WO2018012543A1 - Joining method for resin molded articles - Google Patents
Joining method for resin molded articles Download PDFInfo
- Publication number
- WO2018012543A1 WO2018012543A1 PCT/JP2017/025428 JP2017025428W WO2018012543A1 WO 2018012543 A1 WO2018012543 A1 WO 2018012543A1 JP 2017025428 W JP2017025428 W JP 2017025428W WO 2018012543 A1 WO2018012543 A1 WO 2018012543A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded product
- resin
- ultraviolet light
- irradiation
- molded article
- Prior art date
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 69
- 239000011347 resin Substances 0.000 title claims abstract description 69
- 238000005304 joining Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000011342 resin composition Substances 0.000 claims abstract description 22
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 17
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 17
- 229920006038 crystalline resin Polymers 0.000 claims abstract description 16
- 229920001971 elastomer Polymers 0.000 claims abstract description 16
- 239000000806 elastomer Substances 0.000 claims abstract description 16
- 150000001875 compounds Chemical class 0.000 claims abstract description 13
- 125000000524 functional group Chemical group 0.000 claims abstract description 9
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 20
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 17
- -1 polyoxymethylene Polymers 0.000 claims description 17
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 17
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 13
- 229920006324 polyoxymethylene Polymers 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 6
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 4
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 27
- 239000010410 layer Substances 0.000 description 15
- 239000003365 glass fiber Substances 0.000 description 14
- 238000000465 moulding Methods 0.000 description 10
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 7
- 230000001678 irradiating effect Effects 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004740 DURAFIDE® Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000003466 welding Methods 0.000 description 5
- 229920006127 amorphous resin Polymers 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920005177 Duracon® POM Polymers 0.000 description 3
- 238000000635 electron micrograph Methods 0.000 description 3
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 229920006332 epoxy adhesive Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004419 Panlite Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000004893 oxazines Chemical class 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
Definitions
- the present invention relates to a method for joining resin molded products in which a resin molded product is joined by irradiating light.
- a three-dimensional hollow body made of a resin composition and having a hollow portion formed therein is used for a flow path of an analytical instrument, piping parts, a case cover of an engine control unit (ECU), and the like.
- ECU engine control unit
- a plurality of constituent members of a resin molded product made of a resin composition are joined to each other.
- Patent Documents 1-4 and Non-Patent Document 1 techniques for processing and bonding resin molded products with vacuum ultraviolet light (VUV) are provided (see Patent Documents 1-4 and Non-Patent Document 1). According to this technique, it takes several minutes to several tens of minutes to join the resin molded product, but the deformation of the bonded resin molded product is small, and the deformation of the hollow portion is also small.
- Patent Documents 1 and 2 and Non-Patent Document 1 assume that the resin molded product is made of an amorphous resin such as polymethyl methacrylate (PMMA) resin or cyclic olefin resin, and the bonding strength is 1 MPa or less.
- Patent Documents 3 and 4 assume silicone adhesion.
- thermoplastic crystalline resin can be used.
- a three-dimensional hollow body is produced by joining resin molded products made of thermoplastic crystalline resin, it is required that deformation of the resin molded product due to bonding is small and deformation of the hollow portion is also small.
- the present invention is proposed in view of the above situation, and for resin molded products made of a thermoplastic crystalline resin composition, the deformation of the resin molded product and the deformation of the hollow portion can be suppressed to be small. It aims at providing the joining method of the resin molded product which can obtain high joining strength (1 Mpa or more).
- a resin molded product joining method is a resin molded product comprising a thermoplastic crystalline resin, a resin having a polar functional group, and / or an elastomer.
- a processing method for processing comprising providing a first molded product and a second molded product, irradiating predetermined irradiation regions on the surfaces of the first molded product and the second molded product with ultraviolet light, respectively, The first molded product and the second molded product are positioned so that the first molded product and the second molded product are in contact with each other, and the first molded product and the second molded product are joined in the respective irradiation regions. Pressurizing the product and the second molded product.
- the ultraviolet light may be applied to the first molded product and the second molded product for a time of 10 minutes or less.
- Each of the first molded product and the second molded product may include a facing surface on the surface, and the irradiation region may include at least a part of the facing surface.
- the thermoplastic crystalline resin may include polyoxymethylene, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, and a liquid crystal polymer.
- the facing surface refers to a surface that can be opposed and contacted, such as flat surfaces, for example, even if the surface has irregularities, the concave portion of the first molded product and the convex portion of the second molded product (or If the convex part of a 1st molded product and the recessed part of a 2nd molded product) can respond
- the present invention it is possible to join the resin molded product while suppressing the deformation of the resin molded product, particularly the deformation of the hollow part in the resin molded product constituting the three-dimensional hollow body. Moreover, the joined resin molded product has high joining strength.
- a resin composition containing a thermoplastic crystalline resin and a compound having a polar functional group and / or an elastomer is used.
- polyoxymethylene POM
- polybutylene terephthalate PBT
- polyethylene terephthalate PET
- polyphenylene sulfide PPS
- a liquid crystal polymer may be used as the thermoplastic crystalline resin.
- Thermoplastic crystalline resins are generally opaque, but may be translucent or transparent for resins with low crystallinity.
- the compounds having polar functional groups include bisphenol A epoxy compounds, bisphenol F type epoxy compounds, novolac type epoxy compounds, aliphatic type epoxy compounds, glycidylamine type epoxy compounds, and other oxazoline compounds, oxazine compounds, A carbodiimide compound or an aziridine compound may be used.
- Elastomers include olefin elastomers such as ethylene ethyl acrylate copolymers and ethylene glycidyl methacrylate copolymers, acrylic elastomers such as acrylic core-shell polymers, urethane elastomers, styrene elastomers, polyester elastomers, and diene elastomers. Etc. may be used.
- Thermoplastic crystalline resins include various fillers such as glass fibers, antioxidants and stabilizers, nucleating agents, lubricants, plasticizers, mold release agents, and colorants, which are generally added to resin compositions. Additives may be added.
- the first molded product and the second molded product made of the resin composition are used, and these are joined to each other.
- the first molded product and the second molded product include opposing surfaces joined to each other on the surface, and these opposing surfaces are formed in corresponding shapes.
- the opposing surfaces of the first molded product and the second molded product may be formed substantially flat.
- the opposing surface is a surface having irregularities, the concave portion of the first molded product and the convex portion of the second molded product (or the convex portion of the first molded product and the concave portion of the second molded product) are in close contact with each other. Any surface that can be used.
- FIG. 1A to 1C are diagrams schematically illustrating a series of steps of the present embodiment.
- the first prepared molded article 10 1 is irradiated with ultraviolet (UV) light to the first molded product 10 1 of the irradiated surface 10 1 a using an ultraviolet light irradiation device 20.
- the first molded product 10 1 is in the irradiation surface 10 1 a of the second molded product 10 2 and the facing surface to be bonded.
- ultraviolet light refers to light having a wavelength of 380 nm or less.
- ultraviolet light having a wavelength of 200 nm or less is called vacuum ultraviolet light (VUV).
- vacuum ultraviolet light does not necessarily have to be irradiated in a vacuum, but ultraviolet light in the wavelength region is largely absorbed by air, so when irradiated in air, the distance that the vacuum ultraviolet light propagates Need to be shortened.
- the ultraviolet light irradiation device 20 includes a light source 21 such as an Xe excimer lamp, and a reflection plate 22 that reflects light emitted from the light source 21 toward an irradiation object.
- FIG. 2 is a photograph showing an example of an ultraviolet light irradiation apparatus. The ultraviolet light irradiation apparatus shown in this photograph can irradiate ultraviolet light from the opening formed on the upper surface of the housing toward the upper part.
- the first molded product 10 1 has a substantially flat illumination surface 10 1 a.
- irradiation with ultraviolet light for 2 minutes towards the ultraviolet light irradiation device 20 in the first molded product 10 1 of the irradiated surface 10 1 a is formed from the irradiated surface 10 1 a to a predetermined depth.
- the second molded product 10 2 is directed to the irradiation surface 10 2 a first molded product 10 1 and the opposing surface to be bonded.
- the processing layer 11 2 that property changes of the resin composition is formed from the irradiated surface 10 2 a to a predetermined depth.
- irradiation of ultraviolet light to the first molded product 10 1 and the second molding 10 2 is not limited to 2 minutes, may be 15 minutes or less than 0 minutes . Moreover, the time of 30 seconds or more and 10 minutes or less (for example, 1 minute or more and 7 minutes or less) may be sufficient.
- the rather bonding strength may be lowered, the 1 irradiation of the ultraviolet light to the molded article 10 1 and the second molding 10 2 is preferably within a predetermined time.
- the irradiation of ultraviolet light first molded product 10 1 and to the second molded product 10 2 may be performed simultaneously using the same ultraviolet light irradiation device. Moreover, contrary to the above order, performs irradiation of ultraviolet light of the second molded product 10 2 above, the ultraviolet light may be irradiated then the first molded product 10 1.
- the first molded product 10 1 of the irradiated surface 10 1 a and the second molded product 10 second irradiation surface 10 2 a are in contact with opposed first molded product 10 1 and the second the positioning of the molded article 10 2. That is, the first molded product 10 1 of the opposing surface and the second molding 10 second opposing surfaces to be in close contact with the corresponding.
- the positioned state, the first molded product 10 1 generally planar illuminated surface 10 1 a and the second substantially planar illuminated surface 10 2 a of the molded article 10 2 are in contact throughout its substantially from each other.
- an operation for positioning the first molded product 10 1 and the second molding 10 2, the first molded product 10 1 and the second ultraviolet light to the molded article 10 2 It is desirable to carry out in as short a time as possible (preferably within 5 minutes, for example within 1 minute) after finishing the irradiation step (see FIG. 1A).
- a time for performing the positioning operation after finishing irradiation is relatively long (for example, within one month, preferably within one week, more preferably within three hours, Even within 1 hour, particularly preferably within 30 minutes, it is advantageous because high bonding strength can be easily obtained.
- the first press member 31 and the second press member 32, the pressure to the first molded product 10 1 of the irradiated surface 10 1 a and the irradiation surface 10 2 a of the second molded product 10 2 in a direction of pressing together May be. What is necessary is just to adjust suitably the pressure to press in the range of 10 to 50 Mpa, for example, you may pressurize at 30 Mpa.
- the pressurization time may be appropriately adjusted in the range of 2 minutes to 100 minutes, and for example, pressurization may be performed over 60 minutes.
- the first press member 31 and the second press member 32 may be provided with a heating device, by the heating apparatus, the irradiation surface 10 1 a and the irradiation surface of the second molded product 10 2 of first molded product 10 1 10 2 a may be heated. May be appropriately adjusted within the range from 50 ° C. to 200 ° C.
- the thermoplastic crystalline resin temperature on the irradiated surface 10 2 a of the first molded product 10 1 of the irradiated surface 10 1 a and the second molded product 10 2 uses For example, you may heat so that it may be maintained at 120 degreeC.
- Such heating and pressurizing the first molded product 10 1 of the treatment layer 11 1 and the processing layer 11 of the second molded product 10 2 fused, so to form a single bonding layer 12. That is, the first molded product 10 1 and the second molding 10 2 are linked fused together at respective opposing surfaces. Accordingly, the first molded product 10 1 and the second molding 10 2 is integrally connected through a bonding layer 12, so constituting a single molded product (for example, a three-dimensional hollow bodies).
- Bonding layer 12 is first molded product 10 1 of the treatment layer 11 1 and the treatment layer 11 of the second molded product 10 2 which is activated by ultraviolet light, it was fused by heating and pressing process over a predetermined time Is.
- the connection of the bonding layer 12 by the first molded product 10 1 and the second molding 10 2 are mechanically robust, which is chemically stable.
- the bonding layer 12 intended to be connected by the bonding layer 12 to fuse the first and molded product 10 1 of the treatment layer 11 1 and the second molding 10 second treatment layer 11 2 formed by the ultraviolet light from one another is there. Therefore, the deformation in the bonding layer 12 is small and no burrs are generated. Further, even when a hollow portion having a fine structure such as a groove exists in the bonding layer 12, such a hollow portion is not crushed by deformation.
- This embodiment is a thermoplastic crystal such as polyoxymethylene (POM), polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, polyphenylene sulfide (PPS) resin, and liquid crystal polymer having robust and stable properties. Resin can be used. Such a thermoplastic crystalline resin can be used for producing a three-dimensional hollow body to which a large mechanical stress is applied over a long period of time such as a water pump component.
- POM polyoxymethylene
- PBT polybutylene terephthalate
- PET polyethylene terephthalate
- PPS polyphenylene sulfide
- liquid crystal polymer having robust and stable properties.
- Resin can be used.
- Such a thermoplastic crystalline resin can be used for producing a three-dimensional hollow body to which a large mechanical stress is applied over a long period of time such as a water pump component.
- FIG. 3 is a photograph showing a bonding test piece.
- bonding test pieces as shown in the photograph of FIG. 3 are used.
- Joining test pieces were made of tensile test pieces Type 1A conforming to ISO 3167 using various resin compositions, then cut into two equal parts at the center in the longitudinal direction, and 10 mm from the cut ends were overlapped as joining areas. Yes.
- two bonding test pieces are mounted to be bonded to each other in the bonding region.
- FIG. 4 is a graph showing the relationship between irradiation time and bonding strength. This graph shows the result of measuring the bonding strength using a tensile tester in accordance with ISO527-1, 2 using a bonding test piece bonded according to the series of steps described in FIG.
- the ultraviolet light vacuum ultraviolet light having a wavelength of 172 nm and an illuminance of 6 mW / cm 2 was used, and the bonding test piece positioning step shown in FIG. 1B was performed within 5 minutes from the end of the irradiation of the vacuum ultraviolet light.
- the heating and pressurizing steps shown in FIG. 1C were performed at a temperature of 120 ° C. and a pressure of 30 MPa for 1 hour.
- the measured value a in FIG. 4 is a polybutylene terephthalate (PBT) resin reinforced with 30% by mass of glass fiber for both the first molded product and the second molded product (Dulanex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.). It shows the bonding strength of the bonded specimen at an irradiation time of 2 minutes by adding 1.5% by mass of a bisphenol A type epoxy resin (Epicoat (registered trademark) JER1004K manufactured by Mitsubishi Chemical Corporation) to the resin.
- PBT polybutylene terephthalate
- the bond strength in the case of PBT resin reinforced with 30% by mass of glass fiber is shown in the broken line b.
- the bonding strength varies depending on the irradiation time in the region where the irradiation time exceeds 0 minutes and 7 minutes or less, but the maximum bonding strength reaches 9.3 MPa in the irradiation time of 2 minutes. .
- the bonding strength of the 30% by mass glass fiber reinforced PBT resin to which the epoxy resin of the measured value a was added was 10.0 MPa, and the 30% by mass glass fiber reinforced PBT resin to which the epoxy resin was not added (the glass shown in the broken line b). (PBT resin reinforced with 30% by mass of fiber), the bonding strength further increased from the maximum bonding strength of 9.3 MPa.
- FIG. 5 is a graph showing the bonding strength depending on the type of PPS resin composition.
- a wavelength of 172 nm is applied to the joining region of the joining test piece according to the series of steps described with reference to FIGS. 1A to 1C.
- Bars A, B, and C are irradiated with vacuum ultraviolet light having an illuminance of 6 mW / cm 2 for 2 minutes, and bar D is irradiated for 10 minutes, and the bonding test piece is positioned within 5 minutes from the end of irradiation. All of B, C, and D were joined to each other by heating and pressurizing at 160 ° C. and 30 MPa for 1 hour, respectively. Thereafter, the bonding strength of the bonded test pieces was measured with a tensile tester.
- the bar A is an elastomer (Sumitomo Chemical Co., Ltd.) containing 30% by mass of glass fiber and PLS resin (Durafide (registered trademark) 0220A9, manufactured by Polyplastics Co., Ltd.) in both the first molded product and the second molded product. It was composed of a composition to which 4% by mass of Bond Fast 7L (manufactured by company) was added, and the bonding strength was 8.5 MPa.
- Bar B is PPS resin (Durafide (registered trademark) 0220A9 manufactured by Polyplastics Co., Ltd.) and 30% glass fiber and epoxy resin (Epicoat manufactured by Mitsubishi Chemical Co., Ltd.) for both the first molded product and the second molded product.
- Bars C and D shown as comparative examples are both PPS resin (Durafide (registered trademark) 0220A9 manufactured by Polyplastics Co., Ltd.) and 30% by mass of glass fiber for both the first molded product and the second molded product. It consisted of the added composition, and the bonding strength was 0.0 MPa for both bar wires C and D.
- a high bonding strength could be obtained if it was a molded product made of a composition in which a compound having a polar functional group (in the above example, an epoxy resin) and an elastomer were added to the PPS resin like the bar wires A and B.
- a compound having a polar functional group in the above example, an epoxy resin
- an elastomer in the above example, an epoxy resin
- FIG. 6 is a graph showing the bonding strength depending on the type of POM resin composition.
- a wavelength of 172 nm is applied to the bonding region of the bonding test piece according to the series of steps described in FIGS. 1A to 1C. Irradiation of vacuum ultraviolet light with an illuminance of 6 mW / cm 2 for 7 minutes for the bar E and 5 minutes for the bars F and G, positioning the test piece within 5 minutes from the end of the irradiation, temperature 140 ° C. and pressure They were joined to each other by heating and pressing at 15 MPa for 1 hour each. Thereafter, the bonding strength of the bonded test pieces was measured with a tensile tester.
- Bar E is a POM resin (Duracon (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd.) and an acrylic core-shell polymer (Staffroid (registered trademark) manufactured by Ganz Kasei Co., Ltd.) for both the first molded product and the second molded product. ) PO-0198) It was composed of a composition in which 15% by mass and 3% by mass of ethylene ethyl acrylate copolymer (NUC-6570 manufactured by NUC Corporation) were added, and the joint strength was 3.8 MPa.
- NUC-6570 ethylene ethyl acrylate copolymer manufactured by NUC Corporation
- the rod F is a POM resin (Duracon (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd.) and a polyurethane resin (Rezamin P-4088 manufactured by Dainichi Seika Kogyo Co., Ltd.) for both the first molded product and the second molded product. And a bonding strength of 4.3 MPa.
- POM resin Dens Chemical (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd.
- a polyurethane resin Rezamin P-4088 manufactured by Dainichi Seika Kogyo Co., Ltd.
- the bar G shown as a comparative example is made of unreinforced POM resin (Duracon (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd.) for both the first molded product and the second molded product. It was 0.0 MPa.
- a joining test piece made of the resin material described below is used for the first molded product and the second molded product, and the joining test piece is performed according to the series of steps described in FIGS. 1A to 1C.
- the bonding region is irradiated with vacuum ultraviolet light having a wavelength of 172 nm and an illuminance of 6 mW / cm 2 for 2 minutes, the bonding test piece is positioned within 5 minutes from the end of irradiation, and heated and pressed under the conditions described below to each other. Joined. Thereafter, the bonding strength of the bonded test pieces was measured with a tensile tester.
- the combination of different materials is the same as that used for the first molded product at the broken line a, and is made of PBT resin reinforced with 30% by mass of glass fiber (Juranex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.) Elastomer (Sumitomo Chemical Co., Ltd.) containing 30% by mass of glass fiber and glycidyl group in PPS resin (Durafide (registered trademark) 0220A9 manufactured by Polyplastics Co., Ltd.), the same as that used for the rod C for the second molded product
- the bond strength was 11.0 MPa when heated and pressurized for 1 hour at a temperature of 160 ° C. and a pressure of 30 MPa.
- the bonding strength was 2. 3 MPa.
- the second molded product was made of non-reinforced PC resin (Panlite L-1225L manufactured by Teijin Limited) and heated and pressurized at 140 ° C. and 15 MPa for 10 minutes, the joint strength was 3 0.9 MPa.
- FIG. 7 shows a PBT resin reinforced with 30% by mass of glass fiber (Juranex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.), which is the same as that used in the measurement value a for both the first molded product and the second molded product.
- the bar H is a vacuum ultraviolet light having a wavelength of 172 nm and an illuminance of 6 mW / cm 2
- the bar I is irradiated with ultraviolet light having a wavelength of 254 nm and an illuminance of 6 mW / cm 2 for 2 minutes each, and after 5 minutes from the end of irradiation, the bonding test piece is positioned, and at a temperature of 120 ° C. and a pressure of 30 MPa for 1 hour. They were joined together by heating and pressing.
- the bonding strength of the bonded test pieces was measured with a tensile tester.
- the bonding strength of the bar wire H was 10.0 MPa, and the bar wire I was 3.8 MPa. From this result, it was confirmed that higher bonding strength can be obtained by using vacuum ultraviolet light as ultraviolet light.
- the same PBT resin (Juranex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.) reinforced with 30% by mass of glass fiber as used in the measurement value a is added to a bisphenol A type epoxy resin (Mitsubishi Chemical). Co., Ltd. Epicoat (registered trademark) JER1004K) is added to 1.5% by mass of a bonded test piece with a wavelength of 172 nm, an illuminance of 6 mW / cm 2 vacuum ultraviolet light, or a wavelength of 254 nm, an illuminance of 6 mW / cm 2 .
- the contact angle of distilled water after a lapse of a certain time after each irradiation with ultraviolet light was shown.
- the bar J indicates the contact angle before irradiation
- the bar K indicates the contact angle 5 minutes after the irradiation with the vacuum ultraviolet light
- the bar L indicates the contact angle 3 hours after the irradiation with the vacuum ultraviolet light.
- a bar M indicates a contact angle after 5 minutes from irradiation with ultraviolet light
- a bar N indicates a contact angle after 3 hours after irradiation with ultraviolet light.
- the contact angle of 40% for both the vacuum ultraviolet light having a wavelength of 172 nm and the ultraviolet light having a wavelength of 254 nm was compared with the contact angle before irradiation being about 70 degrees (bar J) when 5 minutes passed. Although it has decreased to around (degrees K and M), the contact angle is about 40 degrees in vacuum ultraviolet light with a wavelength of 172 nm after 3 hours, whereas it is equivalent to that immediately after irradiation (bar L). It was confirmed that the contact angle had already increased to about 50 degrees (bar N) when ultraviolet light having a wavelength of 254 nm was passed for 1 hour.
- vacuum ultraviolet light when vacuum ultraviolet light is used rather than ultraviolet light, it is considered that the activated state of the surface can be maintained longer, and a high bonding strength can be obtained even when the positioning process after irradiation takes a long time.
- vacuum ultraviolet light with a wavelength of 172 nm is not only at the time when 5 minutes have elapsed after irradiation but also at the time when 3 hours have elapsed since irradiation, It was confirmed that the contact angle was smaller than that of the bar M) and the surface was more activated (bar L).
- the contact angle of the water was kept horizontal after a certain period of time by irradiating vacuum ultraviolet light having a wavelength of 172 nm or ultraviolet light having a wavelength of 254 nm for 2 minutes after washing the surface of the bonding test piece with ethanol. Distilled water was dropped on the irradiated surface, and the contact angle was measured using a FACE contact angle meter CA-DT manufactured by Kyowa Interface Science Co., Ltd.
- FIG. 10 show the results of cross-sectional observations around the joints of the joints made with the epoxy adhesive and the joints made by vibration welding, respectively.
- both the first molded product and the second molded product are similar to the broken line b in FIG. 4 except that the ultraviolet light is irradiated only on the first molded product and not on the second molded product.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
The present invention connects resin molded articles formed from a thermoplastic, crystalline resin composition in a manner whereby the deformation of the resin molded articles and the deformation of hollow portions are minimized and sufficient joining strength is obtained. Provided is a joining method for joining resin molded articles comprising a resin composition which includes a thermoplastic, crystalline resin and a compound and/or elastomer having a polar functional group, wherein a first molded article 101 and a second molded article 102 are prepared, prescribed irradiation surfaces 101a, 102a on the respective surfaces of the first molded article 101 and the second molded article 102 are each irradiated with ultraviolet light, the first molded article 101 and the second molded article 102 are positioned such that the irradiation surfaces 101a, 102a are mutually facing and touching, and the first molded article 101 and the second molded article 102 are heated and pressed such that the first molded article 101 and the second molded article 102 are joined at the respective irradiation surfaces 101a, 102a.
Description
本発明は、光線を照射して樹脂成型品を接合する樹脂成型品の接合方法に関する。
The present invention relates to a method for joining resin molded products in which a resin molded product is joined by irradiating light.
従来、分析機器の流路、配管部品、エンジンコントロールユニット(ECU)のケースカバー等に、樹脂組成物によって作製され、内部に中空部が形成された三次元中空体が利用されている。三次元中空体の多くは、樹脂組成物でなる樹脂成型品の複数の構成部材が、互いに接合されて構成されている。
Conventionally, a three-dimensional hollow body made of a resin composition and having a hollow portion formed therein is used for a flow path of an analytical instrument, piping parts, a case cover of an engine control unit (ECU), and the like. In many of the three-dimensional hollow bodies, a plurality of constituent members of a resin molded product made of a resin composition are joined to each other.
樹脂成型品の構成部材を接合するためには、接着剤や熱溶着など、各種の接合技術が提供されている。ただし、樹脂成型品を接着剤で接合する技術は、樹脂成型品を変形させることなく接合することができるが、一般的に接着剤の硬化には数時間かかるため生産性に劣る上、接着剤が中空部に漏出して溝が埋没するといった問題から微細な流路部品の接合には適さないものであった。そして、樹脂成型品を熱溶着する技術は、数分で接合することが可能であるが、接合した樹脂成型品にバリが発生したり、中空部が熱変形したりすることがあった。
In order to join the components of the resin molded product, various joining techniques such as adhesives and heat welding are provided. However, the technology for bonding resin molded products with adhesives can bond the resin molded products without deforming them, but generally it takes several hours to cure the adhesive, and the productivity is inferior. However, it was not suitable for joining fine flow path components due to the problem of leakage into the hollow portion and the groove being buried. The technique of thermally welding the resin molded product can be joined in a few minutes, but burrs may occur in the joined resin molded product or the hollow portion may be thermally deformed.
また、真空紫外光(VUV)により樹脂成型品を処理して接合する技術が提供されている(特許文献1-4、非特許文献1を参照)。この技術によると、樹脂成型品の接合に数分から数十分程度の時間を要するが、接合した樹脂成型品の変形は小さく、中空部の変形も小さい。特許文献1、2、非特許文献1は、樹脂成型品にポリメタクリル酸メチル(PMMA)樹脂や環状オレフィン樹脂等の非晶性樹脂でなるものを想定し、接合強度は1MPa以下である。特許文献3、4は、シリコーン接着を想定している。
In addition, techniques for processing and bonding resin molded products with vacuum ultraviolet light (VUV) are provided (see Patent Documents 1-4 and Non-Patent Document 1). According to this technique, it takes several minutes to several tens of minutes to join the resin molded product, but the deformation of the bonded resin molded product is small, and the deformation of the hollow portion is also small. Patent Documents 1 and 2 and Non-Patent Document 1 assume that the resin molded product is made of an amorphous resin such as polymethyl methacrylate (PMMA) resin or cyclic olefin resin, and the bonding strength is 1 MPa or less. Patent Documents 3 and 4 assume silicone adhesion.
一方、ウォーターポンプ部品等の長期間にわたり大きな機械的応力が加わる成型品(特に三次元中空体)には、堅牢で安定した性質を有するポリブチレンテレフタレート(PBT)樹脂やポリフェニレンサルファイド(PPS)樹脂のような熱可塑性結晶性樹脂を利用することができる。また、熱可塑性結晶性樹脂でなる樹脂成型品を接合することにより三次元中空体を作製する際には、接合による樹脂成型品の変形が小さく、中空部の変形も小さくすることが求められる。
On the other hand, for molded products (particularly three-dimensional hollow bodies) that are subjected to a large mechanical stress over a long period of time, such as water pump parts, polybutylene terephthalate (PBT) resins and polyphenylene sulfide (PPS) resins having robust and stable properties are used. Such a thermoplastic crystalline resin can be used. Further, when a three-dimensional hollow body is produced by joining resin molded products made of thermoplastic crystalline resin, it is required that deformation of the resin molded product due to bonding is small and deformation of the hollow portion is also small.
前述の真空紫外光で樹脂成型品を処理して接合する技術は、樹脂成型品の変形や中空部の変形を小さく抑えることができたが、非晶性樹脂でなる樹脂成型品の接合やシリコーン接着剤の硬化を想定したものであり、十分な接合強度を確保することもできなかった。
The above-mentioned technology for processing and bonding resin molded products with vacuum ultraviolet light has made it possible to keep the deformation of the resin molded products and the deformation of the hollow part small, but it is not possible to bond resin molded products made of amorphous resin or silicone. It was assumed that the adhesive was cured, and sufficient bonding strength could not be ensured.
本発明は、上述の実情に鑑みて提案されるものであって、熱可塑性結晶性樹脂組成物でなる樹脂成型品についても、樹脂成型品の変形や中空部の変形を小さく抑えることができ、高い接合強度(1MPa以上)が得られるような樹脂成型品の接合方法を提供することを目的とする。
The present invention is proposed in view of the above situation, and for resin molded products made of a thermoplastic crystalline resin composition, the deformation of the resin molded product and the deformation of the hollow portion can be suppressed to be small. It aims at providing the joining method of the resin molded product which can obtain high joining strength (1 Mpa or more).
上述の課題を解決するために、本発明に係る樹脂成型品の接合方法は、熱可塑性結晶性樹脂と、極性官能基を有する化合物及び/又はエラストマーとを含む樹脂組成物からなる樹脂成型品を加工する加工方法であって、第1成型品及び第2成型品を提供し、前記第1成型品及び前記第2成型品の表面の所定の照射領域に紫外光をそれぞれ照射し、前記照射領域が対向して接触するように、前記第1成型品及び前記第2成型品を位置決めし、前記第1成型品及び前記第2成型品がそれぞれの照射領域で接合するように、前記第1成型品及び前記第2成型品を加圧することを含む。
In order to solve the above-described problems, a resin molded product joining method according to the present invention is a resin molded product comprising a thermoplastic crystalline resin, a resin having a polar functional group, and / or an elastomer. A processing method for processing, comprising providing a first molded product and a second molded product, irradiating predetermined irradiation regions on the surfaces of the first molded product and the second molded product with ultraviolet light, respectively, The first molded product and the second molded product are positioned so that the first molded product and the second molded product are in contact with each other, and the first molded product and the second molded product are joined in the respective irradiation regions. Pressurizing the product and the second molded product.
前記紫外光は、前記第1成型品及び前記第2成型品に10分以下の時間にわたり照射してもよい。前記第1成型品及び前記第2成型品はそれぞれ表面に対向面を含み、前記照射領域は前記対向面の少なくとも一部を含んでもよい。前記熱可塑性結晶性樹脂は、ポリオキシメチレン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、液晶ポリマーを含んでもよい。ここで対向面とは、例えば平坦面同士のように対向して接触することができる面を指し、凹凸を有する面であっても第1成型品の凹部と第2成型品の凸部(または第1成型品の凸部と第2成型品の凹部)が対応して密着可能な面であれば特に限定されない。
The ultraviolet light may be applied to the first molded product and the second molded product for a time of 10 minutes or less. Each of the first molded product and the second molded product may include a facing surface on the surface, and the irradiation region may include at least a part of the facing surface. The thermoplastic crystalline resin may include polyoxymethylene, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, and a liquid crystal polymer. Here, the facing surface refers to a surface that can be opposed and contacted, such as flat surfaces, for example, even if the surface has irregularities, the concave portion of the first molded product and the convex portion of the second molded product (or If the convex part of a 1st molded product and the recessed part of a 2nd molded product) can respond | correspond correspondingly, it will not specifically limit.
本発明によると、樹脂成型品の変形、特に三次元中空体を構成する樹脂成形品における中空部の変形を小さく抑えて樹脂成型品を接合することができる。また、接合した樹脂成型品は、高い接合強度を有する。
According to the present invention, it is possible to join the resin molded product while suppressing the deformation of the resin molded product, particularly the deformation of the hollow part in the resin molded product constituting the three-dimensional hollow body. Moreover, the joined resin molded product has high joining strength.
以下、本発明に係る樹脂成型品の接合方法の実施の形態について、図面を参照して詳細に説明する。本実施の形態では、樹脂組成物として、熱可塑性結晶性樹脂と、極性官能基を有する化合物及び/又はエラストマーとを含むものを使用する。
Hereinafter, an embodiment of a method for joining resin molded products according to the present invention will be described in detail with reference to the drawings. In the present embodiment, a resin composition containing a thermoplastic crystalline resin and a compound having a polar functional group and / or an elastomer is used.
熱可塑性結晶性樹脂には、例えば、ポリオキシメチレン(POM)やポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリフェニレンサルファイド(PPS)、液晶ポリマーを使用してもよい。熱可塑性結晶性樹脂は、一般的に不透明であるが、結晶化度が低い樹脂では半透明ないしは透明であってもよい。極性官能基を有する化合物には、ビスフェノールAエポキシ化合物、ビスフェノールF型エポキシ化合物、ノボラック型エポキシ化合物、脂肪族型エポキシ化合物、グリシジルアミン型エポキシ化合物などのエポキシ系化合物の他、オキサゾリン化合物、オキサジン化合物、カルボジイミド化合物、アジリジン化合物を使用してもよい。エラストマーには、エチレンエチルアクリレート共重合体やエチレングリシジルメタクリレート共重合体等のオレフィン系エラストマー、アクリル系コアシェルポリマーなどのアクリル系エラストマーの他、ウレタン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ジエン系エラストマー等を使用してもよい。また、熱可塑性結晶性樹脂にはガラス繊維などの充填剤、酸化防止剤や安定剤、核剤、滑剤、可塑剤、離型剤、着色剤といった、一般的に樹脂組成物に添加される各種添加剤を添加してもよい。
For example, polyoxymethylene (POM), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyphenylene sulfide (PPS), or a liquid crystal polymer may be used as the thermoplastic crystalline resin. Thermoplastic crystalline resins are generally opaque, but may be translucent or transparent for resins with low crystallinity. The compounds having polar functional groups include bisphenol A epoxy compounds, bisphenol F type epoxy compounds, novolac type epoxy compounds, aliphatic type epoxy compounds, glycidylamine type epoxy compounds, and other oxazoline compounds, oxazine compounds, A carbodiimide compound or an aziridine compound may be used. Elastomers include olefin elastomers such as ethylene ethyl acrylate copolymers and ethylene glycidyl methacrylate copolymers, acrylic elastomers such as acrylic core-shell polymers, urethane elastomers, styrene elastomers, polyester elastomers, and diene elastomers. Etc. may be used. Thermoplastic crystalline resins include various fillers such as glass fibers, antioxidants and stabilizers, nucleating agents, lubricants, plasticizers, mold release agents, and colorants, which are generally added to resin compositions. Additives may be added.
本実施の形態では、樹脂組成物によって作製された第1成型品及び第2成型品を用い、これらを互いに接合する。第1成型品及び第2成型品には、表面に互いに接合される対向面が含まれ、これらの対向面は対応するような形状に形成されている。例えば、第1成型品及び第2成型品の対向面は、それぞれ略平坦に形成されていてもよい。また、対向面は、凹凸を有する面であっても第1成型品の凹部と第2成型品の凸部(または第1成型品の凸部と第2成型品の凹部)が対応して密着可能な面であればよい。
In the present embodiment, the first molded product and the second molded product made of the resin composition are used, and these are joined to each other. The first molded product and the second molded product include opposing surfaces joined to each other on the surface, and these opposing surfaces are formed in corresponding shapes. For example, the opposing surfaces of the first molded product and the second molded product may be formed substantially flat. In addition, even if the opposing surface is a surface having irregularities, the concave portion of the first molded product and the convex portion of the second molded product (or the convex portion of the first molded product and the concave portion of the second molded product) are in close contact with each other. Any surface that can be used.
図1Aから図1Cは、本実施の形態の一連の工程を概略的に説明する図である。図1Aに示すように、第1成型品101を用意し、紫外光照射装置20を用いて第1成型品101の照射面101aに紫外(UV)光を照射する。第1成型品101は、照射面101aを第2成型品102と接合される対向面としている。
1A to 1C are diagrams schematically illustrating a series of steps of the present embodiment. As shown in FIG. 1A, the first prepared molded article 10 1 is irradiated with ultraviolet (UV) light to the first molded product 10 1 of the irradiated surface 10 1 a using an ultraviolet light irradiation device 20. The first molded product 10 1 is in the irradiation surface 10 1 a of the second molded product 10 2 and the facing surface to be bonded.
ここで、紫外光とは、波長が380nm以下のものを指す。特に紫外光の内で波長が200nm以下のものは真空紫外光(VUV)という。なお、真空紫外光は、必ずしも真空中で照射しなければならないものではないが、当該波長域の紫外光は空気による吸収が大きいため、空気中で照射する場合は、真空紫外光が伝播する距離を短くする必要がある。
Here, ultraviolet light refers to light having a wavelength of 380 nm or less. Particularly, ultraviolet light having a wavelength of 200 nm or less is called vacuum ultraviolet light (VUV). In addition, vacuum ultraviolet light does not necessarily have to be irradiated in a vacuum, but ultraviolet light in the wavelength region is largely absorbed by air, so when irradiated in air, the distance that the vacuum ultraviolet light propagates Need to be shortened.
図1Aにおいて、紫外光照射装置20は、Xeエキシマランプなどの光源21と、光源21から放出された光を照射物に向けて反射する反射板22とを有している。図2は、紫外光照射装置の一例を示す写真である。この写真に示す紫外光照射装置は、筐体上面に形成された開口から上部に向けて紫外光を照射することができる。
1A, the ultraviolet light irradiation device 20 includes a light source 21 such as an Xe excimer lamp, and a reflection plate 22 that reflects light emitted from the light source 21 toward an irradiation object. FIG. 2 is a photograph showing an example of an ultraviolet light irradiation apparatus. The ultraviolet light irradiation apparatus shown in this photograph can irradiate ultraviolet light from the opening formed on the upper surface of the housing toward the upper part.
図1Aに示すように、第1成型品101は略平坦な照射面101aを有している。本実施の形態では、紫外光照射装置20から第1成型品101の照射面101aに向けて2分間にわたって紫外光を照射する。このような照射処理によって、第1成型品101の照射面101aには、照射面101aから所定深さまで樹脂組成物の性状が変化した処理層111が形成される。
As shown in FIG. 1A, the first molded product 10 1 has a substantially flat illumination surface 10 1 a. In this embodiment, irradiation with ultraviolet light for 2 minutes towards the ultraviolet light irradiation device 20 in the first molded product 10 1 of the irradiated surface 10 1 a. Such irradiation treatment, the first molded product 10 1 of the irradiated surface 10 1 a, the processing layer 11 1 properties has changed in the resin composition is formed from the irradiated surface 10 1 a to a predetermined depth.
同様に、第2成型品102を用意し、紫外光照射装置20から第2成型品102の照射面102aに向けて2分間にわたって紫外光を照射する。第2成型品102は、照射面102aを第1成型品101と接合される対向面としている。このような照射処理によって、第2成型品102の照射面102aにも、照射面102aから所定深さまで樹脂組成物の性状が変化した処理層112が形成される。
Similarly, the second providing a molded article 10 2, irradiating ultraviolet light for 2 minutes towards the ultraviolet light irradiation device 20 to the irradiated surface 10 2 a of the second molded product 10 2. The second molded product 10 2 is directed to the irradiation surface 10 2 a first molded product 10 1 and the opposing surface to be bonded. Such irradiation treatment, to be the second molded product 10 second irradiation surface 10 2 a, the processing layer 11 2 that property changes of the resin composition is formed from the irradiated surface 10 2 a to a predetermined depth.
本実施の形態では、第1成型品101及び第2成型品102への紫外光の照射は、2分に限られることはなく、0分を超え15分以下の時間であってもよい。また、30秒以上10分以下(例えば1分以上7分以下)の時間であってもよい。紫外光の照射により、第1成型品101の照射面101aと第2成型品102の照射面102aの劣化が進むことで、かえって接合強度が低下する場合があるため、第1成型品101及び第2成型品102への紫外光の照射は所定の時間内であることが好ましい。
In this embodiment, irradiation of ultraviolet light to the first molded product 10 1 and the second molding 10 2 is not limited to 2 minutes, may be 15 minutes or less than 0 minutes . Moreover, the time of 30 seconds or more and 10 minutes or less (for example, 1 minute or more and 7 minutes or less) may be sufficient. By irradiation with ultraviolet light, since that deterioration of the first molded product 10 1 of the irradiated surface 10 1 a and the second molded product 10 second irradiation surface 10 2 a proceeds, the rather bonding strength may be lowered, the 1 irradiation of the ultraviolet light to the molded article 10 1 and the second molding 10 2 is preferably within a predetermined time.
なお、第1成型品101と第2成型品102に対する紫外光の照射は、同一の紫外光照射装置を用いて同時に行ってもよい。また、上記の順番とは逆に、第2成型品102への紫外光の照射を先に行い、その後で第1成型品101へ紫外光を照射してもよい。
The irradiation of ultraviolet light first molded product 10 1 and to the second molded product 10 2 may be performed simultaneously using the same ultraviolet light irradiation device. Moreover, contrary to the above order, performs irradiation of ultraviolet light of the second molded product 10 2 above, the ultraviolet light may be irradiated then the first molded product 10 1.
図1Bに示すように、第1成型品101の照射面101aと第2成型品102の照射面102aが対向して接触するように、第1成型品101及び第2成型品102とを位置決めする。すなわち、第1成型品101の対向面と第2成型品102の対向面とが対応して密着するようにする。位置決めされた状態では、第1成型品101の略平坦な照射面101aと第2成型品102の略平坦な照射面102aとは、互いにその略全体で接触している。
As shown in FIG. 1B, so that the first molded product 10 1 of the irradiated surface 10 1 a and the second molded product 10 second irradiation surface 10 2 a are in contact with opposed first molded product 10 1 and the second the positioning of the molded article 10 2. That is, the first molded product 10 1 of the opposing surface and the second molding 10 second opposing surfaces to be in close contact with the corresponding. The positioned state, the first molded product 10 1 generally planar illuminated surface 10 1 a and the second substantially planar illuminated surface 10 2 a of the molded article 10 2, are in contact throughout its substantially from each other.
ここで、より高い接合強度を確保するためには、第1成型品101及び第2成型品102を位置決めする操作は、第1成型品101及び第2成型品102に紫外光を照射する工程(図1Aを参照)を終えてから、できるだけ短時間(好ましくは5分以内、例えば1分以内)で行うことが望ましい。なお、紫外光として真空紫外光を照射する場合は、照射を終えてから位置決めする操作を行う時間を比較的長くした場合(例えば1ヶ月、好ましくは1週間以内、より好ましくは3時間以内、さらに好ましくは1時間以内、特に好ましくは30分以内)でも、高い接合強度を得やすいため有利である。
Here, in order to secure higher bonding strength, an operation for positioning the first molded product 10 1 and the second molding 10 2, the first molded product 10 1 and the second ultraviolet light to the molded article 10 2 It is desirable to carry out in as short a time as possible (preferably within 5 minutes, for example within 1 minute) after finishing the irradiation step (see FIG. 1A). In addition, when irradiating vacuum ultraviolet light as ultraviolet light, when the time for performing the positioning operation after finishing irradiation is relatively long (for example, within one month, preferably within one week, more preferably within three hours, Even within 1 hour, particularly preferably within 30 minutes, it is advantageous because high bonding strength can be easily obtained.
図1Cに示すように、位置決めされた第1成型品101及び第2成型品102を第1プレス部材31及び第2プレス部材32により挟持する。そして、第1プレス部材31及び第2プレス部材32によって、第1成型品101及び第2成型品102を加圧する。
As shown in FIG. 1C, sandwiching the first molded product 10 1 and the second molding 10 2 positioned by the first pressing member 31 and the second press member 32. Then, the first pressing member 31 and the second press member 32, pressurizing the first molded product 10 1 and the second molding 10 2.
例えば、第1プレス部材31及び第2プレス部材32により、第1成型品101の照射面101aと第2成型品102の照射面102aとを互いに押圧する方向に圧力を加えても良い。押圧する圧力は10から50MPaの範囲で適宜調整すれば良く、例えば30MPaで加圧してもよい。加圧時間も2分から100分の範囲で適宜調整すれば良く、例えば60分にわたって加圧しても良い。同時に、第1プレス部材31及び第2プレス部材32は加熱装置を備えていても良く、当該加熱装置により、第1成型品101の照射面101aと第2成型品102の照射面102aとを加熱しても良い。第1成型品101の照射面101aと第2成型品102の照射面102aにおける温度は使用する熱可塑性結晶性樹脂に応じ50℃から200℃の範囲で適宜調整すればよく、例えば120℃で維持されるように加熱してもよい。
For example, the first press member 31 and the second press member 32, the pressure to the first molded product 10 1 of the irradiated surface 10 1 a and the irradiation surface 10 2 a of the second molded product 10 2 in a direction of pressing together May be. What is necessary is just to adjust suitably the pressure to press in the range of 10 to 50 Mpa, for example, you may pressurize at 30 Mpa. The pressurization time may be appropriately adjusted in the range of 2 minutes to 100 minutes, and for example, pressurization may be performed over 60 minutes. At the same time, the first press member 31 and the second press member 32 may be provided with a heating device, by the heating apparatus, the irradiation surface 10 1 a and the irradiation surface of the second molded product 10 2 of first molded product 10 1 10 2 a may be heated. May be appropriately adjusted within the range from 50 ° C. to 200 ° C. Depending on the thermoplastic crystalline resin temperature on the irradiated surface 10 2 a of the first molded product 10 1 of the irradiated surface 10 1 a and the second molded product 10 2 uses For example, you may heat so that it may be maintained at 120 degreeC.
このような加熱及び加圧によって、第1成型品101の処理層111と第2成型品102の処理層112とは融合し、単一の接合層12を形成するようになる。すなわち、第1成型品101と第2成型品102とは、それぞれの対向面において互いに融合されて連結される。これによって、第1成型品101及び第2成型品102は、接合層12を通じて一体として接続され、単一の成型品(例えば三次元中空体)を構成するようになる。
Such heating and pressurizing, the first molded product 10 1 of the treatment layer 11 1 and the processing layer 11 of the second molded product 10 2 fused, so to form a single bonding layer 12. That is, the first molded product 10 1 and the second molding 10 2 are linked fused together at respective opposing surfaces. Accordingly, the first molded product 10 1 and the second molding 10 2 is integrally connected through a bonding layer 12, so constituting a single molded product (for example, a three-dimensional hollow bodies).
接合層12は、紫外光により活性化された第1成型品101の処理層111と第2成型品102の処理層112とが、所定時間にわたる加熱及び加圧の工程によって融合したものである。したがって、接合層12による第1成型品101及び第2成型品102の接続は、機械的に堅牢であり、化学的にも安定である。
Bonding layer 12 is first molded product 10 1 of the treatment layer 11 1 and the treatment layer 11 of the second molded product 10 2 which is activated by ultraviolet light, it was fused by heating and pressing process over a predetermined time Is. Thus, the connection of the bonding layer 12 by the first molded product 10 1 and the second molding 10 2 are mechanically robust, which is chemically stable.
本実施の形態では、紫外光により形成した第1成型品101の処理層111と第2成型品102の処理層112とを互いに融合させる接合層12とすることにより接続するものである。したがって、接合層12における変形は小さく、バリが発生することもない。また、接合層12に溝など微細な構造の中空部が存在する場合も、そのような中空部が変形によりつぶれることはない。
In this embodiment, intended to be connected by the bonding layer 12 to fuse the first and molded product 10 1 of the treatment layer 11 1 and the second molding 10 second treatment layer 11 2 formed by the ultraviolet light from one another is there. Therefore, the deformation in the bonding layer 12 is small and no burrs are generated. Further, even when a hollow portion having a fine structure such as a groove exists in the bonding layer 12, such a hollow portion is not crushed by deformation.
本実施の形態は、堅牢で安定した性質を有するポリオキシメチレン(POM)やポリブチレンテレフタレート(PBT)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリフェニレンサルファイド(PPS)樹脂、液晶ポリマーのような熱可塑性結晶性樹脂を利用することができる。このような熱可塑性結晶性樹脂は、ウォーターポンプ部品等の長期間にわたり大きな機械的応力が加わる三次元中空体の作製に利用することができる。
This embodiment is a thermoplastic crystal such as polyoxymethylene (POM), polybutylene terephthalate (PBT) resin, polyethylene terephthalate (PET) resin, polyphenylene sulfide (PPS) resin, and liquid crystal polymer having robust and stable properties. Resin can be used. Such a thermoplastic crystalline resin can be used for producing a three-dimensional hollow body to which a large mechanical stress is applied over a long period of time such as a water pump component.
上述の本実施の形態を適用した実施例について説明する。図3は、接合試験片を示す写真である。本実施例では、第1成型品及び第2成型品として、図3の写真に示すような接合試験片を用いる。接合試験片は、各種の樹脂組成物によってISO3167に準拠した引張試験片Type1Aを作成した後、それを長手方向の中央で2等分に切断し、それぞれ切断端部から10mmを接合領域として重ねている。写真では、2つの接合試験片が接合領域で互いに接合されて載置されている。
An example to which the above-described embodiment is applied will be described. FIG. 3 is a photograph showing a bonding test piece. In this example, as the first molded product and the second molded product, bonding test pieces as shown in the photograph of FIG. 3 are used. Joining test pieces were made of tensile test pieces Type 1A conforming to ISO 3167 using various resin compositions, then cut into two equal parts at the center in the longitudinal direction, and 10 mm from the cut ends were overlapped as joining areas. Yes. In the photograph, two bonding test pieces are mounted to be bonded to each other in the bonding region.
図4は、照射時間と接合強度との関係を示すグラフである。このグラフは、図1で説明した一連の工程に従い接合した接合試験片を用い、ISO527-1,2に準拠して引っ張り試験機によって接合強度を測定した結果を示している。ここで、紫外光としては波長172nm、照度6mW/cm2の真空紫外光を用い、図1Bに示した接合試験片の位置決めの工程は、真空紫外光の照射終了から5分以内に行った。また、図1Cに示した加熱及び加圧の工程は、温度120℃及び圧力30MPaであり、1時間にわたり維持した。
FIG. 4 is a graph showing the relationship between irradiation time and bonding strength. This graph shows the result of measuring the bonding strength using a tensile tester in accordance with ISO527-1, 2 using a bonding test piece bonded according to the series of steps described in FIG. Here, as the ultraviolet light, vacuum ultraviolet light having a wavelength of 172 nm and an illuminance of 6 mW / cm 2 was used, and the bonding test piece positioning step shown in FIG. 1B was performed within 5 minutes from the end of the irradiation of the vacuum ultraviolet light. Moreover, the heating and pressurizing steps shown in FIG. 1C were performed at a temperature of 120 ° C. and a pressure of 30 MPa for 1 hour.
図4中の測定値aは、第1成型品及び第2成型品ともに、ガラス繊維30質量%で強化したポリブチレンテレフタレート(PBT)樹脂(ウィンテックポリマー株式会社製 ジュラネックス(登録商標)3300)樹脂にビスフェノールA型エポキシ樹脂(三菱化学株式会社製 エピコート(登録商標) JER1004K)を1.5質量%添加し、照射時間2分における接合試験片の接合強度を示している。
The measured value a in FIG. 4 is a polybutylene terephthalate (PBT) resin reinforced with 30% by mass of glass fiber for both the first molded product and the second molded product (Dulanex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.). It shows the bonding strength of the bonded specimen at an irradiation time of 2 minutes by adding 1.5% by mass of a bisphenol A type epoxy resin (Epicoat (registered trademark) JER1004K manufactured by Mitsubishi Chemical Corporation) to the resin.
比較例として、折線bに、ガラス繊維30質量%で強化したPBT樹脂の場合の接合強度を示す。ガラス繊維30質量%強化のPBT樹脂は、照射時間が0分を超え7分以下の領域において、照射時間によって接合強度が変化するが、照射時間2分で最大の接合強度9.3MPaに達した。
As a comparative example, the bond strength in the case of PBT resin reinforced with 30% by mass of glass fiber is shown in the broken line b. In the PBT resin reinforced with 30% by mass of the glass fiber, the bonding strength varies depending on the irradiation time in the region where the irradiation time exceeds 0 minutes and 7 minutes or less, but the maximum bonding strength reaches 9.3 MPa in the irradiation time of 2 minutes. .
測定値aのエポキシ樹脂を添加したガラス繊維30質量%強化のPBT樹脂の接合強度は10.0MPaとなり、エポキシ樹脂を添加していないガラス繊維30質量%強化のPBT樹脂(折線bに示したガラス繊維30質量%強化のPBT樹脂)において、最大の接合強度である9.3MPaよりもさらに接合強度が増加した。
The bonding strength of the 30% by mass glass fiber reinforced PBT resin to which the epoxy resin of the measured value a was added was 10.0 MPa, and the 30% by mass glass fiber reinforced PBT resin to which the epoxy resin was not added (the glass shown in the broken line b). (PBT resin reinforced with 30% by mass of fiber), the bonding strength further increased from the maximum bonding strength of 9.3 MPa.
図5は、PPS樹脂組成物の種類による接合強度を示すグラフである。第1成型品及び第2成型品として、以下に記載するPPS樹脂組成物からなる接合試験片を用い、図1Aから図1Cで説明した一連の工程に従い、接合試験片の接合領域に波長172nm、照度6mW/cm2の真空紫外光を棒線A、B及びCは2分、棒線Dは10分にわたって照射し、照射終了から5分以内に接合試験片の位置決めを行い、棒線A、B、C及びDいずれも温度160℃及び圧力30MPaで、それぞれ1時間にわたり加熱及び加圧することで互いに接合した。その後、接合した接合試験片の接合強度を引っ張り試験機によって測定した。
FIG. 5 is a graph showing the bonding strength depending on the type of PPS resin composition. As the first molded product and the second molded product, using a joining test piece made of the PPS resin composition described below, a wavelength of 172 nm is applied to the joining region of the joining test piece according to the series of steps described with reference to FIGS. 1A to 1C. Bars A, B, and C are irradiated with vacuum ultraviolet light having an illuminance of 6 mW / cm 2 for 2 minutes, and bar D is irradiated for 10 minutes, and the bonding test piece is positioned within 5 minutes from the end of irradiation. All of B, C, and D were joined to each other by heating and pressurizing at 160 ° C. and 30 MPa for 1 hour, respectively. Thereafter, the bonding strength of the bonded test pieces was measured with a tensile tester.
棒線Aは、第1成型品及び第2成型品ともに、PPS樹脂(ポリプラスチックス株式会社製 ジュラファイド(登録商標)0220A9)にガラス繊維を30質量%及びグリシジル基を含むエラストマー(住友化学株式会社製 ボンドファースト7L)を4質量%添加した組成物からなるものであり、接合強度は8.5MPaであった。棒線Bは、第1成型品及び第2成型品ともに、PPS樹脂(ポリプラスチックス株式会社製 ジュラファイド(登録商標)0220A9)にガラス繊維を30質量%及びエポキシ樹脂(三菱化学株式会社製 エピコート(登録商標)JER1004K)2質量%とエチレンエチルアクリレート共重合体(株式会社NUC製 NUC-6570)を10質量%添加した組成物からなるものであり、接合強度は11.2MPaであった。
The bar A is an elastomer (Sumitomo Chemical Co., Ltd.) containing 30% by mass of glass fiber and PLS resin (Durafide (registered trademark) 0220A9, manufactured by Polyplastics Co., Ltd.) in both the first molded product and the second molded product. It was composed of a composition to which 4% by mass of Bond Fast 7L (manufactured by company) was added, and the bonding strength was 8.5 MPa. Bar B is PPS resin (Durafide (registered trademark) 0220A9 manufactured by Polyplastics Co., Ltd.) and 30% glass fiber and epoxy resin (Epicoat manufactured by Mitsubishi Chemical Co., Ltd.) for both the first molded product and the second molded product. (Registered trademark) JER1004K) 2% by mass and an ethylene ethyl acrylate copolymer (NUC-6570 manufactured by NUC Co., Ltd., 10% by mass) were added, and the joint strength was 11.2 MPa.
比較例として示す、棒線C及びDは、いずれも、第1成型品及び第2成型品ともに、PPS樹脂(ポリプラスチックス株式会社製 ジュラファイド(登録商標)0220A9)にガラス繊維を30質量%添加した組成物からなるものであり、接合強度は棒線C及びDがともに0.0MPaであった。
Bars C and D shown as comparative examples are both PPS resin (Durafide (registered trademark) 0220A9 manufactured by Polyplastics Co., Ltd.) and 30% by mass of glass fiber for both the first molded product and the second molded product. It consisted of the added composition, and the bonding strength was 0.0 MPa for both bar wires C and D.
棒線A及びBのようにPPS樹脂に極性官能基を有する化合物(上記の例ではエポキシ樹脂)やエラストマーを添加した組成物からなる成型品であれば、高い接合強度を得ることができた。これに対して、比較例の棒線C及びDのように極性官能基を有する化合物やエラストマーを添加していないPPS樹脂組成物からなる成型品では、十分な接合強度を得ることが困難であった。
A high bonding strength could be obtained if it was a molded product made of a composition in which a compound having a polar functional group (in the above example, an epoxy resin) and an elastomer were added to the PPS resin like the bar wires A and B. On the other hand, it is difficult to obtain a sufficient bonding strength with a molded product made of a PPS resin composition to which a compound having a polar functional group or an elastomer is not added like the bar wires C and D of the comparative example. It was.
図6は、POM樹脂組成物の種類による接合強度を示すグラフである。第1成型品及び第2成型品として、以下に記載するPOM樹脂組成物からなる接合試験片を用い、図1Aから図1Cで説明した一連の工程に従い、接合試験片の接合領域に波長172nm、照度6mW/cm2の真空紫外光を棒線Eは7分、棒線F及びGは5分、にわたって照射し、照射終了から5分以内に接合試験片の位置決めを行い、温度140℃及び圧力15MPaで、それぞれ1時間にわたり加熱及び加圧することで互いに接合した。その後、接合した接合試験片の接合強度を引っ張り試験機によって測定した。
FIG. 6 is a graph showing the bonding strength depending on the type of POM resin composition. As the first molded product and the second molded product, using a bonding test piece made of the POM resin composition described below, a wavelength of 172 nm is applied to the bonding region of the bonding test piece according to the series of steps described in FIGS. 1A to 1C. Irradiation of vacuum ultraviolet light with an illuminance of 6 mW / cm 2 for 7 minutes for the bar E and 5 minutes for the bars F and G, positioning the test piece within 5 minutes from the end of the irradiation, temperature 140 ° C. and pressure They were joined to each other by heating and pressing at 15 MPa for 1 hour each. Thereafter, the bonding strength of the bonded test pieces was measured with a tensile tester.
棒線Eは、第1成型品及び第2成型品ともに、POM樹脂(ポリプラスチックス株式会社製 ジュラコン(登録商標)M90-44)にアクリル系コアシェルポリマー(ガンツ化成株式会社製 スタフィロイド(登録商標)PO-0198)15質量%とエチレンエチルアクリレート共重合体(株式会社NUC製 NUC-6570)を3質量%添加した組成物からなるものであり、接合強度は3.8MPaであった。棒線Fは、第1成型品及び第2成型品ともに、POM樹脂(ポリプラスチックス株式会社製 ジュラコン(登録商標)M90-44)にポリウレタン樹脂(大日精化工業株式会社製 レザミンP-4088)を13質量%添加した組成物からなるものであり、接合強度は4.3MPaであった。
Bar E is a POM resin (Duracon (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd.) and an acrylic core-shell polymer (Staffroid (registered trademark) manufactured by Ganz Kasei Co., Ltd.) for both the first molded product and the second molded product. ) PO-0198) It was composed of a composition in which 15% by mass and 3% by mass of ethylene ethyl acrylate copolymer (NUC-6570 manufactured by NUC Corporation) were added, and the joint strength was 3.8 MPa. The rod F is a POM resin (Duracon (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd.) and a polyurethane resin (Rezamin P-4088 manufactured by Dainichi Seika Kogyo Co., Ltd.) for both the first molded product and the second molded product. And a bonding strength of 4.3 MPa.
比較例として示す棒線Gは、第1成型品及び第2成型品ともに、非強化のPOM樹脂(ポリプラスチックス株式会社製 ジュラコン(登録商標)M90-44)からなるものであり、接合強度は0.0MPaであった。
The bar G shown as a comparative example is made of unreinforced POM resin (Duracon (registered trademark) M90-44 manufactured by Polyplastics Co., Ltd.) for both the first molded product and the second molded product. It was 0.0 MPa.
POM樹脂についても、棒線EとFに示すエラストマーを添加したものは、高い接合強度を示した。比較例として示したエラストマーを添加していない棒線Gでは、高い接合強度を得ることができなかった。
Also for the POM resin, those added with the elastomers indicated by the rods E and F showed high bonding strength. In the bar G to which the elastomer shown as a comparative example was not added, high bonding strength could not be obtained.
なお、異種材料の組み合わせにおける接合として、第1成型品及び第2成型品に以下に記載する樹脂材料からなる接合試験片を用い、図1Aから図1Cで説明した一連の工程に従い、接合試験片の接合領域に波長172nm、照度6mW/cm2の真空紫外光を2分照射し、照射終了から5分以内に接合試験片の位置決めを行い、以下に記載する条件で加熱及び加圧することで互いに接合した。その後、接合した接合試験片の接合強度を引っ張り試験機によって測定した。
In addition, as a joining in a combination of different materials, a joining test piece made of the resin material described below is used for the first molded product and the second molded product, and the joining test piece is performed according to the series of steps described in FIGS. 1A to 1C. The bonding region is irradiated with vacuum ultraviolet light having a wavelength of 172 nm and an illuminance of 6 mW / cm 2 for 2 minutes, the bonding test piece is positioned within 5 minutes from the end of irradiation, and heated and pressed under the conditions described below to each other. Joined. Thereafter, the bonding strength of the bonded test pieces was measured with a tensile tester.
異種材料の組み合わせとしては、第1成型品に折線aで使用したのと同じ、ガラス繊維30質量%で強化したPBT樹脂(ウィンテックポリマー株式会社製 ジュラネックス(登録商標)3300)からなるもの、第2成型品に棒線Cで使用したのと同じ、PPS樹脂(ポリプラスチックス株式会社製 ジュラファイド(登録商標)0220A9)にガラス繊維を30質量%及びグリシジル基を含むエラストマー(住友化学株式会社製 ボンドファースト7L)を4質量%添加した組成物からなるものの組み合わせであり、温度160℃及び圧力30MPaで、1時間にわたり加熱及び加圧した際の接合強度は11.0MPaであった。また、第2成型品を非強化のABS樹脂(旭化成株式会社製 スタイラック220)からなるものにして、温度80℃及び圧力15MPaで、10分間にわたり加熱及び加圧したところ、接合強度は2.3MPaであった。さらに第2成型品を非強化のPC樹脂(帝人株式会社製 パンライトL-1225L)からなるものにして、温度140℃及び圧力15MPaで、10分間にわたり加熱及び加圧したところ、接合強度は3.9MPaであった。
The combination of different materials is the same as that used for the first molded product at the broken line a, and is made of PBT resin reinforced with 30% by mass of glass fiber (Juranex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.) Elastomer (Sumitomo Chemical Co., Ltd.) containing 30% by mass of glass fiber and glycidyl group in PPS resin (Durafide (registered trademark) 0220A9 manufactured by Polyplastics Co., Ltd.), the same as that used for the rod C for the second molded product The bond strength was 11.0 MPa when heated and pressurized for 1 hour at a temperature of 160 ° C. and a pressure of 30 MPa. Further, when the second molded product was made of non-reinforced ABS resin (Stylac 220 manufactured by Asahi Kasei Corporation) and heated and pressurized for 10 minutes at a temperature of 80 ° C. and a pressure of 15 MPa, the bonding strength was 2. 3 MPa. Further, when the second molded product was made of non-reinforced PC resin (Panlite L-1225L manufactured by Teijin Limited) and heated and pressurized at 140 ° C. and 15 MPa for 10 minutes, the joint strength was 3 0.9 MPa.
この結果から、本発明の接合方法を用いれば、接着剤等を用いずとも異種材料の接合が可能となることが確認された。また、第1成型品と第2成型品の両方に極性官能基を有する化合物やエラストマーを添加した樹脂組成物を用いることがより好ましいが、いずれか一方にそのような樹脂組成物を用いることでも高い接合強度が得られた。なお、第2成型品をABS樹脂やPC樹脂のような非晶性樹脂にした場合も、1MPa以上の接合強度を得ることもできた。すなわち、本発明の接合方法においては、熱可塑性結晶性樹脂に極性官能基を有する化合物やエラストマーを添加した樹脂組成物を、第1成型品と第2成型品のいずれか一方に用いることで、非晶性樹脂との接合においても高い接合強度を得ることができる。
From this result, it was confirmed that when the bonding method of the present invention is used, it is possible to bond different materials without using an adhesive or the like. Moreover, it is more preferable to use a resin composition in which a compound having a polar functional group or an elastomer is added to both the first molded product and the second molded product, but it is also possible to use such a resin composition for either one of them. High bonding strength was obtained. Even when the second molded product was an amorphous resin such as ABS resin or PC resin, it was possible to obtain a bonding strength of 1 MPa or more. That is, in the joining method of the present invention, by using a resin composition in which a compound having a polar functional group or an elastomer is added to a thermoplastic crystalline resin for either one of the first molded product and the second molded product, High bonding strength can be obtained even in bonding with an amorphous resin.
さらに図7には、第1成型品及び第2成型品ともに測定値aで使用したのと同じ、ガラス繊維30質量%で強化したPBT樹脂(ウィンテックポリマー株式会社製 ジュラネックス(登録商標)3300)にビスフェノールA型エポキシ樹脂(三菱化学株式会社製 エピコート(登録商標) JER1004K)を1.5質量%添加した組成物を用い、棒線Hは波長172nm、照度6mW/cm2の真空紫外光、棒線Iは波長254nm、照度6mW/cm2の紫外光を、それぞれ2分にわたって照射し、照射終了から5分経過後に接合試験片の位置決めを行い、温度120℃及び圧力30MPaで、1時間にわたり加熱及び加圧することで互いに接合した。その後、接合した接合試験片の接合強度を引っ張り試験機によって測定した。それぞれの接合強度は、棒線Hが10.0MPa、棒線Iが3.8MPaであった。この結果から、紫外光として真空紫外光を用いることで、より高い接合強度が得られることが確認された。
Further, FIG. 7 shows a PBT resin reinforced with 30% by mass of glass fiber (Juranex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.), which is the same as that used in the measurement value a for both the first molded product and the second molded product. ) Using a composition in which 1.5% by mass of bisphenol A type epoxy resin (Epicoat (registered trademark) JER1004K manufactured by Mitsubishi Chemical Corporation) is added, the bar H is a vacuum ultraviolet light having a wavelength of 172 nm and an illuminance of 6 mW / cm 2 , The bar I is irradiated with ultraviolet light having a wavelength of 254 nm and an illuminance of 6 mW / cm 2 for 2 minutes each, and after 5 minutes from the end of irradiation, the bonding test piece is positioned, and at a temperature of 120 ° C. and a pressure of 30 MPa for 1 hour. They were joined together by heating and pressing. Thereafter, the bonding strength of the bonded test pieces was measured with a tensile tester. The bonding strength of the bar wire H was 10.0 MPa, and the bar wire I was 3.8 MPa. From this result, it was confirmed that higher bonding strength can be obtained by using vacuum ultraviolet light as ultraviolet light.
なお図8には、測定値aで使用したのと同じ、ガラス繊維30質量%で強化したPBT樹脂(ウィンテックポリマー株式会社製 ジュラネックス(登録商標)3300)にビスフェノールA型エポキシ樹脂(三菱化学株式会社製 エピコート(登録商標) JER1004K)を1.5質量%添加した組成物からなる接合試験片に対し、波長172nm、照度6mW/cm2の真空紫外光又は波長254nm、照度6mW/cm2の紫外光を、それぞれ照射した後、一定時間経過後の蒸留水の接触角を示した。棒線Jは照射前、棒線Kは真空紫外光の照射後5分間経過、棒線Lは真空紫外光の照射後3時間経過の接触角を示している。比較例として、棒線Mは紫外光の照射後5分間経過、棒線Nは紫外光の照射後3時間経過の接触角を示している。
In FIG. 8, the same PBT resin (Juranex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.) reinforced with 30% by mass of glass fiber as used in the measurement value a is added to a bisphenol A type epoxy resin (Mitsubishi Chemical). Co., Ltd. Epicoat (registered trademark) JER1004K) is added to 1.5% by mass of a bonded test piece with a wavelength of 172 nm, an illuminance of 6 mW / cm 2 vacuum ultraviolet light, or a wavelength of 254 nm, an illuminance of 6 mW / cm 2 . The contact angle of distilled water after a lapse of a certain time after each irradiation with ultraviolet light was shown. The bar J indicates the contact angle before irradiation, the bar K indicates the contact angle 5 minutes after the irradiation with the vacuum ultraviolet light, and the bar L indicates the contact angle 3 hours after the irradiation with the vacuum ultraviolet light. As a comparative example, a bar M indicates a contact angle after 5 minutes from irradiation with ultraviolet light, and a bar N indicates a contact angle after 3 hours after irradiation with ultraviolet light.
この結果から、波長172nmの真空紫外光及び波長254nmの紫外光ともに、5分経過時点では照射前の接触角が約70度(棒線J)であったのと比較して、接触角が40度前後(棒線K、M)まで小さくなっているが、3時間経過時点では、波長172nmの真空紫外光では接触角が約40度で照射直後と同等(棒線L)であるのに対し、波長254nmの紫外光では1時間経過時点で既に接触角が約50度(棒線N)にまで大きくなっていることが確認された。
From this result, the contact angle of 40% for both the vacuum ultraviolet light having a wavelength of 172 nm and the ultraviolet light having a wavelength of 254 nm was compared with the contact angle before irradiation being about 70 degrees (bar J) when 5 minutes passed. Although it has decreased to around (degrees K and M), the contact angle is about 40 degrees in vacuum ultraviolet light with a wavelength of 172 nm after 3 hours, whereas it is equivalent to that immediately after irradiation (bar L). It was confirmed that the contact angle had already increased to about 50 degrees (bar N) when ultraviolet light having a wavelength of 254 nm was passed for 1 hour.
したがって、紫外光よりも真空紫外光を用いる場合、表面が活性化された状態をより長く維持できると考えられ、照射後の位置決め工程の時間が長くかかった場合でも高い接合強度を得ることができる。また、接触角の絶対値としても、波長172nmの真空紫外光は照射後5分経過時点のみならず照射後3時間経過時点であっても、波長254nmの紫外光の照射後5分経過時点(棒線M)より接触角が小さく、表面がより活性化された状態となっていることが確認された(棒線L)。ここで、上記の水の接触角は、接合試験片表面をエタノールで洗浄した後、波長172nmの真空紫外光又は波長254nmの紫外光をそれぞれ2分間照射し、一定時間経過後に、水平に保持した照射面に蒸留水を滴下し、その接触角を協和界面科学社製FACE接触角計CA-DTを用いて測定した。
Therefore, when vacuum ultraviolet light is used rather than ultraviolet light, it is considered that the activated state of the surface can be maintained longer, and a high bonding strength can be obtained even when the positioning process after irradiation takes a long time. . Also, as the absolute value of the contact angle, vacuum ultraviolet light with a wavelength of 172 nm is not only at the time when 5 minutes have elapsed after irradiation but also at the time when 3 hours have elapsed since irradiation, It was confirmed that the contact angle was smaller than that of the bar M) and the surface was more activated (bar L). Here, the contact angle of the water was kept horizontal after a certain period of time by irradiating vacuum ultraviolet light having a wavelength of 172 nm or ultraviolet light having a wavelength of 254 nm for 2 minutes after washing the surface of the bonding test piece with ethanol. Distilled water was dropped on the irradiated surface, and the contact angle was measured using a FACE contact angle meter CA-DT manufactured by Kyowa Interface Science Co., Ltd.
なお、棒線Aの測定に用いた接合試験片を、接合面に対し垂直方向に切断し、電子顕微鏡にて接合部周辺の断面観察を行った結果を図9に示す。同様に、棒線Aで使用したPPS樹脂(ポリプラスチックス株式会社製 ジュラファイド(登録商標)0220A9)にガラス繊維を30質量%添加した組成物からなる第1成型品及び第2成型品を、エポキシ系接着剤で接合したものと、振動溶着で接合したものについて接合部周辺の断面観察を行った結果を、図10および図11にそれぞれ示す。
In addition, the joining test piece used for the measurement of the bar A is cut in a direction perpendicular to the joining surface, and the result of cross-sectional observation around the joining portion using an electron microscope is shown in FIG. Similarly, the 1st molded product and the 2nd molded product which consist of the composition which added 30 mass% of glass fiber to the PPS resin (Polyplastics Co., Ltd. product DURAFIDE (registered trademark) 0220A9) used for the bar A, FIGS. 10 and 11 show the results of cross-sectional observations around the joints of the joints made with the epoxy adhesive and the joints made by vibration welding, respectively.
図10からエポキシ系接着剤で接合したものでは、接合部の界面に当該接着剤の層が存在することが確認された。また、図11から振動溶着で接合したものでは、接合部の界面にボイドの発生(写真では界面部両端に見える白化部)が確認された。これに対し、図9の紫外光照射による接合では第1成型品と第2成型品の表面同士が密着し、またボイドも発生していないことが確認された。
From FIG. 10, it was confirmed that the adhesive layer was present at the interface of the bonded portion in the case of being bonded with the epoxy adhesive. Moreover, in what was joined by vibration welding from FIG. 11, generation | occurrence | production of the void (whitening part visible in the interface both ends in a photograph) was confirmed at the interface of a junction part. On the other hand, it was confirmed that the surfaces of the first molded product and the second molded product were in close contact with each other by the ultraviolet light irradiation in FIG. 9 and no voids were generated.
比較例として、紫外線を第1成型品と第2成型品の一方のみへ照射した場合についても検討した。ここでは、紫外光の照射を第1成型品のみに行い、第2成型品には照射しないこと以外は図4中の折線bと同じく、第1成型品及び第2成型品ともに、ガラス繊維30質量%で強化したポリブチレンテレフタレート(PBT)樹脂(ウィンテックポリマー株式会社製 ジュラネックス(登録商標)3300)樹脂を用い、波長172nm、照度6mW/cm2の真空紫外光を2分間照射してから5分以内に位置決めした後、温度120℃及び圧力30MPaで加熱及び加圧し、1時間にわたり維持したところ、接合強度は0MPaであった。すなわち、第1成型品と第2成型品の一方のみへの紫外光の照射では、十分な接合は得られないことが確認された。
As a comparative example, the case where only one of the first molded product and the second molded product was irradiated with ultraviolet rays was also examined. Here, both the first molded product and the second molded product are similar to the broken line b in FIG. 4 except that the ultraviolet light is irradiated only on the first molded product and not on the second molded product. Using a polybutylene terephthalate (PBT) resin reinforced by mass% (Julanex (registered trademark) 3300, manufactured by Wintech Polymer Co., Ltd.) resin and irradiating vacuum ultraviolet light with a wavelength of 172 nm and an illuminance of 6 mW / cm 2 for 2 minutes After positioning within 5 minutes, when heated and pressurized at a temperature of 120 ° C. and a pressure of 30 MPa and maintained for 1 hour, the bonding strength was 0 MPa. That is, it was confirmed that sufficient bonding cannot be obtained by irradiating only one of the first molded product and the second molded product with ultraviolet light.
101 第1成型品
102 第2成型品
31 第1プレス部材
32 第2プレス部材 10 1 1st moldedproduct 10 2 2nd molded product 31 1st press member 32 2nd press member
102 第2成型品
31 第1プレス部材
32 第2プレス部材 10 1 1st molded
Claims (4)
- 熱可塑性結晶性樹脂と、極性官能基を有する化合物及び/又はエラストマーを含む樹脂組成物からなる樹脂成型品を接合する接合方法であって、
第1成型品及び第2成型品を提供し、
前記第1成型品及び前記第2成型品の表面の所定の照射領域に紫外光をそれぞれ照射し、
前記照射領域が対向して接触するように、前記第1成型品及び前記第2成型品を位置決めし、
前記第1成型品及び前記第2成型品がそれぞれの照射領域で接合するように、前記第1成型品及び前記第2成型品を加熱及び加圧することを含む接合方法。 A joining method for joining a thermoplastic crystalline resin and a resin molded article comprising a resin composition containing a compound having a polar functional group and / or an elastomer,
Provide the first molded product and the second molded product,
Irradiate each of the predetermined irradiated areas on the surface of the first molded product and the second molded product with ultraviolet light,
Position the first molded product and the second molded product so that the irradiation areas are opposed to each other,
A joining method including heating and pressurizing the first molded product and the second molded product such that the first molded product and the second molded product are joined in respective irradiation regions. - 前記紫外光は、前記第1成型品及び前記第2成型品に10分以下の時間にわたり照射することを特徴とする請求項1に記載の接合方法。 The bonding method according to claim 1, wherein the ultraviolet light is applied to the first molded product and the second molded product for a time of 10 minutes or less.
- 前記第1成型品及び前記第2成型品はそれぞれ表面に対向面を含み、前記照射領域は前記対向面の少なくとも一部を含む請求項1に記載の接合方法。 The joining method according to claim 1, wherein the first molded product and the second molded product each include a facing surface on the surface, and the irradiation region includes at least a part of the facing surface.
- 前記熱可塑性結晶性樹脂は、ポリオキシメチレン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンサルファイド、又は液晶ポリマーを含む請求項1から3のいずれか一項に記載の接合方法。 The joining method according to any one of claims 1 to 3, wherein the thermoplastic crystalline resin includes polyoxymethylene, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, or a liquid crystal polymer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018527636A JP6793195B2 (en) | 2016-07-13 | 2017-07-12 | Joining method of resin molded products |
CN201780043290.XA CN109476090B (en) | 2016-07-13 | 2017-07-12 | Bonding method of resin molded products |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-138523 | 2016-07-13 | ||
JP2016138523 | 2016-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018012543A1 true WO2018012543A1 (en) | 2018-01-18 |
Family
ID=60952999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/025428 WO2018012543A1 (en) | 2016-07-13 | 2017-07-12 | Joining method for resin molded articles |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6793195B2 (en) |
CN (1) | CN109476090B (en) |
WO (1) | WO2018012543A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003191387A (en) * | 2001-12-27 | 2003-07-08 | Mitsubishi Engineering Plastics Corp | Composite molded article and method for producing the same |
JP2003220667A (en) * | 2002-01-31 | 2003-08-05 | Mitsubishi Engineering Plastics Corp | Composite molded article and method for producing the same |
JP2009023337A (en) * | 2007-06-18 | 2009-02-05 | Seiko Epson Corp | Bonding method, bonded body, droplet discharge head, and droplet discharge apparatus |
JP2012232446A (en) * | 2011-04-28 | 2012-11-29 | Dainippon Printing Co Ltd | Laminate and method for manufacturing the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3132595B2 (en) * | 1991-03-27 | 2001-02-05 | ナガセケムテックス株式会社 | Method for bonding plastic molded articles and resin sealing method for electric / electronic parts |
JP3313788B2 (en) * | 1992-12-02 | 2002-08-12 | 株式会社リコー | Joining method |
JP4030897B2 (en) * | 2003-03-07 | 2008-01-09 | 株式会社クラレ | Plastic bonding method |
JP5063932B2 (en) * | 2006-05-17 | 2012-10-31 | 藤森工業株式会社 | Laminated film and method for producing laminated film |
JP6017933B2 (en) * | 2011-12-22 | 2016-11-02 | 信越化学工業株式会社 | Composite and production method thereof |
-
2017
- 2017-07-12 JP JP2018527636A patent/JP6793195B2/en active Active
- 2017-07-12 CN CN201780043290.XA patent/CN109476090B/en active Active
- 2017-07-12 WO PCT/JP2017/025428 patent/WO2018012543A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003191387A (en) * | 2001-12-27 | 2003-07-08 | Mitsubishi Engineering Plastics Corp | Composite molded article and method for producing the same |
JP2003220667A (en) * | 2002-01-31 | 2003-08-05 | Mitsubishi Engineering Plastics Corp | Composite molded article and method for producing the same |
JP2009023337A (en) * | 2007-06-18 | 2009-02-05 | Seiko Epson Corp | Bonding method, bonded body, droplet discharge head, and droplet discharge apparatus |
JP2012232446A (en) * | 2011-04-28 | 2012-11-29 | Dainippon Printing Co Ltd | Laminate and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
CN109476090B (en) | 2021-08-06 |
JPWO2018012543A1 (en) | 2019-04-25 |
CN109476090A (en) | 2019-03-15 |
JP6793195B2 (en) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6336130B2 (en) | Light guide with integrally molded optical element | |
JP5263622B2 (en) | Joining structure and joining method of fiber reinforced plastic | |
JP2008230224A (en) | Thermoplastic composite | |
Qiu et al. | Thermal welding by the third phase between polymers: a review for ultrasonic weld technology developments | |
CN104968483A (en) | Laser joining device and laser joining method | |
CN103052493A (en) | Laser bonding method | |
US8580069B2 (en) | Plastic bonding method | |
WO2016125594A1 (en) | Manufacturing method for joined structural body and joined structural body | |
JP5603653B2 (en) | Joining method using laser light | |
WO2018012543A1 (en) | Joining method for resin molded articles | |
CN107428090B (en) | The joint method of metal, resin component and carbon-fiber reinforced resins component | |
TWI432545B (en) | System and method for joining non-transparent parts by means of a radiation curable adhesive | |
JP6330113B1 (en) | Bonding method of resin molded products | |
JP6861043B2 (en) | How to join resin molded products | |
US8262834B2 (en) | Method for manufacturing lens | |
JPWO2018216804A1 (en) | Method of joining resin molded products | |
WO2016117504A1 (en) | Method for producing junction structure, and junction structure | |
JP6379323B1 (en) | Bonding method of resin molded products | |
JP2007109430A (en) | Vehicular lighting fixture | |
JP2015160383A (en) | Part fixation method | |
CN111194259B (en) | Resin bonded body and method for producing same | |
TWI576189B (en) | Method for joining components by using laser and a combination made thereof | |
CN110225438B (en) | Acoustic module and processing method thereof | |
WO2018074059A1 (en) | Bonding method | |
JP7404899B2 (en) | Composite molded body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17827669 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018527636 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17827669 Country of ref document: EP Kind code of ref document: A1 |