 351T have an integrated block structure, or It may have a separate structure.
 また、伝導路層351としては、例えば、ブリッジ部351C上にポスト部351Tが積層された積層構造を備えるものであっても良い。 Further, as the conductive path layer 351, for example, a layered structure in which the post portion 351T is stacked on the bridge portion 351C may be provided.
 また、伝導路層351としては、例えば、ブリッジ部351Cとポスト部351Tとが同一の構成部材、若しくは異なる構成部材を備えるものであっても良い。 Further, as the conductive path layer 351, for example, the bridge portion 351C and the post portion 351T may be provided with the same constituent member or different constituent members.
 また、伝導路層351としては、例えば、ブリッジ部351Cが1つの構成部材、若しくは複数の構成部材を備えるものであっても良い。 Further, as the conduction path layer 351, for example, the bridge portion 351C may include one component member or a plurality of component members.
 また、伝導路層351としては、例えば、ポスト部351Tが1つの構成部材、または複数の構成部材、若しくは複数の層電極構造を備えるものであっても良い。 Further, as the conductive path layer 351, for example, the post portion 351T may include one component member, a plurality of component members, or a plurality of layer electrode structures.
 ポスト部351Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 As the post portion 351T, for example, in a cross-sectional view, the post portion 351T has any one of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape.
 また、伝導路層351においては、例えば、ブリッジ部351CはCuを備え、ポスト部351TはSiCまたはCuを備える。 In the conductive path layer 351, for example, the bridge portion 351C includes Cu, and the post portion 351T includes SiC or Cu.
 また、伝導路層351は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conductive path layer 351 desirably has a size A in the vertical direction smaller than a size B in the horizontal direction.
  (第1の実施の形態の第2変形例)
 第1の実施の形態の第2変形例に係るPM10の模式的断面構造は、図5(a)に示すように表され、図5(a)のIII-III線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図5(b)に示すように表される。
(Second modification of the first embodiment)
A schematic cross-sectional structure of the PM 10 according to the second modification of the first embodiment is expressed as shown in FIG. 5A, and a part of the PM 10 corresponding to the line III-III in FIG. A schematic plane pattern configuration that is shown through is expressed as shown in FIG.
 すなわち、第1の実施の形態の第2変形例に係るPM10は、伝導路層352の構成を除けば、第1の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the second modification of the first embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 352.
 第1の実施の形態の第2変形例に係るPM10の場合、図5(a)および図5(b)に示すように、伝導路層352は、上部セラミック基板21Uまたは下部セラミック基板21Dに対し、ほぼ垂直に配置されたI字形状のポスト部352Tと、例えば、その先端側から第2導電層24Uの下面に沿って水平方向に延出され、第2電極パターン24D2との接続のために下部セラミック基板21D側に変形された、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部352Cとを備える。 In the case of the PM 10 according to the second modification of the first embodiment, as shown in FIGS. 5A and 5B, the conductive path layer 352 is provided with respect to the upper ceramic substrate 21U or the lower ceramic substrate 21D. The I-shaped post portion 352T arranged substantially vertically, for example, extends horizontally from the front end side along the lower surface of the second conductive layer 24U, and is connected to the second electrode pattern 24D2. And a bridge portion 352C having a substantially L-shaped (or inverted L-shaped) plug structure that is deformed to the lower ceramic substrate 21D side.
 第1の実施の形態の第2変形例によれば、第1の実施の形態に係るPM10の場合と同様に、放熱経路Tと電気経路Cとを分けるようにしたので、より効率的に放熱可能な構造とすることが可能となり、効率的に放熱可能なPM10を提供することができる。 According to the second modification of the first embodiment, the heat dissipation path T and the electric path C are separated as in the case of the PM 10 according to the first embodiment. It is possible to provide a possible structure, and it is possible to provide the PM 10 that can efficiently dissipate heat.
 なお、伝導路層352としては、第1の実施の形態に係るPM10に適用された伝導路層35の場合と同様に、例えば、ブリッジ部352Cとポスト部352Tとが一体型のブロック構造、若しくは別体型の分割構造を備えるものであっても良い。 As the conductive path layer 352, as in the case of the conductive path layer 35 applied to the PM 10 according to the first embodiment, for example, the bridge portion 352C and the post portion 352T have an integrated block structure, or It may have a separate structure.
 また、伝導路層352としては、例えば、ブリッジ部352C上にポスト部352Tが積層された積層構造を備えるものであっても良い。 Further, as the conductive path layer 352, for example, a layered structure in which the post portion 352T is stacked on the bridge portion 352C may be provided.
 また、伝導路層352としては、例えば、ブリッジ部352Cとポスト部352Tとが同一の構成部材、若しくは異なる構成部材を備えるものであっても良い。 Further, as the conductive path layer 352, for example, the bridge portion 352C and the post portion 352T may be provided with the same constituent member or different constituent members.
 また、伝導路層352としては、例えば、ブリッジ部352Cが1つの構成部材、若しくは複数の構成部材を備えるものであっても良い。 Further, as the conductive path layer 352, for example, the bridge portion 352C may include one component member or a plurality of component members.
 また、伝導路層352としては、例えば、ポスト部352Tが1つの構成部材、または複数の構成部材、若しくは複数の層電極構造を備えるものであっても良い。 Further, as the conductive path layer 352, for example, the post portion 352T may include one component member, a plurality of component members, or a plurality of layer electrode structures.
 ポスト部352Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 As the post portion 352T, for example, in a cross-sectional view, the post portion 352T has any one of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape.
 また、伝導路層352においては、例えば、ブリッジ部352CはCuを備え、ポスト部352TはSiCまたはCuを備える。 In the conductive path layer 352, for example, the bridge portion 352C includes Cu, and the post portion 352T includes SiC or Cu.
 また、伝導路層352は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conductive path layer 352 desirably has a size A in the vertical direction smaller than a size B in the horizontal direction.
 (第1の実施の形態の第3変形例)
 第1の実施の形態の第3変形例に係るPM10の模式的断面構造は、図6(a)に示すように表され、図6(a)のIV-IV線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図6(b)に示すように表される。
(Third Modification of First Embodiment)
A schematic cross-sectional structure of the PM 10 according to the third modification example of the first embodiment is expressed as shown in FIG. 6A, and a part of the PM 10 corresponding to the IV-IV line in FIG. A schematic plane pattern configuration that is transmitted through is represented as shown in FIG.
 すなわち、第1の実施の形態の第3変形例に係るPM10は、伝導路層353の構成を除けば、第1の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the third modification of the first embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 353.
 第1の実施の形態の第3変形例に係るPM10の場合、図6(a)および図6(b)に示すように、伝導路層353は、上部セラミック基板21Uまたは下部セラミック基板21Dに対し、ほぼ垂直に配置されたI字形状のポスト部353Tと、例えば、その幅(基端側から先端側までの高さ)で半導体デバイスQ1の上面および導電層24Uの下面に沿って水平方向に延出され、第2電極パターン24D2との接続のために下部セラミック基板21D側に変形された、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部353Cとを備える。 In the case of the PM 10 according to the third modification of the first embodiment, as shown in FIGS. 6A and 6B, the conductive path layer 353 is provided with respect to the upper ceramic substrate 21U or the lower ceramic substrate 21D. An I-shaped post portion 353T arranged substantially vertically, and, for example, in the horizontal direction along the upper surface of the semiconductor device Q1 and the lower surface of the conductive layer 24U with its width (height from the base end side to the tip end side) And a bridge portion 353C having a substantially L-shaped (or inverted L-shaped) plug structure that is extended and deformed toward the lower ceramic substrate 21D for connection to the second electrode pattern 24D2.
 第1の実施の形態の第3変形例によれば、第1の実施の形態に係るPM10の場合と同様に、放熱経路Tと電気経路Cとを分けるようにしたので、より効率的に放熱可能な構造とすることが可能となり、効率的に放熱可能なPM10を提供することができる。 According to the third modification of the first embodiment, the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment. It is possible to provide a possible structure, and it is possible to provide the PM 10 that can efficiently dissipate heat.
 なお、伝導路層353としては、第1の実施の形態に係るPM10に適用された伝導路層35の場合と同様に、例えば、ブリッジ部353Cとポスト部353Tとが一体型のブロック構造、若しくは別体型の分割構造を備えるものであっても良い。 As the conductive path layer 353, as in the case of the conductive path layer 35 applied to the PM 10 according to the first embodiment, for example, the bridge portion 353C and the post portion 353T are integrated block structure, or It may have a separate structure.
 また、伝導路層353としては、例えば、ブリッジ部353C上にポスト部353Tが積層された積層構造を備えるものであっても良い。 Further, as the conductive path layer 353, for example, a layered structure in which the post portion 353T is stacked on the bridge portion 353C may be provided.
 また、伝導路層353としては、例えば、ブリッジ部353Cとポスト部353Tとが同一の構成部材、若しくは異なる構成部材を備えるものであっても良い。 Further, as the conductive path layer 353, for example, the bridge portion 353C and the post portion 353T may be provided with the same constituent member or different constituent members.
 また、伝導路層353としては、例えば、ブリッジ部353Cが1つの構成部材、若しくは複数の構成部材を備えるものであっても良い。 Further, as the conduction path layer 353, for example, the bridge portion 353C may include one component member or a plurality of component members.
 また、伝導路層353としては、例えば、ポスト部353Tが1つの構成部材、または複数の構成部材、若しくは複数の層電極構造を備えるものであっても良い。 Further, as the conductive path layer 353, for example, the post portion 353T may include one constituent member, a plurality of constituent members, or a plurality of layer electrode structures.
 ポスト部353Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 As the post portion 353T, for example, in a cross-sectional view, the post portion 353T has any one of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape.
 また、伝導路層353においては、例えば、ブリッジ部353CはCuを備え、ポスト部353TはSiCまたはCuを備える。 In the conductive path layer 353, for example, the bridge portion 353C includes Cu, and the post portion 353T includes SiC or Cu.
 また、伝導路層353は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conduction path layer 353 preferably has a size A in the vertical direction smaller than a size B in the horizontal direction.
 (第2の実施の形態)
 第2の実施の形態に係るPM10の模式的断面構造は、図7(a)に示すように表され、図7(a)のV-V線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図7(b)に示すように表される。
(Second Embodiment)
A schematic cross-sectional structure of the PM 10 according to the second embodiment is represented as shown in FIG. 7A, and shows a part of the PM 10 corresponding to the line VV in FIG. 7A. A schematic planar pattern configuration is expressed as shown in FIG.
 すなわち、第2の実施の形態に係るPM10は、伝導路層35の構成を除けば、第1の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the second embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 35.
 第2の実施の形態に係るPM10の場合、図7(a)および図7(b)に示すように、伝導路層35は、上部セラミック基板21Uまたは下部セラミック基板21Dに対し、ほぼ垂直に配置されたI字形状のポスト部35Tと、例えば、ポスト部35Tとは独立(分割)し、ほぼU字(または、逆U字)形状のプラグ構造を有したブリッジ部35Cとを備える。 In the case of the PM 10 according to the second embodiment, as shown in FIGS. 7A and 7B, the conductive path layer 35 is disposed substantially perpendicular to the upper ceramic substrate 21U or the lower ceramic substrate 21D. The I-shaped post portion 35T, and, for example, a bridge portion 35C that is independent (divided) from the post portion 35T and has a substantially U-shaped (or inverted U-shaped) plug structure.
 第2の実施の形態によれば、第1の実施の形態に係るPM10の場合と同様に、放熱経路Tと電気経路Cとを分けるようにしたので、より効率的に放熱可能な構造とすることが可能となり、効率的に放熱可能なPM10を提供することができる。 According to the second embodiment, the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment, so that the structure can dissipate heat more efficiently. Therefore, it is possible to provide the PM 10 that can efficiently dissipate heat.
 なお、伝導路層35としては、例えば、ブリッジ部35CはCuを備え、ポスト部35TはSiC(または、Cu)を備える。すなわち、ブリッジ部35Cとポスト部35Tとが同一の構成部材、若しくは異なる構成部材を備えるものであっても良い。 As the conduction path layer 35, for example, the bridge portion 35C includes Cu, and the post portion 35T includes SiC (or Cu). That is, the bridge portion 35C and the post portion 35T may be provided with the same constituent member or different constituent members.
 また、伝導路層35としては、例えば、ブリッジ部35Cが1つの構成部材、若しくは複数の構成部材を備えるものであっても良い。 Further, as the conduction path layer 35, for example, the bridge portion 35C may include one component member or a plurality of component members.
 また、伝導路層35としては、例えば、ポスト部35Tが1つの構成部材、または複数の構成部材、若しくは複数の層電極構造を備えるものであっても良い。 Further, as the conductive path layer 35, for example, the post portion 35T may be provided with one constituent member, a plurality of constituent members, or a plurality of layer electrode structures.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 また、伝導路層35は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
 (第3の実施の形態)
 第3の実施の形態に係るPM10の模式的断面構造は、図8(a)に示すように表され、図8(a)のVI-VI線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図8(b)に示すように表される。
(Third embodiment)
A schematic cross-sectional structure of the PM 10 according to the third embodiment is represented as shown in FIG. 8A, and shows a part of the PM 10 corresponding to the VI-VI line of FIG. 8A. A schematic planar pattern configuration is expressed as shown in FIG.
 また、第3の実施の形態に係るPM10の一部を透過して示す模式的鳥瞰構成は、図9に示すように表される。 Also, a schematic bird's-eye view configuration that shows a part of the PM 10 according to the third embodiment is shown as shown in FIG.
 すなわち、第3の実施の形態に係るPM10は、伝導路層35の構成を除けば、第1の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the third embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the conductive path layer 35.
 第3の実施の形態に係るPM10の場合、図8(a)および図8(b)に示すように、伝導路層35は、例えば、半導体デバイスQ1の上面に沿って水平方向に延出され、第2電極パターン24D2との接続のために下部セラミック基板21D側に変形された、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部35Cと、半導体デバイスQ1の上面に対応する、ブリッジ部35Cの基端側に積層化配置されたI字形状のポスト部35Tとを備える。 In the case of the PM 10 according to the third embodiment, as shown in FIGS. 8A and 8B, the conductive path layer 35 is extended in the horizontal direction along the upper surface of the semiconductor device Q1, for example. A bridge portion 35C having a substantially L-shaped (or inverted L-shaped) plug structure deformed to the lower ceramic substrate 21D side for connection to the second electrode pattern 24D2, and an upper surface of the semiconductor device Q1 Corresponding I-shaped post portions 35T are disposed on the base end side of the bridge portion 35C.
 すなわち、第3の実施の形態に係るPM10は、第1絶縁基板22Dと、第1絶縁基板22D上に搭載されて動作時に発熱する半導体デバイスQ1と、半導体デバイスQ1上に、第1絶縁基板22Dに対向して配置された第2絶縁基板22Uと、第2絶縁基板22Uの半導体デバイスQ1に対向する面と反対側の面に配置された第1冷却器30Uと、一端が半導体デバイスQ1上に配置され、他端側が第1絶縁基板22Dに形成された電極パターン24D2に接続されて電気信号を伝送する電気伝導路層35Cと、電気伝導路層35Cの第2絶縁基板22U側に積層化配置され、第2絶縁基板22Uに接続されて半導体デバイスQ1の熱を第1冷却器30Uに伝導する熱伝導路層35Tとを備えていても良い。 That is, the PM 10 according to the third embodiment includes a first insulating substrate 22D, a semiconductor device Q1 mounted on the first insulating substrate 22D and generating heat during operation, and the first insulating substrate 22D on the semiconductor device Q1. A second insulating substrate 22U disposed opposite to the semiconductor device Q1, a first cooler 30U disposed on the surface of the second insulating substrate 22U opposite to the surface facing the semiconductor device Q1, and one end on the semiconductor device Q1 The other end side is connected to the electrode pattern 24D2 formed on the first insulating substrate 22D to transmit an electric signal, and the electric conduction path layer 35C is laminated on the second insulating substrate 22U side of the electric conduction path layer 35C. The heat conduction path layer 35T connected to the second insulating substrate 22U and conducting the heat of the semiconductor device Q1 to the first cooler 30U may be provided.
 第3の実施の形態によれば、第1の実施の形態に係るPM10の場合と同様に、放熱経路Tと電気経路Cとを分けるようにしたので、より効率的に放熱可能な構造とすることが可能となり、効率的に放熱可能なPM10を提供することができる。 According to the third embodiment, the heat dissipation path T and the electrical path C are separated as in the case of the PM 10 according to the first embodiment, so that the structure can dissipate heat more efficiently. Therefore, it is possible to provide the PM 10 that can efficiently dissipate heat.
 なお、伝導路層35としては、例えば、ブリッジ部35CはCuを備え、ポスト部35TはSiC(または、Cu)を備える。すなわち、ブリッジ部35Cとポスト部35Tとが同一の構成部材、若しくは異なる構成部材を備えるものであっても良い。 As the conduction path layer 35, for example, the bridge portion 35C includes Cu, and the post portion 35T includes SiC (or Cu). That is, the bridge portion 35C and the post portion 35T may be provided with the same constituent member or different constituent members.
 また、伝導路層35としては、例えば、ブリッジ部35Cが1つの構成部材、若しくは複数の構成部材を備えるものであっても良い。 Further, as the conduction path layer 35, for example, the bridge portion 35C may include one component member or a plurality of component members.
 また、伝導路層35としては、例えば、ポスト部35Tが1つの構成部材、または複数の構成部材、若しくは複数の層電極構造を備えるものであっても良い。 Further, as the conductive path layer 35, for example, the post portion 35T may be provided with one constituent member, a plurality of constituent members, or a plurality of layer electrode structures.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 また、伝導路層35は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
 (シミュレーション結果)
 ここで、第3の実施の形態に係るPM10を例に、熱抵抗Rthについての解析を行った際の結果について説明する。
(simulation result)
Here, the result of analyzing the thermal resistance Rth will be described using the PM 10 according to the third embodiment as an example.
 シミュレーションは、ポスト部35Tを、SiCで構成した場合とCuで構成した場合とを比較した。 The simulation compared the case where the post portion 35T is made of SiC and the case where the post portion 35T is made of Cu.
 シミュレーションに用いたPM10においては、例えば図8(b)に示すように、第1電極パターン24D1・第2電極パターン24D2のサイズ(W1)を10mm角とすると共に、半導体デバイスQ1のサイズ(W2)を5mm角とした。 In PM10 used for the simulation, for example, as shown in FIG. 8B, the size (W1) of the first electrode pattern 24D1 and the second electrode pattern 24D2 is 10 mm square, and the size (W2) of the semiconductor device Q1. Was 5 mm square.
 また、第1電極パターン24D1・第2電極パターン24D2の間隔(W3)、およびポスト部35Tの半導体デバイスQ1の端部からの距離(W4)をそれぞれ1mm、および1mmとした。 Further, the distance (W3) between the first electrode pattern 24D1 and the second electrode pattern 24D2 and the distance (W4) from the end of the semiconductor device Q1 of the post portion 35T were set to 1 mm and 1 mm, respectively.
 なお、PM10の詳細については、例えば図10に示すように、より具体的に規定されている。 Note that the details of the PM 10 are more specifically defined, for example, as shown in FIG.
 上部冷却器30U・下部冷却器30Dは、例えばヒートシンクを採用し、材料をAl、厚みを1mm、熱伝導率を2.37(W/mK)とした。 The upper cooler 30U and the lower cooler 30D employ, for example, a heat sink, and the material is Al, the thickness is 1 mm, and the thermal conductivity is 2.37 (W / mK).
 上部セラミック基板21U・下部セラミック基板21Dにおいては、例えば、導電層23U・導電層23Dの材料をCu、厚みを0.3mm、熱伝導率を402(W/mK)とし、絶縁層22U・絶縁層22Dの材料をSiN(シリコン窒化膜)、厚みを0.3mm、熱伝導率を90(W/mK)とし、導電層24U・導電層24Dの材料をCu、厚みを0.3mm、熱伝導率を402(W/mK)とした。 In the upper ceramic substrate 21U / lower ceramic substrate 21D, for example, the material of the conductive layer 23U / conductive layer 23D is Cu, the thickness is 0.3 mm, and the thermal conductivity is 402 (W / mK). The material of 22D is SiN (silicon nitride film), the thickness is 0.3 mm, the thermal conductivity is 90 (W / mK), the material of the conductive layer 24U / conductive layer 24D is Cu, the thickness is 0.3 mm, the thermal conductivity Was 402 (W / mK).
 伝導路層35においては、例えば、ポスト部35Tの材料をSiCとした場合には、厚みを1.0mm、熱伝導率を450(W/mK)とし、Cuとした場合には、厚みを1.0mm、熱伝導率を402(W/mK)とした。 In the conductive path layer 35, for example, when the material of the post portion 35T is SiC, the thickness is 1.0 mm, the thermal conductivity is 450 (W / mK), and when the material is Cu, the thickness is 1 0.0 mm and thermal conductivity of 402 (W / mK).
 ブリッジ部35Cは、例えば、材料をCuとし、厚みを0.1mm、熱伝導率を402(W/mK)とした。 For example, the bridge portion 35C is made of Cu, has a thickness of 0.1 mm, and a thermal conductivity of 402 (W / mK).
 チップQ1としては、主な材料をSiCとし、厚みを0.35mm、熱伝導率を450(W/mK)とした。 For the chip Q1, the main material was SiC, the thickness was 0.35 mm, and the thermal conductivity was 450 (W / mK).
 その他の条件として、チップ全体の発熱量を700W、周辺断熱、境界条件となる上部冷却器30U・下部冷却器30Dの外側表面の温度を65℃とした。 As other conditions, the heat generation amount of the entire chip was 700 W, the peripheral heat insulation, and the outer surface temperature of the upper cooler 30U and the lower cooler 30D serving as boundary conditions were 65 ° C.
 このような条件の下で実際にシミュレーションを行ったところ、ポスト部35TをSiCで構成した場合の熱抵抗についての解析結果は、図11(a)に示すように表され、ポスト部35TをCuで構成した場合の熱抵抗についての解析結果は、図11(b)に示すように表される。 When the simulation was actually performed under such conditions, the analysis result of the thermal resistance when the post portion 35T is made of SiC is expressed as shown in FIG. The analysis result about the thermal resistance in the case of the configuration is expressed as shown in FIG.
 すなわち、ポスト部35TをSiCで構成した場合のPM10は、図11(a)に示すように、評価接合温度Tjmaxが182.565℃であり、熱抵抗Rthが0.168(W/K)である。これに対し、ポスト部35TをCuで構成した場合のPM10は、図11(b)に示すように、評価接合温度Tjmaxが184.869℃であり、熱抵抗Rthが0.171(W/K)である。 That, PM10 of case where the post portion 35T of SiC, as shown in FIG. 11 (a), an evaluation junction temperature Tjmax is 182.565 ° C., the thermal resistance R th is 0.168 (W / K) It is. In contrast, PM10 of case where the post portion 35T of Cu, as shown in FIG. 11 (b), evaluation junction temperature Tjmax is the 184.869 ° C., the thermal resistance R th is 0.171 (W / K).
 この結果から、例えば、ポスト部35TをSiCで構成することによって、Cuで構成する場合よりも、熱抵抗を約2%も改善できることがわかる。 From this result, it can be seen that, for example, by configuring the post portion 35T with SiC, the thermal resistance can be improved by about 2% as compared with the case of configuring with the Cu.
 したがって、第3の実施の形態に係るPM10においては、例えば、ブリッジ部35Cとポスト部35Tとによって放熱経路Tと電気経路Cとに分けると共に、SiCによってポスト部35Tを構成することで(ブリッジ部35Cは、Cuにより構成)、さらなる熱抵抗の改善が可能となる。 Therefore, in the PM 10 according to the third embodiment, for example, the bridge portion 35C and the post portion 35T divide the heat dissipation path T and the electrical path C and configure the post portion 35T with SiC (bridge portion). 35C is composed of Cu), and further improvement in thermal resistance is possible.
 (第3の実施の形態の第1変形例)
 第3の実施の形態の第1変形例に係るPM10の模式的断面構造は、図12に示すように表される。
(First modification of the third embodiment)
A schematic cross-sectional structure of the PM 10 according to the first modification of the third embodiment is expressed as shown in FIG.
 すなわち、第3の実施の形態の第1変形例に係るPM10は、伝導路層35の構成を除けば、第3の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the first modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
 第3の実施の形態の第1変形例に係るPM10の場合、図12に示すように、伝導路層35は、例えば、ほぼU字(または、ほぼ逆U字)形状のプラグ構造を有したブリッジ部35Cと、ブリッジ部35Cの上面の一部に積層化配置された四角形状のポスト部35Tとを備える。 In the case of the PM 10 according to the first modification of the third embodiment, as shown in FIG. 12, the conduction path layer 35 has, for example, a substantially U-shaped (or substantially inverted U-shaped) plug structure. The bridge portion 35C and a square post portion 35T arranged in a stacked manner on a part of the upper surface of the bridge portion 35C are provided.
 第3の実施の形態の第1変形例においても、例えば、伝導路層35のポスト部35TをSiCによって構成することで(ブリッジ部35Cは、Cuにより構成)、さらなる熱抵抗の改善が可能となる。 Also in the first modification of the third embodiment, for example, the post portion 35T of the conduction path layer 35 is made of SiC (the bridge portion 35C is made of Cu), so that the thermal resistance can be further improved. Become.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 また、伝導路層35は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
 (第3の実施の形態の第2変形例)
 第3の実施の形態の第2変形例に係るPM10の模式的断面構造は、図13(a)に示すように表され、図13(a)のVII-VII線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図13(b)に示すように表される。
(Second modification of the third embodiment)
A schematic cross-sectional structure of the PM 10 according to the second modification of the third embodiment is expressed as shown in FIG. 13A, and a part of the PM 10 corresponding to the VII-VII line in FIG. A schematic plane pattern configuration that is transmitted through is represented as shown in FIG.
 すなわち、第3の実施の形態の第2変形例に係るPM10は、伝導路層35の構成を除けば、第3の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the second modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
 第3の実施の形態の第2変形例に係るPM10の場合、図13(a)および図13(b)に示すように、伝導路層35は、例えば、ほぼU字(または、逆U字)形状のプラグ構造を有したブリッジ部35Cと、ブリッジ部35C上の全面に積層化配置された四角形状のポスト部35Tとを備える。 In the case of the PM 10 according to the second modification of the third embodiment, as shown in FIGS. 13A and 13B, the conductive path layer 35 has, for example, a substantially U shape (or an inverted U shape). ) A bridge portion 35C having a plug structure and a square post portion 35T stacked on the entire surface of the bridge portion 35C.
 第3の実施の形態の第2変形例においても、例えば、伝導路層35のポスト部35TをSiCによって構成することで(ブリッジ部35Cは、Cuにより構成)、さらなる熱抵抗の改善が可能となる。 Also in the second modified example of the third embodiment, for example, by configuring the post portion 35T of the conductive path layer 35 with SiC (the bridge portion 35C is configured with Cu), it is possible to further improve the thermal resistance. Become.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 また、伝導路層35は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
 (第3の実施の形態の第3変形例)
 第3の実施の形態の第3変形例に係るPM10の模式的断面構造は、図14(a)に示すように表され、図14(a)のVIII-VIII線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図14(b)に示すように表される。
(Third Modification of Third Embodiment)
A schematic cross-sectional structure of the PM 10 according to the third modification of the third embodiment is represented as shown in FIG. 14A, and a part of the PM 10 corresponding to the line VIII-VIII in FIG. A schematic plane pattern configuration shown through is represented as shown in FIG.
 すなわち、第3の実施の形態の第3変形例に係るPM10は、伝導路層35の構成を除けば、第3の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the third modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
 第3の実施の形態の第3変形例に係るPM10の場合、図14(a)および図14(b)に示すように、伝導路層35は、例えば、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部35Cと、ブリッジ部35C上の全面に積層化配置された四角形状のポスト部35Tとを備える。 In the case of the PM 10 according to the third modification of the third embodiment, as shown in FIGS. 14A and 14B, the conductive path layer 35 has, for example, a substantially L shape (or an inverted L shape). ) A bridge portion 35C having a plug structure and a square post portion 35T stacked on the entire surface of the bridge portion 35C.
 第3の実施の形態の第3変形例においても、例えば、伝導路層35のポスト部35TをSiCによって構成することで(ブリッジ部35Cは、Cuにより構成)、さらなる熱抵抗の改善が可能となる。 Also in the third modification of the third embodiment, for example, the post part 35T of the conductive path layer 35 is made of SiC (the bridge part 35C is made of Cu), so that the thermal resistance can be further improved. Become.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 また、伝導路層35は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
 (第3の実施の形態の第4変形例)
 第3の実施の形態の第4変形例に係るPM10の模式的断面構造は、図15(a)に示すように表され、図15(a)のIX-IX線に対応するPM10の一部を透過して示す模式的平面パターン構成は、図15(b)に示すように表される。
(Fourth modification of the third embodiment)
A schematic cross-sectional structure of the PM 10 according to the fourth modification example of the third embodiment is represented as shown in FIG. 15A, and a part of the PM 10 corresponding to the IX-IX line in FIG. A schematic plane pattern configuration shown through is represented as shown in FIG.
 すなわち、第3の実施の形態の第4変形例に係るPM10は、伝導路層35の構成を除けば、第3の実施の形態に係るPM10の構成と同様である。 That is, the PM 10 according to the fourth modification of the third embodiment is the same as the PM 10 according to the third embodiment except for the configuration of the conductive path layer 35.
 第3の実施の形態の第4変形例に係るPM10の場合、図15(a)および図15(b)に示すように、伝導路層35は、例えば、ほぼU字(または、逆U字)形状のプラグ構造を有したブリッジ部35Cと、ブリッジ部35Cの一側面および上面を覆うように積層化配置された、ほぼL字(または、逆L字)形状のプラグ構造を有したポスト部35Tとを備える。 In the case of the PM 10 according to the fourth modified example of the third embodiment, as shown in FIGS. 15A and 15B, the conductive path layer 35 is, for example, substantially U-shaped (or inverted U-shaped). ) A bridge portion 35C having a plug structure having a shape, and a post portion having a substantially L-shaped (or inverted L-shaped) plug structure, which is arranged so as to cover one side surface and an upper surface of the bridge portion 35C. 35T.
 第3の実施の形態の第4変形例においても、例えば、伝導路層35のポスト部35TをSiCによって構成することで(ブリッジ部35Cは、Cuにより構成)、さらなる熱抵抗の改善が可能となる。 Also in the fourth modification of the third embodiment, for example, the post part 35T of the conductive path layer 35 is made of SiC (the bridge part 35C is made of Cu), so that the thermal resistance can be further improved. Become.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 また、伝導路層35は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 In addition, as in the first embodiment, the conduction path layer 35 desirably has a vertical size A smaller than a horizontal size B.
 なお、上記した第1~第3の実施の形態においては、半導体パワーデバイスを用いて、いずれも、1 in 1モジュールタイプのパワーモジュールに適用した場合を例示したが、例えば、2 in 1(ツーインワン型)モジュール、4 in 1(フォーインワン型)モジュール、6 in 1(シックスインワン型)モジュール、6 in 1モジュールにスナバコンデンサなどを備えた7 in 1(セブンインワン型)モジュール、8 in 1(エイトインワン型)モジュール、12 in 1(トゥエルブインワン型)モジュール、または14 in 1(フォーティーンインワン型)モジュールのいずれかを構成するパワーモジュールにも適用できる。 In the first to third embodiments described above, the semiconductor power device is used and applied to a 1 い ず れ in 1 module type power module. However, for example, 2 in 1 (two-in-one) Type) module, 4 in 1 (four-in-one type) module, 6 in 1 (six-in-one type) module, 7 in 1 (seven-in-one type) module with snubber capacitor etc. in 6 in 1 module, 8 in 1 (eight) It can also be applied to a power module that constitutes any one of an in-one type module, a 12 in 1 (twelve-in-one type) module, or a 14 in 1 (fourteen-in-one type) module.
 (第4の実施の形態)
 第4の実施の形態に係るPM10の模式的断面構造は、図16に示すように表される。なお、図16には、2 in 1モジュールタイプのPM10に適用した場合が例示されている。
(Fourth embodiment)
A schematic cross-sectional structure of the PM 10 according to the fourth embodiment is expressed as shown in FIG. FIG. 16 illustrates a case where the present invention is applied to a 2-in-1 module type PM10.
 また、図17(a)には、第4の実施の形態に係るPM10の一部を透過して示す模式的平面構成が示され、図17(b)には、半導体デバイス(チップ)Q1・Q4として、SiC MOSFETを適用した場合の模式的回路構成が示されている。 Also, FIG. 17A shows a schematic plan configuration showing a part of the PM 10 according to the fourth embodiment, and FIG. 17B shows a semiconductor device (chip) Q 1. A schematic circuit configuration when a SiC MOSFET is applied is shown as Q4.
 なお、図16に示されたPM10の模式的断面構造は、例えば、図17(a)のX-X線に沿ったものとなっている。また、図17(a)の模式的平面パターン構成においては、特に、上部冷却器(第1冷却器)30Uおよび上部セラミック基板(第2絶縁基板)21Uの記載を省略している。 Note that the schematic cross-sectional structure of the PM 10 shown in FIG. 16 is, for example, along the line XX in FIG. In addition, in the schematic planar pattern configuration of FIG. 17A, the description of the upper cooler (first cooler) 30U and the upper ceramic substrate (second insulating substrate) 21U is omitted.
 第4の実施の形態に係るPM10は、半導体モジュール20(半導体デバイスQ1・Q4)の構成を除けば、第1の実施の形態に係るPM10の構成と同様である。 The PM 10 according to the fourth embodiment is the same as the PM 10 according to the first embodiment except for the configuration of the semiconductor module 20 (semiconductor devices Q1 and Q4).
 すなわち、第4の実施の形態に係るPM10は、図16および図17に示すように、複数チップを並列接続した半導体デバイスQ1・Q4をモールド樹脂33によって封止した半導体モジュール20を備える。 That is, the PM 10 according to the fourth embodiment includes a semiconductor module 20 in which semiconductor devices Q1 and Q4 in which a plurality of chips are connected in parallel are sealed with a mold resin 33, as shown in FIGS.
 半導体デバイスQ1は、下部セラミック基板21D上の導電層24Dの第1電極パターン24D1上に配置され、半導体デバイスQ4は、下部セラミック基板21D上の導電層24Dの第2電極パターン24D2上に配置される。 The semiconductor device Q1 is disposed on the first electrode pattern 24D1 of the conductive layer 24D on the lower ceramic substrate 21D, and the semiconductor device Q4 is disposed on the second electrode pattern 24D2 of the conductive layer 24D on the lower ceramic substrate 21D. .
 ここで、下部セラミック基板21Dは、絶縁層22Dを介して銅などの金属箔(例えば、第1銅プレート層)が積層された導電層23D・24D(第1電極パターン24D1・第2電極パターン24D2・第3電極パターン24D3、ゲート信号電極パターン1・5、ソース信号電極パターン3・7)を備える。 Here, the lower ceramic substrate 21D has conductive layers 23D and 24D (first electrode pattern 24D1 and second electrode pattern 24D2) in which a metal foil such as copper (for example, a first copper plate layer) is laminated via an insulating layer 22D. A third electrode pattern 24D3, gate signal electrode patterns 1 and 5, and source signal electrode patterns 3 and 7) are provided.
 一方、上部セラミック基板21Uは、絶縁層22Uを介して銅などの金属箔(例えば、第2銅プレート層)が積層された導電層23U・24U(第1電極パターン24U1・第2電極パターン24U2)を備える。 On the other hand, the upper ceramic substrate 21U has conductive layers 23U and 24U (first electrode pattern 24U1 and second electrode pattern 24U2) in which a metal foil such as copper (for example, a second copper plate layer) is laminated via an insulating layer 22U. Is provided.
 下部セラミック基板21Dおよび上部セラミック基板21Uは、第1導電層24Dと第2導電層24Uとが対向するようにして配置されている。 The lower ceramic substrate 21D and the upper ceramic substrate 21U are arranged such that the first conductive layer 24D and the second conductive layer 24U face each other.
 なお、図17(b)に示すように、SiC MOSFETQ1、Q4を電源入力端子電極P・N間に直列接続し、SiC MOSFETQ1とQ4との接続点を出力端子OUT(出力端子電極O)とするように適用した場合、G1は、半導体デバイスQ1のゲート端子(ゲート信号用のリード端子)、D1は、半導体デバイスQ1のドレイン端子、S1は、半導体デバイスQ1のソース端子である。同様に、G4は、半導体デバイスQ4のゲート端子(ゲート信号用のリード端子)、D4は、半導体デバイスQ4のドレイン端子、S4は、半導体デバイスQ4のソース端子である。 As shown in FIG. 17B, the SiC MOSFETs Q1 and Q4 are connected in series between the power supply input terminal electrodes P and N, and the connection point between the SiC MOSFETs Q1 and Q4 is used as the output terminal OUT (output terminal electrode O). In such a case, G1 is a gate terminal (lead terminal for gate signal) of the semiconductor device Q1, D1 is a drain terminal of the semiconductor device Q1, and S1 is a source terminal of the semiconductor device Q1. Similarly, G4 is a gate terminal (lead terminal for gate signal) of the semiconductor device Q4, D4 is a drain terminal of the semiconductor device Q4, and S4 is a source terminal of the semiconductor device Q4.
 第4の実施の形態に係るPM10の場合、半導体デバイスQ1の上面(U側)には、伝導路層35の基端側である、例えば、I字形状のポスト部35Tの基端側が接続されている。また、このポスト部35Tの先端側は、上部セラミック基板21UのD側の第2導電層24Uの第1電極パターン24U1に接続されている。 For PM10 according to the fourth embodiment, the upper surface of the semiconductor device Q1 (U side) is a base end side of the conductive path layers 35 1, for example, the connection base end side of the post portion 35T of the I-shaped Has been. Further, the tip side of the post portion 35T is connected to the first electrode pattern 24U1 of the second conductive layer 24U on the D side of the upper ceramic substrate 21U.
 また、ポスト部35Tの、例えば、側面の中途の部分から水平方向に延出され、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部35Cは、その先端側が下部セラミック基板21D上のU側の導電層24Dの第2電極パターン24D2に接続されている。 Further, for example, the bridge portion 35C extending in a horizontal direction from a middle portion of the side surface of the post portion 35T and having a substantially L-shaped (or inverted L-shaped) plug structure has a lower ceramic substrate on the tip side. It is connected to the second electrode pattern 24D2 of the U-side conductive layer 24D on 21D.
 同様に、半導体デバイスQ4の上面(U側)には、伝導路層35の基端側である、例えば、I字形状のポスト部35Tの基端側が接続されている。また、このポスト部35Tの先端側は、上部セラミック基板21UのD側の導電層24Uの第2電極パターン24U2に接続されている。 Similarly, the upper surface (U side) of the semiconductor device Q4 is a base end side of the conductive path layers 35 2, for example, the base end side of the post portion 35T of the I-shape is connected. Further, the tip side of the post portion 35T is connected to the second electrode pattern 24U2 of the conductive layer 24U on the D side of the upper ceramic substrate 21U.
 また、ポスト部35Tの、例えば、側面の中途の部分から水平方向に延出され、ほぼL字(または、逆L字)形状のプラグ構造を有したブリッジ部35Cは、その先端側が下部セラミック基板21D上のU側の導電層24Dの第3電極パターン24D3に接続されている。 Further, for example, the bridge portion 35C extending in a horizontal direction from a middle portion of the side surface of the post portion 35T and having a substantially L-shaped (or inverted L-shaped) plug structure has a lower ceramic substrate on the tip side. The U-side conductive layer 24D on the 21D is connected to the third electrode pattern 24D3.
 この2 in 1モジュールタイプのPM10であっても、1 in 1モジュールタイプの場合と同様に、例えば、伝導路層351・354のポスト部35TをSiCによって構成することで(ブリッジ部35Cは、Cuにより構成)、さらなる熱抵抗の改善が可能となる。 Even PM10 in the 2 in 1 module type, as in the case of 1 in 1 module type, for example, the post portion 35T of the conductive path layers 35 1, 35 4 by configuring the SiC (bridge portion 35C is Further, the thermal resistance can be further improved.
 すなわち、第4の実施の形態によれば、半導体デバイスQ1・Q4毎に放熱経路Tと電気経路Cとを分けるようにしたので、より効率的に放熱可能な構造とすることが可能となり、効率的に放熱可能なPM10を提供することができる。 That is, according to the fourth embodiment, since the heat dissipation path T and the electrical path C are separated for each of the semiconductor devices Q1 and Q4, it is possible to provide a structure that can dissipate heat more efficiently. PM10 capable of radiating heat can be provided.
 なお、伝導路層351・354としては、第1の実施の形態に係るPM10に適用された伝導路層35などの場合と同様に、例えば、ブリッジ部35Cとポスト部35Tとが一体型のブロック構造、若しくは別体型の分割構造を備えるものであっても良い。 As the conduction path layers 35 1 and 35 4 , for example, the bridge part 35C and the post part 35T are integrated as in the case of the conduction path layer 35 applied to the PM 10 according to the first embodiment. It may be provided with a block structure or a separate type divided structure.
 また、伝導路層351・354としては、例えば、ブリッジ部35Cとポスト部35Tとが同一の構成部材、若しくは異なる構成部材を備えるものであっても良い。 Further, as the conductive path layers 35 1 and 35 4 , for example, the bridge portion 35C and the post portion 35T may be provided with the same constituent member or different constituent members.
 また、伝導路層351・354としては、例えば、ブリッジ部35C上にポスト部35Tが積層された積層構造を備えるものであっても良い。 Moreover, as the conduction path layers 35 1 and 35 4 , for example, a layered structure in which post portions 35T are stacked on the bridge portion 35C may be provided.
 また、伝導路層351・354としては、例えば、ブリッジ部35Cが1つの構成部材、若しくは複数の構成部材を備えるものであっても良い。 Further, as the conductive path layers 35 1 and 35 4 , for example, the bridge portion 35C may include one component member or a plurality of component members.
 また、伝導路層351・354としては、例えば、ポスト部35Tが1つの構成部材、または複数の構成部材、若しくは複数の層電極構造を備えるものであっても良い。 Further, as the conductive path layers 35 1 and 35 4 , for example, the post portion 35T may include one component member, a plurality of component members, or a plurality of layer electrode structures.
 ポスト部35Tとしては、例えば断面視において、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備える。 The post portion 35T includes, for example, any of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape in a cross-sectional view.
 また、伝導路層351・354においては、ブリッジ部35CはCuを備え、ポスト部35TはSiCまたはCuを備える。 In the conduction path layers 35 1 and 35 4 , the bridge portion 35C includes Cu, and the post portion 35T includes SiC or Cu.
 また、伝導路層351・354は、第1の実施の形態と同様に、垂直方向のサイズAが水平方向のサイズBよりも小さい方が望ましい。 Further, the conductive path layers 35 1 and 354 4 desirably have a vertical size A smaller than a horizontal size B, as in the first embodiment.
 (比較例2)
 比較例2に係るPM10Aの模式的断面構造は、図18に示すように表される。なお、基本的な構造は第4の実施の形態に係るPM10の構成と同様である。
(Comparative Example 2)
A schematic cross-sectional structure of PM10A according to Comparative Example 2 is expressed as shown in FIG. The basic structure is the same as that of the PM 10 according to the fourth embodiment.
 比較例2に係るPM10Aの場合、例えば図18に示すように、半導体デバイスQ1・Q4の上面(U側)と上部セラミック基板21UのD側の第1・第2電極パターン24U1・24U2との間が、柱状電極(金属ブロック)361・362によって、また、上部セラミック基板21UのD側の第1・第2電極パターン24U1・24U2と下部セラミック基板21DのU側の第2・第3電極パターン24D2・24D3との間が、柱状電極(金属ブロック)371・372によって、それぞれ接続されている。 In the case of PM10A according to Comparative Example 2, for example, as shown in FIG. 18, between the upper surfaces (U side) of the semiconductor devices Q1 and Q4 and the first and second electrode patterns 24U1 and 24U2 on the D side of the upper ceramic substrate 21U. The first and second electrode patterns 24U1 and 24U2 on the D side of the upper ceramic substrate 21U and the second and third electrodes on the U side of the lower ceramic substrate 21D by the columnar electrodes (metal blocks) 36 1 and 36 2 The patterns 24D2 and 24D3 are connected by columnar electrodes (metal blocks) 37 1 and 37 2 , respectively.
 すなわち、比較例2に係るPM10Aにおいては、半導体デバイスQ1・Q4の熱は、主に、柱状電極361・362を介して上部冷却器30U側へと導かれるものの、半導体デバイスQ1・Q4の電流は、主に、柱状電極361・362を介して上部セラミック基板21U側へと導かれた後、柱状電極371・372を介して第2電極パターン24D2・第3電極パターン24D3側へと導かれることになる。 That is, in the PM 10A according to the comparative example 2, the heat of the semiconductor devices Q1 and Q4 is mainly led to the upper cooler 30U side through the columnar electrodes 36 1 and 36 2 , but the semiconductor devices Q1 and Q4 The current is mainly guided to the upper ceramic substrate 21U side through the columnar electrodes 36 1 and 36 2 and then the second electrode pattern 24D2 and the third electrode pattern 24D3 side through the columnar electrodes 37 1 and 37 2. Will be led to.
 したがって、この比較例2の場合も、電気経路が放熱経路と同一経路となっている部分が多いため、比較例1の場合と同様に、ジュール熱による発熱が放熱の妨げとなり、特性の悪化を招く。 Therefore, in the case of this comparative example 2, since there are many portions where the electric path is the same as the heat dissipation path, similarly to the case of the comparative example 1, the heat generated by Joule heat hinders heat dissipation, and the characteristics deteriorate. Invite.
 なお、上記した第1~第4の実施の形態においては、半導体パワーデバイスは、Si系IGBT、Si系MOSFET、SiC系MOSFET、SiC系IGBT、SiC系MOSFETとSiC系IGBTとのハイブリッド素子、GaN系FETのいずれか、またはこれらのうちの異なる複数を備えるものであっても良い。 In the first to fourth embodiments described above, the semiconductor power device includes a Si-based IGBT, a Si-based MOSFET, a SiC-based MOSFET, a SiC-based IGBT, a hybrid element of a SiC-based MOSFET and a SiC-based IGBT, GaN Any one of the system FETs or a plurality of these different ones may be provided.
 (適用例)
 (第1適用例)
 本実施の形態の第1適用例に係るパワーモジュールの模式的断面構造は、図19に示すように表される。
(Application example)
(First application example)
A schematic cross-sectional structure of the power module according to the first application example of the present embodiment is expressed as shown in FIG.
 すなわち、図19に示すように、例えば、ブリッジ部35C上に積層化配置されるポスト部35Tは、逆台形形状を有するように構成しても良い。 That is, as shown in FIG. 19, for example, the post part 35T stacked on the bridge part 35C may be configured to have an inverted trapezoidal shape.
 (第2適用例)
 本実施の形態の第2適用例に係るパワーモジュールの模式的断面構造は、図20に示すように表される。
(Second application example)
A schematic cross-sectional structure of the power module according to the second application example of the present embodiment is expressed as shown in FIG.
 すなわち、図20に示すように、例えば、ブリッジ部35C上に積層化配置されるポスト部35Tは、逆テーパー形状を有するように構成しても良い。 That is, as shown in FIG. 20, for example, the post part 35 </ b> T stacked on the bridge part 35 </ b> C may be configured to have an inversely tapered shape.
 (第3適用例)
 本実施の形態の第3適用例に係るパワーモジュールの模式的断面構造は、図21に示すように表される。
(Third application example)
A schematic cross-sectional structure of a power module according to the third application example of the present embodiment is expressed as shown in FIG.
 すなわち、図21に示すように、例えば、ブリッジ部35C上に積層化配置されるポスト部35Tは、逆ステップテーパー形状を有するように構成しても良い。 That is, as shown in FIG. 21, for example, the post part 35T stacked on the bridge part 35C may be configured to have a reverse step taper shape.
 (第4適用例)
 本実施の形態の第4適用例に係るパワーモジュールの模式的断面構造は、図22に示すように表される。
(Fourth application example)
A schematic cross-sectional structure of the power module according to the fourth application example of the present embodiment is expressed as shown in FIG.
 すなわち、図22に示すように、例えば、ブリッジ部35C上に積層化配置されるポスト部35Tは、複数の層電極を逆ステップテーパー形状に積層した構造を有するように構成しても良い。 That is, as shown in FIG. 22, for example, the post portion 35T stacked on the bridge portion 35C may be configured to have a structure in which a plurality of layer electrodes are stacked in a reverse step taper shape.
 (パワーモジュールの具体例)
 以下、実施の形態に係るパワーモジュールの具体例について説明する。
(Specific examples of power modules)
Hereinafter, specific examples of the power module according to the embodiment will be described.
 実施の形態に係るPM50であって、1 in 1モジュールのSiC MOSFETの模式的回路表現は、図23に示すように表される。 FIG. 23 is a schematic circuit representation of a SiC MOSFET of 1 in 1 module, which is a PM 50 according to the embodiment.
 図23には、MOSFET Qに逆並列接続されるダイオードDIが示されている。MOSFET Qの主電極は、ドレイン端子DTおよびソース端子STで表される。なお、ダイオードDIは寄生ダイオードを用いることにより省略しても構わないし、ダイオードDIと並列にショットキーダイオードを接続するように構成しても構わない。 FIG. 23 shows a diode DI connected in reverse parallel to the MOSFET Q. The main electrode of the MOSFET Q is represented by a drain terminal DT and a source terminal ST. The diode DI may be omitted by using a parasitic diode, or a Schottky diode may be connected in parallel with the diode DI.
 また、実施の形態に係るPM50であって、1 in 1モジュールのSiC MOSFETの詳細回路表現は、図24に示すように表される。 In addition, the detailed circuit representation of the SiC MOSFET of 1 in 1 module in the PM 50 according to the embodiment is expressed as shown in FIG.
 実施の形態に係るPM50は、例えば、1 in 1モジュールの構成を備える。すなわち、複数個のMOSFETを並列接続して1つのMOSFET Qとしたものが1つのモジュールに内蔵されている。一例として、5チップ(MOSFET×5)搭載可能であり、それぞれのMOSFETQは、5個まで並列接続可能である。なお、5チップの内、一部をダイオードDI用として搭載することも可能である。 The PM 50 according to the embodiment has, for example, a 1 in 1 module configuration. In other words, a single MOSFET Q formed by connecting a plurality of MOSFETs in parallel is built in one module. As an example, five chips (MOSFETs × 5) can be mounted, and up to five MOSFETs Q can be connected in parallel. A part of the five chips can be mounted for the diode DI.
 さらに詳細には、図24に示すように、MOSFETQに並列にセンス用MOSFETQsが接続される。センス用MOSFETQsは、MOSFETQと同一チップ内に、微細トランジスタとして形成されている。 More specifically, as shown in FIG. 24, a sense MOSFET Qs is connected in parallel to the MOSFET Q. The sense MOSFET Qs is formed as a fine transistor in the same chip as the MOSFET Q.
 図24において、SSは、ソースセンス端子、CSは、電流センス端子であり、Gは、ゲート信号端子である。なお、実施の形態においても、半導体デバイスQには、センス用MOSFET Qsが同一チップ内に、微細トランジスタとして形成されている。 24, SS is a source sense terminal, CS is a current sense terminal, and G is a gate signal terminal. Also in the embodiment, in the semiconductor device Q, a sense MOSFET Qs is formed as a fine transistor in the same chip.
 (回路構成)
 また、実施の形態に係るパワーモジュール50Tであって、2 in 1モジュールのSiC MOSFETの模式的回路表現は、図25に示すように表される。
(Circuit configuration)
Moreover, it is the power module 50T which concerns on embodiment, Comprising: The typical circuit expression of SiC MOSFET of 2 in 1 module is represented as shown in FIG.
 ここでは、例えば第4の実施の形態に係るPM10に適用可能な半導体モジュール20であって、2個の半導体デバイスQ1・Q4が1つのモールド樹脂33内に封止された半導体パッケージ装置、いわゆる2 in 1タイプのモジュールについて説明する。 Here, for example, the semiconductor module 20 is applicable to the PM 10 according to the fourth embodiment, and is a semiconductor package device in which two semiconductor devices Q1 and Q4 are sealed in one mold resin 33, so-called two. The in 1 type module will be described.
 半導体デバイスQ1・Q4として、SiC MOSFETを適用した2 in 1モジュール50Tの回路構成は、例えば図25に示すように表される。 As the semiconductor devices Q1 and Q4, the circuit configuration of a 2-in-1 module 50T to which an SiC MOSFET is applied is expressed as shown in FIG. 25, for example.
 すなわち、2 in 1モジュール50Tは、図25に示すように、2個のSiC MOSFET Q1・Q4が1つのモジュールとして内蔵された、ハーフブリッジ内蔵モジュールの構成を備える。 That is, as shown in FIG. 25, the 2-in-1 module 50T has a configuration of a half-bridge built-in module in which two SiC MOSFETs Q1 and Q4 are built in as one module.
 ここで、モジュールは、1つの大きなトランジスタとみなすことができるが、内蔵されているトランジスタが1チップまたは図2や図17に示したように複数チップの場合がある。また、モジュールには、1 in 1、2 in 1、4 in 1、6 in 1などがあり、例えば、1つのモジュール上において、図25に示すモジュールを2組内蔵したモジュールは2 in 1、2 in 1を2組み内蔵したモジュールは4 in 1、2 in 1を3組み内蔵したモジュールは6 in 1と呼ばれている。 Here, the module can be regarded as one large transistor, but the built-in transistor may be one chip or a plurality of chips as shown in FIG. 2 or FIG. In addition, the modules include 1 in 1, 2 in 1, 4 in 1, 6 in 1, etc. For example, on one module, a module including two sets of modules shown in FIG. A module containing two sets of in 1 is called a 6 in 1 module having three sets of 4 in 1 and 2 in 1.
 図25に示すように、2 in 1モジュール50Tは、2個のSiC MOSFETQ1・Q4と、SiC MOSFETQ1・Q4に逆並列接続されるダイオードD1・D4が1つのモジュールとして内蔵されている。 As shown in FIG. 25, the 2-in-1 module 50T includes two SiC MOSFETs Q1 and Q4 and diodes D1 and D4 connected in reverse parallel to the SiC MOSFETs Q1 and Q4 as a single module.
 図25において、G1は、SiC MOSFETQ1のゲート信号用のリード端子であり、S1は、SiC MOSFETQ1のソース信号用のリード端子である。同様に、G4は、SiC MOSFETQ4のゲート信号用のリード端子であり、S4は、SiC MOSFETQ4のソース信号用のリード端子である。 25, G1 is a lead terminal for a gate signal of the SiC MOSFET Q1, and S1 is a lead terminal for a source signal of the SiC MOSFET Q1. Similarly, G4 is a lead terminal for the gate signal of the SiC MOSFET Q4, and S4 is a lead terminal for the source signal of the SiC MOSFET Q4.
 また、Pは、正側電源入力端子電極であり、Nは、負側電源入力端子電極であり、Oは、出力端子電極である。 P is a positive power input terminal electrode, N is a negative power input terminal electrode, and O is an output terminal electrode.
 第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスQ2・Q5、および半導体モジュール20に適用される半導体デバイスQ3・Q6についても同様であり、詳しい説明は省略する。 The same applies to the semiconductor devices Q2 and Q5 applied to the semiconductor module 20 applicable to the PM 10 according to the fourth embodiment, and the semiconductor devices Q3 and Q6 applied to the semiconductor module 20, and detailed description thereof is omitted. .
 (デバイス構造)
 第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスQ1・Q4の例であって、ソースパッド電極SP、ゲートパッド電極GPを含むSiC MOSFET110の模式的断面構造は、図26に示すように表される。
(Device structure)
4 is an example of semiconductor devices Q1 and Q4 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, and is a schematic diagram of the SiC MOSFET 110 including the source pad electrode SP and the gate pad electrode GP. The cross-sectional structure is expressed as shown in FIG.
 図26に示すように、SiC MOSFET110は、n-高抵抗層からなる半導体基板126と、半導体基板126の表面側に形成されたpボディ領域128と、pボディ領域128の表面に形成されたソース領域130と、pボディ領域128間の半導体基板126の表面上に配置されたゲート絶縁膜132と、ゲート絶縁膜132上に配置されたゲート電極138と、ソース領域130およびpボディ領域128に接続されたソース電極134と、半導体基板126の表面と反対側の裏面に配置されたn+ドレイン領域124と、n+ドレイン領域124に接続されたドレイン電極136とを備える。 As shown in FIG. 26, SiC MOSFET 110 includes a semiconductor substrate 126 made of an n high resistance layer, a p body region 128 formed on the surface side of semiconductor substrate 126, and a source formed on the surface of p body region 128. Connected to region 130, gate insulating film 132 disposed on the surface of semiconductor substrate 126 between p body region 128, gate electrode 138 disposed on gate insulating film 132, source region 130, and p body region 128 Source electrode 134, n + drain region 124 disposed on the back surface opposite to the front surface of semiconductor substrate 126, and drain electrode 136 connected to n + drain region 124.
 ゲートパッド電極GPは、ゲート絶縁膜132上に配置されたゲート電極138に接続され、ソースパッド電極SPは、ソース領域130およびpボディ領域128に接続されたソース電極134に接続される。また、ゲートパッド電極GPおよびソースパッド電極SPは、図26に示すように、SiC MOSFET110の表面を覆うパッシベーション用の層間絶縁膜144上に配置される。 The gate pad electrode GP is connected to the gate electrode 138 disposed on the gate insulating film 132, and the source pad electrode SP is connected to the source electrode 134 connected to the source region 130 and the p body region 128. Further, as shown in FIG. 26, the gate pad electrode GP and the source pad electrode SP are disposed on a passivation interlayer insulating film 144 that covers the surface of the SiC MOSFET 110.
 なお、ゲートパッド電極GPおよびソースパッド電極SPの下方の半導体基板126内には、図示していないが、微細構造のトランジスタ構造が形成されていても良い。 Note that, although not shown, a fine transistor structure may be formed in the semiconductor substrate 126 below the gate pad electrode GP and the source pad electrode SP.
 さらに、図26に示すように、中央部のトランジスタ構造においても、パッシベーション用の層間絶縁膜144上にソースパッド電極SPが延在して配置されていても良い。 Furthermore, as shown in FIG. 26, even in the central transistor structure, the source pad electrode SP may be extended and disposed on the interlayer insulating film 144 for passivation.
 図26において、SiC MOSFET110は、プレーナゲート型のnチャネル縦型SiC MOSFETで構成されているが、後述する図29に示すように、トレンチゲート型のnチャネル縦型SiC T(Trench)MOSFET110などで構成されていても良い。 In FIG. 26, the SiC MOSFET 110 is composed of a planar gate type n-channel vertical SiC MOSFET. However, as shown in FIG. 29 described later, the trench gate type n-channel vertical SiC T (Trench) MOSFET 110 is used. It may be configured.
 または、第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスQ1・Q4としては、SiC MOSFET110の代わりに、GaN系FETなどを採用することもできる。 Alternatively, as the semiconductor devices Q1 and Q4 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, a GaN-based FET or the like can be employed instead of the SiC MOSFET 110.
 第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスQ2・Q5、および半導体モジュール20に適用される半導体デバイスQ3・Q6についても同様である。 The same applies to the semiconductor devices Q2 and Q5 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments and the semiconductor devices Q3 and Q6 applied to the semiconductor module 20.
 さらには、第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスQ1~Q6には、バンドギャップエネルギーが、例えば、1.1eV~8eVのワイドバンドギャップ型と称される半導体を用いることができる。 Furthermore, the semiconductor devices Q1 to Q6 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments have a wide band gap of, for example, 1.1 eV to 8 eV. A semiconductor called a mold can be used.
 同様に、第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスQ1・Q4の例であって、エミッタパッド電極EP、ゲートパッド電極GPを含むIGBT110Aの模式的断面構造は、図27に示すように表される。 Similarly, it is an example of the semiconductor devices Q1 and Q4 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, and includes an IGBT 110A including the emitter pad electrode EP and the gate pad electrode GP. A schematic cross-sectional structure is expressed as shown in FIG.
 図27に示すように、IGBT110Aは、n-高抵抗層からなる半導体基板126と、半導体基板126の表面側に形成されたpボディ領域128と、pボディ領域128の表面に形成されたエミッタ領域130Eと、pボディ領域128間の半導体基板126の表面上に配置されたゲート絶縁膜132と、ゲート絶縁膜132上に配置されたゲート電極138と、エミッタ領域130Eおよびpボディ領域128に接続されたエミッタ電極134Eと、半導体基板126の表面と反対側の裏面に配置されたp+コレクタ領域124Pと、p+コレクタ領域124Pに接続されたコレクタ電極136Cとを備える。 As shown in FIG. 27, IGBT 110A includes a semiconductor substrate 126 made of an n high resistance layer, a p body region 128 formed on the surface side of semiconductor substrate 126, and an emitter region formed on the surface of p body region 128. 130E, a gate insulating film 132 disposed on the surface of the semiconductor substrate 126 between the p body regions 128, a gate electrode 138 disposed on the gate insulating film 132, and the emitter regions 130E and the p body regions 128. Emitter electrode 134E, p + collector region 124P disposed on the back surface opposite to the surface of semiconductor substrate 126, and collector electrode 136C connected to p + collector region 124P.
 ゲートパッド電極GPは、ゲート絶縁膜132上に配置されたゲート電極138に接続され、エミッタパッド電極EPは、エミッタ領域130Eおよびpボディ領域128に接続されたエミッタ電極134Eに接続される。また、ゲートパッド電極GPおよびエミッタパッド電極EPは、図27に示すように、IGBT110Aの表面を覆うパッシベーション用の層間絶縁膜144上に配置される。 The gate pad electrode GP is connected to the gate electrode 138 disposed on the gate insulating film 132, and the emitter pad electrode EP is connected to the emitter electrode 134E connected to the emitter region 130E and the p body region 128. In addition, as shown in FIG. 27, the gate pad electrode GP and the emitter pad electrode EP are disposed on a passivation interlayer insulating film 144 that covers the surface of the IGBT 110A.
 なお、ゲートパッド電極GPおよびエミッタパッド電極EPの下方の半導体基板126内には、図示していないが、微細構造のIGBT構造が形成されていても良い。 Although not shown, a fine-structure IGBT structure may be formed in the semiconductor substrate 126 below the gate pad electrode GP and the emitter pad electrode EP.
 さらに、図27に示すように、中央部のIGBT構造においても、パッシベーション用の層間絶縁膜144上にエミッタパッド電極EPが延在して配置されていても良い。 Furthermore, as shown in FIG. 27, also in the IGBT structure in the central portion, the emitter pad electrode EP may be arranged to extend on the interlayer insulating film 144 for passivation.
 図27において、IGBT110Aは、プレーナゲート型のnチャネル縦型IGBTで構成されているが、トレンチゲート型のnチャネル縦型IGBTなどで構成されていても良い。 27, the IGBT 110A is composed of a planar gate type n-channel vertical IGBT, but may be composed of a trench gate type n-channel vertical IGBT or the like.
 第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスQ2・Q5、および半導体モジュール20に適用される半導体デバイスQ3・Q6についても同様である。 The same applies to the semiconductor devices Q2 and Q5 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments and the semiconductor devices Q3 and Q6 applied to the semiconductor module 20.
 半導体デバイスQ1~Q6としては、SiC DIMOSFET、SiC TMOSFETなどのSiC系パワーデバイス、或いはGaN系高電子移動度トランジスタ(HEMT: High Electron Mobility Transistor)などのGaN系パワーデバイスを適用可能である。また、場合によっては、Si系MOSFETやIGBTなどのパワーデバイスも適用可能である。 As the semiconductor devices Q1 to Q6, SiC power devices such as SiC DIMOSFET and SiC TMOSFET, or GaN power devices such as GaN high electron mobility transistors (HEMT) are applicable. In some cases, power devices such as Si-based MOSFETs and IGBTs are also applicable.
 ―SiC DIMOSFET―
 第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスの例であって、SiC DIMOSFET110の模式的断面構造は、図28に示すように表される。
―SiC DIMOSFET―
28 is an example of a semiconductor device applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, and a schematic cross-sectional structure of the SiC DIMOSFET 110 is expressed as shown in FIG.
 図28に示すように、第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用されるSiC DIMOSFET110は、n-高抵抗層からなる半導体基板126と、半導体基板126の表面側に形成されたpボディ領域128と、pボディ領域128の表面に形成されたn+ソース領域130と、pボディ領域128間の半導体基板126の表面上に配置されたゲート絶縁膜132と、ゲート絶縁膜132上に配置されたゲート電極138と、ソース領域130およびpボディ領域128に接続されたソース電極134と、半導体基板126の表面と反対側の裏面に配置されたn+ ドレイン領域124と、n+ドレイン領域124に接続されたドレイン電極136とを備える。 As shown in FIG. 28, the SiC DIMOSFET 110 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments includes a semiconductor substrate 126 made of an n high resistance layer, a semiconductor substrate 126 P body region 128 formed on the front surface side, n + source region 130 formed on the surface of p body region 128, and gate insulating film 132 disposed on the surface of semiconductor substrate 126 between p body regions 128, The gate electrode 138 disposed on the gate insulating film 132, the source electrode 134 connected to the source region 130 and the p body region 128, and the n + drain region disposed on the back surface opposite to the surface of the semiconductor substrate 126. 124 and a drain electrode 136 connected to the n + drain region 124.
 図28において、SiC DIMOSFET110は、pボディ領域128と、pボディ領域128の表面に形成されたn+ソース領域130が、ダブルイオン注入(DII)で形成され、ソースパッド電極SPは、ソース領域130およびpボディ領域128に接続されたソース電極134に接続される。 In FIG. 28, SiC DIMOSFET 110 has a p body region 128 and an n + source region 130 formed on the surface of p body region 128 formed by double ion implantation (DII), and source pad electrode SP is connected to source region 130. And to the source electrode 134 connected to the p body region 128.
 ゲートパッド電極GPは、図示を省略しているが、ゲート絶縁膜132上に配置されたゲート電極138に接続される。また、ソースパッド電極SPおよびゲートパッド電極GPは、図28に示すように、SiC DIMOSFET110の表面を覆うように、パッシベーション用の層間絶縁膜144上に配置される。 Although not shown, the gate pad electrode GP is connected to the gate electrode 138 disposed on the gate insulating film 132. Further, as shown in FIG. 28, the source pad electrode SP and the gate pad electrode GP are arranged on the passivation interlayer 144 so as to cover the surface of the SiC DIMOSFET 110.
 SiC DIMOSFETは、図28に示すように、pボディ領域128に挟まれたn- 高抵抗層からなる半導体基板126内に、破線で示されるような空乏層が形成されるため、接合型FET(JFET)効果に伴うチャネル抵抗R JFETが形成される。また、pボディ領域128/半導体基板126間には、図28に示すように、ボディダイオードBDが形成される。 As shown in FIG. 28, in the SiC DIMOSFET, a depletion layer as shown by a broken line is formed in a semiconductor substrate 126 made of an n − high resistance layer sandwiched between p body regions 128. A channel resistance R JFET due to the JFET) effect is formed. A body diode BD is formed between the p body region 128 and the semiconductor substrate 126 as shown in FIG.
 ―SiC TMOSFET―
 第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用される半導体デバイスの例であって、SiC TMOSFET110の模式的断面構造は、図29に示すように表される。
―SiC TMOSFET―
29 is an example of a semiconductor device applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments, and a schematic cross-sectional structure of the SiC TMOSFET 110 is expressed as shown in FIG.
 図29に示すように、第1~第4の実施の形態に係るPM10に適用可能な半導体モジュール20に適用されるSiC TMOSFET110は、n層からなる半導体基板126Nと、半導体基板126Nの表面側に形成されたpボディ領域128と、pボディ領域128の表面に形成されたn+ソース領域130と、pボディ領域128を貫通し、半導体基板126Nまで形成されたトレンチ内にゲート絶縁膜132および層間絶縁膜144U・144Bを介して形成されたトレンチゲート電極138TGと、ソース領域130およびpボディ領域128に接続されたソース電極134と、半導体基板126Nの表面と反対側の裏面に配置されたn+ ドレイン領域124と、n+ドレイン領域124に接続されたドレイン電極136とを備える。 As shown in FIG. 29, an SiC TMOSFET 110 applied to the semiconductor module 20 applicable to the PM 10 according to the first to fourth embodiments includes an n-layer semiconductor substrate 126N and a surface side of the semiconductor substrate 126N. The formed p body region 128, the n + source region 130 formed on the surface of the p body region 128, the gate insulating film 132 and the interlayer in the trench formed through the p body region 128 and reaching the semiconductor substrate 126N. Tr + gate electrode 138TG formed through insulating films 144U and 144B, source electrode 134 connected to source region 130 and p body region 128, and n + disposed on the back surface opposite to the surface of semiconductor substrate 126N A drain region 124 and a drain electrode 136 connected to the n + drain region 124 are provided. .
 図29において、SiC TMOSFET110は、pボディ領域128を貫通し、半導体基板126Nまで形成されたトレンチ内にゲート絶縁膜132および層間絶縁膜144U・144Bを介してトレンチゲート電極138TGが形成され、ソースパッド電極SPは、ソース領域130およびpボディ領域128に接続されたソース電極134に接続される。 In FIG. 29, SiC TMOSFET 110 has a trench gate electrode 138TG formed through a gate insulating film 132 and interlayer insulating films 144U and 144B in a trench penetrating p body region 128 and extending to semiconductor substrate 126N. Electrode SP is connected to source electrode 134 connected to source region 130 and p body region 128.
 ゲートパッド電極GPは、図示を省略しているが、ゲート絶縁膜132上に配置されたトレンチゲート電極138TGに接続される。また、ソースパッド電極SPおよびゲートパッド電極GPは、図29に示すように、SiC TMOSFET110の表面を覆うように、パッシベーション用の層間絶縁膜144U上に配置される。 Although not shown, the gate pad electrode GP is connected to the trench gate electrode 138TG disposed on the gate insulating film 132. Further, as shown in FIG. 29, the source pad electrode SP and the gate pad electrode GP are disposed on the passivation interlayer insulating film 144U so as to cover the surface of the SiC TMOSFET 110.
 SiC TMOSFETでは、SiC DIMOSFETのような接合型FET(JFET)効果に伴うチャネル抵抗R JFETは形成されない。また、pボディ領域128/半導体基板126N間には、図28と同様に、ボディダイオードBDが形成される。 In the SiC TMOSFET, the channel resistance R JFET associated with the junction FET (JFET) effect like the SiC DIMOSFET is not formed. A body diode BD is formed between the p body region 128 and the semiconductor substrate 126N, as in FIG.
 (応用例)
 第1~第4の実施の形態に係るPM10を用いて構成される3相交流インバータ140であって、半導体デバイスとしてSiC MOSFETを適用し、電源端子PL・接地(基準)端子NL間にスナバコンデンサCを接続した回路構成例は、図30に示すように表される。インダクタンスLは、配線の有するインダクタンスを表している。
(Application examples)
A three-phase AC inverter 140 configured using the PM 10 according to the first to fourth embodiments, using a SiC MOSFET as a semiconductor device, and a snubber capacitor between a power supply terminal PL and a ground (reference) terminal NL A circuit configuration example in which C is connected is expressed as shown in FIG. The inductance L represents the inductance of the wiring.
 第1~第4の実施の形態に係るPM10を電源Eと接続する際、接続ラインの有するインダクタンスLによって、SiC MOSFETのスイッチング速度が速いため、大きなサージ電圧Ldi/dtを生ずる。例えば、電流変化di=300Aとし、スイッチングに伴う時間変化dt=100nsecとすると、di/dt=3×10(A/s)となる。 When the PM 10 according to the first to fourth embodiments is connected to the power supply E, a large surge voltage Ldi / dt is generated due to the high switching speed of the SiC MOSFET due to the inductance L of the connection line. For example, assuming that the current change di = 300 A and the time change dt = 100 nsec accompanying switching, di / dt = 3 × 10 9 (A / s).
 インダクタンスLの値により、サージ電圧Ldi/dtの値は変化するが、電源Eに、このサージ電圧Ldi/dtが重畳される。電源端子PL・接地端子NL間に接続されるスナバコンデンサCによって、このサージ電圧Ldi/dtを吸収することができる。 The value of the surge voltage Ldi / dt varies depending on the value of the inductance L, but the surge voltage Ldi / dt is superimposed on the power source E. The surge voltage Ldi / dt can be absorbed by the snubber capacitor C connected between the power supply terminal PL and the ground terminal NL.
 本実施の形態に係るPM10を適用したインバータ装置は、例えば、以下の構成を備えていても良い。すなわち、電源端子PLと基準端子NLとの間に接続された半導体デバイスQ1を含む回路が形成されたパワーモジュールPM10を用いて電力変換を行うインバータ装置であって、パワーモジュールPM10は、第1絶縁基板22Dと、第1絶縁基板22D上に搭載されて動作時に熱を発生する半導体デバイスQ1と、半導体デバイスQ1上に、半導体デバイスQ1に対向する面と反対側に、第1絶縁基板22Dに対向して配置された第2絶縁基板22Uと、一端が半導体デバイスQ1上に形成された電極パッドに接続され、他端側が第1絶縁基板22Dに形成された電極パターン24D2に接続され、半導体デバイスQ1からの電流を第2絶縁基板22Uを介さずに電極パターン24D2に流す電気伝導路層35Cと、一端が半導体デバイスQ1上に配置され、他端側が第2絶縁基板22U側に接続され、半導体デバイスQ1の熱を第2絶縁基板22Uに伝える熱伝導路層35Tとを備え、少なくとも半導体デバイスQ1と、電気伝導路層35Cと、熱伝導路層35Tと、各端子の一部を封止するモールド樹脂を備えていても良い。 The inverter device to which PM10 according to the present embodiment is applied may have the following configuration, for example. In other words, the inverter device performs power conversion using the power module PM10 in which a circuit including the semiconductor device Q1 connected between the power supply terminal PL and the reference terminal NL is formed, and the power module PM10 includes the first insulation. The substrate 22D, the semiconductor device Q1 mounted on the first insulating substrate 22D and generating heat during operation, and the semiconductor device Q1 facing the first insulating substrate 22D on the side opposite to the surface facing the semiconductor device Q1 The second insulating substrate 22U arranged in this manner and one end connected to the electrode pad formed on the semiconductor device Q1, and the other end connected to the electrode pattern 24D2 formed on the first insulating substrate 22D, the semiconductor device Q1 Current conduction path layer 35C that flows current from the first electrode to the electrode pattern 24D2 without passing through the second insulating substrate 22U, and one end of which is a semiconductor device. And the other end side is connected to the second insulating substrate 22U side, and includes a heat conduction path layer 35T for transferring the heat of the semiconductor device Q1 to the second insulating substrate 22U, and at least the semiconductor device Q1 and the electric conduction The road layer 35C, the heat conduction path layer 35T, and a mold resin for sealing a part of each terminal may be provided.
 (具体例)
 次に、図31を参照して、半導体デバイスとしてSiC MOSFETを適用し、第1~第4の実施の形態に係るPMを用いて構成した3相交流インバータ140について説明する。
(Concrete example)
Next, with reference to FIG. 31, a three-phase AC inverter 140 configured using PM MOSFETs according to the first to fourth embodiments by applying SiC MOSFET as a semiconductor device will be described.
 図31に示すように、3相交流インバータ140は、ゲートドライブ部150により駆動されるPM152と、各PMの出力に接続された3相交流モータ部154と、回路に電力を供給する電源もしくは蓄電池(E)146と、電源146の電力を変換して各PMに電力を供給するコンバータ148とを備える。PM152は、3相交流モータ部154のU相、V相、W相に対応して、U相、V相、W相の出力を行うインバータ回路が接続されている。 As shown in FIG. 31, a three-phase AC inverter 140 includes a PM 152 driven by a gate drive unit 150, a three-phase AC motor unit 154 connected to the output of each PM, and a power supply or storage battery that supplies power to the circuit. (E) 146 and a converter 148 that converts power of the power source 146 and supplies power to each PM. PM 152 is connected to an inverter circuit that outputs U-phase, V-phase, and W-phase corresponding to U-phase, V-phase, and W-phase of three-phase AC motor unit 154.
 ここで、ゲートドライブ部150は、SiC MOSFETQ1・Q4、SiC MOSFETQ2・Q5、およびSiC MOSFETQ3・Q6の各ゲートにそれぞれ接続されている。 Here, the gate drive unit 150 is connected to each gate of each of the SiC MOSFETs Q1 and Q4, the SiC MOSFETs Q2 and Q5, and the SiC MOSFETs Q3 and Q6.
 PM152は、電源もしくは蓄電池(E)146が接続されたコンバータ148のプラス端子(+)Pとマイナス端子(-)Nとの間に接続され、インバータ構成のSiC MOSFETQ1・Q4、Q2・Q5、およびQ3・Q6を備える。また、SiC MOSFETQ1~Q6のソース・ドレイン間には、フリーホイールダイオードD1~D6がそれぞれ逆並列に接続されている。 The PM 152 is connected between a plus terminal (+) P and a minus terminal (−) N of a converter 148 to which a power source or a storage battery (E) 146 is connected, and includes SiC MOSFETs Q 1 and Q 4, Q 2 and Q 5 having inverter configurations, and Q3 and Q6 are provided. Free wheel diodes D1 to D6 are connected in antiparallel between the source and drain of the SiC MOSFETs Q1 to Q6, respectively.
 以上説明したように、本実施の形態によれば、効率的に放熱可能なパワーモジュール、およびインバータ装置を実現できる。すなわち、パワーモジュールにおいて、放熱経路Tと電気経路Cとを分けるようにしたので、効率的に放熱可能な構造とすることができる。 As described above, according to the present embodiment, a power module and an inverter device capable of efficiently dissipating heat can be realized. That is, in the power module, since the heat dissipation path T and the electrical path C are separated, a structure capable of efficiently dissipating heat can be achieved.
 特に、各実施の形態に係るPMを、例えば車載用とする場合においては、より効率的な放熱が可能になるので、高性能化・高機能化と共に、より一層の安全性を確保しつつ、高効率のシステムの開発が可能になる。 In particular, in the case where the PM according to each embodiment is for in-vehicle use, for example, more efficient heat dissipation is possible, so while ensuring higher safety with higher performance and higher functionality, Development of a highly efficient system becomes possible.
 なお、本実施の形態において、モールド型パワーモジュールとしては、例えば、4端子構造のモールド型パワーモジュールなどであっても良い。 In the present embodiment, the mold type power module may be, for example, a mold type power module having a four-terminal structure.
 また、本実施の形態に係るPMに適用可能な半導体モジュールとしては、樹脂モールドされたモールド型パワーモジュールに限らず、ケース型のパッケージによってパッケージングされたパワーモジュール(半導体パッケージ装置)にも適用可能である。 Further, the semiconductor module applicable to the PM according to the present embodiment is not limited to a resin-molded mold type power module, but can also be applied to a power module (semiconductor package device) packaged by a case type package. It is.
 [その他の実施の形態]
 上記のように、いくつかの実施の形態について記載したが、開示の一部をなす論述および図面は例示的なものであり、限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。例えば、図30、図31に示す回路において、各MOSFETのソース、ドレイン、ゲートの代わりに、IGBTのエミッタ、コレクタ、ゲートを夫々接続した回路を用いるようにしても良いし、発熱が少ない場合には、各PMを搭載する回路基板を用いるだけで下部冷却器を省略しても構わない。
[Other embodiments]
Although several embodiments have been described as described above, the discussion and drawings that form part of the disclosure are illustrative and should not be construed as limiting. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. For example, in the circuits shown in FIGS. 30 and 31, instead of the source, drain, and gate of each MOSFET, a circuit in which the emitter, collector, and gate of the IGBT are connected to each other may be used. The lower cooler may be omitted by simply using a circuit board on which each PM is mounted.
 このように、本実施の形態は、ここでは記載していない様々な実施の形態などを含む。 Thus, the present embodiment includes various embodiments that are not described here.
 本実施の形態のPMは、IGBTモジュール、ダイオードモジュール、MOSモジュール(Si、SiC、GaN)などの各種の半導体モジュール作製技術に利用することができ、発熱が特に大きいHEV(Hybrid Electric Vehicle)/EV(Electric Vehicle)向けのインバータ、産業向けのインバータやコンバータなどに適用可能であると共に、幅広い応用分野に適用可能である。 The PM of the present embodiment can be used in various semiconductor module manufacturing technologies such as IGBT modules, diode modules, and MOS modules (Si, SiC, GaN), and HEV (Hybrid Electric Vehicle) / EV with particularly large heat generation. It can be applied to inverters for (Electric イ ン バ ー タ Vehicle), inverters and converters for industrial use, and can be applied to a wide range of application fields.
1、 5…ゲート信号電極パターン
3、7…ソース信号電極パターン
10…パワーモジュール(PM)
20…半導体モジュール
21D…下部セラミック基板
21U…上部セラミック基板
23D、24D…導電層
23U・24U…導電層
24D1、24U1…第1電極パターン
24D2、24U2…第2電極パターン
24D3…第3電極パターン
30D…下部冷却器
30U…上部冷却器
33…モールド樹脂
35、35、35、351、352、353、353C…伝導路層
35C、351C、352C…ブリッジ部(電気伝導路層)
35T、351T、352T、353T…ポスト部(熱伝導路層)
Q1、Q2、Q3、Q4、Q5、Q6…半導体デバイス
P…正側電源入力端子電極
N…負側電源入力端子電極
O…出力端子電極
PL…電源端子
NL…基準端子
DESCRIPTION OF SYMBOLS 1, 5 ... Gate signal electrode pattern 3, 7 ... Source signal electrode pattern 10 ... Power module (PM)
DESCRIPTION OF SYMBOLS 20 ... Semiconductor module 21D ... Lower ceramic substrate 21U ... Upper ceramic substrate 23D, 24D ... Conductive layer 23U * 24U ... Conductive layer 24D1, 24U1 ... 1st electrode pattern 24D2, 24U2 ... 2nd electrode pattern 24D3 ... 3rd electrode pattern 30D ... Lower cooler 30U ... Upper cooler 33 ... Mold resin 35, 35 1 , 35 2 , 351, 352, 353, 353C ... Conductive path layer 35C, 351C, 352C ... Bridge part (electrically conductive path layer)
35T, 351T, 352T, 353T ... post part (thermal conduction path layer)
Q1, Q2, Q3, Q4, Q5, Q6 ... Semiconductor device P ... Positive power supply input terminal electrode N ... Negative power supply input terminal electrode O ... Output terminal electrode PL ... Power supply terminal NL ... Reference terminal

Claims (26)

  1.  第1絶縁基板と、
     前記第1絶縁基板上に搭載されて動作時に発熱する半導体デバイスと、
     前記半導体デバイス上に、前記第1絶縁基板に対向して配置された第2絶縁基板と、
     前記半導体デバイス上に一端が配置され、他端側が前記第1絶縁基板に形成された電極パターンに接続されて電気信号を伝送する電気伝導路層と、
     前記半導体デバイス上に一端が配置され、他端側が前記第2絶縁基板に接続されて前記半導体デバイスの熱を前記第2絶縁基板側に伝導する熱伝導路層と
     を備えることを特徴とするパワーモジュール。
    A first insulating substrate;
    A semiconductor device mounted on the first insulating substrate and generating heat during operation;
    A second insulating substrate disposed on the semiconductor device to face the first insulating substrate;
    One end is disposed on the semiconductor device and the other end is connected to an electrode pattern formed on the first insulating substrate to transmit an electric signal; and
    One end is disposed on the semiconductor device, the other end is connected to the second insulating substrate, and a heat conduction path layer that conducts heat of the semiconductor device to the second insulating substrate is provided. module.
  2.  前記第2絶縁基板の前記第1絶縁基板に対向する面と反対側の面に配置されて前記熱伝導路層からの熱を前記第2絶縁基板を介して冷却するための第1冷却器をさらに備えることを特徴とする請求項1に記載のパワーモジュール。 A first cooler disposed on a surface of the second insulating substrate opposite to the surface facing the first insulating substrate and configured to cool the heat from the heat conduction path layer through the second insulating substrate; The power module according to claim 1, further comprising:
  3.  前記第1絶縁基板の前記半導体デバイスが搭載された面と反対側の面に配置されて前記半導体デバイスの熱を前記第1絶縁基板を介して冷却するための第2冷却器をさらに備えることを特徴とする請求項2に記載のパワーモジュール。 A second cooler disposed on the surface of the first insulating substrate opposite to the surface on which the semiconductor device is mounted to cool the heat of the semiconductor device via the first insulating substrate; The power module according to claim 2, wherein the power module is a power module.
  4.  前記第1絶縁基板の前記半導体デバイスが搭載された面側に配置され、第1電極パターンと第2電極パターンとを有する第1導電層をさらに備え、
     前記半導体デバイスは、前記第1電極パターン上に搭載され、
     前記電気伝導路層は、前記半導体デバイスの上面に形成されたパッド電極と前記第2電極パターンとの間を接続することを特徴とする請求項1~3のいずれか1項に記載のパワーモジュール。
    A first conductive layer disposed on a surface side of the first insulating substrate on which the semiconductor device is mounted and further including a first electrode pattern and a second electrode pattern;
    The semiconductor device is mounted on the first electrode pattern,
    The power module according to any one of claims 1 to 3, wherein the electrical conduction path layer connects a pad electrode formed on an upper surface of the semiconductor device and the second electrode pattern. .
  5.  前記第2絶縁基板の前記第1絶縁基板に対向する面側に配置され、前記第1導電層と対向する第2導電層をさらに備え、
     前記熱伝導路層は、前記半導体デバイスの上面に配置されたパッド電極と前記第2導電層との間を接続し、前記半導体デバイスの熱を前記第2絶縁基板側に伝導することを特徴とする請求項1~4のいずれか1項に記載のパワーモジュール。
    A second conductive layer disposed on a surface of the second insulating substrate facing the first insulating substrate and facing the first conductive layer;
    The heat conduction path layer connects between a pad electrode disposed on an upper surface of the semiconductor device and the second conductive layer, and conducts heat of the semiconductor device to the second insulating substrate side. The power module according to any one of claims 1 to 4.
  6.  前記電気伝導路層は、前記熱伝導路層の側面から前記第1絶縁基板に接続される一体型のブロック構造を備えることを特徴とする請求項1~5のいずれか1項に記載のパワーモジュール。 The power according to any one of claims 1 to 5, wherein the electric conduction path layer includes an integrated block structure connected to the first insulating substrate from a side surface of the heat conduction path layer. module.
  7.  前記電気伝導路層および前記熱伝導路層は、前記電気伝導路層の前記第2絶縁基板側に前記熱伝導路層が積層された積層構造を備えることを特徴とする請求項1~5のいずれか1項に記載のパワーモジュール。 The electric conduction path layer and the heat conduction path layer have a laminated structure in which the heat conduction path layer is laminated on the second insulating substrate side of the electric conduction path layer. The power module according to any one of claims.
  8.  前記電気伝導路層および前記熱伝導路層は、別体型の分割構造を備えることを特徴とする請求項1~5のいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 5, wherein the electric conduction path layer and the heat conduction path layer have separate-type divided structures.
  9.  前記電気伝導路層および前記熱伝導路層は、同一の構成部材を備えることを特徴とする請求項1~6のいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 6, wherein the electric conduction path layer and the heat conduction path layer include the same constituent members.
  10.  前記電気伝導路層および前記熱伝導路層は、異なる構成部材を備えることを特徴とする請求項1~5のいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 5, wherein the electric conduction path layer and the heat conduction path layer include different constituent members.
  11.  前記電気伝導路層は、U字形状のプラグ構造またはL字形状のプラグ構造を備えることを特徴とする請求項1~10のいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 10, wherein the electric conduction path layer includes a U-shaped plug structure or an L-shaped plug structure.
  12.  前記電気伝導路層は、前記熱伝導路層よりも電気伝導率の高い部材を備えることを特徴とする請求項10に記載のパワーモジュール。 The power module according to claim 10, wherein the electrical conduction path layer includes a member having a higher electrical conductivity than the heat conduction path layer.
  13.  前記電気伝導路層は、銅、アルミニウム、銀のいずれかを備えることを特徴とする請求項12に記載のパワーモジュール。 The power module according to claim 12, wherein the electric conduction path layer comprises any one of copper, aluminum, and silver.
  14.  前記熱伝導路層は、I字形状、四角形状、逆台形形状、逆テーパー形状、若しくは逆ステップテーパー形状のいずれかを備えることを特徴とする請求項1~10のいずれか1項に記載のパワーモジュール。 The heat conduction path layer has any one of an I shape, a square shape, an inverted trapezoidal shape, an inverted tapered shape, or an inverted step tapered shape. Power module.
  15.  前記熱伝導路層は、複数の構成部材を備えることを特徴とする請求項14に記載のパワーモジュール。 The power module according to claim 14, wherein the heat conduction path layer includes a plurality of constituent members.
  16.  前記熱伝導路層は、複数の層電極構造を備えることを特徴とする請求項15記載のパワーモジュール。 The power module according to claim 15, wherein the heat conduction path layer includes a plurality of layer electrode structures.
  17.  前記熱伝導路層は、前記電気伝導路層よりも熱伝導率の高い部材を備えることを特徴とする請求項10に記載のパワーモジュール。 The power module according to claim 10, wherein the heat conduction path layer includes a member having a higher thermal conductivity than the electric conduction path layer.
  18.  前記熱伝導路層は、シリコンカーバイド、銅、銀、カーボン、グラファイトのいずれかを備えることを特徴とする請求項17に記載のパワーモジュール。 The power module according to claim 17, wherein the heat conduction path layer includes any one of silicon carbide, copper, silver, carbon, and graphite.
  19.  前記電気伝導路層は、銅を備え、前記熱伝導路層は、シリコンカーバイドまたは銅を備えることを特徴とする請求項12または17に記載のパワーモジュール。 The power module according to claim 12 or 17, wherein the electrical conduction path layer comprises copper, and the thermal conduction path layer comprises silicon carbide or copper.
  20.  前記第1絶縁基板および前記第2絶縁基板は、セラミック基板を備えることを特徴とする請求項1~19のいずれか1項に記載のパワーモジュール。 The power module according to any one of claims 1 to 19, wherein the first insulating substrate and the second insulating substrate include a ceramic substrate.
  21.  前記熱伝導路層および前記電気伝導路層の垂直方向のサイズが、前記熱伝導路層および前記電気伝導路層の水平方向のサイズよりも小さいことを特徴とする請求項1~20のいずれか1項に記載のパワーモジュール。 The vertical size of each of the heat conduction path layer and the electric conduction path layer is smaller than the size in the horizontal direction of the heat conduction path layer and the electric conduction path layer. The power module according to item 1.
  22.  前記半導体デバイスを用いて、ワンインワンモジュール、ツーインワンモジュール、フォーインワンモジュール、シックスインワンモジュール、セブンインワンモジュール、エイトインワンモジュール、トゥエルブインワンモジュール、またはフォーティーンインワンモジュールのいずれかを構成することを特徴とする請求項1~21のいずれか1項に記載のパワーモジュール。 The semiconductor device is used to configure any one of a one-in-one module, a two-in-one module, a four-in-one module, a six-in-one module, a seven-in-one module, an eight-in-one module, a twelve-in-one module, or a fourteen-in-one module. Item 22. The power module according to any one of Items 1 to 21.
  23.  前記半導体デバイスは、Si系IGBT、Si系MOSFET、SiC系MOSFET、SiC系IGBT、SiC系MOSFETとSiC系IGBTとのハイブリッド素子、GaN系FETのいずれか、またはこれらのうちの異なる複数を備えることを特徴とする請求項1~22のいずれか1項に記載のパワーモジュール。 The semiconductor device includes any one of Si-based IGBT, Si-based MOSFET, SiC-based MOSFET, SiC-based IGBT, SiC-based MOSFET and SiC-based IGBT, GaN-based FET, or a different plurality thereof. The power module according to any one of claims 1 to 22, wherein:
  24.  表面と裏面とを有する第1絶縁基板と、
     前記第1絶縁基板の前記表面側に搭載されて動作時に発熱する半導体デバイスと、
     前記半導体デバイス上に、前記第1絶縁基板に対向して配置され、表面と裏面とを有する第2絶縁基板と、
     前記第2絶縁基板の前記半導体デバイスに対向する面と反対側の面に配置された第1冷却器と、
     一端が前記半導体デバイス上に配置され、他端側が前記第1絶縁基板に形成された電極パターンに接続されて電気信号を伝送する電気伝導路層と、
     一端が前記半導体デバイス上に配置され、他端側が前記第2絶縁基板に接続されて前記半導体デバイスの熱を前記第1冷却器に伝導する熱伝導路層と
     を備え、
     前記電気伝導路層は、前記熱伝導路層の側面から前記電極パターンに接続される一体型のブロック構造を備えることを特徴とするパワーモジュール。
    A first insulating substrate having a front surface and a back surface;
    A semiconductor device mounted on the surface side of the first insulating substrate and generating heat during operation;
    A second insulating substrate disposed on the semiconductor device opposite to the first insulating substrate and having a front surface and a back surface;
    A first cooler disposed on a surface of the second insulating substrate opposite to the surface facing the semiconductor device;
    One end is disposed on the semiconductor device and the other end is connected to an electrode pattern formed on the first insulating substrate to transmit an electric signal, and an electric conduction path layer.
    One end is disposed on the semiconductor device, the other end is connected to the second insulating substrate, and a heat conduction path layer that conducts heat of the semiconductor device to the first cooler, and
    The power module according to claim 1, wherein the electric conduction path layer includes an integrated block structure connected to the electrode pattern from a side surface of the heat conduction path layer.
  25.  第1絶縁基板と、
     前記第1絶縁基板上に搭載されて動作時に発熱する半導体デバイスと、
     前記半導体デバイス上に、前記第1絶縁基板に対向して配置された第2絶縁基板と、
     前記第2絶縁基板の前記半導体デバイスに対向する面と反対側の面に配置された第1冷却器と、
     一端が前記半導体デバイス上に配置され、他端側が前記第1絶縁基板に形成された電極パターンに接続されて電気信号を伝送する電気伝導路層と、
     前記電気伝導路層の前記第2絶縁基板側に積層化配置され、前記第2絶縁基板に接続されて前記半導体デバイスの熱を前記第1冷却器に伝導する熱伝導路層と
     を備えることを特徴とするパワーモジュール。
    A first insulating substrate;
    A semiconductor device mounted on the first insulating substrate and generating heat during operation;
    A second insulating substrate disposed on the semiconductor device to face the first insulating substrate;
    A first cooler disposed on a surface of the second insulating substrate opposite to the surface facing the semiconductor device;
    One end is disposed on the semiconductor device and the other end is connected to an electrode pattern formed on the first insulating substrate to transmit an electric signal, and an electric conduction path layer.
    A heat conduction path layer disposed on the second insulation substrate side of the electrical conduction path layer and connected to the second insulation substrate to conduct heat of the semiconductor device to the first cooler. A featured power module.
  26.  電源端子と基準端子との間に接続された半導体デバイスを含む回路が形成されたパワーモジュールを用いて電力変換を行うインバータ装置であって、
     前記パワーモジュールは、
     第1絶縁基板と、
     前記第1絶縁基板上に搭載されて動作時に熱を発生する前記半導体デバイスと、
     前記半導体デバイス上に、前記半導体デバイスに対向する面と反対側に、前記第1絶縁基板に対向して配置された第2絶縁基板と、
     一端が前記半導体デバイス上に形成された電極パッドに接続され、他端側が前記第1絶縁基板に形成された電極パターンに接続され、前記半導体デバイスからの電流を前記第2絶縁基板を介さずに前記電極パターンに流す電気伝導路層と、
     一端が前記半導体デバイス上に配置され、他端側が前記第2絶縁基板側に接続され、前記半導体デバイスの熱を前記第2絶縁基板に伝える熱伝導路層と
     を備え、
     少なくとも前記半導体デバイスと、前記電気伝導路層と、前記熱伝導路層と、前記各端子の一部を封止するモールド樹脂を備えることを特徴とするインバータ装置。
    An inverter device that performs power conversion using a power module in which a circuit including a semiconductor device connected between a power supply terminal and a reference terminal is formed,
    The power module is
    A first insulating substrate;
    The semiconductor device mounted on the first insulating substrate and generating heat during operation;
    A second insulating substrate disposed on the semiconductor device opposite to the first insulating substrate on a side opposite to the surface facing the semiconductor device;
    One end is connected to an electrode pad formed on the semiconductor device, the other end is connected to an electrode pattern formed on the first insulating substrate, and the current from the semiconductor device is not passed through the second insulating substrate. An electrically conductive path layer flowing through the electrode pattern;
    One end is disposed on the semiconductor device, the other end is connected to the second insulating substrate side, and a heat conduction path layer that transfers heat of the semiconductor device to the second insulating substrate,
    An inverter device comprising: at least the semiconductor device, the electric conduction path layer, the heat conduction path layer, and a mold resin that seals a part of each terminal.
PCT/JP2017/026653 2016-09-06 2017-07-24 Power module and inverter device WO2018047485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018538267A JPWO2018047485A1 (en) 2016-09-06 2017-07-24 Power module and inverter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-173873 2016-09-06
JP2016173873 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018047485A1 true WO2018047485A1 (en) 2018-03-15

Family

ID=61561794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026653 WO2018047485A1 (en) 2016-09-06 2017-07-24 Power module and inverter device

Country Status (2)

Country Link
JP (1) JPWO2018047485A1 (en)
WO (1) WO2018047485A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008545A1 (en) * 2018-07-04 2020-01-09 新電元工業株式会社 Electronic module
JPWO2022201426A1 (en) * 2021-03-25 2022-09-29
WO2022259426A1 (en) * 2021-06-09 2022-12-15 三菱電機株式会社 Semiconductor module and power converting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179229A (en) * 2012-02-29 2013-09-09 Rohm Co Ltd Power module semiconductor device
WO2016059702A1 (en) * 2014-10-16 2016-04-21 新電元工業株式会社 Semiconductor module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013179229A (en) * 2012-02-29 2013-09-09 Rohm Co Ltd Power module semiconductor device
WO2016059702A1 (en) * 2014-10-16 2016-04-21 新電元工業株式会社 Semiconductor module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008545A1 (en) * 2018-07-04 2020-01-09 新電元工業株式会社 Electronic module
CN112368829A (en) * 2018-07-04 2021-02-12 新电元工业株式会社 Electronic module
JPWO2020008545A1 (en) * 2018-07-04 2021-08-12 新電元工業株式会社 Electronic module
JP7222998B2 (en) 2018-07-04 2023-02-15 新電元工業株式会社 electronic module
US11776937B2 (en) 2018-07-04 2023-10-03 Shindengen Electric Manufacturing Co., Ltd. Electronic module
CN112368829B (en) * 2018-07-04 2024-05-14 新电元工业株式会社 Electronic module
JPWO2022201426A1 (en) * 2021-03-25 2022-09-29
WO2022201426A1 (en) * 2021-03-25 2022-09-29 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7387059B2 (en) 2021-03-25 2023-11-27 三菱電機株式会社 Semiconductor device and semiconductor device manufacturing method
WO2022259426A1 (en) * 2021-06-09 2022-12-15 三菱電機株式会社 Semiconductor module and power converting device
JPWO2022259426A1 (en) * 2021-06-09 2022-12-15
JP7536190B2 (en) 2021-06-09 2024-08-19 三菱電機株式会社 Semiconductor module and power conversion device

Also Published As

Publication number Publication date
JPWO2018047485A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US10778113B2 (en) Intelligent power module, electric vehicle, and hybrid car
US20240332122A1 (en) Power module and fabrication method of the same, graphite plate, and power supply equipment
US10483216B2 (en) Power module and fabrication method for the same
JP6280265B2 (en) Power module semiconductor device
US20190035771A1 (en) Power module
JP7025181B2 (en) Power modules and their manufacturing methods, graphite plates, and power supplies
US9059334B2 (en) Power semiconductor module and method of manufacturing the same
WO2018043535A1 (en) Power module, power module with drive circuit, industrial equipment, electric automobile and hybrid car
EP3026701B1 (en) Power module and manufacturing method thereof
JP6077773B2 (en) Power module semiconductor device
WO2017138402A1 (en) Semiconductor device, power module, method for manufacturing semiconductor device and method for manufacturing power module
US20210407875A1 (en) Semiconductor device
US20250079275A1 (en) Package with transistor chip between carrier and conductive structure and with thermally conductive electrically insulating layer
WO2018047485A1 (en) Power module and inverter device
WO2016203743A1 (en) Semiconductor device
JP6697941B2 (en) Power module and manufacturing method thereof
JP6305778B2 (en) Power module and manufacturing method thereof
JP6401444B2 (en) Power module and manufacturing method thereof
JP6630762B2 (en) Power module
JP2023037354A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848430

Country of ref document: EP

Kind code of ref document: A1