[go: up one dir, main page]

WO2018045933A1 - 散热器、散热装置、散热系统及通信设备 - Google Patents

散热器、散热装置、散热系统及通信设备 Download PDF

Info

Publication number
WO2018045933A1
WO2018045933A1 PCT/CN2017/100378 CN2017100378W WO2018045933A1 WO 2018045933 A1 WO2018045933 A1 WO 2018045933A1 CN 2017100378 W CN2017100378 W CN 2017100378W WO 2018045933 A1 WO2018045933 A1 WO 2018045933A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
substrate
dissipation substrate
dissipating
Prior art date
Application number
PCT/CN2017/100378
Other languages
English (en)
French (fr)
Inventor
许寿标
池善久
曾文辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21169164.7A priority Critical patent/EP3916776A1/en
Priority to EP17848106.5A priority patent/EP3503701B1/en
Publication of WO2018045933A1 publication Critical patent/WO2018045933A1/zh
Priority to US16/298,443 priority patent/US11043442B2/en
Priority to US17/320,533 priority patent/US11502019B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/02Removable elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4018Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by the type of device to be heated or cooled
    • H01L2023/4031Packaged discrete devices, e.g. to-3 housings, diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/405Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4056Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to additional heatsink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4037Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink
    • H01L2023/4062Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by thermal path or place of attachment of heatsink heatsink to or through board or cabinet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • H01L2023/4081Compliant clamping elements not primarily serving heat-conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4075Mechanical elements
    • H01L2023/4087Mounting accessories, interposers, clamping or screwing parts

Definitions

  • the present application relates to heat dissipation technologies, and in particular, to a heat sink, a heat sink, a heat dissipation system, and a communication device.
  • the embodiment of the present application provides a heat sink, a heat dissipating device, a heat dissipating system, and a communication device, so as to overcome the problem that the prior art cannot provide proper and effective heat dissipation for each chip in the sealed chip, thereby reducing the use of the lower temperature chip. Lifetime, which in turn reduces the life of electronic products.
  • a first aspect of the present application provides a heat sink, including:
  • the heat dissipating substrate, the connecting body and the fixing member; the heat dissipating substrate is used for dissipating heat to the sealing chip located on the circuit board, and the heat dissipating substrate is located on a side of the sealing chip facing away from the circuit board.
  • the heat dissipation substrate includes a first heat dissipation substrate and a second heat dissipation substrate.
  • the first heat dissipation substrate and the second heat dissipation substrate respectively have a heat conduction surface for heat conduction with the chip in the sealed chip, and different heat conduction surfaces correspond to different chips, and the connection body
  • the first end is fixed to the first heat dissipation substrate
  • the second end of the connector is suspended on the outer side of the second heat dissipation substrate
  • the fixing member abuts on the outer side of the first heat dissipation substrate to restrict the first heat dissipation substrate from moving away from the second heat dissipation substrate The direction of movement.
  • the adjacent heat dissipation substrates can only be connected through the connection body.
  • Thermal conduction which has a slow thermal conductivity, can effectively block heat conduction between adjacent heat dissipation substrates.
  • the temperatures of the chips under the respective heat dissipation substrates are different, the heat radiated from the respective chips is not transmitted to the other chips through the heat dissipation substrate, that is, the heat radiated from the high temperature chips is not transferred to the temperature during use of the heat sink.
  • the low chip effectively increases the lifetime of the lower temperature chip, which in turn increases the life of the electronic product.
  • the heat conducting surfaces of the first heat dissipating substrate and the second heat dissipating substrate are all on the same plane.
  • the heat conduction surfaces of the first heat dissipation substrate and the second heat dissipation substrate are all located on the same plane, thereby ensuring the heat dissipation substrate.
  • the heat conduction surfaces are bonded to the respective chips on the sealed chip to avoid contact failure between the heat dissipation substrate and the sealed chip.
  • the connector is elongate.
  • the connecting body is in the form of a thin plate.
  • the connecting body when the connecting body is elongated or thin, it can be overlapped between the first heat dissipation substrate and the second heat dissipation substrate. Since the elongated cross-sectional area of the elongated connecting body or the thin plate-shaped connecting body is small in the longitudinal direction, according to the heat conduction law, the amount of heat that can be conducted per unit time is small, that is, the heat transfer speed is small. In this way, since the length direction of the connecting body is generally the direction of heat transfer, the cross-sectional area of the connecting body in the direction is generally smaller than the cross-sectional area of the connecting portion when the first heat-dissipating substrate and the second heat-dissipating substrate are directly connected. .
  • the first connection surface is defined as a surface on the first heat dissipation substrate opposite to the second heat dissipation substrate
  • the second connection surface is a surface on the second heat dissipation substrate opposite to the first heat dissipation substrate.
  • the cross-sectional area of the connecting body in its own heat conduction direction should be smaller than the overlapping area between the first connecting surface and the second connecting surface.
  • the shape of the connecting body is not limited to an elongated shape or a thin plate shape, and may be other structural forms having a smaller cross section.
  • the second heat dissipation substrate is provided with a positioning groove at a portion corresponding to the connecting body, and the positioning groove is configured to avoid the connecting body.
  • the second heat dissipating substrate is opened.
  • the connector is fixed and positioned in the direction of the substrate.
  • the number of connectors is at least two.
  • the plurality of connectors may be symmetrically disposed on both sides of the first heat dissipation substrate to enhance connection stability between the first heat dissipation substrate and the second heat dissipation substrate.
  • the connecting body is provided with a first through hole
  • the second heat dissipation substrate is provided with a second through hole at a position corresponding to the first through hole
  • the fixing member further includes a fixing screw
  • the fixing screw is disposed in the first through hole and the second through hole, the first heat dissipation substrate is located between the fixing screw head and the second heat dissipation substrate, and the tail of the fixing screw and the second heat dissipation substrate are fixedly connected to The first heat dissipation substrate and the second heat dissipation substrate are connected together.
  • the fixing screws for connecting the connecting body and the second heat dissipating substrate are fastened and connected by a common screw connection, so the connection is relatively reliable, and at the same time, due to the screw connection, the connecting body or the second heat dissipating substrate Most of the through holes and the threads on the fixing screws are point contact or line contact, and the contact surface is small, which can further reduce the heat conduction speed between the connecting body and the second heat dissipation substrate, and ensure the first heat dissipation substrate and Thermal isolation between the second heat sink substrates.
  • the fixing member further includes an elastic member, and two ends of the elastic member respectively abut between the head of the fixing screw and the first heat dissipation substrate, so that the first heat dissipation substrate is in the elastic member. Under the elastic force, it fits with the sealed chip.
  • the elastic member in the fixing member can simultaneously abut against the fixing screw and the first heat dissipation substrate. Because the fixing screw and the second heat dissipating substrate are fixedly connected, the relative positions of the two are fixed. Therefore, under the action of the elastic member, the first heat dissipating substrate is pressed against the second heat dissipating substrate by the elastic member, thereby generating a certain floating effect, so that the first heat dissipation substrate can be restricted from moving away from the second heat dissipation substrate, and the first heat dissipation substrate and the second heat dissipation substrate can be kept as close as possible to the sealing chip, that is, the first heat dissipation substrate and The heat conduction surfaces of the second heat dissipation substrate are coplanar.
  • the second heat dissipation substrate and the second end of the connector are connected by an insulating glue.
  • an insulating glue is disposed between the second end of the connecting body and the second heat dissipating substrate, which can block heat transfer between the connecting body and the second heat dissipating substrate, and further avoid the first heat dissipating substrate and the second heat dissipating Heat transfer between the substrates.
  • the second end of the connecting body and the second heat dissipating substrate may also be soldered to achieve the fixation of the two.
  • the fixing member comprises a first positioning stud and a second positioning stud
  • the bottom end of the first positioning stud is connected to the second heat dissipation substrate, and the axial direction of the first positioning stud is perpendicular to the plane of the second heat dissipation substrate, and the second positioning stud is screwed to the top of the first positioning stud.
  • the second end of the connecting body is fixed at the screwing of the first positioning stud and the second positioning stud.
  • a double-layer stud structure is adopted, and the general contact surface between the connecting body and the positioning stud is small, and there is usually a gap, so the heat transfer speed and heat transfer efficiency between the connecting body and the positioning stud are obtained. Both are lower, which can better prevent heat from being transmitted to different heat dissipation substrates via the connecting body.
  • the second end of the connecting body and the first end of the connecting body are different from the vertical distance of the plane of the second heat dissipating substrate.
  • the connecting body and the second heat dissipating substrate are connected by a double-layer positioning stud or the like, in order to avoid other connecting structures, the second end and the first end of the connecting body may generally be located at a distance from the second.
  • the plane of the heat dissipating substrate is at a different distance from the plane, so that the second end of the connecting body is fixed away from the connecting structure.
  • the first end of the connector and the second end of the connector are connected by a bent section.
  • the second heat dissipation substrate is provided with a notch, at least a portion of the first heat dissipation substrate is located in the notch, and an outer edge shape of the portion of the first heat dissipation substrate located in the notch matches the shape of the notch.
  • the second heat dissipation substrate is provided with a notch, at least a portion of the first heat dissipation substrate can enter the notch, so that the position of the heat dissipation substrate can better correspond to different chip positions on the sealed chip, and at the same time, Reduce the overall area and size of the heat sink substrate.
  • the first heat sink substrate is completely within the gap.
  • the second heat dissipation substrate is disposed outside the first heat dissipation substrate and constitutes a closed shape.
  • the heat sink further includes a first heat dissipating fin group for dissipating heat for the first heat dissipating substrate and a second heat dissipating fin group for dissipating heat for the second heat dissipating substrate, the first heat dissipating fin
  • the second heat dissipation fin group is located on a side of the first heat dissipation substrate that faces away from the heat conduction surface
  • the second heat dissipation fin group is located on a side of the second heat dissipation substrate that faces away from the heat conduction surface
  • the second heat dissipation fin group forms a cold air passage therein
  • the second heat dissipation fin group is in the second heat dissipation fin group.
  • a second heat dissipating fin is disposed on both sides of the cold air passage, and the first heat dissipating fin group is located in the cold air passage or the extension line of the cold air passage.
  • a heat dissipating fin group for dissipating heat from the heat dissipating substrate is further connected to each of the heat dissipating substrates of the heat sink.
  • the second heat dissipating fin group on the second heat dissipating substrate is provided with a cold air passage extending through the entire second heat dissipating fin group, so that the airflow for external cooling can be blown to the first heat dissipating fin group through the cold air passage. Therefore, both the first heat dissipating fin group and the second heat dissipating fin group have high heat dissipation efficiency.
  • the third air radiating fin is further disposed in the cold air passage, and the third heat dissipating fin has a height smaller than a height of the second heat dissipating fin.
  • the third heat dissipating fins can assist in heat dissipation, and at the same time, since the height of the third heat dissipating fins is low, it is still possible to ensure that the cooling airflow passes through the cold air passage.
  • the fourth air fin is further disposed in the cold air passage, and the fourth heat dissipating fin has a density smaller than a density of the second heat dissipating fin.
  • the fourth heat dissipating fins in the cold air passage can assist in dissipating heat to the second heat dissipating substrate, and at the same time, since the density of the fourth heat dissipating fins is smaller than the density of the second heat dissipating fins, the cooling airflow can still be ensured. Pass through the cold air passage.
  • the heat sink further includes a fifth heat dissipating fin set for dissipating heat for the first heat dissipating substrate and a sixth heat dissipating fin set for dissipating heat for the second heat dissipating substrate, the fifth heat dissipating The fin group and the sixth heat dissipating fin group are stacked on a side of the heat dissipation substrate that faces away from the heat conduction surface;
  • the fifth heat dissipating fin group is located between the sixth heat dissipating fin group and the heat dissipating substrate, or the sixth heat dissipating fin group is located between the fifth heat dissipating fin group and the heat dissipating substrate.
  • the heat dissipating fin groups for dissipating heat for the two heat dissipating substrates are stacked on the heat dissipating substrate, thereby
  • the heat dissipation fin group is disposed by using a height space above the heat dissipation substrate to ensure heat dissipation efficiency of the heat dissipation substrate.
  • the heat transfer surface of the at least one heat dissipation substrate is provided with a semiconductor refrigeration chip, and the semiconductor refrigeration chip and the corresponding chip on the sealed chip are in contact.
  • the heat transfer efficiency of the heat conduction surface can be accelerated by utilizing the characteristics of electron migration of the semiconductor itself, and the heat dissipation efficiency of the heat sink can be improved.
  • other principles of the cooling chip can be used to improve the heat conduction speed on the heat conduction surface of the heat dissipation substrate.
  • the material constituting the connector has a thermal conductivity that is less than a rate of thermal conductivity of the material constituting the heat dissipating substrate.
  • the thermal conductivity of the connecting body is smaller than the thermal conduction rate of the heat dissipating substrate, the thermal conduction speed of the connecting body is further reduced, and the thermal isolation level between the different heat dissipating substrates is improved.
  • a second aspect of the present invention provides a heat sink including a heat dissipation substrate for dissipating heat from a sealed chip located on a circuit board, wherein the heat dissipation substrate is located on a side of the sealed chip facing away from the circuit board;
  • the heat dissipation substrate includes a first heat dissipation substrate and a second heat dissipation substrate.
  • the first heat dissipation substrate and the second heat dissipation substrate respectively have a heat conduction surface that conducts heat conduction with the chip in the sealed chip, and different heat conduction surfaces correspond to different chips.
  • the heat dissipation substrate and the second heat dissipation substrate are connected by a connecting member.
  • the thermal conductivity of the connecting member is smaller than the thermal conductivity of the first heat dissipation sub-substrate, and the thermal conductivity of the connecting member is smaller than the thermal conductivity of the second heat dissipation substrate.
  • a plurality of heat dissipation substrates that dissipate heat for different chips are connected by a connector having a lower thermal conductivity. Since the heat conduction between the heat dissipation substrates is less, when the temperatures of the chips under the respective heat dissipation sub-substrates are different, each The heat dissipated by the chip is not transmitted to the other chip through the heat dissipating substrate, that is, the heat dissipated by the high temperature chip is not transferred to the chip with low temperature during the use of the heat sink, thereby effectively improving the chip with lower temperature.
  • the service life which in turn increases the life of electronic products.
  • the heat conducting surfaces of the first heat dissipation substrate and the second heat dissipation substrate are all on the same plane.
  • the heat conduction surfaces of the first heat dissipation substrate and the second heat dissipation substrate are all located on the same plane, thereby ensuring the heat dissipation substrate.
  • the heat conduction surfaces are bonded to the respective chips on the sealed chip to avoid contact failure between the heat dissipation substrate and the sealed chip.
  • the material constituting the connector is a heat insulating material.
  • the connecting member is made of a heat insulating material, which can minimize the heat transfer process between the adjacent first heat dissipating substrate and the second heat dissipating substrate, so that the heat dissipating substrates are approximately thermally insulated from each other. Avoid the heat emitted by the high temperature chip to the low temperature chip and improve the life of the chip.
  • the second heat dissipation substrate is provided with a positioning groove at a portion corresponding to the connecting member, and the positioning groove is used for avoiding the connecting member.
  • the second heat dissipating substrate is opened.
  • the connector is fixed and positioned in the direction of the substrate.
  • the number of connectors is at least two.
  • the plurality of connectors may be symmetrically disposed on both sides of the first heat dissipation substrate to enhance the connection stability between the first heat dissipation substrate and the second heat dissipation substrate.
  • the connector is provided with a first through hole, and the second heat dissipation substrate is corresponding to the first through hole a second through hole is formed in the position; and the fixing member further includes a fixing screw; the fixing screw is disposed in the first through hole and the second through hole, and the first heat dissipation substrate is located at the fixing screw head and the second heat dissipation Between the substrates, and the tail of the fixing screw and the second heat dissipation substrate are fixedly connected to connect the first heat dissipation substrate and the second heat dissipation substrate together.
  • the fixing screws for connecting the connecting member and the second heat dissipating substrate are fastened and connected by a common screw connection, so the connection is relatively reliable, and at the same time, due to the screw connection, the connecting member or the second heat dissipating substrate Most of the through holes and the threads on the fixing screws are point contact or line contact, and the contact surface is small, which can further reduce the heat conduction speed between the connecting member and the second heat dissipation substrate, and ensure the first heat dissipation substrate and Thermal isolation between the second heat sink substrates.
  • the fixing member further includes an elastic member, and two ends of the elastic member respectively abut between the head of the fixing screw and the first heat dissipation substrate, so that the first heat dissipation substrate is in the elastic member. Under the elastic force, it fits with the sealed chip.
  • the elastic member in the fixing member can simultaneously abut against the fixing screw and the first heat dissipation substrate. Because the fixing screw and the second heat dissipating substrate are fixedly connected, the relative positions of the two are fixed. Therefore, under the action of the elastic member, the first heat dissipating substrate is pressed against the second heat dissipating substrate by the elastic member, thereby generating a certain floating effect, so that the first heat dissipation substrate can be restricted from moving away from the second heat dissipation substrate, and the first heat dissipation substrate and the second heat dissipation substrate can be kept as close as possible to the sealing chip, that is, the first heat dissipation substrate and The heat conduction surfaces of the second heat dissipation substrate are coplanar.
  • the second heat dissipation substrate and the connector are connected by an insulating glue.
  • an insulating glue is disposed between the connecting member and the second heat dissipating substrate, which can block heat transfer between the connecting member and the second heat dissipating substrate, and further avoids between the first heat dissipating substrate and the second heat dissipating substrate. Heat transfer.
  • soldering may be performed between the connecting member and the second heat dissipating substrate to achieve the fixation of the two.
  • the heat sink includes a first positioning stud and a second positioning stud
  • the bottom end of the first positioning stud is connected to the second heat dissipation substrate, and the axial direction of the first positioning stud is perpendicular to the plane of the second heat dissipation substrate, and the second positioning stud is screwed to the top of the first positioning stud.
  • the first end of the connector is fixed to the first heat dissipation substrate, and the second end of the connector is fixed at the screwing of the first positioning stud and the second positioning stud.
  • a two-layer stud structure is adopted, and the second end of the connecting member is fixed between the first positioning stud and the second positioning stud, and the first positioning stud is fixed on the second heat dissipating substrate. Therefore, the connection between the connecting member and the second heat dissipating substrate is indirectly realized by using the stud. Since the general contact surface between the connecting member and the positioning stud is small, and there is usually a gap, the connecting member and the positioning stud The heat transfer speed and heat transfer efficiency are both low, which can better prevent heat from being transmitted to different heat dissipation substrates via the connecting member.
  • the second end of the connector and the first end of the connector are different in vertical distance from the plane in which the second heat sink substrate is located.
  • the connecting member and the second heat dissipating substrate are connected by a double-layer positioning stud or the like, in order to avoid other connecting structures, the second end and the first end of the connecting member may generally be located at a distance from the second.
  • the plane of the heat dissipating substrate is at a different distance from the plane, so that the second end of the connecting member is fixed away from the connecting structure.
  • the first end of the connector and the second end of the connector are connected by a bent section.
  • the second heat dissipation substrate is provided with a notch, at least a portion of the first heat dissipation substrate is located in the notch, and an outer edge shape of the portion of the first heat dissipation substrate located in the notch matches the shape of the notch.
  • the second heat dissipation substrate is provided with a notch, at least a portion of the first heat dissipation substrate can enter the notch, so that the position of the heat dissipation substrate can better correspond to different chip positions on the sealed chip, and at the same time, Reduce the overall area and size of the heat sink substrate.
  • the first heat sink substrate is completely within the gap.
  • the second heat dissipation substrate is disposed outside the first heat dissipation substrate and constitutes a closed shape.
  • the heat sink further includes a first heat dissipating fin group for dissipating heat for the first heat dissipating substrate and a second heat dissipating fin group for dissipating heat for the second heat dissipating substrate, the first heat dissipating fin
  • the second heat dissipation fin group is located on a side of the first heat dissipation substrate that faces away from the heat conduction surface
  • the second heat dissipation fin group is located on a side of the second heat dissipation substrate that faces away from the heat conduction surface
  • the second heat dissipation fin group forms a cold air passage therein
  • the second heat dissipation fin group is in the second heat dissipation fin group.
  • a second heat dissipating fin is disposed on both sides of the cold air passage, and the first heat dissipating fin group is located in the cold air passage or the extension line of the cold air passage.
  • a heat dissipating fin group for dissipating heat from the heat dissipating substrate is further connected to each of the heat dissipating substrates of the heat sink.
  • the second heat dissipating fin group on the second heat dissipating substrate is provided with a cold air passage extending through the entire second heat dissipating fin group, so that the airflow for external cooling can be blown to the first heat dissipating fin group through the cold air passage. Therefore, both the first heat dissipating fin group and the second heat dissipating fin group have high heat dissipation efficiency.
  • the third air radiating fin is further disposed in the cold air passage, and the third heat dissipating fin has a height smaller than a height of the second heat dissipating fin.
  • the heat dissipation can be assisted to ensure the heat dissipation efficiency on the second heat dissipating substrate, and at the same time, since the height of the third heat dissipating fin is low, Therefore, it is still possible to ensure that the cooling airflow passes through the cold air passage.
  • the cold air duct is further provided with a fourth heat dissipating fin, and the fourth heat dissipating fin has a density smaller than a density of the second heat dissipating fin.
  • the fourth heat dissipating fins in the cold air passage can assist in dissipating heat to the second heat dissipating substrate, and at the same time, since the density of the fourth heat dissipating fins is smaller than the density of the second heat dissipating fins, the cooling airflow can still be ensured. Pass through the cold air passage.
  • the heat sink further includes a fifth heat dissipating fin set for dissipating heat for the first heat dissipating substrate and a sixth heat dissipating fin set for dissipating heat for the second heat dissipating substrate, the fifth heat dissipating The fin group and the sixth heat dissipating fin group are stacked on a side of the heat dissipation substrate that faces away from the heat conduction surface;
  • the fifth heat dissipating fin group is located between the sixth heat dissipating fin group and the heat dissipating substrate, or the sixth heat dissipating fin group is located between the fifth heat dissipating fin group and the heat dissipating substrate.
  • the heat dissipating fin groups for dissipating heat for the two heat dissipating substrates are stacked on the heat dissipating substrate, so that the heat dissipating substrate can be used when the area of the heat dissipating substrate is small and it is difficult to form an effective cold air channel.
  • the upper height space is provided with a heat dissipating fin group to ensure the heat dissipation efficiency of the heat dissipating substrate.
  • the heat transfer surface of the at least one heat dissipation substrate is provided with a semiconductor refrigeration chip, and the semiconductor refrigeration chip and the corresponding chip on the sealed chip are in contact.
  • the heat transfer efficiency of the heat conduction surface can be accelerated by utilizing the characteristics of electron migration of the semiconductor itself, and the heat dissipation efficiency of the heat sink can be improved.
  • other principles of the cooling chip can be used to improve the heat conduction speed on the heat conduction surface of the heat dissipation substrate.
  • a third aspect of the present invention provides a heat dissipating device comprising at least two heat sinks and at least one heat pipe according to any of the above first or second aspects;
  • Each heat sink corresponds to a sealed chip
  • the two ends of the heat pipe are respectively connected to the heat dissipation substrate of the different heat sinks, so that the heat of the heat sink corresponding to the sealed chip in the heat generating state is transmitted to the heat sink corresponding to the unheated sealed chip.
  • the fourth aspect of the present application provides a heat dissipation system, comprising: at least one heat sink according to any one of the above first aspect or the second aspect, and at least one sealed chip; wherein each heat sink corresponds to one sealed chip;
  • the heat sink is used to dissipate heat from the sealed chip.
  • a heat sink is disposed on each of the sealed chips, and different heat dissipation substrates on the heat sink can dissipate heat according to different chips in the sealed chip, so that when the heat generated by the chips in the sealed chip is different, For each of these chips, independent and effective heat dissipation is provided, and the normal operation and life of each chip in the packaged chip are packaged.
  • a fifth aspect of the present invention provides a communication device, comprising at least one heat sink according to any of the above first or second aspect, at least one sealed chip and at least one circuit board;
  • At least one sealed chip is disposed on each circuit board
  • Each heat sink corresponds to a sealed chip, and the heat sink is used to dissipate heat for the sealed chip.
  • a heat sink is disposed on the sealed chip of the internal circuit board of the communication device, and different heat dissipation substrates on the heat sink can dissipate heat according to different chips in the sealed chip, so that the chip is printed in the sealed chip.
  • each of the chips provides independent and effective heat dissipation, and the normal operation and life of each chip in the packaged chip are packaged.
  • the heat sink, the heat dissipating device, the heat dissipating system and the communication device provided by the present application wherein the heat sink comprises a heat dissipating substrate, a connecting body and a fixing member; the heat dissipating substrate is used for dissipating heat to the sealed chip located on the circuit board, and the heat dissipating substrate is located in the sealed The chip faces away from the side of the board.
  • the heat dissipation substrate includes a first heat dissipation substrate and a second heat dissipation substrate.
  • the first heat dissipation substrate and the second heat dissipation substrate respectively have a heat conduction surface for heat conduction with the chip in the sealed chip, and different heat conduction surfaces correspond to different chips, and the connection body
  • the first end is fixed to the first heat dissipation substrate
  • the second end of the connector is suspended on the outer side of the second heat dissipation substrate
  • the fixing member abuts on the outer side of the first heat dissipation substrate to restrict the first heat dissipation substrate from moving away from the second heat dissipation substrate The direction of movement.
  • the heat radiated from the respective chips is not transmitted to the other chips through the heat dissipation substrate, that is, the heat radiated from the high temperature chips is not transferred to the temperature during use of the heat sink.
  • the low chip effectively increases the lifetime of the lower temperature chip, which in turn increases the life of the electronic product.
  • FIG. 1 is an external view of a heat sink according to Embodiment 1 of the present application.
  • FIG. 2 is a schematic structural view of a heat sink according to Embodiment 1 of the present application.
  • FIG. 3 is a schematic view showing a specific structure of a first heat dissipation substrate in the heat sink shown in FIG. 2;
  • FIG. 4 is a schematic view showing a specific structure of a second heat dissipation substrate in the heat sink shown in FIG. 2;
  • FIG. 5 is a schematic diagram of connection and fixing between a first heat dissipation substrate and a second heat dissipation substrate according to Embodiment 1 of the present application;
  • FIG. 6 is a first relative positional view between the first heat dissipation substrate and the second heat dissipation substrate provided in the first embodiment of the present application;
  • FIG. 9 is a fourth relative position of the first heat dissipation sub-substrate and the second heat dissipation sub-substrate according to Embodiment 1 of the present application; FIG.
  • FIG. 10 is a schematic structural view 1 of a heat dissipating fin group according to Embodiment 1 of the present application.
  • FIG. 11 is a second schematic structural view of a heat dissipating fin group according to Embodiment 1 of the present application.
  • FIG. 12 is a schematic structural view 3 of a heat dissipating fin group according to Embodiment 1 of the present application.
  • FIG. 13 is a schematic structural view 4 of a heat dissipating fin group according to Embodiment 1 of the present application.
  • FIG. 14 is a schematic structural view of a heat sink provided in Embodiment 2 of the present application.
  • FIG. 15 is another schematic structural diagram of a heat sink provided in Embodiment 2 of the present application.
  • FIG. 16 is a schematic structural view of a heat sink according to Embodiment 3 of the present application.
  • FIG. 17 is a schematic structural view of a heat sink provided in Embodiment 4 of the present application.
  • FIG. 18 is a schematic structural diagram of a heat dissipation device according to Embodiment 5 of the present application.
  • FIG. 19 is a schematic structural diagram of a heat dissipation system according to Embodiment 6 of the present application.
  • FIG. 20 is a schematic structural diagram of a communication device according to Embodiment 7 of the present application.
  • the chip can include various electronic circuit components that can be used to build an electronic product.
  • electronic product For example: computer or mobile terminal.
  • the multi-chip package technology that enables chips with different functions to be packaged in the same package meets the trend of electronic products due to the high capacity and versatile operation in a single package.
  • SIP System in Package
  • a microprocessor or a memory for example, Erasable Programmable Read-Only Memory (EPROM) and Dynamic Random Access Memory (DRAM)
  • EPROM Erasable Programmable Read-Only Memory
  • DRAM Dynamic Random Access Memory
  • FPGA Field-Programmable Gate Array
  • resistors resistors, capacitors, and inductors are combined in a package that holds up to four or five dies.
  • the heat dissipating device in the prior art includes a heat dissipating substrate and heat dissipating fins disposed on the heat dissipating substrate.
  • the heat dissipating device is fixed on the chip package body, so that the heat dissipating device and the chip are disposed.
  • the surface of the package is in contact with the heat radiated from the chip to the heat dissipating fins.
  • the heat dissipating fins dissipate heat, but the heat dissipated from each chip in the same package cannot be effectively removed at the same time, and the heat dissipating substrate is passed through.
  • the heat emitted by the higher temperature chip is transferred to the lower temperature chip, thereby reducing the life of the lower temperature chip, thereby reducing the life of the electronic product.
  • the present application divides the heat dissipating substrate of the heat dissipating device into different heat dissipating sub-substrates, and each sub-substrate corresponds to one of the sealed chips, and is used for dissipating heat of the chip, and no heat conduction between the sub-substrates, thereby making the temperature more
  • the heat generated by the high chip is not transmitted to the lower temperature chip, which effectively increases the service life of the lower temperature chip, thereby increasing the life of the electronic product.
  • the present application is applied to a device such as a sealed chip that packages a plurality of different chips in the same package.
  • FIG. 1 is an external view of a heat sink according to Embodiment 1 of the present application.
  • 2 is a schematic structural view of a heat sink provided in Embodiment 1 of the present application.
  • 3 is a schematic view showing a specific structure of a first heat dissipation substrate in the heat sink shown in FIG. 2.
  • Figure 4 is the view shown in Figure 2 A schematic diagram of a specific structure of a second heat dissipation substrate in the heat sink.
  • the heat sink in this embodiment may include a heat dissipation substrate 11, a connecting body 22 and a fixing member 33;
  • the heat dissipation substrate 11 is configured to dissipate heat from the sealed chip located on the circuit board, and the heat dissipation substrate 11 is located on a side of the sealed chip facing away from the circuit board;
  • the heat dissipation substrate 11 is usually made of a material having good thermal conductivity such as aluminum or copper, and includes a first heat dissipation substrate 111 and a second heat dissipation substrate 112.
  • the first heat dissipation substrate 111 and the second heat dissipation substrate 112 respectively have one and a sealed chip.
  • the first end of the connecting body 22 is fixed to the first heat dissipating substrate 111, and the second end of the connecting body 22 is suspended outside the second heat dissipating substrate 112, and the different heat conducting surfaces correspond to different chips.
  • the fixing member 33 abuts against the outer side of the first heat dissipation substrate 111 to restrict the first heat dissipation substrate 111 from moving away from the second heat dissipation substrate 112 .
  • the one surface of the heat dissipation substrate and the corresponding chip in the sealed chip may be: each of the heat dissipation substrates corresponds to one chip in the sealed chip, and may also correspond to a plurality of chips in the sealed chip, in an achievable manner In the case of a plurality of chips in the sealed chip, the heat generation and heat dissipation requirements of the plurality of chips corresponding to each of the heat dissipation substrates are similar or the same.
  • the heat conduction surfaces of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are all on the same plane. Because in the sealed chip, the one side of each chip away from the circuit board is on the same plane, the heat conduction surfaces of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are all located on the same plane, and the heat conduction surface of the heat dissipation substrate 11 can be ensured. All of them are attached to the respective chips on the sealed chip to avoid contact failure between the heat-dissipating substrate 11 and the sealed chip, and the case where the single heat-dissipating substrate and the sealed chip are not in contact.
  • the connecting body 22 is elongated.
  • the connecting body 22 When the connecting body 22 is elongated, it can be overlapped between the first heat dissipation substrate 111 and the second heat dissipation substrate 112. Since the elongated connecting body 22 has a small cross-sectional area in the longitudinal direction, according to the heat conduction law, the amount of heat that can be conducted per unit time is small, that is, the heat transfer speed is small. In this way, since the length direction of the connecting body 22 is generally the heat transfer direction, the cross-sectional area of the connecting body 22 in the direction is generally smaller than when the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are directly connected. The size of the cross section.
  • the first connection surface is defined as a surface of the first heat dissipation substrate 111 opposite to the second heat dissipation substrate 112
  • the second connection surface is a surface of the second heat dissipation substrate 112 opposite to the first heat dissipation substrate 111 .
  • the cross-sectional area of the connecting body 22 in its own heat conduction direction should be smaller than the overlapping area between the first connecting surface and the second connecting surface.
  • the connecting body 22 is in the form of a thin plate.
  • the thin plate-shaped connecting body 22 also has a small cross-sectional area, which can effectively reduce its own heat conduction speed, thereby hindering the transfer process of heat between different heat-dissipating substrates, and will not be described herein.
  • the thin plate-like connecting body 22 can have a wide width while achieving a small cross-sectional area to facilitate connection with a fixing structure such as the fixing member 33.
  • the shape of the connecting body is not limited to an elongated shape or a thin plate shape, and may be other structural forms having a small cross section, such as a hollow structure.
  • the second heat dissipation substrate 112 is provided with a positioning groove 1121 at a portion corresponding to the connecting body 22, and the positioning groove 1121 is for escaping the connecting body 22.
  • FIG. 5 is a schematic diagram of connection and fixing between a first heat dissipation substrate and a second heat dissipation substrate according to Embodiment 1 of the present application. As shown in FIG.
  • the connecting body 22 and the second heat dissipating substrate 112 in order to avoid interference between the connecting body 22 and the second heat dissipating substrate 112 while minimizing the distance between the adjacent heat dissipating substrates, it is necessary to provide a mounting groove 1121 on the second heat dissipating substrate 112 for placement.
  • the slot 1121 is sized and depthed to match the connector 22 such that the second end of the connector 22 can be placed within the seating slot 1121. The interference between the two is avoided, and the shape of the seating groove 1121 can fix and position the connecting body 22 from the direction parallel to the heat dissipation substrate.
  • the number of the connecting bodies 22 is at least two.
  • the connecting body 22 is two or more, the plurality of connecting bodies may be symmetrically disposed on both sides of the first heat dissipation substrate to enhance the connection stability between the first heat dissipation substrate 111 and the second heat dissipation substrate 112.
  • the connecting body 22 is specifically configured as four, and the four connecting bodies are respectively connected from the two sides of the first heat dissipation substrate 111. This arrangement can effectively ensure the second heat dissipation substrate 112 and the first heat dissipation. The fixing between the substrates 111.
  • the fixing member 33 may have various forms.
  • a first through hole is defined in the connecting body 22, and the second heat dissipation substrate 112 is provided with a second through hole at a position corresponding to the first through hole;
  • the fixing screw 331 is further disposed in the first through hole and the second through hole.
  • the first heat dissipation substrate 111 is located between the head of the fixing screw 331 and the second heat dissipation substrate 112, and the fixing screw 331
  • the tail portion is fixedly connected to the second heat dissipation substrate 112 to connect the first heat dissipation substrate 111 and the second heat dissipation substrate 112 together.
  • the number of the fixing screws 331 may be plural.
  • the number of the fixing screws 331 can be less than the number of the connecting bodies 22, as long as the fixing screws 331 can ensure the fixing effect on the connecting body 22, so that the number of the fixing screws 331 can be reduced, and the fixing screws 331 can be prevented from occupying too much space. It interferes with the setting of other components.
  • the fixing screw 331 can also be replaced with a fastener such as a bolt; the first through hole and the second through hole can be a screw hole or a light hole.
  • the fixing member 33 further includes a nut, and the connection between the connecting body and the heat dissipation substrate is fixedly connected by the cooperation of the screw and the nut.
  • the screw 331 is disposed in the through hole on the two different heat dissipation substrates, and the first through hole of the connecting body 22 or the second through hole on the second heat dissipation substrate 112 and the thread on the fixing screw 331 are mostly
  • the point contact or line contact method has a small contact surface, which can further reduce the thermal conduction speed between the connection body 22 and the second heat dissipation substrate 112, and ensure thermal isolation between the first heat dissipation substrate 111 and the second heat dissipation substrate 112. .
  • the fixing member 33 may further include an elastic member 332.
  • the two ends of the elastic member 332 abut against the head of the fixing screw 331 and the first heat dissipation substrate 111, respectively.
  • a heat dissipation substrate 111 is bonded to the sealing chip under the elastic force of the elastic member 332.
  • the elastic member 332 can be a conventional elastic member such as a spring.
  • the elastic member 332 is a spring, the spring can be sleeved on the fixing screw 331, and the fixing manner is relatively simple.
  • the elastic member 332 in the fixing member 33 can simultaneously abut against the fixing screw 331 and the first heat dissipation substrate 111, and the fixing screw 331 and the second heat dissipation substrate 112 are fixedly connected, the relative positions of the two are kept fixed, so the elastic member is The first heat dissipation substrate 111 is pressed against the second heat dissipation substrate 112 by the elastic member 332, thereby generating a certain floating effect, so that the first heat dissipation substrate 111 is restricted from moving away from the second heat dissipation substrate 112.
  • the direction of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 can be kept as close as possible to the sealing chip, that is, the heat conduction surfaces of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are coplanar.
  • the second heat dissipation substrate 112 and the second end of the connecting body 22 are connected by an insulating glue.
  • the heat insulating glue is in a flowable state before being solidified, so it can be disposed on the second heat dissipation substrate 112 and even by means of painting or the like. Between the second ends of the body 22, and the amount of the heat insulating material can be freely set according to actual needs.
  • an insulating glue is disposed between the connecting body 22 and the second heat dissipation substrate 112, so that heat transfer between the connecting body 22 and the second heat dissipation substrate 112 can be blocked, thereby further avoiding the first heat dissipation substrate 111 and the second heat dissipation substrate 112. The heat transfer between.
  • other adhesives may be used for bonding between the second heat dissipation substrate 112 and the second end of the connecting body 22 to ensure the fixing effect between the two.
  • soldering may be used between the second end of the connecting body 22 and the second heat dissipating substrate 112 to achieve the fixing of the two. Solder joints are soldered, and the joints are effectively fixed because of their high joint strength.
  • the second heat dissipation substrate 112 and the first heat dissipation substrate 111 may be disposed side by side and do not interfere with each other; or the second heat dissipation substrate 112 may be provided with a notch, at least a portion of the first heat dissipation substrate 111 is located in the gap, and The outer edge shape of the portion of the heat dissipation substrate 111 located inside the notch matches the shape of the notch.
  • FIG. 6 is a first relative position diagram of the first heat dissipation substrate and the second heat dissipation substrate provided in the first embodiment of the present application.
  • FIG. 7 is a second relative position between the first heat dissipation substrate and the second heat dissipation substrate according to Embodiment 1 of the present application.
  • FIG. 8 is a third relative position of the first heat dissipation substrate and the second heat dissipation substrate provided in the first embodiment of the present application. As shown in FIG. 6 , FIG. 7 and FIG.
  • the second heat dissipation substrate 112 is substantially a rectangular plate, and the edge of the second heat dissipation substrate 112 is provided with a notch, and at least a part of the first heat dissipation substrate 111 or the entire first heat dissipation.
  • the substrate 111 is completely located in the notch, and the outer edge shape of the first heat dissipation substrate 111 matches the shape of the notch, and is rectangular in the figure, so that the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are combined into one large one. rectangle.
  • the structure formed by the first heat dissipation substrate 111 and the second heat dissipation substrate 112 is relatively compact, and the spacing between the two is small, which can effectively When the space is utilized and the area of the surface of the sealed chip is small, it is possible to accurately fit the respective chips on the sealed chip.
  • first heat dissipation substrate 111 and the second heat dissipation substrate 112 it is necessary to ensure that the heat conduction surfaces of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are on the same plane, thereby ensuring harmony.
  • the sufficient contact of the sealing chip prevents a certain heat dissipation substrate from contacting the surface of the corresponding chip in the sealed chip to affect the heat dissipation efficiency.
  • FIG. 9 is a fourth relative position diagram of the first heat dissipation sub-substrate and the second heat dissipation sub-substrate according to the first embodiment of the present application.
  • the second heat dissipation substrate 112 may be disposed outside the first heat dissipation substrate 111 and form a closed shape. This arrangement is suitable for the case where some chips in the sealed chip are located closer to the center.
  • heat dissipating fins connected to the heat dissipating substrate are disposed in the heat sink.
  • the heat dissipating fins have a large heat dissipating area, and can dissipate the heat accumulated by themselves by using the external cooling airflow.
  • the heat dissipating fins of the different heat dissipating substrates are connected to each other, for example, the heat dissipating fins of the first heat dissipating substrate 111 are connected to the heat dissipating fins on the second heat dissipating substrate 112, if the heat dissipating fins of the second heat dissipating substrate 112 are accumulated The heat in the heat dissipating fins of the second heat dissipating substrate 112 and the heat in the heat dissipating fins of the first heat dissipating substrate 111 are transmitted, so that the heat dissipating fins of the first heat dissipating substrate 111 are radiated.
  • the chip continues to heat up due to insufficient heat dissipation, it will affect the normal operation of the chip and the life of the chip.
  • the heat sink includes a first heat dissipation fin group 141 for dissipating heat for the first heat dissipation substrate 111 and a second heat dissipation fin group 142 for dissipating heat for the second heat dissipation substrate 112.
  • the first heat dissipation fin group 141 is located at the Heat conduction of a heat dissipation substrate 11
  • the second heat dissipating fin group 142 is located on a side of the second heat dissipating substrate 112 that faces away from the heat conducting surface, the second heat dissipating fin group 142 forms a cold air channel 142a, and the second heat dissipating fin group 142 is provided with a second surface.
  • the heat dissipating fins are located on both sides of the cold air passage 142a, and the first heat dissipating fin group 141 is located in the cold air passage 142a or on the extension line of the cold air passage 142a.
  • the first heat dissipating fin group 141 may be located inside the cold air channel 142a in the second heat dissipating fin group 142 or at both ends of the cold air channel 142a according to the difference in the relative positions between the first heat dissipating substrate 111 and the second heat dissipating substrate 112. Extend the line.
  • each of the heat dissipating substrates of the heat sink is further connected with a heat dissipating fin group for dissipating heat of the heat dissipating substrate.
  • a cooling airflow can be blown into the heat dissipating fin group.
  • the cooling airflow may be generated by an external air guiding structure or by an active heat dissipating device such as a fan.
  • FIG. 10 is a first schematic structural view of a heat dissipating fin group according to Embodiment 1 of the present application. As shown in FIG.
  • the airflow direction for heat dissipation is generally blown by the second heat dissipation substrate 112 toward the first heat dissipation substrate 111.
  • the first heat dissipation substrate 111 is located downstream of the air channel
  • the second heat dissipation substrate 112 is located at the air channel. Upstream, as shown in Figure 10.
  • the second heat-dissipating fin group 142 is provided with a cold air passage 142a extending through the entire second heat-dissipating fin group 142, so that the airflow for external cooling can be made from the cold air passage 142a.
  • first heat dissipating fin group 141 It passes through and blows onto the first heat dissipating fin group 141. Since both the first heat-dissipating fin group 141 and the second heat-dissipating fin group 142 can contact the airflow for cooling, the heat accumulated on the heat-dissipating fin group can be effectively radiated, so that the first heat-dissipating fin group 141 and the second heat-dissipating fin Each of the chip groups 142 has a high heat dissipation efficiency, so that the heat on the first heat dissipation substrate 111 or the second heat dissipation substrate 112 cannot be dissipated in time to cause damage to the packaged chip.
  • the arrangement direction of the heat dissipating fins may be set to be the same as the direction in which the cold air is blown.
  • FIG. 11 is a second schematic structural view of a heat dissipating fin group according to Embodiment 1 of the present application.
  • a third heat dissipation fin 143 is disposed in the cold air passage 142a of the second heat dissipation fin group 142, and the height of the third heat dissipation fin 143 is smaller than the first heat dissipation fin 143.
  • the height of the two heat dissipating fins is as shown in FIG.
  • the heat dissipating substrate can be assisted in heat dissipation to ensure heat dissipation efficiency on the second heat dissipating substrate 112, and at the same time, the third heat dissipating fin 143 has a lower height. Therefore, it is still possible to ensure that the airflow for cooling passes through the cold air passage 142a.
  • FIG. 12 is a third structural diagram of a heat dissipating fin group according to Embodiment 1 of the present application.
  • a fourth heat dissipating fin 144 is disposed in the cold air passage.
  • the density of the fourth heat dissipating fin 144 is smaller than the density of the second heat dissipating fin, as shown in FIG. 12 .
  • the fourth heat dissipation fins 144 in the cold air passages 142a can enlarge the heat dissipation area of the entire second heat dissipation fin group 142, thereby assisting in heat dissipation of the second heat dissipation substrate 112.
  • the density of the fourth heat dissipating fins 144 is smaller than the density of the second heat dissipating fins, there is a large gap between the fourth heat dissipating fins 144, and the cooling airflow can still be ensured to pass through the cold air passage 142a.
  • the heat dissipation is performed for the first heat dissipation fin group 141.
  • FIG. 13 is a fourth structural diagram of a heat dissipating fin set according to Embodiment 1 of the present application. As shown in FIG.
  • the heat sink further includes a fifth heat dissipating fin group 145 for dissipating heat from the first heat dissipating substrate 111 and a sixth heat dissipating fin group 146 for dissipating the heat dissipating 112 for the second heat dissipating substrate, the fifth heat dissipating fin
  • the group 145 and the sixth heat dissipating fin group 146 are stacked on a side of the heat dissipating substrate that faces away from the heat conducting surface;
  • the fifth heat dissipating fin group 145 may be disposed between the sixth heat dissipating fin group 146 and the heat dissipating substrate, or the sixth heat dissipating fin group 146 may be located between the fifth heat dissipating fin group 145 and the heat dissipating substrate. between.
  • the two heat dissipating fin groups are stacked one above another in a direction perpendicular to the heat conducting surface, so that the area of each of the heat dissipating fin groups can be larger and the entire heat dissipating substrate is covered.
  • the heat dissipating fin group far away from the heat dissipating substrate can transfer heat between the heat pipe and the heat dissipating substrate to ensure heat dissipation to the heat dissipating substrate. Therefore, by stacking the heat dissipating fin groups respectively for dissipating heat for the two heat dissipating substrates on the heat dissipating substrate, the area above the heat dissipating substrate can be utilized when the area of the heat dissipating substrate is small and it is difficult to form an effective cold air channel.
  • the heat-dissipating fin set is arranged in a high space to ensure the heat dissipation efficiency of the heat-dissipating substrate.
  • a semiconductor refrigeration chip may be disposed on the heat conduction surface of the at least one heat dissipation substrate, and the semiconductor refrigeration chip and the corresponding chip on the sealed chip are in contact.
  • the electron transfer characteristics of the semiconductor itself can be utilized to accelerate the heat transfer speed on the heat conduction surface, improve the heat dissipation efficiency of the heat sink, and enhance the heat dissipation of the respective chips on the sealed chip. The chip works and extends the life of the chip.
  • a semiconductor refrigeration chip may be provided on the heat conduction surface of the partial heat dissipation substrate, or a semiconductor refrigeration chip may be provided on the heat conduction surface of all the heat dissipation substrates.
  • the arrangement and number of semiconductor cooling chips can be freely set according to specific heat dissipation requirements.
  • thermoelectric coolers can be used instead of the above-mentioned semiconductor refrigeration chip.
  • the method of using the thermoelectric cooler is the same as in the prior art, and details are not described herein again.
  • the material of the connecting body can be selected to further reduce the heat conduction rate and the heat conduction efficiency between the different heat dissipation substrates, and the thermal isolation effect between the heat dissipation substrates is enhanced.
  • the heat transfer rate of the material constituting the connector may be lower than the heat transfer rate of the material constituting the heat dissipation substrate.
  • the general connecting body may be a material having a low thermal conductivity such as stainless steel or zinc alloy.
  • the heat conduction speed is slower, which can further block the heat transfer between the different heat dissipation substrates, so that the heat dissipation process of each chip is more independent, and the chip with high heat generation in the sealed chip is prevented from being interfered with. Normal heat dissipation of chips with small heat.
  • the heat sink includes a heat dissipation substrate, a connecting body and a fixing member; the heat dissipation substrate is used for dissipating heat to the sealed chip located on the circuit board, and the heat dissipation substrate is located on a side of the sealed chip facing away from the circuit board.
  • the heat dissipation substrate includes a first heat dissipation substrate and a second heat dissipation substrate.
  • the first heat dissipation substrate and the second heat dissipation substrate respectively have a heat conduction surface for heat conduction with the chip in the sealed chip, and different heat conduction surfaces correspond to different chips, and the connection body
  • the first end is fixed to the first heat dissipation substrate
  • the second end of the connector is suspended on the outer side of the second heat dissipation substrate
  • the fixing member abuts on the outer side of the first heat dissipation substrate to restrict the first heat dissipation substrate from moving away from the second heat dissipation substrate The direction of movement.
  • the heat radiated from the respective chips is not transmitted to the other chips through the heat dissipation substrate, that is, the heat radiated from the high temperature chips is not transferred to the temperature during use of the heat sink.
  • the low chip effectively increases the lifetime of the lower temperature chip, which in turn increases the life of the electronic product.
  • FIG. 14 is a schematic structural diagram of a heat sink provided in Embodiment 2 of the present application.
  • the heat sink when heat is dissipated to different chips of the sealed chip, heat transfer between the different heat dissipation substrates can be insulated by a material having a low thermal conductivity.
  • the heat sink includes a heat dissipation substrate 11 for dissipating heat from a sealed chip located on the circuit board, and the heat dissipation substrate is located on a side of the sealed chip facing away from the circuit board;
  • the heat dissipation substrate 11 includes a first heat dissipation substrate 111 and a second heat dissipation substrate 112.
  • the first heat dissipation substrate 111 and the second heat dissipation substrate 112 respectively have a heat conduction surface for heat conduction with the chip in the sealed chip, and different heat conduction surfaces are different.
  • the chip, the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are connected by a connecting member 23, the thermal conductivity of the connecting member 23 is smaller than the thermal conductivity of the first heat dissipation sub-substrate 111, and the thermal conductivity of the connecting member 23 is smaller than the second The thermal conductivity of the heat dissipation substrate 112.
  • a plurality of heat dissipation substrates that dissipate heat for different chips are connected by a connector 23 having a low thermal conductivity. Since the connection member 23 for connecting two adjacent heat dissipation substrates has a thermal conductivity smaller than that of the connection. The heat dissipation substrate, so the heat transfer between adjacent heat dissipation substrates is less.
  • the heat dissipation substrate is transferred to other chips, that is, the heat generated by the high temperature chip is not transferred to the low temperature chip during the use of the heat sink, thereby effectively improving the service life of the lower temperature chip. Increased the life of the enclosed chip and the entire electronic product.
  • the connecting member 23 may be made of a material having a low thermal conductivity such as stainless steel or zinc alloy. Compared with the material constituting the heat dissipation substrate, the heat conduction speed is slower, which can further block the heat transfer between the different heat dissipation substrates, so that the heat dissipation process of each chip is more independent, and the chip with high heat generation in the sealed chip is prevented from being interfered with. Normal heat dissipation of chips with small heat.
  • the heat conduction surfaces of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are all on the same plane. Since the one side of the chip that is far away from the circuit board is on the same plane, the heat conduction surfaces of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are all located on the same plane, thereby ensuring the heat conduction surface of the heat dissipation substrate. It is bonded to each chip on the sealed chip to avoid contact failure between the heat-dissipating substrate and the sealed chip.
  • the material constituting the connecting member 23 is a heat insulating material.
  • the connecting member 23 is made of a heat insulating material, which can minimize the heat transfer process between the adjacent first heat dissipating substrate 111 and the second heat dissipating substrate 112, so that the heat dissipating substrates are approximately thermally insulated from each other, and the temperature is avoided.
  • the heat emitted by the high chip is transferred to the low temperature chip to improve the life of the chip.
  • commonly used insulation materials include plastic, fiberglass, asbestos and the like. Since the plastic has good heat insulation properties and is easy to mold, it is a preferred material for forming the connector.
  • the cross-sectional area of the connecting member 23 in the heat transfer direction is generally smaller than when the first heat-dissipating substrate 111 and the second heat-dissipating substrate 112 are directly connected, and the connecting portion is cut off. area size.
  • the first connection surface is defined as a surface of the first heat dissipation substrate 111 opposite to the second heat dissipation substrate 112, and the second connection surface is a surface of the second heat dissipation substrate 112 opposite to the first heat dissipation substrate 111.
  • the cross-sectional area of the connecting member 23 in its own heat conduction direction should be smaller than the overlapping area between the first connecting surface and the second connecting surface.
  • the connecting member 23 may be elongated or thin and overlaps between the first heat dissipation substrate 111 and the second heat dissipation substrate 112. It should be noted that the shape of the connecting member 23 is not limited to an elongated shape or a thin plate shape, and may be other structural forms having a smaller cross section.
  • the second heat dissipation substrate 112 is provided with a positioning groove 1121 at a portion corresponding to the connecting member 23, and the positioning groove 1121 is for escaping the connecting member 23.
  • the connecting member 23 and the second heat dissipating substrate 112 are connected, in order to avoid interference between the connecting member 23 and the second heat dissipating substrate 112, and further stably fixing the connecting member 23, the second heat dissipating substrate 112 is provided with a positioning groove 1121.
  • the size and depth of the seating groove 1121 are matched with the connecting member 23, so that the connecting member 23 can be placed in the seating groove 1121 to avoid interference between the two, and the shape of the positioning groove 1121 can be parallel to the heat dissipating substrate.
  • the connector 23 is fixed and positioned in the direction.
  • the number of the connecting members 23 is at least two.
  • the plurality of connecting members may be symmetrically disposed on both sides of the first heat dissipation substrate 111 to enhance the connection stability between the first heat dissipation substrate 111 and the second heat dissipation substrate 112.
  • the soldering between the connecting member 23 and the second heat dissipating substrate 112 can be directly performed by soldering to achieve the fixing of the two.
  • the material of the connecting member 23 may be a metal material such as stainless steel or a zinc alloy that can be combined with solder.
  • the bonding between the connecting member 23 and the second heat dissipation substrate 112 may be performed by using an adhesive to achieve the fixation therebetween.
  • FIG. 15 is another schematic structural diagram of a heat sink according to Embodiment 2 of the present application. As shown in FIG. 15, a first through hole is formed in the connecting member 23, and the second heat radiating substrate 112 is at a position corresponding to the first through hole.
  • a second through hole is provided in the upper opening; and the fixing screw 331 is further included in the heat sink; the fixing screw 331 is disposed in the first through hole and the second through hole, and the first heat dissipation substrate 111 is located at the head of the fixing screw 331
  • the second heat dissipation substrate 112 is disposed, and the tail portion of the fixing screw 331 and the second heat dissipation substrate 112 are fixedly connected to connect the first heat dissipation substrate 111 and the second heat dissipation substrate 112 together.
  • the fixing screws 331 for connecting the connecting member 23 and the second heat dissipating substrate 112 are fastened and connected by a common screw connection, so that the connection is reliable, and at the same time, the connecting member 23 or the second heat dissipating substrate is due to the screwing connection.
  • Most of the through holes on the 112 and the threads on the fixing screws 331 are point contact or line contact, and the contact surface thereof is small, so that the heat conduction speed between the connecting member 23 and the second heat dissipation substrate 112 can be further reduced, thereby ensuring Thermal isolation performance between the first heat dissipation substrate 111 and the second heat dissipation substrate 112.
  • the heat sink further includes an elastic member 332.
  • the two ends of the elastic member 332 abut against the head of the fixing screw 331 and the first heat dissipation substrate 111 to ensure the first heat dissipation.
  • the substrate 111 is bonded to the sealing chip by the elastic force of the elastic member 332.
  • the elastic member 332 can simultaneously abut against the fixing screw 331 and the first heat dissipation substrate 111, and the fixing screw 331 and the second heat dissipation substrate 112 are fixedly connected, the relative positions of the two are fixed, so that the elastic member 332 is under the action of the elastic member 332.
  • the first heat dissipation substrate 111 is pressed against the second heat dissipation substrate 112 by the elastic member 332 to generate a certain floating effect, so that the first heat dissipation substrate 111 can be restricted from moving away from the second heat dissipation substrate 112.
  • the first heat dissipation substrate 111 and the second heat dissipation substrate 112 can be adhered to the sealing chip as much as possible, that is, the heat conduction surfaces of the first heat dissipation substrate 111 and the second heat dissipation substrate 112 are coplanar.
  • the second heat dissipation substrate 112 and the connecting member 23 are connected by an insulating glue.
  • An insulating glue is disposed between the connecting member 23 and the second heat dissipating substrate 112 to block heat transfer between the connecting member 23 and the second heat dissipating substrate 112, further avoiding between the first heat dissipating substrate 111 and the second heat dissipating substrate 112. The heat transfer.
  • the relative positional relationship between the second heat dissipation substrate 112 and the first heat dissipation substrate 111 is similar to that of the first embodiment.
  • the second heat dissipation substrate 112 is provided with a notch, at least a portion of the first heat dissipation substrate 111 is located in the notch, and the outer edge shape and the notch of the portion of the first heat dissipation substrate 111 located in the notch The shapes match, as shown in Figures 6, 7, and 8.
  • the first heat dissipation substrate 111 is completely located in the notch.
  • the second heat dissipation substrate 112 is disposed outside the first heat dissipation substrate 111 and constitutes a closed shape, as shown in FIG. 9 .
  • the heat sink further includes a first heat dissipation fin group 141 for dissipating heat for the first heat dissipation substrate 111 and a second heat dissipation fin group 142 for dissipating heat for the second heat dissipation substrate 112.
  • the first heat dissipation fin group 141 is located on a side of the first heat dissipation substrate 111 that faces away from the heat conduction surface
  • the second heat dissipation fin group 142 is located on a side of the second heat dissipation substrate 112 that faces away from the heat conduction surface
  • the second heat dissipation fin group 142 is formed inside.
  • the second heat dissipating fin group 142 is provided with a second heat dissipating fin, the second heat dissipating fin is located at two sides of the cold air channel 142a, and the first heat dissipating fin group 141 is located in the cold air channel 142a or the cold air channel 142a is extended. Online, as shown in Figure 10.
  • a third heat dissipating fin 143 is disposed in the cold air channel 142a.
  • the height of the third heat dissipating fin 143 is smaller than the height of the second heat dissipating fin, as shown in FIG.
  • a fourth heat dissipating fin 144 is disposed in the cold air channel 142a, and the fourth heat dissipating fin 144 has a density smaller than that of the second heat dissipating fin, as shown in FIG.
  • the heat sink further includes a fifth heat dissipating fin group 145 for dissipating heat for the first heat dissipating substrate 111 and a sixth heat dissipating fin group 146 for dissipating heat for the second heat dissipating substrate 112, and the fifth heat dissipating fin group 145 And the sixth heat dissipating fin group 146 is stacked on the heat dissipating base The side of the plate that faces away from the heat conducting surface;
  • the fifth heat dissipating fin group 145 is located between the sixth heat dissipating fin group 146 and the heat dissipating substrate, or the sixth heat dissipating fin group 146 is located between the fifth heat dissipating fin group 145 and the heat dissipating substrate, as shown in FIG.
  • a semiconductor refrigeration chip is disposed on the heat conduction surface of the at least one heat dissipation substrate, and the semiconductor refrigeration chip and the corresponding chip on the sealed chip are in contact.
  • the heat sink includes a heat dissipation substrate, and the heat dissipation substrate is configured to dissipate heat from the sealed chip located on the circuit board.
  • the heat dissipation substrate is located on a side of the sealed chip facing away from the circuit board;
  • the heat dissipation substrate includes a first heat dissipation substrate and a second
  • the heat dissipating substrate, the first heat dissipating substrate and the second heat dissipating substrate respectively have a heat conducting surface for conducting heat conduction with the chip in the sealed chip, and the different heat conducting surfaces correspond to different chips, and the first heat dissipating substrate and the second heat dissipating substrate pass through
  • the connecting member is connected, the thermal conductivity of the connecting member is smaller than the thermal conductivity of the first heat dissipating sub-substrate, and the thermal conductivity of the connecting member is smaller than the thermal conductivity of the second heat dissipating substrate.
  • the heat radiated from the respective chips is not transmitted to the other chips through the heat-dissipating substrate, that is, During the use of the heat sink, the heat radiated by the high temperature chip is not transmitted to the chip with a low temperature, which effectively increases the service life of the chip with a lower temperature, thereby improving the life of the electronic product.
  • FIG. 16 is a schematic structural diagram of a heat sink according to Embodiment 3 of the present application.
  • the overall structure of the heat sink in this embodiment is similar to that in the first embodiment, and details are not described herein again.
  • the fixing member for fixing the connecting body and the second heat dissipating substrate is not a fixing screw but a double stud structure.
  • the fixing member 33 includes a first positioning stud 333a and a second positioning stud 333b.
  • the bottom end of the first positioning stud 333a is connected to the second heat dissipation substrate 112, and the first positioning stud is connected.
  • the axial direction of the 333a is perpendicular to the plane of the second heat dissipation substrate 112, the second positioning stud 333b can be screwed to the top end of the first positioning stud 333a, and the second end of the connecting body 22 is fixed to the first positioning stud 333a and The screwing of the second positioning stud 333b.
  • the second end of the connecting body 22 is fixed between the first positioning stud 333a and the second positioning stud 333b, and the first positioning stud 333a is fixed on the second heat dissipating substrate.
  • the connection between the connecting body 22 and the second heat dissipation substrate 112 is indirectly realized by using the stud. Since the general contact surface between the connecting body 22 and the positioning stud is small, and there is usually a gap, the connecting body The heat transfer speed and heat transfer efficiency between the 22 and the positioning studs are both low, which can better prevent heat from being transmitted to different heat dissipation substrates via the connecting body.
  • the second end of the connecting body 22 and the first end of the connecting body 22 are different from the vertical distance of the plane of the second heat dissipation substrate 112.
  • the connecting body 22 and the second heat dissipation substrate 112 can be connected by a double-layer positioning stud or the like, in order to avoid other connection structures, the second end and the first end of the connecting body 22 can generally be located at a distance.
  • the two heat dissipating substrates 112 are located at different positions of the plane, so that the second end of the connecting body 22 is fixed away from the connecting structure.
  • the first end of the connecting body 22 and the second end of the connecting body 22 may be connected by a bent section.
  • the connecting body 22 may also be a curved shape or the like to satisfy the height difference between the two ends, and details are not described herein again.
  • the heat sink includes a heat dissipation substrate, a connecting body and a fixing member; the heat dissipation substrate is used for dissipating heat to the sealed chip located on the circuit board, and the heat dissipation substrate is located on a side of the sealed chip facing away from the circuit board.
  • the heat dissipation substrate includes a first heat dissipation substrate and a second heat dissipation substrate.
  • the first heat dissipation substrate and the second heat dissipation substrate respectively have a heat conduction surface for heat conduction with the chip in the sealed chip, and different heat conduction surfaces correspond to different chips, and the connection body
  • the first end is fixed to the first heat dissipation substrate
  • the second end of the connector is suspended on the outer side of the second heat dissipation substrate
  • the fixing member abuts on the outer side of the first heat dissipation substrate to restrict the first heat dissipation substrate from moving away from the second heat dissipation substrate Directional movement
  • the fixing member comprises a first positioning stud and a second positioning stud; the bottom end of the first positioning stud and the second dispersion
  • the thermal substrate is connected, and the axial direction of the first positioning stud is perpendicular to the plane of the second heat dissipating substrate, the second positioning stud is screwed to the top end of the first positioning stud, and the second end of the connecting body is fixed at the first Position the screw
  • the heat radiated from the respective chips is not transmitted to the other chips through the heat dissipation substrate, that is, the heat radiated from the high temperature chips is not transferred to the temperature during use of the heat sink.
  • the low chip effectively increases the lifetime of the lower temperature chip, which in turn increases the life of the electronic product.
  • FIG. 17 is a schematic structural view of a heat sink provided in Embodiment 4 of the present application.
  • the overall structure and working principle of the heat sink in this embodiment are similar to those in the foregoing embodiment 2, and details are not described herein again.
  • the difference is that a double-stud structure similar to that in the third embodiment is used in realizing the detachable connection between the connecting member and the second heat-dissipating substrate.
  • the heat sink includes a first positioning stud 333a and a second positioning stud 333b.
  • the bottom end of the first positioning stud 333a is connected to the second heat dissipation substrate 112, and the first positioning stud is connected.
  • the axial direction of the 333a is perpendicular to the plane of the second heat dissipation substrate 112, and the second positioning stud 333b is screwed to the top end of the first positioning stud 333a.
  • the first end of the connecting member 23 is fixed to the first heat dissipation substrate 111.
  • the second end of the member 23 is fixed at the screwing of the first positioning stud 333a and the second positioning stud 333b.
  • the second end of the connecting member 23 and the first end of the connecting member 23 are different from the vertical distance of the plane of the second heat dissipating substrate 112.
  • the second end and the first end of the connecting member 23 can be located at a distance from the second heat dissipating substrate. 112 is located at a different distance from the plane, so that the second end of the connecting member 23 is fixed away from the connecting structure.
  • the first end of the connector 23 and the second end of the connector 23 are connected by a bent section.
  • the connecting member 23 may also be a curved shape or the like to satisfy the height difference between the two ends, and details are not described herein again.
  • the heat sink includes a heat dissipation substrate, and the heat dissipation substrate is configured to dissipate heat from the sealed chip located on the circuit board.
  • the heat dissipation substrate is located on a side of the sealed chip facing away from the circuit board;
  • the heat dissipation substrate includes a first heat dissipation substrate and a second
  • the heat dissipating substrate, the first heat dissipating substrate and the second heat dissipating substrate respectively have a heat conducting surface for conducting heat conduction with the chip in the sealed chip, and the different heat conducting surfaces correspond to different chips, and the first heat dissipating substrate and the second heat dissipating substrate pass through
  • the connecting member is connected, the thermal conductivity of the connecting member is smaller than the thermal conductivity of the first heat dissipating sub-substrate, and the thermal conductivity of the connecting member is smaller than the thermal conductivity of the second heat dissipating substrate; wherein the fixing member comprises the first positioning stud
  • the heat radiated from the respective chips is not transmitted to the other chips through the heat-dissipating substrate, that is, During the use of the heat sink, the heat radiated by the high temperature chip is not transmitted to the chip with a low temperature, which effectively increases the service life of the chip with a lower temperature, thereby improving the life of the electronic product.
  • the embodiment of the present application further provides a heat dissipating device, comprising at least two heat sinks and at least one heat pipe according to any one of the above embodiments 1 to 4;
  • Each heat sink corresponds to a sealed chip
  • the two ends of the heat pipe are respectively connected to the heat dissipation substrate of the different heat sinks, so that the heat of the heat sink corresponding to the sealed chip in the heat generating state is transmitted to the heat sink corresponding to the unheated sealed chip.
  • FIG. 18 is a schematic structural diagram of a heat dissipating device according to Embodiment 5 of the present application.
  • the heat dissipating device provided in this embodiment is used to dissipate heat for the first sealed chip 21 and the second sealed chip 22,
  • the heat dissipating device provided in this embodiment specifically includes: a first heat sink 23, a second heat sink 24, and a heat pipe 25; the first heat sink 23 is located above the first sealed chip 21 for dissipating heat for the first sealed chip 21.
  • the second heat sink 24 is located above the second sealing chip 22 for dispersing the second sealing chip 22
  • the heat pipe 25 is connected between the first heat sink 23 and the second heat sink 24.
  • the first heat sink 23 includes a heat dissipation substrate 231 and heat dissipation fins 232 disposed on the heat dissipation substrate 231 .
  • the second heat sink 24 includes a heat dissipation substrate 241 and heat dissipation fins 242 disposed on the heat dissipation substrate 241 .
  • the heat pipe 25 can transfer the heat of the first heat sink 23 to the second heat sink 24, so that the second heat sink 24 is first.
  • the sealed chip 22 assists in heat dissipation, and the second sealed chip 22 is in an unoperated or unheated state, and there is no need for heat dissipation for the time being.
  • the heat dissipation device includes at least two heat sinks and at least one heat pipe; each heat sink corresponds to one sealed chip; the two ends of the heat pipe are respectively connected to the heat dissipation substrates of different heat sinks, so as to be in a heat state
  • the heat of the heat sink corresponding to the sealed chip is transferred to the heat sink corresponding to the unheated sealed chip.
  • the heat of the sealed chip that is in the working heat state is transmitted to the heat sink corresponding to the unsealed or unheated sealed chip through the connection between the heat sink and the heat pipe, thereby more effectively improving the different The function of sealing the chip to cool down.
  • the embodiment of the present application further provides a heat dissipation system, the heat dissipation system includes at least one heat sink and at least one sealed chip according to any of the above embodiments; wherein each heat sink corresponds to one sealed chip; the heat sink is used for sealing Chip cooling.
  • FIG. 19 is a schematic structural diagram of a heat dissipation system according to Embodiment 6 of the present application. As shown in FIG. 19, the heat dissipation system provided in this embodiment is used to dissipate heat for the first sealed chip 31 and the second sealed chip 32.
  • the heat dissipation system provided in this embodiment specifically includes: a first sealed chip 31, a second sealed chip 32, a first heat sink 33 and a second heat sink 34;
  • the first heat sink 33 is located above the first sealed chip 31 for dissipating heat for the first sealed chip 31, and the second heat sink 34 is located above the second sealed chip 32 for the second sealed The chip 32 dissipates heat.
  • the embodiment of the present application further provides a communication device, including at least one heat sink according to any one of embodiments 1 to 4, at least one sealed chip and at least one circuit board;
  • At least one sealed chip is disposed on each circuit board
  • Each heat sink corresponds to a sealed chip, and the heat sink is used to dissipate heat for the sealed chip.
  • FIG. 20 is a schematic structural diagram of a communication device according to Embodiment 7 of the present application.
  • the communication device 400 provided in this embodiment includes a circuit board 40.
  • the circuit board 40 is provided with a sealing chip 41.
  • the sealing chip 41 is electrically connected to the circuit on the circuit board 40.
  • the heat sink 42 for dissipating heat from the sealed chip 41 is disposed on the chip 41.
  • the structure and implementation principle of the heat sink 42 are similar to those in the above embodiment, and are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请提供一种散热器、散热装置、散热系统及通信设备,包括:散热基板,连接体以及固定件;散热基板用于对位于电路板的合封芯片散热,散热基板位于合封芯片的背离电路板的一面;散热基板中的第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,连接体的第一端固定于第一散热基板,连接体第二端悬浮在第二散热基板外侧,固定件抵接于第一散热基板外侧,以限制第一散热基板向远离第二散热基板的方向运动。通过将多个相互之间导热较慢的散热基板组成一个散热基板,为合封芯片中各个芯片提供合适有效的散热,有效提高了温度较低的芯片的使用寿命,进而提升电子产品的寿命。

Description

散热器、散热装置、散热系统及通信设备
本申请要求于2016年9月12日提交中国专利局、申请号为201610820551.1、申请名称为“散热器、散热装置、散热系统及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术,尤其涉及一种散热器、散热装置、散热系统及通信设备。
背景技术
随着科技的进步,为了降低电子产品的尺寸,就要求降低构建电子产品的芯片的封装尺寸,也即,会将多个芯片封装在同一个封装体内,从而可以有效的降低芯片的封装尺寸,达到降低电子产品尺寸的目的。如何为该多个芯片提供有效的散热是目前亟待解决的问题。
发明内容
本申请实施例提供一种散热器、散热装置、散热系统及通信设备,以克服现有技术中无法为合封芯片中各个芯片提供合适而有效的散热,从而降低了温度较低的芯片的使用寿命,进而降低了电子产品的寿命的问题。
本申请第一方面提供一种散热器,包括:
散热基板,连接体以及固定件;散热基板用于对位于电路板的合封芯片散热,散热基板位于合封芯片的背离电路板的一面。
散热基板包括第一散热基板和第二散热基板,第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,连接体的第一端固定于第一散热基板,连接体的第二端悬浮在第二散热基板的外侧,固定件抵接于第一散热基板的外侧,以限制第一散热基板向远离第二散热基板的方向运动。
本实施例中,由于散热器的不同散热基板可分别为合封芯片上的不同芯片进行散热,且不同散热基板之间通过连接体进行连接,因而相邻散热基板之间只能通过连接体进行导热,其导热速度较慢,能够有效阻隔相邻散热基板之间的热传导。当各个散热基板下方的芯片的温度不同时,各个芯片散发的热量不会通过散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
在前述第一方面的一些实施例中,第一散热基板和第二散热基板的热传导面均在同一平面上。
本实施例中,由于合封芯片中,各个芯片的远离电路板的一面均处于同一平面上,所以第一散热基板和第二散热基板的热传导面均位于同一平面上,从而可保证散热基板的热传导面均与合封芯片上的各个芯片相贴合,避免散热基板与合封芯片之间出现接触不良的情况。
在前述第一方面的一些实施例中,连接体为细长状。
而在前述第一方面的另一些实施例中,连接体为薄板状。
上述实施例中,连接体为细长状或薄板状时,可搭接在第一散热基板以及第二散热基板之间。 由于细长状连接体或薄板状连接体在长度方向上的横截面积较小,所以根据导热规律,其单位时间内能传导的热量也较少,即导热速度较小。这样,因为连接体的长度方向通常为热量的传递方向,所以,连接体在该方向上的截面积大小一般要小于第一散热基板和第二散热基板在直接相连时,连接部分的截面积大小。其中,可定义第一连接面为第一散热基板上的与所述第二散热基板相对的面,第二连接面为第二散热基板上的和第一散热基板相对的面。一般,连接体在自身导热方向上的截面积应小于第一连接面和第二连接面之间的重叠面积。需要说明的是,上述连接体的形状并不限于细长状或薄板状,此外也可以为其它横截面较小的结构形式。
在前述第一方面的一些实施例中,第二散热基板在对应连接体的部位上开设有安置槽,安置槽用于避让连接体。
本实施例中,由于连接体的第二端悬浮于第二散热基板的外侧,为了避免连接体和第二散热基板之间产生干涉,同时进一步稳定的固定连接体,在第二散热基板上开设有安置槽,安置槽的大小和深度均与连接体相匹配,从而让连接体的第二端可放置在安置槽内,避免两者之间出现干涉,且安置槽的形状能够从平行于散热基板的方向上对连接体进行固定和定位。
在前述第一方面的一些实施例中,连接体的数量为至少两个。连接体为多个时,多个连接体可以对称设置在第一散热基板的两侧,以加强第一散热基板和第二散热基板之间的连接稳定性。
在前述第一方面的一些实施例中,连接体上开设有第一通孔,第二散热基板在对应第一通孔的位置上开设有第二通孔;且此时固定件还包括固定螺钉;固定螺钉穿设在第一通孔和第二通孔之中,第一散热基板位于固定螺钉头部和第二散热基板之间,且固定螺钉的尾部和第二散热基板固定连接,以将第一散热基板和第二散热基板连接在一起。
本实施例中,用于连接连接体和第二散热基板的固定螺钉,依靠常用的螺纹连接进行紧固和连接,所以连接较为可靠,同时,由于螺纹连接时,连接体或第二散热基板上的通孔和固定螺钉上的螺纹之间大多均为点接触或者线接触的方式,其接触面较小,能够进一步降低连接体和第二散热基板之间的导热速度,确保第一散热基板和第二散热基板之间的热隔离性能。
进一步的,在前述实施例的基础上,固定件还包括有弹性件,弹性件的两端分别抵接在固定螺钉的头部和第一散热基板之间,以使第一散热基板在弹性件的弹力作用下与合封芯片贴合。
本实施例中,固定件中的弹性件能够同时与固定螺钉以及第一散热基板相抵。因为固定螺钉与第二散热基板之间为固定连接,两者相对位置保持固定,所以在弹性件的作用下,第一散热基板会在弹性件的作用下被压向第二散热基板,从而产生一定的浮动效果,这样即可限制第一散热基板朝远离第二散热基板的方向移动,且第一散热基板与第二散热基板能够尽量保持与合封芯片相贴合,即第一散热基板和第二散热基板的热传导面共面。
在前述第一方面的一些实施例中,第二散热基板和连接体的第二端之间通过隔热胶连接。
本实施例中,在连接体的第二端与第二散热基板之间设置隔热胶,能够阻断连接体和第二散热基板之间的热量传递,进一步避免第一散热基板和第二散热基板之间的热量传递。
此外,本实施例中,连接体的第二端和第二散热基板之间也可以采用焊锡进行焊接,以实现两者的固定。
在前述第一方面的一些实施例中,固定件包括第一定位螺柱和第二定位螺柱;
第一定位螺柱的底端和第二散热基板连接,且第一定位螺柱的轴向方向垂直于第二散热基板所在平面,第二定位螺柱可旋合在第一定位螺柱的顶端,连接体的第二端固定在第一定位螺柱和第二定位螺柱的旋合处。
本实施例中,采用了双层螺柱式结构,连接体和定位螺柱之间一般接触面较小,且通常存在有间隙,所以连接体和定位螺柱之间传热速度和传热效率均较低,能够较好的避免热量经由连接体传递至不同的散热基板上。
在前述第一方面的一些实施例中,连接体的第二端和连接体的第一端与第二散热基板所在平面的垂直距离不同。
本实施例中,由于连接体和第二散热基板之间可通过双层的定位螺柱等结构进行连接,为了避让其它连接结构,连接体的第二端和第一端通常可以位于距离第二散热基板所在平面距离不同的位置,从而让连接体第二端避开连接结构进行固定。
在前述第一方面的一些实施例中,连接体的第一端和连接体的第二端之间通过折弯段连接。
在前述第一方面的一些实施例中,第二散热基板设置有缺口,至少部分第一散热基板位于缺口内,且第一散热基板的位于缺口内的部分的外缘形状与缺口形状相匹配。
本实施例中,由于第二散热基板设置有缺口,因而可让至少一部分第一散热基板进入该缺口中,使散热基板的位置能够更好的与合封芯片上的不同芯片位置相对应,同时减少散热基板的总体面积和尺寸。
在前述第一方面的一些实施例中,第一散热基板完全位于缺口内。
在前述第一方面的一些实施例中,第二散热基板围设在第一散热基板的外侧并构成封闭形状。
在前述第一方面的一些实施例中,散热器中还包括用于为第一散热基板散热的第一散热翅组和用于为第二散热基板散热的第二散热翅组,第一散热翅组位于第一散热基板的与热传导面背离的一面,第二散热翅组位于第二散热基板的与热传导面背离的一面,第二散热翅片组内部形成冷风通道,第二散热翅片组中设置有第二散热翅片,第二散热翅片位于冷风通道的两侧,第一散热翅组位于冷风通道内或者冷风通道的延长线上。
本实施例中,散热器的每个散热基板上还各自连接有为该散热基板进行散热的散热翅片组。且第二散热基板上的第二散热翅片组中开设有一条贯穿整个第二散热翅片组的冷风通道,可使外界冷却用的气流通过该冷风通道吹到第一散热翅片组上,以使第一散热翅片组和第二散热翅片组均具有较高的散热效率。
在前述第一方面的一些实施方式中,冷风通道内还设置有第三散热翅片,第三散热翅片的高度小于第二散热翅片的高度。
本实施例中,第三散热翅片能够辅助进行散热,同时,由于第三散热翅片的高度较低,所以仍然能够保证冷却用的气流从冷风通道中通过。
在前述第一方面的一些实施方式中,冷风通道内还设置有第四散热翅片,第四散热翅片的密度小于第二散热翅片的密度。
本实施例中,冷风通道内的第四散热翅片能够辅助对第二散热基板进行散热,同时由于第四散热翅片的密度小于第二散热翅片的密度,所以仍然能够保证冷却用的气流从冷风通道中通过。
在前述第一方面的一些实施方式中,散热器还包括用于为第一散热基板散热的第五散热翅片组和用于为第二散热基板散热的第六散热翅片组,第五散热翅组和第六散热翅片组叠放在散热基板的与热传导面背离的一面;
第五散热翅片组位于第六散热翅片组和散热基板之间,或者第六散热翅片组位于第五散热翅片组和散热基板之间。
本实施例中,分别用于为两个散热基板进行散热的散热翅片组上下叠放在散热基板上,从而 可在散热基板的面积较小,以及难以构成有效冷风通道的时候,利用散热基板上方的高度空间设置散热翅片组,保证散热基板的散热效率。
在前述第一方面的一些实施方式中,至少一个散热基板的热传导面上设置有半导体制冷芯片,半导体制冷芯片和合封芯片上对应的芯片接触。
本实施例中,通过在散热基板的热传导面上设置半导体制冷芯片,可以利用半导体自身电子迁移的特性,加速热传导面上的热量传递速度,提高散热器的散热效率。此外,还可以采用其他原理的制冷芯片,提高散热基板热传导面上的导热速度。
在前述第一方面的一些实施方式中,构成连接体的材料的导热速率小于构成散热基板的材料的导热速率。
本实施例中,由于连接体的导热速率小于散热基板的导热速率,所以进一步降低了连接体的热传导速度,提高不同散热基板之间的热隔离水平。
本申请第二方面提供一种散热器,包括有散热基板,散热基板用于对位于电路板上的合封芯片散热,散热基板位于合封芯片的背离电路板的一面;
散热基板包括第一散热基板和第二散热基板,第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,第一散热基板和第二散热基板之间通过连接件进行连接,连接件的导热系数小于第一散热子基板的导热系数,且连接件的导热系数小于第二散热基板的导热系数。
本实施例中,为不同芯片进行散热的多个散热基板之间通过导热系数较低的连接件连接,由于散热基板之间导热较少,当各个散热子基板下方的芯片的温度不同时,各个芯片散发的热量不会通过该散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
在前述第二方面的一些实施方式中,第一散热基板和第二散热基板的热传导面均在同一平面上。
本实施例中,由于合封芯片中,各个芯片的远离电路板的一面均处于同一平面上,所以第一散热基板和第二散热基板的热传导面均位于同一平面上,从而可保证散热基板的热传导面均与合封芯片上的各个芯片相贴合,避免散热基板与合封芯片之间出现接触不良的情况。
在前述第二方面的一些实施方式中,构成连接件的材料为隔热材料。
本实施例中,采用隔热材料制成连接件,能够最大限度地减缓相邻的第一散热基板和第二散热基板之间的热量传递过程,使不同散热基板之间近似与热隔离状态,避免温度高的芯片所散发的热量传递给温度低的芯片,提高芯片的使用寿命。
在前述第二方面的一些实施方式中,第二散热基板在对应连接件的部位上开设有安置槽,安置槽用于避让连接件。
本实施例中,由于连接件的第二端悬浮于第二散热基板的外侧,为了避免连接件和第二散热基板之间产生干涉,同时进一步稳定的固定连接件,在第二散热基板上开设有安置槽,安置槽的大小和深度均与连接件相匹配,从而让连接件的第二端可放置在安置槽内,避免两者之间出现干涉,且安置槽的形状能够从平行于散热基板的方向上对连接件进行固定和定位。
在前述第二方面的一些实施例中,连接件的数量为至少两个。连接件为多个时,多个连接件可以对称设置在第一散热基板的两侧,以加强第一散热基板和第二散热基板之间的连接稳定性。
在前述第二方面的一些实施例中,连接件上开设有第一通孔,第二散热基板在对应第一通孔 的位置上开设有第二通孔;且此时固定件还包括固定螺钉;固定螺钉穿设在第一通孔和第二通孔之中,第一散热基板位于固定螺钉头部和第二散热基板之间,且固定螺钉的尾部和第二散热基板固定连接,以将第一散热基板和第二散热基板连接在一起。
本实施例中,用于连接连接件和第二散热基板的固定螺钉,依靠常用的螺纹连接进行紧固和连接,所以连接较为可靠,同时,由于螺纹连接时,连接件或第二散热基板上的通孔和固定螺钉上的螺纹之间大多均为点接触或者线接触的方式,其接触面较小,能够进一步降低连接件和第二散热基板之间的导热速度,确保第一散热基板和第二散热基板之间的热隔离性能。
进一步的,在前述实施例的基础上,固定件还包括有弹性件,弹性件的两端分别抵接在固定螺钉的头部和第一散热基板之间,以使第一散热基板在弹性件的弹力作用下与合封芯片贴合。
本实施例中,固定件中的弹性件能够同时与固定螺钉以及第一散热基板相抵。因为固定螺钉与第二散热基板之间为固定连接,两者相对位置保持固定,所以在弹性件的作用下,第一散热基板会在弹性件的作用下被压向第二散热基板,从而产生一定的浮动效果,这样即可限制第一散热基板朝远离第二散热基板的方向移动,且第一散热基板与第二散热基板能够尽量保持与合封芯片相贴合,即第一散热基板和第二散热基板的热传导面共面。
在前述第二方面的一些实施例中,第二散热基板和连接件之间通过隔热胶连接。
本实施例中,在连接件与第二散热基板之间设置隔热胶,能够阻断连接件和第二散热基板之间的热量传递,进一步避免第一散热基板和第二散热基板之间的热量传递。
此外,本实施例中,连接件和第二散热基板之间也可以采用焊锡进行焊接,以实现两者的固定。
在前述第二方面的一些实施例中,散热器包括第一定位螺柱和第二定位螺柱;
第一定位螺柱的底端和第二散热基板连接,且第一定位螺柱的轴向方向垂直于第二散热基板所在平面,第二定位螺柱可旋合在第一定位螺柱的顶端,连接件的第一端和第一散热基板固定,连接件的第二端固定在第一定位螺柱和第二定位螺柱的旋合处。
本实施例中,采用了双层螺柱式结构,将连接件的第二端固定在第一定位螺柱和第二定位螺柱之间,并将第一定位螺柱固定在第二散热基板上,从而利用螺柱间接地实现了连接件和第二散热基板之间的连接,由于连接件和定位螺柱之间一般接触面较小,且通常存在有间隙,所以连接件和定位螺柱之间传热速度和传热效率均较低,能够较好的避免热量经由连接件传递至不同的散热基板上。
在前述第二方面的一些实施例中,连接件的第二端和连接件的第一端与第二散热基板所在平面的垂直距离不同。
本实施例中,由于连接件和第二散热基板之间可通过双层的定位螺柱等结构进行连接,为了避让其它连接结构,连接件的第二端和第一端通常可以位于距离第二散热基板所在平面距离不同的位置,从而让连接件第二端避开连接结构进行固定。
在前述第二方面的一些实施例中,连接件的第一端和连接件的第二端之间通过折弯段连接。
在前述第二方面的一些实施例中,第二散热基板设置有缺口,至少部分第一散热基板位于缺口内,且第一散热基板的位于缺口内的部分的外缘形状与缺口形状相匹配。
本实施例中,由于第二散热基板设置有缺口,因而可让至少一部分第一散热基板进入该缺口中,使散热基板的位置能够更好的与合封芯片上的不同芯片位置相对应,同时减少散热基板的总体面积和尺寸。
在前述第二方面的一些实施例中,第一散热基板完全位于缺口内。
在前述第二方面的一些实施例中,第二散热基板围设在第一散热基板的外侧并构成封闭形状。
在前述第二方面的一些实施例中,散热器中还包括用于为第一散热基板散热的第一散热翅组和用于为第二散热基板散热的第二散热翅组,第一散热翅组位于第一散热基板的与热传导面背离的一面,第二散热翅组位于第二散热基板的与热传导面背离的一面,第二散热翅片组内部形成冷风通道,第二散热翅片组中设置有第二散热翅片,第二散热翅片位于冷风通道的两侧,第一散热翅组位于冷风通道内或者冷风通道的延长线上。
本实施例中,散热器的每个散热基板上还各自连接有为该散热基板进行散热的散热翅片组。且第二散热基板上的第二散热翅片组中开设有一条贯穿整个第二散热翅片组的冷风通道,可使外界冷却用的气流通过该冷风通道吹到第一散热翅片组上,以使第一散热翅片组和第二散热翅片组均具有较高的散热效率。
在前述第二方面的一些实施方式中,冷风通道内还设置有第三散热翅片,第三散热翅片的高度小于第二散热翅片的高度。
本实施例中,由于冷风通道内存在有高度较低的第三散热翅片,所以能够辅助进行散热,保证第二散热基板上的散热效率,同时,由于第三散热翅片的高度较低,所以仍然能够保证冷却用的气流从冷风通道中通过。
在前述第二方面的一些实施方式中,冷风通道内还设置有第四散热翅片,第四散热翅片的密度小于第二散热翅片的密度。
本实施例中,冷风通道内的第四散热翅片能够辅助对第二散热基板进行散热,同时由于第四散热翅片的密度小于第二散热翅片的密度,所以仍然能够保证冷却用的气流从冷风通道中通过。
在前述第二方面的一些实施方式中,散热器还包括用于为第一散热基板散热的第五散热翅片组和用于为第二散热基板散热的第六散热翅片组,第五散热翅组和第六散热翅片组叠放在散热基板的与热传导面背离的一面;
第五散热翅片组位于第六散热翅片组和散热基板之间,或者第六散热翅片组位于第五散热翅片组和散热基板之间。
本实施例中,分别用于为两个散热基板进行散热的散热翅片组上下叠放在散热基板上,从而可在散热基板的面积较小,以及难以构成有效冷风通道的时候,利用散热基板上方的高度空间设置散热翅片组,保证散热基板的散热效率。
在前述第二方面的一些实施方式中,至少一个散热基板的热传导面上设置有半导体制冷芯片,半导体制冷芯片和合封芯片上对应的芯片接触。
本实施例中,通过在散热基板的热传导面上设置半导体制冷芯片,可以利用半导体自身电子迁移的特性,加速热传导面上的热量传递速度,提高散热器的散热效率。此外,还可以采用其他原理的制冷芯片,提高散热基板热传导面上的导热速度。
本申请第三方面提供一种散热装置,包括至少两个如上述第一方面或第二方面任一项所述的散热器和至少一根热管;
每个散热器对应一个合封芯片;
热管的两端分别连接在不同散热器的散热基板上,以将处于发热状态下的合封芯片所对应的散热器的热量传递给未发热的合封芯片所对应的散热器。
本实施例中,通过将不同散热器通过至少一根热管连接起来,可以将正在处于工作发热状态 下的合封芯片的热量,通过散热器与热管之间的连接,传递至未工作或未发热的合封芯片所对应的的散热器上,从而更加有效的提升了对不同的合封芯片降温的作用。
本申请第四方面提供一种散热系统,包括:至少一个如上述第一方面或第二方面任一项的散热器和至少一个合封芯片;其中每个散热器对应一个合封芯片;
散热器用于为合封芯片散热。
本实施例中,在每个合封芯片上均设置有一个散热器,散热器上的不同散热基板可对应合封芯片中不同芯片进行散热,从而在合封芯片中的芯片发热量不同时,为其中每个芯片都提供独立而有效的散热,包装合封芯片中各个芯片的正常工作和寿命。
本申请第五方面提供一种通信设备,包括至少一个如上述第一方面或第二方面任一项所述的散热器、至少一个合封芯片和至少一个电路板;
每个电路板上设置至少一个合封芯片;
每个散热器对应一个合封芯片,且散热器用于为合封芯片散热。
本实施例中,在通信设备内部电路板的合封芯片上均设置有一个散热器,散热器上的不同散热基板可对应合封芯片中不同芯片进行散热,从而在合封芯片中的芯片发热量不同时,为其中每个芯片都提供独立而有效的散热,包装合封芯片中各个芯片的正常工作和寿命。
本申请提供的散热器、散热装置、散热系统和通信设备,其中,散热器,包括散热基板,连接体以及固定件;散热基板用于对位于电路板的合封芯片散热,散热基板位于合封芯片的背离电路板的一面。散热基板包括第一散热基板和第二散热基板,第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,连接体的第一端固定于第一散热基板,连接体的第二端悬浮在第二散热基板的外侧,固定件抵接于第一散热基板的外侧,以限制第一散热基板向远离第二散热基板的方向运动。当各个散热基板下方的芯片的温度不同时,各个芯片散发的热量不会通过散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
附图说明
图1所示为本申请实施例一提供的散热器的外形图;
图2是本申请实施例一提供的散热器的结构示意图;
图3为图2所示的散热器中的第一散热基板的具体结构示意图;
图4为图2所示的散热器中的第二散热基板的具体结构示意图;
图5是本申请实施例一提供的第一散热基板和第二散热基板之间的连接固定示意图;
图6是本申请实施例一提供的第一散热基板和第二散热基板之间的相对位置图一;
图7是本申请实施例一提供的第一散热基板和第二散热基板之间的相对位置图二;
图8是本申请实施例一提供的第一散热基板和第二散热基板之间的相对位置图三;
图9是本申请实施例一提供的第一散热子基板和第二散热子基板之间的相对位置图四;
图10是本申请实施例一提供的散热翅组的结构示意图一;
图11是本申请实施例一提供的散热翅组的结构示意图二;
图12是本申请实施例一提供的散热翅组的结构示意图三;
图13是本申请实施例一提供的散热翅组的结构示意图四;
图14是本申请实施例二提供的散热器的结构示意图;
图15是本申请实施例二提供的散热器的另一种结构示意图;
图16是本申请实施例三提供的散热器的结构示意图;
图17是本申请实施例四提供的散热器的结构示意图;
图18所示为本申请实施例五提供的散热装置的具体结构示意图;
图19所示为本申请实施例六提供的散热系统的具体结构示意图;
图20所示为本申请实施例七提供的通信设备的具体结构示意图。
具体实施方式
芯片可以包括各种电子电路元件,其可以被用于构建电子产品。例如:计算机或移动终端。
随着科技的进步,重量轻和尺寸小已经成为电子产品的发展趋势,因此,在电子产品内的芯片的封装同样应当在尺寸上缩小。使具有不同功能的芯片封装在同一个封装体的多芯片封装体技术,由于实现了单个封装产品内的高容量和多功能操作,符合电子产品的发展趋势。例如:系统级封装(System in Package,简称为:SIP)技术,能使具有不同功能的多个芯片布置在同一个衬底上,有效地将多个芯片封装成尺寸小的封装体。比如:可以将微处理器、存储器(例如:可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,简称为:EPROM)和动态随机存取存储器(Dynamic Random Access Memory,简称为:DRAM)、现场可编程门阵列(Field-Programmable Gate Array,简称为:FPGA)、电阻器、电容和电感器合并在一个容纳多达四或五个裸片的封装体中。
在朝着重量轻和尺寸小的电子产品的方向发展的同时,电子产品中各个器件工作的可靠性也是一个需要关心的问题。
由于每个芯片正常工作时的工作温度会有区别,因此,采用系统级封装而成的合封芯片(多个芯片封装在一个封装体内)中,相邻的芯片间如果产生热传递,也即温度较高的芯片散发的热量传递至温度较低的芯片上,就会使得温度较低的芯片的温度高于自身正常工作时的温度,降低了温度较低的芯片的使用寿命,进而降低了电子产品的寿命。
而现有技术中的散热装置包括散热基板和设置在散热基板上的散热翅片,在使用过程中,都是将散热装置固定在芯片的封装体的上方,使得散热装置的散热基板与芯片的封装体的表面接触,以将芯片散发的热量传递给散热翅片,最后散热翅片将热量散发出去,但是无法有效的将同一个封装体内各个芯片散发的热量同时带走,而会通过散热基板将温度较高的芯片散发的热量传递至温度较低的芯片上,从而降低了温度较低的芯片的使用寿命,进而降低了电子产品的寿命。
本申请通过将散热装置的散热基板分为不同的散热子基板,每个子基板与合封芯片中的一个芯片对应,用于对该芯片进行散热,且各个子基板间不导热,从而使得温度较高的芯片产生的热量不会传递给温度较低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
本申请应用于合封芯片等将多个不同的芯片封装在同一个封装体内的器件。
下面以具体地实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1所示为本申请实施例一提供的散热器的外形图。图2是本申请实施例一提供的散热器的结构示意图。图3为图2所示的散热器中的第一散热基板的具体结构示意图。图4为图2所示的 散热器中的第二散热基板的具体结构示意图。如图1至图4所示,本实施例中的散热器可以包括散热基板11,连接体22以及固定件33;
散热基板11用于对位于电路板的合封芯片散热,散热基板11位于合封芯片的背离电路板的一面;
散热基板11常用铝或者铜等导热性较好的材料制成,其包括第一散热基板111和第二散热基板112,第一散热基板111和第二散热基板112分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,连接体22的第一端固定于第一散热基板111,连接体22的第二端悬浮在第二散热基板112的外侧,固定件33抵接于第一散热基板111的外侧,以限制第一散热基板111向远离第二散热基板112的方向运动。
上述的散热基板的一面与合封芯片中的对应的芯片接触可以为:每个散热基板对应合封芯片中的一个芯片,也可以对应合封芯片中的多个芯片,在一种可实现方式中,当对应合封芯片中的多个芯片时,每个散热基板所对应的多个芯片的发热量和散热要求相近或相同。
在本申请的一种可实现的方式中,第一散热基板111和第二散热基板112的热传导面均在同一平面上。因为在合封芯片中,各个芯片的远离电路板的一面均处于同一平面上,所以第一散热基板111和第二散热基板112的热传导面均位于同一平面上,可保证散热基板11的热传导面均与合封芯片上的各个芯片相贴合,避免散热基板11与合封芯片之间出现接触不良,以及单个散热基板和合封芯片未接触的情况。
在本申请的一种可实现的方式中,连接体22为细长状。连接体22为细长状时,可搭接在第一散热基板111以及第二散热基板112之间。由于细长状的连接体22在长度方向上的横截面积较小,所以根据导热规律,其单位时间内能传导的热量也较少,即导热速度较小。这样,因为连接体22的长度方向通常为热量的传递方向,所以,连接体22在该方向上的截面积大小一般要小于第一散热基板111和第二散热基板112在直接相连时,连接部分的截面积大小。其中,可定义第一连接面为第一散热基板111上的与所述第二散热基板112相对的面,第二连接面为第二散热基板112上的和第一散热基板111相对的面。一般,连接体22在自身导热方向上的截面积应小于第一连接面和第二连接面之间的重叠面积。
在本申请的另一种可实现的方式中,连接体22为薄板状。薄板状的连接体22同样具有较小的横截面积,能够有效降低自身的导热速度,从而阻碍热量在不同散热基板之间的传递过程,此处不再赘述。此外,薄板状的连接体22能够在实现较小的横截面积的同时具有较宽的宽度,以便于和固定件33等固定结构进行连接。
需要说明的是,上述连接体的形状并不限于细长状或薄板状,此外也可以为其它横截面较小的结构形式,例如空心结构等。
在本申请的一种可实现的方式中,第二散热基板112在对应连接体22的部位上开设有安置槽1121,安置槽1121用于避让连接体22。
因为在进行第一散热基板112和第二散热基板111之间的连接时,由于连接体22的第二端悬浮于第二散热基板112的外侧,如果连接体22和第二散热基板112直接相连,则可能会和第二散热基板112的自身结构产生干涉。图5是本申请实施例一提供的第一散热基板和第二散热基板之间的连接固定示意图。如图5所示,为了在尽量减少相邻散热基板之间距离的同时,避免连接体22和第二散热基板112之间产生干涉,需要在第二散热基板112上开设有安置槽1121,安置槽1121的大小和深度均与连接体22相匹配,从而让连接体22的第二端可放置在安置槽1121内, 避免两者之间出现干涉,且安置槽1121的形状能够从平行于散热基板的方向上对连接体22进行固定和定位。
在本申请的一种可实现的方式中,连接体22的数量为至少两个。连接体22为两个或者两个以上时,多个连接体可以对称设置在第一散热基板的两侧,以加强第一散热基板111和第二散热基板112之间的连接稳定性。本实施例中,连接体22具体设置为四个,且四个连接体分别从第一散热基板111的两侧进行连接,这种设置方式,可以有效的保证第二散热基板112与第一散热基板111之间的固定。
为了实现连接体22和第二散热基板112之间的固定,避免第一散热基板111与第二散热基板112之间脱离连接,固定件33可以具有多种不同形式。在本申请的一种可实现的方式中,在连接体22上开设有第一通孔,第二散热基板112在对应第一通孔的位置上开设有第二通孔;且此时固定件33还包括固定螺钉331;固定螺钉331穿设在第一通孔和第二通孔之中,第一散热基板111位于固定螺钉331的头部和第二散热基板112之间,且固定螺钉331的尾部和第二散热基板112固定连接,以将第一散热基板111和第二散热基板112连接在一起。
其中,由于连接体22具有多个,所以固定螺钉331的数量也可以具有多个。而固定螺钉331的数量可以少于连接体22的数量,只要固定螺钉331能够保证对连接体22的固定效果即可,这样可减少固定螺钉331的数量,避免固定螺钉331占用过多的空间,而对其它元件的设置造成干涉。
在实际应用中,固定螺钉331还可以替换为螺栓等紧固件;第一通孔和第二通孔可以为螺孔或光孔。
当第一通孔或第二通孔中至少有一个孔为光孔时,固定件33中还包括螺母,通过螺钉和螺母的配合使得连接体与散热基板之间固定连接。
由于用于连接连接体22和第二散热基板112的固定螺钉331,依靠常用的螺纹连接进行紧固和连接,所以连接较为可靠,同时,在连接体22通过固定螺钉331进行螺纹连接时,固定螺钉331穿设在两个不同散热基板上的通孔之中,而连接体22的第一通孔或第二散热基板112上的第二通孔和固定螺钉331上的螺纹之间大多均为点接触或者线接触的方式,其接触面较小,能够进一步降低连接体22和第二散热基板112之间的导热速度,确保第一散热基板111和第二散热基板112之间的热隔离性能。
在上一个可实现的方式的基础上,固定件33还可以包括有弹性件332,弹性件332的两端分别抵接在固定螺钉331的头部和第一散热基板111之间,以使第一散热基板111在弹性件332的弹力作用下与合封芯片贴合。具体的,弹性件332可以为弹簧等常规弹性元件,且当弹性件332为弹簧时,弹簧可以套设在固定螺钉331上,其固定方式较为简便。
由于固定件33中的弹性件332能够同时与固定螺钉331以及第一散热基板111相抵,且固定螺钉331与第二散热基板112之间为固定连接,两者相对位置保持固定,所以在弹性件332的作用下,第一散热基板111会在弹性件332的作用下被压向第二散热基板112,从而产生一定的浮动效果,这样即可限制第一散热基板111朝远离第二散热基板112的方向移动,且第一散热基板111与第二散热基板112能够尽量保持与合封芯片相贴合,即第一散热基板111和第二散热基板112的热传导面共面。
在本申请的一种可实现的方式中,第二散热基板112和连接体22的第二端之间通过隔热胶连接。隔热胶在未凝固前为可流动状态,所以可以采用涂抹等方式设置在第二散热基板112以及连 接体22的第二端之间,且隔热胶的用量可以根据实际需要而自由设定。这样在连接体22与第二散热基板112之间设置隔热胶,能够阻断连接体22和第二散热基板112之间的热量传递,从而进一步避免第一散热基板111和第二散热基板112之间的热量传递。需要说明的是,第二散热基板112和连接体22第二端之间也可以采用其它黏合剂进行粘接,以保证两者之间的固定效果。
此外,连接体22的第二端和第二散热基板112之间也可以采用其它固定方式,例如焊锡进行焊接,以实现两者的固定。利用焊锡进行焊接连接,因其连接强度较高,可对连接体进行有效固定。
在散热器对合封芯片进行散热时,因为合封芯片的结构较为紧凑,且不同芯片在合封芯片上具有多种可能位置,所以相应的,散热基板之间的相对位置和结构也较为多样,以适应不同的芯片散热需求。例如,第二散热基板112和第一散热基板111之间可以相互并排设置,且互不干涉;或者,第二散热基板112可设置有缺口,至少部分第一散热基板111位于缺口内,且第一散热基板111的位于缺口内的部分的外缘形状与缺口形状相匹配。一般的,第一散热基板111可以完全位于第二散热基板112的缺口内。图6是本申请实施例一提供的第一散热基板和第二散热基板之间的相对位置图一。图7是本申请实施例一提供的第一散热基板和第二散热基板之间的相对位置图二。图8是本申请实施例一提供的第一散热基板和第二散热基板之间的相对位置图三。如图6、图7和图8所示,第二散热基板112大致为一矩形板,且第二散热基板112的边缘开设有一个缺口,而第一散热基板111的至少一部分或者整个第一散热基板111完全位于该缺口内,并且第一散热基板111的外缘形状和缺口的形状相匹配,在图中均为矩形,从而使第一散热基板111和第二散热基板112拼合成一个大的矩形。
由于第一散热基板111的至少一部分嵌入第二散热基板112的缺口中,所以第一散热基板111和第二散热基板112所形成的结构较为紧凑,且两者之间间距较小,这样能够有效利用空间,且在合封芯片表面的面积较小时,能够准确的与合封芯片上的各个芯片对应贴合。
值得注意的是,无论通过何种方式排列第一散热基板111和第二散热基板112,必须保证第一散热基板111和第二散热基板112的热传导面位于同一个平面上,从而保证了与合封芯片的充分接触,避免某一个散热基板没有与合封芯片中对应芯片的表面接触而影响散热效率。
在本申请的一种可实现的方式中,第一散热基板111和第二散热基板112之间也可以在同一平面上呈现包含的关系。图9是本申请实施例一提供的第一散热子基板和第二散热子基板之间的相对位置图四。如图9所示,第二散热基板112可以围设在第一散热基板111的外侧,并构成封闭形状。这种设置方式适用于合封芯片中某些芯片的位置较为靠近中央的情况。
为了将散热基板上的热量传导至其它地方,以达到更好的散热效果,在散热器中设置有与散热基板相连的散热翅片。散热翅片具有较大的散热面积,能够利用外界冷却气流将自身积聚的热量散发出去。
在使用中,如果不同散热基板的散热翅之间彼此相连,例如第一散热基板111的散热翅与第二散热基板112上的散热翅连接,如果第二散热基板112的散热翅中积攒的热量高于第一散热基板111的散热翅的热量,则第二散热基板112的散热翅中的热量和第一散热基板111的散热翅中的热量会发生传递,使得第一散热基板111的散热翅温度升高,并影响第一散热基板111对芯片的散热。当芯片因散热不足而持续升温时,则会影响芯片的正常工作和芯片寿命。
为了解决上述问题,散热器包括用于为第一散热基板111散热的第一散热翅组141和用于为第二散热基板112散热的第二散热翅组142,第一散热翅组141位于第一散热基板11的与热传导 面背离的一面,第二散热翅组142位于第二散热基板112的与热传导面背离的一面,第二散热翅片组142内部形成冷风通道142a,第二散热翅片组142中设置有第二散热翅片,第二散热翅片位于冷风通道142a的两侧,第一散热翅组141位于冷风通道142a内或者冷风通道142a的延长线上。
其中,根据第一散热基板111和第二散热基板112之间相对位置的不同,第一散热翅组141可以处于第二散热翅组142中的冷风通道142a内部,或者是位于冷风通道142a两端的延长线上。
具体的,散热器的每个散热基板上还各自连接有为该散热基板进行散热的散热翅片组,在散热翅组对散热基板进行散热时,可以向散热翅组中吹入冷却气流。冷却气流可以是通过外部导风结构而产生,也可以通过风机等主动散热设备所产生。图10是本申请实施例一提供的散热翅组的结构示意图一。如图10所示,用于散热的气流方向一般由第二散热基板112吹向第一散热基板111,此时,第一散热基板111位于风道的下游,第二散热基板112位于风道的上游,如图10所示。为了让第一散热翅组141也能够接触到冷却气流,第二散热翅组142上开设有贯穿整个第二散热翅片组142的冷风通道142a,可以让外界冷却用的气流从冷风通道142a中经过,并吹到第一散热翅组141上。由于第一散热翅组141和第二散热翅组142均能接触到冷却用的气流,所以散热翅组上积聚的热量均能够有效散发,以使第一散热翅片组141和第二散热翅片组142均具有较高的散热效率,从而避免第一散热基板111或者第二散热基板112上的热量无法及时散发而对合封芯片造成损害。
需要说明的是,在各个散热翅组中的单个散热翅的具体形状和结构均可以自由设置,此处不加以限制。
值得注意的是,为了达到更好的效果,散热翅的排列方向可以设置成与冷风的吹入方向相同。
图11是本申请实施例一提供的散热翅组的结构示意图二。作为一种可能的实施方式,为了加强散热基板的散热效率,在第二散热翅片组142中的冷风通道142a内还设置有第三散热翅片143,第三散热翅片143的高度小于第二散热翅片的高度,如图11所示。由于冷风通道内存在有高度较低的第三散热翅片143,所以能够辅助对散热基板进行散热,保证第二散热基板112上的散热效率,同时,由于第三散热翅片143的高度较低,所以仍然能够保证冷却用的气流从冷风通道142a中通过。
图12是本申请实施例一提供的散热翅组的结构示意图三。作为另一种可能的实施方式,冷风通道内还设置有第四散热翅片144,第四散热翅片144的密度小于第二散热翅片的密度,如图12所示。和第三散热翅片143类似,冷风通道142a内的第四散热翅片144能够加大整个第二散热翅组142的散热面积,从而辅助对第二散热基板112进行散热。同时,由于第四散热翅片144的密度小于第二散热翅片的密度,所以第四散热翅片144之间存在有较大的空隙,仍然能够保证冷却用的气流从冷风通道142a中通过,并为第一散热翅组141进行散热。
当第一散热基板111和第二散热基板112的面积较小,造成安置散热翅组的空间有限的时候,还可以采用叠放的形式设置散热翅组。图13是本申请实施例一提供的散热翅组的结构示意图四。如图13所示,散热器还包括用于为第一散热基板散热111的第五散热翅片组145和用于为第二散热基板散热112的第六散热翅片组146,第五散热翅组145和第六散热翅片组146叠放在散热基板的与热传导面背离的一面;
其中,既可以选择让第五散热翅片组145位于第六散热翅片组146和散热基板之间,或者也可以让第六散热翅片组146位于第五散热翅片组145和散热基板之间。这样两个散热翅片组在垂直于热传导面的方向上上下叠放,从而每个散热翅片组的面积均可以较大,且布满整个散热基板, 而距离散热基板较远的散热翅片组可以通过热管等方式和散热基板之间进行热量传递,保证对散热基板的散热。因此,通过将分别用于为两个散热基板进行散热的散热翅片组上下叠放在散热基板上,可在散热基板的面积较小,以及难以构成有效冷风通道的时候,利用散热基板上方的高度空间设置散热翅片组,保证散热基板的散热效率。
在上述各个实施例的基础上,为了进一步的提高散热效率,至少一个散热基板的热传导面上还可以设置有半导体制冷芯片,半导体制冷芯片和合封芯片上对应的芯片接触。通过在散热基板的热传导面上设置半导体制冷芯片,可以利用半导体自身电子迁移的特性,加速热传导面上的热量传递速度,提高散热器的散热效率,加强对合封芯片上各个芯片的散热,保护芯片工作并延长芯片使用寿命。
此时,可以在部分散热基板的热传导面上设置半导体制冷芯片,也可以在全部散热基板的热传导面上设置半导体制冷芯片。半导体制冷芯片的设置方式和数量可以根据具体的散热需求而自由设定。
同时,也可以用其它类型的热电制冷器代替上述半导体制冷芯片,热电制冷器的使用方法与现有技术中相同,此处不再赘述。
此外,可选的,还可以通过选择连接体的材料,而进一步降低不同散热基板之间的导热速率和导热效率,加强散热基板之间的热隔离效果。例如,构成连接体的材料的导热速率可小于构成散热基板的材料的导热速率。
具体的,一般连接体可以选用不锈钢、锌合金等低导热系数的材料。相比构成散热基板的材料而言,其导热速度较慢,可以进一步阻隔不同散热基板之间的热量传递,使得各个芯片的散热过程更加独立,避免合封芯片中发热量大的芯片干扰到发热量小的芯片的正常散热。
本实施例中,散热器包括散热基板,连接体以及固定件;散热基板用于对位于电路板的合封芯片散热,散热基板位于合封芯片的背离电路板的一面。散热基板包括第一散热基板和第二散热基板,第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,连接体的第一端固定于第一散热基板,连接体的第二端悬浮在第二散热基板的外侧,固定件抵接于第一散热基板的外侧,以限制第一散热基板向远离第二散热基板的方向运动。当各个散热基板下方的芯片的温度不同时,各个芯片散发的热量不会通过散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
图14是本申请实施例二提供的散热器的结构示意图。本实施例中,在对合封芯片的不同芯片进行散热时,还可以通过低导热系数的材料来隔绝不同散热基板之间的热量传递。如图14所示,散热器包括有散热基板11,散热基板11用于对位于电路板上的合封芯片散热,散热基板位于合封芯片的背离电路板的一面;
散热基板11包括第一散热基板111和第二散热基板112,第一散热基板111和第二散热基板112分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,第一散热基板111和第二散热基板112之间通过连接件23进行连接,连接件23的导热系数小于第一散热子基板111的导热系数,且连接件23的导热系数小于第二散热基板112的导热系数。
该散热器中,为不同芯片进行散热的多个散热基板之间通过导热系数较低的连接件23连接,由于用于连接相邻两个散热基板的连接件23,其导热系数要小于被连接的散热基板,所以相邻散热基板之间热量传递较少,当各个散热子基板下方的芯片的温度不同时,各个芯片散发的热量不 会通过该散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了合封芯片和整个电子产品的寿命。
具体的,连接件23可以选用不锈钢、锌合金等低导热系数的材料。相比构成散热基板的材料而言,其导热速度较慢,可以进一步阻隔不同散热基板之间的热量传递,使得各个芯片的散热过程更加独立,避免合封芯片中发热量大的芯片干扰到发热量小的芯片的正常散热。
在本申请的一种可实现的方式中,第一散热基板111和第二散热基板112的热传导面均在同一平面上。由于合封芯片中,各个芯片的远离电路板的一面均处于同一平面上,所以第一散热基板111和第二散热基板112的热传导面均位于同一平面上,从而可保证散热基板的热传导面均与合封芯片上的各个芯片相贴合,避免散热基板与合封芯片之间出现接触不良的情况。
在本申请的一种可实现的方式中,构成连接件23的材料为隔热材料。采用隔热材料制成连接件23,能够最大限度地减缓相邻的第一散热基板111和第二散热基板112之间的热量传递过程,使不同散热基板之间近似与热隔离状态,避免温度高的芯片所散发的热量传递给温度低的芯片,提高芯片的使用寿命。其中,常用的隔热材料包括塑胶、玻璃纤维、石棉等。而由于塑胶的隔热性较好,且易于成型,因而是构成连接件的较佳材料。
可选的,为了进一步减少从连接件23经过的热量,连接件23在热量传递方向上的截面积大小一般要小于第一散热基板111和第二散热基板112在直接相连时,连接部分的截面积大小。其中,可定义第一连接面为第一散热基板111上的与所述第二散热基板112相对的面,第二连接面为第二散热基板112上的和第一散热基板111相对的面,而连接件23在自身导热方向上的截面积应小于第一连接面和第二连接面之间的重叠面积。一般,连接件23可以为细长状或薄板状,并搭接在第一散热基板111以及第二散热基板112之间。需要说明的是,上述连接件23的形状并不限于细长状或薄板状,此外也可以为其它横截面较小的结构形式。
在本申请的一种可实现的方式中,第二散热基板112在对应连接件23的部位上开设有安置槽1121,安置槽1121用于避让连接件23。这样由于连接件23和第二散热基板112连接,为了避免连接件23和第二散热基板112之间产生干涉,同时进一步稳定的固定连接件23,在第二散热基板112上开设有安置槽1121,安置槽1121的大小和深度均与连接件23相匹配,从而让连接件23可放置在安置槽1121内,避免两者之间出现干涉,且安置槽1121的形状能够从平行于散热基板的方向上对连接件23进行固定和定位。
在本申请的一种可实现的方式中,连接件23的数量为至少两个。连接件23为多个时,多个连接件可以对称设置在第一散热基板111的两侧,以加强第一散热基板111和第二散热基板112之间的连接稳定性。
可选的,连接件23和第二散热基板112之间可以直接采用焊锡进行焊接,以实现两者的固定。具体的,当采用焊锡进行焊接时,通常连接件23的材料可以为不锈钢或锌合金等能够和焊锡结合在一起的金属材料。此外,连接件23和第二散热基板112之间也可以采用黏合剂进行粘接,来实现两者之间的固定。
因为采用焊锡或黏合剂进行连接件23和第二散热基板112的连接时,整个散热器不易进行拆卸。为了实现散热器的可拆卸设计,作为另一种可实现的方式,连接件23和第二散热基板112之间可以通过固定螺钉等结构进行固定连接。图15是本申请实施例二提供的散热器的另一种结构示意图。如图15所示,在连接件23上开设有第一通孔,第二散热基板112在对应第一通孔的位置 上开设有第二通孔;且此时散热器中还包括固定螺钉331;固定螺钉331穿设在第一通孔和第二通孔之中,第一散热基板111位于固定螺钉331头部和第二散热基板112之间,且固定螺钉331的尾部和第二散热基板112固定连接,以将第一散热基板111和第二散热基板112连接在一起。
其中,用于连接连接件23和第二散热基板112的固定螺钉331,依靠常用的螺纹连接进行紧固和连接,所以连接较为可靠,同时,由于螺纹连接时,连接件23或第二散热基板112上的通孔和固定螺钉331上的螺纹之间大多均为点接触或者线接触的方式,其接触面较小,能够进一步降低连接件23和第二散热基板112之间的导热速度,确保第一散热基板111和第二散热基板112之间的热隔离性能。
进一步的,在前述实施例的基础上,散热器还包括有弹性件332,弹性件332的两端分别抵接在固定螺钉331的头部和第一散热基板111之间,以使第一散热基板111在弹性件332的弹力作用下与合封芯片贴合。
由于弹性件332能够同时与固定螺钉331以及第一散热基板111相抵,,且固定螺钉331与第二散热基板112之间为固定连接,两者相对位置保持固定,所以在弹性件332的作用下,第一散热基板111会在弹性件332的作用下被压向第二散热基板112,从而产生一定的浮动效果,这样即可限制第一散热基板111朝远离第二散热基板112的方向移动,且第一散热基板111与第二散热基板112能够尽量保持与合封芯片相贴合,即第一散热基板111和第二散热基板112的热传导面共面。
在本申请的一种可实现的方式中,第二散热基板112和连接件23之间通过隔热胶连接。在连接件23与第二散热基板112之间设置隔热胶,能够阻断连接件23和第二散热基板112之间的热量传递,进一步避免第一散热基板111和第二散热基板112之间的热量传递。
此外,本实施例中,第二散热基板112和第一散热基板111之间的相对位置关系和实施例一种的类似。在本申请的一种可实现的方式中,第二散热基板112设置有缺口,至少部分第一散热基板111位于缺口内,且第一散热基板111的位于缺口内的部分的外缘形状与缺口形状相匹配,如图6、图7和图8所示。
在本申请的一种可实现的方式中,第一散热基板111完全位于缺口内。
在本申请的一种可实现的方式中,第二散热基板112围设在第一散热基板111的外侧并构成封闭形状,如图9所示。
在本申请的一种可实现的方式中,散热器中还包括用于为第一散热基板111散热的第一散热翅组141和用于为第二散热基板112散热的第二散热翅组142,第一散热翅组141位于第一散热基板111的与热传导面背离的一面,第二散热翅组142位于第二散热基板112的与热传导面背离的一面,第二散热翅片组142内部形成冷风通道142a,第二散热翅片组142中设置有第二散热翅片,第二散热翅片位于冷风通道142a的两侧,第一散热翅组141位于冷风通道142a内或者冷风通道142a的延长线上,如图10所示。
可选的,冷风通道142a内还设置有第三散热翅片143,第三散热翅片143的高度小于第二散热翅片的高度,如图11所示。
可选的,冷风通道142a内还设置有第四散热翅片144,第四散热翅片144的密度小于第二散热翅片的密度,如图12所示。
可选的,散热器还包括用于为第一散热基板111散热的第五散热翅片组145和用于为第二散热基板112散热的第六散热翅片组146,第五散热翅组145和第六散热翅片组146叠放在散热基 板的与热传导面背离的一面;
第五散热翅片组145位于第六散热翅片组146和散热基板之间,或者第六散热翅片组146位于第五散热翅片组145和散热基板之间,具体如图13所示。
可选的,至少一个散热基板的热传导面上设置有半导体制冷芯片,半导体制冷芯片和合封芯片上对应的芯片接触。
本实施例中,散热器包括有散热基板,散热基板用于对位于电路板上的合封芯片散热,散热基板位于合封芯片的背离电路板的一面;散热基板包括第一散热基板和第二散热基板,第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,第一散热基板和第二散热基板之间通过连接件进行连接,连接件的导热系数小于第一散热子基板的导热系数,且连接件的导热系数小于第二散热基板的导热系数。这样由于相邻散热基板之间通过导热系数较低的连接件进行连接,当各个散热基板下方的芯片的温度不同时,各个芯片散发的热量不会通过散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
图16是本申请实施例三提供的散热器的结构示意图。本实施例中散热器的总体结构均和前述实施例一中类似,此处不再赘述。不同之处在于,用于固定连接体和第二散热基板的固定件不是选用固定螺钉,而是采用的双层螺柱结构。具体的,如图16所示,固定件33包括第一定位螺柱333a和第二定位螺柱333b;第一定位螺柱333a的底端和第二散热基板112连接,且第一定位螺柱333a的轴向方向垂直于第二散热基板112所在平面,第二定位螺柱333b可旋合在第一定位螺柱333a的顶端,连接体22的第二端固定在第一定位螺柱333a和第二定位螺柱333b的旋合处。
由于采用了双层螺柱式结构,将连接体22的第二端固定在第一定位螺柱333a和第二定位螺柱333b之间,并将第一定位螺柱333a固定在第二散热基板112上,从而利用螺柱间接地实现了连接体22和第二散热基板112之间的连接,由于连接体22和定位螺柱之间一般接触面较小,且通常存在有间隙,所以连接体22和定位螺柱之间传热速度和传热效率均较低,能够较好的避免热量经由连接体传递至不同的散热基板上。
在本申请的一种可实现的方式中,连接体22的第二端和连接体22的第一端与第二散热基板112所在平面的垂直距离不同。
具体的,由于连接体22和第二散热基板112之间可通过双层的定位螺柱等结构进行连接,为了避让其它连接结构,连接体22的第二端和第一端通常可以位于距离第二散热基板112所在平面距离不同的位置,从而让连接体22第二端避开连接结构进行固定。
因为连接体22的第二端和第一端的高度不一致,所以连接体22的第一端和连接体22的第二端之间可以通过折弯段连接。此外,连接体22也可以为弧形等可以满足两端具有高度差的结构,此处不再赘述。
本实施例中,散热器包括散热基板,连接体以及固定件;散热基板用于对位于电路板的合封芯片散热,散热基板位于合封芯片的背离电路板的一面。散热基板包括第一散热基板和第二散热基板,第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,连接体的第一端固定于第一散热基板,连接体的第二端悬浮在第二散热基板的外侧,固定件抵接于第一散热基板的外侧,以限制第一散热基板向远离第二散热基板的方向运动;其中,固定件包括第一定位螺柱和第二定位螺柱;第一定位螺柱的底端和第二散 热基板连接,且第一定位螺柱的轴向方向垂直于第二散热基板所在平面,第二定位螺柱可旋合在第一定位螺柱的顶端,连接体的第二端固定在第一定位螺柱和第二定位螺柱的旋合处。当各个散热基板下方的芯片的温度不同时,各个芯片散发的热量不会通过散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
图17是本申请实施例四提供的散热器的结构示意图。本实施例中散热器的总体结构和工作原理均和前述实施例二中类似,此处不再赘述。不同之处在于,在实现连接件和第二散热基板之间的可拆卸连接时,使用的是和实施例三中相似的双层螺柱结构。具体的,如图17所示,散热器中包括第一定位螺柱333a和第二定位螺柱333b;第一定位螺柱333a的底端和第二散热基板112连接,且第一定位螺柱333a的轴向方向垂直于第二散热基板112所在平面,第二定位螺柱333b可旋合在第一定位螺柱333a的顶端,连接件23的第一端和第一散热基板111固定,连接件23的第二端固定在第一定位螺柱333a和第二定位螺柱333b的旋合处。
在本申请的一种可实现的方式中,连接件23的第二端和连接件23的第一端与第二散热基板112所在平面的垂直距离不同。
由于连接件23和第二散热基板112之间可通过双层的定位螺柱等结构进行连接,为了避让其它连接结构,连接件23的第二端和第一端通常可以位于距离第二散热基板112所在平面距离不同的位置,从而让连接件23第二端避开连接结构进行固定。
在本申请的一种可实现的方式中,连接件23的第一端和连接件23的第二端之间通过折弯段连接。此外,连接件23也可以为弧形等可以满足两端具有高度差的结构,此处不再赘述。
本实施例中,散热器包括有散热基板,散热基板用于对位于电路板上的合封芯片散热,散热基板位于合封芯片的背离电路板的一面;散热基板包括第一散热基板和第二散热基板,第一散热基板和第二散热基板分别具有一个与合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,第一散热基板和第二散热基板之间通过连接件进行连接,连接件的导热系数小于第一散热子基板的导热系数,且连接件的导热系数小于第二散热基板的导热系数;其中,固定件包括第一定位螺柱和第二定位螺柱;第一定位螺柱的底端和第二散热基板连接,且第一定位螺柱的轴向方向垂直于第二散热基板所在平面,第二定位螺柱可旋合在第一定位螺柱的顶端,连接体的第二端固定在第一定位螺柱和第二定位螺柱的旋合处。这样由于相邻散热基板之间通过导热系数较低的连接件进行连接,当各个散热基板下方的芯片的温度不同时,各个芯片散发的热量不会通过散热基板传递至其他的芯片,也即在散热器的使用过程中不会将温度高的芯片散发的热量传递给温度低的芯片,有效提高了温度较低的芯片的使用寿命,进而提升了电子产品的寿命。
此外,本申请实施例还提供一种散热装置,包括至少两个如上述实施例一至四任一项所述的散热器和至少一根热管;
每个散热器对应一个合封芯片;
热管的两端分别连接在不同散热器的散热基板上,以将处于发热状态下的合封芯片所对应的散热器的热量传递给未发热的合封芯片所对应的散热器。
图18所示为本申请实施例五提供的散热装置的具体结构示意图,如图18所示,本实施例提供的散热装置用于为第一合封芯片21和第二合封芯片22散热,本实施例提供的散热装置具体包括:第一散热器23、第二散热器24和热管25;第一散热器23位于第一合封芯片21之上,用于为第一合封芯片21散热,第二散热器24位于第二合封芯片22之上,用于为第二合封芯片22散 热,而热管25连接在第一散热器23和第二散热器24之间。其中,第一散热器23包括散热基板231和设置在散热基板231上的散热翅232;第二散热器24包括散热基板241和设置在散热基板241上的散热翅242。
假设第一合封芯片21处于发热状态,而第二合封芯片22未发热,则热管25可将第一散热器23的热量传递至第二散热器24,让第二散热器24为第一合封芯片22辅助散热,而第二合封芯片22处于未工作或未发热的状态,则暂时无散热需求。
本实施例中,散热装置包括至少两个散热器和至少一根热管;每个散热器对应一个合封芯片;热管的两端分别连接在不同散热器的散热基板上,以将处于发热状态下的合封芯片所对应的散热器的热量传递给未发热的合封芯片所对应的散热器。正在处于工作发热状态下的合封芯片的热量,通过散热器与热管之间的连接,传递至未工作或未发热的合封芯片所对应的散热器上,从而更加有效的提升了对不同的合封芯片降温的作用。
本申请实施例还提供一种散热系统,散热系统包括至少一个如上述任一实施例提供的散热器和至少一个合封芯片;其中每个散热器对应一个合封芯片;散热器用于为合封芯片散热。
图19所示为本申请实施例六提供的散热系统的具体结构示意图,如图19所示,本实施例提供的散热系统用于为第一合封芯片31和第二合封芯片32散热,本实施例提供的散热系统具体包括:第一合封芯片31、第二合封芯片32、第一散热器33和第二散热器34;
其中,第一散热器33位于第一合封芯片31之上,用于为第一合封芯片31散热,第二散热器34位于第二合封芯片32之上,用于为第二合封芯片32散热。
本实施例的散热系统,其实现原理和技术效果与上述各个实施例类似,此处不再赘述。
本申请实施例还提供一种通信设备,包括至少一个如实施例一至四任一项所述的散热器、至少一个合封芯片和至少一个电路板;
每个电路板上设置至少一个合封芯片;
每个散热器对应一个合封芯片,且散热器用于为合封芯片散热。
图20所示为本申请实施例七提供的通信设备的具体结构示意图。如图20所示,本实施例提供的通信设备400,内部包括有电路板40,电路板40上设置有合封芯片41,合封芯片41与电路板40上的电路电连接,在合封芯片41上设置有用于为该合封芯片41进行散热的散热器42,散热器42的结构和实现原理均和上述实施例中的散热器类似,此处不再赘述。
本实施例的通信设备,其中的散热器的实现原理和技术效果与上述各实施例中的散热器类似,此处不再赘述。

Claims (43)

  1. 一种散热器,其特征在于,包括:
    散热基板,连接体以及固定件;
    所述散热基板用于对位于电路板的合封芯片散热,所述散热基板位于所述合封芯片的背离电路板的一面;
    所述散热基板包括第一散热基板和第二散热基板,所述第一散热基板和所述第二散热基板分别具有一个与所述合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,所述连接体的第一端固定于所述第一散热基板,所述连接体的第二端悬浮在所述第二散热基板的外侧,所述固定件抵接于所述第一散热基板的外侧,以限制所述第一散热基板向远离所述第二散热基板的方向运动。
  2. 根据权利要求1所述的散热器,其特征在于,所述第一散热基板和所述第二散热基板的所述热传导面均在同一平面上。
  3. 根据权利要求2所述的散热器,其特征在于,所述连接体为细长状。
  4. 根据权利要求2所述的散热器,其特征在于,所述连接体为薄板状。
  5. 根据权利要求1-4任一项所述的散热器,其特征在于,所述第二散热基板在对应所述连接体的部位上开设有安置槽,所述安置槽用于避让所述连接体。
  6. 根据权利要求1-5任一项所述的散热器,其特征在于,所述连接体的数量为至少两个。
  7. 根据权利要求1-6任一项所述的散热器,其特征在于,所述连接体上开设有第一通孔,所述第二散热基板在对应所述第一通孔的位置上开设有第二通孔;
    所述固定件还包括:固定螺钉;所述固定螺钉穿设在所述第一通孔和所述第二通孔之中,所述第一散热基板位于所述固定螺钉头部和所述第二散热基板之间,且所述固定螺钉的尾部和所述第二散热基板固定连接,以将所述第一散热基板和所述第二散热基板连接在一起。
  8. 根据权利要求7所述的散热器,其特征在于,所述固定件还包括有弹性件,所述弹性件的两端分别抵接在所述固定螺钉的头部和所述第一散热基板之间,以使所述第一散热基板在所述弹性件的弹力作用下与所述合封芯片贴合。
  9. 根据权利要求1-8任一项所述的散热器,其特征在于,所述第二散热基板和所述连接体的第二端之间通过隔热胶连接。
  10. 根据权利要求1-6任一项所述的散热器,其特征在于,所述固定件包括:第一定位螺柱和第二定位螺柱;
    所述第一定位螺柱的底端和所述第二散热基板连接,且所述第一定位螺柱的轴向方向垂直于所述第二散热基板所在平面,所述第二定位螺柱可旋合在所述第一定位螺柱的顶端,所述连接体的第二端固定在所述第一定位螺柱和所述第二定位螺柱的旋合处。
  11. 根据权利要求10所述的散热器,其特征在于,所述连接体的第二端和所述连接体的第一端与所述第二散热基板所在平面的垂直距离不同。
  12. 根据权利要求11所述的散热器,其特征在于,所述连接体的第一端和所述连接体的第二端之间通过折弯段连接。
  13. 根据权利要求1-12任一项所述的散热器,其特征在于,所述第二散热基板设置有缺口,至少部分所述第一散热基板位于所述缺口内,且所述第一散热基板的位于所述缺口内的部分的外缘形状与所述缺口形状相匹配。
  14. 根据权利要求13所述的散热器,其特征在于,所述第一散热基板完全位于所述缺口内。
  15. 根据权利要求1-12任一项所述的散热器,其特征在于,所述第二散热基板围设在所述第一散热基板的外侧并构成封闭形状。
  16. 根据权利要求1-15任一项所述的散热器,其特征在于,还包括:用于为所述第一散热基板散热的第一散热翅组和用于为所述第二散热基板散热的第二散热翅组,所述第一散热翅组位于所述第一散热基板的与所述热传导面背离的一面,所述第二散热翅组位于所述第二散热基板的与所述热传导面背离的一面,所述第二散热翅片组内部形成冷风通道,所述第二散热翅片组中设置有第二散热翅片,所述第二散热翅片位于所述冷风通道的两侧,所述第一散热翅组位于所述冷风通道内或者所述冷风通道的延长线上。
  17. 根据权利要求16所述的散热器,其特征在于,所述冷风通道内还设置有第三散热翅片,所述第三散热翅片的高度小于所述第二散热翅片的高度。
  18. 根据权利要求16所述的散热器,其特征在于,所述冷风通道内还设置有第四散热翅片,所述第四散热翅片的密度小于所述第二散热翅片的密度。
  19. 根据权利要求1-15任一项所述的散热器,其特征在于,还包括:用于为所述第一散热基板散热的第五散热翅片组和用于为所述第二散热基板散热的第六散热翅片组,所述第五散热翅组和所述第六散热翅片组叠放在所述散热基板的与所述热传导面背离的一面;
    所述第五散热翅片组位于所述第六散热翅片组和所述散热基板之间,或者,
    所述第六散热翅片组位于所述第五散热翅片组和所述散热基板之间。
  20. 根据权利要求1-19任一项所述的散热器,其特征在于,至少一个所述散热基板的热传导面上设置有半导体制冷芯片,所述半导体制冷芯片和所述合封芯片上对应的芯片接触。
  21. 根据权利要求1-20任一项所述的散热器,其特征在于,构成所述连接体的材料的导热速率小于构成所述散热基板的材料的导热速率。
  22. 一种散热器,其特征在于,包括:
    散热基板,
    所述散热基板用于对位于电路板的合封芯片散热,所述散热基板位于所述合封芯片的背离所述电路板的一面;
    所述散热基板包括第一散热基板和第二散热基板,所述第一散热基板和所述第二散热基板分别具有一个与所述合封芯片中的芯片进行热传导的热传导面,且不同热传导面对应不同的芯片,所述第一散热基板和所述第二散热基板之间通过连接件进行连接,所述连接件的导热系数小于所述第一散热子基板的导热系数,且所述连接件的导热系数小于所述第二散热基板的导热系数。
  23. 根据权利要求22所述的散热器,其特征在于,所述第一散热基板和第二散热基板的所述热传导面均在同一平面上。
  24. 根据权利要求22或23所述的散热器,其特征在于,构成所述连接件的材料为隔热材料。
  25. 根据权利要求22-24任一项所述的散热器,其特征在于,所述第二散热基板在对应所述连接件的部位上开设有安置槽,所述安置槽用于避让所述连接件。
  26. 根据权利要求22-25任一项所述的散热器,其特征在于,所述连接件的数量为至少两个。
  27. 根据权利要求22-26任一项所述的散热器,其特征在于,所述连接件上开设有第一通孔,所述第二散热基板在对应所述第一通孔的位置上开设有第二通孔;
    所述散热器还包括:固定螺钉;所述固定螺钉穿设在所述第一通孔和所述第二通孔之中,所 述第一散热基板位于所述固定螺钉头部和所述第二散热基板之间,且所述固定螺钉的尾部和所述第二散热基板固定连接,以将所述第一散热基板和所述第二散热基板连接在一起。
  28. 根据权利要求27所述的散热器,其特征在于,还包括:弹性件,所述弹性件的两端分别抵接在所述固定螺钉的头部和所述第一散热基板之间,以使所述第一散热基板在所述弹性件的弹力作用下与所述合封芯片贴合。
  29. 根据权利要求22-28任一项所述的散热器,其特征在于,所述第二散热基板和所述连接件之间通过隔热胶连接。
  30. 根据权利要求22-26任一项所述的散热器,其特征在于,所述第一散热基板上具有第一定位螺柱和第二定位螺柱;
    所述第一定位螺柱的底端和所述第二散热基板连接,且所述第一定位螺柱的轴向方向垂直于所述第二散热基板所在平面,所述第二定位螺柱可旋合在所述第一定位螺柱的顶端,所述连接件的第一端与所述第一散热基板连接,所述连接件的第二端固定在所述第一定位螺柱和所述第二定位螺柱的旋合处。
  31. 根据权利要求30所述的散热器,其特征在于,所述连接件的第二端和所述连接件的第一端与所述第二散热基板所在平面的垂直距离不同。
  32. 根据权利要求31所述的散热器,其特征在于,所述连接件的第一端和所述连接件的第二端之间通过折弯段连接。
  33. 根据权利要求22-32任一项所述的散热器,其特征在于,所述第二散热基板设置有缺口,至少部分所述第一散热基板位于所述缺口内,且所述第一散热基板的位于所述缺口内的部分的外缘形状与所述缺口形状相匹配。
  34. 根据权利要求33所述的散热器,其特征在于,所述第一散热基板完全位于所述缺口内。
  35. 根据权利要求22-32任一项所述的散热器,其特征在于,所述第二散热基板围设在所述第一散热基板的外侧并构成封闭形状。
  36. 根据权利要求22-35任一项所述的散热器,其特征在于,还包括:用于为所述第一散热基板散热的第一散热翅组和用于为所述第二散热基板散热的第二散热翅组,所述第一散热翅组位于所述第一散热基板的与所述热传导面背离的一面,所述第二散热翅组位于所述第二散热基板的与所述热传导面背离的一面,所述第二散热翅片组内部形成冷风通道,所述第二散热翅片组中设置有第二散热翅片,所述第二散热翅片位于所述冷风通道的两侧,所述第一散热翅组位于所述冷风通道内或者所述冷风通道的延长线上。
  37. 根据权利要求36所述的散热器,其特征在于,所述冷风通道内还设置有第三散热翅片,所述第三散热翅片的高度小于所述第二散热翅片的高度。
  38. 根据权利要求36所述的散热器,其特征在于,所述冷风通道内还设置有第四散热翅片,所述第四散热翅片的密度小于所述第二散热翅片的密度。
  39. 根据权利要求22-35任一项所述的散热器,其特征在于,还包括:用于为第一散热基板散热的第五散热翅片组和用于为所述第二散热基板散热的第六散热翅片组,所述第五散热翅组和所述第六散热翅片组叠放在所述散热基板的与所述热传导面背离的一面;
    所述第五散热翅片组位于所述第六散热翅片组和所述散热基板之间,或者,
    所述第六散热翅片组位于所述第五散热翅片组和所述散热基板之间。
  40. 根据权利要求22-39任一项所述的散热器,其特征在于,至少一个所述散热基板的热传 导面上设置有半导体制冷芯片,所述半导体制冷芯片和所述合封芯片上对应的芯片接触。
  41. 一种散热装置,其特征在于,包括至少两个如权利要求1-40任一项所述的散热器和至少一根热管;
    每个所述散热器对应一个合封芯片;
    所述热管的两端分别连接在不同散热器的散热基板上,以将处于发热状态下的合封芯片所对应的散热器的热量传递给未发热的合封芯片所对应的散热器。
  42. 一种散热系统,其特征在于,包括:至少一个如权利要求1-40任一项所述的散热器和至少一个合封芯片;其中每个所述散热器对应一个所述合封芯片;
    所述散热器用于为合封芯片散热。
  43. 一种通信设备,其特征在于,包括至少一个如权利要求1-40任一项所述的散热器、至少一个所述合封芯片和至少一个电路板;
    每个所述电路板上设置至少一个所述合封芯片;
    每个所述散热器对应一个所述合封芯片,且所述散热器用于为所述合封芯片散热。
PCT/CN2017/100378 2016-09-12 2017-09-04 散热器、散热装置、散热系统及通信设备 WO2018045933A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21169164.7A EP3916776A1 (en) 2016-09-12 2017-09-04 Heat sink, heat dissipation apparatus, heat dissipation system, and communications device
EP17848106.5A EP3503701B1 (en) 2016-09-12 2017-09-04 Heat sink, heat dissipation apparatus, heat dissipation system and communication device
US16/298,443 US11043442B2 (en) 2016-09-12 2019-03-11 Heat sink, heat dissipation apparatus, heat dissipation system, and communications device
US17/320,533 US11502019B2 (en) 2016-09-12 2021-05-14 Heat sink, heat dissipation apparatus, heat dissipation system, and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610820551.1A CN106413343B (zh) 2016-09-12 2016-09-12 散热器、散热装置、散热系统及通信设备
CN201610820551.1 2016-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/298,443 Continuation US11043442B2 (en) 2016-09-12 2019-03-11 Heat sink, heat dissipation apparatus, heat dissipation system, and communications device

Publications (1)

Publication Number Publication Date
WO2018045933A1 true WO2018045933A1 (zh) 2018-03-15

Family

ID=58000032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100378 WO2018045933A1 (zh) 2016-09-12 2017-09-04 散热器、散热装置、散热系统及通信设备

Country Status (4)

Country Link
US (2) US11043442B2 (zh)
EP (2) EP3916776A1 (zh)
CN (1) CN106413343B (zh)
WO (1) WO2018045933A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3813105A4 (en) * 2018-06-20 2022-03-23 QKM Technology (Dong Guang) Co., Ltd Integrated radiator having temperature gradient

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106413343B (zh) 2016-09-12 2019-04-26 华为技术有限公司 散热器、散热装置、散热系统及通信设备
FR3063386B1 (fr) * 2017-02-28 2019-04-12 Alstom Transport Technologies Module de puissance avec systeme de refroidissement des cartes electroniques
CN106993398A (zh) * 2017-05-19 2017-07-28 海信(山东)空调有限公司 一种组合式散热器
CN107202353A (zh) * 2017-08-05 2017-09-26 袁小强 油烟机的控制器
CN107529662A (zh) * 2017-09-12 2018-01-02 青岛海信智能商用系统股份有限公司 一种pos机
CN107507813A (zh) * 2017-10-10 2017-12-22 北京比特大陆科技有限公司 散热片、芯片及电路板
CN108539926A (zh) * 2018-05-16 2018-09-14 芜湖市艾德森自动化设备有限公司 一种通用性电动机设备用高效强制散热装置
TWI691696B (zh) * 2019-05-31 2020-04-21 訊凱國際股份有限公司 散熱裝置
CN110739283A (zh) * 2019-10-30 2020-01-31 英业达科技有限公司 一种散热器
USD924186S1 (en) * 2020-03-09 2021-07-06 Cambricon Technologies Corporation Limited Board card
CN111741652B (zh) * 2020-06-27 2023-05-05 江苏海鼎电气科技有限公司 一种内横外纵风冷式电子电力散热装置
US12141005B2 (en) 2020-08-24 2024-11-12 Nvidia Corporation Intelligent adaptable fins for cooling datacenter devices
CN112469219A (zh) * 2020-11-16 2021-03-09 南京长峰航天电子科技有限公司 一种小型化Ka波段固态功放电路、组件和拼装件
CN112837898B (zh) * 2020-12-31 2022-01-25 杭州岳诚科技有限公司 一种低压变压器增重式调节支撑散热组件
CN112882983A (zh) * 2021-04-21 2021-06-01 北京百度网讯科技有限公司 散热装置及具有其的服务器
CN115413184A (zh) * 2021-05-29 2022-11-29 华为技术有限公司 一种散热系统和电子设备
CN113710060A (zh) * 2021-08-18 2021-11-26 锐捷网络股份有限公司 双层光模块装置及通信网络设备单板
US20230420335A1 (en) * 2022-06-28 2023-12-28 Xilinx, Inc. Chip package with pass through heat spreader
US12363869B2 (en) * 2023-08-15 2025-07-15 Nidec Chaun-Choungtechnology Corporation Heat dissipation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2872593Y (zh) * 2005-12-22 2007-02-21 佛山市顺德区汉达精密电子科技有限公司 散热装置的结构
CN102299127A (zh) * 2011-07-13 2011-12-28 台达电子企业管理(上海)有限公司 用于封装元件的双向散热器及其组装方法
CN104538434A (zh) * 2014-12-25 2015-04-22 廖奇泊 半导体功率元件
CN204807901U (zh) * 2015-07-03 2015-11-25 比亚迪股份有限公司 一种投影仪
CN106413343A (zh) * 2016-09-12 2017-02-15 华为技术有限公司 散热器、散热装置、散热系统及通信设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2669378B2 (ja) * 1995-02-14 1997-10-27 日本電気株式会社 半導体モジュールの冷却構造
US20040155251A1 (en) * 2003-02-07 2004-08-12 Vladimir Abramov Peltier cooler integrated with electronic device(s)
US20050207115A1 (en) * 2004-03-18 2005-09-22 Hewlett-Packard Development Company, L.P. Heat dissipating arrangement
CN2704113Y (zh) * 2004-05-18 2005-06-08 仁宝电脑工业股份有限公司 多热源散热装置
CN2840168Y (zh) * 2005-10-27 2006-11-22 瑞传科技股份有限公司 散热装置
JP2007208116A (ja) * 2006-02-03 2007-08-16 Fuji Electric Systems Co Ltd 風冷式冷却体
CN100464620C (zh) * 2006-02-10 2009-02-25 富准精密工业(深圳)有限公司 散热装置
CN101079399A (zh) * 2006-05-22 2007-11-28 华硕电脑股份有限公司 电子装置
US7462934B2 (en) * 2006-06-20 2008-12-09 Microsoft Corporation Integrated heat sink
US20080068805A1 (en) * 2006-09-15 2008-03-20 Foxconn Technology Co., Ltd. Heat sink assembly for multiple electronic components
US20080218964A1 (en) * 2007-03-05 2008-09-11 Dfi, Inc. Desktop personal computer and thermal module thereof
US7667970B2 (en) * 2007-12-27 2010-02-23 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat sink assembly for multiple electronic components
US8109321B2 (en) * 2008-03-05 2012-02-07 Alcatel Lucent Modular heat sink assembly comprising a larger main heat sink member thermally connected to smaller additional floating heat sink members
US8913389B2 (en) 2010-02-04 2014-12-16 Panasonic Corporation Heat radiation device and electronic equipment using the same
JP5779042B2 (ja) * 2011-08-18 2015-09-16 新光電気工業株式会社 半導体装置
WO2012149786A1 (zh) 2011-09-30 2012-11-08 华为技术有限公司 一种散热器
US9257364B2 (en) * 2012-06-27 2016-02-09 Intel Corporation Integrated heat spreader that maximizes heat transfer from a multi-chip package
CN103796475B (zh) * 2012-10-30 2016-04-13 英业达科技有限公司 散热模块及电子装置
CN203261623U (zh) * 2013-05-09 2013-10-30 台达电子电源(东莞)有限公司 散热板以及电路模块
WO2015198642A1 (ja) * 2014-06-23 2015-12-30 日本電気株式会社 ヒートシンク及びヒートシンクを用いた放熱方法
CN109168288B (zh) * 2014-09-26 2020-07-14 华为技术有限公司 散热器及电子产品
TWI600091B (zh) * 2014-10-23 2017-09-21 英特爾股份有限公司 用於多表面構件之使用撓性熱管的散熱器連接器
JP2016181546A (ja) * 2015-03-23 2016-10-13 日本電気株式会社 冷却構造及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2872593Y (zh) * 2005-12-22 2007-02-21 佛山市顺德区汉达精密电子科技有限公司 散热装置的结构
CN102299127A (zh) * 2011-07-13 2011-12-28 台达电子企业管理(上海)有限公司 用于封装元件的双向散热器及其组装方法
CN104538434A (zh) * 2014-12-25 2015-04-22 廖奇泊 半导体功率元件
CN204807901U (zh) * 2015-07-03 2015-11-25 比亚迪股份有限公司 一种投影仪
CN106413343A (zh) * 2016-09-12 2017-02-15 华为技术有限公司 散热器、散热装置、散热系统及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3503701A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3813105A4 (en) * 2018-06-20 2022-03-23 QKM Technology (Dong Guang) Co., Ltd Integrated radiator having temperature gradient
US12002728B2 (en) 2018-06-20 2024-06-04 Qkm Technology (Dong Guan) Co., Ltd Integrated radiator having temperature gradient

Also Published As

Publication number Publication date
US20210343621A1 (en) 2021-11-04
US20190206763A1 (en) 2019-07-04
EP3503701A4 (en) 2019-09-25
EP3916776A1 (en) 2021-12-01
CN106413343B (zh) 2019-04-26
CN106413343A (zh) 2017-02-15
EP3503701A1 (en) 2019-06-26
US11043442B2 (en) 2021-06-22
EP3503701B1 (en) 2021-05-12
US11502019B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2018045933A1 (zh) 散热器、散热装置、散热系统及通信设备
US8488325B1 (en) Memory module having thermal conduits
US7190581B1 (en) Low thermal resistance power module assembly
US6670699B2 (en) Semiconductor device packaging structure
CN103200765B (zh) 电子封装结构
WO2018146933A1 (ja) 半導体装置及び半導体装置の製造方法
JP2009105394A (ja) 内部冷却構造を有する回路基板を利用した電気アセンブリ
TW201326724A (zh) 功率模組用複合式散熱器及功率模組用複合式散熱器組件
JP2009117612A (ja) 回路モジュールとその製造方法
JP2008060172A (ja) 半導体装置
US11495519B2 (en) Apparatus for thermal management of electronic components
US10721838B1 (en) Stacked base heat sink with heat pipes in-line with airflow
KR100700936B1 (ko) 냉각 장치 및 이를 갖는 메모리 모듈
CN108511404B (zh) 芯片封装系统
US11129303B1 (en) Cooling of server high-power devices using double-base primary and secondary heat sinks
JP2018133527A (ja) 半導体装置及び半導体装置の製造方法
CN1317760C (zh) 半导体集成电路装置及其半导体集成电路芯片
JPWO2019043835A1 (ja) 電子装置
JP2013016606A (ja) パワーモジュールの冷却構造
TW202015501A (zh) 多層電路板結構
TWI660471B (zh) 晶片封裝
JPH1168360A (ja) 半導体素子の冷却構造
JPH04294570A (ja) ヒートシンク
CN100417312C (zh) 具有改善散热结构的印刷电路板及电子装置
JPH01270298A (ja) 半導体素子の冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017848106

Country of ref document: EP

Effective date: 20190320