[go: up one dir, main page]

WO2018047238A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2018047238A1
WO2018047238A1 PCT/JP2016/076200 JP2016076200W WO2018047238A1 WO 2018047238 A1 WO2018047238 A1 WO 2018047238A1 JP 2016076200 W JP2016076200 W JP 2016076200W WO 2018047238 A1 WO2018047238 A1 WO 2018047238A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
time
pressure
side pressure
pressure side
Prior art date
Application number
PCT/JP2016/076200
Other languages
English (en)
French (fr)
Inventor
孝太 森本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16906496.1A priority Critical patent/EP3324133B1/en
Priority to PCT/JP2016/076200 priority patent/WO2018047238A1/ja
Priority to US16/308,646 priority patent/US10801767B2/en
Priority to JP2018537908A priority patent/JP6559361B2/ja
Priority to CN201680088699.9A priority patent/CN109642754B/zh
Publication of WO2018047238A1 publication Critical patent/WO2018047238A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/31Low ambient temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration cycle apparatus that controls an outdoor fan under low outdoor air conditions.
  • the temperature of the heat exchanger of the indoor unit is just before freezing during the cooling operation with low outside air.
  • the compressor is stopped when the temperature of the heat exchanger of the indoor unit falls to the set temperature, and the compressor is operated again when the temperature of the heat exchanger reaches a certain temperature.
  • There is control that performs intermittent operation such as.
  • the high pressure side pressure condenser pressure
  • the compressor shell temperature does not easily increase because the intermittent operation is continued, so the difference between the compressor shell temperature and the saturation temperature calculated from the condenser pressure. In some cases, it is not possible to ensure the discharge superheat degree.
  • Measures to ensure the degree of discharge superheat include a method of increasing the high-pressure side pressure by reducing the air volume of the outdoor fan to ensure the degree of discharge superheat.
  • the outdoor fan air volume may not be sufficiently reduced.
  • an air conditioner that secures discharge superheat by reducing the air volume of the outdoor fan and increasing the high-pressure side pressure by switching from continuous operation that always rotates the outdoor fan to intermittent operation that is intermittent at certain intervals. (See, for example, Patent Document 1).
  • Patent Document 1 discloses an air conditioner that uses an inexpensive single-speed induction motor to achieve a highly efficient and stable operation comparable to a brushless DC motor.
  • an assumed rotation speed of an outdoor fan is calculated from the outside air temperature and the rotation speed of the compressor, and the calculated assumed rotation speed and the ON / OFF time of the outdoor fan rotation speed stored in advance as a table are fixed.
  • a technique for controlling an outdoor fan with reference to values has been proposed.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus that prevents a reduction in operating efficiency of a compressor while ensuring discharge superheat.
  • the refrigeration cycle apparatus includes a refrigerant circuit in which a compressor, a flow switching device, an outdoor heat exchanger, a decompression device, and an indoor heat exchanger are connected via a refrigerant pipe, and a discharge side of the compressor.
  • a high pressure side pressure sensor that detects the high pressure side pressure of the refrigerant, an outdoor fan that supplies air to the outdoor heat exchanger, a fan drive unit that drives the outdoor fan, and a rotational speed of the fan drive unit.
  • a control device that controls, the control device predicts a predicted value of the high-pressure side pressure after a set time has elapsed, based on the high-pressure side pressure detected by the high-pressure side pressure sensor;
  • the predicted value predicted by the pressure predicting means becomes the target value when the fan driving unit is operating at the rotation speed of the set lower limit value and the detected high-pressure side pressure is less than the target value. So that the outdoor Down is and a fan intermittent control means for controlling the fan drive to perform intermittent operation by setting the off time of the outdoor fan ON time of driving is stopped.
  • the intermittent operation can be performed by varying the on time and the off time. Made.
  • the on-off time and off-time of the outdoor fan are set so that the predicted value of the high-pressure side pressure becomes the target value, so that the refrigeration cycle apparatus can reduce the air volume of the outdoor fan to the optimal air volume. It is possible to prevent a decrease in the operating efficiency of the compressor and to secure a discharge superheat degree.
  • FIG. 1 is a refrigerant circulation path diagram of an air conditioner equipped with a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, the air conditioner includes an indoor unit 21 and an outdoor unit 22.
  • the outdoor unit 22 includes a compressor 1, a flow path switching device 3, an outdoor heat exchanger 4, a first stationary valve 5, and a second stationary valve 6, and these are connected by a refrigerant pipe. .
  • the compressor 1 sucks the refrigerant, compresses the sucked refrigerant, puts it in a high temperature and high pressure state, and conveys it to the refrigerant circuit 30.
  • the flow path switching device 3 is provided on the downstream side of the compressor 1 and switches between a refrigerant flow in the heating operation mode and a refrigerant flow in the cooling operation mode.
  • the outdoor heat exchanger 4 exchanges heat between air and refrigerant, and functions as a condenser during cooling operation and as an evaporator during heating operation.
  • the outdoor unit 22 includes various sensors such as a pressure sensor and a temperature sensor, and a control device 20 including a substrate and a microcomputer.
  • the control device 20 is electrically connected to various sensors and the flow path switching device 3 and the like.
  • the outdoor unit 22 is provided with various sensors such as an outside air temperature sensor 9, a substrate temperature sensor 15, a high pressure side pressure sensor 2, and a low pressure side pressure sensor 14.
  • the outside air temperature sensor 9 detects the outside air temperature of the outdoor air
  • the substrate temperature sensor 15 detects the substrate temperature of the control device 20.
  • the high pressure side pressure sensor 2 is provided on the discharge side of the compressor 1 and detects the high pressure side pressure (condenser pressure) of the refrigerant.
  • the low pressure side pressure sensor 14 is provided on the suction side of the compressor 1 and detects the low pressure side pressure (evaporator pressure) of the refrigerant.
  • the outdoor unit 22 has an outdoor fan 7 and a fan drive unit 8.
  • the outdoor fan 7 is composed of a propeller fan, for example, and supplies air to the outdoor heat exchanger 4.
  • the fan driving unit 8 is configured by a motor or the like, for example, and drives an outdoor fan.
  • the outdoor fan 7 also blows air to the control device 20 provided in the outdoor unit 22 to cool the substrate.
  • the indoor unit 21 has a decompression device 10 and an indoor heat exchanger 11, and these are connected by a refrigerant pipe.
  • the indoor heat exchanger 11 exchanges heat between air blown by a fan (not shown) and the refrigerant.
  • the indoor heat exchanger 11 functions as an evaporator during cooling operation, and functions as a condenser during heating operation.
  • the decompression device 10 is composed of, for example, an expansion valve or the like, and decompresses the refrigerant to expand it.
  • the indoor unit 21 includes various temperature sensors.
  • the various sensors of the indoor unit 21 and the decompression device 10 are also electrically connected to the control device 20 in the same manner as the various sensors of the outdoor unit 22.
  • the indoor heat exchanger 11 is provided with an evaporator temperature sensor that detects the evaporator temperature.
  • the evaporator temperature sensor includes an indoor liquid pipe temperature sensor 12 provided in the liquid pipe and an indoor gas pipe temperature sensor 13 provided in the gas pipe.
  • FIG. 1 shows an air conditioner including a plurality of indoor units 21a and 21b. Between the 1st stationary valve 5 and the 2nd stationary valve 6, each indoor unit 21a, 21b is connected in parallel by refrigerant
  • the compressor 1, the flow path switching device 3, the outdoor heat exchanger 4, the first stationary valve 5, the pressure reducing device 10, the indoor heat exchanger 11, and the second stationary valve 6 are sequentially connected by piping to circulate the refrigerant.
  • a refrigeration cycle is formed.
  • R410A / R32 refrigerant having similar melting performance is used as the refrigerant.
  • the control device 20 controls the operation of the refrigerant circuit 30, the outdoor fan 7, and the like. Specifically, based on detection values obtained by various sensors, capacity control of the compressor 1, opening control of the decompression device 10, drive control of the outdoor fan 7, and the like are performed.
  • FIG. 2 is a block diagram showing a functional configuration of the control device of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a relationship diagram between time and pressure for explaining pressure prediction performed by the control device according to Embodiment 1 of the present invention. Based on FIG.2 and FIG.3, the function of the control apparatus 20 is demonstrated.
  • the control device 20 includes a pressure predicting means 23, a fan rotation speed control means 24, a fan intermittent control means 25, an operation control means 26, and a storage means 27.
  • the fan rotation speed control means 24 is configured to change the rotation speed of the outdoor fan 7 based on the outside air temperature detected by the outside air temperature sensor 9 and the capacity operated by the connected indoor unit 21. Specifically, the fan rotation speed control means 24 outputs the rotation speed according to the outside air temperature and the operating capacity of the indoor unit 21 to the fan drive unit 8 as a control signal.
  • the fan drive unit 8 drives the outdoor fan 7 at the number of rotations based on the control signal.
  • the fan rotation speed control means 24 is The rotational speed of the fan drive unit 8 is reduced.
  • the fan drive unit 8 has a use range of the rotation speed and is provided with a use lower limit value.
  • the pressure predicting means 23 is configured to predict a predicted value of the high-pressure side pressure after a set time (for example, A seconds) has elapsed based on the high-pressure side pressure detected by the high-pressure side pressure sensor 2. During the operation of the compressor 1, as shown in FIG. 3, the pressure predicting unit 23 calculates a predicted value Ppre A seconds after the current time t 0 based on, for example, the detected value of the high-pressure side pressure sensor 2.
  • the detection value of the high pressure side pressure sensor 2 is sampled at a constant time interval (for example, A second), for example, the detection value P2 that is 2 A seconds before the current time t0, the detection value P1 that is A seconds before, From the detected value P0 at the current time t0, a predicted value Ppre after A second has elapsed from the current time t0 is calculated.
  • the pressure predicting unit 23 calculates the predicted value Ppre based on a change in inclination between the detected values of the plurality of detected values P0, P1, and P2.
  • the fan intermittent control means 25 controls the intermittent operation of the outdoor fan 7.
  • the fan intermittent control unit 25 acquires the control rotation number of the fan drive unit 8 from the fan rotation number control unit 24 and acquires the predicted value Ppre of the high-pressure side pressure from the pressure prediction unit 23.
  • the fan intermittent control means 25 is used for the outdoor fan 7 when the fan drive unit 8 operates at the lower limit rotational speed and the high pressure side pressure detected by the high pressure side pressure sensor 2 is less than the target high pressure side pressure value.
  • the operation is switched from continuous operation to intermittent operation to control intermittent operation.
  • the fan intermittent control means 25 sets the on time and the off time so that the predicted value approaches the target value, and controls the fan drive unit 8 with the set on time and off time.
  • the fan intermittent control means 25 updates the on time or the off time at every set time interval, and operates the outdoor fan 7 with the updated on time and off time.
  • the fan intermittent control means 25 changes the amount of air supplied to the outdoor heat exchanger 4 by making the ON time or OFF time variable. Therefore, since the heat exchange amount is increased or decreased, the fan intermittent control means 25 can adjust the high-pressure side pressure toward the target value.
  • the fan intermittent control means 25 acquires the high pressure side pressure detected by the high pressure side pressure sensor 2, the evaporation temperature detected by the evaporator temperature sensor, the substrate temperature detected by the substrate temperature sensor 15, and the like.
  • the fan intermittent control means 25 determines the state of each device of the refrigeration cycle apparatus 100 based on the acquired detection values of various sensors, and corrects the set on time or off time, for example, when an abnormality is detected. It has a configuration.
  • the operation control means 26 controls each device of the refrigeration cycle such as the compressor 1.
  • the operation control means 26 and each indoor unit 21a, 21b are configured to transmit and receive signals.
  • the operation control unit 26 receives the operation information of the intermittent operation from the fan intermittent control unit 25 and transmits the capacity of the connected indoor unit to the fan intermittent control unit 25.
  • the storage means 27 is composed of a memory or the like, and stores setting control information and various initial values. Information stored in the storage unit 27 is referred to by the pressure prediction unit 23, the fan rotation speed control unit 24, the fan intermittent control unit 25, and the operation control unit 26.
  • FIG. 4 is a flowchart showing the operation of the outdoor fan of the air conditioner according to Embodiment 1 of the present invention. Based on FIG. 4, control in which the control device 20 adjusts the on-time of the outdoor fan 7 to keep the off-time constant will be described.
  • the outdoor fan 7 is continuously operated with the rotational speed controlled by the fan rotational speed control means 24.
  • the fan intermittent control means 25 determines whether or not a condition for starting the intermittent operation of the outdoor fan 7 is satisfied. Specifically, the fan intermittent control means 25 determines whether or not the rotational speed of the outdoor fan 7 is the lower limit value and the high-pressure side pressure is less than the target value (step ST1). When the intermittent operation start condition is not satisfied (step ST1; No), the continuous operation is continued. On the other hand, when the start condition of the intermittent operation is satisfied (step ST1; Yes), the fan intermittent control means 25 refers to the storage means 27, and turns on time Ton, off time Toff, and on variable time ⁇ Ton. An initial value is set for each of these (step ST2).
  • FIG. 4 shows a case where the initial value X is set to the on time Ton, the initial value Y is set to the off time Toff, and the initial value 0 is set to the on variable time ⁇ Ton.
  • the fan intermittent control means 25 repeats steps ST4 to ST6 and step ST3 every set time interval (for example, every Z minutes) so that the predicted value of the high pressure side pressure becomes the target value, and the on time Ton is the set time interval. It is updated and changed every (Z minute interval). At this time, it is assumed that the predicted value is within the convergence range that the absolute value of the difference between the target value of the high-pressure side pressure and the predicted value is close to 0 and equal to or less than the set value.
  • the fan intermittent control means 25 determines the value of the ON variable time ⁇ Ton based on the predicted value and the target value predicted by the pressure predicting means 23, and adds the ON variable time ⁇ Ton to the previous ON time Ton to obtain the next ON time. Repeat the control to set Ton. Since the initial value of the ON variable time ⁇ Ton is 0, when the step ST3 is first performed after switching to the intermittent operation, the ON time Ton becomes the initial value X.
  • step ST4 the fan intermittent control means 25 determines whether or not the difference between the predicted value of the high-pressure side pressure and the target value is within the convergence range (step ST4). If the difference between the predicted value and the target value is within the convergence range (step ST4; Yes), the fan intermittent control means 25 sets the ON variable time ⁇ Ton to 0 (step ST5), and the difference between the predicted value and the target value converges. If larger than the range (step ST4; No), the process proceeds to step ST6. The fan intermittent control means 25 sets the ON variable time ⁇ Ton to ⁇ T when the predicted value is smaller than the target value, and sets the ON variable time ⁇ Ton to + T when the predicted value is longer than the target value.
  • the fan intermittent control means 25 After determining the ON variable time ⁇ Ton in step ST5 or ST6, the fan intermittent control means 25 returns to step ST3 again, and updates the ON time Ton by adding the ON variable time ⁇ Ton.
  • the fan intermittent control means 25 causes the outdoor fan 7 to perform intermittent operation for the newly set on time Ton.
  • the ON variable time ⁇ Ton is determined to be 0, and the outdoor fan 7 is intermittently operated for the next Z minutes with the same ON time Ton as the previous time.
  • the on-time Ton is set so that the predicted value approaches the target value. At this time, when the predicted value is smaller than the target value, the intermittent operation is performed with the ON time Ton set shorter than the previous time for the next Z minutes, and when the predicted value is equal to or higher than the target value, the next Z The intermittent operation is carried out for the minute with the on time Ton set longer than the previous time.
  • FIG. 5 is a relationship diagram for explaining the control operation of the control apparatus according to Embodiment 1 of the present invention, the high-pressure side pressure value, and the outdoor fan rotation speed. Based on FIG. 5, the adjustment process of the high-pressure side pressure in the case of adjusting the ON time Ton while keeping the OFF time Toff constant will be described.
  • the horizontal axis in FIG. 5 represents the elapsed time
  • the vertical axis represents the control speed of the outdoor fan, the refrigerant discharge superheat degree, and the predicted value of the high-pressure side pressure after the set time (for example, A seconds) has elapsed from the lower stage.
  • the air conditioner operates the compressor 1 to perform the cooling operation, and the outdoor fan 7 is controlled to operate at the lower limit rotational speed via the fan drive unit 8. Since the high-pressure side pressure is less than the target value, the control device 20 switches the operation of the outdoor fan 7 from continuous operation to intermittent operation.
  • the predicted value of the high-pressure side pressure is out of the convergence range including the target value and is less than the target value. Therefore, an on time Ton shorter than the previous time is set for the next Z minutes, the discharge superheat degree approaches the target discharge superheat degree, and the predicted value of the high-pressure side pressure approaches the target value. However, since the predicted value of the high-pressure side pressure is still outside the convergence range in the second Z minute, an on time Ton that is shorter than the second Z minute is set in the third Z minute, and the air volume is reduced. Further, even in the third Z minute, the predicted value of the high-pressure side pressure is still outside the convergence range and less than the target value.
  • an on time Ton that is shorter than the third Z minute is set in the fourth Z minute.
  • the predicted value of the high-pressure side pressure exceeds the target value and is out of the convergence range. Therefore, an on time Ton longer than the fourth Z minute is set in the fifth Z minute. When the predicted value of the high pressure value falls within the convergence range, the on time Ton at this time is maintained.
  • the on-time Ton of the outdoor fan 7 is updated at set time intervals so that the predicted value of the high-pressure side pressure approaches the target value, and the difference between the predicted value of the high-pressure side pressure and the target value falls within the convergence range.
  • the on time Ton converges.
  • control device 20 performs various controls in addition to the above-described adjustment control so that the refrigeration cycle apparatus 100 as a whole can maintain a stable operation even during the intermittent operation of the outdoor fan 7.
  • the operation control means 26 provides a set upper limit value for the number of rotations of the compressor 1 and operates the compressor below the set upper limit value during intermittent operation.
  • the fan intermittent control means 25 corrects the on time Ton or the off time Toff so that the low pressure side pressure detected by the low pressure side pressure sensor 14 is larger than the freezing pressure during intermittent operation. For example, the fan intermittent control means 25 sets the pressure value immediately before freezing to the low pressure side pressure as the set lower limit value, and corrects when the detected value of the low pressure side pressure sensor 14 becomes the set lower limit value. Specifically, the fan intermittent control means 25 shortens the on time Ton or lengthens the off time Toff until the low pressure side pressure becomes larger than the set lower limit value.
  • the fan intermittent control means 25 corrects the on time Ton or the off time Toff so that the evaporator temperature detected by the indoor liquid pipe temperature sensor 12 or the indoor gas pipe temperature sensor 13 becomes higher than the freezing temperature during the intermittent operation. .
  • the fan intermittent control means 25 sets the temperature immediately before freezing to the evaporator temperature as the set lower limit value, and corrects when the detected evaporator temperature reaches the set lower limit value.
  • the fan intermittent control means 25 shortens the on time Ton or lengthens the off time Toff until the evaporator temperature becomes higher than the set lower limit value.
  • the fan intermittent control means 25 corrects the on time Ton or the off time Toff so that the substrate temperature detected by the substrate temperature sensor 15 does not become too high during the intermittent operation.
  • the fan intermittent control means 25 provides a set threshold value that is higher than the temperature range normally used for the substrate temperature, and performs correction when the detection value detected by the substrate temperature sensor 15 becomes the set threshold value.
  • the fan intermittent control means 25 lengthens the on time Ton or shortens the off time Toff until the substrate temperature becomes lower than the set threshold value. If the substrate temperature does not become lower than the set threshold value even if correction is continued, the fan intermittent control means 25 switches the operation of the outdoor fan 7 from intermittent operation to continuous operation to ensure the air volume.
  • the fan intermittent control means 25 corrects the on time Ton or the off time Toff so that the high pressure side pressure detected by the high pressure side pressure sensor 2 does not become too high during intermittent operation.
  • the fan intermittent control means 25 provides a set threshold value that is higher than the temperature range normally used for the high-pressure side pressure, and performs correction when the detected value detected by the high-pressure side pressure sensor 2 becomes the set threshold value. .
  • the fan intermittent control means 25 lengthens the on time Ton or shortens the off time Toff until the high pressure side pressure value becomes smaller than the set threshold value. If the high-pressure side pressure value does not become smaller than the set threshold value even if correction is continued, the fan intermittent control means 25 switches the operation of the outdoor fan 7 from intermittent operation to continuous operation to ensure the air volume.
  • the refrigeration cycle apparatus 100 includes a refrigerant circuit 30, a high-pressure sensor 2, an outdoor fan 7, a fan drive unit 8, and a control device 20. Based on the high-pressure side pressure detected by the high-pressure side pressure sensor 2, the control device predicts the predicted value Ppre of the high-pressure side pressure after the set time has elapsed, and the fan drive unit 8 has the set lower limit value. The on-time Ton when the outdoor fan 7 is driven so that the predicted value predicted by the pressure predicting means 23 becomes the target value when operating at the rotation speed and the detected high-pressure side pressure is less than the target value. And a fan intermittent control means 25 for controlling the fan drive unit so as to perform an intermittent operation by setting an off time Toff when the outdoor fan 7 stops.
  • the refrigeration cycle apparatus 100 sets the on time Ton and the off time Toff of the fan drive unit 8, respectively.
  • the air volume of the outdoor fan 7 can be matched with the air volume to become. Therefore, the refrigeration cycle apparatus 100 can ensure the degree of discharge superheat and can prevent an increase in the input of the compressor 1 due to the high pressure side pressure rising unnecessarily.
  • the refrigeration cycle apparatus 100 includes an outside air temperature sensor 9 that detects the outside air temperature, and the outside air temperature detected by the outside air temperature sensor 9 and the indoor unit 21 during the cooling operation in which the indoor heat exchanger 11 functions as an evaporator.
  • Fan rotation speed control means 24 for adjusting the rotation speed of the fan drive unit 8 based on the operating capacity is further provided.
  • the refrigeration cycle apparatus 100 ensures the degree of discharge superheat and increases the input of the compressor 1 even when the outside air temperature changes or when the operating capacity of the indoor unit 21 changes as in the multi-split type. Can be prevented.
  • the fan intermittent control means 25 repeatedly sets the on time Ton, and the on time Ton is adjusted from the previously set on time Ton so that the predicted value Ppre becomes the target value.
  • the on time Ton of the on time Ton and the off time Toff is increased or decreased, and the off time Toff becomes constant. Since the on / off time ratio is set by the predicted value and the target value, the air volume supplied to the outdoor heat exchanger 4 is adjusted. Therefore, the refrigeration cycle apparatus 100 can ensure a target discharge superheat degree.
  • control device 20 further includes operation control means 26 for operating the compressor 1 at a rotation speed equal to or lower than the set upper limit value during intermittent operation.
  • operation control means 26 for operating the compressor 1 at a rotation speed equal to or lower than the set upper limit value during intermittent operation.
  • the refrigeration cycle apparatus 100 further includes a low-pressure side pressure sensor 14 that is provided on the suction side of the compressor 1 and detects a low-pressure side pressure of the refrigerant, and the fan intermittent control means 25 is in the low-pressure side pressure sensor 14 during intermittent operation.
  • the set on-time Ton or off-time Toff is corrected so that the low-pressure side pressure detected by the above becomes larger than the freezing pressure.
  • the refrigeration cycle apparatus 100 can prevent the refrigerant pressure on the low pressure side of the refrigeration cycle from dropping below the freezing pressure and freezing of the suction pipe and the like.
  • the refrigeration cycle apparatus 100 further includes an evaporator temperature sensor that detects the evaporator temperature of the indoor heat exchanger 11, and the fan intermittent control means 25 detects the evaporator temperature detected by the evaporator temperature sensor during intermittent operation.
  • the set on time Ton or off time Toff is corrected so as to be higher than the freezing temperature.
  • the refrigeration cycle apparatus 100 can prevent the indoor heat exchanger 11 from freezing due to the evaporator temperature of the indoor heat exchanger 11 serving as an evaporator during cooling operation being lowered to a freezing temperature or lower.
  • the refrigeration cycle apparatus 100 further includes a substrate temperature sensor 15 that detects the substrate temperature of the control device 20, and the outdoor fan 7 supplies air to the outdoor heat exchanger 4 and cools the control device 20.
  • the fan intermittent control means 25 corrects the set on time Ton or off time Toff so that the substrate temperature detected by the substrate temperature sensor 15 is lower than the set threshold value during intermittent operation. Accordingly, the fan intermittent control means 25 corrects the on-time Ton to be longer in the intermittent operation in which the on-time Ton and the off-time Toff are set, for example, when the substrate temperature rises to the set threshold value.
  • the fan 7 can secure the air volume for cooling the control device 20, and the substrate temperature decreases. Therefore, the refrigeration cycle apparatus 100 can prevent damage to the control device 20 due to heat and perform normal operation even when the outdoor fan 7 is intermittently operated.
  • the fan intermittent control means 25 corrects the set ON time Ton or OFF time Toff so that the high-pressure side pressure becomes smaller than the set threshold value during intermittent operation.
  • the fan intermittent control means increases in the intermittent operation in which the on-time Ton and the off-time Toff are set, for example, by correcting so that the on-time Ton becomes long when the high-pressure side pressure rises to the set threshold value.
  • the excessive high pressure side pressure can be lowered. Therefore, the refrigeration cycle apparatus 100 can perform safe operation even when the outdoor fan 7 is intermittently operated.
  • FIG. in the second embodiment the refrigeration cycle apparatus 100 has the same configuration as that of the first embodiment and is mounted on an air conditioner having the same configuration as that of the first embodiment.
  • the refrigeration cycle apparatus 100 according to Embodiment 2 has the same configuration as that shown in FIGS.
  • the control device 20 is configured to change the on-time Ton every predetermined time in order to ensure the target discharge superheat degree.
  • the control device 20 operates every predetermined time. The OFF time Toff is changed.
  • FIG. 6 is a flowchart showing the operation of the outdoor fan of the air conditioner according to Embodiment 2 of the present invention. Based on FIG. 6, control in which the control device 20 adjusts the off-time Toff of the outdoor fan 7 to keep the on-time Ton constant will be described.
  • the fan rotation speed control means 24 adjusts the rotation speed of the outdoor fan 7 and continuously operates.
  • the fan intermittent control means 25 determines whether or not a condition for starting the intermittent operation of the outdoor fan 7 is satisfied (step ST11).
  • Step ST11 is the same as step ST1 in FIG.
  • the fan intermittent control means 25 sets initial values for the on time Ton, the off time Toff, and the off variable time ⁇ Toff (step ST11).
  • ST12 an initial value X is set for the on time Ton, an initial value Y for the off time Toff, and an initial value 0 for the off variable time ⁇ Toff.
  • Step ST14 to step ST16 and step ST13 are repeatedly performed at set time intervals (for example, every Z minutes) by the fan intermittent control means 25 so that the predicted value of the high-pressure side pressure becomes the target value.
  • the off time Toff is updated and changed every set time interval (Z minute interval).
  • the fan intermittent control means 25 determines the value of the OFF variable time ⁇ Toff based on the predicted value of the high pressure side pressure predicted by the pressure prediction means 23 and the target value, and adds the OFF variable time ⁇ Toff to the previous off time Toff. To set the next off time Toff. Since the initial value of the OFF variable time ⁇ Toff is 0, when step ST13 is first performed after switching to the intermittent operation, the OFF time Toff becomes the initial value Y.
  • step ST14 the fan intermittent control means 25 determines whether or not the difference between the predicted value of the high-pressure side pressure and the target value is within the convergence range (step ST14). If the difference between the predicted value and the target value is within the convergence range (step ST14; Yes), the fan intermittent control means 25 sets the OFF variable time ⁇ Toff to 0 (step ST15), and the difference between the predicted value and the target value converges. If it is out of range (step ST14; No), the process proceeds to step ST16. The fan intermittent control means 25 sets the off variable time ⁇ Toff to + T when the predicted value is smaller than the target value, and sets the off variable time ⁇ Toff to ⁇ T when the predicted value is equal to or larger than the target value.
  • the fan intermittent control means 25 After determining the off variable time ⁇ Toff in step ST15 or step ST16, the fan intermittent control means 25 returns to step ST13 again, and updates the off time Toff by adding the off variable time ⁇ Toff.
  • the fan intermittent control means 25 performs the intermittent operation of the outdoor fan 7 with the newly set off time Toff.
  • the OFF variable time ⁇ Toff is determined to be 0, and the outdoor fan 7 is intermittently operated for the next Z minutes with the same OFF time Toff as the previous time.
  • the off time Toff is set so that the predicted value approaches the target value. At this time, when the predicted value is smaller than the target value, the intermittent operation is performed for the next Z minutes with the off time Toff set longer than the previous time, and when the predicted value is equal to or larger than the target value, the next Z Intermittent operation is performed for an off time Toff set shorter than the previous time.
  • the refrigeration cycle apparatus 100 includes the refrigerant circuit 30, the high-pressure side pressure sensor 2, the outdoor fan 7, the fan drive unit 8, and the control device 20. Based on the high-pressure side pressure detected by the high-pressure side pressure sensor 2, the control device predicts the predicted value Ppre of the high-pressure side pressure after the set time has elapsed, and the fan drive unit 8 has the set lower limit value.
  • a fan intermittent control means 25 for controlling the fan drive unit so as to perform an intermittent operation by setting an off time Toff when the outdoor fan 7 stops.
  • the on-time Ton and the off-time Toff of the fan drive unit 8 are set as in the case of the first embodiment, so that the high-pressure side pressure becomes the target value.
  • the air volume of the outdoor fan 7 can be matched with the air volume. Therefore, the refrigeration cycle apparatus 100 can ensure the degree of discharge superheat and can prevent an increase in the input of the compressor 1 due to the high pressure side pressure rising unnecessarily.
  • the fan intermittent control means 25 repeatedly sets the off time Toff, and the off time Toff is adjusted from the previously set off time Toff so that the predicted value Ppre becomes the target value.
  • the off time Toff of the on time Ton and the off time Toff is increased or decreased, and the on time Ton becomes constant. Since the on / off time ratio is set by the predicted value and the target value, the air volume supplied to the outdoor heat exchanger 4 is adjusted. Therefore, the refrigeration cycle apparatus 100 can ensure a target discharge superheat degree.
  • the embodiment of the present invention is not limited to the above embodiment, and various changes can be made.
  • the air conditioner includes a plurality of indoor units 21a and 21b has been described as an example, the number of indoor units 21 may be one.
  • the increase / decrease in the on time Ton and the off time Toff is shown by the sign (plus or minus) of the on variable time ⁇ Ton and the off variable time ⁇ Toff, but the magnitude of the increase / decrease
  • the fan intermittent control means changes the magnitude of increase / decrease
  • the predicted value of the high-pressure side pressure can be accurately adjusted to the target value, and the time until convergence within the convergence range can be shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

冷凍サイクル装置は、冷媒回路と高圧側圧力センサと外気温度センサと室外ファンとファン駆動部と制御装置とを備える。制御装置は、高圧側圧力センサにより検出された高圧側圧力に基づいて、設定時間経過後の高圧側圧力の予測値を予測する圧力予測手段と、室内熱交換器が蒸発器として機能する冷房運転中に、外気温度センサにより検出された外気温度と室内機の運転容量とに基づいてファン駆動部の回転数を調整するファン回転数制御手段と、ファン駆動部が設定下限値の回転数で動作しており、且つ高圧側圧力が目標値未満である場合に、圧力予測手段により予測された予測値が目標値になるようにオン時間とオフ時間とを設定し、断続運転を行うようにファン駆動部を制御するファン断続制御手段と、を備える。

Description

冷凍サイクル装置
 本発明は、低外気条件下における室外ファンの制御を行う冷凍サイクル装置に関するものである。
 従来の空気調和機においては、低外気での冷房運転時では室内機の熱交換器の温度が凍結する寸前の温度となる。このような状態になるのを防止するために、室内機の熱交換器の温度が設定温度まで下がると圧縮機を停止し、熱交換器の温度が一定の温度に到達すると再度圧縮機を運転させるといった断続運転を行う制御がある。このような制御では、高圧側圧力(凝縮器圧力)が低くなり、かつ断続運転を続けるため圧縮機シェル温度も高くなりにくいため、圧縮機シェル温度と凝縮器圧力から計算した飽和温度との差である吐出過熱度を確保することができない場合がある。
 吐出過熱度を確保するための対策として、室外ファンの風量を低下させることで高圧側圧力を上昇させ吐出過熱度を確保する方法がある。しかしながら、室外ファンの下限使用回転数には制約があり、室外ファン風量を十分に低下させることができない場合がある。
 そこで、室外ファンを、常に回転させる連続運転からある一定の間隔で断続させる断続運転に切り替えることで、室外ファンの風量を低下させ、高圧側圧力を上昇させて吐出過熱度を確保する空気調和機がある(例えば特許文献1参照)。
 特許文献1には、安価な単一速度の誘導モータを用いて、ブラシレスDCモータに匹敵する高効率かつ安定した運転を図った空気調和機が開示されている。特許文献1では、外気温度と圧縮機の回転数とから室外ファンの想定回転数が算出され、算出された想定回転数と、予めテーブルとして記憶された室外ファン回転数のON/OFF時間の固定値とを参照して室外ファンを制御する技術が提案されている。
特開2006-162214号公報
 しかしながら、特許文献1のようにテーブルにON/OFF時間の固定値を記憶させた制御方法では、例えばマルチスプリットタイプのように室内機の運転容量が変化する場合もしくは外気温度が変化する場合に、高圧側圧力値を目標値に合わせることが困難である。そのため、高圧側圧力が目標値を下回り、吐出過熱度が確保できない場合がある。またON/OFF時間の固定値を使って断続運転がなされるので、高圧側圧力が上昇し過ぎてしまい、圧縮機入力が増大して運転効率が悪くなる場合がある。
 本発明は、上記のような課題を解決するためになされたもので、吐出過熱度を確保しつつ圧縮機の運転効率の低下を防ぐ冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、圧縮機と流路切替装置と室外熱交換器と減圧装置と室内熱交換器とが冷媒配管を介して接続された冷媒回路と、前記圧縮機の吐出側に設けられ、冷媒の高圧側圧力を検出する高圧側圧力センサと、前記室外熱交換器に空気を供給する室外ファンと、前記室外ファンを駆動するファン駆動部と、前記ファン駆動部の回転数を制御する制御装置と、を備え、前記制御装置は、前記高圧側圧力センサにより検出された前記高圧側圧力に基づいて、設定時間経過後の高圧側圧力の予測値を予測する圧力予測手段と、前記ファン駆動部が設定下限値の回転数で動作しており、且つ検出された前記高圧側圧力が目標値未満である場合に、前記圧力予測手段により予測された予測値が前記目標値になるように前記室外ファンが駆動するオン時間と前記室外ファンが停止するオフ時間とを設定して断続運転を行うように前記ファン駆動部を制御するファン断続制御手段と、を備える。
 本発明の冷凍サイクル装置によれば、冷房運転中の室外ファンの回転数が設定下限値になり高圧側圧力が目標値未満である場合に、オン時間とオフ時間を可変させることで断続運転がなされる。断続運転では、高圧側圧力の予測値が目標値となるように室外ファンのオン時間とオフ時間とが設定されるので、冷凍サイクル装置は、室外ファンの風量を最適な風量に低下させることができ、圧縮機の運転効率の低下を防ぐとともに吐出過熱度を確保できる。
本発明の実施の形態1に係る冷凍サイクル装置を搭載した空気調和機の冷媒循環経路図である。 本発明の実施の形態1に係る冷凍サイクル装置の制御装置の機能構成を示すブロック図である。 本発明の実施の形態1に係る制御装置が行う圧力予測を説明するための時刻と圧力との関係図である。 本発明の実施の形態1に係る空気調和機の室外ファンの動作を示すフローチャートである。 本発明の実施の形態1に係る制御装置の制御動作を説明するための時刻と高圧側圧力値と室外ファン回転数との関係図である。 本発明の実施の形態2に係る空気調和機の室外ファンの動作を示すフローチャートである。
実施の形態1.
<空気調和機の全体構成>
 図1は、本発明の実施の形態1に係る冷凍サイクル装置100を搭載した空気調和機の冷媒循環経路図である。図1に示されるように、空気調和機は、室内機21及び室外機22で構成される。
 室外機22は、圧縮機1、流路切替装置3、室外熱交換器4、第1静止弁5、第2静止弁6を有し、これらが冷媒配管によって接続された構成を有している。圧縮機1は、冷媒を吸入し、吸入した冷媒を圧縮して高温高圧の状態にして冷媒回路30に搬送するものである。流路切替装置3は、圧縮機1の下流側に設けられており、暖房運転モード時における冷媒の流れと冷房運転モード時における冷媒の流れとを切り替えるものである。室外熱交換器4は空気と冷媒との間で熱交換を行うものであって、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。
 また室外機22は、圧力センサ及び温度センサ等の各種センサと、基板及びマイコン等で構成される制御装置20とを備えている。制御装置20は、各種センサ及び流路切替装置3等と電気的に接続されている。室外機22には、各種センサとして、例えば外気温度センサ9、基板温度センサ15、高圧側圧力センサ2、及び低圧側圧力センサ14等が設けられている。外気温度センサ9は室外空気の外気温度を検出し、基板温度センサ15は制御装置20の基板温度を検出する。また高圧側圧力センサ2は、圧縮機1の吐出側に設けられ、冷媒の高圧側圧力(凝縮器圧力)を検出する。また低圧側圧力センサ14は、圧縮機1の吸入側に設けられ、冷媒の低圧側圧力(蒸発器圧力)を検出する。
 また室外機22は、室外ファン7及びファン駆動部8を有している。室外ファン7は、例えばプロペラファン等で構成され、室外熱交換器4に空気を供給するものである。ファン駆動部8は例えばモータ等で構成され、室外ファンを駆動するものである。室外ファン7はまた、室外機22に設けられた制御装置20に送風して基板を冷却している。
 室内機21は、減圧装置10と室内熱交換器11とを有し、これらが冷媒配管によって接続された構成を有している。室内熱交換器11は、図示しないファンにより送風される空気と冷媒との間で熱交換を行うものである。室内熱交換器11は、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する。減圧装置10は例えば膨張弁等で構成され、冷媒を減圧して膨張させるものである。
 また室内機21は各種の温度センサを備えている。室内機21の各種センサ及び減圧装置10もまた、室外機22の各種センサ等と同様に制御装置20に電気的に接続されている。室内機21の温度センサとして、例えば室内熱交換器11に、蒸発器温度を検出する蒸発器温度センサが設けられている。図1において蒸発器温度センサは、液管に設けられた室内液管温度センサ12と、ガス管に設けられた室内ガス管温度センサ13とから構成されている。
 図1には、複数台の室内機21a,21bを備える空気調和機が示されている。第1静止弁5と第2静止弁6との間で、各室内機21a,21bは冷媒配管によって並列に接続されている。各室内機21a,21bでは、室内熱交換器11a,11bと減圧装置10a,10bとが接続され、各室内熱交換器11a,11bには、室内液管温度センサ12a,12bと室内ガス管温度センサ13a,13bとが設けられている。
 そして圧縮機1、流路切替装置3、室外熱交換器4、第1静止弁5、減圧装置10、室内熱交換器11、及び第2静止弁6が順次配管で接続されて冷媒を循環させる冷凍サイクルが形成されている。冷媒には、例えば溶融性能が類似であるR410A/R32冷媒を使用する。
 制御装置20は冷媒回路30及び室外ファン7等の運転を制御する。具体的には、各種センサで得られた検出値に基づいて、圧縮機1の容量制御、減圧装置10の開度制御、及び室外ファン7の駆動制御等を行っている。
 図2は、本発明の実施の形態1に係る冷凍サイクル装置の制御装置の機能構成を示すブロック図である。図3は、本発明の実施の形態1に係る制御装置が行う圧力予測を説明するための時刻と圧力との関係図である。図2及び図3に基づき、制御装置20の機能について説明する。
 制御装置20は、圧力予測手段23とファン回転数制御手段24とファン断続制御手段25と運転制御手段26と記憶手段27とを備えている。ファン回転数制御手段24は、外気温度センサ9で検出した外気温度と、接続された室内機21が運転している容量とに基づいて室外ファン7の回転数を変化させるよう構成されている。具体的には、ファン回転数制御手段24は、外気温度と室内機21の運転容量とに応じた回転数を、制御信号としてファン駆動部8に出力する。ファン駆動部8は制御信号に基づいた回転数で室外ファン7を駆動する。例えば外気温度が低いとき、又は接続している室内機の運転容量が少ないとき等のように、冷媒と外気との間で必要な熱交換量が少ない場合には、ファン回転数制御手段24はファン駆動部8の回転数を下げる。なお、ファン駆動部8には回転数の使用範囲が定められており、使用下限値が設けられている。
 圧力予測手段23は、高圧側圧力センサ2で検出された高圧側圧力に基づいて、設定時間(例えばA秒)経過後の高圧側圧力の予測値を予測するよう構成されている。圧縮機1運転中において、図3に示されるように、圧力予測手段23は、例えば高圧側圧力センサ2の検出値に基づいて、現時刻t0からA秒後の予測値Ppreを算出する。具体的には、一定の時間間隔(例えばA秒)で高圧側圧力センサ2の検出値をサンプリングし、例えば現時刻t0から2A秒前の検出値P2と、A秒前の検出値P1と、現時刻t0における検出値P0から、現時刻t0よりA秒経過後の予測値Ppreを算出する。圧力予測手段23は、例えば複数の検出値P0,P1,P2の各検出値間の傾斜の変化を基に予測値Ppreを算出する。
 ファン断続制御手段25は、室外ファン7の断続運転を制御するものである。ファン断続制御手段25は、ファン回転数制御手段24からファン駆動部8の制御回転数を取得するとともに圧力予測手段23から高圧側圧力の予測値Ppreを取得する。ファン断続制御手段25は、ファン駆動部8が下限回転数で作動しており、且つ、高圧側圧力センサ2により検出された高圧側圧力が目標高圧側圧力値未満である場合に、室外ファン7の運転を連続運転から断続運転に切り替え断続運転を制御する。具体的にはファン断続制御手段25は、予測値が目標値に近づくようにオン時間とオフ時間とを設定し、設定されたオン時間及びオフ時間でファン駆動部8を制御する。断続運転中、ファン断続制御手段25は設定時間間隔毎にオン時間又はオフ時間を更新し、更新されたオン時間及びオフ時間で室外ファン7を運転する。ファン断続制御手段25は、オン時間又はオフ時間を可変とすることで室外熱交換器4に供給される空気の量を変化させる。したがって熱交換量が増減されるので、ファン断続制御手段25は高圧側圧力を目標値に向けて調整することができる。
 またファン断続制御手段25は、高圧側圧力センサ2で検出された高圧側圧力、蒸発器温度センサで検出された蒸発温度、及び基板温度センサ15で検出された基板温度等を取得する。ファン断続制御手段25は、取得した各種センサの検出値に基づいて冷凍サイクル装置100の各機器の状態を判断し、例えば異常を検知した場合には、設定されたオン時間又はオフ時間を補正する構成となっている。
 運転制御手段26は、圧縮機1等の冷凍サイクルの各機器を制御するものである。また運転制御手段26と各室内機21a,21bとは信号を送受信するよう構成されている。運転制御手段26は、断続運転中には、ファン断続制御手段25から断続運転の運転情報を受信するとともに、接続されている室内機の容量をファン断続制御手段25に送信している。
 記憶手段27はメモリ等で構成され、設定制御情報及び各種初期値等が記憶されている。記憶手段27に記憶されている情報は、圧力予測手段23、ファン回転数制御手段24、ファン断続制御手段25、及び運転制御手段26により参照される。
 図4は、本発明の実施の形態1に係る空気調和機の室外ファンの動作を示すフローチャートである。図4に基づき、制御装置20が室外ファン7のオン時間を調整し、オフ時間を一定とする制御について説明する。
 室外ファン7は、ファン回転数制御手段24により回転数が制御され、連続運転している。冷房運転時には、ファン断続制御手段25は、室外ファン7の断続運転を開始するための条件が成立するか否かを判定する。具体的には、ファン断続制御手段25は、室外ファン7の回転数が下限値であり、且つ高圧側圧力が目標値未満であるか否かを判定する(ステップST1)。断続運転の開始条件が満たされていない場合には(ステップST1;No)、連続運転が続行される。一方、断続運転の開始条件が満たされている場合には(ステップST1;Yes)、ファン断続制御手段25は、記憶手段27を参照して、オン時間Ton、オフ時間Toff、及びオン可変時間ΔTonのそれぞれに初期値を設定する(ステップST2)。図4には、オン時間Tonに初期値X、オフ時間Toffに初期値Y、及びオン可変時間ΔTonに初期値0が設定される場合が示されている。
 高圧側圧力の予測値が目標値となるように、ファン断続制御手段25はステップST4~ステップST6及びステップST3を設定時間間隔(例えばZ分間隔)ごとに繰り返し、オン時間Tonは、設定時間間隔(Z分間隔)ごとに更新されて変化していく。このとき、高圧側圧力の目標値と予測値との差の絶対値が0に近く設定値以下であることを、予測値が収束範囲内であるものとする。ファン断続制御手段25は、圧力予測手段23により予測された予測値と目標値とによってオン可変時間ΔTonの値を決定し、前回のオン時間Tonにオン可変時間ΔTonを加算して次のオン時間Tonを設定する制御を繰り返す。オン可変時間ΔTonの初期値は0であるため、断続運転に切り替えられた後に最初にステップST3が実施されると、オン時間Tonは初期値Xとなる。
 ステップST4にて、ファン断続制御手段25は、高圧側圧力の予測値と目標値との差が収束範囲内であるか否かを判定する(ステップST4)。ファン断続制御手段25は、予測値と目標値との差が収束範囲内であれば(ステップST4;Yes)オン可変時間ΔTonを0とし(ステップST5)、予測値と目標値との差が収束範囲より大きい場合には(ステップST4;No)ステップST6に移る。そしてファン断続制御手段25は、予測値が目標値より小さい場合にはオン可変時間ΔTonを-Tとし、予測値が目標値以上である場合にはオン可変時間ΔTonを+Tとする。ファン断続制御手段25は、ステップST5又はステップST6でオン可変時間ΔTonを決定した後、再びステップST3に戻り、オン時間Tonにオン可変時間ΔTonを加算して更新する。ファン断続制御手段25は、新たに設定されたオン時間Tonで室外ファン7に断続運転を行わせる。
 つまり、目標値と予測値との差が収束範囲内であれば、オン可変時間ΔTonは0と決定され、次のZ分間は前回と同じオン時間Tonで室外ファン7の断続運転が実施される。一方、目標値と予測値との差が収束範囲外であれば、予測値が目標値に近づくようオン時間Tonが設定される。このとき、予測値が目標値より小さい場合には、次のZ分間は前回より短く設定されたオン時間Tonで断続運転が実施され、予測値が目標値以上である場合には、次のZ分間は前回より長く設定されたオン時間Tonで断続運転が実施される。
 図5は、本発明の実施の形態1に係る制御装置の制御動作を説明するための時刻と高圧側圧力値と室外ファン回転数との関係図である。図5に基づき、オフ時間Toffを一定としオン時間Tonを調整する場合の高圧側圧力の調整過程について説明する。
 図5の横軸は経過時間を表し、縦軸は下段から室外ファンの制御回転数、冷媒の吐出過熱度、及び設定時間(例えばA秒)経過後の高圧側圧力の予測値を表している。空気調和機は圧縮機1を稼動させて冷房運転を行っており、室外ファン7はファン駆動部8を介して下限回転数で運転制御されている。高圧側圧力が目標値未満であるため、制御装置20は室外ファン7の運転を連続運転から断続運転に切り替える。
 最初のZ分間には高圧側圧力の予測値は、目標値を含む収束範囲から外れており、目標値未満である。そのため次のZ分間には前回より短いオン時間Tonが設定され、吐出過熱度は目標吐出過熱度に近づき、高圧側圧力の予測値は目標値に近づく。しかし2番目のZ分間において高圧側圧力の予測値は未だ収束範囲外であるため、3番目のZ分間では2番目のZ分間より更に短いオン時間Tonが設定されて風量が低減される。また3番目のZ分間でも高圧側圧力の予測値は未だ収束範囲外であり且つ目標値未満である。そのため4番目のZ分間には3番目のZ分間より更に短いオン時間Tonが設定される。4番目のZ分間では高圧側圧力の予測値は目標値を上回り、また収束範囲から外れている。そのため5番目のZ分間には4番目のZ分間より長いオン時間Tonが設定される。そして高圧圧力値の予測値が収束範囲内となると、このときのオン時間Tonが維持される。
 このように高圧側圧力の予測値が目標値に近づくように室外ファン7のオン時間Tonが設定時間間隔で更新され、高圧側圧力の予測値と目標値との差が収束範囲となるようにオン時間Tonが収束する。
 また制御装置20は、室外ファン7の断続運転中も冷凍サイクル装置100全体として安定した運転が維持できるよう、上述した調整制御の他にも各種制御を行っている。例えば運転制御手段26は、圧縮機1の回転数に設定上限値を設け、断続運転中に圧縮機を設定上限値以下で運転させている。
 またファン断続制御手段25は、断続運転中、低圧側圧力センサ14で検出された低圧側圧力が凍結圧力より大きくなるようにオン時間Ton又はオフ時間Toffを補正する。例えばファン断続制御手段25は、低圧側圧力に凍結する寸前の圧力値を設定下限値として設け、低圧側圧力センサ14の検出値が設定下限値となった場合には補正を行う。具体的にはファン断続制御手段25は、低圧側圧力が設定下限値より大きくなるまで、オン時間Tonを短くする若しくはオフ時間Toffを長くする。
 またファン断続制御手段25は、断続運転中、室内液管温度センサ12又は室内ガス管温度センサ13で検出された蒸発器温度が凍結温度より高くなるようにオン時間Ton又はオフ時間Toffを補正する。例えばファン断続制御手段25は、蒸発器温度に凍結する寸前の温度を設定下限値として設け、検出された蒸発器温度が設定下限値となった場合には補正を行う。具体的にはファン断続制御手段25は、蒸発器温度が設定下限値より大きくなるまで、オン時間Tonを短くする若しくはオフ時間Toffを長くする。
 またファン断続制御手段25は、断続運転中に、基板温度センサ15で検出された基板温度が高温になりすぎないようにオン時間Ton又はオフ時間Toffを補正する。例えばファン断続制御手段25は、基板温度に通常使用される温度範囲よりも高温の設定閾値を設け、基板温度センサ15で検出された検出値が設定閾値となった場合には補正を行う。具体的にはファン断続制御手段25は、基板温度が設定閾値より低くなるまで、オン時間Tonを長くする若しくはオフ時間Toffを短くする。補正を続けても基板温度が設定閾値より低くならない場合には、ファン断続制御手段25は、室外ファン7の運転を断続運転から連続運転に切り替えて風量を確保する。
 またファン断続制御手段25は、断続運転中、高圧側圧力センサ2で検出された高圧側圧力が高温になりすぎないようにオン時間Ton又はオフ時間Toffを補正する。例えばファン断続制御手段25は、高圧側圧力に通常使用される温度範囲よりも高温の設定閾値を設け、高圧側圧力センサ2で検出された検出値が設定閾値となった場合には補正を行う。具体的にはファン断続制御手段25は、高圧側圧力値が設定閾値より小さくなるまでオン時間Tonを長くする若しくはオフ時間Toffを短くする。補正を続けても高圧側圧力値が設定閾値より小さくならない場合には、ファン断続制御手段25は室外ファン7の運転を断続運転から連続運転に切り替えて風量を確保する。
 実施の形態1では、冷凍サイクル装置100は、冷媒回路30と高圧側圧力センサ2と室外ファン7とファン駆動部8と制御装置20とを備える。制御装置は、高圧側圧力センサ2により検出された高圧側圧力に基づいて、設定時間経過後の高圧側圧力の予測値Ppreを予測する圧力予測手段23と、ファン駆動部8が設定下限値の回転数で動作しており、且つ検出された高圧側圧力が目標値未満である場合に、圧力予測手段23により予測された予測値が目標値になるように室外ファン7が駆動するオン時間Tonと室外ファン7が停止するオフ時間Toffとを設定して断続運転を行うようにファン駆動部を制御するファン断続制御手段25と、を備えるものである。
 これより冷凍サイクル装置100は、ファン駆動部8のオン時間Tonとオフ時間Toffとをそれぞれ設定するため、従来のON/OFF時間の固定値で断続運転するものに比べ、高圧側圧力が目標値になる風量に室外ファン7の風量を合わせることができる。したがって、冷凍サイクル装置100は、吐出過熱度を確保することができるとともに、高圧側圧力が無駄に上昇することによる圧縮機1の入力増大を防止できる。
 また、冷凍サイクル装置100は、外気温度を検出する外気温度センサ9と、室内熱交換器11が蒸発器として機能する冷房運転中に、外気温度センサ9により検出された外気温度と室内機21の運転容量とに基づいてファン駆動部8の回転数を調整するファン回転数制御手段24と、を更に備えるものである。
 これより、冷凍サイクル装置100は、外気温度が変化する場合、又はマルチスプリットタイプのように室内機21の運転容量等が変化する場合でも、吐出過熱度を確保するとともに圧縮機1の入力増大を防止できる。
 またファン断続制御手段25は、オン時間Tonを繰り返し設定するものであって、オン時間Tonは、予測値Ppreが目標値になるように前回設定されたオン時間Tonから調整される。これより、オン時間Ton及びオフ時間Toffのうちのオン時間Tonは増減されオフ時間Toffは一定となる。予測値と目標値とによってオンオフ時間比が設定されるため、室外熱交換器4に供給される風量が調整される。したがって冷凍サイクル装置100は目標の吐出過熱度を確保することができる。
 また制御装置20は、断続運転中、圧縮機1を設定上限値以下の回転数で運転させる運転制御手段26を更に備える。これより、オン時間Ton及びオフ時間Toffが設定される断続運転において、運転制御手段26は、圧縮機1の回転数の上昇を制限することで圧縮機1の無駄な入力増大を抑制できる。
 また冷凍サイクル装置100は、圧縮機1の吸入側に設けられ、冷媒の低圧側圧力を検出する低圧側圧力センサ14を更に備え、ファン断続制御手段25は、断続運転中、低圧側圧力センサ14により検出された低圧側圧力が凍結圧力より大きくなるように、設定されたオン時間Ton又はオフ時間Toffを補正する。これより冷凍サイクル装置100は、冷凍サイクルの低圧側の冷媒圧力が凍結圧力以下に低下して吸入配管等が凍結してしまうことを防止できる。
 また冷凍サイクル装置100は、室内熱交換器11の蒸発器温度を検出する蒸発器温度センサを更に備え、ファン断続制御手段25は、断続運転中、蒸発器温度センサにより検出された蒸発器温度が凍結温度より高くなるように、設定されたオン時間Ton又はオフ時間Toffを補正する。これより冷凍サイクル装置100は、冷房運転時に蒸発器となる室内熱交換器11の蒸発器温度が凍結温度以下に低下し室内熱交換器11が凍結してしまうことを防止できる。
 また冷凍サイクル装置100は、制御装置20の基板温度を検出する基板温度センサ15を更に備え、室外ファン7は、室外熱交換器4に空気を供給するとともに制御装置20を冷却するものであって、ファン断続制御手段25は、断続運転中、基板温度センサ15により検出された基板温度が設定閾値より低くなるように、設定されたオン時間Ton又はオフ時間Toffを補正する。これよりファン断続制御手段25は、オン時間Ton及びオフ時間Toffが設定される断続運転において、例えば基板温度が設定閾値まで上昇した場合にはオン時間Tonが長くなるように補正することで、室外ファン7は制御装置20を冷却する風量を確保でき、基板温度が低下する。したがって、冷凍サイクル装置100は、室外ファン7の断続運転を行う場合であっても、制御装置20の熱による損傷を防止でき、正常な運転を行うことができる。
 また、ファン断続制御手段25は、断続運転中、高圧側圧力が設定閾値より小さくなるように、設定されたオン時間Ton又はオフ時間Toffを補正する。これよりファン断続制御手段は、オン時間Ton及びオフ時間Toffが設定される断続運転において、例えば高圧側圧力が設定閾値まで上昇した場合にはオン時間Tonが長くなるように補正することで、上昇しすぎた高圧側圧力を下げることができる。したがって、冷凍サイクル装置100は、室外ファン7の断続運転を行う場合であっても安全な運転を行うことができる。
実施の形態2.
 実施の形態2において冷凍サイクル装置100は、実施の形態1と同一の構成を備え、実施の形態1と同一構成を有する空気調和機に搭載されている。また実施の形態2の冷凍サイクル装置100は、図1~図3と同一の構成を備えるものとする。実施の形態1では、制御装置20は目標の吐出過熱度を確保するために所定時間ごとにオン時間Tonを変化させる構成であったが、実施の形態2では、制御装置20は所定時間ごとにオフ時間Toffを変化させる構成となっている。
 図6は、本発明の実施の形態2に係る空気調和機の室外ファンの動作を示すフローチャートである。図6に基づき、制御装置20が室外ファン7のオフ時間Toffを調整し、オン時間Tonを一定とする制御について説明する。
 ファン回転数制御手段24は、室外ファン7の回転数を調整し連続運転している。圧縮機1運転中であり冷房運転時には、ファン断続制御手段25は、室外ファン7の断続運転を開始するための条件が成立するか否かを判定する(ステップST11)。ステップST11は図4のステップST1と同じであるため詳細は省略する。断続運転の開始条件が満たされている場合には(ステップST11;Yes)、ファン断続制御手段25は、オン時間Ton、オフ時間Toff、及びオフ可変時間ΔToffのそれぞれに初期値を設定する(ステップST12)。図6では、オン時間Tonに初期値X、オフ時間Toffに初期値Y、及びオフ可変時間ΔToffに初期値0が設定されている。
 高圧側圧力の予測値が目標値となるようにファン断続制御手段25によりステップST14からステップST16及びステップST13が設定時間間隔(例えばZ分間隔)ごとに繰り返し実施される。このとき、オフ時間Toffは、設定時間間隔(Z分間隔)ごとに更新されて変化していく。ファン断続制御手段25は、圧力予測手段23により予測された高圧側圧力の予測値と目標値とによってオフ可変時間ΔToffの値を決定し、前回のオフ時間Toffにオフ可変時間ΔToffを加算することで次のオフ時間Toffを設定する。オフ可変時間ΔToffの初期値が0であるため、断続運転に切り替えられた後に最初にステップST13が実施されると、オフ時間Toffは初期値Yとなる。
 ステップST14にて、ファン断続制御手段25は、高圧側圧力の予測値と目標値との差が収束範囲内であるか否かを判定する(ステップST14)。予測値と目標値との差が収束範囲内であれば(ステップST14;Yes)、ファン断続制御手段25はオフ可変時間ΔToffを0とし(ステップST15)、予測値と目標値との差が収束範囲外であれば(ステップST14;No)ステップST16に移る。そしてファン断続制御手段25は、予測値が目標値より小さい場合にはオフ可変時間ΔToffを+Tとし、予測値が目標値以上である場合にはオフ可変時間ΔToffを-Tとする。ファン断続制御手段25は、ステップST15又はステップST16でオフ可変時間ΔToffを決定した後、再びステップST13に戻り、オフ時間Toffにオフ可変時間ΔToffを加算して更新する。ファン断続制御手段25は、新たに設定されたオフ時間Toffで室外ファン7の断続運転を実施する。
 つまり、目標値と予測値との差が収束範囲内であれば、オフ可変時間ΔToffは0と決定され、次のZ分間は前回と同じオフ時間Toffで室外ファン7の断続運転が実施される。一方、目標値と予測値との差が収束範囲外であれば、予測値が目標値に近づくようオフ時間Toffが設定される。このとき、予測値が目標値より小さい場合には、次のZ分間は前回より長く設定されたオフ時間Toffで断続運転が実施され、予測値が目標値以上である場合には、次のZ分間は前回より短く設定されたオフ時間Toffで断続運転が実施される。
 実施の形態2では、実施の形態1と同様に、冷凍サイクル装置100は、冷媒回路30と高圧側圧力センサ2と室外ファン7とファン駆動部8と制御装置20とを備える。制御装置は、高圧側圧力センサ2により検出された高圧側圧力に基づいて、設定時間経過後の高圧側圧力の予測値Ppreを予測する圧力予測手段23と、ファン駆動部8が設定下限値の回転数で動作しており、且つ検出された高圧側圧力が目標値未満である場合に、圧力予測手段23により予測された予測値が目標値になるように室外ファン7が駆動するオン時間Tonと室外ファン7が停止するオフ時間Toffとを設定して断続運転を行うようにファン駆動部を制御するファン断続制御手段25と、を備えるものである。
 これより実施の形態2の冷凍サイクル装置100は、実施の形態1の場合と同様に、ファン駆動部8のオン時間Tonとオフ時間Toffとをそれぞれ設定するため、高圧側圧力が目標値になる風量に室外ファン7の風量を合わせることができる。したがって、冷凍サイクル装置100は、吐出過熱度を確保することができるとともに、高圧側圧力が無駄に上昇することによる圧縮機1の入力増大を防止できる。
 またファン断続制御手段25は、オフ時間Toffを繰り返し設定するものであって、オフ時間Toffは、予測値Ppreが目標値になるように前回設定されたオフ時間Toffから調整される。これより、オン時間Ton及びオフ時間Toffのうちのオフ時間Toffは増減されオン時間Tonは一定となる。予測値と目標値とによってオンオフ時間比が設定されるため、室外熱交換器4に供給される風量が調整される。したがって冷凍サイクル装置100は目標の吐出過熱度を確保することができる。
 なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば空気調和機が複数の室内機21a,21bを備える場合を例に説明したが、室内機21は1台であってもよい。
 また、オン時間Ton及びオフ時間Toffの増減をオン可変時間ΔTon及びオフ可変時間ΔToffの符号(プラス又はマイナス)により示したが、増減の大きさ|T|については変数にするとよい。例えばファン断続制御手段は、増減の大きさ|T|を高圧側圧力の目標値と予測値との差、調整制御の繰り返し回数、又は前回と今回との増減の方向の違い等に応じて変えてもよい。このような構成によれば、高圧側圧力の予測値を目標値に精度良く合わせることができ、また収束範囲内に収束させるまでの時間を短縮できる。
 1 圧縮機、2 高圧側圧力センサ、3 流路切替装置、4 室外熱交換器、5 第1静止弁、6 第2静止弁、7 室外ファン、8 ファン駆動部、9 外気温度センサ、10,10a,10b 減圧装置、11,11a,11b 室内熱交換器、12,12a,12b 室内液管温度センサ、13,13a,13b 室内ガス温度センサ、14 低圧側圧力センサ、15 基板温度センサ、20 制御装置、21,21a,21b 室内機、22 室外機、23 圧力予測手段、24 ファン回転数制御手段、25 ファン断続制御手段、26 運転制御手段、27 記憶手段、30 冷媒回路、100 冷凍サイクル装置、P0~P2 検出値、Ppre 予測値、Ton オン時間、Toff オフ時間、ΔTon オン可変時間、ΔToff オフ可変時間。

Claims (9)

  1.  圧縮機と流路切替装置と室外熱交換器と減圧装置と室内熱交換器とが冷媒配管を介して接続された冷媒回路と、
     前記圧縮機の吐出側に設けられ、冷媒の高圧側圧力を検出する高圧側圧力センサと、
     前記室外熱交換器に空気を供給する室外ファンと、
     前記室外ファンを駆動するファン駆動部と、
     前記ファン駆動部の回転数を制御する制御装置と、を備え、
     前記制御装置は、
     前記高圧側圧力センサにより検出された前記高圧側圧力に基づいて、設定時間経過後の高圧側圧力の予測値を予測する圧力予測手段と、
     前記ファン駆動部が設定下限値の回転数で動作しており、且つ検出された前記高圧側圧力が目標値未満である場合に、前記圧力予測手段により予測された予測値が前記目標値になるように前記室外ファンが駆動するオン時間と前記室外ファンが停止するオフ時間とを設定して断続運転を行うように前記ファン駆動部を制御するファン断続制御手段と、を備える
     冷凍サイクル装置。
  2.  外気温度を検出する外気温度センサと、
     前記室内熱交換器が蒸発器として機能する冷房運転中に、前記外気温度センサにより検出された前記外気温度と室内機の運転容量とに基づいて前記ファン駆動部の回転数を調整して連続運転するように前記ファン駆動部を制御するファン回転数制御手段と、を更に備える請求項1記載の冷凍サイクル装置。
  3.  前記ファン断続制御手段は、前記オン時間を繰り返し設定するものであって、
     前記オン時間は、前記予測値が前記目標値になるように前回設定された前記オン時間から調整される請求項1又は2記載の冷凍サイクル装置。
  4.  前記ファン断続制御手段は、前記オフ時間を繰り返し設定するものであって、
     前記オフ時間は、前記予測値が前記目標値になるように前回設定された前記オフ時間から調整される請求項1~3のいずれか一項記載の冷凍サイクル装置。
  5.  前記制御装置は、
     前記断続運転中、前記圧縮機を設定上限値以下の回転数で運転させる運転制御手段を更に備える請求項1~4のいずれか一項記載の冷凍サイクル装置。
  6.  前記圧縮機の吸入側に設けられ、前記冷媒の低圧側圧力を検出する低圧側圧力センサを更に備え、
     前記ファン断続制御手段は、前記断続運転中、前記低圧側圧力センサにより検出された前記低圧側圧力が凍結圧力より大きくなるように、設定された前記オン時間又は前記オフ時間を補正する請求項1~5のいずれか一項記載の冷凍サイクル装置。
  7.  前記室内熱交換器の蒸発器温度を検出する蒸発器温度センサを更に備え、
     前記ファン断続制御手段は、前記断続運転中、前記蒸発器温度センサにより検出された前記蒸発器温度が凍結温度より高くなるように、設定された前記オン時間又は前記オフ時間を補正する請求項1~6のいずれか一項記載の冷凍サイクル装置。
  8.  前記制御装置の基板温度を検出する基板温度センサを更に備え、
     前記室外ファンは、前記室外熱交換器に空気を供給するとともに前記制御装置を冷却するものであって、
     前記ファン断続制御手段は、前記断続運転中、前記基板温度センサにより検出された前記基板温度が設定閾値より低くなるように、設定された前記オン時間又は前記オフ時間を補正する請求項1~7のいずれか一項記載の冷凍サイクル装置。
  9.  前記ファン断続制御手段は、前記断続運転中、前記高圧側圧力が設定閾値より小さくなるように、設定された前記オン時間又は前記オフ時間を補正する請求項1~8のいずれか一項記載の冷凍サイクル装置。
PCT/JP2016/076200 2016-09-06 2016-09-06 冷凍サイクル装置 WO2018047238A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16906496.1A EP3324133B1 (en) 2016-09-06 2016-09-06 Refrigeration cycle device
PCT/JP2016/076200 WO2018047238A1 (ja) 2016-09-06 2016-09-06 冷凍サイクル装置
US16/308,646 US10801767B2 (en) 2016-09-06 2016-09-06 Refrigeration cycle apparatus
JP2018537908A JP6559361B2 (ja) 2016-09-06 2016-09-06 冷凍サイクル装置
CN201680088699.9A CN109642754B (zh) 2016-09-06 2016-09-06 制冷循环装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076200 WO2018047238A1 (ja) 2016-09-06 2016-09-06 冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2018047238A1 true WO2018047238A1 (ja) 2018-03-15

Family

ID=61562577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076200 WO2018047238A1 (ja) 2016-09-06 2016-09-06 冷凍サイクル装置

Country Status (5)

Country Link
US (1) US10801767B2 (ja)
EP (1) EP3324133B1 (ja)
JP (1) JP6559361B2 (ja)
CN (1) CN109642754B (ja)
WO (1) WO2018047238A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203849A1 (ja) * 2019-03-29 2020-10-08 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル予測制御

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269038B (zh) * 2018-10-22 2020-06-02 珠海格力电器股份有限公司 空调的控制方法和装置及空调系统
CN112594885B (zh) * 2019-04-19 2022-09-06 青岛海尔空调器有限总公司 空调器及其控制方法
KR102662870B1 (ko) 2019-08-30 2024-05-07 삼성전자주식회사 공기 조화기 및 그 제어 방법
CN113063216A (zh) * 2020-01-02 2021-07-02 青岛海尔空调电子有限公司 空调外风机的转速控制方法
DE112020007195T5 (de) * 2020-05-14 2023-04-20 Mitsubishi Electric Corporation Klimaanlage
CN111780333B (zh) * 2020-07-14 2021-11-05 珠海格力节能环保制冷技术研究中心有限公司 空调器的控制方法及装置、空调器设备
CN112549904B (zh) * 2020-12-23 2022-09-30 摩登汽车(盐城)有限公司 电动汽车的冷凝风扇转速的控制方法及系统
US20240230196A1 (en) * 2021-07-15 2024-07-11 Mitsubishi Electric Corporation Air-conditioning apparatus
CN113847748A (zh) * 2021-08-16 2021-12-28 珠海格力电器股份有限公司 一种多联机系统及其控制方法和存储介质
CN113534936B (zh) * 2021-09-14 2021-12-17 苏州浪潮智能科技有限公司 一种服务器风扇转速控制方法、装置、设备及介质
DE102022113092A1 (de) * 2022-05-24 2023-11-30 Stiebel Eltron Gmbh & Co. Kg Wärmepumpensystem

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484055A (en) * 1987-09-25 1989-03-29 Matsushita Refrigeration Multiple chamber type air conditioner
JPH01314865A (ja) * 1988-06-15 1989-12-20 Toshiba Corp 空気調和機
JPH04327747A (ja) * 1991-04-26 1992-11-17 Matsushita Refrig Co Ltd 空気調和機の制御装置
JPH04344055A (ja) * 1991-05-20 1992-11-30 Matsushita Refrig Co Ltd 空気調和機の制御装置
JPH05203235A (ja) * 1992-01-28 1993-08-10 Hitachi Ltd 空気調和機
JPH06307723A (ja) * 1993-04-21 1994-11-01 Matsushita Refrig Co Ltd 多室型空気調和機
JP2002318033A (ja) * 2001-04-17 2002-10-31 Sanyo Electric Co Ltd リモートコンデンサ
JP2006162214A (ja) 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd 空気調和機
JP2013257132A (ja) * 2012-05-18 2013-12-26 Daikin Industries Ltd 空気調和装置
US20140223934A1 (en) * 2013-02-12 2014-08-14 National Refrigeration & Air Conditioning Canada Corp. Condenser unit

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635452B2 (ja) * 1991-04-08 1997-07-30 三菱電機株式会社 マルチ式空気調和装置
JP2007240146A (ja) 1993-06-01 2007-09-20 Hitachi Appliances Inc 空気調和機
JP4612001B2 (ja) 1993-06-01 2011-01-12 日立アプライアンス株式会社 空気調和機
US5551248A (en) * 1995-02-03 1996-09-03 Heatcraft Inc. Control apparatus for space cooling system
JP3885300B2 (ja) * 1996-10-28 2007-02-21 ダイキン工業株式会社 空気調和装置
JP2001050599A (ja) 1999-07-28 2001-02-23 Johnson Controls Technol Co ファン速度空冷凝縮器を高機能制御する装置および方法
WO2004097308A1 (en) * 2003-04-30 2004-11-11 Lg Electronics, Inc. Apparatus for controlling operation of outdoor unit and its method
US7159408B2 (en) * 2004-07-28 2007-01-09 Carrier Corporation Charge loss detection and prognostics for multi-modular split systems
EP2306122B1 (en) * 2008-06-24 2017-07-26 Mitsubishi Electric Corporation Refrigerating cycle apparatus, and air conditioning apparatus
JP4497234B2 (ja) * 2008-07-29 2010-07-07 ダイキン工業株式会社 空気調和装置
JP2011052952A (ja) * 2009-08-07 2011-03-17 Sanyo Electric Co Ltd 冷凍機の運転管理装置
KR101936215B1 (ko) * 2012-04-23 2019-01-08 엘지전자 주식회사 공기 조화기의 제어 방법
US10393419B2 (en) * 2012-11-21 2019-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5673738B2 (ja) * 2013-06-11 2015-02-18 ダイキン工業株式会社 空気調和装置
EP3086053B1 (en) * 2013-12-16 2018-06-06 Mitsubishi Electric Corporation Heat pump hot water supply device
US9568227B2 (en) * 2014-02-05 2017-02-14 Lennox Industries Inc. Systems and methods for refrigerant charge detection
JP6310054B2 (ja) * 2014-02-18 2018-04-11 東芝キヤリア株式会社 冷凍サイクル装置
JP6369722B2 (ja) * 2014-07-10 2018-08-08 三菱重工サーマルシステムズ株式会社 発熱性電子部品を備えたコントローラおよび空気調和機
US10563877B2 (en) * 2015-04-30 2020-02-18 Daikin Industries, Ltd. Air conditioner
EP3109573B1 (en) * 2015-06-24 2020-09-09 Emerson Climate Technologies GmbH Components cross-mapping in a refrigeration system
US10240836B2 (en) * 2015-06-30 2019-03-26 Emerson Climate Technologies Retail Solutions, Inc. Energy management for refrigeration systems
US11009250B2 (en) * 2015-06-30 2021-05-18 Emerson Climate Technologies Retail Solutions, Inc. Maintenance and diagnostics for refrigeration systems

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484055A (en) * 1987-09-25 1989-03-29 Matsushita Refrigeration Multiple chamber type air conditioner
JPH01314865A (ja) * 1988-06-15 1989-12-20 Toshiba Corp 空気調和機
JPH04327747A (ja) * 1991-04-26 1992-11-17 Matsushita Refrig Co Ltd 空気調和機の制御装置
JPH04344055A (ja) * 1991-05-20 1992-11-30 Matsushita Refrig Co Ltd 空気調和機の制御装置
JPH05203235A (ja) * 1992-01-28 1993-08-10 Hitachi Ltd 空気調和機
JPH06307723A (ja) * 1993-04-21 1994-11-01 Matsushita Refrig Co Ltd 多室型空気調和機
JP2002318033A (ja) * 2001-04-17 2002-10-31 Sanyo Electric Co Ltd リモートコンデンサ
JP2006162214A (ja) 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd 空気調和機
JP2013257132A (ja) * 2012-05-18 2013-12-26 Daikin Industries Ltd 空気調和装置
US20140223934A1 (en) * 2013-02-12 2014-08-14 National Refrigeration & Air Conditioning Canada Corp. Condenser unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3324133A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203849A1 (ja) * 2019-03-29 2020-10-08 日立ジョンソンコントロールズ空調株式会社 冷凍サイクル予測制御

Also Published As

Publication number Publication date
CN109642754B (zh) 2020-11-24
EP3324133A1 (en) 2018-05-23
US10801767B2 (en) 2020-10-13
EP3324133B1 (en) 2021-06-09
JPWO2018047238A1 (ja) 2018-12-13
US20190271494A1 (en) 2019-09-05
JP6559361B2 (ja) 2019-08-14
CN109642754A (zh) 2019-04-16
EP3324133A4 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6559361B2 (ja) 冷凍サイクル装置
US10371407B2 (en) Air conditioning apparatus
JP6071648B2 (ja) 空気調和装置
JP2010249452A (ja) 空気調和装置
KR101602741B1 (ko) 항온액 순환 장치 및 그 운전 방법
CN107003029B (zh) 空调装置
JP6827540B2 (ja) 空気調和装置
KR102558826B1 (ko) 공기 조화 시스템 및 제어 방법
US11262108B2 (en) Refrigeration cycle apparatus
JP6328276B2 (ja) 冷凍空調装置
EP3705810A1 (en) Air conditioner
JP2018141599A (ja) 空気調和装置
JPWO2018179137A1 (ja) 空気調和装置
JP5593905B2 (ja) 冷凍装置
WO2018164253A1 (ja) 空気調和装置
JP6398389B2 (ja) 冷凍装置
JP6338762B2 (ja) 空気調和装置
JP2009085463A (ja) 空気調和機
US10443901B2 (en) Indoor unit of air conditioner
US11913694B2 (en) Heat pump system
WO2013172196A1 (ja) 空気調和装置
JP2006118731A (ja) 空気調和機
JP2012242049A (ja) 冷凍装置
JP2018141600A (ja) 空気調和装置
JP2005069655A (ja) マルチ式空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018537908

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE