[go: up one dir, main page]

WO2018016756A1 - Method and device for performing low-power communication in wireless lan system by using wakeup packet - Google Patents

Method and device for performing low-power communication in wireless lan system by using wakeup packet Download PDF

Info

Publication number
WO2018016756A1
WO2018016756A1 PCT/KR2017/006726 KR2017006726W WO2018016756A1 WO 2018016756 A1 WO2018016756 A1 WO 2018016756A1 KR 2017006726 W KR2017006726 W KR 2017006726W WO 2018016756 A1 WO2018016756 A1 WO 2018016756A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wakeup
power
receiver
payload
Prior art date
Application number
PCT/KR2017/006726
Other languages
French (fr)
Korean (ko)
Inventor
박은성
임동국
조한규
최진수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2018016756A1 publication Critical patent/WO2018016756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a technique for performing low power communication in a WLAN system, and more particularly, to a method and apparatus for performing low power communication using a wake-up packet in a WLAN system.
  • next-generation WLANs 1) enhancements to the Institute of Electronics and Electronics Engineers (IEEE) 802.11 physical physical access (PHY) and medium access control (MAC) layers in the 2.4 GHz and 5 GHz bands, and 2) spectral efficiency and area throughput. aims to improve performance in real indoor and outdoor environments, such as in environments where interference sources exist, dense heterogeneous network environments, and high user loads.
  • IEEE Institute of Electronics and Electronics Engineers
  • PHY physical physical access
  • MAC medium access control
  • next-generation WLAN The environment mainly considered in the next-generation WLAN is a dense environment having many access points (APs) and a station (STA), and improvements in spectral efficiency and area throughput are discussed in such a dense environment.
  • next generation WLAN there is an interest in improving practical performance not only in an indoor environment but also in an outdoor environment, which is not much considered in a conventional WLAN.
  • next-generation WLAN there is a great interest in scenarios such as wireless office, smart home, stadium, hotspot, building / apartment, and AP based on the scenario.
  • STA are discussing about improving system performance in a dense environment with many STAs.
  • next-generation WLAN In addition, in the next-generation WLAN, there will be more discussion about improving system performance in outdoor overlapping basic service set (OBSS) environment, improving outdoor environment performance, and cellular offloading, rather than improving single link performance in one basic service set (BSS). It is expected.
  • the directionality of these next-generation WLANs means that next-generation WLANs will increasingly have a technology range similar to that of mobile communications. Considering the recent situation in which mobile communication and WLAN technology are discussed together in the small cell and direct-to-direct (D2D) communication area, the technical and business convergence of next-generation WLAN and mobile communication is expected to become more active.
  • D2D direct-to-direct
  • the present specification proposes a method and apparatus for performing low power communication using a wake-up packet in a WLAN system.
  • An example of the present specification proposes a method and apparatus for performing low power communication using a wake-up packet in a WLAN system.
  • This embodiment can be applied to a receiver, the receiver can correspond to a low power wake-up receiver, and the transmitter can correspond to an AP.
  • the term “on signal” may correspond to a signal having an actual power value.
  • the off signal may correspond to a signal that does not have an actual power value.
  • the norm value represents a magnitude measure of a vector and may correspond to a magnitude measure of a signal.
  • the receiver receives a wakeup packet including a wakeup preamble and a wakeup payload from the transmitter.
  • the wakeup payload may include a MAC header field, a frame body field, and a frame check sequence (FCS) field.
  • FCS frame check sequence
  • the receiver measures the average power or average norm value of the received signal passing through the channel through the wakeup preamble.
  • the average power or average norm value is measured based only on bits indicating an on signal in the wakeup preamble.
  • the receiver checks the power of the wakeup payload based on a threshold value.
  • the threshold is set to half the average power or average norm value.
  • the power of the wakeup payload may be determined as alpha ⁇ 2. In addition, if the power of the wakeup payload is less than the threshold value, the power of the wakeup payload may be determined to be zero.
  • the alpha is a power normalization factor.
  • the wakeup packet is modulated and transmitted in an on-off keying (OOK) scheme.
  • the wakeup preamble may include a sequence including a bit indicating the on signal and a bit indicating an off signal.
  • the bit indicating the on signal may indicate 1, and the bit indicating the off signal may indicate 0.
  • the sequence may consist of 1110. That is, the first, second, and third bits may represent an on signal and the fourth bit may represent an off signal.
  • the receiver may measure the average power or average norm value of the received signal passing through the channel based only on the first, second, and third bits.
  • the sequence may be defined in advance between the transmitter and the receiver.
  • the bit indicating the on signal may be transmitted through a symbol generated by applying a sequence to specific 13 consecutive subcarriers in a 20 MHz band and performing a 64-point Inverse Fast Fourier Transform (IFFT). That is, one bit indicating the on signal may be transmitted through one symbol generated by performing an IFFT.
  • IFFT Inverse Fast Fourier Transform
  • the thirteen subcarriers may correspond to a partial band of the 20 MHz band.
  • 20 MHz is referred to as a reference band
  • 13 subcarriers may correspond to about 4.06 MHz band. That is, a specific sequence is set only to 13 subcarriers selected as samples, and all other subcarriers except 13 subcarriers are set to 0. That is, it can be said that power is provided only for 4.06MHz in the 20MHz band in the frequency domain.
  • the thirteen subcarriers may be arranged from subcarrier index -6 to subcarrier index +6.
  • the subcarrier spacing of each of the 13 subcarriers may be 312.5 KHz. Accordingly, the symbol generated by performing the IFFT may have a length of 4 us including a cyclic prefix (CP).
  • CP cyclic prefix
  • the wakeup packet may further include a legacy preamble.
  • the legacy preamble may be transmitted through the 20 MHz band.
  • the wakeup preamble and the wakeup payload may be transmitted through a partial band of the 20MHz band. That is, the legacy preamble may be modulated and transmitted in the OFDM scheme, and the wakeup preamble and the wakeup payload may be modulated and transmitted in the above-described OOK scheme.
  • the wakeup packet is configured and transmitted by applying the OOK modulation scheme in the transmitter to reduce power consumption by using an envelope detector during wakeup decoding in the receiver. That is, the receiver may decode the wakeup packet with the minimum power.
  • WLAN wireless local area network
  • FIG. 2 is a diagram illustrating an example of a PPDU used in the IEEE standard.
  • FIG. 3 is a diagram illustrating an example of a HE PPDU.
  • FIG. 4 illustrates a low power wake-up receiver in an environment in which data is not received.
  • FIG. 5 illustrates a low power wake-up receiver in an environment in which data is received.
  • FIG. 6 shows an example of a wakeup packet structure according to the present embodiment.
  • FIG. 7 shows a signal waveform of a wakeup packet according to the present embodiment.
  • FIG. 8 is a diagram for describing a principle in which power consumption is determined according to a ratio of 1 and 0 of bit values constituting binary sequence information using the OOK method.
  • FIG. 9 is an explanatory diagram of a Manchester coding scheme according to the present embodiment.
  • FIG. 10 shows a method of designing a OOK pulse according to the present embodiment.
  • 11 is a flowchart illustrating a procedure for performing low power communication using a wakeup packet according to the present embodiment.
  • FIG. 12 is a block diagram illustrating a wireless device to which the present embodiment can be applied.
  • WLAN wireless local area network
  • BSS infrastructure basic service set
  • IEEE Institute of Electrical and Electronic Engineers
  • the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS).
  • BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and a STA1 (station 100-1) capable of successfully synchronizing and communicating with each other, and do not indicate a specific area.
  • the BSS 105 may include one or more STAs 103-1 and 105-2 that can be coupled to one AP 130.
  • the BSS may include at least one STA, APs 125 and 130 for providing a distribution service, and a distribution system (DS) 110 for connecting a plurality of APs.
  • STA STA
  • APs 125 and 130 for providing a distribution service
  • DS distribution system
  • the distributed system 110 may connect several BSSs 100 and 105 to implement an extended service set (ESS) 140 which is an extended service set.
  • ESS 140 may be used as a term indicating one network in which one or several APs 125 and 230 are connected through the distributed system 110.
  • APs included in one ESS 140 may have the same service set identification (SSID).
  • the portal 120 may serve as a bridge for connecting the WLAN network (IEEE 802.11) with another network (for example, 802.X).
  • a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented. However, it may be possible to perform communication by setting up a network even between STAs without the APs 125 and 130.
  • a network that performs communication by establishing a network even between STAs without APs 125 and 130 is defined as an ad-hoc network or an independent basic service set (BSS).
  • FIG. 1 is a conceptual diagram illustrating an IBSS.
  • the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and access to a distributed system is not allowed, thus making a self-contained network. network).
  • a STA is any functional medium that includes medium access control (MAC) conforming to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard and a physical layer interface to a wireless medium. May be used to mean both an AP and a non-AP STA (Non-AP Station).
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the STA may include a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit ( It may also be called various names such as a mobile subscriber unit or simply a user.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • UE mobile subscriber unit
  • It may also be called various names such as a mobile subscriber unit or simply a user.
  • the term "user” may be used in various meanings, for example, may also be used to mean an STA participating in uplink MU MIMO and / or uplink OFDMA transmission in wireless LAN communication. It is not limited to this.
  • FIG. 2 is a diagram illustrating an example of a PPDU used in the IEEE standard.
  • PPDUs PHY protocol data units
  • LTF and STF fields included training signals
  • SIG-A and SIG-B included control information for the receiving station
  • data fields included user data corresponding to the PSDU.
  • This embodiment proposes an improved technique for the signal (or control information field) used for the data field of the PPDU.
  • the signal proposed in this embodiment may be applied on a high efficiency PPDU (HE PPDU) according to the IEEE 802.11ax standard. That is, the signals to be improved in the present embodiment may be HE-SIG-A and / or HE-SIG-B included in the HE PPDU. Each of HE-SIG-A and HE-SIG-B may also be represented as SIG-A or SIG-B.
  • the improved signal proposed by this embodiment is not necessarily limited to the HE-SIG-A and / or HE-SIG-B standard, and controls / control of various names including control information in a wireless communication system for transmitting user data. Applicable to data fields.
  • FIG. 3 is a diagram illustrating an example of a HE PPDU.
  • the control information field proposed in this embodiment may be HE-SIG-B included in the HE PPDU as shown in FIG. 3.
  • the HE PPDU according to FIG. 3 is an example of a PPDU for multiple users.
  • the HE-SIG-B may be included only for the multi-user, and the HE-SIG-B may be omitted in the PPDU for the single user.
  • a HE-PPDU for a multiple user includes a legacy-short training field (L-STF), a legacy-long training field (L-LTF), a legacy-signal (L-SIG), High efficiency-signal A (HE-SIG-A), high efficiency-signal-B (HE-SIG-B), high efficiency-short training field (HE-STF), high efficiency-long training field (HE-LTF) It may include a data field (or MAC payload) and a PE (Packet Extension) field. Each field may be transmitted during the time period shown (ie, 4 or 8 ms, etc.).
  • the PPDU used in the IEEE standard is mainly described as a PPDU structure transmitted over a channel bandwidth of 20 MHz.
  • the PPDU structure transmitted on a bandwidth wider than the channel bandwidth of 20 MHz may be a structure in which linear scaling of the PPDU structure used in the channel bandwidth of 20 MHz is applied.
  • the PPDU structure used in the IEEE standard is generated based on 64 Fast Fourier Tranforms (FTFs), and a CP portion (cyclic prefix portion) may be 1/4.
  • FFTs Fast Fourier Tranforms
  • CP portion cyclic prefix portion
  • the length of the effective symbol interval (or FFT interval) may be 3.2us
  • the CP length is 0.8us
  • the symbol duration may be 4us (3.2us + 0.8us) plus the effective symbol interval and the CP length.
  • Wireless networks are ubiquitous, usually indoors and often installed outdoors. Wireless networks use various techniques to send and receive information. For example, but not limited to, two widely used technologies for communication are those that comply with IEEE 802.11 standards such as the IEEE 802.11n standard and the IEEE 802.11ac standard.
  • the IEEE 802.11 standard specifies a common Medium Access Control (MAC) layer that provides a variety of features to support the operation of IEEE 802.11-based wireless LANs (WLANs).
  • the MAC layer utilizes protocols that coordinate access to shared radios and improve communications over wireless media, such as IEEE 802.11 stations (such as a PC's wireless network card (NIC) or other wireless device or station (STA) and access point ( Manage and maintain communication between APs).
  • IEEE 802.11 stations such as a PC's wireless network card (NIC) or other wireless device or station (STA) and access point ( Manage and maintain communication between APs).
  • IEEE 802.11ax is the successor to 802.11ac and has been proposed to improve the efficiency of WLAN networks, especially in high density areas such as public hotspots and other high density traffic areas.
  • IEEE 802.11 can also use Orthogonal Frequency Division Multiple Access (OFDMA).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the High Efficiency WLAN Research Group (HEW SG) within the IEEE 802.11 Work Group is dedicated to improving system throughput / area in high-density scenarios of APs (access points) and / or STAs (stations) in relation to the IEEE 802.11 standard. We are considering improving efficiency.
  • Wearable devices and small computing devices such as sensors and mobile devices are constrained by small battery capacities, but use wireless communication technologies such as Wi-Fi, Bluetooth®, and Bluetooth® Low Energy (BLE). Support, connect to and exchange data with other computing devices such as smartphones, tablets, and computers. Since these communications consume power, it is important to minimize the energy consumption of such communications in these devices.
  • One ideal strategy to minimize energy consumption is to power off the communication block as frequently as possible while maintaining data transmission and reception without increasing delay too much. That is, the communication block is transmitted immediately before the data reception, and only when there is data to wake up, the communication block is turned on and the communication block is turned off for the remaining time.
  • LP-WUR low-power wake-up receiver
  • the communication system (or communication subsystem) described herein includes a main radio (802.11) and a low power wake up receiver.
  • the main radio is used for transmitting and receiving user data.
  • the main radio is turned off if there are no data or packets to transmit.
  • the low power wake-up receiver wakes up the main radio when there is a packet to receive. At this time, the user data is transmitted and received by the main radio.
  • the low power wake-up receiver is not for user data. It is simply a receiver to wake up the main radio. In other words, the transmitter is not included.
  • the low power wake-up receiver is active while the main radio is off.
  • Low power wake-up receivers target a target power consumption of less than 1 mW in an active state.
  • low power wake-up receivers use a narrow bandwidth of less than 5 MHz.
  • the target transmission range of the low power wake-up receiver is the same as that of the existing 802.11.
  • 4 illustrates a low power wake-up receiver in an environment in which data is not received.
  • 5 illustrates a low power wake-up receiver in an environment in which data is received.
  • one way to implement an ideal transmission and reception strategy is a main radio such as Wi-Fi, Bluetooth® radio, or Bluetooth® Radio (BLE). Adding a low power wake-up receiver (LP-WUR) that can wake up.
  • LP-WUR low power wake-up receiver
  • the Wi-Fi / BT / BLE 420 is turned off and the low power wake-up receiver 430 is turned on without receiving data.
  • LP-WUR low power wake-up receiver
  • the low power wakeup receiver 530 may receive the entire Wi-Fi / BT / BLE radio 520 so that the data packet following the wakeup packet can be correctly received. Wake up). In some cases, however, actual data or IEEE 802.11 MAC frames may be included in the wakeup packet. In this case, it is not necessary to wake up the entire Wi-Fi / BT / BLE radio 520, but only a part of the Wi-Fi / BT / BLE radio 520 to perform the necessary process. This can result in significant power savings.
  • One example technique disclosed herein defines a method for a granular wakeup mode for Wi-Fi / BT / BLE using a low power wakeup receiver. For example, the actual data contained in the wakeup packet can be passed directly to the device's memory block without waking up the Wi-Fi / BT / BLE radio.
  • a wakeup packet contains an IEEE 802.11 MAC frame
  • only the MAC processor of the Wi-Fi / BT / BLE wireless device needs to wake up to process the IEEE 802.11 MAC frame included in the wakeup. That is, the PHY module of the Wi-Fi / BT / BLE radio can be turned off or kept in a low power mode.
  • Wi-Fi / BT / BLE radios that use low power wake-up receivers, requiring that the Wi-Fi / BT / BLE radio be powered on when a wake-up packet is received.
  • only necessary parts (or components) of the Wi-Fi / BT / BLE radio can be selectively woken up, thereby saving energy and reducing the waiting time.
  • Many solutions that use low-power wake-up receivers to receive wake-up packets wake up the entire Wi-Fi / BT / BLE radio.
  • One exemplary aspect discussed herein wakes up only the necessary portions of the Wi-Fi / BT / BLE radio required to process the received data, saving significant amounts of energy and reducing unnecessary latency in waking up the main radio. Can be.
  • the low power wake-up receiver 530 may wake up the main radio 520 based on the wake-up packet transmitted from the transmitter 500.
  • the transmitter 500 may be set to transmit a wakeup packet to the receiver 510.
  • the low power wake-up receiver 530 may be instructed to wake up the main radio 520.
  • FIG. 6 shows an example of a wakeup packet structure according to the present embodiment.
  • the wakeup packet may include one or more legacy preambles.
  • One or more legacy devices may decode or process the legacy preamble.
  • the wakeup packet may include a payload after the legacy preamble.
  • the payload may be modulated by a simple modulation scheme, for example, an On-Off Keying (OOK) modulation scheme.
  • OOK On-Off Keying
  • the transmitter may be configured to generate and / or transmit a wakeup packet 600.
  • the receiving device may be configured to process the received wakeup packet 600.
  • the wakeup packet 600 may include a legacy preamble or any other preamble 610 as defined by the IEEE 802.11 specification.
  • the wakeup packet 600 may include a payload 620.
  • Legacy preambles provide coexistence with legacy STAs.
  • the legacy preamble 610 for coexistence uses the L-SIG field to protect the packet.
  • the 802.11 STA may detect the start of a packet through the L-STF field in the legacy preamble 610.
  • the 802.11 STA can know the end of the packet through the L-SIG field in the legacy preamble 610.
  • a BPSK modulated symbol after the L-SIG a false alarm of an 802.11n terminal can be reduced.
  • One symbol (4us) modulated with BPSK also has a 20MHz bandwidth like the legacy part.
  • the legacy preamble 610 is a field for third party legacy STAs (STAs not including LP-WUR).
  • the legacy preamble 610 is not decoded from the LP-WUR.
  • the payload 620 may include a wakeup preamble 622.
  • Wake-up preamble 622 may include a sequence of bits configured to identify wake-up packet 600.
  • the wakeup preamble 622 may include, for example, a PN sequence.
  • the payload 620 may include a MAC header 624 including address information of a receiver receiving the wakeup packet 600 or an identifier of the receiver.
  • the payload 620 may include a frame body 626 that may include other information of the wakeup packet.
  • the frame body 626 may include length or size information of the payload.
  • the payload 620 may include a Frame Check Sequence (FCS) field 628 that includes a Cyclic Redundancy Check (CRC) value.
  • FCS Frame Check Sequence
  • CRC Cyclic Redundancy Check
  • it may include a CRC-8 value or a CRC-16 value of the MAC header 624 and the frame body 626.
  • FIG. 7 shows a signal waveform of a wakeup packet according to the present embodiment.
  • the wakeup packet 700 includes a legacy preamble (802.11 preamble, 710) and a payload modulated by OOK. That is, the legacy preamble and the new LP-WUR signal waveform coexist.
  • the legacy preamble 710 may be modulated according to the OFDM modulation scheme. That is, the legacy preamble 710 is not applied to the OOK method.
  • the payload may be modulated according to the OOK method.
  • the wakeup preamble 722 in the payload may be modulated according to another modulation scheme.
  • the payload may be transmitted on a channel bandwidth of about 4.06 MHz. This will be described later in the OOK pulse design method.
  • FIG. 8 is a diagram for describing a principle in which power consumption is determined according to a ratio of 1 and 0 of bit values constituting binary sequence information using the OOK method.
  • OOK modulation can be performed. That is, in consideration of the bit values of the binary sequence information, it is possible to perform the communication of the OOK modulation method.
  • the light emitting diode is used for visible light communication
  • the light emitting diode is turned on when the bit value constituting the binary sequence information is 1, and the light emitting diode is turned off when the bit value is 0.
  • the light emitting diode can be made to blink.
  • the receiver receives and restores data transmitted in the form of visible light, thereby enabling communication using visible light.
  • the blinking of the light emitting diode cannot be perceived by the human eye, the person feels that the illumination is continuously maintained.
  • FIG. 8 information in the form of a binary sequence having 10 bit values is used.
  • FIG. 8 there is information in the form of a binary sequence having a value of '1001101011'.
  • the bit value is 1
  • the transmitter is turned on
  • the bit value is 0,
  • the transmitter is turned off
  • the symbol is turned on at 6 bit values out of 10 bit values.
  • the power consumption is 60% according to the duty cycle of FIG. 8.
  • the power consumption of the transmitter is determined according to the ratio of 1 and 0 constituting the binary sequence information.
  • the ratio of 1 and 0 which constitutes information in binary sequence form, must also be maintained.
  • the ratio of 1 and 0 constituting the information in the form of a binary sequence must also be maintained.
  • the receiver is mainly a wake-up receiver (WUR)
  • WUR wake-up receiver
  • the main reason for using OOK is that the power consumption is very low when decoding the received signal. Until the decoding is performed, there is no significant difference in power consumption in the main radio or WUR, but a large difference occurs in the decoding process. Below is the approximate power consumption.
  • the existing Wi-Fi power consumption is about 100mW.
  • power consumption of Resonator + Oscillator + PLL (1500uW)-> LPF (300uW)-> ADC (63uW)-> decoding processing (OFDM receiver) (100mW) may occur.
  • -WUR power consumption is about 1mW.
  • power consumption of Resonator + Oscillator (600uW)-> LPF (300uW)-> ADC (20uW)-> decoding processing (Envelope detector) (1uW) may occur.
  • FIG. 9 is an explanatory diagram of a Manchester coding scheme according to the present embodiment.
  • bit string to be transmitted As shown in Fig. 9, the bit string to be transmitted, the Manchester coded signal, the clock reproduced at the receiving side, and the data reproduced at the clock are shown in order from top to bottom.
  • Manchester coding refers to a method of converting data from 1 to 01, 0 to 10, 1 to 10, and 0 to 01.
  • the receiver When the transmitter transmits data using the Manchester coding scheme, the receiver reads the data a little later based on the transition point of 1 ⁇ 0 or 0 ⁇ 1, and recovers the data, and then transitions to 1 ⁇ 0 or 0 ⁇ 1.
  • the clock is recovered by recognizing the transition point as the clock transition point.
  • the symbol when the symbol is divided based on the transition point, it can be simply decoded by comparing the power at the front and the back at the center of the symbol.
  • the bit string to be transmitted is 10011101
  • the Manchester coded signal to be transmitted is 0110100101011001
  • the clock reproduced on the receiving side is obtained by recognizing the transition point of the Manchester coded signal as the clock transition point.
  • the recovered clock is used to recover the data.
  • this method can use the TXD pin for data transmission and the RXD pin for reception by using only the data transmission channel. Therefore, synchronized bidirectional transmission is possible.
  • FIG. 10 shows a method of designing a OOK pulse according to the present embodiment.
  • the OFDM transmitter of 802.11 can be reused to generate OOK pulses.
  • the transmitter can generate a sequence having 64 bits by applying a 64-point IFFT as in 802.11.
  • the transmitter should generate the payload of the wakeup packet by modulating the OOK method.
  • the OOK method is applied to the on signal.
  • the on signal is a signal having an actual power value
  • the off signal corresponds to a signal having no actual power value.
  • the OOK method is applied, but the signal is not generated using the transmitter, and since no signal is actually transmitted, it is not considered in the configuration of the wakeup packet.
  • information (bit) 1 may be an on signal and information (bit) 0 may be an off signal.
  • information 1 may indicate a transition from an off signal to an on signal
  • information 0 may indicate a transition from an on signal to an off signal.
  • the information 1 may indicate the transition from the on signal to the off signal
  • the information 0 may indicate the transition from the off signal to the on signal.
  • the transmitter selects 13 subcarriers located in the center of a 20 MHz band as a sample as a sample. That is, a subcarrier whose subcarrier index is from -6 to +6 is selected from the 64 subcarriers. In this case, the subcarrier index 0 may be nulled to 0 as the DC subcarrier. Set a specific sequence only to the 13 subcarriers selected as samples, and set all subcarriers except the subcarriers (subcarrier indexes -32 to -7 and subcarrier indexes +7 to +31) to 0. .
  • subcarrier spacing is 312.5 KHz
  • 13 subcarriers have a channel bandwidth of about 4.06 MHz. That is, it can be said that power is provided only for 4.06MHz in the 20MHz band in the frequency domain.
  • SNR signal to noise ratio
  • the power consumption of the AC / DC converter of the receiver can be reduced.
  • the power consumption can be reduced by reducing the sampling frequency band to 4.06MHz.
  • the transmitter may generate one on-signal in the time domain by performing a 64-point IFFT on 13 subcarriers.
  • One on-signal has a size of 1 bit. That is, a sequence composed of 13 subcarriers may correspond to 1 bit.
  • the transmitter may not transmit the off signal at all.
  • IFFT a 3.2us symbol may be generated, and if a CP (Cyclic Prefix, 0.8us) is included, one symbol having a length of 4us may be generated. That is, one bit indicating one on-signal may be loaded in one symbol.
  • the reason for configuring and sending the bits as in the above-described embodiment is to reduce power consumption by using an envelope detector in the receiver. As a result, the receiving device can decode the packet with the minimum power.
  • the basic data rate for one information may be 125Mbps (8us) or 62.5Mbps (16us).
  • the first is non-coherent detection and the second is coherent detection.
  • non-coherent detection the phase relationship between the transmitter and receiver signals is not fixed.
  • the receiver does not need to measure and adjust the phase of the received signal.
  • coherent detection method requires that the phase of the signal between the transmitter and the receiver be aligned.
  • the receiver includes the low power wake-up receiver described above.
  • the low power wake-up receiver may decode a packet (wake-up packet) transmitted using an OOK modulation scheme using an envelope detector to reduce power consumption.
  • the envelope detector measures and decodes the power or magnitude of the received signal.
  • the receiver sets a threshold based on the power or magnitude measured by the envelope detector. When decoding the symbol to which the OOK is applied, it is determined as information 1 if it is greater than or equal to the threshold value, and as information 0 when it is smaller than the threshold value.
  • setting the threshold is important for the performance of the low power wakeup receiver. Therefore, a method of setting a threshold in a low power wake-up receiver is proposed.
  • K may be 12 except for the DC subcarrier and 13 may be included when including the DC subcarrier. If it is determined that the information is 0, the power of the OOK-applied symbol has a value of 0, and if it is determined to be information 1, the power of the OOK-applied symbol has an alpha ⁇ 2 value.
  • alpha is a power normalization factor.
  • the receiver knows the power information actually sent by the transmitter. Thus, the receiver can simply obtain the power or norm value for information 1 and set the threshold to half the power or norm value. That is, in the case of configuring a symbol to which a 1-bit OOK is applied using K subcarriers, the threshold may be set to K * alpha ⁇ 2/2 or sqrt (K) * alpha / 2.
  • option 1 may not consider the channel situation, and the actual performance may be greatly degraded.
  • the receiver knows sequence information of the wake-up preamble transmitted by the transmitter. That is, the sequence information receiving apparatus and the transmitting apparatus of the wake-up preamble are promised in advance.
  • the receiver measures the average power or average norm value of the signal received via the wakeup preamble to take into account the channel conditions. In this case, the receiving apparatus measures an average power or average norm value of the received signal in consideration of only the symbol portion to which the on signal is transmitted. As a result, the receiver may set a half of the average power or the average norm of the received signal as the threshold.
  • the receiver may check the power of the payload following the wakeup preamble by using the threshold value determined through the sequence of the wakeup preamble.
  • the threshold may be set to beta / 2 or sqrt (beta) / 2.
  • the wakeup packet may be decoded using a coherent detection method.
  • the Euclidean distance between the received signal at the receiver and the original signal at the transmitter should be calculated.
  • channel information is required and channel estimation is performed in the wake-up preamble.
  • the method of determining the Euclidean distance may be performed as in the following equation.
  • Equation 1 r is a received signal, X 0 is an off signal, and X 1 is an on signal. Based on the coherent detection method, the Euclidean distance can be calculated using the signals received by all receivers. h is a channel, Is the channel estimated by the wake-up preamble.
  • ⁇ 2 returns the norm value.
  • Equation 1 it may be determined whether the received signal r is closer to X 0 or closer to X 1 . That is, according to Equation 1, this If smaller, the receiver may determine that X 0 has been transmitted. Also, this If greater, the receiving device may determine that X 1 has been transmitted. This is because the closer to the received signal, the smaller the norm value.
  • Another example of a coherent detection method is a method of decoding a received signal considering only X 1 , which is a signal actually sent.
  • Equation 2 Denotes an average vector of received signals of symbols carrying information 1 in the wake-up preamble. In other words, Is measuring the received signal passing through the channel.
  • the receiver may determine that X 0 has been transmitted. Also, this If greater, the receiver may determine that X 1 has been transmitted. This is because the closer to the received signal, the smaller the norm value.
  • Equation 1 measures the channel and Equation 2 differs in measuring the received signal.
  • 11 is a flowchart illustrating a procedure for performing low power communication using a wakeup packet according to the present embodiment.
  • the receiver may correspond to a low power wake-up receiver
  • the transmitter may correspond to an AP.
  • the term “on signal” may correspond to a signal having an actual power value.
  • the off signal may correspond to a signal that does not have an actual power value.
  • the norm value represents a magnitude measure of a vector and may correspond to a magnitude measure of a signal.
  • the receiver receives a wakeup packet including a wakeup preamble and a wakeup payload from the transmitter.
  • the wakeup payload may include a MAC header field, a frame body field, and a frame check sequence (FCS) field.
  • FCS frame check sequence
  • step S1120 the receiver measures the average power or average norm value of the received signal passed through the channel through the wakeup preamble.
  • the average power or average norm value is measured based only on bits indicating an on signal in the wakeup preamble.
  • step S1130 the receiver checks the power of the wake-up payload based on a threshold value.
  • the threshold is set to half the average power or average norm value.
  • the power of the wakeup payload may be determined as alpha ⁇ 2. In addition, if the power of the wakeup payload is less than the threshold value, the power of the wakeup payload may be determined to be zero.
  • the alpha is a power normalization factor.
  • the wakeup packet is modulated and transmitted in an on-off keying (OOK) scheme.
  • the wakeup preamble may include a sequence including a bit indicating the on signal and a bit indicating an off signal.
  • the bit indicating the on signal may indicate 1, and the bit indicating the off signal may indicate 0.
  • the sequence may consist of 1110. That is, the first, second, and third bits may represent an on signal and the fourth bit may represent an off signal.
  • the receiver may measure the average power or average norm value of the received signal passing through the channel based only on the first, second, and third bits.
  • the sequence may be defined in advance between the transmitter and the receiver.
  • the bit indicating the on signal may be transmitted through a symbol generated by applying a sequence to specific 13 consecutive subcarriers in a 20 MHz band and performing a 64-point Inverse Fast Fourier Transform (IFFT). That is, one bit indicating the on signal may be transmitted through one symbol generated by performing an IFFT.
  • IFFT Inverse Fast Fourier Transform
  • the thirteen subcarriers may correspond to a partial band of the 20 MHz band.
  • 20 MHz is referred to as a reference band
  • 13 subcarriers may correspond to about 4.06 MHz band. That is, a specific sequence is set only to 13 subcarriers selected as samples, and all other subcarriers except 13 subcarriers are set to 0. That is, it can be said that power is provided only for 4.06MHz in the 20MHz band in the frequency domain.
  • the thirteen subcarriers may be arranged from subcarrier index -6 to subcarrier index +6.
  • the subcarrier spacing of each of the 13 subcarriers may be 312.5 KHz. Accordingly, the symbol generated by performing the IFFT may have a length of 4 us including a cyclic prefix (CP).
  • CP cyclic prefix
  • the wakeup packet may further include a legacy preamble.
  • the legacy preamble may be transmitted through the 20 MHz band.
  • the wakeup preamble and the wakeup payload may be transmitted through a partial band of the 20MHz band. That is, the legacy preamble may be modulated and transmitted in the OFDM scheme, and the wakeup preamble and the wakeup payload may be modulated and transmitted in the above-described OOK scheme.
  • FIG. 12 is a block diagram illustrating a wireless device to which the present embodiment can be applied.
  • the wireless device may be an AP or a non-AP station (STA) as an STA capable of implementing the above-described embodiment.
  • the wireless device may correspond to the above-described user or may correspond to a transmission device for transmitting a signal to the user.
  • the AP 1200 includes a processor 1210, a memory 1220, and an RF unit 1230.
  • the RF unit 1230 may be connected to the processor 1210 to transmit / receive a radio signal.
  • the processor 1210 may implement the functions, processes, and / or methods proposed herein.
  • the processor 2010 may perform an operation according to the present embodiment described above. That is, the processor 1210 may perform an operation that may be performed by the AP during the operations disclosed in the embodiments of FIGS. 1 to 11.
  • the non-AP STA 1250 includes a processor 1260, a memory 1270, and an RF unit 1280.
  • the RF unit 1280 may be connected to the processor 1260 to transmit / receive a radio signal.
  • the processor 1260 may implement the functions, processes, and / or methods proposed in this embodiment.
  • the processor 1260 may be implemented to perform the non-AP STA operation according to the present embodiment described above.
  • the processor may perform the operation of the non-AP STA in the embodiment of FIGS. 1 to 11.
  • Processors 1210 and 1260 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memories 1220 and 1270 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the RF unit 1230 and 1280 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 1220 and 1270 and executed by the processors 1210 and 1260.
  • the memories 2020 and 2070 may be inside or outside the processors 1210 and 1260, and may be connected to the processors 1210 and 1260 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and device for performing low-power communication in a wireless LAN system by using a wakeup packet are proposed. Particularly, a receiving device receives a wakeup packet, including a wakeup preamble and a wakeup payload, from a transmitting device. Here, the wakeup packet is transmitted by being modulated according to an OOK method. The receiving device measures the average power or average norm value of a received signal which has passed through a channel via the wakeup preamble. The average power or average norm value is measured purely on the basis of a bit indicating a signal coming from the wakeup preamble. The receiving device checks the power of the wakeup payload on the basis of a critical value. The critical value is set at half the average power or average norm value.

Description

무선랜 시스템에서 웨이크업 패킷을 이용하여 저전력 통신을 수행하는 방법 및 장치Method and apparatus for performing low power communication using wake-up packet in WLAN system
본 명세서는 무선랜 시스템에서 저전력 통신을 수행하는 기법에 관한 것으로, 보다 상세하게는, 무선랜 시스템에서 웨이크업 패킷을 이용하여 저전력 통신을 수행하는 방법 및 장치에 관한 것이다.The present disclosure relates to a technique for performing low power communication in a WLAN system, and more particularly, to a method and apparatus for performing low power communication using a wake-up packet in a WLAN system.
차세대 WLAN(wireless local area network)를 위한 논의가 진행되고 있다. 차세대 WLAN에서는 1) 2.4GHz 및 5GHz 대역에서 IEEE(institute of electronic and electronics engineers) 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area through put)을 높이는 것, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경과 같은 실제 실내 환경 및 실외 환경에서 성능을 향상 시키는 것을 목표로 한다.Discussion is underway for the next generation wireless local area network (WLAN). In next-generation WLANs, 1) enhancements to the Institute of Electronics and Electronics Engineers (IEEE) 802.11 physical physical access (PHY) and medium access control (MAC) layers in the 2.4 GHz and 5 GHz bands, and 2) spectral efficiency and area throughput. aims to improve performance in real indoor and outdoor environments, such as in environments where interference sources exist, dense heterogeneous network environments, and high user loads.
차세대 WLAN에서 주로 고려되는 환경은 AP(access point)와 STA(station)이 많은 밀집 환경이며, 이러한 밀집 환경에서 스펙트럼 효율(spectrum efficiency)과 공간 전송률(area throughput)에 대한 개선이 논의된다. 또한, 차세대 WLAN에서는 실내 환경뿐만 아니라, 기존 WLAN에서 많이 고려되지 않던 실외 환경에서의 실질적 성능 개선에 관심을 가진다.The environment mainly considered in the next-generation WLAN is a dense environment having many access points (APs) and a station (STA), and improvements in spectral efficiency and area throughput are discussed in such a dense environment. In addition, in the next generation WLAN, there is an interest in improving practical performance not only in an indoor environment but also in an outdoor environment, which is not much considered in a conventional WLAN.
구체적으로 차세대 WLAN에서는 무선 오피스(wireless office), 스마트 홈(smart home), 스타디움(Stadium), 핫스팟(Hotspot), 빌딩/아파트(building/apartment)와 같은 시나리오에 관심이 크며, 해당 시나리오 기반으로 AP와 STA이 많은 밀집 환경에서의 시스템 성능 향상에 대한 논의가 진행되고 있다. Specifically, in the next-generation WLAN, there is a great interest in scenarios such as wireless office, smart home, stadium, hotspot, building / apartment, and AP based on the scenario. And STA are discussing about improving system performance in a dense environment with many STAs.
또한, 차세대 WLAN에서는 하나의 BSS(basic service set)에서의 단일 링크 성능 향상보다는, OBSS(overlapping basic service set) 환경에서의 시스템 성능 향상 및 실외 환경 성능 개선, 그리고 셀룰러 오프로딩 등에 대한 논의가 활발할 것으로 예상된다. 이러한 차세대 WLAN의 방향성은 차세대 WLAN이 점점 이동 통신과 유사한 기술 범위를 갖게 됨을 의미한다. 최근 스몰셀 및 D2D(Direct-to-Direct) 통신 영역에서 이동 통신과 WLAN 기술이 함께 논의되고 있는 상황을 고려해 볼 때, 차세대 WLAN과 이동 통신의 기술적 및 사업적 융합은 더욱 활발해질 것으로 예측된다.In addition, in the next-generation WLAN, there will be more discussion about improving system performance in outdoor overlapping basic service set (OBSS) environment, improving outdoor environment performance, and cellular offloading, rather than improving single link performance in one basic service set (BSS). It is expected. The directionality of these next-generation WLANs means that next-generation WLANs will increasingly have a technology range similar to that of mobile communications. Considering the recent situation in which mobile communication and WLAN technology are discussed together in the small cell and direct-to-direct (D2D) communication area, the technical and business convergence of next-generation WLAN and mobile communication is expected to become more active.
본 명세서는 무선랜 시스템에서 웨이크업 패킷을 이용하여 저전력 통신을 수행하는 방법 및 장치를 제안한다.The present specification proposes a method and apparatus for performing low power communication using a wake-up packet in a WLAN system.
본 명세서의 일례는 무선랜 시스템에 웨이크업 패킷을 이용하여 저전력 통신을 수행하는 방법 및 장치를 제안한다. An example of the present specification proposes a method and apparatus for performing low power communication using a wake-up packet in a WLAN system.
본 실시예는 수신장치에 적용될 수 있고, 수신장치는 저전력 웨이크업 수신기에 대응할 수 있고, 송신장치는 AP에 대응할 수 있다.This embodiment can be applied to a receiver, the receiver can correspond to a low power wake-up receiver, and the transmitter can correspond to an AP.
먼저 용어를 정리하면, 온 신호(on signal)는 실제 전력 값을 가지는 신호에 대응할 수 있다. 오프 신호(off signal)는 실제 전력 값을 가지지 않는 신호에 대응할 수 있다. 놈 값은 벡터의 크기 척도를 나타내는 것으로 여기서는, 신호의 크기 척도에 대응할 수 있다.First of all, the term “on signal” may correspond to a signal having an actual power value. The off signal may correspond to a signal that does not have an actual power value. The norm value represents a magnitude measure of a vector and may correspond to a magnitude measure of a signal.
수신장치는 송신장치로부터 웨이크업 프리앰블 및 웨이크업 페이로드를 포함하는 웨이크업 패킷을 수신한다. 상기 웨이크업 페이로드는 MAC 헤더 필드, 프레임 바디(Frame Body) 필드 및 FCS(Frame Check Sequence) 필드를 포함할 수 있다. The receiver receives a wakeup packet including a wakeup preamble and a wakeup payload from the transmitter. The wakeup payload may include a MAC header field, a frame body field, and a frame check sequence (FCS) field.
수신장치는 상기 웨이크업 프리앰블을 통해 채널을 통과한 수신된 신호의 평균 전력 또는 평균 놈(norm) 값을 측정한다. 상기 평균 전력 또는 평균 놈 값은 상기 웨이크업 프리앰블에서 온 신호(on signal)를 지시하는 비트만을 기반으로 측정된다.The receiver measures the average power or average norm value of the received signal passing through the channel through the wakeup preamble. The average power or average norm value is measured based only on bits indicating an on signal in the wakeup preamble.
수신장치는 임계값을 기반으로 상기 웨이크업 페이로드의 전력을 확인한다. 상기 임계값은 상기 평균 전력 또는 평균 놈 값의 절반으로 설정된다.The receiver checks the power of the wakeup payload based on a threshold value. The threshold is set to half the average power or average norm value.
상기 웨이크업 페이로드의 전력이 상기 임계값보다 크거나 같으면, 상기 웨이크업 페이로드의 전력은 alpha^2로 판단될 수 있다. 또한, 상기 웨이크업 페이로드의 전력이 상기 임계값보다 작다면, 상기 웨이크업 페이로드의 전력은 0으로 판단될 수 있다. 상기 alpha는 전력 정규화 요소(power normalization factor)이다. If the power of the wakeup payload is greater than or equal to the threshold value, the power of the wakeup payload may be determined as alpha ^ 2. In addition, if the power of the wakeup payload is less than the threshold value, the power of the wakeup payload may be determined to be zero. The alpha is a power normalization factor.
다만, 상기 웨이크업 패킷은 OOK(On-Off Keying) 방식으로 변조되어 송신된다. 상기 웨이크업 프리앰블은 상기 온 신호를 지시하는 비트와 오프 신호(off signal)를 지시하는 비트로 구성되는 시퀀스를 포함할 수 있다. 상기 온 신호를 지시하는 비트는 1을 지시하고, 상기 오프 신호를 지시하는 비트는 0을 지시할 수 있다. 예를 들어, 상기 시퀀스는 1110으로 구성될 수 있다. 즉, 첫 번째, 두 번째, 세 번째 비트는 온 신호를 나타내고, 네 번째 비트는 오프 신호를 나타낼 수 있다. 상기 일례에 따르면, 수신장치는 상기 채널을 통과한 수신된 신호의 평균 전력 또는 평균 놈 값은 첫 번째, 두 번째, 세 번째 비트만을 기반으로 측정할 수 있다.However, the wakeup packet is modulated and transmitted in an on-off keying (OOK) scheme. The wakeup preamble may include a sequence including a bit indicating the on signal and a bit indicating an off signal. The bit indicating the on signal may indicate 1, and the bit indicating the off signal may indicate 0. For example, the sequence may consist of 1110. That is, the first, second, and third bits may represent an on signal and the fourth bit may represent an off signal. According to the example, the receiver may measure the average power or average norm value of the received signal passing through the channel based only on the first, second, and third bits.
상기 시퀀스는 상기 송신장치와 상기 수신장치 간에 사전에 정의될 수 있다.The sequence may be defined in advance between the transmitter and the receiver.
이때, 상기 온 신호를 지시하는 비트는, 20MHz 대역의 연속된 특정 13개의 서브캐리어에 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 심벌을 통해 전달될 수 있다. 즉, 온 신호를 지시하는 하나의 비트는 IFFT를 수행하여 생성된 하나의 심벌을 통해 송신될 수 있다. In this case, the bit indicating the on signal may be transmitted through a symbol generated by applying a sequence to specific 13 consecutive subcarriers in a 20 MHz band and performing a 64-point Inverse Fast Fourier Transform (IFFT). That is, one bit indicating the on signal may be transmitted through one symbol generated by performing an IFFT.
상기 13개의 서브캐리어는 상기 20MHz 대역의 부분 대역에 대응할 수 있다. 20MHz를 기준 대역이라 하면 64개의 서브캐리어(또는 비트 시퀀스)를 사용할 수 있음에도 13개의 서브캐리어만 샘플링하여 IFFT를 수행하므로, 13개의 서브캐리어는 약 4.06MHz 대역에 대응할 수 있다. 즉, 샘플로 선택한 13개의 서브캐리어에만 특정 시퀀스를 설정하고, 13개의 서브캐리어를 제외한 나머지 서브캐리어는 모두 0으로 설정한다. 즉, 주파수 영역에서 20MHz 대역 중 4.06MHz에 대해서만 전력이 있다고 볼 수 있다.The thirteen subcarriers may correspond to a partial band of the 20 MHz band. When 20 MHz is referred to as a reference band, even though 64 subcarriers (or bit sequences) can be used, only 13 subcarriers are sampled to perform IFFT, and thus, 13 subcarriers may correspond to about 4.06 MHz band. That is, a specific sequence is set only to 13 subcarriers selected as samples, and all other subcarriers except 13 subcarriers are set to 0. That is, it can be said that power is provided only for 4.06MHz in the 20MHz band in the frequency domain.
또한, 상기 13개의 서브캐리어는 서브캐리어 인덱스 -6부터 서브캐리어 인덱스 +6까지 배치될 수 있다. 또한, 상기 13개의 서브캐리어 각각의 서브캐리어 간격(subcarrier spacing)은 312.5KHz일 수 있다. 이에 따라, IFFT를 수행하여 생성된 심벌은 CP(Cyclic Prefix)를 포함하여 4us의 길이를 가질 수 있다.In addition, the thirteen subcarriers may be arranged from subcarrier index -6 to subcarrier index +6. In addition, the subcarrier spacing of each of the 13 subcarriers may be 312.5 KHz. Accordingly, the symbol generated by performing the IFFT may have a length of 4 us including a cyclic prefix (CP).
또한, 상기 웨이크업 패킷은 레가시(legacy) 프리앰블을 더 포함할 수 있다. 상기 레가시 프리앰블은 상기 20MHz 대역을 통해 송신될 수 있다. 상기 웨이크업 프리앰블 및 상기 웨이크업 페이로드는 상기 20MHz 대역의 부분 대역을 통해 송신될 수 있다. 즉, 레가시 프리앰블은 OFDM 방식으로 변조되어 송신되고, 상기 웨이크업 프리앰블 및 상기 웨이크업 페이로드는 상술한 OOK 방식으로 변조되어 송신될 수 있다.The wakeup packet may further include a legacy preamble. The legacy preamble may be transmitted through the 20 MHz band. The wakeup preamble and the wakeup payload may be transmitted through a partial band of the 20MHz band. That is, the legacy preamble may be modulated and transmitted in the OFDM scheme, and the wakeup preamble and the wakeup payload may be modulated and transmitted in the above-described OOK scheme.
본 명세서의 일례에 따르면 송신장치에서 OOK 변조 방식을 적용하여 웨이크업 패킷을 구성하여 송신함으로써 수신장치에서 웨이크업 복호 시 포락선 검출기(envelope detector)를 사용하여 전력 소모를 적게 할 수 있다. 즉, 수신장치는 웨이크업 패킷을 최소 전력으로 복호할 수 있다.According to the exemplary embodiment of the present specification, the wakeup packet is configured and transmitted by applying the OOK modulation scheme in the transmitter to reduce power consumption by using an envelope detector during wakeup decoding in the receiver. That is, the receiver may decode the wakeup packet with the minimum power.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.1 is a conceptual diagram illustrating a structure of a wireless local area network (WLAN).
도 2는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다. 2 is a diagram illustrating an example of a PPDU used in the IEEE standard.
도 3은 HE PPDU의 일례를 도시한 도면이다.3 is a diagram illustrating an example of a HE PPDU.
도 4는 데이터가 수신되지 않는 환경에서의 저전력 웨이크업 수신기를 도시한 도면이다.4 illustrates a low power wake-up receiver in an environment in which data is not received.
도 5는 데이터가 수신되는 환경에서 저전력 웨이크업 수신기를 도시한 도면이다.5 illustrates a low power wake-up receiver in an environment in which data is received.
도 6은 본 실시예에 따른 웨이크업 패킷 구조의 일례를 나타낸다.6 shows an example of a wakeup packet structure according to the present embodiment.
도 7은 본 실시에에 따른 웨이크업 패킷의 신호 파형을 나타낸다.7 shows a signal waveform of a wakeup packet according to the present embodiment.
도 8은 OOK 방식을 이용해 이진 수열 형태의 정보를 구성하는 비트 값의 1과 0의 비율에 따라 소비 전력이 결정되는 원리를 설명하기 위한 도면이다. FIG. 8 is a diagram for describing a principle in which power consumption is determined according to a ratio of 1 and 0 of bit values constituting binary sequence information using the OOK method.
도 9는 본 실시예에 따른 맨체스터 코딩 기법에 대한 설명도이다.9 is an explanatory diagram of a Manchester coding scheme according to the present embodiment.
도 10은 본 실시예에 따른 OOK 펄스의 설계 방법을 나타낸다.10 shows a method of designing a OOK pulse according to the present embodiment.
도 11은 본 실시예에 따른 웨이크업 패킷을 이용하여 저전력 통신을 수행하는 절차를 도시한 흐름도이다.11 is a flowchart illustrating a procedure for performing low power communication using a wakeup packet according to the present embodiment.
도 12는 본 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.12 is a block diagram illustrating a wireless device to which the present embodiment can be applied.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.1 is a conceptual diagram illustrating a structure of a wireless local area network (WLAN).
도 1의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(basic service set)의 구조를 나타낸다.1 shows the structure of the infrastructure basic service set (BSS) of the Institute of Electrical and Electronic Engineers (IEEE) 802.11.
도 1의 상단을 참조하면, 무선랜 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(100, 105)(이하, BSS)를 포함할 수 있다. BSS(100, 105)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 125) 및 STA1(Station, 100-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(105)는 하나의 AP(130)에 하나 이상의 결합 가능한 STA(105-1, 105-2)을 포함할 수도 있다.Referring to the top of FIG. 1, the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS). The BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and a STA1 (station 100-1) capable of successfully synchronizing and communicating with each other, and do not indicate a specific area. The BSS 105 may include one or more STAs 103-1 and 105-2 that can be coupled to one AP 130.
BSS는 적어도 하나의 STA, 분산 서비스(distribution Service)를 제공하는 AP(125, 130) 및 다수의 AP를 연결시키는 분산 시스템(distribution System, DS, 110)을 포함할 수 있다.The BSS may include at least one STA, APs 125 and 130 for providing a distribution service, and a distribution system (DS) 110 for connecting a plurality of APs.
분산 시스템(110)는 여러 BSS(100, 105)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 140)를 구현할 수 있다. ESS(140)는 하나 또는 여러 개의 AP(125, 230)가 분산 시스템(110)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(140)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.The distributed system 110 may connect several BSSs 100 and 105 to implement an extended service set (ESS) 140 which is an extended service set. The ESS 140 may be used as a term indicating one network in which one or several APs 125 and 230 are connected through the distributed system 110. APs included in one ESS 140 may have the same service set identification (SSID).
포털(portal, 120)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.The portal 120 may serve as a bridge for connecting the WLAN network (IEEE 802.11) with another network (for example, 802.X).
도 1의 상단과 같은 BSS에서는 AP(125, 130) 사이의 네트워크 및 AP(125, 130)와 STA(100-1, 105-1, 105-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.In the BSS as shown in the upper part of FIG. 1, a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented. However, it may be possible to perform communication by setting up a network even between STAs without the APs 125 and 130. A network that performs communication by establishing a network even between STAs without APs 125 and 130 is defined as an ad-hoc network or an independent basic service set (BSS).
도 1의 하단은 IBSS를 나타낸 개념도이다.1 is a conceptual diagram illustrating an IBSS.
도 1의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(150-1, 150-2, 150-3, 155-4, 155-5)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(150-1, 150-2, 150-3, 155-4, 155-5)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.Referring to the bottom of FIG. 1, the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-4, and 155-5 are managed in a distributed manner. In the IBSS, all STAs 150-1, 150-2, 150-3, 155-4, and 155-5 may be mobile STAs, and access to a distributed system is not allowed, thus making a self-contained network. network).
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준의 규정을 따르는 매체 접속 제어(medium access control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비-AP STA(Non-AP Station)을 모두 포함하는 의미로 사용될 수 있다. A STA is any functional medium that includes medium access control (MAC) conforming to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard and a physical layer interface to a wireless medium. May be used to mean both an AP and a non-AP STA (Non-AP Station).
STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다.The STA may include a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit ( It may also be called various names such as a mobile subscriber unit or simply a user.
한편 사용자(user)라는 용어는, 다양한 의미로 사용될 수 있으며, 예를 들어, 무선랜 통신에 있어서 상향링크 MU MIMO 및/또는 및 상향링크 OFDMA 전송에 참여하는 STA을 의미하는 것으로도 사용될 수 있으나, 이에 제한되는 것은 아니다. On the other hand, the term "user" may be used in various meanings, for example, may also be used to mean an STA participating in uplink MU MIMO and / or uplink OFDMA transmission in wireless LAN communication. It is not limited to this.
도 2는 IEEE 규격에서 사용되는 PPDU의 일례를 도시한 도면이다. 2 is a diagram illustrating an example of a PPDU used in the IEEE standard.
도시된 바와 같이, IEEE a/g/n/ac 등의 규격에서는 다양한 형태의 PPDU(PHY protocol data unit)가 사용되었다. 구체적으로, LTF, STF 필드는 트레이닝 신호를 포함하였고, SIG-A, SIG-B 에는 수신 스테이션을 위한 제어정보가 포함되었고, 데이터 필드에는 PSDU에 상응하는 사용자 데이터가 포함되었다. As shown, various types of PHY protocol data units (PPDUs) have been used in the IEEE a / g / n / ac standard. Specifically, the LTF and STF fields included training signals, the SIG-A and SIG-B included control information for the receiving station, and the data fields included user data corresponding to the PSDU.
본 실시예는 PPDU의 데이터 필드를 위해 사용되는 시그널(또는 제어정보 필드)에 관한 개선된 기법을 제안한다. 본 실시예에서 제안하는 시그널은 IEEE 802.11ax 규격에 따른 HE PPDU(high efficiency PPDU) 상에 적용될 수 있다. 즉, 본 실시예에서 개선하는 시그널은 HE PPDU에 포함되는 HE-SIG-A 및/또는 HE-SIG-B일 수 있다. HE-SIG-A 및 HE-SIG-B 각각은 SIG-A, SIG-B로도 표시될 수 있다. 그러나 본 실시예가 제안하는 개선된 시그널이 반드시 HE-SIG-A 및/또는 HE-SIG-B 규격에 제한되는 것은 아니며, 사용자 데이터를 전달하는 무선통신시스템에서 제어정보를 포함하는 다양한 명칭의 제어/데이터 필드에 적용 가능하다. This embodiment proposes an improved technique for the signal (or control information field) used for the data field of the PPDU. The signal proposed in this embodiment may be applied on a high efficiency PPDU (HE PPDU) according to the IEEE 802.11ax standard. That is, the signals to be improved in the present embodiment may be HE-SIG-A and / or HE-SIG-B included in the HE PPDU. Each of HE-SIG-A and HE-SIG-B may also be represented as SIG-A or SIG-B. However, the improved signal proposed by this embodiment is not necessarily limited to the HE-SIG-A and / or HE-SIG-B standard, and controls / control of various names including control information in a wireless communication system for transmitting user data. Applicable to data fields.
도 3은 HE PPDU의 일례를 도시한 도면이다. 3 is a diagram illustrating an example of a HE PPDU.
본 실시예에서 제안하는 제어정보 필드는 도 3에 도시된 바와 같은 HE PPDU 내에 포함되는 HE-SIG-B일 수 있다. 도 3에 따른 HE PPDU는 다중 사용자를 위한 PPDU의 일례로, HE-SIG-B는 다중 사용자를 위한 경우에만 포함되고, 단일 사용자를 위한 PPDU에는 해당 HE-SIG-B가 생략될 수 있다. The control information field proposed in this embodiment may be HE-SIG-B included in the HE PPDU as shown in FIG. 3. The HE PPDU according to FIG. 3 is an example of a PPDU for multiple users. The HE-SIG-B may be included only for the multi-user, and the HE-SIG-B may be omitted in the PPDU for the single user.
도시된 바와 같이, 다중 사용자(Multiple User; MU)를 위한 HE-PPDU는 L-STF(legacy-short training field), L-LTF(legacy-long training field), L-SIG(legacy-signal), HE-SIG-A(high efficiency-signal A), HE-SIG-B(high efficiency-signal-B), HE-STF(high efficiency-short training field), HE-LTF(high efficiency-long training field), 데이터 필드(또는 MAC 페이로드) 및 PE(Packet Extension) 필드를 포함할 수 있다. 각각의 필드는 도시된 시간 구간(즉, 4 또는 8 ㎲ 등) 동안에 전송될 수 있다.As shown, a HE-PPDU for a multiple user (MU) includes a legacy-short training field (L-STF), a legacy-long training field (L-LTF), a legacy-signal (L-SIG), High efficiency-signal A (HE-SIG-A), high efficiency-signal-B (HE-SIG-B), high efficiency-short training field (HE-STF), high efficiency-long training field (HE-LTF) It may include a data field (or MAC payload) and a PE (Packet Extension) field. Each field may be transmitted during the time period shown (ie, 4 or 8 ms, etc.).
IEEE 규격에서 사용되는 PPDU는 주로20MHz의 채널 대역폭 상에서 전송되는 PPDU 구조로 설명된다. 20MHz의 채널 대역폭보다 넓은 대역폭(예를 들어, 40MHz, 80MHz) 상에서 전송되는 PPDU 구조는 20MHz의 채널 대역폭에서 사용되는 PPDU 구조에 대한 선형적인 스케일링을 적용한 구조일 수 있다.The PPDU used in the IEEE standard is mainly described as a PPDU structure transmitted over a channel bandwidth of 20 MHz. The PPDU structure transmitted on a bandwidth wider than the channel bandwidth of 20 MHz (eg, 40 MHz and 80 MHz) may be a structure in which linear scaling of the PPDU structure used in the channel bandwidth of 20 MHz is applied.
IEEE 규격에서 사용되는 PPDU 구조는 64 FFT(Fast Fourier Tranform)를 기반으로 생성되고, CP 부분(cyclic prefix portion)은 1/4일 수 있다. 이러한 경우, 유효 심볼 구간(또는 FFT 구간)의 길이가 3.2us, CP 길이가 0.8us, 심볼 듀레이션은 유효 심볼 구간 및 CP 길이를 더한 4us(3.2us+0.8us)일 수 있다.The PPDU structure used in the IEEE standard is generated based on 64 Fast Fourier Tranforms (FTFs), and a CP portion (cyclic prefix portion) may be 1/4. In this case, the length of the effective symbol interval (or FFT interval) may be 3.2us, the CP length is 0.8us, and the symbol duration may be 4us (3.2us + 0.8us) plus the effective symbol interval and the CP length.
무선 네트워크는 유비쿼터스(ubiquitous)이며 실내에 보통 있고 실외에 자주 설치되고 있다. 무선 네트워크는 다양한 기술을 사용하여 정보를 송신 및 수신한다. 예를 들어, 이에 한정되는 것은 아니지만, 통신에 사용되는 2 가지의 널리 보급 된 기술은 IEEE 802.11n 표준 및 IEEE 802.11ac 표준과 같은 IEEE 802.11 표준을 준수하는 기술이다.Wireless networks are ubiquitous, usually indoors and often installed outdoors. Wireless networks use various techniques to send and receive information. For example, but not limited to, two widely used technologies for communication are those that comply with IEEE 802.11 standards such as the IEEE 802.11n standard and the IEEE 802.11ac standard.
IEEE 802.11 표준은 IEEE 802.11 기반 무선 LAN (WLAN)의 작동을 지원하는 다양한 기능을 제공하는 공통 MAC(Medium Access Control) 계층을 지정한다. MAC 계층은 공유 라디오에 대한 액세스를 조정하고 무선 매체를 통한 통신을 향상시키는 프로토콜을 활용하여 IEEE 802.11 스테이션(예 : PC의 무선 네트워크 카드 (NIC) 또는 다른 무선 장치 또는 스테이션 (STA) 및 액세스 포인트 (AP)) 간의 통신을 관리하고 유지한다. The IEEE 802.11 standard specifies a common Medium Access Control (MAC) layer that provides a variety of features to support the operation of IEEE 802.11-based wireless LANs (WLANs). The MAC layer utilizes protocols that coordinate access to shared radios and improve communications over wireless media, such as IEEE 802.11 stations (such as a PC's wireless network card (NIC) or other wireless device or station (STA) and access point ( Manage and maintain communication between APs).
IEEE 802.11ax는 802.11ac의 후속 제품으로, 특히 공공 핫스팟 및 기타 고밀도 트래픽 영역과 같은 고밀도 영역에서 WLAN 네트워크의 효율성을 높이기 위해 제안되었다. IEEE 802.11은 또한 직교 주파수 분할 다중 접속 (OFDMA)을 사용할 수 있다. IEEE 802.11 작업 그룹(Work Group) 내의 High Efficiency WLAN 연구 그룹 (HEW SG)은 IEEE 802.11 표준과 관련하여 AP (액세스 포인트) 및 / 또는 STA (스테이션)의 고밀도 시나리오에서 시스템 처리량 / 면적을 향상시키기 위해 스펙트럼 효율 향상을 고려하고 있다.IEEE 802.11ax is the successor to 802.11ac and has been proposed to improve the efficiency of WLAN networks, especially in high density areas such as public hotspots and other high density traffic areas. IEEE 802.11 can also use Orthogonal Frequency Division Multiple Access (OFDMA). The High Efficiency WLAN Research Group (HEW SG) within the IEEE 802.11 Work Group is dedicated to improving system throughput / area in high-density scenarios of APs (access points) and / or STAs (stations) in relation to the IEEE 802.11 standard. We are considering improving efficiency.
웨어러블 장치(wearable device) 및 센서, 모바일 장치 등과 같은 소형 컴퓨팅 장치(small computing device)는 소규모 배터리 용량으로 인해 제약을 받지만 Wi-Fi, Bluetooth®, BLE (Bluetooth® Low Energy) 등과 같은 무선 통신 기술을 지원하고, 스마트폰, 태블릿, 컴퓨터 등과 같은 다른 컴퓨팅 장치에 연결하고 데이터를 교환해야 한다. 이러한 통신은 전력을 소비하므로 이러한 장치에서 이러한 통신의 에너지 소비를 최소화하는 것이 중요하다. 에너지 소비를 최소화하기 위한 하나의 이상적인 전략은 지연을 너무 많이 증가시키지 않고 데이터 송신 및 수신을 유지하면서 통신 블록에 대한 전원을 가능한 빈번하게 끄는 것이다. 즉, 데이터 수신 직전에 통신 블록을 송신하고 웨이크 업할 데이터가 있을 때만 통신 블록을 켜고 나머지 시간 동안 통신 블록의 전원을 끈다.Wearable devices and small computing devices such as sensors and mobile devices are constrained by small battery capacities, but use wireless communication technologies such as Wi-Fi, Bluetooth®, and Bluetooth® Low Energy (BLE). Support, connect to and exchange data with other computing devices such as smartphones, tablets, and computers. Since these communications consume power, it is important to minimize the energy consumption of such communications in these devices. One ideal strategy to minimize energy consumption is to power off the communication block as frequently as possible while maintaining data transmission and reception without increasing delay too much. That is, the communication block is transmitted immediately before the data reception, and only when there is data to wake up, the communication block is turned on and the communication block is turned off for the remaining time.
이하에서는, 저전력 웨이크업 수신기(Low-Power Wake-Up Receiver; LP-WUR)를 설명한다.Hereinafter, a low-power wake-up receiver (LP-WUR) will be described.
본 명세서에서 기술하는 통신 시스템(또는 통신 서브 시스템)은 메인 라디오(802.11)과 저전력 웨이크업 수신기를 포함한다. The communication system (or communication subsystem) described herein includes a main radio (802.11) and a low power wake up receiver.
메인 라디오는 사용자 데이터의 송수신을 위해 사용된다. 메인 라디오는 송신할 데이터 또는 패킷이 있지 않으면 꺼진다. 저전력 웨이크업 수신기는 수신할 패킷이 있을 때 메인 라디오를 깨운다. 이때, 사용자 데이터는 메인 라디오에 의해 송수신된다.The main radio is used for transmitting and receiving user data. The main radio is turned off if there are no data or packets to transmit. The low power wake-up receiver wakes up the main radio when there is a packet to receive. At this time, the user data is transmitted and received by the main radio.
저전력 웨이크업 수신기는 사용자 데이터를 위함이 아니다. 단순히 메인 라디오를 깨우기 위한 수신기이다. 즉, 송신기는 포함하지 않는다. 저전력 웨이크업 수신기는 메인 라디오가 꺼져있는 동안 활성화된다. 저전력 웨이크업 수신기는 활성화 상태에서 1mW 미만의 타겟 전력 소비를 목표로 한다. 또한, 저전력 웨이크업 수신기는 5MHz 미만의 좁은 대역폭을 사용한다. 또한, 저전력 웨이크업 수신기의 타겟 송신 범위(target transmission range)는 기존 802.11의 타겟 송신 범위와 동일하다.The low power wake-up receiver is not for user data. It is simply a receiver to wake up the main radio. In other words, the transmitter is not included. The low power wake-up receiver is active while the main radio is off. Low power wake-up receivers target a target power consumption of less than 1 mW in an active state. In addition, low power wake-up receivers use a narrow bandwidth of less than 5 MHz. In addition, the target transmission range of the low power wake-up receiver is the same as that of the existing 802.11.
도 4는 데이터가 수신되지 않는 환경에서의 저전력 웨이크업 수신기를 도시한 도면이다. 도 5는 데이터가 수신되는 환경에서 저전력 웨이크업 수신기를 도시한 도면이다.4 illustrates a low power wake-up receiver in an environment in which data is not received. 5 illustrates a low power wake-up receiver in an environment in which data is received.
도 4 및 도 5에 도시된 바와 같이, 송수신할 데이터가 있는 경우, 이상적인 송수신 전략을 구현하는 한 가지 방법은 Wi-Fi, Bluetooth® 라디오, BLE (Bluetooth® Radio)와 같은 메인 라디오(Main radio)를 웨이크업 할 수 있는 저전력 웨이크업 수신기(LP-WUR)를 추가하는 것이다. As shown in Figures 4 and 5, if there is data to be transmitted and received, one way to implement an ideal transmission and reception strategy is a main radio such as Wi-Fi, Bluetooth® radio, or Bluetooth® Radio (BLE). Adding a low power wake-up receiver (LP-WUR) that can wake up.
도 4를 참조하면, Wi-Fi / BT / BLE(420)가 꺼져 있고 저전력 웨이크업 수신기(430)는 데이터가 수신되지 않는 상태로 켜져 있다. 일부 연구에 따르면 이러한 저전력 웨이크업 수신기(LP-WUR)의 전력 소비는 1mW 미만일 수 있다.Referring to FIG. 4, the Wi-Fi / BT / BLE 420 is turned off and the low power wake-up receiver 430 is turned on without receiving data. Some studies show that the low power wake-up receiver (LP-WUR) can consume less than 1mW.
그러나, 도 5에 도시된 바와 같이, 웨이크업 패킷이 수신되면, 저전력 웨이크업 수신기(530)는 웨이크업 패킷 다음에 오는 데이터 패킷이 정확하게 수신될 수 있도록 전체 Wi-Fi / BT / BLE 라디오(520)를 웨이크업 한다. 그러나 어떤 경우에는 실제 데이터 또는 IEEE 802.11 MAC 프레임이 웨이크업 패킷에 포함될 수도 있다. 이 경우 전체 Wi-Fi / BT / BLE 라디오(520)를 깨울 필요는 없지만 Wi-Fi / BT / BLE 라디오(520)의 일부만 깨우쳐 필요한 프로세스를 수행해야 한다. 이는 상당한 절전을 가져올 수 있다.However, as shown in FIG. 5, when a wakeup packet is received, the low power wakeup receiver 530 may receive the entire Wi-Fi / BT / BLE radio 520 so that the data packet following the wakeup packet can be correctly received. Wake up). In some cases, however, actual data or IEEE 802.11 MAC frames may be included in the wakeup packet. In this case, it is not necessary to wake up the entire Wi-Fi / BT / BLE radio 520, but only a part of the Wi-Fi / BT / BLE radio 520 to perform the necessary process. This can result in significant power savings.
본 명세서에 개시된 하나의 예시적인 기술은 저전력 웨이크업 수신기를 이용하는 Wi-Fi / BT / BLE에 대한 세분화된 웨이크업 모드에 대한 방법을 정의한다. 예를 들어, 웨이크업 패킷에 포함 된 실제 데이터는 Wi-Fi / BT / BLE 라디오를 깨우지 않고도 장치의 메모리 블록으로 직접 전달할 수 있다.One example technique disclosed herein defines a method for a granular wakeup mode for Wi-Fi / BT / BLE using a low power wakeup receiver. For example, the actual data contained in the wakeup packet can be passed directly to the device's memory block without waking up the Wi-Fi / BT / BLE radio.
다른 예로서, 웨이크업 패킷에 IEEE 802.11 MAC 프레임이 포함 된 경우 웨이크업에 포함 된 IEEE 802.11 MAC 프레임을 처리하기 위해 Wi-Fi / BT / BLE 무선 장치의 MAC 프로세서만 깨우면 된다. 즉, Wi-Fi / BT / BLE 라디오의 PHY 모듈의 전원을 끄거나 저전력 모드로 유지할 수 있다.As another example, if a wakeup packet contains an IEEE 802.11 MAC frame, only the MAC processor of the Wi-Fi / BT / BLE wireless device needs to wake up to process the IEEE 802.11 MAC frame included in the wakeup. That is, the PHY module of the Wi-Fi / BT / BLE radio can be turned off or kept in a low power mode.
저전력 웨이크업 수신기를 사용하는 Wi-Fi / BT / BLE 라디오에 대해 다수의 세분화된 웨이크업 모드가 정의되어, 웨이크업 패킷이 수신될 때 Wi- -Fi / BT / BLE 라디오의 전원을 켜야 한다. 그러나, 상기 실시예에 따르면, Wi-Fi / BT / BLE 라디오의 필요한 파트(또는 구성 요소)만 선택적으로 깨어나게 되어 에너지를 절약하고 대기 시간을 줄일 수 있다. 웨이크업 패킷 수신 시 저전력 웨이크업 수신기를 사용하는 많은 솔루션이 전체 Wi-Fi / BT / BLE 라디오를 웨이크업 한다. 본 명세서에서 논의된 하나의 예시적인 양태는 수신된 데이터를 처리하는데 필요한 Wi-Fi / BT / BLE 라디오의 필요한 부분만을 깨우므로 상당한 양의 에너지를 절약하고 메인 라디오를 깨우는 데 있어 불필요한 대기 시간을 줄일 수 있다.A number of granular wakeup modes have been defined for Wi-Fi / BT / BLE radios that use low power wake-up receivers, requiring that the Wi-Fi / BT / BLE radio be powered on when a wake-up packet is received. However, according to the above embodiment, only necessary parts (or components) of the Wi-Fi / BT / BLE radio can be selectively woken up, thereby saving energy and reducing the waiting time. Many solutions that use low-power wake-up receivers to receive wake-up packets wake up the entire Wi-Fi / BT / BLE radio. One exemplary aspect discussed herein wakes up only the necessary portions of the Wi-Fi / BT / BLE radio required to process the received data, saving significant amounts of energy and reducing unnecessary latency in waking up the main radio. Can be.
또한, 상기 실시예에서, 저전력 웨이크업 수신기(530)는 송신장치(500)로부터 송신된 웨이크업 패킷에 기초하여 메인 라디오(520)를 웨이크업 할 수 있다.In addition, in the above embodiment, the low power wake-up receiver 530 may wake up the main radio 520 based on the wake-up packet transmitted from the transmitter 500.
또한, 송신장치(500)은 수신장치로(510)로 웨이크업 패킷을 송신하도록 설정될 수 있다. 예를 들어, 메인 라디오(520)가 웨이크업 되도록 저전력 웨이크업 수신기(530)에 지시할 수 있다.In addition, the transmitter 500 may be set to transmit a wakeup packet to the receiver 510. For example, the low power wake-up receiver 530 may be instructed to wake up the main radio 520.
도 6은 본 실시예에 따른 웨이크업 패킷 구조의 일례를 나타낸다.6 shows an example of a wakeup packet structure according to the present embodiment.
웨이크업 패킷은 하나 이상의 레거시 프리앰블(legacy preamble)을 포함할 수 있다. 하나 이상의 레거시 장치는 상기 레거시 프리앰블을 디코딩하거나 처리할 수 있다.The wakeup packet may include one or more legacy preambles. One or more legacy devices may decode or process the legacy preamble.
또한, 웨이크업 패킷은 레거시 프리앰블 뒤에 페이로드를 포함할 수 있다. 페이로드는 간단한 변조 방식, 예를 들어, 온오프 키잉(On-Off Keying; OOK) 변조 방식에 의해 변조될 수 있다.In addition, the wakeup packet may include a payload after the legacy preamble. The payload may be modulated by a simple modulation scheme, for example, an On-Off Keying (OOK) modulation scheme.
도 6을 참조하면, 송신장치는 웨이크업 패킷(600)을 생성 및/또는 송신하도록 구성될 수 있다. 수신장치는 수신된 웨이크업 패킷(600)을 처리하도록 구성될 수 있다.Referring to FIG. 6, the transmitter may be configured to generate and / or transmit a wakeup packet 600. The receiving device may be configured to process the received wakeup packet 600.
또한, 웨이크업 패킷(600)은 IEEE 802.11 스펙에 의해 정의된 레거시 프리앰블 또는 임의의 다른 프리앰블(610)을 포함할 수 있다. 또한, 웨이크업 패킷(600)은 페이로드(620)을 포함할 수 있다.In addition, the wakeup packet 600 may include a legacy preamble or any other preamble 610 as defined by the IEEE 802.11 specification. In addition, the wakeup packet 600 may include a payload 620.
레거시 프리앰블은 레거시 STA과의 공존을 제공한다. 공존을 위한 레거시 프리앰블(610)은 패킷을 보호하기 위해 L-SIG 필드를 사용한다. 레거시 프리앰블(610) 내 L-STF 필드를 통해 802.11 STA은 패킷의 시작을 검출할 수 있다. 레거시 프리앰블(610) 내 L-SIG 필드를 통해 802.11 STA은 패킷의 마지막을 알 수 있다. 또한 L-SIG 다음에 BPSK로 변조한 하나의 심볼을 추가함으로써 802.11n 단말의 잘못된 알람(false alarm)을 줄일 수 있다. BPSK로 변조한 하나의 심볼(4us) 또한 레거시 파트와 같이 20MHz 대역폭을 가진다. 레거시 프리앰블(610)은 써드 파티(third party) 레거시 STA(LP-WUR을 포함하지 않은 STA)을 위한 필드이다. 레거시 프리앰블(610)은 LP-WUR로부터 복호되지 않는다.Legacy preambles provide coexistence with legacy STAs. The legacy preamble 610 for coexistence uses the L-SIG field to protect the packet. The 802.11 STA may detect the start of a packet through the L-STF field in the legacy preamble 610. The 802.11 STA can know the end of the packet through the L-SIG field in the legacy preamble 610. In addition, by adding a BPSK modulated symbol after the L-SIG, a false alarm of an 802.11n terminal can be reduced. One symbol (4us) modulated with BPSK also has a 20MHz bandwidth like the legacy part. The legacy preamble 610 is a field for third party legacy STAs (STAs not including LP-WUR). The legacy preamble 610 is not decoded from the LP-WUR.
페이로드(620)는 웨이크업 프리앰블(622)을 포함할 수 있다. 웨이크업 프리앰블(Wake-Up preamble, 622)은 웨이크업 패킷(600)을 식별하도록 구성된 비트들의 시퀀스를 포함할 수 있다. 웨이크업 프리앰블(622)는 예를 들어, PN 시퀀스를 포함할 수 있다.The payload 620 may include a wakeup preamble 622. Wake-up preamble 622 may include a sequence of bits configured to identify wake-up packet 600. The wakeup preamble 622 may include, for example, a PN sequence.
또한, 페이로드(620)는 웨이크업 패킷(600)을 수신하는 수신장치의 어드레스 정보 또는 수신장치의 식별자를 포함하는 MAC 헤더(624)를 포함할 수 있다. In addition, the payload 620 may include a MAC header 624 including address information of a receiver receiving the wakeup packet 600 or an identifier of the receiver.
또한, 페이로드(620)는 웨이크업 패킷의 다른 정보를 포함할 수 있는 프레임 바디(Frame Body, 626)을 포함할 수 있다. 예를 들어, 프레임 바디(626)에는 페이로드의 길이 또는 사이즈 정보가 포함될 수 있다.In addition, the payload 620 may include a frame body 626 that may include other information of the wakeup packet. For example, the frame body 626 may include length or size information of the payload.
또한, 페이로드(620)는 Cyclic Redundancy Check (CRC) 값을 포함하는 Frame Check Sequence (FCS) 필드(628)를 포함 할 수 있다. 예를 들어 MAC 헤더(624) 및 프레임 바디(626)의 CRC-8 값 또는 CRC-16 값을 포함 할 수 있다.In addition, the payload 620 may include a Frame Check Sequence (FCS) field 628 that includes a Cyclic Redundancy Check (CRC) value. For example, it may include a CRC-8 value or a CRC-16 value of the MAC header 624 and the frame body 626.
도 7은 본 실시예에 따른 웨이크업 패킷의 신호 파형을 나타낸다.7 shows a signal waveform of a wakeup packet according to the present embodiment.
도 7을 참조하면, 웨이크업 패킷(700)은 레거시 프리앰블(802.11 프리앰블, 710)과 OOK로 변조된 페이로드를 포함한다. 즉, 레가시 프리앰블과 새로운 LP-WUR 신호 파형이 공존하는 형태이다. Referring to FIG. 7, the wakeup packet 700 includes a legacy preamble (802.11 preamble, 710) and a payload modulated by OOK. That is, the legacy preamble and the new LP-WUR signal waveform coexist.
또한, 레거시 프리앰블(710)은 OFDM 변조 방식에 따라 변조될 수 있다. 즉, 레거시 프리앰블(710)은 OOK 방식이 적용되지 않는다. 이에 반해 페이로드는 OOK 방식에 따라 변조될 수 있다. 다만, 페이로드 내 웨이크업 프리앰블(722)은 다른 변조 방식에 따라 변조될 수도 있다.In addition, the legacy preamble 710 may be modulated according to the OFDM modulation scheme. That is, the legacy preamble 710 is not applied to the OOK method. In contrast, the payload may be modulated according to the OOK method. However, the wakeup preamble 722 in the payload may be modulated according to another modulation scheme.
레거시 프리앰블(710)이 64 FFT가 적용되는 20MHz의 채널 대역폭 상에서 송신된다고 하면, 페이로드는 약 4.06MHz의 채널 대역폭 상에서 송신될 수 있다. 이는 후술하는 OOK 펄스(pulse) 설계 방법에서 설명하도록 한다.If the legacy preamble 710 is transmitted on a channel bandwidth of 20 MHz to which 64 FFTs are applied, the payload may be transmitted on a channel bandwidth of about 4.06 MHz. This will be described later in the OOK pulse design method.
먼저, OOK 방식을 이용한 변조 기법과 맨체스터 코딩(manchester coding) 기법에 대해 설명한다.First, a modulation scheme using the OOK scheme and a Manchester coding scheme will be described.
도 8은 OOK 방식을 이용해 이진 수열 형태의 정보를 구성하는 비트 값의 1과 0의 비율에 따라 소비 전력이 결정되는 원리를 설명하기 위한 도면이다.FIG. 8 is a diagram for describing a principle in which power consumption is determined according to a ratio of 1 and 0 of bit values constituting binary sequence information using the OOK method.
도 8을 참조하면, 1 또는 0을 비트 값으로 갖는 이진 수열 형태의 정보를 표현하고 있다. 이와 같은 이진 수열 형태의 정보가 갖는 1 또는 0의 비트 값을 이용하면, OOK 변조 방식의 통신을 수행할 수 있다. 즉, 이진 수열 형태의 정보가 갖는 비트 값들을 고려하여, OOK 변조 방식의 통신을 수행할 수 있다. 예를 들어, 발광 다이오드를 가시광 통신에 이용하는 경우, 이진 수열 형태의 정보를 구성하는 비트 값이 1인 경우 발광 다이오드를 온(on) 시키고, 비트 값이 0인 경우 발광 다이오드를 오프(off) 시킴으로써 발광 다이오드를 점멸하게 할 수 있다. 이와 같은 발광 다이오드의 점멸에 따라 가시광 형태로 전송된 데이터를 수신장치가 수신하여 복원함으로써, 가시광을 이용한 통신이 가능하게 된다. 다만, 이와 같은 발광 다이오드의 점멸을 사람의 눈은 인지할 수 없으므로, 사람은 조명이 계속하여 유지되는 것으로 느껴진다.Referring to FIG. 8, information in the form of a binary sequence having 1 or 0 as a bit value is represented. By using a bit value of 1 or 0 of the binary sequence information, OOK modulation can be performed. That is, in consideration of the bit values of the binary sequence information, it is possible to perform the communication of the OOK modulation method. For example, when the light emitting diode is used for visible light communication, the light emitting diode is turned on when the bit value constituting the binary sequence information is 1, and the light emitting diode is turned off when the bit value is 0. The light emitting diode can be made to blink. As the light-emitting diode blinks, the receiver receives and restores data transmitted in the form of visible light, thereby enabling communication using visible light. However, since the blinking of the light emitting diode cannot be perceived by the human eye, the person feels that the illumination is continuously maintained.
설명의 편의상 도 8에 도시된 바와 같이 10개의 비트 값을 갖는 이진 수열 형태의 정보를 이용한다. 도 8을 참조하면, '1001101011'의 값을 가지는 이진 수열 형태의 정보가 있다. 앞서 설명한 바와 같이, 비트 값이 1인 경우 송신장치를 온(on) 시키고, 비트 값이 0인 경우 송신장치를 오프(off) 시키면, 10개의 비트 값 중 6개의 비트 값에서 심볼이 온(on) 된다. 따라서, 10개의 비트 값 모두에서 심볼이 온 되는 경우, 100%의 소비 전력을 가진다고 하면, 도 8의 듀티 사이클(duty cycle)에 따르는 경우, 소비 전력은 60% 가 된다고 할 수 있다.For convenience of description, as shown in FIG. 8, information in the form of a binary sequence having 10 bit values is used. Referring to FIG. 8, there is information in the form of a binary sequence having a value of '1001101011'. As described above, when the bit value is 1, the transmitter is turned on, and when the bit value is 0, the transmitter is turned off, the symbol is turned on at 6 bit values out of 10 bit values. ) do. Therefore, when the symbol is turned on in all 10 bit values, if the power consumption is 100%, the power consumption is 60% according to the duty cycle of FIG. 8.
즉, 이진 수열 형태의 정보를 구성하는 1 과 0의 비율에 따라 송신기의 소비 전력이 결정된다고 할 수 있다. 바꾸어 말하면, 송신기의 소비 전력을 특정한 값으로 유지하여야 한다는 제약 조건이 있는 경우, 이진 수열 형태의 정보를 구성하는 1 과 0의 비율 또한 유지되어야 한다. 예를 들어, 조명 기기의 경우, 사람들이 원하는 특정 휘도 값으로 조명이 유지되어야 하므로, 이진 수열 형태의 정보를 구성하는 1 과 0의 비율 또한 유지되어야 한다.That is, it can be said that the power consumption of the transmitter is determined according to the ratio of 1 and 0 constituting the binary sequence information. In other words, if there is a constraint that the power consumption of the transmitter must be kept at a certain value, the ratio of 1 and 0, which constitutes information in binary sequence form, must also be maintained. For example, in the case of lighting equipment, since the lighting must be maintained at a specific luminance value desired by people, the ratio of 1 and 0 constituting the information in the form of a binary sequence must also be maintained.
다만, 웨이크업 수신기(WUR)에 대해서는 수신장치가 주체이므로 송신 전력은 크게 중요하지 않다. OOK를 사용하는 가장 큰 이유는 수신 신호의 복호 시 소모전력이 굉장히 적다는 데에 있다. 복호를 수행하기 전까지는 메인 라디오나 WUR에서 전력 소모가 크게 차이가 없지만 복호 과정으로 가면서 큰 차이가 발생한다. 아래는 대략적인 소모 전력이다.However, since the receiver is mainly a wake-up receiver (WUR), the transmission power is not important. The main reason for using OOK is that the power consumption is very low when decoding the received signal. Until the decoding is performed, there is no significant difference in power consumption in the main radio or WUR, but a large difference occurs in the decoding process. Below is the approximate power consumption.
- 기존 Wi-Fi 전력 소모는 약 100mW가 된다. 구체적으로, Resonator + Oscillator + PLL (1500uW) -> LPF (300uW) -> ADC (63uW) -> decoding processing (OFDM receiver) (100mW)의 전력 소모가 발생할 수 있다.-The existing Wi-Fi power consumption is about 100mW. Specifically, power consumption of Resonator + Oscillator + PLL (1500uW)-> LPF (300uW)-> ADC (63uW)-> decoding processing (OFDM receiver) (100mW) may occur.
- 다만, WUR 전력 소모는 약 1mW가 된다. 구체적으로, Resonator + Oscillator (600uW) -> LPF (300uW) -> ADC(20uW) -> decoding processing (Envelope detector) (1uW)의 전력 소모가 발생할 수 있다.-WUR power consumption is about 1mW. Specifically, power consumption of Resonator + Oscillator (600uW)-> LPF (300uW)-> ADC (20uW)-> decoding processing (Envelope detector) (1uW) may occur.
도 9는 본 실시예에 따른 맨체스터 코딩 기법에 대한 설명도이다.9 is an explanatory diagram of a Manchester coding scheme according to the present embodiment.
도 9에 도시된 바와 같이, 전송할 비트열, 맨체스터 코딩된 신호, 수신측에서 재생한 클럭 및 클럭에서 재생한 데이터를 위에서 아래로 순서대로 나타낸다. As shown in Fig. 9, the bit string to be transmitted, the Manchester coded signal, the clock reproduced at the receiving side, and the data reproduced at the clock are shown in order from top to bottom.
맨체스터 코딩 기법이란 1은 01로 0은 10으로 또는 1은 10로 0은 01로 데이터를 변환하는 방법을 말한다.Manchester coding refers to a method of converting data from 1 to 01, 0 to 10, 1 to 10, and 0 to 01.
상기 맨체스터 코딩 기법을 이용하여 송신측에서 데이터를 전송하면 수신측에서는 1→0 또는 0→1로 천이하는 천이점을 기준으로 조금 뒤에 데이터를 읽어 데이터를 복구하고, 1→0 또는 0→1로 천이하는 천이점을 클럭의 천이점으로 인식하여 클럭을 복구한다. 또는 천이점을 기준으로 심벌을 나누었을 때 심벌의 중심에서 앞부분과 뒷부분의 전력 비교로 간단히 복호할 수 있다.When the transmitter transmits data using the Manchester coding scheme, the receiver reads the data a little later based on the transition point of 1 → 0 or 0 → 1, and recovers the data, and then transitions to 1 → 0 or 0 → 1. The clock is recovered by recognizing the transition point as the clock transition point. Alternatively, when the symbol is divided based on the transition point, it can be simply decoded by comparing the power at the front and the back at the center of the symbol.
도 9에 도시된 바와 같이, 전송할 비트열는 10011101이고, 전송할 비트열을 맨체스터 코딩한 신호는 0110100101011001이며, 수신측에서 재생한 클럭은 맨체스터 코딩된 신호의 천이점을 클럭의 천이점으로 인식하여 구하며, 이렇게 재생된 클럭을 이용하여 데이터를 복구한다.As shown in FIG. 9, the bit string to be transmitted is 10011101, the Manchester coded signal to be transmitted is 0110100101011001, and the clock reproduced on the receiving side is obtained by recognizing the transition point of the Manchester coded signal as the clock transition point. The recovered clock is used to recover the data.
이와 같은 맨체스터 코딩 기법을 이용하면, 별도의 클럭을 사용하지 않고 데이터 전송 채널만을 이용하여 동기 방식으로 통신을 할 수 있다.By using the Manchester coding scheme, it is possible to communicate in a synchronous manner using only a data transmission channel without using a separate clock.
또한, 이와 같은 방식은 데이터 전송 채널만을 이용함으로써 TXD 핀을 데이터 전송을 위해서 RXD 핀은 수신을 위해서 사용할 수 있다. 그러므로, 동기화된 양방향의 전송을 할 수 있는 것이다.In addition, this method can use the TXD pin for data transmission and the RXD pin for reception by using only the data transmission channel. Therefore, synchronized bidirectional transmission is possible.
도 10은 본 실시예에 따른 OOK 펄스의 설계 방법을 나타낸다.10 shows a method of designing a OOK pulse according to the present embodiment.
OOK 펄스를 생성하기 위해 802.11의 OFDM 송신장치를 재사용할 수 있다. 상기 송신장치는 기존 802.11과 같이 64-point IFFT를 적용하여 64개의 비트를 가지는 시퀀스를 생성할 수 있다.The OFDM transmitter of 802.11 can be reused to generate OOK pulses. The transmitter can generate a sequence having 64 bits by applying a 64-point IFFT as in 802.11.
송신장치는 웨이크업 패킷의 페이로드를 OOK 방식으로 변조하여 생성해야 한다. 다만, 웨이크업 패킷은 저전력 통신을 위한 것이므로 온 신호(on signal)에 대해서 OOK 방식을 적용한다. 온 신호는 실제 전력 값을 가지는 신호이고, 오프 신호(off signal)는 실제 전력 값을 가지지 않는 신호에 대응한다. 오프 신호 또한, OOK 방식이 적용되나 송신장치를 이용하여 신호가 발생된 것이 아니라, 실제 전송되는 신호가 없으므로 웨이크업 패킷의 구성에서 고려하지 않는다.The transmitter should generate the payload of the wakeup packet by modulating the OOK method. However, since the wakeup packet is for low power communication, the OOK method is applied to the on signal. The on signal is a signal having an actual power value, and the off signal corresponds to a signal having no actual power value. In addition, the OOK method is applied, but the signal is not generated using the transmitter, and since no signal is actually transmitted, it is not considered in the configuration of the wakeup packet.
OOK 방식에서는 정보(비트) 1은 온 신호이고, 정보(비트) 0은 오프 신호가 될 수 있다. 이와 달리, 맨체스터 코딩 방식을 적용하면, 정보 1은 오프 신호에서 온 신호로 천이되는 것을 나타내고, 정보 0은 온 신호에서 오프 신호로 천이되는 것을 나타낼 수 있다. 또는 반대로, 정보 1은 온 신호에서 오프 신호로 천이되는 것을 나타내고, 정보 0은 오프 신호에서 온 신호로 천이되는 것을 나타낼 수도 있다.In the OOK method, information (bit) 1 may be an on signal and information (bit) 0 may be an off signal. Alternatively, when the Manchester coding scheme is applied, information 1 may indicate a transition from an off signal to an on signal, and information 0 may indicate a transition from an on signal to an off signal. Alternatively, on the contrary, the information 1 may indicate the transition from the on signal to the off signal, and the information 0 may indicate the transition from the off signal to the on signal.
도 10을 참조하면, 오른쪽 주파수 영역 그래프(1020)와 같이, 송신장치는 기준 대역인 20MHz 대역의 가운데 위치한 13개의 서브캐리어를 샘플로 선택한다. 즉, 64개의 서브캐리어 중 서브캐리어 인덱스가 -6부터 +6까지인 서브캐리어를 선택한다. 이때, 서브캐리어 인덱스 0은 DC 서브캐리어로 0으로 널링될 수 있다. 샘플로 선택한 13개의 서브캐리어에만 특정 시퀀스를 설정하고, 13개의 서브캐리어를 제외한 나머지 서브캐리어(서브캐리어 인덱스 -32부터 -7까지 및 서브캐리어 인덱스 +7부터 +31까지)는 모두 0으로 설정한다.Referring to FIG. 10, as shown in the right frequency domain graph 1020, the transmitter selects 13 subcarriers located in the center of a 20 MHz band as a sample as a sample. That is, a subcarrier whose subcarrier index is from -6 to +6 is selected from the 64 subcarriers. In this case, the subcarrier index 0 may be nulled to 0 as the DC subcarrier. Set a specific sequence only to the 13 subcarriers selected as samples, and set all subcarriers except the subcarriers (subcarrier indexes -32 to -7 and subcarrier indexes +7 to +31) to 0. .
또한, 서브캐리어 간격(subcarrier spacing)은 312.5KHz이므로 13개의 서브캐리어는 약 4.06MHz의 채널 대역폭을 가진다. 즉, 주파수 영역에서 20MHz 대역 중 4.06MHz에 대해서만 전력이 있다고 볼 수 있다. 이렇게 전력을 가운데로 몰아줌으로써 SNR(Signal to Noise Ratio)이 커질 수 있고 수신장치의 AC/DC 컨버터에서 전력 소모가 적어질 수 있다는 장점이 있다. 또한, 샘플링 주파수 대역을 4.06MHz로 감소시켰으므로 전력 소모가 줄어들 수 있다.In addition, since subcarrier spacing is 312.5 KHz, 13 subcarriers have a channel bandwidth of about 4.06 MHz. That is, it can be said that power is provided only for 4.06MHz in the 20MHz band in the frequency domain. By moving the power to the center, the signal to noise ratio (SNR) can be increased and the power consumption of the AC / DC converter of the receiver can be reduced. In addition, the power consumption can be reduced by reducing the sampling frequency band to 4.06MHz.
또한, 도 10의 왼쪽 시간 영역 그래프(1010)와 같이, 송신장치는 13개의 서브캐리어에 대해 64-point IFFT를 수행하여 시간 영역에서 하나의 온 신호를 생성할 수 있다. 하나의 온 신호는 1비트의 크기를 가진다. 즉, 13개의 서브캐리어로 구성된 시퀀스가 1비트에 대응할 수 있다. 반면에, 송신장치는 오프 신호는 아예 송신하지 않을 수 있다. IFFT를 수행하면 3.2us의 심벌을 생성할 수 있고, CP(Cyclic Prefix, 0.8us)를 포함한다면, 4us의 길이를 가지는 하나의 심벌을 생성할 수 있다. 즉, 하나의 온 신호를 지시하는 1비트를 하나의 심벌에 실을 수 있다.In addition, as shown in the left time domain graph 1010 of FIG. 10, the transmitter may generate one on-signal in the time domain by performing a 64-point IFFT on 13 subcarriers. One on-signal has a size of 1 bit. That is, a sequence composed of 13 subcarriers may correspond to 1 bit. On the other hand, the transmitter may not transmit the off signal at all. When performing IFFT, a 3.2us symbol may be generated, and if a CP (Cyclic Prefix, 0.8us) is included, one symbol having a length of 4us may be generated. That is, one bit indicating one on-signal may be loaded in one symbol.
상술한 실시예와 같이 비트를 구성하여 보내는 이유는 수신장치에서 포락선 검출기(envelope detector)를 사용하여 전력 소모를 적게 하기 위함이다. 이로써, 수신장치는 패킷을 최소 전력으로 복호할 수 있다.The reason for configuring and sending the bits as in the above-described embodiment is to reduce power consumption by using an envelope detector in the receiver. As a result, the receiving device can decode the packet with the minimum power.
다만, 하나의 정보에 대한 기본적인 데이터 레이트(data rate)는 125Mbps(8us) 또는 62.5Mbps(16us)가 될 수 있다.However, the basic data rate for one information may be 125Mbps (8us) or 62.5Mbps (16us).
이하에서는, 송신장치에서 송신한 웨이크업 패킷을 수신장치가 복호(또는 수신)하고 전력을 확인하는 방법을 설명한다.Hereinafter, a description will be given of a method of decoding (or receiving) a wake-up packet transmitted from a transmitter and confirming power.
웨이크업 패킷을 복호하는 방법은 크게 2가지로 나눌 수 있다. 첫째는 non-coherent 검출 방식이고, 두 번째는 coherent 검출 방식이다. non-coherent 검출 방식은 송신장치와 수신장치의 신호 간에 위상 관계가 고정되지 않는 것이다. 따라서, 수신장치는 수신된 신호의 위상을 측정하여 조정할 필요가 없다. 이와 반대로, coherent 검출 방식은 송신장치와 수신장치의 신호 간에 위상이 맞춰줘야 한다.There are two ways to decode the wakeup packet. The first is non-coherent detection and the second is coherent detection. In non-coherent detection, the phase relationship between the transmitter and receiver signals is not fixed. Thus, the receiver does not need to measure and adjust the phase of the received signal. In contrast, the coherent detection method requires that the phase of the signal between the transmitter and the receiver be aligned.
수신장치는 앞서 설명한 저전력 웨이크업 수신기를 포함한다. 저전력 웨이크업 수신기는 전력 소모를 줄이기 위해 OOK 변조 방식을 사용하여 전송된 패킷(웨이크업 패킷)을 포락선 검출기(envelope detector)를 이용하여 복호할 수 있다. The receiver includes the low power wake-up receiver described above. The low power wake-up receiver may decode a packet (wake-up packet) transmitted using an OOK modulation scheme using an envelope detector to reduce power consumption.
포락선 검출기는 수신된 신호의 전력 또는 크기(magnitude)를 측정하여 복호하는 방식이다. 수신장치는 포락선 검출기를 통해 측정한 전력 또는 크기를 기반으로 임계값(threshold)를 정해놓는다. 그리고, OOK가 적용된 심벌에 대한 복호를 할 때 임계값보다 크거나 같으면 정보 1로 판단하고, 임계값보다 작으면 정보 0으로 판단한다.The envelope detector measures and decodes the power or magnitude of the received signal. The receiver sets a threshold based on the power or magnitude measured by the envelope detector. When decoding the symbol to which the OOK is applied, it is determined as information 1 if it is greater than or equal to the threshold value, and as information 0 when it is smaller than the threshold value.
여기서, 임계값의 설정은 저전력 웨이크업 수신기의 성능에 있어서 중요하다. 따라서, 저전력 웨이크업 수신기에서 임계값을 설정하는 방법을 제안한다.Here, setting the threshold is important for the performance of the low power wakeup receiver. Therefore, a method of setting a threshold in a low power wake-up receiver is proposed.
예를 들어, K개의 서브캐리어를 사용하여 1비트의 OOK가 적용된 심벌을 구성하는 경우를 고려할 수 있다. K는 앞서 설명한 것과 같이 DC 서브캐리어를 제외하면 12개이고, DC 서브캐리어까지 포함하면 13개일 수 있다. 만약 정보 0으로 판단되면 OOK가 적용된 심벌의 전력은 모두 0의 값을 가지고, 정보 1로 판단되면 OOK가 적용된 심벌의 전력은 alpha^2 값을 가진다. 여기서, alpha는 전력 정규화 요소(power normalization factor)이다.For example, a case of configuring a symbol to which a 1-bit OOK is applied using K subcarriers may be considered. As described above, K may be 12 except for the DC subcarrier and 13 may be included when including the DC subcarrier. If it is determined that the information is 0, the power of the OOK-applied symbol has a value of 0, and if it is determined to be information 1, the power of the OOK-applied symbol has an alpha ^ 2 value. Here, alpha is a power normalization factor.
non-coherent 검출 방식으로 웨이크업 패킷을 복호하는 방법은 option 1과 option 2가 있다.There are option 1 and option 2 for decoding wake-up packets using non-coherent detection.
-Option 1- -Option 1-
수신장치는 송신장치에서 실제로 보내는 전력 정보를 알고 있다. 따라서, 수신장치는 간단하게 정보 1에 대한 전력 또는 놈(norm) 값을 구하여, 임계값을 전력 또는 놈 값의 절반으로 설정할 수 있다. 즉, K개의 서브캐리어를 사용하여 1비트의 OOK가 적용된 심벌을 구성하는 경우, 임계값은 K*alpha^2/2 또는 sqrt(K)*alpha/2로 설정될 수 있다. The receiver knows the power information actually sent by the transmitter. Thus, the receiver can simply obtain the power or norm value for information 1 and set the threshold to half the power or norm value. That is, in the case of configuring a symbol to which a 1-bit OOK is applied using K subcarriers, the threshold may be set to K * alpha ^ 2/2 or sqrt (K) * alpha / 2.
다만, 수신장치는 채널을 통과한 신호를 수신하기 때문에, 채널 상황이 고려된 임계값 설정이 중요하다. 따라서, option 1은 채널 상황이 고려되지 않아 실제 성능은 크게 열화될 수 있다.However, since the receiver receives a signal that has passed through the channel, it is important to set a threshold considering the channel condition. Therefore, option 1 may not consider the channel situation, and the actual performance may be greatly degraded.
-Option 2--Option 2-
수신장치는 송신장치가 전달하는 웨이크업 프리앰블의 시퀀스 정보를 알고 있다고 가정한다. 즉, 웨이크업 프리앰블의 시퀀스 정보 수신장치와 송신장치 간에 사전에 약속되어 있다. 수신장치는 채널 상황을 고려하기 위해 웨이크업 프리앰블을 통해 수신된 신호의 평균 전력 또는 평균 놈 값을 측정한다. 이때, 수신장치는 온 신호가 전달되는 심벌 부분만 고려하여 수신된 신호의 평균 전력 또는 평균 놈 값을 측정한다. 이로써, 수신장치는 수신된 신호의 평균 전력 또는 평균 놈 값의 절반을 임계값으로 설정할 수 있다. It is assumed that the receiver knows sequence information of the wake-up preamble transmitted by the transmitter. That is, the sequence information receiving apparatus and the transmitting apparatus of the wake-up preamble are promised in advance. The receiver measures the average power or average norm value of the signal received via the wakeup preamble to take into account the channel conditions. In this case, the receiving apparatus measures an average power or average norm value of the received signal in consideration of only the symbol portion to which the on signal is transmitted. As a result, the receiver may set a half of the average power or the average norm of the received signal as the threshold.
즉, 수신장치는 웨이크업 프리앰블의 시퀀스를 통해 결정한 임계값을 이용하여 웨이크업 프리앰블 뒤에 따라오는 페이로드의 전력을 확인할 수 있다.That is, the receiver may check the power of the payload following the wakeup preamble by using the threshold value determined through the sequence of the wakeup preamble.
즉, 평균 전력을 beta라고 가정하면, 임계값은 beta/2 또는 sqrt(beta)/2로 설정할 수 있다.That is, assuming that the average power is beta, the threshold may be set to beta / 2 or sqrt (beta) / 2.
다만, 맨체스터 코딩을 적용하는 경우에는 임계값을 설정할 필요가 없다. 천이되기 전 신호가 천이된 신호보다 큰지 작은지 확인하여 정보 0과 정보 1을 구별할 수 있기 때문이다.However, when applying Manchester coding, it is not necessary to set a threshold. This is because information 0 and information 1 can be distinguished by checking whether the signal is larger or smaller than the transition signal before the transition.
또한, coherent 검출 방식으로 웨이크업 패킷을 복호할 수도 있다.In addition, the wakeup packet may be decoded using a coherent detection method.
OOK가 적용된 심벌을 coherent 검출 방식으로 복호하고자 한다면, 수신장치에서의 수신된 신호와 송신장치에서의 원래 신호 간에 유클리드 거리(Euclidean distance)를 계산하여야 한다.If the OOK is to be decoded by the coherent detection method, the Euclidean distance between the received signal at the receiver and the original signal at the transmitter should be calculated.
이때는, 채널 정보가 필요하며 웨이크업 프리앰블에서 채널 추정을 수행한다. 유클리드 거리를 결정하는 방법은 아래의 수학식과 같이 수행될 수 있다.In this case, channel information is required and channel estimation is performed in the wake-up preamble. The method of determining the Euclidean distance may be performed as in the following equation.
Figure PCTKR2017006726-appb-M000001
Figure PCTKR2017006726-appb-M000001
이때,
Figure PCTKR2017006726-appb-I000001
, variance of each element in noise = 1,
Figure PCTKR2017006726-appb-I000002
,
Figure PCTKR2017006726-appb-I000003
,
Figure PCTKR2017006726-appb-I000004
이다.
At this time,
Figure PCTKR2017006726-appb-I000001
, variance of each element in noise = 1,
Figure PCTKR2017006726-appb-I000002
,
Figure PCTKR2017006726-appb-I000003
,
Figure PCTKR2017006726-appb-I000004
to be.
상기 수학식 1에서 r은 수신된 신호이고, X0는 오프 신호이고, X1은 온 신호이다. coherent 검출 방식을 기반으로 하기 때문에 모두 수신장치가 수신한 신호를 가지고 유클리드 거리를 계산할 수 있다. h는 채널이고,
Figure PCTKR2017006726-appb-I000005
는 웨이크업 프리앰블에서 추정한 채널이다. || ||^2는 놈(norm) 값을 구하는 식이다.
In Equation 1, r is a received signal, X 0 is an off signal, and X 1 is an on signal. Based on the coherent detection method, the Euclidean distance can be calculated using the signals received by all receivers. h is a channel,
Figure PCTKR2017006726-appb-I000005
Is the channel estimated by the wake-up preamble. || || ^ 2 returns the norm value.
상기 수학식 1을 이용하면, 수신된 신호 r이 X0에 더 가까운지 아니면 X1에 더 가까운지를 판단할 수 있다. 즉, 상기 수학식 1에 따르면,
Figure PCTKR2017006726-appb-I000006
Figure PCTKR2017006726-appb-I000007
보다 작으면 수신장치는 X0이 송신되었다고 판단할 수 있다. 또한,
Figure PCTKR2017006726-appb-I000008
Figure PCTKR2017006726-appb-I000009
보다 크다면 수신장치는 X1이 송신되었다고 판단할 수 있다. 수신된 신호에 더 가까울수록 놈 값이 작아지기 때문이다.
Using Equation 1, it may be determined whether the received signal r is closer to X 0 or closer to X 1 . That is, according to Equation 1,
Figure PCTKR2017006726-appb-I000006
this
Figure PCTKR2017006726-appb-I000007
If smaller, the receiver may determine that X 0 has been transmitted. Also,
Figure PCTKR2017006726-appb-I000008
this
Figure PCTKR2017006726-appb-I000009
If greater, the receiving device may determine that X 1 has been transmitted. This is because the closer to the received signal, the smaller the norm value.
coherent 검출 방식의 다른 예로, 실제 보내지는 신호인 X1만 고려하여 수신된 신호를 복호하는 방법도 있다.Another example of a coherent detection method is a method of decoding a received signal considering only X 1 , which is a signal actually sent.
송신장치에서 실제로 보내지는 신호는 X1 하나이므로(X0는 실제로 송신되는 신호가 없다) 채널이 아닌 X1이 보내졌을 때 수신된 신호를 측정하여 결정할 수 있다. 이는 아래의 수학식과 같이 수행될 수 있다.Since there is only one X 1 signal sent by the transmitter (X 0 has no signal actually transmitted), it can be determined by measuring the received signal when X 1 is sent instead of the channel. This may be performed as in the following equation.
Figure PCTKR2017006726-appb-M000002
Figure PCTKR2017006726-appb-M000002
상기 수학식 2에서
Figure PCTKR2017006726-appb-I000010
은 웨이크업 프리앰블에서 정보 1을 전달하는 심벌의 수신된 신호의 평균 벡터를 나타낸다. 즉,
Figure PCTKR2017006726-appb-I000011
은 채널을 통과한 수신된 신호를 측정하는 것이다.
In Equation 2
Figure PCTKR2017006726-appb-I000010
Denotes an average vector of received signals of symbols carrying information 1 in the wake-up preamble. In other words,
Figure PCTKR2017006726-appb-I000011
Is measuring the received signal passing through the channel.
상기 수학식 2에 따르면,
Figure PCTKR2017006726-appb-I000012
Figure PCTKR2017006726-appb-I000013
보다 작으면 수신장치는 X0이 송신되었다고 판단할 수 있다. 또한,
Figure PCTKR2017006726-appb-I000014
Figure PCTKR2017006726-appb-I000015
보다 크면 수신장치는 X1이 송신되었다고 판단할 수 있다. 수신된 신호에 더 가까울수록 놈 값이 작아지기 때문이다.
According to Equation 2,
Figure PCTKR2017006726-appb-I000012
this
Figure PCTKR2017006726-appb-I000013
If smaller, the receiver may determine that X 0 has been transmitted. Also,
Figure PCTKR2017006726-appb-I000014
this
Figure PCTKR2017006726-appb-I000015
If greater, the receiver may determine that X 1 has been transmitted. This is because the closer to the received signal, the smaller the norm value.
수학식 1은 채널을 측정하는 것이고 수학식 2는 수신된 신호를 측정하는 차이가 있다. Equation 1 measures the channel and Equation 2 differs in measuring the received signal.
도 11은 본 실시예에 따른 웨이크업 패킷을 이용하여 저전력 통신을 수행하는 절차를 도시한 흐름도이다.11 is a flowchart illustrating a procedure for performing low power communication using a wakeup packet according to the present embodiment.
도 11의 일례는 수신장치에 적용될 수 있고, 수신장치는 저전력 웨이크업 수신기에 대응할 수 있고, 송신장치는 AP에 대응할 수 있다.11 may be applied to a receiver, the receiver may correspond to a low power wake-up receiver, and the transmitter may correspond to an AP.
먼저 용어를 정리하면, 온 신호(on signal)는 실제 전력 값을 가지는 신호에 대응할 수 있다. 오프 신호(off signal)는 실제 전력 값을 가지지 않는 신호에 대응할 수 있다. 놈 값은 벡터의 크기 척도를 나타내는 것으로 여기서는, 신호의 크기 척도에 대응할 수 있다.First of all, the term “on signal” may correspond to a signal having an actual power value. The off signal may correspond to a signal that does not have an actual power value. The norm value represents a magnitude measure of a vector and may correspond to a magnitude measure of a signal.
S1110 단계에서, 수신장치는 송신장치로부터 웨이크업 프리앰블 및 웨이크업 페이로드를 포함하는 웨이크업 패킷을 수신한다. 상기 웨이크업 페이로드는 MAC 헤더 필드, 프레임 바디(Frame Body) 필드 및 FCS(Frame Check Sequence) 필드를 포함할 수 있다. In operation S1110, the receiver receives a wakeup packet including a wakeup preamble and a wakeup payload from the transmitter. The wakeup payload may include a MAC header field, a frame body field, and a frame check sequence (FCS) field.
S1120 단계에서, 수신장치는 상기 웨이크업 프리앰블을 통해 채널을 통과한 수신된 신호의 평균 전력 또는 평균 놈(norm) 값을 측정한다. 상기 평균 전력 또는 평균 놈 값은 상기 웨이크업 프리앰블에서 온 신호(on signal)를 지시하는 비트만을 기반으로 측정된다.In step S1120, the receiver measures the average power or average norm value of the received signal passed through the channel through the wakeup preamble. The average power or average norm value is measured based only on bits indicating an on signal in the wakeup preamble.
S1130 단계에서, 수신장치는 임계값을 기반으로 상기 웨이크업 페이로드의 전력을 확인한다. 상기 임계값은 상기 평균 전력 또는 평균 놈 값의 절반으로 설정된다.In step S1130, the receiver checks the power of the wake-up payload based on a threshold value. The threshold is set to half the average power or average norm value.
상기 웨이크업 페이로드의 전력이 상기 임계값보다 크거나 같으면, 상기 웨이크업 페이로드의 전력은 alpha^2로 판단될 수 있다. 또한, 상기 웨이크업 페이로드의 전력이 상기 임계값보다 작다면, 상기 웨이크업 페이로드의 전력은 0으로 판단될 수 있다. 상기 alpha는 전력 정규화 요소(power normalization factor)이다. If the power of the wakeup payload is greater than or equal to the threshold value, the power of the wakeup payload may be determined as alpha ^ 2. In addition, if the power of the wakeup payload is less than the threshold value, the power of the wakeup payload may be determined to be zero. The alpha is a power normalization factor.
다만, 상기 웨이크업 패킷은 OOK(On-Off Keying) 방식으로 변조되어 송신된다. 상기 웨이크업 프리앰블은 상기 온 신호를 지시하는 비트와 오프 신호(off signal)를 지시하는 비트로 구성되는 시퀀스를 포함할 수 있다. 상기 온 신호를 지시하는 비트는 1을 지시하고, 상기 오프 신호를 지시하는 비트는 0을 지시할 수 있다. 예를 들어, 상기 시퀀스는 1110으로 구성될 수 있다. 즉, 첫 번째, 두 번째, 세 번째 비트는 온 신호를 나타내고, 네 번째 비트는 오프 신호를 나타낼 수 있다. 상기 일례에 따르면, 수신장치는 상기 채널을 통과한 수신된 신호의 평균 전력 또는 평균 놈 값은 첫 번째, 두 번째, 세 번째 비트만을 기반으로 측정할 수 있다.However, the wakeup packet is modulated and transmitted in an on-off keying (OOK) scheme. The wakeup preamble may include a sequence including a bit indicating the on signal and a bit indicating an off signal. The bit indicating the on signal may indicate 1, and the bit indicating the off signal may indicate 0. For example, the sequence may consist of 1110. That is, the first, second, and third bits may represent an on signal and the fourth bit may represent an off signal. According to the example, the receiver may measure the average power or average norm value of the received signal passing through the channel based only on the first, second, and third bits.
상기 시퀀스는 상기 송신장치와 상기 수신장치 간에 사전에 정의될 수 있다.The sequence may be defined in advance between the transmitter and the receiver.
이때, 상기 온 신호를 지시하는 비트는, 20MHz 대역의 연속된 특정 13개의 서브캐리어에 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 심벌을 통해 전달될 수 있다. 즉, 온 신호를 지시하는 하나의 비트는 IFFT를 수행하여 생성된 하나의 심벌을 통해 송신될 수 있다. In this case, the bit indicating the on signal may be transmitted through a symbol generated by applying a sequence to specific 13 consecutive subcarriers in a 20 MHz band and performing a 64-point Inverse Fast Fourier Transform (IFFT). That is, one bit indicating the on signal may be transmitted through one symbol generated by performing an IFFT.
상기 13개의 서브캐리어는 상기 20MHz 대역의 부분 대역에 대응할 수 있다. 20MHz를 기준 대역이라 하면 64개의 서브캐리어(또는 비트 시퀀스)를 사용할 수 있음에도 13개의 서브캐리어만 샘플링하여 IFFT를 수행하므로, 13개의 서브캐리어는 약 4.06MHz 대역에 대응할 수 있다. 즉, 샘플로 선택한 13개의 서브캐리어에만 특정 시퀀스를 설정하고, 13개의 서브캐리어를 제외한 나머지 서브캐리어는 모두 0으로 설정한다. 즉, 주파수 영역에서 20MHz 대역 중 4.06MHz에 대해서만 전력이 있다고 볼 수 있다.The thirteen subcarriers may correspond to a partial band of the 20 MHz band. When 20 MHz is referred to as a reference band, even though 64 subcarriers (or bit sequences) can be used, only 13 subcarriers are sampled to perform IFFT, and thus, 13 subcarriers may correspond to about 4.06 MHz band. That is, a specific sequence is set only to 13 subcarriers selected as samples, and all other subcarriers except 13 subcarriers are set to 0. That is, it can be said that power is provided only for 4.06MHz in the 20MHz band in the frequency domain.
또한, 상기 13개의 서브캐리어는 서브캐리어 인덱스 -6부터 서브캐리어 인덱스 +6까지 배치될 수 있다. 또한, 상기 13개의 서브캐리어 각각의 서브캐리어 간격(subcarrier spacing)은 312.5KHz일 수 있다. 이에 따라, IFFT를 수행하여 생성된 심벌은 CP(Cyclic Prefix)를 포함하여 4us의 길이를 가질 수 있다.In addition, the thirteen subcarriers may be arranged from subcarrier index -6 to subcarrier index +6. In addition, the subcarrier spacing of each of the 13 subcarriers may be 312.5 KHz. Accordingly, the symbol generated by performing the IFFT may have a length of 4 us including a cyclic prefix (CP).
또한, 상기 웨이크업 패킷은 레가시(legacy) 프리앰블을 더 포함할 수 있다. 상기 레가시 프리앰블은 상기 20MHz 대역을 통해 송신될 수 있다. 상기 웨이크업 프리앰블 및 상기 웨이크업 페이로드는 상기 20MHz 대역의 부분 대역을 통해 송신될 수 있다. 즉, 레가시 프리앰블은 OFDM 방식으로 변조되어 송신되고, 상기 웨이크업 프리앰블 및 상기 웨이크업 페이로드는 상술한 OOK 방식으로 변조되어 송신될 수 있다. The wakeup packet may further include a legacy preamble. The legacy preamble may be transmitted through the 20 MHz band. The wakeup preamble and the wakeup payload may be transmitted through a partial band of the 20MHz band. That is, the legacy preamble may be modulated and transmitted in the OFDM scheme, and the wakeup preamble and the wakeup payload may be modulated and transmitted in the above-described OOK scheme.
도 12는 본 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.12 is a block diagram illustrating a wireless device to which the present embodiment can be applied.
도 12를 참조하면, 무선 장치는 상술한 실시예를 구현할 수 있는 STA로서, AP또는 비AP STA(non-AP station)일 수 있다. 상기 무선 장치는 상술한 사용자에 대응되거나, 상기 사용자에 신호를 송신하는 송신 장치에 대응될 수 있다. Referring to FIG. 12, the wireless device may be an AP or a non-AP station (STA) as an STA capable of implementing the above-described embodiment. The wireless device may correspond to the above-described user or may correspond to a transmission device for transmitting a signal to the user.
AP(1200)는 프로세서(1210), 메모리(1220) 및 RF부(radio frequency unit, 1230)를 포함한다. The AP 1200 includes a processor 1210, a memory 1220, and an RF unit 1230.
RF부(1230)는 프로세서(1210)와 연결하여 무선신호를 송신/수신할 수 있다.The RF unit 1230 may be connected to the processor 1210 to transmit / receive a radio signal.
프로세서(1210)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(2010)는 전술한 본 실시예에 따른 동작을 수행할 수 있다. 즉, 프로세서(1210)는 도 1 내지 11의 실시예에서 개시된 동작 중 AP가 수행할 수 있는 동작을 수행할 수 있다.The processor 1210 may implement the functions, processes, and / or methods proposed herein. For example, the processor 2010 may perform an operation according to the present embodiment described above. That is, the processor 1210 may perform an operation that may be performed by the AP during the operations disclosed in the embodiments of FIGS. 1 to 11.
비AP STA(1250)는 프로세서(1260), 메모리(1270) 및 RF부(radio frequency unit, 1280)를 포함한다. The non-AP STA 1250 includes a processor 1260, a memory 1270, and an RF unit 1280.
RF부(1280)는 프로세서(1260)와 연결하여 무선신호를 송신/수신할 수 있다.The RF unit 1280 may be connected to the processor 1260 to transmit / receive a radio signal.
프로세서(1260)는 본 실시예에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1260)는 전술한 본 실시예에 따른 non-AP STA동작을 수행하도록 구현될 수 있다. 프로세서는 도 1 내지 11의 실시예에서 non-AP STA의 동작을 수행할 수 있다.The processor 1260 may implement the functions, processes, and / or methods proposed in this embodiment. For example, the processor 1260 may be implemented to perform the non-AP STA operation according to the present embodiment described above. The processor may perform the operation of the non-AP STA in the embodiment of FIGS. 1 to 11.
프로세서(1210, 1260)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(1220, 1270)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1230, 1280)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. Processors 1210 and 1260 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals. The memories 1220 and 1270 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices. The RF unit 1230 and 1280 may include one or more antennas for transmitting and / or receiving a radio signal.
실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1220, 1270)에 저장되고, 프로세서(1210, 1260)에 의해 실행될 수 있다. 메모리(2020, 2070)는 프로세서(1210, 1260) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1210, 1260)와 연결될 수 있다.When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in the memories 1220 and 1270 and executed by the processors 1210 and 1260. The memories 2020 and 2070 may be inside or outside the processors 1210 and 1260, and may be connected to the processors 1210 and 1260 by various well-known means.

Claims (16)

  1. 무선 랜(wireless LAN) 시스템에서 웨이크업 패킷(wake-up packet)을 이용하여 저전력 통신을 수행하는 방법에 있어서,A method of performing low power communication using a wake-up packet in a wireless LAN system,
    수신장치가, 송신장치로부터 웨이크업 프리앰블 및 웨이크업 페이로드를 포함하는 웨이크업 패킷을 수신하는 단계;Receiving, by the receiver, a wakeup packet including a wakeup preamble and a wakeup payload from the transmitter;
    상기 수신장치가, 상기 웨이크업 프리앰블을 통해 채널을 통과한 수신된 신호의 평균 전력 또는 평균 놈(norm) 값을 측정하는 단계; 및Measuring, by the receiver, an average power or average norm value of a received signal that has passed through a channel through the wakeup preamble; And
    상기 수신장치가, 임계값을 기반으로 상기 웨이크업 페이로드의 전력을 확인하는 단계를 더 포함하되,The receiving apparatus further comprises the step of checking the power of the wake-up payload based on a threshold value,
    상기 웨이크업 패킷은 OOK(On-Off Keying) 방식으로 변조되어 송신되고, The wakeup packet is modulated and transmitted in an on-off keying (OOK) scheme,
    상기 평균 전력 또는 평균 놈 값은 상기 웨이크업 프리앰블에서 온 신호(on signal)를 지시하는 비트만을 기반으로 측정되고,The average power or average norm value is measured based only on a bit indicating an on signal in the wakeup preamble,
    상기 임계값은 상기 평균 전력 또는 평균 놈 값의 절반으로 설정되는The threshold is set to half of the average power or average norm value
    방법.Way.
  2. 제1항에 있어서,The method of claim 1,
    상기 웨이크업 페이로드의 전력이 상기 임계값보다 크거나 같으면, 상기 페이로드의 전력은 alpha^2으로 판단되고,If the power of the wake-up payload is greater than or equal to the threshold value, the power of the payload is determined as alpha ^ 2,
    상기 웨이크업 페이로드의 전력이 상기 임계값보다 작다면, 상기 페이로드의 전력은 0으로 판단되고,If the power of the wake-up payload is less than the threshold, the power of the payload is determined to be zero,
    상기 alpha는 전력 정규화 요소(power normalization factor)인Alpha is a power normalization factor
    방법.Way.
  3. 제1항에 있어서,The method of claim 1,
    상기 웨이크업 프리앰블은 상기 온 신호를 지시하는 비트와 오프 신호(off signal)를 지시하는 비트로 구성되는 시퀀스를 포함하고,The wakeup preamble includes a sequence including a bit indicating the on signal and a bit indicating an off signal,
    상기 온 신호를 지시하는 비트는 1을 지시하고,The bit indicating the on signal indicates 1,
    상기 오프 신호를 지시하는 비트는 0을 지시하고,The bit indicating the off signal indicates 0,
    상기 시퀀스는 상기 송신장치와 상기 수신장치 간에 사전에 정의되는The sequence is defined in advance between the transmitter and the receiver.
    방법.Way.
  4. 제3항에 있어서,The method of claim 3,
    상기 온 신호는 실제 전력 값을 가지는 신호에 대응하고,The on signal corresponds to a signal having an actual power value,
    상기 오프 신호는 실제 전력 값을 가지지 않는 신호에 대응하는The off signal corresponds to a signal that does not have an actual power value.
    방법.Way.
  5. 제3항에 있어서,The method of claim 3,
    상기 온 신호를 지시하는 비트는, 20MHz 대역의 연속된 13개의 서브캐리어에 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 심벌을 통해 전달되는The bit indicating the on signal is transmitted through a symbol generated by applying a sequence to 13 consecutive subcarriers in a 20 MHz band and performing a 64-point Inverse Fast Fourier Transform (IFFT).
    방법.Way.
  6. 제5항에 있어서,The method of claim 5,
    상기 13개의 서브캐리어는 상기 20MHz 대역의 부분 대역에 대응하고,The 13 subcarriers correspond to the partial band of the 20 MHz band,
    상기 13개의 서브캐리어 각각의 서브캐리어 간격(subcarrier spacing)은 312.5KHz이고,Subcarrier spacing of each of the 13 subcarriers is 312.5 KHz,
    상기 13개의 서브캐리어는 서브캐리어 인덱스 -6부터 서브캐리어 인덱스 +6까지 배치되고,The thirteen subcarriers are arranged from subcarrier index -6 to subcarrier index +6,
    상기 심벌은 CP(Cyclic Prefix)를 포함하여 4us의 길이를 가지는The symbol has a length of 4 us including a cyclic prefix (CP).
    방법.Way.
  7. 제6항에 있어서,The method of claim 6,
    상기 웨이크업 패킷은 레가시(legacy) 프리앰블을 더 포함하고,The wakeup packet further includes a legacy preamble,
    상기 레가시 프리앰블은 상기 20MHz 대역을 통해 송신되고,The legacy preamble is transmitted on the 20 MHz band,
    상기 웨이크업 프리앰블 및 상기 웨이크업 페이로드는 상기 20MHz 대역의 부분 대역을 통해 송신되는The wakeup preamble and the wakeup payload are transmitted through a partial band of the 20MHz band.
    방법.Way.
  8. 제1항에 있어서,The method of claim 1,
    상기 웨이크업 페이로드는 MAC 헤더 필드, 프레임 바디(Frame Body) 필드 및 FCS(Frame Check Sequence) 필드를 포함하는The wakeup payload includes a MAC header field, a frame body field, and a frame check sequence (FCS) field.
    방법.Way.
  9. 무선 랜(wireless LAN) 시스템에서 웨이크업 패킷(wake-up packet)을 이용하여 저전력 통신을 수행하는 수신장치에 있어서, In a receiver for performing low power communication using a wake-up packet in a wireless LAN system,
    무선 신호를 송신하거나 수신하는 RF부; 및RF unit for transmitting or receiving a wireless signal; And
    상기 RF부를 제어하는 프로세서를 포함하되, Including a processor for controlling the RF unit,
    상기 프로세서는:The processor is:
    송신장치로부터 웨이크업 프리앰블 및 웨이크업 페이로드를 포함하는 웨이크업 패킷을 수신하고,Receiving a wake-up packet including a wake-up preamble and a wake-up payload from a transmitter,
    상기 웨이크업 프리앰블을 통해 채널을 통과한 수신된 신호의 평균 전력 또는 평균 놈(norm) 값을 측정하고, 및Measure an average power or average norm value of a received signal that has passed through a channel through the wakeup preamble, and
    임계값을 기반으로 상기 웨이크업 페이로드의 전력을 확인하되,Check the power of the wake-up payload based on a threshold,
    상기 웨이크업 패킷은 OOK(On-Off Keying) 방식으로 변조되어 송신되고, The wakeup packet is modulated and transmitted in an on-off keying (OOK) scheme,
    상기 평균 전력 또는 평균 놈 값은 상기 웨이크업 프리앰블에서 온 신호(on signal)를 지시하는 비트만을 기반으로 측정되고,The average power or average norm value is measured based only on a bit indicating an on signal in the wakeup preamble,
    상기 임계값은 상기 평균 전력 또는 평균 놈 값의 절반으로 설정되는The threshold is set to half of the average power or average norm value
    수신장치.Receiver.
  10. 제9항에 있어서,The method of claim 9,
    상기 웨이크업 페이로드의 전력이 상기 임계값보다 크거나 같으면, 상기 페이로드의 전력은 alpha^2으로 판단되고,If the power of the wake-up payload is greater than or equal to the threshold value, the power of the payload is determined as alpha ^ 2,
    상기 웨이크업 페이로드의 전력이 상기 임계값보다 작다면, 상기 페이로드의 전력은 0으로 판단되고,If the power of the wake-up payload is less than the threshold, the power of the payload is determined to be zero,
    상기 alpha는 전력 정규화 요소(power normalization factor)인Alpha is a power normalization factor
    수신장치.Receiver.
  11. 제9항에 있어서,The method of claim 9,
    상기 웨이크업 프리앰블은 상기 온 신호를 지시하는 비트와 오프 신호(off signal)를 지시하는 비트로 구성되는 시퀀스를 포함하고,The wakeup preamble includes a sequence including a bit indicating the on signal and a bit indicating an off signal,
    상기 온 신호를 지시하는 비트는 1을 지시하고,The bit indicating the on signal indicates 1,
    상기 오프 신호를 지시하는 비트는 0을 지시하고,The bit indicating the off signal indicates 0,
    상기 시퀀스는 상기 송신장치와 상기 수신장치 간에 사전에 정의되는The sequence is defined in advance between the transmitter and the receiver.
    수신장치.Receiver.
  12. 제11항에 있어서,The method of claim 11,
    상기 온 신호는 실제 전력 값을 가지는 신호에 대응하고,The on signal corresponds to a signal having an actual power value,
    상기 오프 신호는 실제 전력 값을 가지지 않는 신호에 대응하는The off signal corresponds to a signal that does not have an actual power value.
    수신장치.Receiver.
  13. 제11항에 있어서,The method of claim 11,
    상기 온 신호를 지시하는 비트는, 20MHz 대역의 연속된 13개의 서브캐리어에 시퀀스를 적용하고 64-point IFFT(Inverse Fast Fourier Transform)를 수행하여 생성된 심벌을 통해 전달되는The bit indicating the on signal is transmitted through a symbol generated by applying a sequence to 13 consecutive subcarriers in a 20 MHz band and performing a 64-point Inverse Fast Fourier Transform (IFFT).
    수신장치.Receiver.
  14. 제13항에 있어서,The method of claim 13,
    상기 13개의 서브캐리어는 상기 20MHz 대역의 부분 대역에 대응하고,The 13 subcarriers correspond to the partial band of the 20 MHz band,
    상기 13개의 서브캐리어 각각의 서브캐리어 간격(subcarrier spacing)은 312.5KHz이고,Subcarrier spacing of each of the 13 subcarriers is 312.5 KHz,
    상기 13개의 서브캐리어는 서브캐리어 인덱스 -6부터 서브캐리어 인덱스 +6까지 배치되고,The thirteen subcarriers are arranged from subcarrier index -6 to subcarrier index +6,
    상기 심벌은 CP(Cyclic Prefix)를 포함하여 4us의 길이를 가지는The symbol has a length of 4 us including a cyclic prefix (CP).
    수신장치.Receiver.
  15. 제14항에 있어서,The method of claim 14,
    상기 웨이크업 패킷은 레가시(legacy) 프리앰블을 더 포함하고,The wakeup packet further includes a legacy preamble,
    상기 레가시 프리앰블은 상기 20MHz 대역을 통해 송신되고,The legacy preamble is transmitted on the 20 MHz band,
    상기 웨이크업 프리앰블 및 상기 웨이크업 페이로드는 상기 20MHz 대역의 부분 대역을 통해 송신되는The wakeup preamble and the wakeup payload are transmitted through a partial band of the 20MHz band.
    수신장치.Receiver.
  16. 제9항에 있어서,The method of claim 9,
    상기 웨이크업 페이로드는 MAC 헤더 필드, 프레임 바디(Frame Body) 필드 및 FCS(Frame Check Sequence) 필드를 포함하는The wakeup payload includes a MAC header field, a frame body field, and a frame check sequence (FCS) field.
    수신장치.Receiver.
PCT/KR2017/006726 2016-07-21 2017-06-26 Method and device for performing low-power communication in wireless lan system by using wakeup packet WO2018016756A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662365339P 2016-07-21 2016-07-21
US62/365,339 2016-07-21
US201662376239P 2016-08-17 2016-08-17
US62/376,239 2016-08-17

Publications (1)

Publication Number Publication Date
WO2018016756A1 true WO2018016756A1 (en) 2018-01-25

Family

ID=60993192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006726 WO2018016756A1 (en) 2016-07-21 2017-06-26 Method and device for performing low-power communication in wireless lan system by using wakeup packet

Country Status (1)

Country Link
WO (1) WO2018016756A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937447A (en) * 2018-03-23 2020-11-13 交互数字专利控股公司 Method for waking up a frequency division multiplexing on-off keying signal of a radio
CN112314007A (en) * 2018-04-20 2021-02-02 瑞典爱立信有限公司 Method and apparatus for power efficient transmission and reception of signals using aliasing
CN116131961A (en) * 2021-11-12 2023-05-16 上海诺基亚贝尔股份有限公司 Method and equipment for using preamble
CN117641543A (en) * 2024-01-26 2024-03-01 荣耀终端有限公司 A signal generation method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010676A1 (en) * 2010-07-21 2012-01-26 University College Cork - National University Of Ireland, Cork Low power wake-up system and method for wireless body area networks
WO2014028247A1 (en) * 2012-08-17 2014-02-20 Qualcomm Incorporated Systems and methods for low power wake up signal and operations for wlan
US20150071151A1 (en) * 2013-09-11 2015-03-12 Microsemi Corporation Multi-channel low power wake-up system
US20150334650A1 (en) * 2014-05-16 2015-11-19 Intel Corporation Method, system and apparatus for providing coexistence between low power stations and non-low power stations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010676A1 (en) * 2010-07-21 2012-01-26 University College Cork - National University Of Ireland, Cork Low power wake-up system and method for wireless body area networks
WO2014028247A1 (en) * 2012-08-17 2014-02-20 Qualcomm Incorporated Systems and methods for low power wake up signal and operations for wlan
US20150071151A1 (en) * 2013-09-11 2015-03-12 Microsemi Corporation Multi-channel low power wake-up system
US20150334650A1 (en) * 2014-05-16 2015-11-19 Intel Corporation Method, system and apparatus for providing coexistence between low power stations and non-low power stations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"LP-,xlUR (Low- Power Wake-Up Receiver): Enabling Low- Power and Low-Latency Capability for 802.11", INTEL CORPORATION, 18 January 2016 (2016-01-18), pages 1 - 21 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937447A (en) * 2018-03-23 2020-11-13 交互数字专利控股公司 Method for waking up a frequency division multiplexing on-off keying signal of a radio
CN111937447B (en) * 2018-03-23 2024-06-11 交互数字专利控股公司 Method for waking up a frequency division multiplexed on-off keying signal of a radio
US12063596B2 (en) 2018-03-23 2024-08-13 Interdigital Patent Holdings, Inc. Methods for frequency division multiplexed on-off keying signals for wake-up radios
CN112314007A (en) * 2018-04-20 2021-02-02 瑞典爱立信有限公司 Method and apparatus for power efficient transmission and reception of signals using aliasing
CN112314007B (en) * 2018-04-20 2024-04-23 瑞典爱立信有限公司 Method and apparatus for energy efficient transmission and reception of signals using aliasing
CN116131961A (en) * 2021-11-12 2023-05-16 上海诺基亚贝尔股份有限公司 Method and equipment for using preamble
CN117641543A (en) * 2024-01-26 2024-03-01 荣耀终端有限公司 A signal generation method and device
CN117641543B (en) * 2024-01-26 2024-05-24 荣耀终端有限公司 Signal generation method and device

Similar Documents

Publication Publication Date Title
WO2018016757A1 (en) Method and device for performing low-power communication in wireless lan system by using wakeup packet
WO2018048202A1 (en) Method and device for searching for access point in wireless lan
WO2016175435A1 (en) Ul mu transmission method of sta operating in power save mode, and device for performing method
WO2018199670A1 (en) Method for receiving frame in wireless lan system, and wireless terminal using same
WO2017007266A1 (en) Method for operating sounding in wireless lan system, and apparatus therefor
WO2019194530A1 (en) Method for communicating in wireless lan system and wireless terminal using same
US20220346009A1 (en) Method and device for receiving wur discovery frame in wireless lan system
WO2016028117A1 (en) Method and apparatus for triggering uplink data in wireless lan
WO2018034472A1 (en) Method and apparatus for transmitting wake-up packet in wireless lan system
WO2016140533A1 (en) Method for transmitting radio frame including control information in wireless lan system and apparatus therefor
WO2016027937A1 (en) Method and apparatus for performing active scanning
WO2011053026A2 (en) Power saving method in wireless communication system
WO2019088645A1 (en) Method for transmitting or receiving frame in wireless lan system and apparatus therefor
WO2018016756A1 (en) Method and device for performing low-power communication in wireless lan system by using wakeup packet
WO2012150750A1 (en) Method and device for transmitting a synchronization signal in a wireless communication system
WO2016089078A1 (en) Method for resource allocation of wideband frame in wireless lan system and apparatus therefor
WO2017043820A1 (en) Sounding method for beamforming transmission in wireless lan system, and apparatus therefor
WO2017026851A1 (en) Method and device for saving power of electronic device in wireless communication system
WO2019031847A1 (en) Method and device for transmitting or receiving wake-up packet in wireless lan system
WO2019045380A1 (en) Method and device for transmitting or receiving frame in wireless lan system
WO2016056808A1 (en) Method and apparatus for allocating wireless resources based on single resource unit in wlan
WO2019074249A1 (en) Method and apparatus for transmitting frame in wireless lan system
WO2019009683A1 (en) Method for transmitting or receiving frame in wireless lan, and device therefor
WO2019050135A1 (en) Method for transmitting or receiving signal in wireless lan system, and device therefor
WO2018043952A1 (en) Method and apparatus for transmitting wakeup packet in wireless lan system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17831229

Country of ref document: EP

Kind code of ref document: A1