[go: up one dir, main page]

WO2018020571A1 - Organic electronics material - Google Patents

Organic electronics material Download PDF

Info

Publication number
WO2018020571A1
WO2018020571A1 PCT/JP2016/071849 JP2016071849W WO2018020571A1 WO 2018020571 A1 WO2018020571 A1 WO 2018020571A1 JP 2016071849 W JP2016071849 W JP 2016071849W WO 2018020571 A1 WO2018020571 A1 WO 2018020571A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
structural unit
charge transporting
transporting polymer
group
Prior art date
Application number
PCT/JP2016/071849
Other languages
French (fr)
Japanese (ja)
Inventor
石塚 健一
智嗣 杉岡
優規 吉成
大輔 龍崎
涼 本名
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2016/071849 priority Critical patent/WO2018020571A1/en
Priority to KR1020197004524A priority patent/KR20190034233A/en
Priority to PCT/JP2017/026971 priority patent/WO2018021381A1/en
Priority to JP2018530338A priority patent/JP6954284B2/en
Priority to TW106125053A priority patent/TW201821591A/en
Priority to US16/320,867 priority patent/US20190165293A1/en
Priority to EP17834383.6A priority patent/EP3493286A4/en
Priority to CN201780046276.5A priority patent/CN109564980A/en
Publication of WO2018020571A1 publication Critical patent/WO2018020571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • Embodiments of the present invention relate to an organic electronic material and an organic thin film using the material. Moreover, other embodiment of this invention is related with the organic electronics element and organic electroluminescent element containing the said organic thin film, and the display element, illuminating device, and display apparatus using these.
  • An organic electronics element is an element that performs an electrical operation using an organic substance, and is expected to exhibit features such as energy saving, low cost, and flexibility. Therefore, it attracts attention as a technology that replaces the conventional inorganic semiconductor mainly composed of silicon.
  • the organic electronics element include an organic electroluminescence element (hereinafter also referred to as “organic EL element”), an organic photoelectric conversion element, and an organic transistor.
  • organic EL elements are attracting attention as applications for large-area solid-state light sources that can replace, for example, incandescent lamps or gas-filled lamps. It is also attracting attention as the most powerful self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.
  • LCD liquid crystal display
  • FPD flat panel display
  • Organic EL elements are roughly classified into low molecular organic EL elements and polymer organic EL elements, depending on the organic materials used.
  • the polymer organic EL element a polymer compound is used as an organic material
  • the low molecular organic EL element a low molecular compound is used.
  • the manufacturing method of the organic EL element includes a dry process in which film formation is mainly performed in a vacuum system, and a wet process in which film formation is performed by plate printing such as relief printing and intaglio printing, and plateless printing such as inkjet. It is roughly divided into The wet process is expected to be an indispensable method for realizing a large-screen organic EL display in the future because simple film formation is possible.
  • An organic EL device manufactured using a polymer compound according to a wet process has a feature that it is easy to reduce the cost and increase the area.
  • organic EL devices manufactured using conventional polymer compounds are desired to be further improved in various characteristics of the organic EL elements such as driving voltage, light emission efficiency, and lifetime characteristics.
  • the polymer compound has an excellent charge transport property and an excellent thermal stability.
  • an embodiment of the present invention aims to provide an organic electronic material including a polymer compound having excellent charge transportability and excellent heat resistance, and an organic thin film using the material.
  • another embodiment of the present invention provides an organic electronics element and an organic EL element that are excellent in heat resistance and life characteristics, including the organic thin film, and a display element, an illuminating device, and a display device using the same. The purpose is to do.
  • the present inventors have at least a 9-phenylcarbazole structure and a triphenylamine structure in which at least one phenyl group has an alkoxy group, and the above 9 It has been found that a specific charge transporting polymer having a structure branched from a phenylcarbazole structure in three or more directions has excellent heat resistance and can be suitably used as an organic electronic material. Furthermore, the present inventors have found that an organic electronic material containing the specific charge transporting polymer is effective in improving the heat resistance and life characteristics of the organic EL element, and has completed the present invention. That is, the embodiment of the present invention relates to the following.
  • Embodiments of the present invention relate to organic electronic materials.
  • the organic electronic material contains a charge transporting polymer including a trivalent or higher valent structural unit having a 9-phenylcarbazole structure and a structural unit having a triphenylamine structure in which at least one phenyl group has an alkoxy group. It is characterized by.
  • the charge transporting polymer preferably has a polymerizable functional group.
  • the organic electronic material preferably further contains a dopant.
  • the dopant preferably contains an onium salt.
  • Another embodiment of the present invention relates to an organic electronic device including at least one of the organic thin films of the above embodiment.
  • the organic electroluminescent element containing at least 1 of the organic thin film of the said embodiment.
  • the organic thin film of the above embodiment is preferably at least one of a hole injection layer and a hole transport layer.
  • the organic electroluminescence element preferably further includes a flexible substrate or further includes a resin film substrate.
  • Another embodiment of the present invention relates to a display device including the illumination device of the above embodiment and a liquid crystal element as a display means.
  • the organic electronic material having excellent charge transportability and heat resistance, and an organic thin film using the material.
  • the organic electronics element excellent in heat resistance and lifetime characteristics including the organic thin film formed using the organic electronics material, an organic EL element, and a display using the same An element, a lighting device, and a display device can be provided.
  • FIG. 1 is a schematic diagram showing an example of an organic EL element according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of an organic EL element according to an embodiment of the present invention.
  • FIG. 3 is a graph of voltage-current density curves when a voltage is applied to each hole-only device obtained in Examples 1 to 4 and Comparative Examples 1 to 4.
  • the organic electronic material that is an embodiment of the present invention contains one or more charge transporting polymers having the ability to transport charges.
  • the organic electronic material includes at least a charge transporting polymer having a structure branched in three or more directions, and the polymer includes at least a trivalent or higher valent structural unit (1) having a 9-phenylcarbazole structure and a nitrogen atom.
  • the organic electronic material may contain two or more of the specific charge transporting polymers, or may further contain other charge transporting polymers.
  • the charge transporting polymer having a structure branched in three or more directions includes a trivalent or higher structural unit B including a trivalent or higher structural unit (1) having a 9-phenylcarbazole structure and a monovalent constituting a terminal portion. And a divalent structural unit L having a charge transporting property may be included.
  • the specific charge transporting polymer includes a trivalent or higher structural unit B including at least the structural unit (1), a divalent structural unit L, and a monovalent structural unit T.
  • the structural unit (2) having the triphenylamine structure is included in at least one of the structural units B, L, and T.
  • the structural unit (2) is preferably contained in at least one of the structural units L and T.
  • the charge transporting polymer may contain only one type of each structural unit, or may contain a plurality of types. In the charge transporting polymer, each structural unit is bonded to each other at a binding site of “monovalent” to “trivalent or more”.
  • the charge transporting polymer other than the specific charge transporting polymer may be linear or have a branched structure.
  • the charge transporting polymer preferably includes at least a divalent structural unit L having charge transporting properties and a monovalent structural unit T constituting a terminal portion, and a trivalent or higher structural unit B constituting a branched portion. Further, it may be included.
  • Examples of the partial structure contained in the charge transporting polymer having a structure branched in three or more directions include the following.
  • the charge transporting polymer is not limited to a polymer having the following partial structure.
  • “B” represents the structural unit B
  • “L” represents the structural unit L
  • “T” represents the structural unit T.
  • “*” Represents a binding site with another structural unit.
  • a plurality of L may be the same structural unit or different structural units. The same applies to “T” and “B”.
  • the structural unit B is a trivalent or higher structural unit that constitutes the branched portion.
  • the structural unit B is preferably hexavalent or less, more preferably trivalent or tetravalent, from the viewpoint of improving the durability of the organic electronic element.
  • the structural unit B is preferably a unit having charge transportability.
  • the structural unit B is a substituted or unsubstituted aromatic amine structure, carbazole structure, condensed polycyclic aromatic hydrocarbon structure, and one or two of these from the viewpoint of improving the durability of the organic electronic device. Selected from structures containing more than one species.
  • structural unit B includes the following.
  • the structural unit B is not limited to the following.
  • W represents a trivalent linking group, for example, an arenetriyl group or a heteroarenetriyl group having 2 to 30 carbon atoms.
  • the arenetriyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon.
  • the heteroarene triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic heterocyclic ring.
  • Ar each independently represents a divalent linking group, for example, each independently represents an arylene group or heteroarylene group having 2 to 30 carbon atoms.
  • Ar is preferably an arylene group, more preferably a phenylene group.
  • Y represents a divalent linking group.
  • one R atom in the structural unit L (excluding a group containing a polymerizable functional group) has one more hydrogen atom from a group having one or more hydrogen atoms.
  • divalent groups excluding. Z represents any of a carbon atom, a silicon atom, or a phosphorus atom.
  • the benzene ring and Ar may have one or more substituents R.
  • the substituents R each independently include —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable functional group described later. Selected from the group consisting of groups.
  • R 1 to R 8 each independently represents a hydrogen atom; a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms; or an aryl group or heteroaryl group having 2 to 30 carbon atoms (provided that Except when R 1 is a hydrogen atom).
  • the aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • a heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring.
  • the alkyl group may be further substituted with an aryl group or heteroaryl group having 2 to 20 carbon atoms, and the aryl group or heteroaryl group may be further linear, cyclic or branched having 1 to 22 carbon atoms. It may be substituted with an alkyl group.
  • R is preferably an alkyl group, an aryl group, or an alkyl-substituted aryl group.
  • Examples of the aromatic hydrocarbon include a single ring, a condensed ring, or a polycycle in which two or more selected from a single ring and a condensed ring are bonded via a single bond.
  • Examples of the aromatic heterocycle include a single ring, a condensed ring, or a polycycle in which two or more selected from a monocycle and a condensed ring are bonded via a single bond.
  • the charge transporting polymer used in the organic electronic material according to the embodiment of the present invention may optionally contain the trivalent or higher structural unit B constituting the branched portion described above, but has at least a 9-phenylcarbazole structure. And a trivalent or higher structural unit (1).
  • the trivalent or higher structural unit (1) is also referred to as a structural unit B1.
  • the 9-phenylcarbazole structure means a structure in which a hydrogen moiety on the nitrogen atom of 9H-carbazole is substituted with a phenyl group. Therefore, the structural unit B1 intends a structure having the 9-phenylcarbazole structure and having three or more linking groups that can be bonded to other structures.
  • the phenyl group bonded to the nitrogen atom may have a substituent or a linking group, and the substituents may be linked to form a cyclic structure.
  • the aromatic ring forming the carbazole skeleton may also have a substituent or a linking group.
  • the charge transporting polymer contains a trivalent or higher structural unit B1 having a 9-phenylcarbazole structure in the molecule, it becomes easy to improve the light emission efficiency of the organic EL device. Although details are unknown, it is considered that the charge transporting polymer containing the structural unit B1 in the molecule is caused by a high triplet (T1) level.
  • structural unit B1 includes the following.
  • Preferred specific examples of the structural unit B1 include the following.
  • l is an integer of 0 to 4
  • m and n are each independently an integer of 0 to 3
  • the number of substituents R is Show.
  • l and m are each independently an integer of 0 to 3
  • n is an integer of 0 to 4
  • “*” represents a binding site with another structure.
  • the substituents R each independently include —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable functional group described later. Selected from the group consisting of groups.
  • R 1 to R 8 are as described above for the structural unit B.
  • the substituent R in each structural unit is preferably a linear, cyclic, or branched alkyl group having 1 to 12 carbon atoms, or an aryl group having 2 to 12 carbon atoms.
  • the aryl group may be further substituted with a linear, cyclic, or branched alkyl group having 1 to 12 carbon atoms.
  • l + m + n is preferably 0 to 3, and more preferably 0 or 1.
  • the substituent R is more preferably selected from the group consisting of a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms and an aryl group having 2 to 8 carbon atoms.
  • structural unit B1 More preferable specific examples of the structural unit B1 include the following. However, the structural unit B1 is not limited to the following. In each structural unit, “*” indicates a binding site with another structure.
  • the structural unit L is a divalent structural unit having charge transportability.
  • the structural unit L is not particularly limited as long as it contains an atomic group having the ability to transport charges.
  • the structural unit L is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro Phenanthrene structure, pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxaline structure, acridine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxadiazole structure, thiazole structure, thiadiazole structure, triazole structure, benzo Thiophene structure, benzoxazole structure, benzoo
  • the structural unit L includes a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, pyrrole structure, and these from the viewpoint of obtaining excellent hole transport properties.
  • it is selected from a structure containing one or more of these, and is selected from a substituted or unsubstituted aromatic amine structure, carbazole structure, and a structure containing one or more of these Is more preferable.
  • the aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.
  • structural unit L includes the following.
  • the structural unit L is not limited to the following.
  • Each R independently represents a hydrogen atom or a substituent.
  • each R independently represents —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable functional group described later. Selected from the group consisting of containing groups.
  • R 1 to R 8 each independently represents a hydrogen atom; a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms; or an aryl group or heteroaryl group having 2 to 30 carbon atoms.
  • the aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon.
  • a heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring.
  • the alkyl group may be further substituted with an aryl group or heteroaryl group having 2 to 20 carbon atoms, and the aryl group or heteroaryl group may be further linear, cyclic or branched having 1 to 22 carbon atoms. It may be substituted with an alkyl group.
  • R is preferably a hydrogen atom, an alkyl group, an aryl group, or an alkyl-substituted aryl group.
  • Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms.
  • An arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon.
  • a heteroarylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle.
  • Ar is preferably an arylene group, more preferably a phenylene group.
  • Examples of the aromatic hydrocarbon include a single ring, a condensed ring, or a polycycle in which two or more selected from a single ring and a condensed ring are bonded via a single bond.
  • Examples of the aromatic heterocycle include a single ring, a condensed ring, or a polycycle in which two or more selected from a monocycle and a condensed ring are bonded via a single bond.
  • the charge transporting polymer used in the organic electronic material according to the embodiment of the present invention may optionally include the above-described divalent structural unit L.
  • at least one phenyl group is an alkoxy group.
  • a divalent structural unit (2) having a triphenylamine structure is also referred to as a structural unit L1.
  • the triphenylamine structure means that at least one phenyl group bonded to a nitrogen atom has a structure having at least one alkoxy group.
  • the phenyl group may have a substituent other than an alkoxy group or a linking group, and the substituents may be linked to form a cyclic structure. That is, the structural unit L1 intends a structure in which two linking groups are bonded to a triphenylamine structure in which at least one phenyl group has an alkoxy group.
  • the charge transporting polymer contains the structural unit L1 in the molecule, it is easy to improve the light emission lifetime of the organic EL element.
  • the heat resistance is easily improved. Therefore, by using a charge transporting polymer containing a structural unit having such a specific triphenylamine structure, the heat resistance of the polymer is improved and the deterioration of the organic thin film is suppressed, so that the organic EL device emits light. It is thought that it contributes to the improvement of life.
  • structural unit L1 includes the following.
  • Preferred specific examples of the structural unit L1 include the following.
  • l is an integer of 0 to 5
  • m and n are each independently an integer of 0 to 4
  • the number of substituents R is Indicates.
  • “*” indicates a binding site with another structure.
  • l + n + m is 1 or more, and at least one substituent R is an alkoxy group (—OR).
  • the alkoxy group is intended to be a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
  • the alkoxy group is preferably a group in which a linear or branched alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
  • at least one phenyl group bonded to the nitrogen atom may have a substituent R other than the alkoxy group (—OR).
  • Substituents R other than the alkoxy group include, for example, —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable function described later. Selected from the group consisting of groups containing groups.
  • R 1 to R 8 are as described above for the structural unit B1.
  • —OR 2 does not include the alkoxy group (—OR).
  • structural unit L1 More preferable specific examples of the structural unit L1 include the following. However, the structural unit L1 is not limited to the following. In each structural unit, “*” indicates a binding site with another structure.
  • the structural unit T is a monovalent structural unit constituting the terminal portion of the charge transporting polymer.
  • the structural unit T is not particularly limited, and is selected from, for example, a substituted or unsubstituted aromatic hydrocarbon structure, aromatic heterocyclic structure, and a structure including one or more of these.
  • the structural unit T may have the same structure as the structural unit L.
  • the structural unit T is preferably a substituted or unsubstituted aromatic hydrocarbon structure from the viewpoint of imparting durability without deteriorating charge transportability, and is preferably a substituted or unsubstituted benzene structure. A structure is more preferable.
  • the structural unit T has a polymerizable structure (for example, a polymerizable functional group such as a pyrrol-yl group). ).
  • structural unit T includes the following.
  • the structural unit T is not limited to the following.
  • R is the same as R in the structural unit L.
  • the charge transporting polymer has a polymerizable functional group at the terminal portion, preferably at least one of R is a group containing a polymerizable functional group.
  • the charge transporting polymer used in the organic electronic material according to the embodiment of the present invention may optionally include the monovalent structural unit T shown above, but in one embodiment, the trivalent group having at least one alkoxy group.
  • a monovalent structural unit (1) having a phenylamine structure is included.
  • the monovalent structural unit (1) is also referred to as a structural unit T1.
  • structural unit T1 includes the following.
  • structural unit T1 includes the following.
  • l and m are each independently an integer of 0 to 5
  • n is an integer of 0 to 4, and each represents the number of substituents R.
  • Indicates. l + n + m is 1 or more, and at least one substituent R is an alkoxy group (—OR).
  • the alkoxy group is intended to be a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
  • at least one phenyl group bonded to the nitrogen atom may have a substituent R other than the alkoxy group.
  • the alkoxy group (—OR) and the substituent R other than the alkoxy group are as described above for the divalent structural unit L1.
  • the structural unit T1 is included in the molecule of the charge transporting polymer, excellent heat resistance can be obtained, which makes it easy to improve the light emission lifetime of the organic EL element.
  • the structural unit T1 includes the following. However, the structural unit T1 is not limited to the following. In each structural unit, “*” indicates a binding site with another structure.
  • the charge transporting polymer preferably has at least one polymerizable functional group from the viewpoint of curing by a polymerization reaction and changing the solubility in a solvent.
  • the “polymerizable functional group” refers to a functional group that can form a bond with each other by applying heat and / or light.
  • Examples of the polymerizable functional group include a group having a carbon-carbon multiple bond (for example, vinyl group, allyl group, butenyl group, ethynyl group, acryloyl group, acryloyloxy group, acryloylamino group, methacryloyl group, methacryloyloxy group, methacryloylamino group).
  • groups, vinyloxy groups, vinylamino groups, etc.) groups having a small ring (eg, cyclic alkyl groups such as cyclopropyl groups, cyclobutyl groups; cyclic ether groups such as epoxy groups (oxiranyl groups), oxetane groups (oxetanyl groups), etc.
  • a vinyl group, an acryloyl group, a methacryloyl group, an epoxy group, and an oxetane group are particularly preferable, and from the viewpoint of reactivity and characteristics of the organic electronics element, a vinyl group, an oxetane group, or an epoxy group is more preferable. preferable.
  • the main skeleton of the charge transporting polymer and the polymerizable functional group are preferably connected by an alkylene chain.
  • a hydrophilic chain such as an ethylene glycol chain or a diethylene glycol chain from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO. preferable.
  • the charge transporting polymer is polymerized with the end of the alkylene chain and / or the hydrophilic chain, that is, with these chains.
  • An ether bond or an ester bond may be present at the connecting portion with the functional group and / or the connecting portion between these chains and the skeleton of the charge transporting polymer.
  • group containing a polymerizable functional group means a polymerizable functional group itself or a group obtained by combining a polymerizable functional group with an alkylene chain or the like.
  • group containing a polymerizable functional group for example, a group exemplified in International Publication No. WO2010 / 140553 can be suitably used.
  • the polymerizable functional group may be introduced into the terminal part (that is, the structural unit T) of the charge transporting polymer, or may be introduced into a part other than the terminal part (that is, the structural unit L or B). And may be introduced into both of the portions other than the terminal. From the viewpoint of curability, it is preferably introduced at least at the end portion, and from the viewpoint of achieving both curability and charge transportability, it is preferably introduced only at the end portion.
  • the polymerizable functional group may be introduced into the main chain of the charge transporting polymer or into the side chain, and both the main chain and the side chain may be introduced. May be introduced.
  • the amount contained in the charge transporting polymer is small.
  • the content of the polymerizable functional group can be appropriately set in consideration of these.
  • the number of polymerizable functional groups per molecule of the charge transporting polymer is preferably 2 or more, more preferably 3 or more from the viewpoint of obtaining a sufficient change in solubility.
  • the number of polymerizable functional groups is preferably 1,000 or less, more preferably 500 or less, from the viewpoint of maintaining charge transportability.
  • the number of polymerizable functional groups per molecule of the charge transporting polymer is the amount of the polymerizable functional group used to synthesize the charge transporting polymer (for example, the amount of the monomer having a polymerizable functional group), each structure
  • the average value can be obtained by using the monomer charge corresponding to the unit and the weight average molecular weight of the charge transporting polymer.
  • the number of polymerizable functional groups is the ratio between the integral value of the signal derived from the polymerizable functional group and the integral value of the entire spectrum in the 1 H NMR (nuclear magnetic resonance) spectrum of the charge transporting polymer, the charge transporting polymer
  • the weight average molecular weight can be used to calculate the average value. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
  • the charge transporting polymer having a structure branched in three or more directions includes at least a trivalent or higher structural unit B1 having a 9-phenylcarbazole structure as the trivalent or higher structural unit B, and the structural unit L and / or T includes structural units L1 and / or T1 having a triphenylamine structure having at least one alkoxy group.
  • the charge transporting polymer includes at least the structural unit L1 and / or T1 as the structural unit B1 and the structural unit L and / or T.
  • the charge transporting polymer includes the structural unit B1, the structural unit L, and the structural unit T, and the structural unit T has at least the structural unit T1 and a polymerizable functional group. And the structural unit T.
  • the heat resistance and the emission lifetime of the organic EL element are improved. It becomes possible to do.
  • the proportion of the structural unit B1 contained in the structural unit B is preferably 50 mol% or more, more preferably 60 mol, based on the total amount of the structural unit B. % Or more, more preferably 70 mol% or more.
  • the structural unit L1 is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% or more based on the total amount of the structural unit L.
  • the structural unit T1 is preferably 30 mol% or more, more preferably 40 mol% or more, and still more preferably 50 based on the total amount of the structural unit T. More than mol%.
  • the proportion of the structural units L1 and / or T1 is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total constituent units of the polymer. 30 mol% or more is more preferable.
  • the above ratio means the total amount of L1 and T1.
  • the proportion of the structural unit B contained in the charge transporting polymer is preferably 1 mol% or more, more preferably 5 mol% or more, more preferably 10 mol%, based on the total structural unit, from the viewpoint of improving the durability of the organic electronics element. The above is more preferable.
  • the proportion of the structural unit B is preferably 50 mol% or less, preferably 40 mol% or less, from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge transporting polymer or obtaining sufficient charge transportability. Is more preferable, and 30 mol% or less is still more preferable.
  • the said ratio means the total amount of the structural unit B including the structural unit B1.
  • the proportion of the structural unit L contained in the charge transporting polymer is preferably 10 mol% or more, more preferably 20 mol% or more, and more preferably 30 mol% or more based on the total structural unit from the viewpoint of obtaining sufficient charge transportability. Is more preferable. Further, the ratio of the structural unit L is preferably 95 mol% or less, more preferably 90 mol% or less, and still more preferably 85 mol% or less in consideration of the structural unit T and the structural unit B introduced as necessary. When the charge transporting polymer contains the structural unit L1, the above ratio means the total amount including the structural unit L1.
  • the proportion of the structural unit T contained in the charge transporting polymer is based on the total structural unit from the viewpoint of improving the characteristics of the organic electronics element or suppressing the increase in the viscosity and satisfactorily synthesizing the charge transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is still more preferable.
  • the proportion of the structural unit T is preferably 60 mol% or less, more preferably 55 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining sufficient charge transport properties.
  • the above ratio means the total amount including the structural unit T1.
  • the proportion of the polymerizable functional group is preferably 0.1 mol% or more based on the total structural unit from the viewpoint of efficiently curing the charge transporting polymer, 1 mol% or more is more preferable, and 3 mol% or more is still more preferable.
  • the proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining good charge transportability.
  • the “ratio of polymerizable functional groups” here refers to the ratio of structural units having a polymerizable functional group.
  • the proportion of the structural unit can be determined by using the charged amount of the monomer corresponding to each structural unit used for synthesizing the charge transporting polymer. Moreover, the ratio of the structural unit can be calculated as an average value using an integrated value of the spectrum derived from each structural unit in the 1 H NMR spectrum of the charge transporting polymer. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.
  • the number average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and still more preferably 2,000 or more, from the viewpoint of excellent charge transportability.
  • the number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 from the viewpoint of maintaining good solubility in a solvent and facilitating the preparation of an ink composition. The following is more preferable.
  • the weight average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like.
  • the weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, and still more preferably 10,000 or more, from the viewpoint of excellent charge transportability.
  • the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of an ink composition. The following is more preferable.
  • the number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • the charge transporting polymer can be produced by various synthetic methods and is not particularly limited.
  • known coupling reactions such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Stille coupling, Buchwald-Hartwig coupling and the like can be used.
  • Suzuki coupling causes a cross coupling reaction using a Pd catalyst between an aromatic boronic acid derivative and an aromatic halide.
  • Suzuki coupling a charge transporting polymer can be easily produced by bonding desired aromatic rings together.
  • a Pd (0) compound, a Pd (II) compound, a Ni compound, or the like is used as a catalyst.
  • a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate and the like with a phosphine ligand can also be used.
  • the description of International Publication No. WO2010 / 140553 can be referred to.
  • the organic electronic material may further contain a dopant.
  • the dopant is not particularly limited as long as it is a compound that can be added to the organic electronic material to develop a doping effect and improve the charge transport property.
  • Doping includes p-type doping and n-type doping.
  • p-type doping a substance serving as an electron acceptor is used as a dopant
  • n-type doping a substance serving as an electron donor is used as a dopant. It is preferable to perform p-type doping for improving hole transportability and n-type doping for improving electron transportability.
  • the dopant used in the organic electronic material may be a dopant that exhibits any effect of p-type doping or n-type doping. Further, one kind of dopant may be added alone, or plural kinds of dopants may be mixed and added.
  • the dopant used for p-type doping is an electron-accepting compound, and examples thereof include Lewis acids, proton acids, transition metal compounds, ionic compounds, halogen compounds, and ⁇ -conjugated compounds.
  • Lewis acid FeCl 3 , PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 3 , BBr 3 and the like;
  • protonic acid HF, HCl, HBr, HNO 5 , H 2 SO 4 , HClO 4 and other inorganic acids, benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, polyvinylsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, 1-butanesulfonic acid, vinylphenylsulfonic acid Organic acids such as camphorsulfonic acid; transition metal compounds include FeCl 3
  • the electron-accepting compounds described in JP 2000-36390 A, JP 2005-75948 A, JP 2003-213002 A, and the like can also be used.
  • the dopant used for n-type doping is an electron donating compound, for example, alkali metals such as Li and Cs; alkaline earth metals such as Mg and Ca; alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • alkali metals such as Li and Cs
  • alkaline earth metals such as Mg and Ca
  • alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.
  • the charge transporting polymer has a polymerizable functional group
  • a compound that can act as a polymerization initiator for the polymerizable functional group as a dopant in order to facilitate the change in solubility of the organic layer.
  • the organic electronic material may further contain a charge transporting low molecular weight compound, another polymer, and the like.
  • the content of the charge transporting polymer is preferably 50% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more based on the total weight of the organic electronic material from the viewpoint of obtaining good charge transporting properties. preferable. It may be 100% by mass.
  • the content is preferably 0.01% by mass or more, and 0.1% by mass or more with respect to the total mass of the organic electronic material from the viewpoint of improving the charge transport property of the organic electronic material. More preferred is 0.5% by mass or more. Moreover, from a viewpoint of maintaining favorable film formability, 50 mass% or less is preferable with respect to the total mass of the organic electronic material, 30 mass% or less is more preferable, and 20 mass% or less is still more preferable.
  • the organic electronic material may further contain a solvent capable of dissolving or dispersing the material to constitute an ink composition.
  • the ink composition contains at least the organic electronic material of the above embodiment and a solvent capable of dissolving or dispersing the material.
  • the ink composition may contain various known additives as required, as long as the characteristics of the organic electronic material are not deteriorated. By using such an ink composition, the organic layer can be easily formed by a simple method such as a coating method.
  • solvent water, an organic solvent, or a mixed solvent thereof can be used.
  • Organic solvents include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetralin and diphenylmethane; ethylene glycol Aliphatic ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, 2,4
  • Amide solvents dimethyl sulfoxide, tetrahydrofuran, acetone, chloroform, methylene chloride and the like can be mentioned.
  • the ink composition preferably contains a polymerization initiator.
  • a polymerization initiator known radical polymerization initiators, cationic polymerization initiators, anionic polymerization initiators and the like can be used. From the viewpoint of easily preparing the ink composition, it is preferable to use a substance having both a function as a dopant and a function as a polymerization initiator. As such a substance, the said ionic compound is mentioned, for example.
  • the ink composition may further contain an additive as an optional component.
  • additives include polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, antifoaming agents, Examples thereof include a dispersant and a surfactant.
  • the content of the solvent in the ink composition can be determined in consideration of application to various coating methods.
  • the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. More preferred is an amount of
  • the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. .
  • the organic layer which is embodiment of this invention is a layer formed using the organic electronics material or ink composition of the said embodiment.
  • the organic layer can be favorably formed by a coating method. Therefore, an example of the method for producing an organic layer that is an embodiment of the present invention includes a step of applying an ink composition.
  • the coating method include spin coating method; casting method; dipping method; letterpress printing, intaglio printing, offset printing, planographic printing, letterpress inversion offset printing, screen printing, gravure printing and other plate printing methods; ink jet method, etc.
  • a known method such as a plateless printing method may be used.
  • the manufacturing method includes any steps such as drying the organic layer (that is, the coating layer) obtained after coating using a hot plate or an oven, removing the solvent, and curing the coating layer. Further, it may be included.
  • the solubility of the organic layer can be changed by proceeding the polymerization reaction of the charge transporting polymer by light irradiation, heat treatment or the like.
  • the solubility of the organic layer can be changed by proceeding the polymerization reaction of the charge transporting polymer by light irradiation, heat treatment or the like.
  • By laminating organic layers with different solubility it is possible to easily increase the number of organic electronics elements.
  • the description of International Publication No. WO2010 / 140553 can be referred to.
  • the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more.
  • the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less, from the viewpoint of reducing electrical resistance.
  • the organic electronics element which is embodiment of this invention has the organic layer of the said embodiment at least.
  • Examples of the organic electronics element include an organic EL element, an organic photoelectric conversion element, and an organic transistor.
  • the organic electronic element preferably has a structure in which an organic layer is disposed between at least a pair of electrodes.
  • the organic EL element which is embodiment of this invention has an organic layer of the said embodiment at least.
  • the organic EL element usually includes a light emitting layer, an anode, a cathode, and a substrate, and other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer are provided as necessary. I have.
  • Each layer may be formed by a vapor deposition method or a coating method.
  • the organic EL element preferably has an organic layer as a light emitting layer or other functional layer, more preferably as a functional layer, and still more preferably as at least one of a hole injection layer and a hole transport layer.
  • the organic layer can be formed satisfactorily according to a coating method using the ink composition described above.
  • FIG.1 and FIG.2 is a cross-sectional schematic diagram which shows one Embodiment of an organic EL element, respectively.
  • the organic EL element shown in FIG. 1 is an element having a multilayer structure, and has an anode 1, a hole injection layer 2, a light emitting layer 3, an electron injection layer 4, and a cathode 5 in this order on a substrate 6.
  • the hole injection layer 2 is composed of an organic layer that is one embodiment of the present invention.
  • the organic EL element shown in FIG. 2 is an element having a multilayer structure.
  • the anode 1, the hole injection layer 2, the hole transport layer 7, the light emitting layer 3, the electron transport layer 8, and the electron injection layer 4 are provided.
  • the cathode 5 in this order.
  • at least one of the hole injection layer 2 and the hole transport layer 7 is composed of an organic layer that is an embodiment of the present invention.
  • each layer will be described.
  • Light emitting layer As a material used for the light emitting layer, a light emitting material such as a low molecular compound, a polymer, or a dendrimer can be used. A polymer is preferable because it has high solubility in a solvent and is suitable for a coating method. Examples of the light emitting material include a fluorescent material, a phosphorescent material, a thermally activated delayed fluorescent material (TADF), and the like.
  • TADF thermally activated delayed fluorescent material
  • Fluorescent materials such as perylene, coumarin, rubrene, quinacdrine, stilbene, dyes for dye lasers, aluminum complexes, and derivatives thereof; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinylcarbazole, fluorene-benzothiadiazole copolymer , Fluorene-triphenylamine copolymers, polymers thereof such as derivatives thereof, and mixtures thereof.
  • a metal complex containing a metal such as Ir or Pt can be used as the phosphorescent material.
  • Ir complex include FIr (pic) that emits blue light (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate), and Ir (ppy) 3 that emits green light.
  • the light emitting layer contains a phosphorescent material
  • a host material in addition to the phosphorescent material.
  • a host material a low molecular compound, a polymer, or a dendrimer can be used.
  • the low molecular weight compound include CBP (4,4′-bis (9H-carbazol-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), CDBP (4,4′- Bis (carbazol-9-yl) -2,2′-dimethylbiphenyl), derivatives thereof, and the like.
  • the polymer include the organic electronic materials, polyvinyl carbazole, polyphenylene, polyfluorene, derivatives thereof, and the like of the above embodiment. It is done.
  • thermally activated delayed fluorescent materials include Adv.AMater., 21, 4802-4906 (2009); Appl. Phys. Lett., 98, 083302 (2011); Chem. Comm., 48, 9580 (2012) ; Appl. Phys. Lett., 101, 093306 (2012); J. Am. Chem. Soc., 134, 14706 (2012); Chem. Comm., 48, 11392 (2012); Nature, 492, 234 (2012) ); Adv. Mater., 25, 3319 (2013); J. Phys. Chem. A, 117, 5607 (2013); Phys. Chem. Chem. Phys., 15, 15850 (2013); Chem. Comm., 49, 10385) (2013); Chem. Lett., 43, 319 (2014) and the like.
  • hole transport layer As a material constituting the hole transport layer and the hole injection layer, an organic electronic material which is an embodiment of the present invention can be given. In one embodiment, at least one of the hole injection layer and the hole transport layer is preferably composed of an organic electronic material that is an embodiment of the present invention. As a material constituting the hole transport layer and the hole injection layer, a material containing a polymer different from the charge transport polymer contained in the organic electronics material according to the embodiment of the present invention can be used.
  • an organic electronic material containing a charge transporting polymer including a trivalent or higher valent structural unit having a 9-phenylcarbazole structure and a structural unit having a triphenylamine structure having no alkoxy group as a substituent for the phenyl group. It can also be used. In addition, a known material can also be used.
  • Known materials that can be used for the hole injection layer and the hole transport layer include, for example, (aromatic amine compounds (for example, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl) -Aromatic diamines such as benzidine ( ⁇ -NPD)), phthalocyanine compounds, thiophene compounds (eg, thiophene conductive polymers (eg, poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfone) Acid salt) (PEDOT: PSS) and the like).
  • aromatic amine compounds for example, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl) -Aromatic diamines such as benzidine ( ⁇ -NPD)
  • phthalocyanine compounds eg, thiophene conductive polymers (eg, poly (3,4-ethylenedioxythiophene): poly (4-s
  • the hole injection layer is formed using a known material or the other organic electronic material, and the hole transport layer is formed. It is preferable to comprise from the organic layer formed using the organic electronics material which is embodiment of this invention.
  • Electrode transport layer examples include phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, condensed ring tetracarboxylic anhydrides such as naphthalene and perylene, and carbodiimides. Fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, quinoxaline derivatives, aluminum complexes, and the like. Moreover, the organic electronic material of the said embodiment can also be used.
  • cathode As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.
  • anode for example, a metal (for example, Au) or another material having conductivity is used.
  • examples of other materials include oxides (for example, ITO: indium oxide / tin oxide) and conductive polymers (for example, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).
  • substrate glass, plastic or the like can be used.
  • the substrate is preferably transparent and preferably has flexibility. Quartz glass, light transmissive resin film, and the like are preferably used.
  • the resin film examples include films made of polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate, and the like. Can be mentioned.
  • an inorganic substance such as silicon oxide or silicon nitride may be coated on the resin film in order to suppress permeation of water vapor, oxygen and the like.
  • the emission color of the organic EL element is not particularly limited.
  • the white organic EL element is preferable because it can be used for various lighting devices such as home lighting, interior lighting, a clock, or a liquid crystal backlight.
  • a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used.
  • the combination of a plurality of emission colors is not particularly limited, but there are a combination containing three emission maximum wavelengths of blue, green and red, and a combination containing two emission maximum wavelengths such as blue and yellow, yellow green and orange. Can be mentioned.
  • the emission color can be controlled by adjusting the type and amount of the light emitting material.
  • the display element which is embodiment of this invention is equipped with the organic EL element of the said embodiment.
  • a color display element can be obtained by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB).
  • Image forming methods include a simple matrix type in which individual organic EL elements arranged in a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.
  • the lighting device according to the embodiment of the present invention includes the organic EL element according to the embodiment of the present invention.
  • the display apparatus which is embodiment of this invention is equipped with the illuminating device and the liquid crystal element as a display means.
  • the display device may be a display device using a known liquid crystal element as a display unit, that is, a liquid crystal display device, using the illumination device according to the embodiment of the present invention as a backlight.
  • the metal adsorbent and insoluble matter were removed by filtration, and the filtrate was concentrated with a rotary evaporator.
  • the concentrate was dissolved in toluene and then reprecipitated from methanol-acetone (8: 3).
  • the resulting precipitate was collected by suction filtration and washed with methanol-acetone (8: 3).
  • the obtained precipitate was vacuum-dried to obtain a charge transporting polymer 1.
  • the number average molecular weight of the obtained charge transporting polymer 1 was 33,700, and the weight average molecular weight was 92,000.
  • the number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent.
  • the measurement conditions are as follows. Liquid feed pump: L-6050 Hitachi High-Technologies UV-Vis detector: L-3000 Hitachi High-Technologies columns: Gelpack (registered trademark) GL-A160S / GL-A150S Hitachi Chemical Co., Ltd. Eluent: THF (for HPLC, without stabilizer) Wako Pure Chemical Industries, Ltd. Flow rate: 1 mL / min Column temperature: Room temperature molecular weight standard: Standard polystyrene
  • the monomers used in the preparation of charge transporting polymers 1-9 are summarized in the following table. Note: The subscript (1) indicates that it corresponds to a trivalent or higher structural unit having a 9-phenylcarbazole structure. The subscript (2) indicates that at least one phenyl group corresponds to a structural unit having a triphenylamine structure having an alkoxy group.
  • Example 1 Under a nitrogen atmosphere, charge transporting polymer 1 (50.0 mg), the following dopant 1 (2.5 mg), and toluene (1.36 mL) were mixed to prepare an ink composition.
  • An ink composition was spin-coated on a glass substrate patterned with ITO to a width of 1.6 mm at a rotation speed of 3,000 min ⁇ 1 , and then the coating film was cured by heating at 180 ° C. for 10 minutes on a hot plate.
  • a hole injection layer (150 nm) was formed.
  • the glass substrate having the hole injection layer was transferred into a vacuum vapor deposition machine, and Al (150 nm) was deposited on the hole injection layer by a vapor deposition method. Then, the sealing process was performed and the hole only device was produced.
  • Example 2 A hole-only device was fabricated in the same manner as in Example 1, except that the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes in the hole injection layer forming step in the hole-only device of Example 1.
  • Example 3 A hole-only device was produced in the same manner as in Example 1 except that the charge transporting polymer 1 was changed to the charge transporting polymer 2 in the hole injection layer forming step in the hole-only device of Example 1.
  • Example 4 A hole-only device was fabricated in the same manner as in Example 3 except that in the hole injection layer forming step of the hole-only device of Example 3, the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes.
  • Example 1 A hole-only device was produced in the same manner as in Example 1 except that the charge transporting polymer 1 was changed to the charge transporting polymer 9 in the hole injection layer forming step in the hole-only device of Example 1.
  • Comparative Example 2 A hole-only device was fabricated in the same manner as in Comparative Example 1 except that the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes in the hole injection layer forming step in the hole-only device of Comparative Example 1.
  • Example 3 A hole-only device was produced in the same manner as in Example 1 except that the charge transporting polymer 1 was changed to the charge transporting polymer 8 in the hole injection layer forming step in the hole-only device of Example 1.
  • Comparative Example 4 A hole-only device was fabricated in the same manner as in Comparative Example 3, except that the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes in the hole injection layer forming step in the hole-only device of Comparative Example 3.
  • Table 2 summarizes the materials and heating conditions used for forming the hole injection layers of the hole-only devices in Examples 1 to 4 and Comparative Examples 1 to 4 described above.
  • FIG. 3 shows a graph of voltage-current density curves when a voltage is applied to each hole-only device obtained in Examples 1 to 4 and Comparative Examples 1 to 4.
  • the heating conditions during the formation of the hole injection layer are more severe (that is, higher temperature and longer heating time) than Comparative Examples 1 and 3, and In 4, the drive voltage is significantly increased.
  • the drive voltage means a voltage necessary for obtaining a constant current density.
  • the increase in drive voltage in Examples 2 and 4 in which the heating conditions during the formation of the hole injection layer are more severe than those in Examples 1 and 3 are slight.
  • the glass substrate was transferred into a vacuum evaporator, and ⁇ -NPD (40 nm), CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi (30 nm), Liq were formed on the hole injection layer. (2.0 nm) and Al (150 nm) were formed in this order by vapor deposition. Then, the sealing process was performed and the organic EL element was produced.
  • Example 6 An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 2 in the step of forming the hole injection layer in the organic EL device of Example 5.
  • Example 7 An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 3 in the step of forming the hole injection layer in the organic EL device of Example 5.
  • Example 5 An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 7 in the step of forming the hole injection layer in the organic EL device of Example 5.
  • Table 3 summarizes the materials used for forming the hole injection layer of the organic EL elements in Examples 5 to 7 and Comparative Examples 5 to 7.
  • charge transporting polymer 4 (20.0 mg), the following dopant 2 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition.
  • the ink composition was spin-coated at a rotation speed of 3,000 min ⁇ 1 , and then the coating film was cured by heating on a hot plate at 200 ° C. for 10 minutes to obtain a hole transport layer (40 nm). Formed.
  • the hole transport layer could be formed without dissolving the hole injection layer.
  • the glass substrate is transferred into a vacuum evaporator and CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi (30 nm), Liq (2.0 nm), and Al (150 nm) was deposited in this order by a vapor deposition method. Then, the sealing process was performed and the organic EL element was produced.
  • Example 9 An organic EL device was produced in the same manner as in Example 8 except that the charge transporting polymer 4 was changed to the charge transporting polymer 5 in the step of forming the hole transporting layer in the organic EL device of Example 8.
  • Example 10 An organic EL device was produced in the same manner as in Example 8 except that the charge transporting polymer 4 was changed to the charge transporting polymer 6 in the step of forming the hole transport layer in the organic EL device of Example 8.
  • Example 11 An organic EL device was produced in the same manner as in Example 10 except that the charge transporting polymer 7 was changed to the charge transporting polymer 3 in the step of forming the hole injection layer in the organic EL device of Example 10.
  • Example 8 An organic EL device was produced in the same manner as in Example 8 except that the charge transporting polymer 4 was changed to the charge transporting polymer 8 in the step of forming the hole transport layer in the organic EL device of Example 8.
  • Table 5 summarizes the materials used for forming the hole injection layer and the hole transport layer of the organic EL elements in Examples 8 to 11 and Comparative Examples 8 and 9.
  • Example 12 Production and Evaluation of White Organic EL Element (Lighting Device) (Example 12) Under a nitrogen atmosphere, the charge transporting polymer 3 (10.0 mg), the dopant 1 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition. An ink composition was spin-coated on a glass substrate patterned with a width of 1.6 mm at a rotation speed of 3,000 min ⁇ 1 , and then the coating film was cured by heating at 220 ° C. for 10 minutes on a hot plate. A hole injection layer (30 nm) was formed.
  • the charge transporting polymer 6 (20.0 mg), the dopant 2 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition.
  • the ink composition was spin coated on the hole injection layer at a rotation speed of 3,000 min ⁇ 1 and then cured by heating on a hot plate at 230 ° C. for 30 minutes to form a hole transport layer (40 nm). .
  • the hole transport layer could be formed without dissolving the hole injection layer.
  • CDBP 15 mg
  • FIr (pic) 0. mg
  • Ir (ppy) 3 0. mg
  • btp 2 Ir (acac) 1.2 mg
  • dichlorobenzene 0. 5 mL
  • the ink composition was spin-coated at a rotation speed of 3,000 min ⁇ 1 , heated at 80 ° C. for 5 minutes and dried to form a light emitting layer (40 nm).
  • the light emitting layer could be formed without dissolving the hole transport layer.
  • the glass substrate was transferred into a vacuum vapor deposition machine, and BAlq (10 nm), TPBi (30 nm), Liq (2.0 nm), and Al (150 nm) were formed in this order on the light emitting layer by vapor deposition. Then, the sealing process was performed and the white organic EL element was produced.
  • the white organic EL element could be used as a lighting device.
  • Example 12 By applying a voltage to the white organic EL device obtained in Example 12 and Comparative Example 10, measuring the emission lifetime (luminance half-life) in the voltage and the initial luminance 1,000 cd / m 2 in luminance 1,000 cd / m 2 did. Assuming that the voltage of Example 12 was 1.0, the voltage of Comparative Example 10 was 1.09. Further, assuming that the light emission life of Example 12 was 1.0, the light emission life of Comparative Example 10 was 0.33. Thus, the white organic EL element of Example 12 had excellent driving voltage and light emission lifetime.
  • the organic layer can be easily formed by a wet process.
  • the driving voltage can be stably maintained, and an organic EL element excellent in various element characteristics such as life characteristics can be easily obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an organic electronics material for an organic electroluminescence element having excellent heat resistance and service life characteristics. An organic electronics material containing a charge-transporting polymer that includes: a structural unit that is trivalent or greater and has a 9-phenylcarbazole structure; and a structural unit having a triphenylamine structure in which at least one phenyl group has an alkoxy group.

Description

有機エレクトロニクス材料Organic electronics materials

 本発明の実施形態は、有機エレクトロニクス材料、及び該材料を用いた有機薄膜に関する。また、本発明の他の実施形態は、上記有機薄膜を含む、有機エレクトロニクス素子、及び有機エレクトロルミネセンス素子、並びにこれらを用いた表示素子、照明装置、及び表示装置に関する。 Embodiments of the present invention relate to an organic electronic material and an organic thin film using the material. Moreover, other embodiment of this invention is related with the organic electronics element and organic electroluminescent element containing the said organic thin film, and the display element, illuminating device, and display apparatus using these.

 有機エレクトロニクス素子は、有機物を用いて電気的な動作を行う素子であり、省エネルギー、低価格、及び柔軟性といった特長を発揮できると期待されている。そのため、従来のシリコンを主体とした無機半導体に替わる技術として注目されている。
 有機エレクトロニクス素子の一例として、有機エレクトロルミネセンス素子(以下、「有機EL素子」とも称す)、有機光電変換素子、及び有機トランジスタが挙げられる。
 有機エレクトロニクス素子の中でも、有機EL素子は、例えば、白熱ランプ又はガス充填ランプの代替えとなる大面積ソリッドステート光源用途として注目されている。また、フラットパネルディスプレイ(FPD)分野における液晶ディスプレイ(LCD)に置き換わる最有力の自発光ディスプレイとしても注目されており、製品化が進んでいる。
An organic electronics element is an element that performs an electrical operation using an organic substance, and is expected to exhibit features such as energy saving, low cost, and flexibility. Therefore, it attracts attention as a technology that replaces the conventional inorganic semiconductor mainly composed of silicon.
Examples of the organic electronics element include an organic electroluminescence element (hereinafter also referred to as “organic EL element”), an organic photoelectric conversion element, and an organic transistor.
Among organic electronics elements, organic EL elements are attracting attention as applications for large-area solid-state light sources that can replace, for example, incandescent lamps or gas-filled lamps. It is also attracting attention as the most powerful self-luminous display that can replace the liquid crystal display (LCD) in the flat panel display (FPD) field, and its commercialization is progressing.

 有機EL素子は、使用される有機材料から、低分子型有機EL素子と、高分子型有機EL素子とに大別される。高分子型有機EL素子では、有機材料として高分子化合物が用いられ、低分子型有機EL素子では、低分子化合物が用いられる。一方、有機EL素子の製造方法は、主に真空系で成膜が行われる乾式プロセスと、凸版印刷、凹版印刷等の有版印刷、インクジェット等の無版印刷などにより成膜が行われる湿式プロセスとに大別される。湿式プロセスは、簡易成膜が可能であるため、今後の大画面有機ELディスプレイの実現には不可欠な方法として期待されている。 Organic EL elements are roughly classified into low molecular organic EL elements and polymer organic EL elements, depending on the organic materials used. In the polymer organic EL element, a polymer compound is used as an organic material, and in the low molecular organic EL element, a low molecular compound is used. On the other hand, the manufacturing method of the organic EL element includes a dry process in which film formation is mainly performed in a vacuum system, and a wet process in which film formation is performed by plate printing such as relief printing and intaglio printing, and plateless printing such as inkjet. It is roughly divided into The wet process is expected to be an indispensable method for realizing a large-screen organic EL display in the future because simple film formation is possible.

 このため、近年、湿式プロセスに適した材料の開発が進められている。例えば、重合性官能基を有する高分子化合物を使用して、多層構造の有機EL素子を作製する検討が行われている(例えば、特許文献1及び非特許文献1参照)。 Therefore, in recent years, materials suitable for wet processes have been developed. For example, studies have been conducted to produce a multilayer organic EL device using a polymer compound having a polymerizable functional group (see, for example, Patent Document 1 and Non-Patent Document 1).

特開2006-279007号公報JP 2006-279007 A

廣瀬健吾、熊木大介、小池信明、栗山晃、池畑誠一郎、時任静士、第53回応用物理学関係連合講演会、26p-ZK-4(2006)Kengo Hirose, Daisuke Kumaki, Nobuaki Koike, Atsushi Kuriyama, Seiichiro Ikehata, Shizushi Tokito, 53rd Joint Physics Conference on Applied Physics, 26p-ZK-4 (2006)

 高分子化合物を使用して湿式プロセスに従い作製した有機EL素子は、低コスト化及び大面積化が容易であるという特長を有している。しかし、従来の高分子化合物を使用して作製した有機EL素子は、駆動電圧、発光効率、及び寿命特性などの有機EL素子の各種特性において、さらなる改善が望まれている。有機EL素子の各種特性を向上させるために、高分子化合物は、優れた電荷輸送性を有し、かつ優れた熱的安定性を有することが望ましい。 An organic EL device manufactured using a polymer compound according to a wet process has a feature that it is easy to reduce the cost and increase the area. However, organic EL devices manufactured using conventional polymer compounds are desired to be further improved in various characteristics of the organic EL elements such as driving voltage, light emission efficiency, and lifetime characteristics. In order to improve various characteristics of the organic EL device, it is desirable that the polymer compound has an excellent charge transport property and an excellent thermal stability.

 しかし、有機EL素子に使用される従来の高分子化合物は、熱的安定性(耐熱性)が十分でない場合が多い。そのため、従来の高分子化合物からなる有機薄膜は、高温加工プロセス時及び有機EL素子駆動時の熱によって、劣化しやすい。このような耐熱性の問題に付随して、特に、寿命特性の観点では未だ満足できる有機EL素子は得られておらず、さらなる改善が望まれている。 However, conventional polymer compounds used in organic EL devices often have insufficient thermal stability (heat resistance). Therefore, a conventional organic thin film made of a polymer compound is likely to be deteriorated by heat during a high-temperature processing process and driving an organic EL element. Accompanying such a heat resistance problem, an organic EL element that is not yet satisfactory in terms of lifetime characteristics has not been obtained, and further improvement is desired.

 本発明の実施形態は、上記に鑑み、優れた電荷輸送性を有し、かつ優れた耐熱性を有する高分子化合物を含む有機エレクトロニクス材料、及び該材料を用いた有機薄膜を提供することを目的とする。また、本発明の他の実施形態は、上記有機薄膜を含む、耐熱性及び寿命特性に優れる有機エレクトロニクス素子、及び有機EL素子、並びに、これらを用いた表示素子、照明装置、及び表示装置を提供することを目的とする。 In view of the above, an embodiment of the present invention aims to provide an organic electronic material including a polymer compound having excellent charge transportability and excellent heat resistance, and an organic thin film using the material. And In addition, another embodiment of the present invention provides an organic electronics element and an organic EL element that are excellent in heat resistance and life characteristics, including the organic thin film, and a display element, an illuminating device, and a display device using the same. The purpose is to do.

 本発明者らは、電荷輸送性を有する高分子化合物について鋭意検討した結果、少なくとも、9-フェニルカルバゾール構造と、少なくとも1つのフェニル基がアルコキシ基を有するトリフェニルアミン構造とを含み、かつ上記9-フェニルカルバゾール構造から3方向以上に分岐した構造を有する、特定の電荷輸送性ポリマーが優れた耐熱性を有し、有機エレクトロニクス材料として好適に使用できることを見出した。さらに、上記特定の電荷輸送性ポリマーを含む有機エレクトロニクス材料は、有機EL素子の耐熱性及び寿命特性の向上に有効であることを見出し、本発明を完成させるに至った。すなわち、本発明の実施形態は、以下に関する。 As a result of intensive studies on a polymer compound having a charge transporting property, the present inventors have at least a 9-phenylcarbazole structure and a triphenylamine structure in which at least one phenyl group has an alkoxy group, and the above 9 It has been found that a specific charge transporting polymer having a structure branched from a phenylcarbazole structure in three or more directions has excellent heat resistance and can be suitably used as an organic electronic material. Furthermore, the present inventors have found that an organic electronic material containing the specific charge transporting polymer is effective in improving the heat resistance and life characteristics of the organic EL element, and has completed the present invention. That is, the embodiment of the present invention relates to the following.

 本発明の実施形態は、有機エレクトロニクス材料に関する。上記有機エレクトロニクス材料は、9-フェニルカルバゾール構造を有する3価以上の構造単位と、少なくとも1つのフェニル基がアルコキシ基を有するトリフェニルアミン構造を有する構造単位とを含む電荷輸送性ポリマーを含有することを特徴とする。
 上記有機エレクトロニクス材料において、上記電荷輸送性ポリマーは、重合性官能基を有することが好ましい。
 また、上記有機エレクトロニクス材料は、さらにドーパントを含有することが好ましい。上記ドーパントは、オニウム塩を含むことが好ましい。
Embodiments of the present invention relate to organic electronic materials. The organic electronic material contains a charge transporting polymer including a trivalent or higher valent structural unit having a 9-phenylcarbazole structure and a structural unit having a triphenylamine structure in which at least one phenyl group has an alkoxy group. It is characterized by.
In the organic electronic material, the charge transporting polymer preferably has a polymerizable functional group.
The organic electronic material preferably further contains a dopant. The dopant preferably contains an onium salt.

 本発明の他の実施形態は、上記実施形態の有機エレクトロニクス材料を用いて形成された有機薄膜に関する。 Other embodiment of this invention is related with the organic thin film formed using the organic electronics material of the said embodiment.

 本発明の他の実施形態は、上記実施形態の有機薄膜の少なくとも1つを含む、有機エレクトロニクス素子に関する。 Another embodiment of the present invention relates to an organic electronic device including at least one of the organic thin films of the above embodiment.

 本発明の他の実施形態は、上記実施形態の有機薄膜の少なくとも1つを含む、有機エレクトロルミネセンス素子に関する。上記実施形態の有機薄膜は正孔注入層及び正孔輸送層の少なくとも一方であることが好ましい。
 上記有機エレクトロルミネセンス素子は、さらにフレキシブル基板を有するか、又はさらに樹脂フィルム基板を有することが好ましい。
Other embodiment of this invention is related with the organic electroluminescent element containing at least 1 of the organic thin film of the said embodiment. The organic thin film of the above embodiment is preferably at least one of a hole injection layer and a hole transport layer.
The organic electroluminescence element preferably further includes a flexible substrate or further includes a resin film substrate.

 本発明の他の実施形態は、上記実施形態の有機エレクトロルミネセンス素子を備えた、表示素子に関する。 Other embodiment of this invention is related with the display element provided with the organic electroluminescent element of the said embodiment.

 本発明の他の実施形態は、上記実施形態の有機エレクトロルミネセンス素子を備えた、照明装置に関する。 Other embodiment of this invention is related with the illuminating device provided with the organic electroluminescent element of the said embodiment.

 本発明の他の実施形態は、上記実施形態の照明装置と、表示手段として液晶素子とを備えた、表示装置に関する。 Another embodiment of the present invention relates to a display device including the illumination device of the above embodiment and a liquid crystal element as a display means.

 本発明の実施形態によれば、優れた電荷輸送性及び耐熱性を有する有機エレクトロニクス材料、及び該材料を用いた有機薄膜を提供することができる。また、本発明の他の実施形態によれば、有機エレクトロニクス材料を用いて形成された有機薄膜を含む、耐熱性及び寿命特性に優れる有機エレクトロニクス素子、及び有機EL素子、並びに、それを用いた表示素子、照明装置、及び表示装置を提供することができる。 According to the embodiment of the present invention, it is possible to provide an organic electronic material having excellent charge transportability and heat resistance, and an organic thin film using the material. Moreover, according to other embodiment of this invention, the organic electronics element excellent in heat resistance and lifetime characteristics including the organic thin film formed using the organic electronics material, an organic EL element, and a display using the same An element, a lighting device, and a display device can be provided.

図1は、本発明の一実施形態である有機EL素子の一例を示す模式的模式図である。FIG. 1 is a schematic diagram showing an example of an organic EL element according to an embodiment of the present invention. 図2は、本発明の一実施形態である有機EL素子の一例を示す模式的模式図である。FIG. 2 is a schematic diagram illustrating an example of an organic EL element according to an embodiment of the present invention. 図3は、実施例1~4、及び比較例1~4で得た各ホールオンリーデバイスに電圧を印加した時の、電圧-電流密度曲線のグラフである。FIG. 3 is a graph of voltage-current density curves when a voltage is applied to each hole-only device obtained in Examples 1 to 4 and Comparative Examples 1 to 4.

 以下、本発明の実施形態について詳細に説明する。
<有機エレクトロニクス材料>
 本発明の実施形態である有機エレクトロニクス材料は、電荷を輸送する能力を有する、1種以上の電荷輸送性ポリマーを含有する。有機エレクトロニクス材料は、3方向以上に分岐した構造を有する電荷輸送性ポリマーを少なくとも含み、該ポリマーは、9-フェニルカルバゾール構造を有する3価以上の構造単位(1)と、窒素原子に結合する少なくとも1つのフェニル基が少なくとも1つのアルコキシ基を有する、トリフェニルアミン構造を有する構造単位(2)とを含むことを特徴とする。
 上記電荷輸送性ポリマーは、優れた電荷輸送能力を有し、かつ耐熱性に優れているため、それらを使用することによって、発光寿命を含む各種素子特性を容易に向上させることができる。有機エレクトロニクス材料は、上記特定の電荷輸送性ポリマーの2種以上を含有しても、さらに他の電荷輸送性ポリマーを含んでもよい。
Hereinafter, embodiments of the present invention will be described in detail.
<Organic electronics materials>
The organic electronic material that is an embodiment of the present invention contains one or more charge transporting polymers having the ability to transport charges. The organic electronic material includes at least a charge transporting polymer having a structure branched in three or more directions, and the polymer includes at least a trivalent or higher valent structural unit (1) having a 9-phenylcarbazole structure and a nitrogen atom. And a structural unit (2) having a triphenylamine structure, wherein one phenyl group has at least one alkoxy group.
Since the charge transporting polymer has excellent charge transporting ability and excellent heat resistance, the use of them makes it possible to easily improve various device characteristics including the light emission lifetime. The organic electronic material may contain two or more of the specific charge transporting polymers, or may further contain other charge transporting polymers.

[電荷輸送性ポリマー]
 上記3方向以上に分岐した構造を有する電荷輸送性ポリマーは、9-フェニルカルバゾール構造を有する3価以上の構造単位(1)を含む3価以上の構造単位Bと、末端部を構成する1価の構造単位Tとを少なくとも含み、さらに電荷輸送性を有する2価の構造単位Lを含んでもよい。好ましくは、上記特定の電荷輸送性ポリマーは、少なくとも構造単位(1)を含む3価以上の構造単位Bと、2価の構造単位Lと、1価の構造単位Tとを含む。電荷輸送性ポリマーにおいて、上記トリフェニルアミン構造を有する構造単位(2)は、構造単位B、L、及びTの少なくとも1つに含まれる。上記構造単位(2)は、構造単位L及びTの少なくとも1つに含まれることが好ましい。
[Charge transporting polymer]
The charge transporting polymer having a structure branched in three or more directions includes a trivalent or higher structural unit B including a trivalent or higher structural unit (1) having a 9-phenylcarbazole structure and a monovalent constituting a terminal portion. And a divalent structural unit L having a charge transporting property may be included. Preferably, the specific charge transporting polymer includes a trivalent or higher structural unit B including at least the structural unit (1), a divalent structural unit L, and a monovalent structural unit T. In the charge transporting polymer, the structural unit (2) having the triphenylamine structure is included in at least one of the structural units B, L, and T. The structural unit (2) is preferably contained in at least one of the structural units L and T.

 電荷輸送性ポリマーは、各構造単位を、それぞれ1種のみ含んでいても、又は、それぞれ複数種含んでいてもよい。電荷輸送性ポリマーにおいて、各構造単位は、「1価」~「3価以上」の結合部位において互いに結合している。
 上記特定の電荷輸送性ポリマー以外の電荷輸送性ポリマーは、直鎖状であっても、又は、分岐構造を有していてもよい。電荷輸送性ポリマーは、好ましくは、電荷輸送性を有する2価の構造単位Lと末端部を構成する1価の構造単位Tとを少なくとも含み、分岐部を構成する3価以上の構造単位Bを更に含んでもよい。
The charge transporting polymer may contain only one type of each structural unit, or may contain a plurality of types. In the charge transporting polymer, each structural unit is bonded to each other at a binding site of “monovalent” to “trivalent or more”.
The charge transporting polymer other than the specific charge transporting polymer may be linear or have a branched structure. The charge transporting polymer preferably includes at least a divalent structural unit L having charge transporting properties and a monovalent structural unit T constituting a terminal portion, and a trivalent or higher structural unit B constituting a branched portion. Further, it may be included.

(構造)
 上記3方向以上に分岐した構造を有する電荷輸送性ポリマーに含まれる部分構造の例として、以下が挙げられる。上記電荷輸送性ポリマーは以下の部分構造を有するポリマーに限定されない。部分構造中、「B」は構造単位Bを、「L」は構造単位Lを、「T」は構造単位Tを表す。「*」は、他の構造単位との結合部位を表す。以下の部分構造中、複数のLは、互いに同一の構造単位であっても、互いに異なる構造単位であってもよい。「T」及び「B」についても、同様である。
(Construction)
Examples of the partial structure contained in the charge transporting polymer having a structure branched in three or more directions include the following. The charge transporting polymer is not limited to a polymer having the following partial structure. In the partial structure, “B” represents the structural unit B, “L” represents the structural unit L, and “T” represents the structural unit T. “*” Represents a binding site with another structural unit. In the following partial structures, a plurality of L may be the same structural unit or different structural units. The same applies to “T” and “B”.

 電荷輸送性ポリマー

Figure JPOXMLDOC01-appb-C000001
Charge transporting polymer
Figure JPOXMLDOC01-appb-C000001

 以下、各構造単位について、より具体的に説明する。
(構造単位B)
 構造単位Bは、分岐部を構成する3価以上の構造単位である。構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、好ましくは6価以下であり、より好ましくは3価又は4価である。構造単位Bは、電荷輸送性を有する単位であることが好ましい。例えば、構造単位Bは、有機エレクトロニクス素子の耐久性向上の観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、縮合多環式芳香族炭化水素構造、及び、これらの1種又は2種以上を含有する構造から選択される。
Hereinafter, each structural unit will be described more specifically.
(Structural unit B)
The structural unit B is a trivalent or higher structural unit that constitutes the branched portion. The structural unit B is preferably hexavalent or less, more preferably trivalent or tetravalent, from the viewpoint of improving the durability of the organic electronic element. The structural unit B is preferably a unit having charge transportability. For example, the structural unit B is a substituted or unsubstituted aromatic amine structure, carbazole structure, condensed polycyclic aromatic hydrocarbon structure, and one or two of these from the viewpoint of improving the durability of the organic electronic device. Selected from structures containing more than one species.

 構造単位Bの具体例として、以下が挙げられる。構造単位Bは、以下に限定されない。

Figure JPOXMLDOC01-appb-C000002
Specific examples of the structural unit B include the following. The structural unit B is not limited to the following.
Figure JPOXMLDOC01-appb-C000002

 Wは、3価の連結基を表し、例えば、炭素数2~30個のアレーントリイル基又はヘテロアレーントリイル基を表す。アレーントリイル基は、芳香族炭化水素から水素原子3個を除いた原子団である。ヘテロアレーントリイル基は、芳香族複素環から水素原子3個を除いた原子団である。Arは、それぞれ独立に2価の連結基を表し、例えば、それぞれ独立に、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。Arは、好ましくはアリーレン基、より好ましくはフェニレン基である。Yは、2価の連結基を表し、例えば、構造単位LにおけるR(ただし、重合性官能基を含む基を除く。)のうち水素原子を1個以上有する基から、更に1個の水素原子を除いた2価の基が挙げられる。Zは、炭素原子、ケイ素原子、又はリン原子のいずれかを表す。 W represents a trivalent linking group, for example, an arenetriyl group or a heteroarenetriyl group having 2 to 30 carbon atoms. The arenetriyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic hydrocarbon. The heteroarene triyl group is an atomic group obtained by removing three hydrogen atoms from an aromatic heterocyclic ring. Ar each independently represents a divalent linking group, for example, each independently represents an arylene group or heteroarylene group having 2 to 30 carbon atoms. Ar is preferably an arylene group, more preferably a phenylene group. Y represents a divalent linking group. For example, one R atom in the structural unit L (excluding a group containing a polymerizable functional group) has one more hydrogen atom from a group having one or more hydrogen atoms. And divalent groups excluding. Z represents any of a carbon atom, a silicon atom, or a phosphorus atom.

 上記構造単位中、ベンゼン環及びArは、1以上の置換基Rを有していてもよい。置換基Rは、それぞれ独立に、-R、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び、後述する重合性官能基を含む基からなる群から選択される。R~Rは、それぞれ独立に、水素原子;炭素数1~22個の直鎖、環状又は分岐アルキル基;又は、炭素数2~30個のアリール基又はヘテロアリール基を表す(但し、Rが水素原子となる場合は除く)。
 アリール基は、芳香族炭化水素から水素原子1個を除いた原子団である。ヘテロアリール基は、芳香族複素環から水素原子1個を除いた原子団である。アルキル基は、更に、炭素数2~20個のアリール基又はヘテロアリール基により置換されていてもよく、アリール基又はヘテロアリール基は、更に、炭素数1~22個の直鎖、環状又は分岐アルキル基により置換されていてもよい。
 Rは、好ましくは、アルキル基、アリール基、アルキル置換アリール基である。
In the structural unit, the benzene ring and Ar may have one or more substituents R. The substituents R each independently include —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable functional group described later. Selected from the group consisting of groups. R 1 to R 8 each independently represents a hydrogen atom; a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms; or an aryl group or heteroaryl group having 2 to 30 carbon atoms (provided that Except when R 1 is a hydrogen atom).
The aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon. A heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring. The alkyl group may be further substituted with an aryl group or heteroaryl group having 2 to 20 carbon atoms, and the aryl group or heteroaryl group may be further linear, cyclic or branched having 1 to 22 carbon atoms. It may be substituted with an alkyl group.
R is preferably an alkyl group, an aryl group, or an alkyl-substituted aryl group.

 芳香族炭化水素としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。芳香族複素環としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。 Examples of the aromatic hydrocarbon include a single ring, a condensed ring, or a polycycle in which two or more selected from a single ring and a condensed ring are bonded via a single bond. Examples of the aromatic heterocycle include a single ring, a condensed ring, or a polycycle in which two or more selected from a monocycle and a condensed ring are bonded via a single bond.

(構造単位B1)
 本発明の実施形態である有機エレクトロニクス材料に用いられる電荷輸送性ポリマーは、先に示した分岐部を構成する3価以上の構造単位Bを任意に含んでよいが、少なくとも、9-フェニルカルバゾール構造を有する3価以上の構造単位(1)を含む。以下、上記3価以上の構造単位(1)を構造単位B1とも称す。
 上記9-フェニルカルバゾール構造とは、9H-カルバゾールの窒素原子上の水素部位がフェニル基で置換された構造を意味する。したがって、上記構造単位B1は、上記9-フェニルカルバゾール構造を有し、かつ他の構造と結合可能な連結基を3個以上有する構造を意図する。上記窒素原子に結合したフェニル基は、置換基又は連結基を有してよく、置換基同士が連結して環状構造を形成していてもよい。また、カルバゾール骨格を形成する芳香環も置換基又は連結基を有してよい。
(Structural unit B1)
The charge transporting polymer used in the organic electronic material according to the embodiment of the present invention may optionally contain the trivalent or higher structural unit B constituting the branched portion described above, but has at least a 9-phenylcarbazole structure. And a trivalent or higher structural unit (1). Hereinafter, the trivalent or higher structural unit (1) is also referred to as a structural unit B1.
The 9-phenylcarbazole structure means a structure in which a hydrogen moiety on the nitrogen atom of 9H-carbazole is substituted with a phenyl group. Therefore, the structural unit B1 intends a structure having the 9-phenylcarbazole structure and having three or more linking groups that can be bonded to other structures. The phenyl group bonded to the nitrogen atom may have a substituent or a linking group, and the substituents may be linked to form a cyclic structure. The aromatic ring forming the carbazole skeleton may also have a substituent or a linking group.

 電荷輸送性ポリマーが分子内に9-フェニルカルバゾール構造を有する3価以上の構造単位B1を含む場合、有機EL素子の発光効率を向上させることが容易となる。詳細は不明であるが、分子内に上記構造単位B1を含む電荷輸送性ポリマーは、三重項(T1)レベルが高くなることに起因すると考えられる。 When the charge transporting polymer contains a trivalent or higher structural unit B1 having a 9-phenylcarbazole structure in the molecule, it becomes easy to improve the light emission efficiency of the organic EL device. Although details are unknown, it is considered that the charge transporting polymer containing the structural unit B1 in the molecule is caused by a high triplet (T1) level.

 上記構造単位B1の具体例として、以下が挙げられる。

Figure JPOXMLDOC01-appb-C000003
Specific examples of the structural unit B1 include the following.
Figure JPOXMLDOC01-appb-C000003

 上記構造単位B1の好ましい具体例として、以下が挙げられる。

Figure JPOXMLDOC01-appb-C000004
Preferred specific examples of the structural unit B1 include the following.
Figure JPOXMLDOC01-appb-C000004

 上記構造単位(B1-a)及び(B1-a’)において、lは0~4の整数であり、m及びnはそれぞれ独立して0~3の整数であり、それぞれ置換基Rの数を示す。上記構造単位(B1-b)及び(B1-b’)において、l及びmは、それぞれ独立して0~3の整数であり、nは0~4の整数であり、それぞれ置換基Rの数を示す。上記各構造単位において、「*」は、他の構造との結合部位を示す。
 置換基Rは、それぞれ独立に、-R、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び、後述する重合性官能基を含む基からなる群から選択される。R~Rは、先に構造単位Bにおいて説明したとおりである。一実施形態において、上記各構造単位における置換基Rは、炭素数1~12の直鎖、環状、又は分岐アルキル基、炭素数2~12のアリール基であることが好ましい。上記アリール基は、さらに、炭素数1~12の直鎖、環状、又は分岐のアルキル基で置換されていてもよい。
In the structural units (B1-a) and (B1-a ′), l is an integer of 0 to 4, m and n are each independently an integer of 0 to 3, and the number of substituents R is Show. In the structural units (B1-b) and (B1-b ′), l and m are each independently an integer of 0 to 3, n is an integer of 0 to 4, and each represents the number of substituents R. Indicates. In each of the structural units, “*” represents a binding site with another structure.
The substituents R each independently include —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable functional group described later. Selected from the group consisting of groups. R 1 to R 8 are as described above for the structural unit B. In one embodiment, the substituent R in each structural unit is preferably a linear, cyclic, or branched alkyl group having 1 to 12 carbon atoms, or an aryl group having 2 to 12 carbon atoms. The aryl group may be further substituted with a linear, cyclic, or branched alkyl group having 1 to 12 carbon atoms.

 上記各構造単位の一実施形態において、l+m+nは、0~3であることが好ましく、0又は1であることがより好ましい。また、一実施形態において、置換基Rは、炭素数1~8の直鎖、環状、又は分岐のアルキル基、炭素数2~8のアリール基からなる群から選択されることがさらに好ましい。 In one embodiment of each structural unit described above, l + m + n is preferably 0 to 3, and more preferably 0 or 1. In one embodiment, the substituent R is more preferably selected from the group consisting of a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms and an aryl group having 2 to 8 carbon atoms.

 上記構造単位B1のより好ましい具体例として以下が挙げられる。しかし、上記構造単位B1は以下に限定されるものではない。各構造単位において、「*」は、他の構造との結合部位を示す。 More preferable specific examples of the structural unit B1 include the following. However, the structural unit B1 is not limited to the following. In each structural unit, “*” indicates a binding site with another structure.

Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005

(構造単位L)
 構造単位Lは、電荷輸送性を有する2価の構造単位である。構造単位Lは、電荷を輸送する能力を有する原子団を含んでいればよく、特に限定されない。例えば、構造単位Lは、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ビフェニル構造、ターフェニル構造、ナフタレン構造、アントラセン構造、テトラセン構造、フェナントレン構造、ジヒドロフェナントレン構造、ピリジン構造、ピラジン構造、キノリン構造、イソキノリン構造、キノキサリン構造、アクリジン構造、ジアザフェナントレン構造、フラン構造、ピロール構造、オキサゾール構造、オキサジアゾール構造、チアゾール構造、チアジアゾール構造、トリアゾール構造、ベンゾチオフェン構造、ベンゾオキサゾール構造、ベンゾオキサジアゾール構造、ベンゾチアゾール構造、ベンゾチアジアゾール構造、ベンゾトリアゾール構造、及び、これらの1種又は2種以上を含む構造から選択される。
(Structural unit L)
The structural unit L is a divalent structural unit having charge transportability. The structural unit L is not particularly limited as long as it contains an atomic group having the ability to transport charges. For example, the structural unit L is a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, biphenyl structure, terphenyl structure, naphthalene structure, anthracene structure, tetracene structure, phenanthrene structure, dihydro Phenanthrene structure, pyridine structure, pyrazine structure, quinoline structure, isoquinoline structure, quinoxaline structure, acridine structure, diazaphenanthrene structure, furan structure, pyrrole structure, oxazole structure, oxadiazole structure, thiazole structure, thiadiazole structure, triazole structure, benzo Thiophene structure, benzoxazole structure, benzooxadiazole structure, benzothiazole structure, benzothiadiazole structure, benzotriazole structure, and one or two of these It is selected from the structure including the upper.

 一実施形態において、構造単位Lは、優れた正孔輸送性を得る観点から、置換又は非置換の、芳香族アミン構造、カルバゾール構造、チオフェン構造、フルオレン構造、ベンゼン構造、ピロール構造、及び、これらの1種又は2種以上を含む構造から選択されることが好ましく、置換又は非置換の、芳香族アミン構造、カルバゾール構造、及び、これらの1種又は2種以上を含む構造から選択されることがより好ましい。ここで、芳香族アミン構造は、好ましくはトリアリールアミン構造であり、より好ましくはトリフェニルアミン構造である。 In one embodiment, the structural unit L includes a substituted or unsubstituted aromatic amine structure, carbazole structure, thiophene structure, fluorene structure, benzene structure, pyrrole structure, and these from the viewpoint of obtaining excellent hole transport properties. Preferably, it is selected from a structure containing one or more of these, and is selected from a substituted or unsubstituted aromatic amine structure, carbazole structure, and a structure containing one or more of these Is more preferable. Here, the aromatic amine structure is preferably a triarylamine structure, more preferably a triphenylamine structure.

 構造単位Lの具体例として、以下が挙げられる。構造単位Lは、以下に限定されない。

Figure JPOXMLDOC01-appb-C000006
Specific examples of the structural unit L include the following. The structural unit L is not limited to the following.
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

 Rは、それぞれ独立に、水素原子又は置換基を表す。好ましくは、Rは、それぞれ独立に、-R、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び、後述する重合性官能基を含む基からなる群から選択される。R~Rは、それぞれ独立に、水素原子;炭素数1~22個の直鎖、環状又は分岐アルキル基;又は、炭素数2~30個のアリール基又はヘテロアリール基を表す。アリール基は、芳香族炭化水素から水素原子1個を除いた原子団である。ヘテロアリール基は、芳香族複素環から水素原子1個を除いた原子団である。アルキル基は、更に、炭素数2~20個のアリール基又はヘテロアリール基により置換されていてもよく、アリール基又はヘテロアリール基は、更に、炭素数1~22個の直鎖、環状又は分岐アルキル基により置換されていてもよい。Rは、好ましくは水素原子、アルキル基、アリール基、アルキル置換アリール基である。Arは、炭素数2~30個のアリーレン基又はヘテロアリーレン基を表す。アリーレン基は、芳香族炭化水素から水素原子2個を除いた原子団である。ヘテロアリーレン基は、芳香族複素環から水素原子2個を除いた原子団である。Arは、好ましくはアリーレン基であり、より好ましくはフェニレン基である。 Each R independently represents a hydrogen atom or a substituent. Preferably, each R independently represents —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable functional group described later. Selected from the group consisting of containing groups. R 1 to R 8 each independently represents a hydrogen atom; a linear, cyclic or branched alkyl group having 1 to 22 carbon atoms; or an aryl group or heteroaryl group having 2 to 30 carbon atoms. The aryl group is an atomic group obtained by removing one hydrogen atom from an aromatic hydrocarbon. A heteroaryl group is an atomic group obtained by removing one hydrogen atom from an aromatic heterocyclic ring. The alkyl group may be further substituted with an aryl group or heteroaryl group having 2 to 20 carbon atoms, and the aryl group or heteroaryl group may be further linear, cyclic or branched having 1 to 22 carbon atoms. It may be substituted with an alkyl group. R is preferably a hydrogen atom, an alkyl group, an aryl group, or an alkyl-substituted aryl group. Ar represents an arylene group or heteroarylene group having 2 to 30 carbon atoms. An arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon. A heteroarylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic heterocycle. Ar is preferably an arylene group, more preferably a phenylene group.

 芳香族炭化水素としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。芳香族複素環としては、単環、縮合環、又は、単環及び縮合環から選択される2個以上が単結合を介して結合した多環が挙げられる。 Examples of the aromatic hydrocarbon include a single ring, a condensed ring, or a polycycle in which two or more selected from a single ring and a condensed ring are bonded via a single bond. Examples of the aromatic heterocycle include a single ring, a condensed ring, or a polycycle in which two or more selected from a monocycle and a condensed ring are bonded via a single bond.

(構造単位L1)
 本発明の実施形態である有機エレクトロニクス材料に用いられる電荷輸送性ポリマーは、先に示した2価の構造単位Lを任意に含んでよいが、一実施形態において、少なくとも1つのフェニル基がアルコキシ基を有するトリフェニルアミン構造を有する2価の構造単位(2)を含む。以下、上記2価の構造単位(2)を構造単位L1とも称す。
 上記構造単位L1において、上記トリフェニルアミン構造は、窒素原子に結合する少なくとも1つのフェニル基が、少なくとも1つのアルコキシ基を有する構造を有することを意味する。上記フェニル基は、アルコキシ基以外の置換基、又は連結基を有していてもよく、置換基同士が連結して環状構造を形成していてもよい。すなわち、上記構造単位L1は、少なくとも1つのフェニル基がアルコキシ基を有するトリフェニルアミン構造に対して2つの連結基が結合した構造を意図する。
(Structural unit L1)
The charge transporting polymer used in the organic electronic material according to the embodiment of the present invention may optionally include the above-described divalent structural unit L. However, in one embodiment, at least one phenyl group is an alkoxy group. And a divalent structural unit (2) having a triphenylamine structure. Hereinafter, the divalent structural unit (2) is also referred to as a structural unit L1.
In the structural unit L1, the triphenylamine structure means that at least one phenyl group bonded to a nitrogen atom has a structure having at least one alkoxy group. The phenyl group may have a substituent other than an alkoxy group or a linking group, and the substituents may be linked to form a cyclic structure. That is, the structural unit L1 intends a structure in which two linking groups are bonded to a triphenylamine structure in which at least one phenyl group has an alkoxy group.

 電荷輸送性ポリマーが分子内に上記構造単位L1を含む場合、有機EL素子の発光寿命を向上させることが容易となる。詳細は不明であるが、トリフェニルアミン構造において、少なくとも1つのフェニル基にアルコキシ基を導入した場合、耐熱性の向上が容易となる。そのため、そのような特定のトリフェニルアミン構造を有する構造単位を含む電荷輸送性ポリマーを使用することで、ポリマーの耐熱性が向上し、有機薄膜の劣化が抑制されることで有機EL素子の発光寿命の向上に寄与するものと考えられる。 When the charge transporting polymer contains the structural unit L1 in the molecule, it is easy to improve the light emission lifetime of the organic EL element. Although details are unknown, in the triphenylamine structure, when an alkoxy group is introduced into at least one phenyl group, the heat resistance is easily improved. Therefore, by using a charge transporting polymer containing a structural unit having such a specific triphenylamine structure, the heat resistance of the polymer is improved and the deterioration of the organic thin film is suppressed, so that the organic EL device emits light. It is thought that it contributes to the improvement of life.

 上記構造単位L1の具体例として、以下が挙げられる。

Figure JPOXMLDOC01-appb-C000008
Specific examples of the structural unit L1 include the following.
Figure JPOXMLDOC01-appb-C000008

 上記構造単位L1の好ましい具体例として、以下が挙げられる。

Figure JPOXMLDOC01-appb-C000009
Preferred specific examples of the structural unit L1 include the following.
Figure JPOXMLDOC01-appb-C000009

 上記構造単位(L1-a)及び(L1-a’)において、lは0~5の整数であり、m及びnは、それぞれ独立して0~4の整数であり、それぞれ置換基Rの数を示す。構造単位において、「*」は、他の構造との結合部位を示す。 In the structural units (L1-a) and (L1-a ′), l is an integer of 0 to 5, m and n are each independently an integer of 0 to 4, and the number of substituents R is Indicates. In the structural unit, “*” indicates a binding site with another structure.

 上記構造単位において、l+n+mは1以上であり、少なくとも1つの置換基Rは、アルコキシ基(-OR)である。上記アルコキシ基は、炭素数1~8のアルキル基が酸素原子に結合した基を意図する。一実施形態において、上記アルコキシ基は、直鎖又は分岐の炭素数1~8のアルキル基が酸素原子に結合した基であることが好ましい。
 上記構造単位において、窒素原子に結合する少なくとも1つのフェニル基は、上記アルコキシ基(-OR)以外の置換基Rを有してもよい。上記アルコキシ基以外の置換基Rは、例えば、-R、-OR、-SR、-OCOR、-COOR、-SiR、ハロゲン原子、及び、後述する重合性官能基を含む基からなる群から選択される。ここで、R~Rは、先に構造単位B1で説明したとおりである。但し、-ORについては、上記アルコキシ基(-OR)を含まないものとする。
In the structural unit, l + n + m is 1 or more, and at least one substituent R is an alkoxy group (—OR). The alkoxy group is intended to be a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom. In one embodiment, the alkoxy group is preferably a group in which a linear or branched alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
In the structural unit, at least one phenyl group bonded to the nitrogen atom may have a substituent R other than the alkoxy group (—OR). Substituents R other than the alkoxy group include, for example, —R 1 , —OR 2 , —SR 3 , —OCOR 4 , —COOR 5 , —SiR 6 R 7 R 8 , a halogen atom, and a polymerizable function described later. Selected from the group consisting of groups containing groups. Here, R 1 to R 8 are as described above for the structural unit B1. However, —OR 2 does not include the alkoxy group (—OR).

 上記構造単位L1のより好ましい具体例として以下が挙げられる。しかし、上記構造単位L1は以下に限定されるものではない。各構造単位において、「*」は、他の構造との結合部位を示す。 More preferable specific examples of the structural unit L1 include the following. However, the structural unit L1 is not limited to the following. In each structural unit, “*” indicates a binding site with another structure.

Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010

(構造単位T)
 構造単位Tは、電荷輸送性ポリマーの末端部を構成する1価の構造単位である。構造単位Tは、特に限定されず、例えば、置換又は非置換の、芳香族炭化水素構造、芳香族複素環構造、及び、これらの1種又は2種以上を含む構造から選択される。構造単位Tが構造単位Lと同じ構造を有していてもよい。一実施形態において、構造単位Tは、電荷の輸送性を低下させずに耐久性を付与するという観点から、置換又は非置換の芳香族炭化水素構造であることが好ましく、置換又は非置換のベンゼン構造であることがより好ましい。また、他の実施形態において、後述するように、電荷輸送性ポリマーが末端部に重合性官能基を有する場合、構造単位Tは重合可能な構造(例えば、ピロール-イル基等の重合性官能基)であってもよい。
(Structural unit T)
The structural unit T is a monovalent structural unit constituting the terminal portion of the charge transporting polymer. The structural unit T is not particularly limited, and is selected from, for example, a substituted or unsubstituted aromatic hydrocarbon structure, aromatic heterocyclic structure, and a structure including one or more of these. The structural unit T may have the same structure as the structural unit L. In one embodiment, the structural unit T is preferably a substituted or unsubstituted aromatic hydrocarbon structure from the viewpoint of imparting durability without deteriorating charge transportability, and is preferably a substituted or unsubstituted benzene structure. A structure is more preferable. In another embodiment, as described later, when the charge transporting polymer has a polymerizable functional group at the terminal portion, the structural unit T has a polymerizable structure (for example, a polymerizable functional group such as a pyrrol-yl group). ).

 構造単位Tの具体例として、以下が挙げられる。構造単位Tは、以下に限定されない。

Figure JPOXMLDOC01-appb-C000011
Specific examples of the structural unit T include the following. The structural unit T is not limited to the following.
Figure JPOXMLDOC01-appb-C000011

 Rは、構造単位LにおけるRと同様である。電荷輸送性ポリマーが末端部に重合性官能基を有する場合、好ましくは、Rのいずれか少なくとも1つが、重合性官能基を含む基である。 R is the same as R in the structural unit L. When the charge transporting polymer has a polymerizable functional group at the terminal portion, preferably at least one of R is a group containing a polymerizable functional group.

(構造単位T1)
 本発明の実施形態である有機エレクトロニクス材料に用いられる電荷輸送性ポリマーは、先に示した1価の構造単位Tを任意に含んでよいが、一実施形態において、少なくとも1つのアルコキシ基を有するトリフェニルアミン構造を有する1価の構造単位(1)を含む。以下、上記1価の構造単位(1)を、構造単位T1とも称す。
(Structural unit T1)
The charge transporting polymer used in the organic electronic material according to the embodiment of the present invention may optionally include the monovalent structural unit T shown above, but in one embodiment, the trivalent group having at least one alkoxy group. A monovalent structural unit (1) having a phenylamine structure is included. Hereinafter, the monovalent structural unit (1) is also referred to as a structural unit T1.

 上記構造単位T1の具体例として、以下が挙げられる。

Figure JPOXMLDOC01-appb-C000012
Specific examples of the structural unit T1 include the following.
Figure JPOXMLDOC01-appb-C000012

 上記構造単位T1の好ましい具体例として、以下が挙げられる。

Figure JPOXMLDOC01-appb-C000013
Specific examples of the structural unit T1 include the following.
Figure JPOXMLDOC01-appb-C000013

 上記構造単位(T1-a)及び(T1-a’)において、l及びmはそれぞれ独立して0~5の整数であり、nは0~4の整数であり、それぞれ、置換基Rの数を示す。l+n+mは1以上であり、少なくとも1つの置換基Rは、アルコキシ基(-OR)である。上記アルコキシ基は、炭素数1~8のアルキル基が酸素原子に結合した基を意図する。上記構造単位において、窒素原子に結合する少なくとも1つのフェニル基は、上記アルコキシ基以外の置換基Rを有してもよい。上記アルコキシ基(-OR)、及び上記アルコキシ基以外の置換基Rは、先に、2価の構造単位L1で説明したとおりである。電荷輸送性ポリマーの分子内に構造単位T1を含む場合、優れた耐熱性が得られ、そのことにより有機EL素子の発光寿命を向上させることが容易となる。 In the structural units (T1-a) and (T1-a ′), l and m are each independently an integer of 0 to 5, n is an integer of 0 to 4, and each represents the number of substituents R. Indicates. l + n + m is 1 or more, and at least one substituent R is an alkoxy group (—OR). The alkoxy group is intended to be a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom. In the structural unit, at least one phenyl group bonded to the nitrogen atom may have a substituent R other than the alkoxy group. The alkoxy group (—OR) and the substituent R other than the alkoxy group are as described above for the divalent structural unit L1. When the structural unit T1 is included in the molecule of the charge transporting polymer, excellent heat resistance can be obtained, which makes it easy to improve the light emission lifetime of the organic EL element.

 上記構造単位T1のより好ましい具体例として以下が挙げられる。しかし、上記構造単位T1は以下に限定されるものではない。各構造単位において、「*」は、他の構造との結合部位を示す。 More preferable specific examples of the structural unit T1 include the following. However, the structural unit T1 is not limited to the following. In each structural unit, “*” indicates a binding site with another structure.

Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014

(重合性官能基)
 一実施形態において、重合反応により硬化させ、溶剤への溶解度を変化させる観点から、電荷輸送性ポリマーは、重合性官能基を少なくとも1つ有することが好ましい。「重合性官能基」とは、熱及び/又は光を加えることにより、互いに結合を形成し得る官能基をいう。
(Polymerizable functional group)
In one embodiment, the charge transporting polymer preferably has at least one polymerizable functional group from the viewpoint of curing by a polymerization reaction and changing the solubility in a solvent. The “polymerizable functional group” refers to a functional group that can form a bond with each other by applying heat and / or light.

 重合性官能基としては、炭素-炭素多重結合を有する基(例えば、ビニル基、アリル基、ブテニル基、エチニル基、アクリロイル基、アクリロイルオキシ基、アクリロイルアミノ基、メタクリロイル基、メタクリロイルオキシ基、メタクリロイルアミノ基、ビニルオキシ基、ビニルアミノ基等)、小員環を有する基(例えば、シクロプロピル基、シクロブチル基等の環状アルキル基;エポキシ基(オキシラニル基)、オキセタン基(オキセタニル基)等の環状エーテル基;ジケテン基;エピスルフィド基;ラクトン基;ラクタム基等)、複素環基(例えば、フラン-イル基、ピロール-イル基、チオフェン-イル基、シロール-イル基)などが挙げられる。重合性官能基としては、特に、ビニル基、アクリロイル基、メタクリロイル基、エポキシ基、及びオキセタン基が好ましく、反応性及び有機エレクトロニクス素子の特性の観点から、ビニル基、オキセタン基、又はエポキシ基がより好ましい。 Examples of the polymerizable functional group include a group having a carbon-carbon multiple bond (for example, vinyl group, allyl group, butenyl group, ethynyl group, acryloyl group, acryloyloxy group, acryloylamino group, methacryloyl group, methacryloyloxy group, methacryloylamino group). Groups, vinyloxy groups, vinylamino groups, etc.), groups having a small ring (eg, cyclic alkyl groups such as cyclopropyl groups, cyclobutyl groups; cyclic ether groups such as epoxy groups (oxiranyl groups), oxetane groups (oxetanyl groups), etc. Diketene group; episulfide group; lactone group; lactam group, etc.), heterocyclic group (for example, furan-yl group, pyrrol-yl group, thiophen-yl group, silole-yl group) and the like. As the polymerizable functional group, a vinyl group, an acryloyl group, a methacryloyl group, an epoxy group, and an oxetane group are particularly preferable, and from the viewpoint of reactivity and characteristics of the organic electronics element, a vinyl group, an oxetane group, or an epoxy group is more preferable. preferable.

 重合性官能基の自由度を上げ、重合反応を生じさせやすくする観点からは、電荷輸送性ポリマーの主骨格と重合性官能基とが、アルキレン鎖で連結されていることが好ましい。また、例えば、電極上に有機層を形成する場合、ITO等の親水性電極との親和性を向上させる観点からは、エチレングリコール鎖、ジエチレングリコール鎖等の親水性の鎖で連結されていることが好ましい。さらに、重合性官能基を導入するために用いられるモノマーの調製が容易になる観点からは、電荷輸送性ポリマーは、アルキレン鎖及び/又は親水性の鎖の末端部、すなわち、これらの鎖と重合性官能基との連結部、及び/又は、これらの鎖と電荷輸送性ポリマーの骨格との連結部に、エーテル結合又はエステル結合を有していてもよい。前述の「重合性官能基を含む基」とは、重合性官能基それ自体、又は、重合性官能基とアルキレン鎖等とを合わせた基を意味する。重合性官能基を含む基として、例えば、国際公開第WO2010/140553号に例示された基を好適に用いることができる。 From the viewpoint of increasing the degree of freedom of the polymerizable functional group and facilitating the polymerization reaction, the main skeleton of the charge transporting polymer and the polymerizable functional group are preferably connected by an alkylene chain. In addition, for example, when an organic layer is formed on an electrode, it is connected with a hydrophilic chain such as an ethylene glycol chain or a diethylene glycol chain from the viewpoint of improving the affinity with a hydrophilic electrode such as ITO. preferable. Further, from the viewpoint of facilitating the preparation of the monomer used for introducing the polymerizable functional group, the charge transporting polymer is polymerized with the end of the alkylene chain and / or the hydrophilic chain, that is, with these chains. An ether bond or an ester bond may be present at the connecting portion with the functional group and / or the connecting portion between these chains and the skeleton of the charge transporting polymer. The above-mentioned “group containing a polymerizable functional group” means a polymerizable functional group itself or a group obtained by combining a polymerizable functional group with an alkylene chain or the like. As the group containing a polymerizable functional group, for example, a group exemplified in International Publication No. WO2010 / 140553 can be suitably used.

 重合性官能基は、電荷輸送性ポリマーの末端部(すなわち、構造単位T)に導入されていても、末端部以外の部分(すなわち、構造単位L又はB)に導入されていても、末端部と末端以外の部分の両方に導入されていてもよい。硬化性の観点からは、少なくとも末端部に導入されていることが好ましく、硬化性及び電荷輸送性の両立を図る観点からは、末端部のみに導入されていることが好ましい。また、電荷輸送性ポリマーが分岐構造を有する場合、重合性官能基は、電荷輸送性ポリマーの主鎖に導入されていても、側鎖に導入されていてもよく、主鎖と側鎖の両方に導入されていてもよい。 The polymerizable functional group may be introduced into the terminal part (that is, the structural unit T) of the charge transporting polymer, or may be introduced into a part other than the terminal part (that is, the structural unit L or B). And may be introduced into both of the portions other than the terminal. From the viewpoint of curability, it is preferably introduced at least at the end portion, and from the viewpoint of achieving both curability and charge transportability, it is preferably introduced only at the end portion. When the charge transporting polymer has a branched structure, the polymerizable functional group may be introduced into the main chain of the charge transporting polymer or into the side chain, and both the main chain and the side chain may be introduced. May be introduced.

 重合性官能基は、溶解度の変化に寄与する観点からは、電荷輸送性ポリマー中に多く含まれる方が好ましい。一方、電荷輸送性を妨げない観点からは、電荷輸送性ポリマー中に含まれる量が少ない方が好ましい。重合性官能基の含有量は、これらを考慮し、適宜設定できる。 From the viewpoint of contributing to the change in solubility, it is preferable that a large amount of the polymerizable functional group is contained in the charge transporting polymer. On the other hand, from the viewpoint of not hindering the charge transport property, it is preferable that the amount contained in the charge transport polymer is small. The content of the polymerizable functional group can be appropriately set in consideration of these.

 例えば、電荷輸送性ポリマー1分子あたりの重合性官能基数は、十分な溶解度の変化を得る観点から、2個以上が好ましく、3個以上がより好ましい。また、重合性官能基数は、電荷輸送性を保つ観点から、1,000個以下が好ましく、500個以下がより好ましい。 For example, the number of polymerizable functional groups per molecule of the charge transporting polymer is preferably 2 or more, more preferably 3 or more from the viewpoint of obtaining a sufficient change in solubility. The number of polymerizable functional groups is preferably 1,000 or less, more preferably 500 or less, from the viewpoint of maintaining charge transportability.

 電荷輸送性ポリマー1分子あたりの重合性官能基数は、電荷輸送性ポリマーを合成するために使用した、重合性官能基の仕込み量(例えば、重合性官能基を有するモノマーの仕込み量)、各構造単位に対応するモノマーの仕込み量、電荷輸送性ポリマーの重量平均分子量等を用い、平均値として求めることができる。また、重合性官能基の数は、電荷輸送性ポリマーのH NMR(核磁気共鳴)スペクトルにおける重合性官能基に由来するシグナルの積分値と全スペクトルの積分値との比、電荷輸送性ポリマーの重量平均分子量等を利用し、平均値として算出できる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。 The number of polymerizable functional groups per molecule of the charge transporting polymer is the amount of the polymerizable functional group used to synthesize the charge transporting polymer (for example, the amount of the monomer having a polymerizable functional group), each structure The average value can be obtained by using the monomer charge corresponding to the unit and the weight average molecular weight of the charge transporting polymer. The number of polymerizable functional groups is the ratio between the integral value of the signal derived from the polymerizable functional group and the integral value of the entire spectrum in the 1 H NMR (nuclear magnetic resonance) spectrum of the charge transporting polymer, the charge transporting polymer The weight average molecular weight can be used to calculate the average value. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.

 一実施形態において、3方向以上に分岐する構造を有する電荷輸送性ポリマーは、3価以上の構造単位Bとして、9-フェニルカルバゾール構造を有する3価以上の構造単位B1を少なくとも含み、かつ構造単位L及び/又はTとして、少なくとも1つのアルコキシ基を有するトリフェニルアミン構造を有する構造単位L1及び/又はT1を含む。
 また、他の実施形態において、上記電荷輸送性ポリマーは、上記構造単位B1と、構造単位L及び/又はTとして、少なくとも上記構造単位L1及び/又はT1を含む。
 さらに他の実施形態において、上記電荷輸送性ポリマーは、上記構造単位B1と、上記構造単位L及び構造単位Tとを含み、上記構造単位Tとして、少なくとも上記構造単位T1と重合性官能基を有する構造単位Tとを含む。
In one embodiment, the charge transporting polymer having a structure branched in three or more directions includes at least a trivalent or higher structural unit B1 having a 9-phenylcarbazole structure as the trivalent or higher structural unit B, and the structural unit L and / or T includes structural units L1 and / or T1 having a triphenylamine structure having at least one alkoxy group.
In another embodiment, the charge transporting polymer includes at least the structural unit L1 and / or T1 as the structural unit B1 and the structural unit L and / or T.
In still another embodiment, the charge transporting polymer includes the structural unit B1, the structural unit L, and the structural unit T, and the structural unit T has at least the structural unit T1 and a polymerizable functional group. And the structural unit T.

 本発明の実施形態によれば、少なくとも構造単位B1と、構造単位L1及び/又は構造単位T1とを含む電荷輸送性ポリマーを使用することによって、有機EL素子の耐熱性及び発光寿命の向上を実現することが可能となる。このような効果を効果的に得る観点から、構造単位Bに含まれる構造単位B1の割合は、構造単位Bの全量を基準として構造単位B1を、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上とする。
 また、電荷輸送性ポリマーが構造単位L1を含む場合、構造単位Lの全量を基準として構造単位L1を、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上とする。
 さらに、電荷輸送性ポリマーが構造単位Tとして構造単位T1を含む場合、構造単位Tの全量を基準として構造単位T1を、好ましくは30モル%以上、より好ましくは40モル%以上、さらに好ましくは50モル%以上とする。
 特に、電荷輸送性ポリマーの耐熱性を向上させる観点から、構造単位L1及び/又はT1の割合は、それぞれポリマーの全構成単位を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましい。電荷輸送性ポリマーが構造単位L1とT1とを含む場合、上記割合はL1とT1との合計量を意味する。
According to the embodiment of the present invention, by using a charge transporting polymer including at least the structural unit B1, the structural unit L1, and / or the structural unit T1, the heat resistance and the emission lifetime of the organic EL element are improved. It becomes possible to do. From the viewpoint of effectively obtaining such effects, the proportion of the structural unit B1 contained in the structural unit B is preferably 50 mol% or more, more preferably 60 mol, based on the total amount of the structural unit B. % Or more, more preferably 70 mol% or more.
When the charge transporting polymer includes the structural unit L1, the structural unit L1 is preferably 50 mol% or more, more preferably 60 mol% or more, and still more preferably 70 mol% or more based on the total amount of the structural unit L. To do.
Further, when the charge transporting polymer includes the structural unit T1 as the structural unit T, the structural unit T1 is preferably 30 mol% or more, more preferably 40 mol% or more, and still more preferably 50 based on the total amount of the structural unit T. More than mol%.
In particular, from the viewpoint of improving the heat resistance of the charge transporting polymer, the proportion of the structural units L1 and / or T1 is preferably 10 mol% or more, more preferably 20 mol% or more, based on the total constituent units of the polymer. 30 mol% or more is more preferable. When the charge transporting polymer includes the structural units L1 and T1, the above ratio means the total amount of L1 and T1.

(構造単位B、L、及びTの割合)
 電荷輸送性ポリマーに含まれる構造単位Bの割合は、有機エレクトロニクス素子の耐久性向上の観点から、全構造単位を基準として、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましい。また、構造単位Bの割合は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点、又は、十分な電荷輸送性を得る観点から、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。上記割合は、構造単位B1を含めた構造単位Bの総量を意味する。
(Ratio of structural units B, L, and T)
The proportion of the structural unit B contained in the charge transporting polymer is preferably 1 mol% or more, more preferably 5 mol% or more, more preferably 10 mol%, based on the total structural unit, from the viewpoint of improving the durability of the organic electronics element. The above is more preferable. The proportion of the structural unit B is preferably 50 mol% or less, preferably 40 mol% or less, from the viewpoint of suppressing the increase in viscosity and satisfactorily synthesizing the charge transporting polymer or obtaining sufficient charge transportability. Is more preferable, and 30 mol% or less is still more preferable. The said ratio means the total amount of the structural unit B including the structural unit B1.

 電荷輸送性ポリマーに含まれる構造単位Lの割合は、十分な電荷輸送性を得る観点から、全構造単位を基準として、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、構造単位Lの割合は、構造単位T及び必要に応じて導入される構造単位Bを考慮すると、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下が更に好ましい。電荷輸送性ポリマーが構造単位L1を含む場合、上記割合は構造単位L1を含めた全量を意味する。 The proportion of the structural unit L contained in the charge transporting polymer is preferably 10 mol% or more, more preferably 20 mol% or more, and more preferably 30 mol% or more based on the total structural unit from the viewpoint of obtaining sufficient charge transportability. Is more preferable. Further, the ratio of the structural unit L is preferably 95 mol% or less, more preferably 90 mol% or less, and still more preferably 85 mol% or less in consideration of the structural unit T and the structural unit B introduced as necessary. When the charge transporting polymer contains the structural unit L1, the above ratio means the total amount including the structural unit L1.

 電荷輸送性ポリマーに含まれる構造単位Tの割合は、有機エレクトロニクス素子の特性向上の観点、又は、粘度の上昇を抑え、電荷輸送性ポリマーの合成を良好に行う観点から、全構造単位を基準として、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、構造単位Tの割合は、十分な電荷輸送性を得る観点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下が更に好ましい。電荷輸送性ポリマーが構造単位T1を含む場合、上記割合は構造単位T1を含めた全量を意味する。 The proportion of the structural unit T contained in the charge transporting polymer is based on the total structural unit from the viewpoint of improving the characteristics of the organic electronics element or suppressing the increase in the viscosity and satisfactorily synthesizing the charge transporting polymer. 5 mol% or more is preferable, 10 mol% or more is more preferable, and 15 mol% or more is still more preferable. The proportion of the structural unit T is preferably 60 mol% or less, more preferably 55 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining sufficient charge transport properties. When the charge transporting polymer contains the structural unit T1, the above ratio means the total amount including the structural unit T1.

 電荷輸送性ポリマーが重合性官能基を有する場合、重合性官能基の割合は、電荷輸送性ポリマーを効率よく硬化させるという観点から、全構造単位を基準として、0.1モル%以上が好ましく、1モル%以上がより好ましく、3モル%以上が更に好ましい。また、重合性官能基の割合は、良好な電荷輸送性を得るという観点から、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。なお、ここでの「重合性官能基の割合」とは、重合性官能基を有する構造単位の割合をいう。 When the charge transporting polymer has a polymerizable functional group, the proportion of the polymerizable functional group is preferably 0.1 mol% or more based on the total structural unit from the viewpoint of efficiently curing the charge transporting polymer, 1 mol% or more is more preferable, and 3 mol% or more is still more preferable. The proportion of the polymerizable functional group is preferably 70 mol% or less, more preferably 60 mol% or less, and still more preferably 50 mol% or less from the viewpoint of obtaining good charge transportability. The “ratio of polymerizable functional groups” here refers to the ratio of structural units having a polymerizable functional group.

 電荷輸送性、耐久性、生産性等のバランスを考慮すると、構造単位L及び構造単位Tの割合(モル比)は、L:T=100:70~1が好ましく、100:50~3がより好ましく、100:30~5が更に好ましい。また、電荷輸送性ポリマーが構造単位Bを含む場合、構造単位L、構造単位T、及び構造単位Bの割合(モル比)は、L:T:B=100:10~200:10~100が好ましく、100:20~180:20~90がより好ましく、100:40~160:30~80が更に好ましい。 Considering the balance of charge transportability, durability, productivity, etc., the ratio (molar ratio) between the structural unit L and the structural unit T is preferably L: T = 100: 70-1 and more preferably 100: 50-3. 100: 30 to 5 is more preferable. When the charge transporting polymer contains the structural unit B, the ratio (molar ratio) of the structural unit L, the structural unit T, and the structural unit B is L: T: B = 100: 10 to 200: 10 to 100. 100: 20 to 180: 20 to 90 is more preferable, and 100: 40 to 160: 30 to 80 is still more preferable.

 構造単位の割合は、電荷輸送性ポリマーを合成するために使用した、各構造単位に対応するモノマーの仕込み量を用いて求めることができる。また、構造単位の割合は、電荷輸送性ポリマーのH NMRスペクトルにおける各構造単位に由来するスペクトルの積分値を利用し、平均値として算出することができる。簡便であることから、仕込み量が明らかである場合は、好ましくは、仕込み量を用いて求めた値を採用する。 The proportion of the structural unit can be determined by using the charged amount of the monomer corresponding to each structural unit used for synthesizing the charge transporting polymer. Moreover, the ratio of the structural unit can be calculated as an average value using an integrated value of the spectrum derived from each structural unit in the 1 H NMR spectrum of the charge transporting polymer. Since it is simple, when the preparation amount is clear, a value obtained by using the preparation amount is preferably adopted.

(数平均分子量)
 電荷輸送性ポリマーの数平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。数平均分子量は、電荷輸送性に優れるという観点から、500以上が好ましく、1,000以上がより好ましく、2,000以上が更に好ましい。また、数平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、100,000以下がより好ましく、50,000以下が更に好ましい。
(Number average molecular weight)
The number average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like. The number average molecular weight is preferably 500 or more, more preferably 1,000 or more, and still more preferably 2,000 or more, from the viewpoint of excellent charge transportability. The number average molecular weight is preferably 1,000,000 or less, more preferably 100,000 or less, and more preferably 50,000 from the viewpoint of maintaining good solubility in a solvent and facilitating the preparation of an ink composition. The following is more preferable.

(重量平均分子量)
 電荷輸送性ポリマーの重量平均分子量は、溶剤への溶解性、成膜性等を考慮して適宜、調整できる。重量平均分子量は、電荷輸送性に優れるという観点から、1,000以上が好ましく、5,000以上がより好ましく、10,000以上が更に好ましい。また、重量平均分子量は、溶媒への良好な溶解性を保ち、インク組成物の調製を容易にするという観点から、1,000,000以下が好ましく、700,000以下がより好ましく、400,000以下が更に好ましい。
(Weight average molecular weight)
The weight average molecular weight of the charge transporting polymer can be appropriately adjusted in consideration of solubility in a solvent, film formability, and the like. The weight average molecular weight is preferably 1,000 or more, more preferably 5,000 or more, and still more preferably 10,000 or more, from the viewpoint of excellent charge transportability. Further, the weight average molecular weight is preferably 1,000,000 or less, more preferably 700,000 or less, and more preferably 400,000 from the viewpoint of maintaining good solubility in a solvent and facilitating preparation of an ink composition. The following is more preferable.

 数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、標準ポリスチレンの検量線を用いて測定することができる。 The number average molecular weight and the weight average molecular weight can be measured by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.

(製造方法)
 電荷輸送性ポリマーは、種々の合成方法により製造でき、特に限定されない。例えば、鈴木カップリング、根岸カップリング、園頭カップリング、スティルカップリング、ブッフバルト・ハートウィッグカップリング等の公知のカップリング反応を用いることができる。鈴木カップリングは、芳香族ボロン酸誘導体と芳香族ハロゲン化物の間で、Pd触媒を用いたクロスカップリング反応を起こさせるものである。鈴木カップリングによれば、所望とする芳香環同士を結合させることにより、電荷輸送性ポリマーを簡便に製造できる。
(Production method)
The charge transporting polymer can be produced by various synthetic methods and is not particularly limited. For example, known coupling reactions such as Suzuki coupling, Negishi coupling, Sonogashira coupling, Stille coupling, Buchwald-Hartwig coupling and the like can be used. Suzuki coupling causes a cross coupling reaction using a Pd catalyst between an aromatic boronic acid derivative and an aromatic halide. According to Suzuki coupling, a charge transporting polymer can be easily produced by bonding desired aromatic rings together.

 カップリング反応では、触媒として、例えば、Pd(0)化合物、Pd(II)化合物、Ni化合物等が用いられる。また、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム(II)等を前駆体とし、ホスフィン配位子と混合することにより発生させた触媒種を用いることもできる。電荷輸送性ポリマーの合成方法については、例えば、国際公開第WO2010/140553号の記載を参照できる。 In the coupling reaction, for example, a Pd (0) compound, a Pd (II) compound, a Ni compound, or the like is used as a catalyst. In addition, a catalyst species generated by mixing tris (dibenzylideneacetone) dipalladium (0), palladium (II) acetate and the like with a phosphine ligand can also be used. For the method for synthesizing the charge transporting polymer, for example, the description of International Publication No. WO2010 / 140553 can be referred to.

[ドーパント]
 有機エレクトロニクス材料は、ドーパントを更に含有してもよい。ドーパントは、有機エレクトロニクス材料に添加することでドーピング効果を発現させ、電荷の輸送性を向上させ得る化合物であればよく、特に制限はない。ドーピングには、p型ドーピングとn型ドーピングがあり、p型ドーピングではドーパントとして電子受容体として働く物質が用いられ、n型ドーピングではドーパントとして電子供与体として働く物質が用いられる。正孔輸送性の向上にはp型ドーピング、電子輸送性の向上にはn型ドーピングを行うことが好ましい。有機エレクトロニクス材料に用いられるドーパントは、p型ドーピング又はn型ドーピングのいずれの効果を発現させるドーパントであってもよい。また、1種のドーパントを単独で添加しても、複数種のドーパントを混合して添加してもよい。
[Dopant]
The organic electronic material may further contain a dopant. The dopant is not particularly limited as long as it is a compound that can be added to the organic electronic material to develop a doping effect and improve the charge transport property. Doping includes p-type doping and n-type doping. In p-type doping, a substance serving as an electron acceptor is used as a dopant, and in n-type doping, a substance serving as an electron donor is used as a dopant. It is preferable to perform p-type doping for improving hole transportability and n-type doping for improving electron transportability. The dopant used in the organic electronic material may be a dopant that exhibits any effect of p-type doping or n-type doping. Further, one kind of dopant may be added alone, or plural kinds of dopants may be mixed and added.

 p型ドーピングに用いられるドーパントは、電子受容性の化合物であり、例えば、ルイス酸、プロトン酸、遷移金属化合物、イオン化合物、ハロゲン化合物、π共役系化合物等が挙げられる。具体的には、ルイス酸としては、FeCl、PF、AsF、SbF、BF、BCl、BBr等;プロトン酸としては、HF、HCl、HBr、HNO、HSO、HClO等の無機酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、ポリビニルスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、1-ブタンスルホン酸、ビニルフェニルスルホン酸、カンファスルホン酸等の有機酸;遷移金属化合物としては、FeOCl、TiCl、ZrCl、HfCl、NbF、AlCl、NbCl、TaCl、MoF;イオン化合物としては、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、トリス(トリフルオロメタンスルホニル)メチドイオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロアンチモン酸イオン、AsF (ヘキサフルオロ砒酸イオン)、BF (テトラフルオロホウ酸イオン)、PF (ヘキサフルオロリン酸イオン)等のパーフルオロアニオンを有する塩、アニオンとして前記プロトン酸の共役塩基を有する塩など;ハロゲン化合物としては、Cl、Br、I、ICl、ICl、IBr、IF等;π共役系化合物としては、TCNE(テトラシアノエチレン)、TCNQ(テトラシアノキノジメタン)等が挙げられる。また、特開2000-36390号公報、特開2005-75948号公報、特開2003-213002号公報等に記載の電子受容性化合物を用いることも可能である。好ましくは、ルイス酸、イオン化合物、π共役系化合物等である。 The dopant used for p-type doping is an electron-accepting compound, and examples thereof include Lewis acids, proton acids, transition metal compounds, ionic compounds, halogen compounds, and π-conjugated compounds. Specifically, as the Lewis acid, FeCl 3 , PF 5 , AsF 5 , SbF 5 , BF 5 , BCl 3 , BBr 3 and the like; as the protonic acid, HF, HCl, HBr, HNO 5 , H 2 SO 4 , HClO 4 and other inorganic acids, benzenesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, polyvinylsulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, 1-butanesulfonic acid, vinylphenylsulfonic acid Organic acids such as camphorsulfonic acid; transition metal compounds include FeOCl, TiCl 4 , ZrCl 4 , HfCl 4 , NbF 5 , AlCl 3 , NbCl 5 , TaCl 5 , MoF 5 ; Phenyl) borate ion, tris (trifluoro) Methanesulfonyl) Mechidoion, bis (trifluoromethanesulfonyl) imide ion, hexafluoroantimonate ion, AsF 6 - (hexafluoro arsenic acid ions), BF 4 - (tetrafluoroborate), PF 6 - (hexafluorophosphate) A salt having a perfluoroanion such as a salt, a salt having a conjugate base of the protonic acid as an anion; halogen compounds such as Cl 2 , Br 2 , I 2 , ICl, ICl 3 , IBr and IF; π-conjugated compounds Examples thereof include TCNE (tetracyanoethylene), TCNQ (tetracyanoquinodimethane) and the like. In addition, the electron-accepting compounds described in JP 2000-36390 A, JP 2005-75948 A, JP 2003-213002 A, and the like can also be used. Preferred are Lewis acids, ionic compounds, π-conjugated compounds and the like.

 n型ドーピングに用いられるドーパントは、電子供与性の化合物であり、例えば、Li、Cs等のアルカリ金属;Mg、Ca等のアルカリ土類金属;LiF、CsCO等のアルカリ金属及び/又はアルカリ土類金属の塩;金属錯体;電子供与性有機化合物などが挙げられる。 The dopant used for n-type doping is an electron donating compound, for example, alkali metals such as Li and Cs; alkaline earth metals such as Mg and Ca; alkali metals such as LiF and Cs 2 CO 3 and / or Examples include alkaline earth metal salts; metal complexes; electron-donating organic compounds.

 電荷輸送性ポリマーが重合性官能基を有する場合は、有機層の溶解度の変化を容易にするために、ドーパントとして、重合性官能基に対する重合開始剤として作用し得る化合物を用いることが好ましい。 When the charge transporting polymer has a polymerizable functional group, it is preferable to use a compound that can act as a polymerization initiator for the polymerizable functional group as a dopant in order to facilitate the change in solubility of the organic layer.

[他の任意成分]
 有機エレクトロニクス材料は、電荷輸送性低分子化合物、他のポリマー等を更に含有してもよい。
[Other optional ingredients]
The organic electronic material may further contain a charge transporting low molecular weight compound, another polymer, and the like.

[含有量]
 電荷輸送性ポリマーの含有量は、良好な電荷輸送性を得る観点から、有機エレクトロニクス材料の全質量に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。100質量%とすることも可能である。
[Content]
The content of the charge transporting polymer is preferably 50% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more based on the total weight of the organic electronic material from the viewpoint of obtaining good charge transporting properties. preferable. It may be 100% by mass.

 ドーパントを含有する場合、その含有量は、有機エレクトロニクス材料の電荷輸送性を向上させる観点から、有機エレクトロニクス材料の全質量に対して、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上が更に好ましい。また、成膜性を良好に保つ観点から、有機エレクトロニクス材料の全質量に対して、50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下が更に好ましい。 When the dopant is contained, the content is preferably 0.01% by mass or more, and 0.1% by mass or more with respect to the total mass of the organic electronic material from the viewpoint of improving the charge transport property of the organic electronic material. More preferred is 0.5% by mass or more. Moreover, from a viewpoint of maintaining favorable film formability, 50 mass% or less is preferable with respect to the total mass of the organic electronic material, 30 mass% or less is more preferable, and 20 mass% or less is still more preferable.

<インク組成物>
 一実施形態において、上記有機エレクトロニクス材料は、該材料を溶解又は分散し得る溶媒をさらに含有し、インク組成物を構成してもよい。インク組成物は、少なくとも、上記実施形態の有機エレクトロニクス材料と、該材料を溶解又は分散し得る溶媒とを含有する。インク組成物は、有機エレクトロニクス材料による特性を低下させない範囲で、必要に応じて、公知の各種添加剤を含んでもよい。このようなインク組成物を用いることによって、塗布法といった簡便な方法によって有機層を容易に形成できる。
<Ink composition>
In one embodiment, the organic electronic material may further contain a solvent capable of dissolving or dispersing the material to constitute an ink composition. The ink composition contains at least the organic electronic material of the above embodiment and a solvent capable of dissolving or dispersing the material. The ink composition may contain various known additives as required, as long as the characteristics of the organic electronic material are not deteriorated. By using such an ink composition, the organic layer can be easily formed by a simple method such as a coating method.

[溶媒]
 溶媒としては、水、有機溶媒、又はこれらの混合溶媒を使用できる。有機溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール;ペンタン、ヘキサン、オクタン等のアルカン;シクロヘキサン等の環状アルカン;ベンゼン、トルエン、キシレン、メシチレン、テトラリン、ジフェニルメタン等の芳香族炭化水素;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート等の脂肪族エーテル;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル;酢酸エチル、酢酸n-ブチル、乳酸エチル、乳酸n-ブチル等の脂肪族エステル;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド、テトラヒドロフラン、アセトン、クロロホルム、塩化メチレンなどが挙げられる。好ましくは、芳香族炭化水素、脂肪族エステル、芳香族エステル、脂肪族エーテル、芳香族エーテル等である。
[solvent]
As the solvent, water, an organic solvent, or a mixed solvent thereof can be used. Organic solvents include alcohols such as methanol, ethanol and isopropyl alcohol; alkanes such as pentane, hexane and octane; cyclic alkanes such as cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, tetralin and diphenylmethane; ethylene glycol Aliphatic ethers such as dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, Aromatic ethers such as 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole; ethyl acetate, n-butyl acetate, ethyl lactate, n-butyl lactate Aliphatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate and n-butyl benzoate; N, N-dimethylformamide, N, N-dimethylacetamide, etc. Amide solvents; dimethyl sulfoxide, tetrahydrofuran, acetone, chloroform, methylene chloride and the like can be mentioned. Preferred are aromatic hydrocarbons, aliphatic esters, aromatic esters, aliphatic ethers, aromatic ethers and the like.

[重合開始剤]
 電荷輸送性ポリマーが重合性官能基を有する場合、インク組成物は、好ましくは、重合開始剤を含有する。重合開始剤として、公知のラジカル重合開始剤、カチオン重合開始剤、アニオン重合開始剤等を使用できる。インク組成物を簡便に調製できる観点から、ドーパントとしての機能と重合開始剤としての機能とを兼ねる物質を用いることが好ましい。そのような物質として、例えば、前記イオン化合物が挙げられる。
[Polymerization initiator]
When the charge transporting polymer has a polymerizable functional group, the ink composition preferably contains a polymerization initiator. As the polymerization initiator, known radical polymerization initiators, cationic polymerization initiators, anionic polymerization initiators and the like can be used. From the viewpoint of easily preparing the ink composition, it is preferable to use a substance having both a function as a dopant and a function as a polymerization initiator. As such a substance, the said ionic compound is mentioned, for example.

[添加剤]
 インク組成物は、更に、任意成分として添加剤を含有してもよい。添加剤としては、例えば、重合禁止剤、安定剤、増粘剤、ゲル化剤、難燃剤、酸化防止剤、還元防止剤、酸化剤、還元剤、表面改質剤、乳化剤、消泡剤、分散剤、界面活性剤等が挙げられる。
[Additive]
The ink composition may further contain an additive as an optional component. Examples of additives include polymerization inhibitors, stabilizers, thickeners, gelling agents, flame retardants, antioxidants, antioxidants, oxidizing agents, reducing agents, surface modifiers, emulsifiers, antifoaming agents, Examples thereof include a dispersant and a surfactant.

[含有量]
 インク組成物における溶媒の含有量は、種々の塗布方法へ適用することを考慮して定めることができる。例えば、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、0.1質量%以上となる量が好ましく、0.2質量%以上となる量がより好ましく、0.5質量%以上となる量が更に好ましい。また、溶媒の含有量は、溶媒に対し電荷輸送性ポリマーの割合が、20質量%以下となる量が好ましく、15質量%以下となる量がより好ましく、10質量%以下となる量が更に好ましい。
[Content]
The content of the solvent in the ink composition can be determined in consideration of application to various coating methods. For example, the content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 0.1% by mass or more, more preferably 0.2% by mass or more, and 0.5% by mass or more. More preferred is an amount of The content of the solvent is preferably such that the ratio of the charge transporting polymer to the solvent is 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less. .

<有機薄膜(有機層)>
 本発明の実施形態である有機層は、上記実施形態の有機エレクトロニクス材料又はインク組成物を用いて形成された層である。インク組成物を用いることによって、塗布法により有機層を良好に形成できる。
 したがって、本発明の実施形態である有機層の製造方法の一例は、インク組成物を塗布する工程を含む。塗布方法としては、例えば、スピンコーティング法;キャスト法;浸漬法;凸版印刷、凹版印刷、オフセット印刷、平版印刷、凸版反転オフセット印刷、スクリーン印刷、グラビア印刷等の有版印刷法;インクジェット法等の無版印刷法などの公知の方法が挙げられる。
 上記製造方法は、塗布後に得られた有機層(すなわち、塗布層)を、ホットプレート又はオーブンを用いて乾燥させ、溶媒を除去する工程、及び上記塗布層を硬化させる工程など、任意の工程をさらに含んでもよい。
<Organic thin film (organic layer)>
The organic layer which is embodiment of this invention is a layer formed using the organic electronics material or ink composition of the said embodiment. By using the ink composition, the organic layer can be favorably formed by a coating method.
Therefore, an example of the method for producing an organic layer that is an embodiment of the present invention includes a step of applying an ink composition. Examples of the coating method include spin coating method; casting method; dipping method; letterpress printing, intaglio printing, offset printing, planographic printing, letterpress inversion offset printing, screen printing, gravure printing and other plate printing methods; ink jet method, etc. A known method such as a plateless printing method may be used.
The manufacturing method includes any steps such as drying the organic layer (that is, the coating layer) obtained after coating using a hot plate or an oven, removing the solvent, and curing the coating layer. Further, it may be included.

 電荷輸送性ポリマーが重合性官能基を有する場合、光照射、加熱処理等により電荷輸送性ポリマーの重合反応を進行させ、有機層の溶解度を変化させることができる。溶解度を変化させた有機層を積層することで、有機エレクトロニクス素子の多層化を容易に図ることが可能となる。有機層の形成方法については、例えば、国際公開第WO2010/140553号の記載を参照できる。 When the charge transporting polymer has a polymerizable functional group, the solubility of the organic layer can be changed by proceeding the polymerization reaction of the charge transporting polymer by light irradiation, heat treatment or the like. By laminating organic layers with different solubility, it is possible to easily increase the number of organic electronics elements. For the method of forming the organic layer, for example, the description of International Publication No. WO2010 / 140553 can be referred to.

 乾燥後又は硬化後の有機層の厚さは、電荷輸送の効率を向上させる観点から、好ましくは0.1nm以上であり、より好ましくは1nm以上であり、更に好ましくは3nm以上である。また、有機層の厚さは、電気抵抗を小さくする観点から、好ましくは300nm以下であり、より好ましくは200nm以下であり、更に好ましくは100nm以下である。 From the viewpoint of improving the charge transport efficiency, the thickness of the organic layer after drying or curing is preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 3 nm or more. In addition, the thickness of the organic layer is preferably 300 nm or less, more preferably 200 nm or less, and still more preferably 100 nm or less, from the viewpoint of reducing electrical resistance.

<有機エレクトロニクス素子>
 本発明の実施形態である有機エレクトロニクス素子は、少なくとも上記実施形態の有機層を有する。有機エレクトロニクス素子として、例えば、有機EL素子、有機光電変換素子、有機トランジスタ等が挙げられる。有機エレクトロニクス素子は、好ましくは、少なくとも一対の電極の間に有機層が配置された構造を有する。
<Organic electronics elements>
The organic electronics element which is embodiment of this invention has the organic layer of the said embodiment at least. Examples of the organic electronics element include an organic EL element, an organic photoelectric conversion element, and an organic transistor. The organic electronic element preferably has a structure in which an organic layer is disposed between at least a pair of electrodes.

[有機EL素子]
 本発明の実施形態である有機EL素子は、少なくとも上記実施形態の有機層を有する。有機EL素子は、通常、発光層、陽極、陰極、及び基板を備えており、必要に応じて、正孔注入層、電子注入層、正孔輸送層、電子輸送層等の他の機能層を備えている。各層は、蒸着法により形成してもよく、塗布法により形成してもよい。有機EL素子は、好ましくは、有機層を発光層又は他の機能層として有し、より好ましくは機能層として有し、更に好ましくは正孔注入層及び正孔輸送層の少なくとも一方として有する。一実施形態において、有機層の形成は、先に説明したインク組成物を使用し、塗布法に従って良好に実施することができる。
[Organic EL device]
The organic EL element which is embodiment of this invention has an organic layer of the said embodiment at least. The organic EL element usually includes a light emitting layer, an anode, a cathode, and a substrate, and other functional layers such as a hole injection layer, an electron injection layer, a hole transport layer, and an electron transport layer are provided as necessary. I have. Each layer may be formed by a vapor deposition method or a coating method. The organic EL element preferably has an organic layer as a light emitting layer or other functional layer, more preferably as a functional layer, and still more preferably as at least one of a hole injection layer and a hole transport layer. In one embodiment, the organic layer can be formed satisfactorily according to a coating method using the ink composition described above.

 図1及び図2は、それぞれ有機EL素子の一実施形態を示す断面模式図である。図1に示す有機EL素子は、多層構造の素子であり、基板6の上に、陽極1、正孔注入層2、発光層3、電子注入層4、及び陰極5をこの順に有している。一実施形態において、正孔注入層2は、本発明の一実施形態である有機層から構成される。
 図2に示す有機EL素子は、多層構造の素子であり、基板6の上に、陽極1、正孔注入層2、正孔輸送層7、発光層3、電子輸送層8、電子注入層4、及び陰極5をこの順に有している。一実施形態において、正孔注入層2及び正孔輸送層7の少なくとも一方は、本発明の一実施形態である有機層から構成される。以下、各層について説明する。
FIG.1 and FIG.2 is a cross-sectional schematic diagram which shows one Embodiment of an organic EL element, respectively. The organic EL element shown in FIG. 1 is an element having a multilayer structure, and has an anode 1, a hole injection layer 2, a light emitting layer 3, an electron injection layer 4, and a cathode 5 in this order on a substrate 6. . In one embodiment, the hole injection layer 2 is composed of an organic layer that is one embodiment of the present invention.
The organic EL element shown in FIG. 2 is an element having a multilayer structure. On the substrate 6, the anode 1, the hole injection layer 2, the hole transport layer 7, the light emitting layer 3, the electron transport layer 8, and the electron injection layer 4 are provided. And the cathode 5 in this order. In one embodiment, at least one of the hole injection layer 2 and the hole transport layer 7 is composed of an organic layer that is an embodiment of the present invention. Hereinafter, each layer will be described.

[発光層]
 発光層に用いる材料として、低分子化合物、ポリマー、デンドリマー等の発光材料を使用できる。ポリマーは、溶媒への溶解性が高く、塗布法に適しているため好ましい。発光材料としては、蛍光材料、燐光材料、熱活性化遅延蛍光材料(TADF)等が挙げられる。
[Light emitting layer]
As a material used for the light emitting layer, a light emitting material such as a low molecular compound, a polymer, or a dendrimer can be used. A polymer is preferable because it has high solubility in a solvent and is suitable for a coating method. Examples of the light emitting material include a fluorescent material, a phosphorescent material, a thermally activated delayed fluorescent material (TADF), and the like.

 蛍光材料として、ペリレン、クマリン、ルブレン、キナクドリン、スチルベン、色素レーザー用色素、アルミニウム錯体、これらの誘導体等の低分子化合物;ポリフルオレン、ポリフェニレン、ポリフェニレンビニレン、ポリビニルカルバゾール、フルオレンーベンゾチアジアゾール共重合体、フルオレン-トリフェニルアミン共重合体、これらの誘導体等のポリマー;これらの混合物等が挙げられる。 Fluorescent materials such as perylene, coumarin, rubrene, quinacdrine, stilbene, dyes for dye lasers, aluminum complexes, and derivatives thereof; polyfluorene, polyphenylene, polyphenylene vinylene, polyvinylcarbazole, fluorene-benzothiadiazole copolymer , Fluorene-triphenylamine copolymers, polymers thereof such as derivatives thereof, and mixtures thereof.

 燐光材料として、Ir、Pt等の金属を含む金属錯体などを使用できる。Ir錯体としては、例えば、青色発光を行うFIr(pic)(イリジウム(III)ビス[(4,6-ジフルオロフェニル)-ピリジネート-N,C]ピコリネート)、緑色発光を行うIr(ppy)(ファク トリス(2-フェニルピリジン)イリジウム)、赤色発光を行う(btp)Ir(acac)(ビス〔2-(2’-ベンゾ[4,5-α]チエニル)ピリジナート-N,C〕イリジウム(アセチル-アセトネート))、Ir(piq)(トリス(1-フェニルイソキノリン)イリジウム)等が挙げられる。Pt錯体としては、例えば、赤色発光を行うPtOEP(2、3、7、8、12、13、17、18-オクタエチル-21H、23H-フォルフィンプラチナ)等が挙げられる。 As the phosphorescent material, a metal complex containing a metal such as Ir or Pt can be used. Examples of the Ir complex include FIr (pic) that emits blue light (iridium (III) bis [(4,6-difluorophenyl) -pyridinate-N, C 2 ] picolinate), and Ir (ppy) 3 that emits green light. (Factris (2-phenylpyridine) iridium), which emits red light (btp) 2 Ir (acac) (bis [2- (2′-benzo [4,5-α] thienyl) pyridinate-N, C 3 ] Iridium (acetyl-acetonate)), Ir (piq) 3 (tris (1-phenylisoquinoline) iridium) and the like. Examples of the Pt complex include PtOEP (2, 3, 7, 8, 12, 13, 17, 18-octaethyl-21H, 23H-formin platinum) that emits red light.

 発光層が燐光材料を含む場合、燐光材料の他に、更にホスト材料を含むことが好ましい。ホスト材料としては、低分子化合物、ポリマー、又はデンドリマーを使用できる。低分子化合物としては、例えば、CBP(4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル)、mCP(1,3-ビス(9-カルバゾリル)ベンゼン)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、これらの誘導体等が、ポリマーとしては、上記実施形態の有機エレクトロニクス材料、ポリビニルカルバゾール、ポリフェニレン、ポリフルオレン、これらの誘導体等が挙げられる。 In the case where the light emitting layer contains a phosphorescent material, it is preferable to further contain a host material in addition to the phosphorescent material. As the host material, a low molecular compound, a polymer, or a dendrimer can be used. Examples of the low molecular weight compound include CBP (4,4′-bis (9H-carbazol-9-yl) biphenyl), mCP (1,3-bis (9-carbazolyl) benzene), CDBP (4,4′- Bis (carbazol-9-yl) -2,2′-dimethylbiphenyl), derivatives thereof, and the like. Examples of the polymer include the organic electronic materials, polyvinyl carbazole, polyphenylene, polyfluorene, derivatives thereof, and the like of the above embodiment. It is done.

 熱活性化遅延蛍光材料としては、例えば、Adv. Mater., 21, 4802-4906 (2009);Appl. Phys. Lett., 98, 083302 (2011);Chem. Comm., 48, 9580 (2012);Appl. Phys. Lett., 101, 093306 (2012);J. Am. Chem. Soc., 134, 14706 (2012);Chem. Comm., 48, 11392 (2012);Nature, 492, 234 (2012);Adv. Mater., 25, 3319 (2013);J. Phys. Chem. A, 117, 5607 (2013);Phys. Chem. Chem. Phys., 15, 15850 (2013);Chem. Comm., 49, 10385 (2013);Chem. Lett., 43, 319 (2014)等に記載の化合物が挙げられる。 Examples of thermally activated delayed fluorescent materials include Adv.AMater., 21, 4802-4906 (2009); Appl. Phys. Lett., 98, 083302 (2011); Chem. Comm., 48, 9580 (2012) ; Appl. Phys. Lett., 101, 093306 (2012); J. Am. Chem. Soc., 134, 14706 (2012); Chem. Comm., 48, 11392 (2012); Nature, 492, 234 (2012) ); Adv. Mater., 25, 3319 (2013); J. Phys. Chem. A, 117, 5607 (2013); Phys. Chem. Chem. Phys., 15, 15850 (2013); Chem. Comm., 49, 10385) (2013); Chem. Lett., 43, 319 (2014) and the like.

[正孔輸送層、正孔注入層]
 正孔輸送層及び正孔注入層を構成する材料として、本発明の実施形態である有機エレクトロニクス材料が挙げられる。一実施形態において、正孔注入層及び正孔輸送層の少なくとも一方は、本発明の実施形態である有機エレクトロニクス材料から構成されることが好ましい。
 正孔輸送層及び正孔注入層を構成する材料として、本発明の実施形態である有機エレクトロニクス材料に含まれる電荷輸送性ポリマーとは異なるポリマーを含む材料を使用することもできる。例えば、9-フェニルカルバゾール構造を有する3価以上の構造単位と、フェニル基に対する置換基としてアルコキシ基を持たないトリフェニルアミン構造を有する構造単位とを含む電荷輸送性ポリマーを含有する有機エレクトロニクス材料を使用することもできる。その他、公知の材料を使用することもできる。
[Hole transport layer, hole injection layer]
As a material constituting the hole transport layer and the hole injection layer, an organic electronic material which is an embodiment of the present invention can be given. In one embodiment, at least one of the hole injection layer and the hole transport layer is preferably composed of an organic electronic material that is an embodiment of the present invention.
As a material constituting the hole transport layer and the hole injection layer, a material containing a polymer different from the charge transport polymer contained in the organic electronics material according to the embodiment of the present invention can be used. For example, an organic electronic material containing a charge transporting polymer including a trivalent or higher valent structural unit having a 9-phenylcarbazole structure and a structural unit having a triphenylamine structure having no alkoxy group as a substituent for the phenyl group. It can also be used. In addition, a known material can also be used.

 正孔注入層及び正孔輸送層に用いることができる公知の材料として、例えば、(芳香族アミン系化合物(例えば、N,N’-ジ(ナフタレン-1-イル)-N,N’-ジフェニル-ベンジジン(α-NPD)などの芳香族ジアミン)、フタロシアニン系化合物、チオフェン系化合物(例えば、チオフェン系導電性ポリマー(たとえば、ポリ(3,4-エチレンジオキシチオフェン):ポリ(4-スチレンスルホン酸塩)(PEDOT:PSS)等)等が挙げられる。) Known materials that can be used for the hole injection layer and the hole transport layer include, for example, (aromatic amine compounds (for example, N, N′-di (naphthalen-1-yl) -N, N′-diphenyl) -Aromatic diamines such as benzidine (α-NPD)), phthalocyanine compounds, thiophene compounds (eg, thiophene conductive polymers (eg, poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfone) Acid salt) (PEDOT: PSS) and the like).

 一実施形態において、有機EL素子が、正孔注入層と正孔輸送層とを有する場合、正孔注入層を公知の材料又は上記その他の有機エレクトロニクス材料を用いて構成し、正孔輸送層を本発明の実施形態である有機エレクトロニクス材料を用いて形成した有機層から構成することが好ましい。 In one embodiment, when the organic EL device has a hole injection layer and a hole transport layer, the hole injection layer is formed using a known material or the other organic electronic material, and the hole transport layer is formed. It is preferable to comprise from the organic layer formed using the organic electronics material which is embodiment of this invention.

[電子輸送層、電子注入層]
 電子輸送層及び電子注入層に用いる材料としては、例えば、フェナントロリン誘導体、ビピリジン誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレン、ペリレンなどの縮合環テトラカルボン酸無水物、カルボジイミド、フルオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、アルミニウム錯体等が挙げられる。また、上記実施形態の有機エレクトロニクス材料も使用できる。
[Electron transport layer, electron injection layer]
Examples of materials used for the electron transport layer and the electron injection layer include phenanthroline derivatives, bipyridine derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, condensed ring tetracarboxylic anhydrides such as naphthalene and perylene, and carbodiimides. Fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, thiadiazole derivatives, benzimidazole derivatives, quinoxaline derivatives, aluminum complexes, and the like. Moreover, the organic electronic material of the said embodiment can also be used.

[陰極]
 陰極材料としては、例えば、Li、Ca、Mg、Al、In、Cs、Ba、Mg/Ag、LiF、CsF等の金属又は金属合金が用いられる。
[cathode]
As the cathode material, for example, a metal or a metal alloy such as Li, Ca, Mg, Al, In, Cs, Ba, Mg / Ag, LiF, and CsF is used.

[陽極]
 陽極材料としては、例えば、金属(例えば、Au)又は導電性を有する他の材料が用いられる。他の材料として、例えば、酸化物(例えば、ITO:酸化インジウム/酸化錫)、導電性高分子(例えば、ポリチオフェン-ポリスチレンスルホン酸混合物(PEDOT:PSS))が挙げられる。
[anode]
As the anode material, for example, a metal (for example, Au) or another material having conductivity is used. Examples of other materials include oxides (for example, ITO: indium oxide / tin oxide) and conductive polymers (for example, polythiophene-polystyrene sulfonic acid mixture (PEDOT: PSS)).

[基板]
 基板として、ガラス、プラスチック等を使用できる。基板は、透明であることが好ましく、また、フレキシブル性を有することが好ましい。石英ガラス、光透過性樹脂フィルム等が好ましく用いられる。
[substrate]
As the substrate, glass, plastic or the like can be used. The substrate is preferably transparent and preferably has flexibility. Quartz glass, light transmissive resin film, and the like are preferably used.

 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネート等からなるフィルムが挙げられる。 Examples of the resin film include films made of polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate, and the like. Can be mentioned.

 樹脂フィルムを用いる場合、水蒸気、酸素等の透過を抑制するために、樹脂フィルムへ酸化珪素、窒化珪素等の無機物をコーティングして用いてもよい。 In the case of using a resin film, an inorganic substance such as silicon oxide or silicon nitride may be coated on the resin film in order to suppress permeation of water vapor, oxygen and the like.

[発光色]
 有機EL素子の発光色は特に限定されない。白色の有機EL素子は、家庭用照明、車内照明、時計又は液晶のバックライト等の各種照明器具に用いることができるため好ましい。
[Luminescent color]
The emission color of the organic EL element is not particularly limited. The white organic EL element is preferable because it can be used for various lighting devices such as home lighting, interior lighting, a clock, or a liquid crystal backlight.

 白色の有機EL素子を形成する方法としては、複数の発光材料を用いて複数の発光色を同時に発光させて混色させる方法を用いることができる。複数の発光色の組み合わせとしては、特に限定されないが、青色、緑色及び赤色の3つの発光極大波長を含有する組み合わせ、青色と黄色、黄緑色と橙色等の2つの発光極大波長を含有する組み合わせが挙げられる。発光色の制御は、発光材料の種類と量の調整により行うことができる。 As a method of forming a white organic EL element, a method of simultaneously emitting a plurality of emission colors using a plurality of light emitting materials and mixing the colors can be used. The combination of a plurality of emission colors is not particularly limited, but there are a combination containing three emission maximum wavelengths of blue, green and red, and a combination containing two emission maximum wavelengths such as blue and yellow, yellow green and orange. Can be mentioned. The emission color can be controlled by adjusting the type and amount of the light emitting material.

<表示素子、照明装置、表示装置>
 本発明の実施形態である表示素子は、上記実施形態の有機EL素子を備えている。例えば、赤、緑及び青(RGB)の各画素に対応する素子として、有機EL素子を用いることで、カラーの表示素子が得られる。画像の形成方法には、マトリックス状に配置した電極でパネルに配列された個々の有機EL素子を直接駆動する単純マトリックス型と、各素子に薄膜トランジスタを配置して駆動するアクティブマトリックス型とがある。
<Display element, lighting device, display device>
The display element which is embodiment of this invention is equipped with the organic EL element of the said embodiment. For example, a color display element can be obtained by using an organic EL element as an element corresponding to each pixel of red, green, and blue (RGB). Image forming methods include a simple matrix type in which individual organic EL elements arranged in a panel are directly driven by electrodes arranged in a matrix, and an active matrix type in which a thin film transistor is arranged and driven in each element.

 また、本発明の実施形態である照明装置は、本発明の実施形態の有機EL素子を備えている。さらに、本発明の実施形態である表示装置は、照明装置と、表示手段として液晶素子とを備えている。例えば、表示装置は、バックライトとして本発明の実施形態である照明装置を用い、表示手段として公知の液晶素子を用いた表示装置、すなわち液晶表示装置とできる。 Further, the lighting device according to the embodiment of the present invention includes the organic EL element according to the embodiment of the present invention. Furthermore, the display apparatus which is embodiment of this invention is equipped with the illuminating device and the liquid crystal element as a display means. For example, the display device may be a display device using a known liquid crystal element as a display unit, that is, a liquid crystal display device, using the illumination device according to the embodiment of the present invention as a backlight.

 以下に、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples.

<I>電荷輸送性ポリマーの調製
(Pd触媒の調製)
 窒素雰囲気下のグローブボックス中で、室温下、サンプル管にトリス(ジベンジリデンアセン)ジパラジウム(73.2mg、80μmol)を秤取り、アニソール(15mL)を加え、30分間攪拌した。同様に、サンプル管にトリス(t-ブチル)ホスフィン(129.6mg、640μmol)を秤取り、アニソール(5mL)を加え、5分間攪拌した。これらの溶液を混合し、室温で30分間攪拌した後、Pd触媒溶液として使用した。すべての溶媒は30分以上、窒素バブルにより脱気した後、使用した。
<I> Preparation of charge transporting polymer (Preparation of Pd catalyst)
Tris (dibenzylideneacene) dipalladium (73.2 mg, 80 μmol) was weighed into a sample tube at room temperature in a glove box under a nitrogen atmosphere, anisole (15 mL) was added, and the mixture was stirred for 30 minutes. Similarly, tris (t-butyl) phosphine (129.6 mg, 640 μmol) was weighed in a sample tube, anisole (5 mL) was added, and the mixture was stirred for 5 minutes. These solutions were mixed and stirred at room temperature for 30 minutes, and then used as a Pd catalyst solution. All solvents were used after being degassed with nitrogen bubbles for more than 30 minutes.

(電荷輸送性ポリマー1)
 三口丸底フラスコに、下記モノマーB1-1(2.0mmol)、下記モノマーL1(5.0mmol)、下記モノマーT-1(1.0mmol)、下記モノマーT-2(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。この反応液を30分攪拌した後、上記反応液に10%テトラエチルアンモニウム水酸化物水溶液(20mL)を加えた。すべての原料は30分以上、窒素バブルにより脱気した後に使用した。この混合物を2時間、加熱還流した。ここまでの操作は窒素気流下で行った。
(Charge transporting polymer 1)
In a three-neck round bottom flask, the following monomer B1-1 (2.0 mmol), the following monomer L1 (5.0 mmol), the following monomer T-1 (1.0 mmol), the following monomer T-2 (3.0 mmol), and anisole (20 mL) was added, and the previously prepared Pd catalyst solution (7.5 mL) was further added. After the reaction solution was stirred for 30 minutes, a 10% tetraethylammonium hydroxide aqueous solution (20 mL) was added to the reaction solution. All raw materials were used after being degassed with nitrogen bubbles for 30 minutes or more. The mixture was heated to reflux for 2 hours. The operation so far was performed under a nitrogen stream.

Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015

 反応終了後、有機層を水洗し、有機層をメタノール-水(9:1)に注いだ。生じた沈殿を吸引ろ過によって回収し、メタノール-水(9:1)で洗浄した。得られた沈殿をトルエンに溶解し、メタノールから再沈殿した。得られた沈殿を吸引ろ過により回収し、トルエンに溶解し、金属吸着剤(Strem Chemicals社製「Triphenylphosphine,polymer-bound on styrene-divinylbenzene copolymer」、沈殿物100mgに対して200mg)を加えて、一晩攪拌した。攪拌終了後、金属吸着剤及び不溶物をろ過によって取り除き、ろ液をロータリーエバポレーターで濃縮した。濃縮液をトルエンに溶解した後、メタノール-アセトン(8:3)から再沈殿した。生じた沈殿を吸引ろ過によって回収し、メタノール-アセトン(8:3)で洗浄した。得られた沈殿を真空乾燥し、電荷輸送性ポリマー1を得た。
 得られた電荷輸送性ポリマー1の数平均分子量は33,700であり、重量平均分子量は92,000であった。
After completion of the reaction, the organic layer was washed with water, and the organic layer was poured into methanol-water (9: 1). The resulting precipitate was collected by suction filtration and washed with methanol-water (9: 1). The resulting precipitate was dissolved in toluene and reprecipitated from methanol. The obtained precipitate was collected by suction filtration, dissolved in toluene, and a metal adsorbent (“Triphenylphosphine, polymer-bound on styrene-divinylbenzene copolymer” manufactured by Strem Chemicals, 200 mg with respect to 100 mg of the precipitate) was added. Stir overnight. After completion of the stirring, the metal adsorbent and insoluble matter were removed by filtration, and the filtrate was concentrated with a rotary evaporator. The concentrate was dissolved in toluene and then reprecipitated from methanol-acetone (8: 3). The resulting precipitate was collected by suction filtration and washed with methanol-acetone (8: 3). The obtained precipitate was vacuum-dried to obtain a charge transporting polymer 1.
The number average molecular weight of the obtained charge transporting polymer 1 was 33,700, and the weight average molecular weight was 92,000.

 数平均分子量及び重量平均分子量は、溶離液にテトラヒドロフラン(THF)を用いたGPC(ポリスチレン換算)により測定した。測定条件は以下のとおりである。
送液ポンプ    :L-6050 (株)日立ハイテクノロジーズ
UV-Vis検出器:L-3000 (株)日立ハイテクノロジーズ
カラム      :Gelpack(登録商標) GL-A160S/GL-A150S 日立化成(株)
溶離液      :THF(HPLC用、安定剤を含まない) 和光純薬工業(株)
流速       :1mL/min
カラム温度    :室温
分子量標準物質  :標準ポリスチレン
The number average molecular weight and the weight average molecular weight were measured by GPC (polystyrene conversion) using tetrahydrofuran (THF) as an eluent. The measurement conditions are as follows.
Liquid feed pump: L-6050 Hitachi High-Technologies UV-Vis detector: L-3000 Hitachi High-Technologies columns: Gelpack (registered trademark) GL-A160S / GL-A150S Hitachi Chemical Co., Ltd.
Eluent: THF (for HPLC, without stabilizer) Wako Pure Chemical Industries, Ltd.
Flow rate: 1 mL / min
Column temperature: Room temperature molecular weight standard: Standard polystyrene

(電荷輸送性ポリマー2)
 三口丸底フラスコに、上記モノマーB1-1(2.0mmol)、下記モノマーL-1(5.0mmol)、上記モノマーT-1(1.0mmol)、下記モノマーT1(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー2の合成を行った。
 得られた電荷輸送性ポリマー2の数平均分子量は18,400であり、重量平均分子量は47,000であった。
(Charge transporting polymer 2)
In a three-necked round bottom flask, the above monomer B1-1 (2.0 mmol), the following monomer L-1 (5.0 mmol), the above monomer T-1 (1.0 mmol), the following monomer T1 (3.0 mmol), and anisole (20 mL) was added, and the previously prepared Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 2 was synthesized in the same manner as the synthesis of the charge transporting polymer 1.
The number average molecular weight of the obtained charge transporting polymer 2 was 18,400, and the weight average molecular weight was 47,000.

Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016

(電荷輸送性ポリマー3)
 三口丸底フラスコに、上記モノマーB1-1(2.0mmol)、上記モノマーL1(5.0mmol)、上記モノマーT-1(1.0mmol)、上記モノマーT1(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー3の合成を行った。
 得られた電荷輸送性ポリマー3の数平均分子量は23,600であり、重量平均分子量は61,200であった。
(Charge transporting polymer 3)
A three-necked round bottom flask was charged with the monomer B1-1 (2.0 mmol), the monomer L1 (5.0 mmol), the monomer T-1 (1.0 mmol), the monomer T1 (3.0 mmol), and anisole (20 mL). ), And the previously prepared Pd catalyst solution (7.5 mL) was added. Thereafter, the charge transporting polymer 3 was synthesized in the same manner as the synthesis of the charge transporting polymer 1.
The number average molecular weight of the obtained charge transporting polymer 3 was 23,600, and the weight average molecular weight was 61,200.

(電荷輸送性ポリマー4)
 三口丸底フラスコに、下記モノマーB1-2(2.0mmol)、上記モノマーL1(5.0mmol)、上記モノマーT-1(1.0mmol)、上記モノマーT-2(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー4の合成を行った。
 得られた電荷輸送性ポリマー4の数平均分子量は20,200であり、重量平均分子量は79,800であった。
(Charge transporting polymer 4)
In a three-necked round bottom flask, the following monomer B1-2 (2.0 mmol), monomer L1 (5.0 mmol), monomer T-1 (1.0 mmol), monomer T-2 (3.0 mmol), and anisole (20 mL) was added, and the previously prepared Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 4 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
The resulting charge transporting polymer 4 had a number average molecular weight of 20,200 and a weight average molecular weight of 79,800.

Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017

(電荷輸送性ポリマー5)
 三口丸底フラスコに、上記モノマーB1-2(2.0mmol)、上記モノマーL-1(5.0mmol)、上記モノマーT-1(1.0mmol)、上記モノマーT1(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー5の合成を行った。
 得られた電荷輸送性ポリマー5の数平均分子量は18,400であり、重量平均分子量は52,700であった。
(Charge transporting polymer 5)
In a three-necked round bottom flask, the monomer B1-2 (2.0 mmol), the monomer L-1 (5.0 mmol), the monomer T-1 (1.0 mmol), the monomer T1 (3.0 mmol), and anisole (20 mL) was added, and the previously prepared Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 5 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
The number average molecular weight of the obtained charge transporting polymer 5 was 18,400, and the weight average molecular weight was 52,700.

(電荷輸送性ポリマー6)
 三口丸底フラスコに、上記モノマーB1-2(2.0mmol)、上記モノマーL1(5.0mmol)、上記モノマーT-1(1.0mmol)、上記モノマーT1(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー6の合成を行った。
 得られた電荷輸送性ポリマー6の数平均分子量は25,100であり、重量平均分子量は84,300であった。
(Charge transporting polymer 6)
A three-necked round bottom flask was charged with the monomer B1-2 (2.0 mmol), the monomer L1 (5.0 mmol), the monomer T-1 (1.0 mmol), the monomer T1 (3.0 mmol), and anisole (20 mL). ), And the previously prepared Pd catalyst solution (7.5 mL) was added. Thereafter, the charge transporting polymer 6 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
The number average molecular weight of the obtained charge transporting polymer 6 was 25,100, and the weight average molecular weight was 84,300.

(電荷輸送性ポリマー7)
 三口丸底フラスコに、上記モノマーB1-1(2.0mmol)、上記モノマーL-1(5.0mmol)、上記モノマーT-1(1.0mmol)、上記モノマーT-2(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー7の合成を行った。
 得られた電荷輸送性ポリマー7の数平均分子量は30,900であり、重量平均分子量は88,800であった。
(Charge transporting polymer 7)
In a three-necked round bottom flask, the monomer B1-1 (2.0 mmol), the monomer L-1 (5.0 mmol), the monomer T-1 (1.0 mmol), the monomer T-2 (3.0 mmol), And anisole (20 mL) were added, and the previously prepared Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 7 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
The number average molecular weight of the obtained charge transporting polymer 7 was 30,900, and the weight average molecular weight was 88,800.

(電荷輸送性ポリマー8)
 三口丸底フラスコに、上記モノマーB1-2(2.0mmol)、上記モノマーL-1(5.0mmol)、上記モノマーT-1(1.0mmol)、上記モノマーT-2(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー8の合成を行った。
 得られた電荷輸送性ポリマー8の数平均分子量は19,900であり、重量平均分子量は65,000であった。
(Charge transporting polymer 8)
In a three-necked round bottom flask, the monomer B1-2 (2.0 mmol), the monomer L-1 (5.0 mmol), the monomer T-1 (1.0 mmol), the monomer T-2 (3.0 mmol), And anisole (20 mL) were added, and the previously prepared Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 8 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
The number average molecular weight of the obtained charge transporting polymer 8 was 19,900, and the weight average molecular weight was 65,000.

(電荷輸送性ポリマー9)
 三口丸底フラスコに、下記モノマーB-1(2.0mmol)、上記モノマーL-1(5.0mmol)、下記モノマーT-3(1.0mmol)、上記モノマーT-2(3.0mmol)、及びアニソール(20mL)を加え、更に、先に調製したPd触媒溶液(7.5mL)を加えた。以降、電荷輸送性ポリマー1の合成と同様にして、電荷輸送性ポリマー9の合成を行った。
 得られた電荷輸送性ポリマー9の数平均分子量は39,200であり、重量平均分子量は75,200であった。
(Charge transporting polymer 9)
In a three-necked round bottom flask, the following monomer B-1 (2.0 mmol), the above monomer L-1 (5.0 mmol), the following monomer T-3 (1.0 mmol), the above monomer T-2 (3.0 mmol), And anisole (20 mL) were added, and the previously prepared Pd catalyst solution (7.5 mL) was further added. Thereafter, the charge transporting polymer 9 was synthesized in the same manner as the charge transporting polymer 1 was synthesized.
The number average molecular weight of the obtained charge transporting polymer 9 was 39,200, and the weight average molecular weight was 75,200.

Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018

 電荷輸送性ポリマー1~9の調製に使用したモノマーを以下の表にまとめて示す。

Figure JPOXMLDOC01-appb-T000019
注記:
 添文字(1)は、9-フェニルカルバゾール構造を有する3価以上の構造単位に相当することを示す。
 添文字(2)は、少なくとも1つのフェニル基がアルコキシ基を有するトリフェニルアミン構造を有する構造単位に相当することを示す。
The monomers used in the preparation of charge transporting polymers 1-9 are summarized in the following table.
Figure JPOXMLDOC01-appb-T000019
Note:
The subscript (1) indicates that it corresponds to a trivalent or higher structural unit having a 9-phenylcarbazole structure.
The subscript (2) indicates that at least one phenyl group corresponds to a structural unit having a triphenylamine structure having an alkoxy group.

<II>ホールオンリーデバイスの作製及び評価(電荷輸送性ポリマーの耐熱性評価)
 先に調製した各電荷輸送性ポリマーを使用し、以下のようにしてホールオンリーデバイスを作製し、その電流密度特性から耐熱性を評価した。
<II> Fabrication and evaluation of hole-only device (heat resistance evaluation of charge transporting polymer)
Using each of the charge transporting polymers prepared above, a hole-only device was produced as follows, and the heat resistance was evaluated from the current density characteristics.

(実施例1)
 窒素雰囲気下で、電荷輸送性ポリマー1(50.0mg)、下記ドーパント1(2.5mg)、及びトルエン(1.36mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で180℃、10分間の加熱によって塗膜を硬化させ、正孔注入層(150nm)を形成した。
 上記正孔注入層を有するガラス基板を、真空蒸着機中に移し、正孔注入層上にAl(150nm)を蒸着法で成膜した。その後、封止処理を行ってホールオンリーデバイスを作製した。
Example 1
Under a nitrogen atmosphere, charge transporting polymer 1 (50.0 mg), the following dopant 1 (2.5 mg), and toluene (1.36 mL) were mixed to prepare an ink composition. An ink composition was spin-coated on a glass substrate patterned with ITO to a width of 1.6 mm at a rotation speed of 3,000 min −1 , and then the coating film was cured by heating at 180 ° C. for 10 minutes on a hot plate. A hole injection layer (150 nm) was formed.
The glass substrate having the hole injection layer was transferred into a vacuum vapor deposition machine, and Al (150 nm) was deposited on the hole injection layer by a vapor deposition method. Then, the sealing process was performed and the hole only device was produced.

(実施例2)
 実施例1のホールオンリーデバイスにおける正孔注入層の形成工程において、ホットプレート上の加熱条件を230℃、30分間に変えた以外は実施例1と同様にして、ホールオンリーデバイスを作製した。
(Example 2)
A hole-only device was fabricated in the same manner as in Example 1, except that the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes in the hole injection layer forming step in the hole-only device of Example 1.

(実施例3)
 実施例1のホールオンリーデバイスにおける正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー2に変えた以外は実施例1と同様にして、ホールオンリーデバイスを作製した。
(Example 3)
A hole-only device was produced in the same manner as in Example 1 except that the charge transporting polymer 1 was changed to the charge transporting polymer 2 in the hole injection layer forming step in the hole-only device of Example 1.

(実施例4)
 実施例3のホールオンリーデバイスにおける正孔注入層の形成工程において、ホットプレート上の加熱条件を230℃、30分間に変えた以外は実施例3と同様にして、ホールオンリーデバイスを作製した。
(Example 4)
A hole-only device was fabricated in the same manner as in Example 3 except that in the hole injection layer forming step of the hole-only device of Example 3, the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes.

(比較例1)
 実施例1のホールオンリーデバイスにおける正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー9に変えた以外は実施例1と同様にして、ホールオンリーデバイスを作製した。
(Comparative Example 1)
A hole-only device was produced in the same manner as in Example 1 except that the charge transporting polymer 1 was changed to the charge transporting polymer 9 in the hole injection layer forming step in the hole-only device of Example 1.

(比較例2)
 比較例1のホールオンリーデバイスにおける正孔注入層の形成工程において、ホットプレート上の加熱条件を230℃、30分間に変えた以外は比較例1と同様にして、ホールオンリーデバイスを作製した。
(Comparative Example 2)
A hole-only device was fabricated in the same manner as in Comparative Example 1 except that the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes in the hole injection layer forming step in the hole-only device of Comparative Example 1.

(比較例3)
 実施例1のホールオンリーデバイスにおける正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー8に変えた以外は実施例1と同様にして、ホールオンリーデバイスを作製した。
(Comparative Example 3)
A hole-only device was produced in the same manner as in Example 1 except that the charge transporting polymer 1 was changed to the charge transporting polymer 8 in the hole injection layer forming step in the hole-only device of Example 1.

(比較例4)
 比較例3のホールオンリーデバイスにおける正孔注入層の形成工程において、ホットプレート上の加熱条件を230℃、30分間に変えた以外は比較例3と同様にして、ホールオンリーデバイスを作製した。
(Comparative Example 4)
A hole-only device was fabricated in the same manner as in Comparative Example 3, except that the heating conditions on the hot plate were changed to 230 ° C. for 30 minutes in the hole injection layer forming step in the hole-only device of Comparative Example 3.

 以上の実施例1~4、及び比較例1~4におけるホールオンリーデバイスの正孔注入層形成に用いた材料と加熱条件を表2にまとめて示す。 Table 2 summarizes the materials and heating conditions used for forming the hole injection layers of the hole-only devices in Examples 1 to 4 and Comparative Examples 1 to 4 described above.

Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020

 実施例1~4、及び比較例1~4で得た各ホールオンリーデバイスに電圧を印加した時の電圧―電流密度曲線のグラフを図3に示す。
 図3に示したグラフから明らかなように、比較例1及び3に対して、正孔注入層形成時の加熱条件がより厳しい(すなわち、より高温で、加熱時間がより長い)比較例2及び4では、駆動電圧がそれぞれ著しく上昇している。ここで、駆動電圧とは、一定電流密度を得るために必要となる電圧を意味する。一方、実施例1及び3に対して、正孔注入層形成時の加熱条件がより厳しい実施例2及び4での駆動電圧の上昇は僅かである。
 一般的に、ポリマーの耐熱性が低い場合、熱履歴によって有機薄膜が劣化し、有機EL素子の駆動電圧が上昇する傾向がある。このような観点において、実施例1~4と比較例1~4との対比から明らかなように、9-フェニルカルバゾール構造単位と、少なくとも1つのフェニル基がアルコキシ基を有するトリフェニルアミン構造との双方を有するポリマーは、上記特定の構造を含まないポリマーよりも優れた耐熱性を示すことが分かる。このような耐熱性の向上によって、駆動電圧を安定に維持することが容易となる。
FIG. 3 shows a graph of voltage-current density curves when a voltage is applied to each hole-only device obtained in Examples 1 to 4 and Comparative Examples 1 to 4.
As is clear from the graph shown in FIG. 3, the heating conditions during the formation of the hole injection layer are more severe (that is, higher temperature and longer heating time) than Comparative Examples 1 and 3, and In 4, the drive voltage is significantly increased. Here, the drive voltage means a voltage necessary for obtaining a constant current density. On the other hand, the increase in drive voltage in Examples 2 and 4 in which the heating conditions during the formation of the hole injection layer are more severe than those in Examples 1 and 3 are slight.
Generally, when the heat resistance of a polymer is low, the organic thin film deteriorates due to the thermal history, and the driving voltage of the organic EL element tends to increase. From such a viewpoint, as is clear from the comparison between Examples 1 to 4 and Comparative Examples 1 to 4, the 9-phenylcarbazole structural unit and the triphenylamine structure in which at least one phenyl group has an alkoxy group. It turns out that the polymer which has both shows the heat resistance superior to the polymer which does not contain the said specific structure. Such an improvement in heat resistance makes it easy to maintain a stable driving voltage.

<III>有機EL素子の作製及び評価
<III-1>
 以下の実施例及び比較例は、電荷輸送性ポリマーを含む有機エレクトロニクス材料(インク組成物)を用いて形成した有機薄膜を正孔注入層に適用する実施形態に関する。
(実施例5)
 窒素雰囲気下で、電荷輸送性ポリマー1(10.0mg)、下記ドーパント1(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で230℃、30分間の加熱によって塗膜を硬化させ、正孔注入層(30nm)を形成した。
<III> Preparation and Evaluation of Organic EL Element <III-1>
The following examples and comparative examples relate to embodiments in which an organic thin film formed using an organic electronic material (ink composition) containing a charge transporting polymer is applied to a hole injection layer.
(Example 5)
Under a nitrogen atmosphere, charge transporting polymer 1 (10.0 mg), the following dopant 1 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition. An ink composition was spin-coated on a glass substrate patterned with ITO at a width of 1.6 mm at a rotation speed of 3,000 min −1 , and then the coating film was cured by heating on a hot plate at 230 ° C. for 30 minutes to obtain a positive coating. A hole injection layer (30 nm) was formed.

Figure JPOXMLDOC01-appb-C000021
 ガラス基板を、真空蒸着機中に移し、正孔注入層上にα-NPD(40nm)、CBP:Ir(ppy)(94:6、30nm)、BAlq(10nm)、TPBi(30nm)、Liq(2.0nm)、及びAl(150nm)をこの順に蒸着法で成膜した。その後、封止処理を行って有機EL素子を作製した。
Figure JPOXMLDOC01-appb-C000021
The glass substrate was transferred into a vacuum evaporator, and α-NPD (40 nm), CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi (30 nm), Liq were formed on the hole injection layer. (2.0 nm) and Al (150 nm) were formed in this order by vapor deposition. Then, the sealing process was performed and the organic EL element was produced.

 (実施例6)
 実施例5の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー2に変えた以外は実施例5と同様にして、有機EL素子を作製した。
(Example 6)
An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 2 in the step of forming the hole injection layer in the organic EL device of Example 5.

 (実施例7)
 実施例5の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー3に変えた以外は実施例5と同様にして、有機EL素子を作製した。
(Example 7)
An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 3 in the step of forming the hole injection layer in the organic EL device of Example 5.

 (比較例5)
 実施例5の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー7に変えた以外は実施例5と同様にして、有機EL素子を作製した。
(Comparative Example 5)
An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 7 in the step of forming the hole injection layer in the organic EL device of Example 5.

(比較例6)
 実施例5の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー8に変えた以外は実施例5と同様にして、有機EL素子を作製した。
(Comparative Example 6)
An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 8 in the step of forming the hole injection layer in the organic EL device of Example 5.

 (比較例7)
 実施例5の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー1を電荷輸送性ポリマー9に変えた以外は実施例5と同様にして、有機EL素子を作製した。
(Comparative Example 7)
An organic EL device was produced in the same manner as in Example 5 except that the charge transporting polymer 1 was changed to the charge transporting polymer 9 in the step of forming the hole injection layer in the organic EL device of Example 5.

 以上の実施例5~7、及び比較例5~7における有機EL素子の正孔注入層形成に用いた材料を表3にまとめて示す。

Figure JPOXMLDOC01-appb-T000022
Table 3 summarizes the materials used for forming the hole injection layer of the organic EL elements in Examples 5 to 7 and Comparative Examples 5 to 7.
Figure JPOXMLDOC01-appb-T000022

 実施例5~7、及び比較例5~7で得た各有機EL素子に電圧を印加したところ、緑色発光が確認された。それぞれの素子について、発光輝度5,000cd/mでの発光効率及び初期輝度5,000cd/mにおける発光寿命(輝度半減時間)を測定した。測定結果を表4に示す。輝度の測定には、トプコンテクノハウス社製「SR-3AR」を用いた。 When voltage was applied to each organic EL element obtained in Examples 5 to 7 and Comparative Examples 5 to 7, green light emission was confirmed. For each element, the light emission efficiency at a light emission luminance of 5,000 cd / m 2 and the light emission lifetime (luminance half time) at an initial luminance of 5,000 cd / m 2 were measured. Table 4 shows the measurement results. For the measurement of luminance, “SR-3AR” manufactured by Topcon Technohouse Co., Ltd. was used.

Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023

 表4に示すとおり、実施例5~7では、比較例5~7と比較して、発光効率が高く、長寿命の有機EL素子が得られた。これらの結果から、本発明で要求する特定の電荷輸送性ポリマーを含む有機エレクトロニクス材料の使用によって、発光効率向上、及び寿命向上の効果が得られることがわかる。 As shown in Table 4, in Examples 5 to 7, organic EL elements with higher luminous efficiency and longer life were obtained compared to Comparative Examples 5 to 7. From these results, it can be seen that the use of the organic electronic material containing the specific charge transporting polymer required in the present invention can improve the luminous efficiency and the lifetime.

<III-2>
 以下の実施例及び比較例は、電荷輸送性ポリマーを含む有機エレクトロニクス材料(インク組成物)を用いて形成した有機薄膜を正孔輸送層に適用した実施形態に関する。
(実施例8)
 窒素雰囲気下で、電荷輸送性ポリマー7(10.0mg)、上記ドーパント1(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で220℃、10分間加熱して硬化させ、正孔注入層(30nm)を形成した。
<III-2>
The following examples and comparative examples relate to embodiments in which an organic thin film formed using an organic electronic material (ink composition) containing a charge transporting polymer is applied to a hole transporting layer.
(Example 8)
Under a nitrogen atmosphere, the charge transporting polymer 7 (10.0 mg), the dopant 1 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition. The ink composition was spin-coated on a glass substrate patterned with a width of 1.6 mm at a rotation speed of 3,000 min −1 and then cured by heating on a hot plate at 220 ° C. for 10 minutes to form a hole injection layer. (30 nm) was formed.

 次に、電荷輸送性ポリマー4(20.0mg)、下記ドーパント2(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。正孔注入層の上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で200℃、10分間の加熱によって塗膜を硬化させ、正孔輸送層(40nm)を形成した。正孔注入層を溶解させることなく、正孔輸送層を形成することができた。 Next, charge transporting polymer 4 (20.0 mg), the following dopant 2 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition. On the hole injection layer, the ink composition was spin-coated at a rotation speed of 3,000 min −1 , and then the coating film was cured by heating on a hot plate at 200 ° C. for 10 minutes to obtain a hole transport layer (40 nm). Formed. The hole transport layer could be formed without dissolving the hole injection layer.

Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024

 ガラス基板を、真空蒸着機中に移し、正孔輸送層上にCBP:Ir(ppy)(94:6、30nm)、BAlq(10nm)、TPBi(30nm)、Liq(2.0nm)、及びAl(150nm)をこの順に蒸着法で成膜した。その後、封止処理を行って有機EL素子を作製した。 The glass substrate is transferred into a vacuum evaporator and CBP: Ir (ppy) 3 (94: 6, 30 nm), BAlq (10 nm), TPBi (30 nm), Liq (2.0 nm), and Al (150 nm) was deposited in this order by a vapor deposition method. Then, the sealing process was performed and the organic EL element was produced.

(実施例9)
 実施例8の有機EL素子における正孔輸送層の形成工程において、電荷輸送性ポリマー4を電荷輸送性ポリマー5に変えた以外は実施例8と同様にして、有機EL素子を作製した。
Example 9
An organic EL device was produced in the same manner as in Example 8 except that the charge transporting polymer 4 was changed to the charge transporting polymer 5 in the step of forming the hole transporting layer in the organic EL device of Example 8.

(実施例10)
 実施例8の有機EL素子における正孔輸送層の形成工程において、電荷輸送性ポリマー4を電荷輸送性ポリマー6に変えた以外は実施例8と同様にして、有機EL素子を作製した。
(Example 10)
An organic EL device was produced in the same manner as in Example 8 except that the charge transporting polymer 4 was changed to the charge transporting polymer 6 in the step of forming the hole transport layer in the organic EL device of Example 8.

(実施例11)
 実施例10の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー7を電荷輸送性ポリマー3に変えた以外は実施例10と同様にして、有機EL素子を作製した。
(Example 11)
An organic EL device was produced in the same manner as in Example 10 except that the charge transporting polymer 7 was changed to the charge transporting polymer 3 in the step of forming the hole injection layer in the organic EL device of Example 10.

 (比較例8)
 実施例8の有機EL素子における正孔輸送層の形成工程において、電荷輸送性ポリマー4を電荷輸送性ポリマー8に変えた以外は実施例8と同様にして、有機EL素子を作製した。
(Comparative Example 8)
An organic EL device was produced in the same manner as in Example 8 except that the charge transporting polymer 4 was changed to the charge transporting polymer 8 in the step of forming the hole transport layer in the organic EL device of Example 8.

 (比較例9)
 実施例8の有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー7を電荷輸送性ポリマー9に変えたこと、及び正孔輸送層の形成工程において、電荷輸送性ポリマー4を電荷輸送性ポリマー7に変えた以外は実施例8と同様にして、有機EL素子を作製した。
(Comparative Example 9)
In the hole injection layer forming step in the organic EL device of Example 8, the charge transporting polymer 7 was changed to the charge transporting polymer 9, and in the hole transporting layer forming step, the charge transporting polymer 4 was charged. An organic EL device was produced in the same manner as in Example 8 except that the transporting polymer 7 was used.

 以上の実施例8~11、比較例8及び9における有機EL素子の正孔注入層、及び正孔輸送層の形成に用いた材料を表5にまとめて示す。

Figure JPOXMLDOC01-appb-T000025
Table 5 summarizes the materials used for forming the hole injection layer and the hole transport layer of the organic EL elements in Examples 8 to 11 and Comparative Examples 8 and 9.
Figure JPOXMLDOC01-appb-T000025

 実施例8~11、比較例8及び9で得た有機EL素子に電圧を印加したところ、緑色発光が確認された。それぞれの素子について、発光輝度5,000cd/mでの発光効率及び初期輝度5,000cd/mにおける発光寿命(輝度半減時間)を測定した。測定結果を表6に示す。輝度の測定には、トプコンテクノハウス社製「SR-3AR」を用いた。 When voltage was applied to the organic EL devices obtained in Examples 8 to 11 and Comparative Examples 8 and 9, green light emission was confirmed. For each element, the light emission efficiency at a light emission luminance of 5,000 cd / m 2 and the light emission lifetime (luminance half time) at an initial luminance of 5,000 cd / m 2 were measured. Table 6 shows the measurement results. For the measurement of luminance, “SR-3AR” manufactured by Topcon Technohouse Co., Ltd. was used.

Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026

 表6に示すとおり、実施例8~11では、比較例8及び9と比較して、発光効率が高く、長寿命の有機EL素子が得られた。これらの結果から、本発明で要求する特定の電荷輸送性ポリマーを含む有機エレクトロニクス材料の使用によって、発光効率向上、及び寿命向上の効果が得られることがわかる。
As shown in Table 6, in Examples 8 to 11, organic EL elements with higher luminous efficiency and longer life were obtained compared to Comparative Examples 8 and 9. From these results, it can be seen that the use of the organic electronic material containing the specific charge transporting polymer required in the present invention can improve the luminous efficiency and the lifetime.

<IV>白色有機EL素子(照明装置)の作製及び評価
(実施例12)
 窒素雰囲気下で、電荷輸送性ポリマー3(10.0mg)、上記ドーパント1(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。ITOを1.6mm幅にパターニングしたガラス基板上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で220℃、10分間の加熱によって塗膜を硬化させ、正孔注入層(30nm)を形成した。
<IV> Production and Evaluation of White Organic EL Element (Lighting Device) (Example 12)
Under a nitrogen atmosphere, the charge transporting polymer 3 (10.0 mg), the dopant 1 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition. An ink composition was spin-coated on a glass substrate patterned with a width of 1.6 mm at a rotation speed of 3,000 min −1 , and then the coating film was cured by heating at 220 ° C. for 10 minutes on a hot plate. A hole injection layer (30 nm) was formed.

 次に、電荷輸送性ポリマー6(20.0mg)、上記ドーパント2(0.5mg)、及びトルエン(2.3mL)を混合し、インク組成物を調製した。正孔注入層の上に、インク組成物を回転数3,000min-1でスピンコートした後、ホットプレート上で230℃、30分間加熱して硬化させ、正孔輸送層(40nm)を形成した。正孔注入層を溶解させることなく、正孔輸送層を形成することができた。 Next, the charge transporting polymer 6 (20.0 mg), the dopant 2 (0.5 mg), and toluene (2.3 mL) were mixed to prepare an ink composition. The ink composition was spin coated on the hole injection layer at a rotation speed of 3,000 min −1 and then cured by heating on a hot plate at 230 ° C. for 30 minutes to form a hole transport layer (40 nm). . The hole transport layer could be formed without dissolving the hole injection layer.

 更に、窒素雰囲気下で、CDBP(15mg)、FIr(pic)(0.9mg)、Ir(ppy)(0.9mg)、btpIr(acac)(1.2mg)、及びジクロロベンゼン(0.5mL)を混合し、インク組成物を調製した。インク組成物を、回転数3,000min-1にてスピンコートし、80℃、5分間加熱して乾燥させ、発光層(40nm)を形成した。正孔輸送層を溶解させることなく、発光層を形成することができた。 Furthermore, under a nitrogen atmosphere, CDBP (15 mg), FIr (pic) (0.9 mg), Ir (ppy) 3 (0.9 mg), btp 2 Ir (acac) (1.2 mg), and dichlorobenzene (0 5 mL) was mixed to prepare an ink composition. The ink composition was spin-coated at a rotation speed of 3,000 min −1 , heated at 80 ° C. for 5 minutes and dried to form a light emitting layer (40 nm). The light emitting layer could be formed without dissolving the hole transport layer.

 ガラス基板を、真空蒸着機中に移し、発光層上にBAlq(10nm)、TPBi(30nm)、Liq(2.0nm)、及びAl(150nm)をこの順に蒸着法で成膜した。その後、封止処理を行って白色有機EL素子を作製した。白色有機EL素子は、照明装置として使用することができた。 The glass substrate was transferred into a vacuum vapor deposition machine, and BAlq (10 nm), TPBi (30 nm), Liq (2.0 nm), and Al (150 nm) were formed in this order on the light emitting layer by vapor deposition. Then, the sealing process was performed and the white organic EL element was produced. The white organic EL element could be used as a lighting device.

(比較例10)
 実施例12の白色有機EL素子における正孔注入層の形成工程において、電荷輸送性ポリマー3を電荷輸送性ポリマー7に変えたこと、及び正孔輸送層の形成工程において、電荷輸送性ポリマー6を電荷輸送性ポリマー8に変えたこと以外は実施例12と同様にして白色有機EL素子を作製した。
(Comparative Example 10)
In the step of forming the hole injection layer in the white organic EL device of Example 12, the charge transporting polymer 3 was changed to the charge transporting polymer 7, and in the step of forming the hole transporting layer, the charge transporting polymer 6 was changed to A white organic EL device was produced in the same manner as in Example 12 except that the charge transporting polymer 8 was used.

 実施例12および比較例10で得た白色有機EL素子に電圧を印加して、輝度1,000cd/mでの電圧及び初期輝度1,000cd/mにおける発光寿命(輝度半減時間)を測定した。実施例12の電圧を1.0とすると、比較例10の電圧は、1.09であった。また、実施例12の発光寿命1.0とすると、比較例10の発光寿命は0.33であった。このように、実施例12の白色有機EL素子は、優れた駆動電圧及び発光寿命を有していた。 By applying a voltage to the white organic EL device obtained in Example 12 and Comparative Example 10, measuring the emission lifetime (luminance half-life) in the voltage and the initial luminance 1,000 cd / m 2 in luminance 1,000 cd / m 2 did. Assuming that the voltage of Example 12 was 1.0, the voltage of Comparative Example 10 was 1.09. Further, assuming that the light emission life of Example 12 was 1.0, the light emission life of Comparative Example 10 was 0.33. Thus, the white organic EL element of Example 12 had excellent driving voltage and light emission lifetime.

 以上のように、実施例によって本発明の実施形態の効果を示した。しかし、本発明によれば、実施例で用いた電荷輸送性ポリマーに限らず、本発明の範囲を逸脱しない限り、その他の電荷輸送性ポリマーを用いた場合であっても、同様にして有機エレクトロニクス素子を得ることが可能である。 As described above, the effect of the embodiment of the present invention was shown by the examples. However, according to the present invention, not only the charge transport polymer used in the examples, but also other charge transport polymers can be used in the same manner as long as they do not depart from the scope of the present invention. It is possible to obtain an element.

 本発明の実施形態である電荷輸送性ポリマーを含有する有機エレクトロニクス材料によれば、有機層を湿式プロセスにより容易に形成することができる。また、電荷輸送性ポリマーの耐熱性の向上によって、駆動電圧を安定に維持することができ、寿命特性等の各種素子特性に優れた有機EL素子を容易に得ることができる。 According to the organic electronic material containing the charge transporting polymer according to the embodiment of the present invention, the organic layer can be easily formed by a wet process. In addition, by improving the heat resistance of the charge transporting polymer, the driving voltage can be stably maintained, and an organic EL element excellent in various element characteristics such as life characteristics can be easily obtained.

1 陽極
2 正孔注入層
3 発光層
4 電子注入層
5 陰極
6 基板
7 正孔輸送層
8 電子輸送層
DESCRIPTION OF SYMBOLS 1 Anode 2 Hole injection layer 3 Light emitting layer 4 Electron injection layer 5 Cathode 6 Substrate 7 Hole transport layer 8 Electron transport layer

Claims (14)

 9-フェニルカルバゾール構造を有する3価以上の構造単位と、少なくとも1つのフェニル基がアルコキシ基を有するトリフェニルアミン構造を有する構造単位とを含む電荷輸送性ポリマーを含有する、有機エレクトロニクス材料。 An organic electronic material containing a charge transporting polymer comprising a trivalent or higher structural unit having a 9-phenylcarbazole structure and a structural unit having a triphenylamine structure in which at least one phenyl group has an alkoxy group.  前記電荷輸送性ポリマーが重合性官能基を有する、請求項1に記載の有機エレクトロニクス材料。  The organic electronic material according to claim 1, wherein the charge transporting polymer has a polymerizable functional group. *  さらにドーパントを含有する、請求項1又は2に記載の有機エレクトロニクス材料。 The organic electronic material according to claim 1 or 2, further comprising a dopant.  前記ドーパントがオニウム塩を含む、請求項3に記載の有機エレクトロニクス材料。 The organic electronic material according to claim 3, wherein the dopant contains an onium salt.  請求項1~4のいずれか1項に記載の有機エレクトロニクス材料を用いて形成された有機薄膜。 An organic thin film formed using the organic electronic material according to any one of claims 1 to 4.  請求項5に記載の有機薄膜の少なくとも1つを含む、有機エレクトロニクス素子。 An organic electronics element comprising at least one of the organic thin films according to claim 5.  請求項5に記載の有機薄膜の少なくとも1つを含む、有機エレクトロルミネセンス素子。 An organic electroluminescence device comprising at least one of the organic thin films according to claim 5.  前記有機薄膜が正孔注入層である、請求項7に記載の有機エレクトロルミネセンス素子。 The organic electroluminescent element according to claim 7, wherein the organic thin film is a hole injection layer.  前記有機薄膜が正孔輸送層である、請求項7に記載の有機エレクトロルミネセンス素子。 The organic electroluminescent device according to claim 7, wherein the organic thin film is a hole transport layer.  さらにフレキシブル基板を有する、請求項7~9のいずれか1項に記載の有機エレクトロルミネセンス素子。 The organic electroluminescence device according to any one of claims 7 to 9, further comprising a flexible substrate.  さらに樹脂フィルム基板を有する、請求項7~9のいずれか1項に記載の有機エレクトロルミネセンス素子。 The organic electroluminescent device according to any one of claims 7 to 9, further comprising a resin film substrate.  請求項7~11のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、表示素子。 A display element comprising the organic electroluminescent element according to any one of claims 7 to 11.  請求項7~11のいずれか1項に記載の有機エレクトロルミネセンス素子を備えた、照明装置。 An illumination device comprising the organic electroluminescence element according to any one of claims 7 to 11.  請求項13に記載の照明装置と、表示手段として液晶素子とを備えた、表示装置。 A display device comprising the illumination device according to claim 13 and a liquid crystal element as display means.
PCT/JP2016/071849 2016-07-26 2016-07-26 Organic electronics material WO2018020571A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2016/071849 WO2018020571A1 (en) 2016-07-26 2016-07-26 Organic electronics material
KR1020197004524A KR20190034233A (en) 2016-07-26 2017-07-26 Organic electronics materials
PCT/JP2017/026971 WO2018021381A1 (en) 2016-07-26 2017-07-26 Organic electronic material
JP2018530338A JP6954284B2 (en) 2016-07-26 2017-07-26 Organic electronics materials
TW106125053A TW201821591A (en) 2016-07-26 2017-07-26 Organic electronic material
US16/320,867 US20190165293A1 (en) 2016-07-26 2017-07-26 Organic electronic material
EP17834383.6A EP3493286A4 (en) 2016-07-26 2017-07-26 ORGANIC ELECTRONIC MATERIAL
CN201780046276.5A CN109564980A (en) 2016-07-26 2017-07-26 Organic electronic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/071849 WO2018020571A1 (en) 2016-07-26 2016-07-26 Organic electronics material

Publications (1)

Publication Number Publication Date
WO2018020571A1 true WO2018020571A1 (en) 2018-02-01

Family

ID=61016966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071849 WO2018020571A1 (en) 2016-07-26 2016-07-26 Organic electronics material

Country Status (1)

Country Link
WO (1) WO2018020571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061028A (en) * 2016-09-29 2018-04-12 住友化学株式会社 Light emitting element
JP2020107866A (en) * 2018-12-28 2020-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Quantum dot electroluminescent device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520470A (en) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド Novel hole injection or transport material and organic light emitting device using the same
JP2008502124A (en) * 2004-06-23 2008-01-24 シャープ株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, IMAGE DISPLAY DEVICE AND LIGHTING DEVICE EQUIPPED WITH THE SAME, CHARGE TRANSPORT MATERIAL, AND CHARGE TRANSPORT LAYER INCLUDING THE SAME
JP2009521118A (en) * 2005-12-22 2009-05-28 ケンブリッジ ディスプレイ テクノロジー リミテッド Electronic equipment
WO2015122464A1 (en) * 2014-02-14 2015-08-20 日立化成株式会社 Polymer or oligomer, hole transport material composition, and organic electronic element using same
WO2016076375A1 (en) * 2014-11-11 2016-05-19 日立化成株式会社 Organic electroluminescence element and method for manufacturing same
JP2016115756A (en) * 2014-12-12 2016-06-23 日立化成株式会社 Organic electronics material and organic electronics element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007520470A (en) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド Novel hole injection or transport material and organic light emitting device using the same
JP2008502124A (en) * 2004-06-23 2008-01-24 シャープ株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, IMAGE DISPLAY DEVICE AND LIGHTING DEVICE EQUIPPED WITH THE SAME, CHARGE TRANSPORT MATERIAL, AND CHARGE TRANSPORT LAYER INCLUDING THE SAME
JP2009521118A (en) * 2005-12-22 2009-05-28 ケンブリッジ ディスプレイ テクノロジー リミテッド Electronic equipment
WO2015122464A1 (en) * 2014-02-14 2015-08-20 日立化成株式会社 Polymer or oligomer, hole transport material composition, and organic electronic element using same
WO2016076375A1 (en) * 2014-11-11 2016-05-19 日立化成株式会社 Organic electroluminescence element and method for manufacturing same
JP2016115756A (en) * 2014-12-12 2016-06-23 日立化成株式会社 Organic electronics material and organic electronics element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018061028A (en) * 2016-09-29 2018-04-12 住友化学株式会社 Light emitting element
JP2020107866A (en) * 2018-12-28 2020-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Quantum dot electroluminescent device
JP7233923B2 (en) 2018-12-28 2023-03-07 三星電子株式会社 Quantum dot electroluminescence device

Similar Documents

Publication Publication Date Title
TWI816645B (en) Organic electronic materials, organic layers, organic electronic components, organic electroluminescent components, display components, lighting devices and display devices
WO2018021133A1 (en) Organic electronic material and use of same
WO2018143438A1 (en) Organic electronics material and use thereof
JP2017069324A (en) Organic electronics material, organic layer, organic electronics element, organic electroluminescent element, display element, luminaire, and display device
WO2017188023A1 (en) Charge transport material and utilization thereof
WO2018146779A1 (en) Organic electronics material, organic electronics element, and organic electroluminescent element
JP6954284B2 (en) Organic electronics materials
JP6775736B2 (en) Charge transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
WO2020065926A1 (en) Organic electronic material and use thereof
JP6641845B2 (en) Charge transporting material, ink composition using the material, organic electronic device, organic electroluminescent device, display device, lighting device, and display device
JP6769020B2 (en) Charge transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
JPWO2018159694A1 (en) Organic electronics materials and their use
WO2018020571A1 (en) Organic electronics material
JP6816540B2 (en) Charge-transporting material, ink composition using the material, organic electronics element, organic electroluminescence element, display element, lighting device, and display device.
JP2017050338A (en) Organic electronics materials and organic electronics elements
JP6775731B2 (en) Charge transport material and its use
CN110832658A (en) Organic electronic material and organic electronic device
JP6690241B2 (en) Organic electronic material and use thereof
JP6657663B2 (en) Charge transporting material, ink composition using the material, organic electronic device, organic electroluminescent device, display device, display device, and lighting device
JP2017048271A (en) Organic electronics material and organic electronics element
JP2017059724A (en) Organic electronics material, ink composition including the same, organic electronics device, and electroluminescent device
JP2017059718A (en) Organic electronics material, ink composition including the same, organic electronics device, and electroluminescent device
JP2019131670A (en) Organic electronics material
WO2019175976A1 (en) Organic electronic material and organic electronic element
JP2020145236A (en) Organic electronics material and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16910474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16910474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP