WO2018043637A1 - Metal molded body surface roughening method - Google Patents
Metal molded body surface roughening method Download PDFInfo
- Publication number
- WO2018043637A1 WO2018043637A1 PCT/JP2017/031328 JP2017031328W WO2018043637A1 WO 2018043637 A1 WO2018043637 A1 WO 2018043637A1 JP 2017031328 W JP2017031328 W JP 2017031328W WO 2018043637 A1 WO2018043637 A1 WO 2018043637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded body
- laser
- laser light
- metal molded
- irradiation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/354—Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/355—Texturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/3568—Modifying rugosity
- B23K26/3584—Increasing rugosity, e.g. roughening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/34—Coated articles, e.g. plated or painted; Surface treated articles
Definitions
- the present invention relates to a method for roughening a metal molded body that can be used as an intermediate for producing a composite molded body of a metal molded body and a resin, rubber, or metal.
- a technique is known in which a composite molded body made of a metal molded body and a resin molded body is integrated after the surface of the metal molded body is roughened.
- the surface of the metal molded body is roughened by continuously irradiating the surface of the metal molded body with a laser beam at an irradiation speed of 2000 mm / sec or more using a continuous wave laser.
- a method of roughening a metal molded body (claim 1) is described.
- the composite molded body obtained by bonding to the resin molded body is bonded to the metal molded body and the resin molded body with high bonding strength (Patent No. 1). No. 5701414).
- the present invention provides a roughening method for a metal molded body for roughening the surface of a metal molded body that can be used as an intermediate for producing a composite molded body of a metal molded body and a resin, rubber, metal, or the like.
- the task is to do.
- the present invention is a method of roughening a metal molded body,
- the surface of the metal molded body is irradiated with laser light at an irradiation speed of 2000 mm / sec or more at an energy density of 1 MW / cm 2 or more using a laser device,
- a laser device When irradiating the laser beam so that the laser beam irradiation process is a straight line, a curve, or a combination of a straight line and a curve on the surface of the metal molded body to be roughened,
- a method for roughening a metal formed body which is a step of irradiating so that irradiated portions are alternately generated.
- the surface of the metal molded body can be made into a complicated porous structure.
- the roughened metal molded body can be used for manufacturing a composite molded body with a molded body made of resin, rubber, metal, or the like.
- the figure which shows the irradiation state of the laser beam of one Embodiment when enforcing the roughening method of the metal molded object of this invention is a figure which shows the irradiation pattern of a laser beam when implementing the roughening method of the metal molded object of this invention, (a) is the irradiation pattern of the same direction, (b) is a bidirectional irradiation pattern. (A) And (b) is a figure for demonstrating the irradiation process of the laser beam in another embodiment of this invention.
- FIG. (A) is a SEM photograph of the surface when the aluminum molded body is roughened in Example 4, and (b) is a cross-sectional SEM photograph. The SEM photograph of the surface when the aluminum molded object is roughened in Example 5.
- FIG. (A) is the SEM photograph of the surface when the aluminum molded body is roughened in Example 8, and (b) is the SEM photograph of the cross section. The SEM photograph of the surface when an aluminum molded object is roughened in Example 13.
- FIG. (A) is the SEM photograph of the surface when the aluminum molded body is roughened in Example 16, and (b) is the SEM photograph of the cross section.
- (A) is the SEM photograph of the surface when the stainless steel molded body is roughened in Example 20, and (b) is the SEM photograph of the cross section. The figure for demonstrating the laser irradiation method in Examples 23-25 and Comparative Examples 1-3.
- (A)-(c) is a figure for demonstrating the measuring method of the deformation amount in Examples 23-25 and Comparative Examples 1-3.
- FIG. The SEM photograph of the surface when the aluminum molded object is roughened in Example 31.
- FIG. The SEM photograph of the surface when an aluminum molded object is roughened in Example 32.
- FIG. The SEM photograph of the surface when an aluminum molded object is roughened in Example 33.
- the method of roughening the metal molded body of the present invention is to irradiate laser light under laser light irradiation conditions different from the laser light irradiation conditions described in the inventions of Japanese Patent Nos. 5774246 and 5701414. Similar to the inventions of Japanese Patent Nos. 5774246 and 5701414, the surface of the metal molded body is roughened.
- a laser device is used on the surface of the metal molded body to emit laser light at an energy density of 1 MW / cm 2 or more and an irradiation speed of 2000 mm / sec or more. It has the process of irradiating.
- the metal of the metal molded body used in the present invention is not particularly limited, and can be appropriately selected from known metals according to applications. Examples include those selected from cermets such as iron, various stainless steels, aluminum, zinc, titanium, copper, brass, chromium-plated steel, magnesium and alloys containing them, tungsten carbide, chromium carbide, etc. On the other hand, it can be applied to those subjected to surface treatment such as alumite treatment and plating treatment.
- the shape of the metal molded body used in the present invention is not particularly limited, and a shape according to the application can be used.
- the thickness of the metal molded body is not particularly limited, but the method for roughening a metal molded body according to the present invention is less likely to cause deformation such as warping even when the molded body having a small thickness is roughened. Excellent in terms. For this reason, it is suitable for a thin metal molded body having a thickness of 10 mm or less where the laser beam is irradiated, preferably 5 mm or less, more preferably 2 mm or less, and even more preferably 1 mm or less. It is suitable for.
- the laser apparatus used in the present invention may be any apparatus that has an energy density of 1 MW / cm 2 or more and can perform laser irradiation at an irradiation speed of 2000 mm / sec or more.
- the energy density at the time of laser light irradiation is obtained from the laser light output (W) and the laser light (spot area (cm 2 ) ( ⁇ ⁇ [spot diameter / 2] 2 ).
- Energy at the time of laser light irradiation density is preferably 2 ⁇ 1000MW / cm 2, more preferably 10 ⁇ 800MW / cm 2, 10 ⁇ 700MW / cm 2 is more preferable. since the energy density is too high metal will sublimes without melting, complex A hole having a simple structure is not formed.
- the irradiation rate of laser light is preferably 2,000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and further preferably 3,000 to 15,000 mm / sec.
- the output of the laser beam is preferably 4 to 4000 W, more preferably 50 to 2500 W, further preferably 150 to 2000 W, and further preferably 150 to 1500 W.
- the wavelength is preferably 500 to 11,000 nm.
- the beam diameter (spot diameter) is preferably 5 to 80 ⁇ m, more preferably 5 to 40 ⁇ m.
- the defocus distance is preferably -5 to +5 mm, more preferably -1 to +1 mm, and further preferably -0.5 to +0.1 mm.
- the defocus distance may be irradiated with laser with a set value being constant, or laser irradiation may be performed while changing the defocus distance. For example, at the time of laser irradiation, the defocusing distance may be decreased, or may be periodically increased or decreased.
- the metal molded body when the metal molded body is irradiated with laser light so as to satisfy the above energy density and irradiation speed, a part of the surface of the metal molded body is evaporated while being melted, so that a hole having a complicated structure is formed. Is done. On the other hand, if the energy density and irradiation speed described above are not satisfied, the surface of the metal formed body is sublimated to form holes (holes formed by normal pulse laser irradiation) or melted (laser welding). Therefore, a hole having a complicated structure is not formed.
- the above-described energy density and irradiation speed are satisfied, and then the surface of the metal molded body to be roughened is a straight line, a curve, or a combination of a straight line and a curve.
- the irradiation is performed so that the irradiated portion and the non-irradiated portion of the laser beam are alternately generated.
- the laser beam is irradiated on the surface of the metal molded body so as to draw a straight line, a curve, or a combination of a straight line and a curved line. At that time, each of the straight line and the curve is composed of alternately irradiated portions and non-irradiated portions of the laser beam.
- FIG. 1 an embodiment in which irradiation is performed so that laser beam irradiation portions and non-irradiation portions are alternately generated is included.
- the non-irradiated portions 2 of the length L2 between the irradiated portions 1 of the laser beam of length L1 and the adjacent irradiated portions 1 of the laser beam of length L1 are alternately generated as a whole.
- the state irradiated so that it may form in a dotted line is shown.
- the dotted lines include chain lines such as a one-dot chain line and a two-dot chain line.
- laser light can be repeatedly irradiated to form a dotted line extending on a single straight line as shown in FIG.
- the number of repetitions can be set to 1 to 20 times, for example.
- the laser light irradiation part may be the same, or by changing the laser light irradiation part (shifting the laser light irradiation part), the entire linear irradiation is rough. You may make it face.
- the laser beam is irradiated multiple times with the same laser beam irradiated part, the laser beam is irradiated in a dotted line, but the laser beam irradiated part is shifted, i.e., the laser beam is not irradiated on the part that was initially irradiated with the laser beam. It is preferable to repeat the irradiation so that the irradiated portions overlap so that even if the irradiation is performed in a dotted line shape, the irradiation is finally performed in a solid line state.
- the dotted line irradiated / non-irradiated part and the solid line irradiated part may be hereinafter referred to as “line”.
- the temperature of the irradiated surface rises, and fine metal particles in the molten state scatter and adhere to the metal molded body and its surrounding members and remain as spatter.
- the laser light irradiation method is a method of irradiating the surface of the metal molded body 10 in one direction as shown in FIG. 2 (a) to form a plurality of lines, or a dotted line shown in FIG. 2 (b).
- a method of forming a plurality of lines by irradiating from both directions can be used.
- a desired region on the surface of the metal molded body 10 can be roughened.
- intersect may be sufficient.
- the interval b1 between the dotted lines after the irradiation can be adjusted according to the irradiation target area of the metal molded body, and is, for example, in the range of 0.01 to 5 mm, preferably in the range of 0.02 to 3 mm. More preferably, it can be in the range of 0.03 to 1 mm. That is, irradiation can be performed so as to form a required number of lines according to the area of the roughened region.
- the lines can be formed adjacent to each other, and every other line (for example, an odd number of lines to be formed) is formed by the first scanning of the laser beam, and the remaining lines ( (Even numbered lines) may be formed in any order.
- the ratio can be determined in consideration of the balance between cooling and roughening according to the material used and the desired degree of roughening.
- the length (L1) of the laser-irradiated portion 1 is preferably 0.05 mm or more, more preferably 0.1 to 10 mm, and more preferably 0.3 to 7 mm in order to roughen a complex porous structure. Is more preferable.
- the laser beam irradiation step includes a fiber laser device in which a direct modulation type modulation device that directly converts a laser driving current is connected to a laser power source.
- the laser is irradiated by adjusting the duty ratio by using it.
- pulse excitation There are two types of laser excitation, pulse excitation and continuous excitation, and pulse wave lasers based on pulse excitation are generally called normal pulses.
- a pulse wave laser can be produced by a direct modulation method in which a current is directly modulated to generate a pulse wave laser.
- the method of pulsing by operating the galvanometer mirror is a method of irradiating the laser beam oscillated from the laser oscillator via the galvanometer mirror by a combination of the galvanometer mirror and the galvanometer controller.
- the laser light irradiation process uses a combination of a galvano mirror and a galvano controller, and the laser light continuously oscillated from the laser oscillator is pulsed by the galvano controller, so that the ON time of the laser light output and
- This is a step of adjusting the duty ratio calculated by the following formula from the OFF time and irradiating the laser light irradiation portion and the non-irradiation portion alternately via the galvano mirror. Specifically, as follows Can be implemented.
- the Gate signal is periodically turned on / off from the galvano controller, and the laser light oscillated by the laser oscillator is turned on / off by the ON / OFF signal, thereby pulsing without changing the energy density of the laser light. Can do.
- non-irradiated portions of the laser light between the irradiated portion 1 of the laser light and the adjacent irradiated portion 1 of the laser light are alternately generated so as to be formed as a dotted line as a whole.
- Laser light can be irradiated.
- the method of pulsing by operating the galvanometer mirror is easy to operate because the duty ratio can be adjusted without changing the oscillation state of the laser beam itself.
- a method of chopping and pulsing a method of pulsing by operating a galvanometer mirror, or a direct modulation method of directly modulating a laser driving current to generate a pulse wave laser is preferable.
- This direct modulation method uses a fiber laser device in which a direct modulation method modulation device that directly converts the laser drive current is connected to the laser power supply, thereby creating a pulse wave laser by continuously exciting the laser. This is different from the continuous wave laser used for roughening the metal molded body in Japanese Patent Nos. 5774246 and 5701414.
- the duty ratio is a ratio obtained from the ON time and OFF time of the laser light output by the following equation.
- Duty ratio (%) ON time / (ON time + OFF time) ⁇ 100 Since the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 1, it can be selected from a range of 10 to 90%, preferably a range of 20 to 80%. As a result, it is possible to irradiate laser light irradiation portions and non-irradiation portions alternately.
- ⁇ Irradiation with a dotted line as shown in Fig. 1 is possible by adjusting the duty ratio and irradiating laser light.
- the duty ratio is large, the efficiency of the roughening process is improved, but the cooling effect is low.
- the duty ratio is small, the cooling effect is improved, but the roughening efficiency is deteriorated. It is preferable to adjust the duty ratio according to the purpose.
- the laser light irradiation step described above passes the laser light at intervals on the surface of the metal molded body to be roughened.
- the laser is continuously irradiated with the masking material not to be placed.
- the masking material may or may not be in direct contact with the metal formed body.
- the laser is continuously irradiated in a state where a plurality of masking materials 11 are arranged on the metal molded body 10 at intervals.
- a metal having a low thermal conductivity can be used as the masking material 11 .
- a dotted line is formed in which the irradiated portions and the non-irradiated portions of the laser light are alternately generated as in FIG.
- the masking material 11 is cooled, so that when the laser light irradiation is continued, deformation such as warpage is less likely to occur even in a molded product having a small thickness. Therefore, it is preferable.
- the length (L1) of the laser-irradiated portion 1 is preferably 0.05 mm or more, preferably 0.1 to 10 mm, and preferably 0.3 to 7 mm in order to roughen a complex porous structure. More preferred.
- a known continuous wave laser can be used, for example, YVO 4 laser, fiber laser (single mode fiber laser, multimode fiber laser), excimer laser, carbon dioxide laser, ultraviolet laser, YAG laser, semiconductor laser, A glass laser, ruby laser, He—Ne laser, nitrogen laser, chelate laser, or dye laser can be used.
- a porous structure can be formed on the surface of the metal molded body (including a range from the surface to a depth of about 500 ⁇ m), specifically a patent.
- FIG. 7, FIG. 8, FIG. 24 to FIG. 26 and FIG. 29 of Japanese Patent No. 5774246, and FIG. 7, FIG. 8, FIG. 24 to FIG. 26 of FIG. A porous structure can be obtained.
- Examples 1 to 16 The entire surface (20 mm 2 wide range) of the metal molded body 50 (aluminum A5052) having the shape and dimensions shown in FIG. The light irradiation surface was roughened.
- the groove depth was measured with a digital microscope VHX-900 (manufactured by Keyence Corporation) on the surface 51 after laser light irradiation.
- the average groove depth was measured at 10 locations to obtain an average value.
- the maximum groove depth was the value of the deepest part among the 10 points measured.
- the tensile strength was determined by a tensile test using a butt test piece based on ISO 19095 (tensile speed: 10 mm / min, distance between chucks: 50 mm).
- the butt test piece uses GF30% reinforced PA6 resin (Plastotron PA6-GF30-01 (L9): manufactured by Daicel Polymer Co., Ltd.) as the resin, and the injection molding machine uses ROBOSHOT S2000i100B manufactured by FANUC, at a resin temperature. : 280 ° C., mold temperature: obtained by injection molding at 100 ° C.
- pulse wave laser light is used in the same manner as in Comparative Examples 1, 4, and 7 of Japanese Patent No. 5774246 and Comparative Examples 1, 4, and 7 of Japanese Patent No. 5701414.
- the laser beam irradiation part and the non-irradiation part do not occur alternately.
- Examples 17-22 In the same manner as in Examples 1 to 16, the laser beam was formed under the conditions shown in Table 2 on the entire surface 51 (width range of 20 mm 2 ) of the metal molded body 50 (stainless steel SUS304) having the shape and dimensions shown in FIG. Light was irradiated to roughen the laser light irradiation surface of the surface 51. Further, the maximum groove depth and tensile strength were measured in the same manner as in Examples 1-16.
- Examples 23 and 24, Comparative Examples 1 and 2 A metal plate 55 (30 mm ⁇ 30 mm) having the shape shown in FIG. 13 and having a changed thickness (Table 3) is used under the conditions shown in Table 3 for a region 56 of 20 mm ⁇ 6 mm. Laser light was irradiated in the same manner as in Examples 1 to 16 with the irradiation pattern shown in (b).
- FIGS. 14 (a) to (c) are diagrams showing states before and after laser light irradiation, and FIG. 14 (b) exaggerates the deformation for easy understanding.
- the amount of deformation is such that the metal plate 55 after laser light irradiation is placed on a measurement table 60 having a flat surface 61, and the distances d1 and d2 between the opposing surfaces and the flat surface 61 of the measurement table 60 are scaled magnifiers ( 3010S: Ikeda Lens Industry Co., Ltd.) The number of measurements is 5, and the average value obtained from (5 ⁇ d1 + 5 ⁇ d2) / 10 is shown in Table 3.
- Example 25 Comparative Example 3 Example 25 was irradiated with laser light in the same manner as in Examples 23 and 24 under the conditions shown in Table 4, and Comparative Example 3 was irradiated with laser light in the same manner as in Comparative Examples 1 and 2 under the conditions shown in Table 4. .
- the amount of deformation was measured in the same manner as in Examples 23 and 24.
- Example 25 As is clear from Table 4, the sample was slightly deformed in Comparative Example 3 in which the laser beam was continuously irradiated, but there was no deformation (warping) in Example 25. From this result, it was confirmed that the roughening method of the present invention is effective for a metal molded body having a small thickness. As a result of visual confirmation, the amount of sputtering in Example 25 was smaller than that in Comparative Example 3.
- Examples 26-33 The entire surface (20 mm 2 wide range) of the metal molded body 50 (aluminum A5052) having the shape and dimensions shown in FIG. The light irradiation surface was roughened. However, the duty ratio was adjusted by a method of pulsing by operating a galvanometer mirror while continuously irradiating laser light. 15 to 18 show SEM photographs of the surfaces of the aluminum molded bodies after laser light irradiation in Examples 30 to 33. Each measurement was carried out in the same manner as in Examples 1-16.
- Galvano scan head Squirrel 16 (manufactured by ARGES)
- Galvano controller ASC-1 Squirrel 16 collimator (f80mm): OPTICEL D30L-CL
- the roughened metal molded body obtained by the method for roughening a metal molded body of the present invention can be used as a production intermediate for the composite molded body described in the invention of Japanese Patent No. 5701414,
- the abrasive described in JP-A-2016-36884, the fine particle carrier described in JP-A-2016-7589, and the use described in paragraph No. 0037 of JP-A-2016-43413 can be used. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Provided is a surface roughening method for roughening the surface of a metal molded body capable of being used as a production intermediate for a composite molded body comprising the metal molded body and resin, rubber, metal or the like.
The metal molded body surface roughening method includes a step of using a laser device to irradiate the surface of the metal molded body with laser light having an energy density at least equal to 1 MW/cm2 and an irradiation speed at least equal to 2000 mm/sec. The laser light irradiation step is a step in which, when the surface of the metal molded body to be surface-roughened is irradiated with laser light in such a way as to form straight lines, curved lines, or a combination of straight lines and curved lines, irradiation is performed in such a way that parts irradiated with the laser light and parts not irradiated with the laser light are generated alternately.
Description
本発明は、金属成形体と樹脂、ゴム、または金属などとの複合成形体の製造中間体として使用できる金属成形体の粗面化方法に関する。
背景技術 The present invention relates to a method for roughening a metal molded body that can be used as an intermediate for producing a composite molded body of a metal molded body and a resin, rubber, or metal.
Background art
背景技術 The present invention relates to a method for roughening a metal molded body that can be used as an intermediate for producing a composite molded body of a metal molded body and a resin, rubber, or metal.
Background art
金属成形体と樹脂成形体からなる複合成形体を製造するとき、金属成形体の表面を粗面化した後で一体化させる技術が知られている。特許第5774246号公報には、金属成形体の表面に対して、連続波レーザーを使用して2000mm/sec以上の照射速度でレーザー光を連続照射することで前記金属成形体の表面を粗面化する、金属成形体の粗面化方法(請求項1)が記載されている。特許第5774246号公報の発明の粗面化方法を実施した後、樹脂成形体と接合して得た複合成形体は、金属成形体と樹脂成形体が高い接合強度で接合されている(特許第5701414号公報)。
発明の概要 A technique is known in which a composite molded body made of a metal molded body and a resin molded body is integrated after the surface of the metal molded body is roughened. In Japanese Patent No. 5774246, the surface of the metal molded body is roughened by continuously irradiating the surface of the metal molded body with a laser beam at an irradiation speed of 2000 mm / sec or more using a continuous wave laser. A method of roughening a metal molded body (claim 1) is described. After carrying out the roughening method of the invention of Japanese Patent No. 5774246, the composite molded body obtained by bonding to the resin molded body is bonded to the metal molded body and the resin molded body with high bonding strength (Patent No. 1). No. 5701414).
Summary of the Invention
発明の概要 A technique is known in which a composite molded body made of a metal molded body and a resin molded body is integrated after the surface of the metal molded body is roughened. In Japanese Patent No. 5774246, the surface of the metal molded body is roughened by continuously irradiating the surface of the metal molded body with a laser beam at an irradiation speed of 2000 mm / sec or more using a continuous wave laser. A method of roughening a metal molded body (claim 1) is described. After carrying out the roughening method of the invention of Japanese Patent No. 5774246, the composite molded body obtained by bonding to the resin molded body is bonded to the metal molded body and the resin molded body with high bonding strength (Patent No. 1). No. 5701414).
Summary of the Invention
本発明は、金属成形体と樹脂、ゴム、または金属などとの複合成形体の製造中間体として使用できる金属成形体の表面を粗面化するための、金属成形体の粗面化方法を提供することを課題とする。
課題を解決するための手段 The present invention provides a roughening method for a metal molded body for roughening the surface of a metal molded body that can be used as an intermediate for producing a composite molded body of a metal molded body and a resin, rubber, metal, or the like. The task is to do.
Means for solving the problem
課題を解決するための手段 The present invention provides a roughening method for a metal molded body for roughening the surface of a metal molded body that can be used as an intermediate for producing a composite molded body of a metal molded body and a resin, rubber, metal, or the like. The task is to do.
Means for solving the problem
本発明は、金属成形体の粗面化方法であって、
前記金属成形体の表面に対して、レーザー装置を使用して、エネルギー密度が1MW/cm2以上で、2000mm/sec以上の照射速度でレーザー光を照射する工程を有しており、
前記レーザー光の照射工程が、粗面化対象となる金属成形体の表面に対して、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、金属成形体の粗面化方法を提供する。 The present invention is a method of roughening a metal molded body,
The surface of the metal molded body is irradiated with laser light at an irradiation speed of 2000 mm / sec or more at an energy density of 1 MW / cm 2 or more using a laser device,
When irradiating the laser beam so that the laser beam irradiation process is a straight line, a curve, or a combination of a straight line and a curve on the surface of the metal molded body to be roughened, Provided is a method for roughening a metal formed body, which is a step of irradiating so that irradiated portions are alternately generated.
前記金属成形体の表面に対して、レーザー装置を使用して、エネルギー密度が1MW/cm2以上で、2000mm/sec以上の照射速度でレーザー光を照射する工程を有しており、
前記レーザー光の照射工程が、粗面化対象となる金属成形体の表面に対して、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、金属成形体の粗面化方法を提供する。 The present invention is a method of roughening a metal molded body,
The surface of the metal molded body is irradiated with laser light at an irradiation speed of 2000 mm / sec or more at an energy density of 1 MW / cm 2 or more using a laser device,
When irradiating the laser beam so that the laser beam irradiation process is a straight line, a curve, or a combination of a straight line and a curve on the surface of the metal molded body to be roughened, Provided is a method for roughening a metal formed body, which is a step of irradiating so that irradiated portions are alternately generated.
本発明の金属成形体の粗面化方法によれば、金属成形体の表面を複雑な多孔構造にすることができる。このため、粗面化した金属成形体は、樹脂、ゴム、または金属などからなる成形体との複合成形体の製造用として使用することができる。
According to the method for roughening a metal molded body of the present invention, the surface of the metal molded body can be made into a complicated porous structure. For this reason, the roughened metal molded body can be used for manufacturing a composite molded body with a molded body made of resin, rubber, metal, or the like.
本発明の金属成形体の粗面化方法は、特許第5774246号公報及び特許第5701414号公報の発明に記載されたレーザー光照射条件とは異なるレーザー光照射条件にてレーザー光を照射することで、特許第5774246号公報及び特許第5701414号公報の発明と同様に金属成形体の表面を粗面化するものである。
The method of roughening the metal molded body of the present invention is to irradiate laser light under laser light irradiation conditions different from the laser light irradiation conditions described in the inventions of Japanese Patent Nos. 5774246 and 5701414. Similar to the inventions of Japanese Patent Nos. 5774246 and 5701414, the surface of the metal molded body is roughened.
本発明の金属成形体の粗面化方法は、金属成形体の表面に対して、レーザー装置を使用して、エネルギー密度が1MW/cm2以上で、2000mm/sec以上の照射速度でレーザー光を照射する工程を有している。
In the method for roughening a metal molded body according to the present invention, a laser device is used on the surface of the metal molded body to emit laser light at an energy density of 1 MW / cm 2 or more and an irradiation speed of 2000 mm / sec or more. It has the process of irradiating.
本発明で使用する金属成形体の金属は特に制限されるものではなく、用途に応じて公知の金属から適宜選択することができる。例えば、鉄、各種ステンレス、アルミニウム、亜鉛、チタン、銅、黄銅、クロムめっき鋼、マグネシウムおよびそれらを含む合金、タングステンカーバイド、クロミウムカーバイドなどのサーメットから選ばれるものを挙げることができ、これらの金属に対して、アルマイト処理、めっき処理などの表面処理を施したものにも適用できる。
The metal of the metal molded body used in the present invention is not particularly limited, and can be appropriately selected from known metals according to applications. Examples include those selected from cermets such as iron, various stainless steels, aluminum, zinc, titanium, copper, brass, chromium-plated steel, magnesium and alloys containing them, tungsten carbide, chromium carbide, etc. On the other hand, it can be applied to those subjected to surface treatment such as alumite treatment and plating treatment.
本発明で使用する金属成形体の形状は特に制限されるものではなく、用途に応じた形状のものを使用することができる。金属成形体の厚さも特に制限されるものではないが、本発明の金属成形体の粗面化方法は、厚さの小さい成形体を粗面化したときでも、そりなどの変形が生じ難いという点で優れている。このため、レーザー光を照射する部分の厚さが10mm以下の薄い金属成形体に対して好適であり、好ましくは厚さが5mm以下、より好ましくは2mm以下、さらに好ましくは1mm以下の金属成形体に対して好適である。
The shape of the metal molded body used in the present invention is not particularly limited, and a shape according to the application can be used. The thickness of the metal molded body is not particularly limited, but the method for roughening a metal molded body according to the present invention is less likely to cause deformation such as warping even when the molded body having a small thickness is roughened. Excellent in terms. For this reason, it is suitable for a thin metal molded body having a thickness of 10 mm or less where the laser beam is irradiated, preferably 5 mm or less, more preferably 2 mm or less, and even more preferably 1 mm or less. It is suitable for.
本発明で使用するレーザー装置は、エネルギー密度が1MW/cm2以上で、2000mm/sec以上の照射速度でレーザー照射できるものであればよい。
The laser apparatus used in the present invention may be any apparatus that has an energy density of 1 MW / cm 2 or more and can perform laser irradiation at an irradiation speed of 2000 mm / sec or more.
レーザー光の照射時のエネルギー密度は、レーザー光の出力(W)と、レーザー光(スポット面積(cm2)(π・〔スポット径/2〕2)から求められる。レーザー光の照射時のエネルギー密度は、2~1000MW/cm2が好ましく、10~800MW/cm2がより好ましく、10~700MW/cm2がさらに好ましい。エネルギー密度が高すぎると金属が溶融しないで昇華してしまうため、複雑な構造の孔が形成されない。
The energy density at the time of laser light irradiation is obtained from the laser light output (W) and the laser light (spot area (cm 2 ) (π · [spot diameter / 2] 2 ). Energy at the time of laser light irradiation density is preferably 2 ~ 1000MW / cm 2, more preferably 10 ~ 800MW / cm 2, 10 ~ 700MW / cm 2 is more preferable. since the energy density is too high metal will sublimes without melting, complex A hole having a simple structure is not formed.
レーザー光の照射速度は2,000~20,000mm/secが好ましく、2,000~18,000mm/secがより好ましく、3,000~15,000mm/secがさらに好ましい。
The irradiation rate of laser light is preferably 2,000 to 20,000 mm / sec, more preferably 2,000 to 18,000 mm / sec, and further preferably 3,000 to 15,000 mm / sec.
レーザー光の出力は4~4000Wが好ましく、50~2500Wがより好ましく、150~2000Wがさらに好ましく、150~1500Wがさらに好ましい。波長は500~11,000nmが好ましい。ビーム径(スポット径)は5~80μmが好ましく、5~40μmがさらに好ましい。
The output of the laser beam is preferably 4 to 4000 W, more preferably 50 to 2500 W, further preferably 150 to 2000 W, and further preferably 150 to 1500 W. The wavelength is preferably 500 to 11,000 nm. The beam diameter (spot diameter) is preferably 5 to 80 μm, more preferably 5 to 40 μm.
焦点はずし距離は、-5~+5mmが好ましく、-1~+1mmがより好ましく、-0.5~+0.1mmがさらに好ましい。焦点はずし距離は、設定値を一定にしてレーザー照射しても良いし、焦点はずし距離を変化させながらレーザー照射しても良い。例えば、レーザー照射時に、焦点はずし距離を小さくしていくようにしたり、周期的に大きくしたり小さくしたりしても良い。
The defocus distance is preferably -5 to +5 mm, more preferably -1 to +1 mm, and further preferably -0.5 to +0.1 mm. The defocus distance may be irradiated with laser with a set value being constant, or laser irradiation may be performed while changing the defocus distance. For example, at the time of laser irradiation, the defocusing distance may be decreased, or may be periodically increased or decreased.
本発明において、上記したエネルギー密度と照射速度を満たすように金属成形体にレーザー光を照射すると、金属成形体の表面は溶融しながら一部が蒸発されることから、複雑な構造の孔が形成される。一方、上記したエネルギー密度と照射速度を満たさない場合には、金属成形体の表面は昇華して孔が形成されるか(通常のパルスレーザー照射により形成される孔)、または溶融(レーザー溶接)してしまい、複雑な構造の孔は形成されない。
In the present invention, when the metal molded body is irradiated with laser light so as to satisfy the above energy density and irradiation speed, a part of the surface of the metal molded body is evaporated while being melted, so that a hole having a complicated structure is formed. Is done. On the other hand, if the energy density and irradiation speed described above are not satisfied, the surface of the metal formed body is sublimated to form holes (holes formed by normal pulse laser irradiation) or melted (laser welding). Therefore, a hole having a complicated structure is not formed.
本発明の金属成形体の粗面化方法では、上記したエネルギー密度と照射速度を満たした上で、粗面化対象となる金属成形体の表面に対して、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する。レーザー光は金属成形体の表面に直線、曲線または直線と曲線の組み合わせを描くように照射され、そのとき直線や曲線の各々は、交互に連続するレーザー光の照射部分と非照射部分によって構成される。
In the roughening method of the metal molded body of the present invention, the above-described energy density and irradiation speed are satisfied, and then the surface of the metal molded body to be roughened is a straight line, a curve, or a combination of a straight line and a curve. When irradiating the laser beam so as to be, the irradiation is performed so that the irradiated portion and the non-irradiated portion of the laser beam are alternately generated. The laser beam is irradiated on the surface of the metal molded body so as to draw a straight line, a curve, or a combination of a straight line and a curved line. At that time, each of the straight line and the curve is composed of alternately irradiated portions and non-irradiated portions of the laser beam. The
レーザー光の照射部分と非照射部分が交互に生じるように照射するとは、図1に示すように照射する実施形態を含んでいる。図1は、長さL1のレーザー光の照射部分1と隣接する長さL1のレーザー光の照射部分1の間にある長さL2のレーザー光の非照射部分2が交互に生じて、全体として点線状に形成されるように照射した状態を示している。前記点線には、一点鎖線、二点鎖線などの鎖線も含まれる。
Referring to FIG. 1, an embodiment in which irradiation is performed so that laser beam irradiation portions and non-irradiation portions are alternately generated is included. In FIG. 1, the non-irradiated portions 2 of the length L2 between the irradiated portions 1 of the laser beam of length L1 and the adjacent irradiated portions 1 of the laser beam of length L1 are alternately generated as a whole. The state irradiated so that it may form in a dotted line is shown. The dotted lines include chain lines such as a one-dot chain line and a two-dot chain line.
このとき、レーザー光を繰り返して照射して、図1に示すように外観上1本の直線上に延びる点線状にすることもできる。繰り返し回数(照射回数)は、例えば1~20回にすることができる。また複数回照射するときは、レーザー光の照射部分を同じにしてもよいし、レーザー光の照射部分を異ならせる(レーザー光の照射部分をずらす)ことで、直線状に照射された全体が粗面化されるようにしてもよい。
At this time, laser light can be repeatedly irradiated to form a dotted line extending on a single straight line as shown in FIG. The number of repetitions (number of irradiations) can be set to 1 to 20 times, for example. In addition, when irradiating multiple times, the laser light irradiation part may be the same, or by changing the laser light irradiation part (shifting the laser light irradiation part), the entire linear irradiation is rough. You may make it face.
レーザー光の照射部分を同じにして複数回照射したときは点線状に照射されるが、レーザー光の照射部分をずらして、即ち、最初はレーザー光の非照射部分であった部分にレーザー光の照射部分が重なるようにずらして照射することを繰り返すと、点線状に照射した場合であっても、最終的には実線状態に照射されることになるので好ましい。なおこれらの点線状の照射部分/非照射部分及び実線状の照射部分を以下では「ライン」と呼ぶことがある。
When the laser beam is irradiated multiple times with the same laser beam irradiated part, the laser beam is irradiated in a dotted line, but the laser beam irradiated part is shifted, i.e., the laser beam is not irradiated on the part that was initially irradiated with the laser beam. It is preferable to repeat the irradiation so that the irradiated portions overlap so that even if the irradiation is performed in a dotted line shape, the irradiation is finally performed in a solid line state. The dotted line irradiated / non-irradiated part and the solid line irradiated part may be hereinafter referred to as “line”.
金属成形体に対して連続的にレーザー光を照射すると、照射面の温度が上昇することから、厚さの小さい成形体ではそりなどの変形が生じるおそれもあるため、冷却するなどの対策が必要になる場合がある。しかし、図1に示すように点線状にレーザー照射すると、レーザー光の照射部分1とレーザー光の非照射部分2が交互に生じ、レーザー光の非照射部分2では冷却されていることになるため、レーザー光の照射を継続した場合、厚さの小さい成形体でもそりなどの変形が生じ難くなるので好ましい。このとき、上記のようにレーザー光の照射部分を異ならせた(レーザー光の照射部分をずらせた)場合でも同様の効果が得られる。
When laser light is continuously irradiated to a metal molded body, the temperature of the irradiated surface rises, so deformation such as warpage may occur in a molded body with a small thickness, so measures such as cooling are necessary. It may become. However, as shown in FIG. 1, when laser irradiation is performed in the form of a dotted line, the laser light irradiation portion 1 and the laser light non-irradiation portion 2 are alternately generated, and the laser light non-irradiation portion 2 is cooled. When laser light irradiation is continued, deformation such as warpage is less likely to occur even with a molded product having a small thickness. At this time, the same effect can be obtained even when the laser light irradiation portion is changed (the laser light irradiation portion is shifted) as described above.
また金属成形体に対して連続的にレーザー光を照射すると、照射面の温度が上昇して溶融状態の細かい金属粒が飛散し、金属成形体およびその周囲部材に付着してスパッタとして残留するが、図1に示すように点線状にレーザー照射すると、連続的にレーザー光を照射した場合と比べると前記スパッタ量を減少させることができるので好ましい。
Also, when the laser beam is continuously irradiated to the metal molded body, the temperature of the irradiated surface rises, and fine metal particles in the molten state scatter and adhere to the metal molded body and its surrounding members and remain as spatter. As shown in FIG. 1, it is preferable to perform laser irradiation in a dotted line because the amount of sputtering can be reduced as compared with the case of continuous laser irradiation.
レーザー光の照射方法は、金属成形体10の表面に対して、図2(a)に示すように一方向に照射して複数のラインを形成する方法、または図2(b)に示す点線のように双方向から照射して複数のラインを形成する方法を使用することができる。これによって金属成形体10の表面の所望の領域を粗面化することができる。その他、レーザー光の点線照射部分が交差するように照射する方法でもよい。
The laser light irradiation method is a method of irradiating the surface of the metal molded body 10 in one direction as shown in FIG. 2 (a) to form a plurality of lines, or a dotted line shown in FIG. 2 (b). Thus, a method of forming a plurality of lines by irradiating from both directions can be used. Thereby, a desired region on the surface of the metal molded body 10 can be roughened. In addition, the method of irradiating so that the dotted line irradiation part of a laser beam may cross | intersect may be sufficient.
照射後の各点線の間隔b1は、金属成形体の照射対象面積などに応じて調整することができるものであるが、例えば、0.01~5mmの範囲、好ましくは0.02~3mmの範囲、より好ましくは0.03~1mmの範囲にすることができる。すなわち照射は粗面化する領域の面積に応じて所要数のラインを形成するように行うことができる。ラインは順次隣接させて形成することもでき、また一度目のレーザー光の走査で一つおきに(例えば形成すべきラインのうち奇数番のライン)形成し、二度目の走査で残りのライン(偶数番のライン)を形成するなど、任意の順序で形成することもできる。
The interval b1 between the dotted lines after the irradiation can be adjusted according to the irradiation target area of the metal molded body, and is, for example, in the range of 0.01 to 5 mm, preferably in the range of 0.02 to 3 mm. More preferably, it can be in the range of 0.03 to 1 mm. That is, irradiation can be performed so as to form a required number of lines according to the area of the roughened region. The lines can be formed adjacent to each other, and every other line (for example, an odd number of lines to be formed) is formed by the first scanning of the laser beam, and the remaining lines ( (Even numbered lines) may be formed in any order.
図1に示すレーザー光の照射部分1の長さ(L1)とレーザー光の非照射部分2の長さ(L2)は、L1/L2=1/9~9/1の範囲、好ましくは2/8~8/2の範囲になるように調整することができる。この比率が大きいと粗面化工程の効率は良くなるが、冷却効果は低くなり、比率が小さいと冷却効果は良くなるが、粗面化効率は悪くなる。使用する材料や所望とする粗面化の程度に応じて、冷却と粗面化のバランスを考慮して比率を決定することができる。レーザー光の照射部分1の長さ(L1)は、複雑な多孔構造に粗面化するためには0.05mm以上であることが好ましく、0.1~10mmがより好ましく、0.3~7mmがさらに好ましい。
The length (L1) of the laser light irradiated portion 1 and the length (L2) of the non-irradiated portion 2 shown in FIG. 1 are in the range of L1 / L2 = 1/9 to 9/1, preferably 2 / Adjustment can be made to be in the range of 8 to 8/2. If this ratio is large, the efficiency of the roughening process will be improved, but the cooling effect will be low, and if the ratio is small, the cooling effect will be good, but the roughening efficiency will be poor. The ratio can be determined in consideration of the balance between cooling and roughening according to the material used and the desired degree of roughening. The length (L1) of the laser-irradiated portion 1 is preferably 0.05 mm or more, more preferably 0.1 to 10 mm, and more preferably 0.3 to 7 mm in order to roughen a complex porous structure. Is more preferable.
本発明の金属成形体の粗面化方法の好ましい実施形態では、上記したレーザー光の照射工程は、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用するなどして、デューティ比(duty ratio)を調整してレーザー照射する。
In a preferred embodiment of the metal surface roughening method according to the present invention, the laser beam irradiation step includes a fiber laser device in which a direct modulation type modulation device that directly converts a laser driving current is connected to a laser power source. The laser is irradiated by adjusting the duty ratio by using it.
レーザーの励起には、パルス励起と連続励起の2種類があり、パルス励起によるパルス波レーザーは一般にノーマルパルスと呼ばれる。
There are two types of laser excitation, pulse excitation and continuous excitation, and pulse wave lasers based on pulse excitation are generally called normal pulses.
連続励起であってもパルス波レーザーを作り出すことが可能であり、ノーマルパルスよりパルス幅(パルスON時間)を短くして、その分ピークパワーの高いレーザーを発振させるQスイッチパルス発振方法、AOMやLN光強度変調器により時間的に光を切り出すことでパルス波レーザーを生成させる外部変調方式、機械的にチョッピングしてパルス化する方法、ガルバノミラーを操作してパルス化する方法、及びレーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式などによりパルス波レーザーを作り出すことができる。
It is possible to create a pulse wave laser even with continuous excitation, Q-switched pulse oscillation method that oscillates a laser with higher peak power by shortening the pulse width (pulse ON time) than the normal pulse, External modulation system that generates a pulse wave laser by temporally cutting light with an LN optical intensity modulator, a method of mechanically chopping and pulsing, a method of pulsing by operating a galvanometer mirror, and laser driving A pulse wave laser can be produced by a direct modulation method in which a current is directly modulated to generate a pulse wave laser.
ガルバノミラーを操作してパルス化する方法は、ガルバノミラーとガルバノコントローラーの組み合わせによって、ガルバノミラーを介してレーザー発振器から発振されたレーザー光を照射する方法である。この場合、レーザー光の照射工程は、ガルバノミラーとガルバノコントローラーの組み合わせを使用し、レーザー発振器から連続的に発振させたレーザー光をガルバノコントローラーによりパルス化することで、レーザー光の出力のON時間とOFF時間から以下の式により求められるデューティ比を調整して、ガルバノミラーを介してレーザー光の照射部分と非照射部分が交互に生じるように照射する工程であり、具体的には次のように実施することができる。
The method of pulsing by operating the galvanometer mirror is a method of irradiating the laser beam oscillated from the laser oscillator via the galvanometer mirror by a combination of the galvanometer mirror and the galvanometer controller. In this case, the laser light irradiation process uses a combination of a galvano mirror and a galvano controller, and the laser light continuously oscillated from the laser oscillator is pulsed by the galvano controller, so that the ON time of the laser light output and This is a step of adjusting the duty ratio calculated by the following formula from the OFF time and irradiating the laser light irradiation portion and the non-irradiation portion alternately via the galvano mirror. Specifically, as follows Can be implemented.
ガルバノコントローラーから周期的にGate信号をON/OFF出力し、そのON/OFF信号でレーザー発振器により発振したレーザー光をON/OFFすることで、レーザー光のエネルギー密度を変化させることなくパルス化することができる。それによって、図1に示すようにレーザー光の照射部分1と隣接するレーザー光の照射部分1の間にあるレーザー光の非照射部分が交互に生じて、全体として点線状に形成されるようにレーザー光を照射することができる。ガルバノミラーを操作してパルス化する方法は、レーザー光の発振状態自体は変えることなく、デューティ比を調整することができるため、操作が簡単である。
The Gate signal is periodically turned on / off from the galvano controller, and the laser light oscillated by the laser oscillator is turned on / off by the ON / OFF signal, thereby pulsing without changing the energy density of the laser light. Can do. As a result, as shown in FIG. 1, non-irradiated portions of the laser light between the irradiated portion 1 of the laser light and the adjacent irradiated portion 1 of the laser light are alternately generated so as to be formed as a dotted line as a whole. Laser light can be irradiated. The method of pulsing by operating the galvanometer mirror is easy to operate because the duty ratio can be adjusted without changing the oscillation state of the laser beam itself.
これらの方法の中でも、連続波レーザーのエネルギー密度を変更することなく、パルス化(照射部分と非照射部分が交互に生じるように照射する)ことが容易にできる方法であることから、機械的にチョッピングしてパルス化する方法、ガルバノミラーを操作してパルス化する方法、またはレーザーの駆動電流を直接変調してパルス波レーザーを生成する直接変調方式が好ましい。なおこの直接変調方式は、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用することで、レーザーを連続励起させてパルス波レーザーを作り出すものであり、特許第5774246号公報及び特許第5701414号公報で金属成形体を粗面化するために使用した連続波レーザーとは別のものである。
Among these methods, since it is a method that can be easily pulsed (irradiated so that irradiated portions and non-irradiated portions occur alternately) without changing the energy density of the continuous wave laser, it is mechanically A method of chopping and pulsing, a method of pulsing by operating a galvanometer mirror, or a direct modulation method of directly modulating a laser driving current to generate a pulse wave laser is preferable. This direct modulation method uses a fiber laser device in which a direct modulation method modulation device that directly converts the laser drive current is connected to the laser power supply, thereby creating a pulse wave laser by continuously exciting the laser. This is different from the continuous wave laser used for roughening the metal molded body in Japanese Patent Nos. 5774246 and 5701414.
デューティ比は、レーザー光の出力のON時間とOFF時間から次式により求められる比である。
デューティ比(%)=ON時間/(ON時間+OFF時間)×100
デューティ比は、図1に示すL1とL2(すなわち、L1/[L1+L2])に対応するものであるから、10~90%の範囲、好ましくは20~80%の範囲から選択することができる。これによってレーザー光の照射部分と非照射部分が交互に生じるように照射することができる。 The duty ratio is a ratio obtained from the ON time and OFF time of the laser light output by the following equation.
Duty ratio (%) = ON time / (ON time + OFF time) × 100
Since the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 1, it can be selected from a range of 10 to 90%, preferably a range of 20 to 80%. As a result, it is possible to irradiate laser light irradiation portions and non-irradiation portions alternately.
デューティ比(%)=ON時間/(ON時間+OFF時間)×100
デューティ比は、図1に示すL1とL2(すなわち、L1/[L1+L2])に対応するものであるから、10~90%の範囲、好ましくは20~80%の範囲から選択することができる。これによってレーザー光の照射部分と非照射部分が交互に生じるように照射することができる。 The duty ratio is a ratio obtained from the ON time and OFF time of the laser light output by the following equation.
Duty ratio (%) = ON time / (ON time + OFF time) × 100
Since the duty ratio corresponds to L1 and L2 (that is, L1 / [L1 + L2]) shown in FIG. 1, it can be selected from a range of 10 to 90%, preferably a range of 20 to 80%. As a result, it is possible to irradiate laser light irradiation portions and non-irradiation portions alternately.
デューティ比を調整してレーザー光を照射することで、図1に示すような点線状に照射することができる。デューティ比が大きいと粗面化工程の効率は良くなるが、冷却効果は低くなり、デューティ比が小さいと冷却効果は良くなるが、粗面化効率は悪くなる。目的に応じて、デューティ比を調整することが好ましい。
∙ Irradiation with a dotted line as shown in Fig. 1 is possible by adjusting the duty ratio and irradiating laser light. When the duty ratio is large, the efficiency of the roughening process is improved, but the cooling effect is low. When the duty ratio is small, the cooling effect is improved, but the roughening efficiency is deteriorated. It is preferable to adjust the duty ratio according to the purpose.
本発明の金属成形体の粗面化方法の別の好ましい実施形態では、上記したレーザー光の照射工程は、粗面化対象となる金属成形体の表面上に、間隔をおいてレーザー光を通過させないマスキング材を配置した状態でレーザーを連続照射する。マスキング材は、金属成形体に直接接触しても接触していなくとも良い。各ラインについて複数回照射するときは、マスキング材の位置を変化させることで、金属成形体全体を粗面化させることができる。
In another preferred embodiment of the method for roughening a metal molded body of the present invention, the laser light irradiation step described above passes the laser light at intervals on the surface of the metal molded body to be roughened. The laser is continuously irradiated with the masking material not to be placed. The masking material may or may not be in direct contact with the metal formed body. When irradiating a plurality of times for each line, the entire metal formed body can be roughened by changing the position of the masking material.
この実施形態は、図3(a)のように金属成形体10の上に相互に間隔をおいて複数枚のマスキング材11を配置した状態で、レーザーを連続照射する。マスキング材としては、熱伝導率の小さい金属などを使用することができる。その後、マスキング材11を取り去ると、図1と同様にレーザー光の照射部分と非照射部分が交互に生じた点線が形成されている。
In this embodiment, as shown in FIG. 3A, the laser is continuously irradiated in a state where a plurality of masking materials 11 are arranged on the metal molded body 10 at intervals. As the masking material, a metal having a low thermal conductivity can be used. Thereafter, when the masking material 11 is removed, a dotted line is formed in which the irradiated portions and the non-irradiated portions of the laser light are alternately generated as in FIG.
図3に示す実施形態の場合にも、マスキング材11の部分では冷却されていることになるため、レーザー光の照射を継続した場合、厚さの小さい成形体でもそりなどの変形が生じ難くなるので好ましい。
In the case of the embodiment shown in FIG. 3 as well, the masking material 11 is cooled, so that when the laser light irradiation is continued, deformation such as warpage is less likely to occur even in a molded product having a small thickness. Therefore, it is preferable.
レーザー光の照射部分1の長さ(L1)とレーザー光の非照射部分2の長さ(L2)は、L1/L2=1/9~9/1の範囲(すなわち、L1/[L1+L2]が10~90%の範囲)になるように調整することができる。レーザー光の照射部分1の長さ(L1)は、複雑な多孔構造に粗面化するためには0.05mm以上であることが好ましく、0.1~10mmが好ましく、0.3~7mmがより好ましい。
The length (L1) of the laser light irradiation portion 1 and the length (L2) of the laser light non-irradiation portion 2 are in the range of L1 / L2 = 1/9 to 9/1 (ie, L1 / [L1 + L2]). 10 to 90%). The length (L1) of the laser-irradiated portion 1 is preferably 0.05 mm or more, preferably 0.1 to 10 mm, and preferably 0.3 to 7 mm in order to roughen a complex porous structure. More preferred.
連続波レーザーは公知のものを使用することができ、例えば、YVO4レーザー、ファイバーレーザー(シングルモードファイバーレーザー、マルチモードファイバーレーザー)、エキシマレーザー、炭酸ガスレーザー、紫外線レーザー、YAGレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、または色素レーザーを使用することができる。
A known continuous wave laser can be used, for example, YVO 4 laser, fiber laser (single mode fiber laser, multimode fiber laser), excimer laser, carbon dioxide laser, ultraviolet laser, YAG laser, semiconductor laser, A glass laser, ruby laser, He—Ne laser, nitrogen laser, chelate laser, or dye laser can be used.
本発明の金属成形体の粗面化方法を実施することによって、金属成形体の表面(表面から500μm程度の深さまでの範囲を含む)に多孔構造を形成することができ、具体的には特許第5774246号公報の図7、図8、図24~図26、及び図29、特許第5701414号公報の図7、図8、図24~図26、及び図29に示されるものと同じ複雑な多孔構造にすることができる。
実施例 By carrying out the roughening method of the metal molded body of the present invention, a porous structure can be formed on the surface of the metal molded body (including a range from the surface to a depth of about 500 μm), specifically a patent. FIG. 7, FIG. 8, FIG. 24 to FIG. 26 and FIG. 29 of Japanese Patent No. 5774246, and FIG. 7, FIG. 8, FIG. 24 to FIG. 26 of FIG. A porous structure can be obtained.
Example
実施例 By carrying out the roughening method of the metal molded body of the present invention, a porous structure can be formed on the surface of the metal molded body (including a range from the surface to a depth of about 500 μm), specifically a patent. FIG. 7, FIG. 8, FIG. 24 to FIG. 26 and FIG. 29 of Japanese Patent No. 5774246, and FIG. 7, FIG. 8, FIG. 24 to FIG. 26 of FIG. A porous structure can be obtained.
Example
実施例1~16
図4に示す形状および寸法の金属成形体50(アルミニウムA5052)の面51の全面(20mm2の広さ範囲)に対して、表1に示す条件でレーザー光を照射して、面51のレーザー光照射面を粗面化した。 Examples 1 to 16
The entire surface (20 mm 2 wide range) of the metal molded body 50 (aluminum A5052) having the shape and dimensions shown in FIG. The light irradiation surface was roughened.
図4に示す形状および寸法の金属成形体50(アルミニウムA5052)の面51の全面(20mm2の広さ範囲)に対して、表1に示す条件でレーザー光を照射して、面51のレーザー光照射面を粗面化した。 Examples 1 to 16
The entire surface (20 mm 2 wide range) of the metal molded body 50 (aluminum A5052) having the shape and dimensions shown in FIG. The light irradiation surface was roughened.
レーザー装置は次のものを使用した。
発振器:IPG-Ybファイバー;YLR-300-SM
集光系:fc=80mm/fθ=100mm
焦点はずし距離:±0mm(一定)
パルス波変換装置:パルスジェネレータFG110(シンセサイズドファンクションジェネレータ),横河電機(株)製 The following laser equipment was used.
Oscillator: IPG-Yb fiber; YLR-300-SM
Condensing system: fc = 80 mm / fθ = 100 mm
Defocus distance: ± 0 mm (constant)
Pulse wave converter: Pulse generator FG110 (synthesized function generator), manufactured by Yokogawa Electric Corporation
発振器:IPG-Ybファイバー;YLR-300-SM
集光系:fc=80mm/fθ=100mm
焦点はずし距離:±0mm(一定)
パルス波変換装置:パルスジェネレータFG110(シンセサイズドファンクションジェネレータ),横河電機(株)製 The following laser equipment was used.
Oscillator: IPG-Yb fiber; YLR-300-SM
Condensing system: fc = 80 mm / fθ = 100 mm
Defocus distance: ± 0 mm (constant)
Pulse wave converter: Pulse generator FG110 (synthesized function generator), manufactured by Yokogawa Electric Corporation
溝深さは、レーザー光照射後の面51をデジタルマイクロスコープVHX-900((株)キーエンス製)で測定した。平均溝深さは、10箇所を測定して平均値とした。最大溝深さは、10箇所を測定した内で最も深い部分の値とした。
The groove depth was measured with a digital microscope VHX-900 (manufactured by Keyence Corporation) on the surface 51 after laser light irradiation. The average groove depth was measured at 10 locations to obtain an average value. The maximum groove depth was the value of the deepest part among the 10 points measured.
引張強さは、ISO19095に基づく突き合わせ試験片での引張試験(引張速度10mm/min,チャック間距離50mm)により求めた。突合せ試験片は、樹脂としてGF30%強化PA6樹脂(プラストロンPA6-GF30-01(L9):ダイセルポリマー(株)製)を用い、射出成形機は、ファナック製ROBOSHOT S2000i100B)を使用し、樹脂温度:280℃、金型温度:100℃で射出成形することで得た。
The tensile strength was determined by a tensile test using a butt test piece based on ISO 19095 (tensile speed: 10 mm / min, distance between chucks: 50 mm). The butt test piece uses GF30% reinforced PA6 resin (Plastotron PA6-GF30-01 (L9): manufactured by Daicel Polymer Co., Ltd.) as the resin, and the injection molding machine uses ROBOSHOT S2000i100B manufactured by FANUC, at a resin temperature. : 280 ° C., mold temperature: obtained by injection molding at 100 ° C.
繰り返し回数が複数回(5回以上)の実施例では、レーザー光の照射部分をずらして各照射ラインが実線になるように(非照射部分がなくなるように)照射した。以下の実施例においても同様である。
In Examples where the number of repetitions was multiple (5 or more), irradiation was performed such that each irradiation line became a solid line by shifting the irradiation part of the laser beam (no non-irradiation part was eliminated). The same applies to the following embodiments.
図5~図10に示した実施例1、4、5、8、13、及び16の金属成形体の表面を示すSEM写真、実施例4(図6)、実施例8(図8)、及び実施例16の(図10)の金属成形体の断面写真から確認できるとおり、いずれも特許第5774246号公報の図7、図8、図24~図26、及び図29、特許第5701414号公報の図7、図8、図24~図26、及び図29と同じ複雑な多孔構造に粗面化されていた。引張強度の数値からも確認できるとおり、実施例1、4、5、8、13、及び16と共に、SEM写真がない他の実施例でも同様に粗面化されたことは明らかである。
SEM photographs showing the surfaces of the metal molded bodies of Examples 1, 4, 5, 8, 13, and 16 shown in FIGS. 5 to 10, Example 4 (FIG. 6), Example 8 (FIG. 8), and As can be confirmed from the cross-sectional photograph of the metal molded body of Example 16 (FIG. 10), all of FIG. 7, FIG. 8, FIG. 24 to FIG. 26 and FIG. 29 of Patent No. 5774246, and FIG. 7, FIG. 8, FIG. 24 to FIG. 26, and FIG. 29 were roughened to the same complex porous structure. As can be confirmed from the numerical values of the tensile strength, it is obvious that other examples without SEM photographs were similarly roughened together with Examples 1, 4, 5, 8, 13, and 16.
なお、通常のパルス波レーザーを使用したときは、特許第5774246号公報の比較例1、4、及び7、特許第5701414号公報の比較例1、4、及び7と同様にパルス波レーザー光を照射した場合には、スポット径、パルス幅、レーザー光照射速度から考えると隣接するスポット同士が重複してしまうため、レーザー光の照射部分と非照射部分が交互に生じることはない。
When a normal pulse wave laser is used, pulse wave laser light is used in the same manner as in Comparative Examples 1, 4, and 7 of Japanese Patent No. 5774246 and Comparative Examples 1, 4, and 7 of Japanese Patent No. 5701414. In the case of irradiation, since the adjacent spots are overlapped in view of the spot diameter, pulse width, and laser beam irradiation speed, the laser beam irradiation part and the non-irradiation part do not occur alternately.
実施例17~22
実施例1~16と同様にして、図4に示す形状および寸法の金属成形体50(ステンレスSUS304)の面51の全面(20mm2の広さ範囲)に対して、表2に示す条件でレーザー光を照射して、面51のレーザー光照射面を粗面化した。さらに実施例1~16と同様にして最大溝深さ及び引張強さを測定した。 Examples 17-22
In the same manner as in Examples 1 to 16, the laser beam was formed under the conditions shown in Table 2 on the entire surface 51 (width range of 20 mm 2 ) of the metal molded body 50 (stainless steel SUS304) having the shape and dimensions shown in FIG. Light was irradiated to roughen the laser light irradiation surface of thesurface 51. Further, the maximum groove depth and tensile strength were measured in the same manner as in Examples 1-16.
実施例1~16と同様にして、図4に示す形状および寸法の金属成形体50(ステンレスSUS304)の面51の全面(20mm2の広さ範囲)に対して、表2に示す条件でレーザー光を照射して、面51のレーザー光照射面を粗面化した。さらに実施例1~16と同様にして最大溝深さ及び引張強さを測定した。 Examples 17-22
In the same manner as in Examples 1 to 16, the laser beam was formed under the conditions shown in Table 2 on the entire surface 51 (width range of 20 mm 2 ) of the metal molded body 50 (stainless steel SUS304) having the shape and dimensions shown in FIG. Light was irradiated to roughen the laser light irradiation surface of the
図11に示した実施例18の金属成形体の表面を示すSEM写真、及び図12に示した実施例20の金属成形体の表面および断面を示すSEM写真から確認できるとおり、いずれも特許第5774246号公報の図7、図8、図24~図26、及び図29、特許第5701414号公報の図7、図8、図24~図26、及び図29と同じ複雑な多孔構造に粗面化されていた。引張強度の数値からも確認できるとおり、実施例18、20と共に、SEM写真がない他の実施例でも同様に粗面化されたことは明らかである。
As can be confirmed from the SEM photograph showing the surface of the metal molded body of Example 18 shown in FIG. 11 and the SEM photograph showing the surface and cross section of the metal molded body of Example 20 shown in FIG. 12, both are patents 5774246. 7, FIG. 8, FIGS. 24 to 26, and 29 of Japanese Patent Publication No. 7, and FIGS. 7, 8, 24 to 26, and 29 of Japanese Patent No. 5701414 are roughened to the same complex porous structure. It had been. As can be confirmed from the numerical values of the tensile strength, it is clear that the surface roughness was similarly achieved in Examples 18 and 20 as well as in other Examples without SEM photographs.
なお、通常のパルス波レーザーを使用したときは、特許第5774246号公報の比較例1、4、及び7、特許第5701414号公報の比較例1、4、及び7と同様になるものであるから、上記実施例と同じにはならない。
When a normal pulse wave laser is used, it is the same as Comparative Examples 1, 4, and 7 in Japanese Patent No. 5774246 and Comparative Examples 1, 4, and 7 in Japanese Patent No. 5701414. This is not the same as the above embodiment.
実施例23、24、比較例1、2
図13に示す形状の金属板55(30mm×30mm)であり、厚み(表3)を変化させたものを使用し、20mm×6mmの領域56に対して、表3に示す条件で、図2(b)に示す照射パターンにて、実施例1~16と同様にしてレーザー光を照射した。 Examples 23 and 24, Comparative Examples 1 and 2
A metal plate 55 (30 mm × 30 mm) having the shape shown in FIG. 13 and having a changed thickness (Table 3) is used under the conditions shown in Table 3 for aregion 56 of 20 mm × 6 mm. Laser light was irradiated in the same manner as in Examples 1 to 16 with the irradiation pattern shown in (b).
図13に示す形状の金属板55(30mm×30mm)であり、厚み(表3)を変化させたものを使用し、20mm×6mmの領域56に対して、表3に示す条件で、図2(b)に示す照射パターンにて、実施例1~16と同様にしてレーザー光を照射した。 Examples 23 and 24, Comparative Examples 1 and 2
A metal plate 55 (30 mm × 30 mm) having the shape shown in FIG. 13 and having a changed thickness (Table 3) is used under the conditions shown in Table 3 for a
レーザー光の照射後の金属板55の変形量を測定した。測定方法を図14(a)~(c)により説明する。図14(a)及び(b)は、レーザー光の照射前後の状態を示す図であり、図14(b)は、理解し易いように変形を誇張して示している。
The deformation amount of the metal plate 55 after the laser beam irradiation was measured. The measurement method will be described with reference to FIGS. 14 (a) to (c). 14 (a) and 14 (b) are diagrams showing states before and after laser light irradiation, and FIG. 14 (b) exaggerates the deformation for easy understanding.
変形量は、平面61を有する測定台60の上にレーザー光の照射後の金属板55を載せ、対向する両辺側の面と測定台60の平面61の間の間隔d1及びd2をスケールルーペ(3010S:池田レンズ工業(株)製)で測定して求めた。測定数は5であり、(5×d1+5×d2)/10から求めた平均値を表3に示す。
The amount of deformation is such that the metal plate 55 after laser light irradiation is placed on a measurement table 60 having a flat surface 61, and the distances d1 and d2 between the opposing surfaces and the flat surface 61 of the measurement table 60 are scaled magnifiers ( 3010S: Ikeda Lens Industry Co., Ltd.) The number of measurements is 5, and the average value obtained from (5 × d1 + 5 × d2) / 10 is shown in Table 3.
表3から明らかなとおり、レーザー光を連続照射した比較例1及び2では僅かに変形していたが、実施例23及び24では変形(そり)がなかった。この結果から、本発明の粗面化方法は、厚さの小さい金属成形体に対して効果があることが確認された。また目視による確認の結果、実施例23及び24は比較例1及び2と比べるとスパッタ量が少なかった。
As is apparent from Table 3, although Comparative Examples 1 and 2 where the laser beam was continuously irradiated were slightly deformed, Examples 23 and 24 were not deformed (warped). From this result, it was confirmed that the roughening method of the present invention is effective for a metal molded body having a small thickness. As a result of visual confirmation, Examples 23 and 24 had a smaller amount of sputtering than Comparative Examples 1 and 2.
実施例25、比較例3
実施例25は、表4に示す条件で実施例23及び24と同様にしてレーザー光を照射し、比較例3は、表4に示す条件で比較例1及び2と同様にレーザー光を照射した。実施例23及び24と同様にして変形量を測定した。 Example 25, Comparative Example 3
Example 25 was irradiated with laser light in the same manner as in Examples 23 and 24 under the conditions shown in Table 4, and Comparative Example 3 was irradiated with laser light in the same manner as in Comparative Examples 1 and 2 under the conditions shown in Table 4. . The amount of deformation was measured in the same manner as in Examples 23 and 24.
実施例25は、表4に示す条件で実施例23及び24と同様にしてレーザー光を照射し、比較例3は、表4に示す条件で比較例1及び2と同様にレーザー光を照射した。実施例23及び24と同様にして変形量を測定した。 Example 25, Comparative Example 3
Example 25 was irradiated with laser light in the same manner as in Examples 23 and 24 under the conditions shown in Table 4, and Comparative Example 3 was irradiated with laser light in the same manner as in Comparative Examples 1 and 2 under the conditions shown in Table 4. . The amount of deformation was measured in the same manner as in Examples 23 and 24.
表4から明らかなとおり、レーザー光を連続照射した比較例3では僅かに変形していたが、実施例25では変形(そり)がなかった。この結果から、本発明の粗面化方法は、厚さの小さい金属成形体に対して効果があることが確認された。また目視による確認の結果、実施例25は比較例3と比べるとスパッタ量が少なかった。
As is clear from Table 4, the sample was slightly deformed in Comparative Example 3 in which the laser beam was continuously irradiated, but there was no deformation (warping) in Example 25. From this result, it was confirmed that the roughening method of the present invention is effective for a metal molded body having a small thickness. As a result of visual confirmation, the amount of sputtering in Example 25 was smaller than that in Comparative Example 3.
実施例26~33
図4に示す形状および寸法の金属成形体50(アルミニウムA5052)の面51の全面(20mm2の広さ範囲)に対して、表5に示す条件でレーザー光を照射して、面51のレーザー光照射面を粗面化した。但し、レーザー光は連続的に照射しながら、ガルバノミラーを操作してパルス化する方法によりデューティ比を調整した。実施例30~33のレーザー光照射後のアルミニウム成形体表面のSEM写真を図15~図18に示す。実施例1~16と同様にして各測定を実施した。 Examples 26-33
The entire surface (20 mm 2 wide range) of the metal molded body 50 (aluminum A5052) having the shape and dimensions shown in FIG. The light irradiation surface was roughened. However, the duty ratio was adjusted by a method of pulsing by operating a galvanometer mirror while continuously irradiating laser light. 15 to 18 show SEM photographs of the surfaces of the aluminum molded bodies after laser light irradiation in Examples 30 to 33. Each measurement was carried out in the same manner as in Examples 1-16.
図4に示す形状および寸法の金属成形体50(アルミニウムA5052)の面51の全面(20mm2の広さ範囲)に対して、表5に示す条件でレーザー光を照射して、面51のレーザー光照射面を粗面化した。但し、レーザー光は連続的に照射しながら、ガルバノミラーを操作してパルス化する方法によりデューティ比を調整した。実施例30~33のレーザー光照射後のアルミニウム成形体表面のSEM写真を図15~図18に示す。実施例1~16と同様にして各測定を実施した。 Examples 26-33
The entire surface (20 mm 2 wide range) of the metal molded body 50 (aluminum A5052) having the shape and dimensions shown in FIG. The light irradiation surface was roughened. However, the duty ratio was adjusted by a method of pulsing by operating a galvanometer mirror while continuously irradiating laser light. 15 to 18 show SEM photographs of the surfaces of the aluminum molded bodies after laser light irradiation in Examples 30 to 33. Each measurement was carried out in the same manner as in Examples 1-16.
レーザー装置は次のものを使用した。
発振器:IPG-Ybファイバー;YLR-300-SM(IPG社製)
集光系:fc=80mm/fθ=100mm
焦点はずし距離:±0mm(一定)
ガルバノスキャンヘッド:Squirrel 16(ARGES社製)
ガルバノコントローラ:ASC-1
Squirrel 16用コリメータ(f80mm):OPTICEL D30L-CL The following laser equipment was used.
Oscillator: IPG-Yb fiber; YLR-300-SM (manufactured by IPG)
Condensing system: fc = 80 mm / fθ = 100 mm
Defocus distance: ± 0 mm (constant)
Galvano scan head: Squirrel 16 (manufactured by ARGES)
Galvano controller: ASC-1
Squirrel 16 collimator (f80mm): OPTICEL D30L-CL
発振器:IPG-Ybファイバー;YLR-300-SM(IPG社製)
集光系:fc=80mm/fθ=100mm
焦点はずし距離:±0mm(一定)
ガルバノスキャンヘッド:Squirrel 16(ARGES社製)
ガルバノコントローラ:ASC-1
Squirrel 16用コリメータ(f80mm):OPTICEL D30L-CL The following laser equipment was used.
Oscillator: IPG-Yb fiber; YLR-300-SM (manufactured by IPG)
Condensing system: fc = 80 mm / fθ = 100 mm
Defocus distance: ± 0 mm (constant)
Galvano scan head: Squirrel 16 (manufactured by ARGES)
Galvano controller: ASC-1
Squirrel 16 collimator (f80mm): OPTICEL D30L-CL
表5と図15~図18から確認できるとおり、ガルバノミラーを操作してパルス化する方法を適用しても、他の実施例と同様にデューティ比を調整して粗面化することができた。
なお、例えば実施例26の「On time」が「100μsec」は、周波数5000Hz(1秒間に5000回の振動であるから、一振動[例えば、一つの山と隣の山までの間隔]は200μsecとなる)のとき、100μsecはレーザー光が照射され、残りの100μsecはレーザー光が照射されていないことを示す。このとき、Duty比は100/200=50となる。
産業上の利用可能性 As can be seen from Table 5 and FIGS. 15 to 18, even if the method of pulsing by operating the galvanometer mirror was applied, it was possible to roughen the surface by adjusting the duty ratio as in the other examples. .
For example, when “On time” in Example 26 is “100 μsec”, the frequency is 5000 Hz (5000 vibrations per second, so one vibration [for example, the interval between one mountain and the next mountain] is 200 μsec. ), 100 μsec indicates that the laser beam is irradiated, and the remaining 100 μsec indicates that the laser beam is not irradiated. At this time, the duty ratio is 100/200 = 50.
Industrial applicability
なお、例えば実施例26の「On time」が「100μsec」は、周波数5000Hz(1秒間に5000回の振動であるから、一振動[例えば、一つの山と隣の山までの間隔]は200μsecとなる)のとき、100μsecはレーザー光が照射され、残りの100μsecはレーザー光が照射されていないことを示す。このとき、Duty比は100/200=50となる。
産業上の利用可能性 As can be seen from Table 5 and FIGS. 15 to 18, even if the method of pulsing by operating the galvanometer mirror was applied, it was possible to roughen the surface by adjusting the duty ratio as in the other examples. .
For example, when “On time” in Example 26 is “100 μsec”, the frequency is 5000 Hz (5000 vibrations per second, so one vibration [for example, the interval between one mountain and the next mountain] is 200 μsec. ), 100 μsec indicates that the laser beam is irradiated, and the remaining 100 μsec indicates that the laser beam is not irradiated. At this time, the duty ratio is 100/200 = 50.
Industrial applicability
本発明の金属成形体の粗面化方法により得られた粗面化された金属成形体は、特許第5701414号公報の発明に記載された複合成形体の製造中間体とすることができるほか、特開2016-36884号公報に記載の研磨材、特開2016-7589号公報に記載の微粒子の担体、および特開2016-43413号公報の段落番号0037に記載された用途に使用することができる。
The roughened metal molded body obtained by the method for roughening a metal molded body of the present invention can be used as a production intermediate for the composite molded body described in the invention of Japanese Patent No. 5701414, The abrasive described in JP-A-2016-36884, the fine particle carrier described in JP-A-2016-7589, and the use described in paragraph No. 0037 of JP-A-2016-43413 can be used. .
Claims (7)
- 金属成形体の粗面化方法であって、
前記金属成形体の表面に対して、レーザー装置を使用して、エネルギー密度が1MW/cm2以上で、2000mm/sec以上の照射速度でレーザー光を照射する工程を有しており、
前記レーザー光の照射工程が、粗面化対象となる金属成形体の表面に対して、直線、曲線または直線と曲線の組み合わせになるようにレーザー光を照射するとき、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、金属成形体の粗面化方法。 A method of roughening a metal molded body,
The surface of the metal molded body is irradiated with laser light at an irradiation speed of 2000 mm / sec or more at an energy density of 1 MW / cm 2 or more using a laser device,
When irradiating the laser beam so that the laser beam irradiation process is a straight line, a curve, or a combination of a straight line and a curve on the surface of the metal molded body to be roughened, A method for roughening a metal formed body, which is a step of irradiating so that irradiated portions are alternately generated. - 前記レーザー光の照射工程が、レーザーの駆動電流を直接変換する直接変調方式の変調装置をレーザー電源に接続したファイバーレーザー装置を使用し、レーザー光の出力のON時間とOFF時間から下記式により求められるデューティ比を調整して、レーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、請求項1記載の金属成形体の粗面化方法。
デューティ比(%)=ON時間/(ON時間+OFF時間)×100 The laser light irradiation process uses a fiber laser device in which a direct-modulation modulation device that directly converts the laser drive current is connected to a laser power source, and is obtained from the ON time and OFF time of the laser light output according to the following formula: The method for roughening a metal molded body according to claim 1, wherein the duty ratio is adjusted and irradiation is performed such that laser light irradiation portions and non-irradiation portions alternately occur.
Duty ratio (%) = ON time / (ON time + OFF time) × 100 - 前記ファイバーレーザーがシングルモードファイバーレーザーである請求項2記載の金属成形体の粗面化方法。 The method for roughening a metal molded body according to claim 2, wherein the fiber laser is a single mode fiber laser.
- 前記レーザー光の照射工程が、ガルバノミラーとガルバノコントローラーの組み合わせを使用し、レーザー発振器から連続的に発振させたレーザー光をガルバノコントローラーによりパルス化することで、レーザー光の出力のON時間とOFF時間から下記式により求められるデューティ比を調整して、ガルバノミラーを介してレーザー光の照射部分と非照射部分が交互に生じるように照射する工程である、請求項1記載の金属成形体の粗面化方法。
デューティ比(%)=ON時間/(ON時間+OFF時間)×100 The laser light irradiation process uses a combination of a galvano mirror and a galvano controller, and the laser light continuously oscillated from the laser oscillator is pulsed by the galvano controller, so that the ON time and OFF time of the laser light output 2. The rough surface of the metal molded body according to claim 1, wherein the duty ratio obtained by the following formula is adjusted, and irradiation is performed so that irradiated portions and non-irradiated portions of the laser light are alternately generated via a galvanometer mirror. Method.
Duty ratio (%) = ON time / (ON time + OFF time) × 100 - 前記レーザー光の照射工程が、粗面化対象となる金属成形体の表面上に、間隔をおいてレーザー光を通過させないマスキング材を配置した状態でレーザーを連続照射する工程である、請求項1記載の金属成形体の粗面化方法。 2. The laser light irradiation step is a step of continuously irradiating a laser with a masking material that does not allow laser light to pass therethrough on a surface of a metal molded body to be roughened. The roughening method of the metal molded object of description.
- 前記エネルギー密度が2~1000MW/cm2である、請求項1~5のいずれか1項記載の金属成形体の粗面化方法。 The method for roughening a metal molded body according to any one of claims 1 to 5, wherein the energy density is 2 to 1000 MW / cm 2 .
- 前記金属成形体が、レーザー光を照射する部分の厚さが5mm以下の成形体である、請求項1~6のいずれか1項記載の金属成形体の粗面化方法。 The method of roughening a metal molded body according to any one of claims 1 to 6, wherein the metal molded body is a molded body having a thickness of 5 mm or less at a portion irradiated with laser light.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197001764A KR102359488B1 (en) | 2016-09-02 | 2017-08-31 | A method for roughening a metal molded body |
MX2019002476A MX2019002476A (en) | 2016-09-02 | 2017-08-31 | Metal molded body surface roughening method. |
EP17846641.3A EP3508301B1 (en) | 2016-09-02 | 2017-08-31 | Metal molded body surface roughening method |
CN201780053817.7A CN109641322A (en) | 2016-09-02 | 2017-08-31 | The roughening method of metal forming body |
US16/324,427 US11167376B2 (en) | 2016-09-02 | 2017-08-31 | Method for roughening metal molded body surface |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-172187 | 2016-09-02 | ||
JP2016172187 | 2016-09-02 | ||
JP2016-207688 | 2016-10-24 | ||
JP2016207688 | 2016-10-24 | ||
JP2017046324 | 2017-03-10 | ||
JP2017-046324 | 2017-03-10 | ||
JP2017-151293 | 2017-08-04 | ||
JP2017151293A JP6646018B2 (en) | 2016-09-02 | 2017-08-04 | Roughening method for metal compacts |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043637A1 true WO2018043637A1 (en) | 2018-03-08 |
Family
ID=61301837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/031328 WO2018043637A1 (en) | 2016-09-02 | 2017-08-31 | Metal molded body surface roughening method |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102359488B1 (en) |
TW (1) | TWI737802B (en) |
WO (1) | WO2018043637A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019217187A (en) * | 2018-06-22 | 2019-12-26 | 慶達科技股▲ふん▼有限公司 | Implant material |
WO2020067308A1 (en) * | 2018-09-28 | 2020-04-02 | ダイセルポリマー株式会社 | Nitride-based nonmagnetic ceramic molding and method for producing same |
WO2020067248A1 (en) * | 2018-09-27 | 2020-04-02 | ダイセルポリマー株式会社 | Nitride-based nonmagnetic ceramic molding having roughened structure on the surface thereof, and method for producing same |
WO2020067249A1 (en) * | 2018-09-27 | 2020-04-02 | ダイセルポリマー株式会社 | Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same |
EP3791993A4 (en) * | 2018-05-11 | 2022-01-19 | Daicel Miraizu Ltd. | Composite and method for manufacturing composite |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10294024A (en) * | 1997-04-18 | 1998-11-04 | Enomoto:Kk | Electric / electronic component and method of manufacturing the same |
JPH11147185A (en) * | 1997-07-25 | 1999-06-02 | Matsushita Electric Works Ltd | Formation of complex shape to surface of working product with energy beam and product obtained by this method |
JP2005103553A (en) * | 2003-09-26 | 2005-04-21 | Sunx Ltd | Laser marking device |
JP2011006743A (en) * | 2009-06-26 | 2011-01-13 | Rezakku:Kk | Method for controlling crystal structure of metallic material |
JP5774246B2 (en) * | 2013-03-26 | 2015-09-09 | ダイセルポリマー株式会社 | Method of roughening a metal molded body |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013111881A (en) * | 2011-11-29 | 2013-06-10 | Polyplastics Co | Method of manufacturing metal component, and composite molding |
JP5843750B2 (en) * | 2012-12-14 | 2016-01-13 | ポリプラスチックス株式会社 | Metal part manufacturing method and composite molded body |
JP5701414B1 (en) * | 2013-03-26 | 2015-04-15 | ダイセルポリマー株式会社 | Method for producing composite molded body |
DE102014008815A1 (en) * | 2014-06-11 | 2016-01-21 | Albis Plastic Gmbh | Method for producing a composite material of metal and plastic to a plastic-metal hybrid component |
-
2017
- 2017-08-31 KR KR1020197001764A patent/KR102359488B1/en active Active
- 2017-08-31 WO PCT/JP2017/031328 patent/WO2018043637A1/en unknown
- 2017-09-01 TW TW106129896A patent/TWI737802B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10294024A (en) * | 1997-04-18 | 1998-11-04 | Enomoto:Kk | Electric / electronic component and method of manufacturing the same |
JPH11147185A (en) * | 1997-07-25 | 1999-06-02 | Matsushita Electric Works Ltd | Formation of complex shape to surface of working product with energy beam and product obtained by this method |
JP2005103553A (en) * | 2003-09-26 | 2005-04-21 | Sunx Ltd | Laser marking device |
JP2011006743A (en) * | 2009-06-26 | 2011-01-13 | Rezakku:Kk | Method for controlling crystal structure of metallic material |
JP5774246B2 (en) * | 2013-03-26 | 2015-09-09 | ダイセルポリマー株式会社 | Method of roughening a metal molded body |
Non-Patent Citations (1)
Title |
---|
See also references of EP3508301A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3791993A4 (en) * | 2018-05-11 | 2022-01-19 | Daicel Miraizu Ltd. | Composite and method for manufacturing composite |
JP2019217187A (en) * | 2018-06-22 | 2019-12-26 | 慶達科技股▲ふん▼有限公司 | Implant material |
JP2020125240A (en) * | 2018-09-27 | 2020-08-20 | ダイセルポリマー株式会社 | Method for producing carbide-based non-magnetic ceramic compact having roughened structure on the surface |
WO2020067249A1 (en) * | 2018-09-27 | 2020-04-02 | ダイセルポリマー株式会社 | Nonmagnetic ceramic molded body having roughened structure on surface and method for producing same |
WO2020067248A1 (en) * | 2018-09-27 | 2020-04-02 | ダイセルポリマー株式会社 | Nitride-based nonmagnetic ceramic molding having roughened structure on the surface thereof, and method for producing same |
JP2020128336A (en) * | 2018-09-27 | 2020-08-27 | ダイセルポリマー株式会社 | Composite molding |
JPWO2020067249A1 (en) * | 2018-09-27 | 2021-02-15 | ダイセルポリマー株式会社 | Non-magnetic ceramic molded body having a roughened structure on the surface and its manufacturing method |
JPWO2020067248A1 (en) * | 2018-09-27 | 2021-02-15 | ダイセルポリマー株式会社 | Carbide-based non-magnetic ceramic molded body having a roughened structure on the surface and its manufacturing method |
JP7444693B2 (en) | 2018-09-27 | 2024-03-06 | ダイセルミライズ株式会社 | Method for producing a carbide-based nonmagnetic ceramic molded body having a roughened surface structure |
JP7444694B2 (en) | 2018-09-27 | 2024-03-06 | ダイセルミライズ株式会社 | Composite molded body |
JP2020111506A (en) * | 2018-09-28 | 2020-07-27 | ダイセルポリマー株式会社 | Nitride-based non-magnetic ceramic molding |
JP2020111507A (en) * | 2018-09-28 | 2020-07-27 | ダイセルポリマー株式会社 | Composite molding |
JP6754511B1 (en) * | 2018-09-28 | 2020-09-09 | ダイセルポリマー株式会社 | Nitride-based non-magnetic ceramic molded product and its manufacturing method |
WO2020067308A1 (en) * | 2018-09-28 | 2020-04-02 | ダイセルポリマー株式会社 | Nitride-based nonmagnetic ceramic molding and method for producing same |
JP7337738B2 (en) | 2018-09-28 | 2023-09-04 | ダイセルミライズ株式会社 | Composite compact |
Also Published As
Publication number | Publication date |
---|---|
TW201815501A (en) | 2018-05-01 |
KR20190044611A (en) | 2019-04-30 |
TWI737802B (en) | 2021-09-01 |
KR102359488B1 (en) | 2022-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6887411B2 (en) | Roughening method of metal molded body | |
WO2018043637A1 (en) | Metal molded body surface roughening method | |
CN109562491B (en) | Aluminum alloy laser welding system and method for laser welding aluminum alloy | |
US11084125B2 (en) | Laser welding method for welding overlapped plural welding workpieces | |
JP5201098B2 (en) | Laser cutting apparatus and laser cutting method | |
JP2014073526A (en) | Optical system and laser beam machining apparatus | |
WO2015107664A1 (en) | Laser welding method and welded joint | |
Kaiser et al. | Application benefits of welding copper with a 1 kW, 515 nm continuous wave laser | |
JP5061670B2 (en) | Laser welding method | |
Wangui et al. | A study on influence of beam orientation in engraving using CO2 laser | |
JP2000288752A (en) | Method and device for laser beam machining | |
JP4865830B2 (en) | Metal surface modification method | |
JP4335819B2 (en) | Metal processing method | |
JP6859087B2 (en) | Manufacturing method of composite molded product | |
CN113927158A (en) | A laser welding process method based on power waveform modulation | |
JP2004255435A (en) | Laser welding machine and method | |
JP3436861B2 (en) | Laser cutting method and apparatus for steel sheet | |
JP2017209700A (en) | Joining method of metal plate | |
Katayama | Fundamentals and features of laser welding | |
Jagadeesha et al. | High‐Power Laser in Material Processing Applications | |
CN113275744A (en) | Laser bonding method and bonded structure | |
Unt et al. | Laser scribing of stainless steel with and without work media | |
JP2024090047A (en) | Laser Welding Equipment | |
WO2024204079A1 (en) | Method for surface roughening | |
JPH08291322A (en) | Laser hardening method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846641 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197001764 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017846641 Country of ref document: EP Effective date: 20190402 |