WO2018024181A1 - Procédé de préparation d'une mousse métallique au graphène pour le support d'un film mince en dioxyde de titane/métal précieux - Google Patents
Procédé de préparation d'une mousse métallique au graphène pour le support d'un film mince en dioxyde de titane/métal précieux Download PDFInfo
- Publication number
- WO2018024181A1 WO2018024181A1 PCT/CN2017/095363 CN2017095363W WO2018024181A1 WO 2018024181 A1 WO2018024181 A1 WO 2018024181A1 CN 2017095363 W CN2017095363 W CN 2017095363W WO 2018024181 A1 WO2018024181 A1 WO 2018024181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium dioxide
- foam
- graphene
- metal
- foam metal
- Prior art date
Links
- 239000006260 foam Substances 0.000 title claims abstract description 67
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 55
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 51
- 239000002184 metal Substances 0.000 title claims abstract description 51
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000010970 precious metal Substances 0.000 title claims abstract description 42
- 239000010936 titanium Substances 0.000 title claims abstract description 42
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000010409 thin film Substances 0.000 title abstract description 6
- 238000004070 electrodeposition Methods 0.000 claims abstract description 23
- 239000003792 electrolyte Substances 0.000 claims abstract description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000004140 cleaning Methods 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims abstract description 10
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims abstract description 7
- 229910052697 platinum Inorganic materials 0.000 claims abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- 229910052759 nickel Inorganic materials 0.000 claims description 14
- 239000006262 metallic foam Substances 0.000 claims description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000010949 copper Substances 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims description 4
- 238000005406 washing Methods 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- 238000002525 ultrasonication Methods 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 42
- 230000001699 photocatalysis Effects 0.000 abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 10
- 239000004408 titanium dioxide Substances 0.000 abstract description 4
- 238000005215 recombination Methods 0.000 abstract description 3
- 230000006798 recombination Effects 0.000 abstract description 3
- 238000005245 sintering Methods 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 31
- 229910010413 TiO 2 Inorganic materials 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 7
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 7
- 229940043267 rhodamine b Drugs 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052724 xenon Inorganic materials 0.000 description 4
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000011941 photocatalyst Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- KAHROKHAOQFUTL-UHFFFAOYSA-N gold(3+) oxygen(2-) titanium(4+) Chemical group [O--].[O--].[Ti+4].[Au+3] KAHROKHAOQFUTL-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- MFPVDOIQNSMNEW-UHFFFAOYSA-N silver oxygen(2-) titanium(4+) Chemical compound [O--].[O--].[Ti+4].[Ag+] MFPVDOIQNSMNEW-UHFFFAOYSA-N 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/18—Electroplating using modulated, pulsed or reversing current
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/46—Electroplating: Baths therefor from solutions of silver
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/48—Electroplating: Baths therefor from solutions of gold
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
Definitions
- the invention relates to the field of photocatalysis technology, in particular to a method for preparing a graphene foam metal loaded with a titanium dioxide-precious metal film.
- Titanium dioxide has the advantages of high photocatalytic activity, low cost and easy availability, good stability, non-toxicity and harmlessness, and is widely used in photocatalytic degradation of organic pollutants in air or sewage, sterilization, self-cleaning and the like.
- the titanium dioxide powder is easy to aggregate in the suspension system and is difficult to separate and recycle, which hinders its application.
- the use of catalyst immobilization is one of the effective ways to solve this problem, and is generally achieved by a method of preparing a photocatalytic film or coating.
- the colloidal solution of TiO 2 is generally prepared by a sol-gel technique, and then the thickness of the film is quantitatively controlled by controlling the pulling speed and the number of times by using the immersion pulling method.
- the method can form a film on both sides of the substrate, and is suitable for A variety of temperature-resistant substrate materials such as glass, ceramics, stainless steel, etc.
- the TiO 2 colloidal solution may also be applied to the surface of the substrate material by brushing, dispensing, spin coating or the like. However, this method is more suitable for the surface material with a flat surface to obtain a TiO 2 film of a relatively uniform thickness.
- the TiO 2 film can also be prepared by physical vapor deposition and chemical vapor deposition.
- the coating equipment is complex, has certain requirements on the degree of vacuum, and requires strict control of deposition conditions, high cost and complicated process.
- the object of the present invention is to overcome the defects of the prior art and provide a method for preparing a graphene foam metal loaded with a titanium dioxide-precious metal film, which has a simple process and is easy to perform large-area plating; the operation is easier and safer.
- the present invention adopts the following technical scheme, a method for preparing a graphene foam metal loaded with a titanium dioxide-precious metal film, comprising the steps of: preparing an electrolyte containing butyl titanate; and cleaning the surface on which the electroplated surface is deposited with graphene.
- Electrochemical deposition which is deposited by an electrochemical workstation comprising a working electrode, a counter electrode and a reference electrode, an electrolytic cell, the working electrode being a metal foam to be plated,
- the electrode is a platinum electrode
- the reference electrode is a saturated calomel electrode
- the electrolyte is placed in an electrolytic cell; the electrochemically deposited graphitized foam metal loaded with a titanium dioxide-precious metal film is cleaned and dried; after cleaning and drying The graphene foam metal loaded with a titanium dioxide-precious metal film is sintered.
- the electrolyte containing the butyl titanate is specifically prepared as follows: 20-120 ml of deionized water is placed in the No. 1 cup, and 15-100 ml of absolute ethanol is placed in the No. 2 cup; and 100-500 ul is taken. Concentrated nitric acid was dropped into the No. 1 cup, then covered with plastic wrap, ultrasonicated with an ultrasonic cleaner for 5-30 min; 100-500 ul of hydrogen peroxide was dropped into the No. 2 cup, and then 0.1-1 g of titanate was added dropwise. The ester was covered with plastic wrap. The No. 1 cup and the No. 2 cup were placed in an ultrasonic cleaner for 5-30 min. After the end of the ultrasound, the solution of the No.
- the foam metal on which the surface to be electroplated is deposited with graphene is specifically: a metal foam having graphene deposited on the surface, and after being placed in an acetone solution, ultrasonicating for 5-30 min; taking out the foam metal and adding absolute ethanol Then perform ultrasonic for 5-30 min; remove the foam metal and place it in deionized water for 5-30 min.
- the graphene foam metal is placed in the electrolyte for electrochemical deposition, specifically: the cleaned graphene foam metal is placed in the electrolyte, and the cyclic deposition is performed by electrochemical deposition.
- the graphene foam metal cleaning and drying of the electrochemically deposited titanium dioxide-precious metal film is specifically: after the electrochemical deposition is completed, the graphene foam metal supporting the titanium dioxide-precious metal film is taken out and deionized. Rinse the surface with water and then dry in an oven at 50-100 °C.
- the foamed metal after washing and drying is sintered to prepare a graphene foam metal supporting a titanium dioxide-precious metal film, specifically: heating the metal foam at a temperature of 300-600 ° C for 1-5 hours, and then heating The tempering was carried out for 1-5 hours, and after completion, the graphene foam metal supporting the titanium dioxide-precious metal film was taken out by cooling.
- the metal foam is nickel foam, copper foam or aluminum foam.
- the invention adopts the above technical solution to deposit a titanium dioxide-precious metal film on a foam metal on which graphene is deposited, which can be produced at normal temperature without residual thermal stress problem, and is beneficial to enhancing the bonding force between the substrate and the coating.
- the process is simple, easy to carry out large-area plating; no need for high vacuum, no dangerous gas, etc.; operation is easier and safer; the surface of the foam metal can be uniformly deposited on the film, and the adhesion is good; the prepared titanium dioxide - The noble metal film is evenly distributed on the surface of the graphene in the metal foam, which not only improves the contact area, but also avoids the agglomeration of the self particles, effectively prolongs the carrier lifetime generated by the titanium dioxide-precious metal film, and prevents the recombination of holes and electrons.
- the prepared titanium dioxide-precious metal film was used for the photocatalytic degradation test of Rhodamine B solution, and the results showed that the material has high photocatalytic activity.
- Example 2 is a schematic view showing the degradation rate of the rhodamine B solution of the graphene foam metal loaded with titanium dioxide-precious metal film prepared in Example 1-3 of the present invention.
- Supported titania of the present invention preparation of the noble metal thin film graphene metal foam, wherein the noble metal-modified TiO 2 TiO 2 is influenced by the surface properties of the electron distribution changes in the system, thereby improving the photocatalytic activity.
- the work function of the noble metal is higher than the work function of TiO 2 .
- the energy band of the semiconductor will bend upward toward the surface to form a lossy layer, forming a shallow well energy barrier that traps electrons at the noble metal-TiO 2 interface, further suppressing the recombination of photogenerated electrons and holes.
- the deposition of noble metal on the surface of TiO 2 is generally carried out by an immersion reduction method in which TiO 2 is immersed in a solution containing a noble metal salt and then reduced at a high temperature. Due to the high porosity, good mechanical properties, structural uniformity and hydrodynamic properties of the metal foam material, the foam metal-supported photocatalyst has a higher contact surface, and the photocatalyst has a wider effective range, which can effectively improve the photocatalytic efficiency. A good substrate material for supporting photocatalysts.
- the electrochemical deposition according to the present invention is a process in electrophoretic painting, in which a charged resin particle reaches a counter electrode under the action of a direct current electric field, and is deposited by discharging (or obtaining electrons) a water-insoluble paint film.
- the surface of the coating is first carried out at a site where the power line density is particularly high (such as the edge edges and tips of the object to be coated). Once the deposition occurs, the object to be coated has a certain degree of insulation, and the electrodeposition gradually moves to a portion where the power line density is low. Until finally a completely uniform coating is obtained.
- the preparation method of the graphene foam metal loaded with the titanium dioxide-precious metal film according to the present invention is as follows:
- the metal foam is nickel foam, and the specific steps are as follows:
- the foamed nickel to be plated is placed in an acetone solution for 5 min, then ultrasonicated with absolute ethanol for 5 min, and finally ultrasonicated for 5 min with deionized water to wash the foamed nickel on which the graphene is deposited on the surface to be electroplated;
- the cleaned foamed nickel is connected to the working electrode of the electrochemical workstation, and the platinum counter electrode and the saturated calomel reference electrode are connected, and the electrodes are placed together in the prepared electrolyte; the scanning speed is 50 mV/s, and the voltage range is -0.1-0.5V, the scanning cycle is 500 times for cyclic electrochemical deposition, wherein the object to be coated in the electrochemical deposition in this embodiment is foamed nickel with graphene, and the coating is titanium dioxide-precious metal. In the example, it is titanium dioxide-gold.
- the graphene foamed nickel coated with the titanium dioxide-precious metal film is taken out, the surface is rinsed with deionized water, and then dried in an oven at 100 ° C; then the nickel foam is placed in a muffle furnace and heated at 500 ° C. After 3 hours, the temperature was kept for 5 hours, and after completion, the graphene foamed nickel supporting the titanium dioxide-precious metal film was taken out by cooling.
- the photocatalytic test and photoelectrocatalytic test of the titanium dioxide-precious metal film prepared by the invention are carried out:
- Rhodamine B solution was prepared by: pour 100ml of 10mg/L Rhodamine B solution into the culture dish and submerge the foamed nickel; place the culture dish in the photochemical reactor for photocatalytic reaction; sample every 5 minutes, and measure the absorbance of the solution by UV-visible spectrophotometry. The photodegradation rate of Rhodamine B solution was calculated.
- the graphene foamed nickel loaded with the titanium dioxide-precious metal film prepared above was first ultrasonicated with acetone for 5 min, then ultrasonicated with absolute ethanol for 5 min, and finally ultrasonicated with deionized water for 5 min; 100 ml of a NaOH solution having a concentration of 0.1 mol/L was placed.
- test electrolyte Into the beaker, as the test electrolyte; connect the foamed nickel to the working electrode of the electrochemical workstation, and connect the platinum counter electrode and the saturated calomel reference electrode, set the voltage to 0.5V; then start the test, after testing 600S, turn on the xenon light source, Irradiation on the working electrode, according to the cycle 100S, Break the light source and observe the change of current before and after the light source.
- test results are shown in Figure 2.
- the photocatalytic degradation of rhodamine B solution by the graphene foam nickel supported on the titanium dioxide-precious metal film obtained in the first embodiment has a degradation rate of 100% in 35 minutes, and the photocatalytic result is that the current of the xenon lamp source is increased from 11 mA to 14 mA, and the photocatalytic effect is obvious. .
- the foam metal in the embodiment is foamed copper.
- 50 ml of deionized water is placed in the beaker No. 1, 200 ul of concentrated nitric acid is added, and the plastic wrap is covered with ultrasonic for 10 min; Put the beaker into 50ml of absolute ethanol, add 200ul of hydrogen peroxide, place the beaker on the balance and add 0.2g of butyl titanate, cover the plastic wrap; and sonicate with the No. 1 solution for 10min, then open the wrap film after the end The No. 2 solution was dropped into the No.
- the foamed copper to be plated was placed in acetone solution for 20 min, then ultrasonicated with absolute ethanol for 20 min, and finally ultrasonicated with deionized water for 20 min; the cleaned foamed copper was connected to the working electrode of the electrochemical workstation, and platinum was connected.
- the counter electrode and the saturated calomel reference electrode are placed in the prepared electrolyte together; the electrochemical deposition is performed at a scanning speed of 50 mV/s, a voltage range of -0.1-0.5 V, and a scanning period of 200 times, wherein
- the object to be coated is foamed copper with graphene, and the coating layer is titanium dioxide-precious metal.
- the copper oxide coated with the titanium dioxide-precious metal film was taken out, the surface was rinsed with deionized water, and then dried in an oven at 100 ° C; then the copper foam was placed in a muffle furnace and heated at 500 ° C for 3 hours. After 5 hours of heat retention, after completion, the graphene foam copper loaded with the titanium dioxide-precious metal film was taken out by cooling.
- the photocatalytic test and the photoelectrocatalytic test procedure were the same as those in Example 1, and the test results are shown in FIG.
- the photocatalytic degradation of rhodamine B solution of graphene foam copper loaded with titanium dioxide-precious metal film obtained in the second embodiment has a degradation rate of 100% in 35 minutes, and the photocatalytic result is that the current of the xenon lamp source is increased from 11 mA to 14 mA, and the photocatalytic effect is obvious. .
- the foam metal in the embodiment is aluminum foam.
- 100 ml of deionized water is placed in a beaker No. 1, 500 ul of concentrated nitric acid is added, and the plastic wrap is covered with ultrasonic for 20 min;
- the beaker was placed in 100 ml of absolute ethanol, 500 ul of hydrogen peroxide was added dropwise, and the beaker was placed on the balance with 0.5 g of butyl titanate, and the plastic wrap was covered; the same solution was used for 20 min, and the plastic wrap was opened after the end.
- the No. 2 solution was dropped into the No. 1 solution, and the solution was again ultrasonicated for 20 minutes to allow the solution to be thoroughly mixed;
- the plastic wrap was again poured into 500 ul of silver nitrate, and the wrap film was ultrasonicated for 30 min to obtain the electrolytic solution of Example 3.
- the foamed aluminum to be plated was ultrasonicated in acetone solution for 20 min, then ultrasonicated with absolute ethanol for 20 min, and finally ultrasonicated with deionized water for 20 min; the cleaned aluminum foam was connected to the working electrode of the electrochemical workstation, and platinum was connected at the same time.
- the counter electrode and the saturated calomel reference electrode are placed together in the prepared electrolyte; the electrochemical deposition is performed at a scanning speed of 50 mV/s, a voltage range of -0.1 to 0.5 V, and a scanning period of 500 times, wherein
- the object to be coated is aluminum oxide with graphene, and the coating layer is titanium dioxide-precious metal, which is titanium dioxide-silver in this embodiment.
- the graphene aluminum foam coated with the titanium dioxide-precious metal film is taken out, the surface is rinsed with deionized water, and then dried in an oven at 100 ° C; then the aluminum foam is placed in a muffle furnace and heated at 500 ° C. After 3 hours, the temperature was kept for 5 hours. After the end, the graphene foam aluminum loaded with the titanium dioxide-precious metal film was taken out by cooling.
- the graphene foam aluminum loaded with the titanium dioxide-precious metal film obtained in the third embodiment was photocatalyzed to degrade the rhodamine B solution, and the test results are shown in FIG. 2 .
- the degradation rate reached 100% in 30min.
- the photocatalytic result was that the xenon lamp source was irradiated with 100S current from 11mA to 16mA, and the photocatalytic effect was obvious.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
Cette invention concerne un procédé de préparation d'une mousse métallique au graphène pour le support d'un film mince en dioxyde de titane/métal précieux. Le procédé comprend : la préparation d'un électrolyte contenant du dioxyde de titane ; le nettoyage d'une mousse métallique destinée à subir un dépôt électrolytique, présentant sur sa surface un dépôt de graphène ; le positionnement de la mousse métallique au graphène dans l'électrolyte pour effectuer un dépôt électrochimique, le dépôt électrochimique étant effectué à l'aide d'un poste de travail électrochimique, le poste de travail électrochimique comprenant une électrode de travail, une contre-électrode, une électrode de référence et une cellule électrolytique, l'électrode de travail étant une mousse métallique destinée à subir un dépôt électrolytique, la contre-électrode étant une électrode en platine, l'électrode de référence étant une électrode de calomel saturé, et l'électrolyte étant placé dans la cellule électrolytique ; le nettoyage et le séchage de la mousse métallique au graphène ayant subi le dépôt électrolytique pour le support d'un film mince en dioxyde de titane/métal précieux ; et le frittage de la mousse métallique au graphène nettoyée et séchée pour le support d'un film mince en dioxyde de titane/métal précieux. La mousse métallique au graphène destinée à supporter un film mince en dioxyde de titane/métal précieux préparée à l'aide du procédé prolonge efficacement la durée de vie d'un support généré à l'aide d'un film photocatalytique, et empêche la recombinaison d'un trou et d'électrons.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610619640.X | 2016-08-01 | ||
CN201610619640.XA CN107675219A (zh) | 2016-08-01 | 2016-08-01 | 负载二氧化钛‑贵金属薄膜的石墨烯泡沫金属的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018024181A1 true WO2018024181A1 (fr) | 2018-02-08 |
Family
ID=61072480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/095363 WO2018024181A1 (fr) | 2016-08-01 | 2017-08-01 | Procédé de préparation d'une mousse métallique au graphène pour le support d'un film mince en dioxyde de titane/métal précieux |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107675219A (fr) |
WO (1) | WO2018024181A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112374767A (zh) * | 2019-11-07 | 2021-02-19 | 陕西彩虹新材料有限公司 | 一种光伏玻璃用功能涂层的制备方法 |
CN113856757A (zh) * | 2021-11-04 | 2021-12-31 | 广东工业大学 | 一种聚多巴胺修饰氮化碳/二氧化钛负载泡沫镍复合光催化剂及其制备方法和应用 |
CN113979514A (zh) * | 2021-10-22 | 2022-01-28 | 周口师范学院 | 一种Ni基CuFe2O4尖晶石涂层电极材料的制备方法 |
CN114411205A (zh) * | 2022-01-21 | 2022-04-29 | 中国人民解放军陆军勤务学院 | 一种石墨烯负载镍颗粒复合粉末的制备方法 |
CN115343341A (zh) * | 2021-05-14 | 2022-11-15 | 天津理工大学 | 金/石墨烯/二氧化钛纳米管阵列/Ti传感电极及其制备方法和应用 |
CN115433961A (zh) * | 2022-09-28 | 2022-12-06 | 上海千北信息科技有限公司 | 一种泡沫钛基三维铂镍氧还原电极及其制备方法与应用 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114373938B (zh) * | 2021-01-15 | 2024-02-02 | 西安石油大学 | 一种镍基三维有序二氧化钛/石墨烯复合材料的制备方法及其在锂离子电池中的应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101757902A (zh) * | 2010-01-12 | 2010-06-30 | 海盐华强树脂有限公司 | 一种含活性炭涂层复合型光催化剂的制备方法 |
EP2647430A1 (fr) * | 2012-04-05 | 2013-10-09 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Procédé de préparation d'un catalyseur pour la évolution de H2, ledit catalyseur et utilisations associées |
US20140346408A1 (en) * | 2013-05-23 | 2014-11-27 | Electronics And Telecommunications Research Institute | Method of manufacturing graphene hybrid material and graphene hybrid material manufactured by the method |
CN104588021A (zh) * | 2014-12-31 | 2015-05-06 | 浙江大学 | 一种二氧化钛光催化涂层的制备方法及用途 |
CN105671611A (zh) * | 2016-02-05 | 2016-06-15 | 浙江大学 | 一种石墨烯表面直接负载纳米氧化物的方法 |
CN106140127A (zh) * | 2015-05-15 | 2016-11-23 | 蓝石科技(开曼)有限公司 | 一种复合可见光催化材料及其制备方法 |
CN106140126A (zh) * | 2015-05-15 | 2016-11-23 | 蓝石科技(开曼)有限公司 | 一种粉末状复合光催化材料及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101608330B (zh) * | 2009-07-14 | 2010-10-13 | 华中科技大学 | 一种二氧化钛镀膜的低温制备方法 |
CN106129329A (zh) * | 2016-07-08 | 2016-11-16 | 中国工程物理研究院材料研究所 | 一种石墨烯基锂离子电池负极用复合电极及其制备方法 |
-
2016
- 2016-08-01 CN CN201610619640.XA patent/CN107675219A/zh active Pending
-
2017
- 2017-08-01 WO PCT/CN2017/095363 patent/WO2018024181A1/fr active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101757902A (zh) * | 2010-01-12 | 2010-06-30 | 海盐华强树脂有限公司 | 一种含活性炭涂层复合型光催化剂的制备方法 |
EP2647430A1 (fr) * | 2012-04-05 | 2013-10-09 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Procédé de préparation d'un catalyseur pour la évolution de H2, ledit catalyseur et utilisations associées |
US20140346408A1 (en) * | 2013-05-23 | 2014-11-27 | Electronics And Telecommunications Research Institute | Method of manufacturing graphene hybrid material and graphene hybrid material manufactured by the method |
CN104588021A (zh) * | 2014-12-31 | 2015-05-06 | 浙江大学 | 一种二氧化钛光催化涂层的制备方法及用途 |
CN106140127A (zh) * | 2015-05-15 | 2016-11-23 | 蓝石科技(开曼)有限公司 | 一种复合可见光催化材料及其制备方法 |
CN106140126A (zh) * | 2015-05-15 | 2016-11-23 | 蓝石科技(开曼)有限公司 | 一种粉末状复合光催化材料及其制备方法 |
CN105671611A (zh) * | 2016-02-05 | 2016-06-15 | 浙江大学 | 一种石墨烯表面直接负载纳米氧化物的方法 |
Non-Patent Citations (1)
Title |
---|
CHANG, XINYUAN: "Study on the Preparation of Modified Foam Nickel Material and its Catalysis Performance", SCIENCE -ENGINEERING (A), CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 May 2014 (2014-05-15), pages 10, ISSN: 1674-0246 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112374767A (zh) * | 2019-11-07 | 2021-02-19 | 陕西彩虹新材料有限公司 | 一种光伏玻璃用功能涂层的制备方法 |
CN115343341A (zh) * | 2021-05-14 | 2022-11-15 | 天津理工大学 | 金/石墨烯/二氧化钛纳米管阵列/Ti传感电极及其制备方法和应用 |
CN113979514A (zh) * | 2021-10-22 | 2022-01-28 | 周口师范学院 | 一种Ni基CuFe2O4尖晶石涂层电极材料的制备方法 |
CN113979514B (zh) * | 2021-10-22 | 2023-04-28 | 周口师范学院 | 一种Ni基CuFe2O4尖晶石涂层电极材料的制备方法 |
CN113856757A (zh) * | 2021-11-04 | 2021-12-31 | 广东工业大学 | 一种聚多巴胺修饰氮化碳/二氧化钛负载泡沫镍复合光催化剂及其制备方法和应用 |
CN113856757B (zh) * | 2021-11-04 | 2023-08-22 | 广东工业大学 | 一种聚多巴胺修饰氮化碳/二氧化钛负载泡沫镍复合光催化剂及其制备方法和应用 |
CN114411205A (zh) * | 2022-01-21 | 2022-04-29 | 中国人民解放军陆军勤务学院 | 一种石墨烯负载镍颗粒复合粉末的制备方法 |
CN114411205B (zh) * | 2022-01-21 | 2023-10-27 | 中国人民解放军陆军勤务学院 | 一种石墨烯负载镍颗粒复合粉末的制备方法 |
CN115433961A (zh) * | 2022-09-28 | 2022-12-06 | 上海千北信息科技有限公司 | 一种泡沫钛基三维铂镍氧还原电极及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
CN107675219A (zh) | 2018-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018024181A1 (fr) | Procédé de préparation d'une mousse métallique au graphène pour le support d'un film mince en dioxyde de titane/métal précieux | |
CN101872862B (zh) | 燃料电池板的表面的涂覆方法 | |
CN112522703B (zh) | 一种镁合金表面无氟超疏水Zn-MOF复合涂层及其制备方法 | |
WO2003078694A1 (fr) | Electrode utilisee pour la production d'hydrogene | |
JP2016540118A (ja) | グラフェンで覆われた電極を含む電気化学セル | |
CN104588021A (zh) | 一种二氧化钛光催化涂层的制备方法及用途 | |
CN109589993B (zh) | 电化学改性的钒酸铋-硫化钼-四氧化三钴催化电极及其制备方法和应用 | |
CN108217852B (zh) | 在电催化污水处理中用作阳极的二氧化铅电极及其制备方法 | |
CN104313637A (zh) | 一种具有氢还原活性的金属硫化物电极及其制备方法 | |
CN101591001A (zh) | 一种Pd掺杂TiO2纳米管阵列复合材料的制备方法 | |
CN103981537B (zh) | 一种光电催化还原处理有机污染物的Pd/3DOM TiO2/BDD电极的制备方法及其应用 | |
CN108054390A (zh) | 一种快捷有效的钒电池用石墨毡的改性方法 | |
CN102703953B (zh) | 一种循环伏安电沉积制备纳米铂/二氧化钛纳米管电极的方法 | |
CN104386785A (zh) | 钼、锑共掺杂钛基二氧化锡电催化电极的制备方法 | |
CN102534725A (zh) | 一种制备Ag2S掺杂TiO2纳米管电极的方法 | |
CN102534718B (zh) | 一种制备PbO2修饰TiO2纳米管电极的方法 | |
CN102534742A (zh) | 一种二氧化钛纳米薄膜复合材料及其恒电流制备方法 | |
CN101396651B (zh) | 一种纳米有序构造的光电转换复合薄膜及其制备方法 | |
Wan et al. | Atomic layer deposition assisted surface passivation on bismuth vanadate photoanodes for enhanced solar water oxidation | |
CN104538649B (zh) | 在钛‑铜非晶合金上制备铂/二氧化钛复合纳米多孔结构的方法 | |
CN101935819B (zh) | 在钛或钛合金材料表面原位生长二氧化钛薄膜的制备方法 | |
CN104099636B (zh) | 一种粉末固化法制备金属氧化物电极的方法 | |
CN108531939B (zh) | Pt修饰Fe2O3包裹CuFeO2光阴极及制备方法 | |
CN110330078B (zh) | 一种高效长寿命的三维结构锑掺杂氧化锡电极 | |
CN1860254A (zh) | 耐蚀铝导电性材料及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17836363 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17836363 Country of ref document: EP Kind code of ref document: A1 |