[go: up one dir, main page]

WO2018012495A1 - Beam-column connection structure - Google Patents

Beam-column connection structure Download PDF

Info

Publication number
WO2018012495A1
WO2018012495A1 PCT/JP2017/025262 JP2017025262W WO2018012495A1 WO 2018012495 A1 WO2018012495 A1 WO 2018012495A1 JP 2017025262 W JP2017025262 W JP 2017025262W WO 2018012495 A1 WO2018012495 A1 WO 2018012495A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
flange
web
range
steel frame
Prior art date
Application number
PCT/JP2017/025262
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 鈴木
竹内 一郎
哲 廣嶋
光一 中塚
哲巳 渡辺
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to SG11201809986UA priority Critical patent/SG11201809986UA/en
Publication of WO2018012495A1 publication Critical patent/WO2018012495A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Definitions

  • the present invention relates to a column beam connection structure.
  • This application claims priority based on Japanese Patent Application No. 2016-137010 for which it applied to Japan on July 11, 2016, and uses the content here.
  • the column beam connection structure of Patent Document 1 includes a non-diaphragm type steel pipe column and a beam directly connected to the steel pipe column.
  • the steel pipe column is composed of a column beam joint where the beam is directly welded and a non-column beam joint where the beam is not connected.
  • the outer diameter of the column beam joint and the outer diameter of the non-column beam joint are the same.
  • the wall thickness of the column beam joint is greater than the wall thickness of the non-column beam joint.
  • a column steel frame having an H-shaped cross section or a cross-shaped cross section with a flange may be used instead of the steel pipe column of Patent Document 1.
  • the column steel frame is manufactured by welding the web and the flange instead of rolling.
  • the beam is joined to the flange of the column steel frame by welding.
  • the web and the flange are all joined by full penetration welding, and the web and the flange are fully joined.
  • This full strength bonding makes it difficult for cracks to occur at the joint.
  • the manufacturing cost increases compared to the case where the web and the flange are joined by partial penetration welding or fillet welding.
  • Full penetration welding requires a groove in the part where the web is butt-welded to the flange, and more weld metal is needed to fill the space created by the groove with welding. is there.
  • the present invention has been made in view of the above circumstances, and suppresses an increase in manufacturing cost while suppressing breakage of a joint portion between a column steel web and a flange when a load is applied to a beam.
  • the purpose is to provide a possible beam-to-column structure.
  • a column beam connection structure is a non-diaphragm column beam connection structure including a steel reinforced concrete structure or a steel structure column and a steel beam bonded to the column.
  • the pillar has a flanged cruciform cross-section or H-section pillar steel having a web, a flange, and a full strong joint and a non-full strong joint joining the web and the flange together, In the range where a tensile stress acts on the flange of the column steel when a bending moment acts on the beam, the all strong joints are formed.
  • the all strong joints are formed in a range not less than the value of H b + 2y obtained by using the following formula, with the center of the range of the beam being the center of the range. It may be.
  • B c width of the flange of said post steel (mm)
  • t cf thickness of the flange of said post steel (mm)
  • t cw said web having a thickness of said post steel (mm)
  • sigma cfy yield strength (N / mm 2 ) of the flange of the column steel
  • ⁇ cwy yield strength (N / mm 2 ) of the web of the column steel
  • H b blame of the beam (mm)
  • F c compressive strength (N / mm 2 ) of the concrete of the column
  • d cover thickness (mm) of the concrete with respect to the flange of the column steel
  • the full strength joint portion for joining the flange of the column steel frame and the web is formed in a range where the tensile stress acts on the flange of the column steel frame, the flange and the web are not welded.
  • the part is not formed in this range.
  • the range in which tensile stress acts on the flange tends to cause the fracture of the joint between the flange and the web starting from the non-welded part.However, since the non-welded part is not formed in this range, the load acts on the beam. When it does, it becomes difficult to produce the fracture
  • a non-total strong junction part is formed in ranges other than the range in which the total strong junction part was formed. Therefore, an increase in manufacturing cost can be suppressed while suppressing breakage of the joint between the flange and the web in the column steel frame.
  • the strength is fully increased in a range pulled by a load acting on the beam from above and below (the range of the value of H b + 2y with the center of the beam being the center of the range).
  • a joint is formed.
  • a non-total strong junction part is formed in ranges other than the range in which the total strong junction part was formed. Therefore, even if a load acts on the beam from above and below, it is possible to suppress breakage of the joint between the flange and the web in the column steel frame, and it is possible to suppress an increase in manufacturing cost.
  • FIG. 6 is a side view seen from the line A1-A1 in FIG.
  • FIG. 6 is a side view seen from the line A1-A1 of FIG. 5 for explaining the bearing failure of concrete. It is a figure for demonstrating the actual stress-strain characteristic in steel materials. It is a figure for demonstrating the stress-strain characteristic of steel materials modeled. It is a side view of the said column steel frame, Comprising: It is a figure which shows the range in which a total strong junction part and a non-total strong junction part are formed. It is a figure for verifying the accuracy which predicted variable y in a 2nd embodiment of the present invention. In 3rd Embodiment of this invention, it is a perspective view which shows the analysis model used for the analysis of a column beam connection structure.
  • FIG. 1 It is a perspective view which shows the principal part of the said analysis model. It is the figure seen from the A direction of FIG. It is a figure which shows the stress-strain characteristic used for the element of a column steel frame and a beam in the finite element analysis of the said column beam connection structure. It is a figure which shows the stress-strain characteristic used for the element of the weld metal part in the finite element analysis of the said column beam connection structure. It is a figure which shows an example of the result of having calculated
  • FIG. 1 is a perspective view showing a beam-column joint structure 1 according to a first embodiment of the present invention.
  • the column-beam joint structure 1 includes a steel reinforced concrete (SRC) column 11, a steel beam 21, and a joint 31 that joins the column 11 and the beam 21.
  • the column beam connection structure 1 is of a type that does not use a diaphragm (stiffener) when the beam 21 is bonded to the column 11, that is, a non-diaphragm type.
  • the column 11 is made of steel reinforced concrete as described above, and has a column steel frame 12 having a web 14 and a flange 13, a plurality of reinforcing bars 15 surrounding the column steel frame 12, and concrete 16.
  • the column steel frame 12 and the plurality of reinforcing bars 15 are embedded in the concrete 16.
  • the pillar 11 is not limited to a steel-framed reinforced concrete structure, and may be a steel-framed pillar that does not include the reinforcing bars 15 and the concrete 16, for example.
  • FIG. 2 is a view showing the column steel frame 12 of the beam-to-column connection structure 1, and is a cross-sectional view when viewed in a cross section that is perpendicular to the material length direction (longitudinal direction) and passes through the full strength joint portion 17.
  • FIG. 3 is a diagram showing the column steel frame 12 of the beam-column joint structure 1 and is a partial cross-sectional view when viewed in a cross section perpendicular to the material length direction and passing through the non-total strong joint 18A.
  • FIG. 4 is a view showing the column steel frame 12 of the beam-column joint structure 1 and is a partial cross-sectional view when seen in a cross section perpendicular to the material length direction and passing through the non-total strong joint 18B.
  • a flanged cross-shaped column steel frame 12 is obtained by welding and joining the end of the web 14 (the end in the width direction of the web 14) and the flange 13 together. It is done.
  • the end portion of the web 14 and the flange 13 are formed by a fully-strong welded portion 17 (a portion that is fully-strengthened) shown in FIG. 2 and a non-filled portion shown in FIG.
  • Total strong joint 18A part joined by a method other than full strong joint
  • non-full strong joint 18B formed by fillet welding shown in FIG. 4 (joined by a method other than full strong joint) Part).
  • edge part of the web 14 and the flange 13 may be joined by the full strong joint part 17 and the non-full strong joint part 18A, or joined by the full strong joint part 17 and the non-full strong joint part 18B. May be. That is, the end portion of the web 14 and the flange 13 may be joined by the all strong joint portion 17 and any one of the non-fully strong joint portion 18A and the non-fully strong joint portion 18B.
  • “complete penetration welding” means that a weld is provided in the weld joint and the entire cross section of the base material (in the present invention, the column steel web) is completely welded, and the weld throat thickness is the thickness of the base material ( It means that all the strong joints (sheet thickness) or more (joints with a proof strength not lower than the proof stress of the base material) are formed.
  • “partial penetration welding” is a welding method in which a groove is partially provided in the weld joint and a part of a cross section of the base metal is welded, and an irregular fillet weld is given as an example.
  • the “fillet welding” is a method in which a weld metal having a triangular cross section is placed at the corners of the webs and flanges of pillar steel frames that are installed without providing a groove.
  • Partial penetration welding and fillet welding are welding methods that allow a weld non-welded portion to exist in the cross section of the weld joint.
  • an ultrasonic flaw detection test is conducted to confirm that all strong joints formed by full penetration welding have no internal defects. It is described that it must be confirmed by, for example. Therefore, even when the entire cross section with the base material to be matched as a welding specification is completely welded, it is desirable to confirm that there is no internal defect by an ultrasonic flaw detection test or the like after welding.
  • the portion where the flange 13 of the column steel frame 12 and the web 14 are fully strong-bonded is the full-strength joint portion 17 where the flange 13 of the column steel frame 12 and the web 14 are joined by complete penetration welding.
  • the flange 13 of the column steel frame 12 and the web 14 are joined by a method other than full strength joining, and the flange 13 of the column steel frame 12 and the web 14 are joined by partial penetration welding (non-total strength joining).
  • the non-fully strong joint 18A or the flange 13 of the column steel frame 12 and the web 14 are joined together by fillet welding (non-fully strong joint).
  • weld metal part 18a and 18b are formed so as to sandwich the web 14 in the thickness direction (plate thickness direction).
  • a notch-shaped non-welded portion 18c is formed between the weld metal portion 18a and the weld metal portion 18b.
  • the non-fully strong joint 18B formed by fillet welding shown in FIG. 4 is formed at the end of the web 14 and welds the web 14 and the flange 13 together, as with the non-fully strong joint 18A. It consists of metal parts 18d and 18e. Since the non-fully strong joint 18B is formed by fillet welding as described above, a notch-like welded portion 18f is formed between the weld metal portion 18d and the weld metal portion 18e. Yes. In the present specification, when the non-total strong joint portion 18A and the non-total strong joint portion 18B are referred to without being distinguished, they are collectively referred to as the non-total strong joint portion 18.
  • the web 14 and the flange 13 to which the beam 21 is bonded are all strongly bonded within a predetermined range in the material length direction (longitudinal direction) of the column steel frame 12. Bonding is performed by a method other than full strength bonding in a range other than the predetermined range. In other words, in the column steel frame 12 of the beam-column joint structure 1, the entire strong joint 17 that joins the flange 13 and the web 14 is formed in the predetermined range, and the flange 13 and the web are in a range other than the predetermined range. 14 is formed (see FIG. 10).
  • the column steel frame 12 when viewed along the material length direction (longitudinal direction), the full strong joint 17 and the non-full strong joint 18 that join the flange 13 and the web 14 are formed. There is no gap between the total strong joint 17 and the non-total strong joint 18 (the total strong joint 17 and the non-total strong joint 18 are continuous). Details of the predetermined range will be described later.
  • the column steel frame 12 is not limited to the above-mentioned cross-shaped cross section with a flange, and may have an H-shaped cross section in which the end of the web 14 and the flange 13 are welded to each other.
  • the plurality of reinforcing bars 15 are arranged on a rectangular reference line when viewed from the length direction of the column steel frame 12 shown in FIG.
  • the concrete 16 has a square or rectangular cross section perpendicular to the material length direction.
  • the beam 21 is made of H-shaped steel, and includes a web 24 and a pair of flanges 23 joined to both ends of the web 24.
  • the beam 21 is joined to the outer surface of the flange 13 of the column steel frame 12 and extends perpendicular to the flange 13.
  • the beam 21 is a steel frame, and is made of, for example, a steel plate.
  • the flange 23 of the beam 21 is joined to the flange 13 of the column steel frame 12 by welding at the joint 31.
  • the web 24 of the beam 21 is joined to the flange 13 of the column steel frame 12 by welding or high strength bolt friction joining via a shear plate.
  • a joint portion 31 (including the welded portion and the column steel frame 12 and the beam 21 in the vicinity of the welded portion) where the flange 13 and the beam 21 of the columnar steel frame 12 are joined is surrounded by the concrete 16. That is, a part of the beam 21 is embedded in the concrete 16 of the column steel frame 12.
  • the present invention is not limited to welding joining, for example, adhesive joining, pressure welding, or amorphous joining. It may be used. That is, the total strong joint 17 that joins the web 14 and the flange 13 may be formed by adhesive bonding, pressure welding, amorphous bonding, or the like. Similarly, the non-fully strong joint 18 that joins the web 14 and the flange 13 may be formed by adhesive bonding, pressure welding, amorphous bonding, or the like.
  • FIGS. 5 to 7 are partial cross-sectional views when seen in a cross-section perpendicular to the flange 23 of the beam 21 and is a view for explaining a collapse mechanism at the time of full plastic yield strength.
  • FIG. 6 is a side view as seen from A1-A1 in FIG. 5, for explaining the cone-shaped fracture of the cover concrete.
  • FIG. 7 is a side view seen from the line A1-A1 of FIG. 5 and is a view for explaining the bearing pressure failure of concrete.
  • the plastic hinges 13 1 and 13 3 above the flange 13 of the pillar steel 12, the plastic hinge 13 2 and 13 4 are formed downward. That is, the pair of flanges 23 of the beam 21 in the flange 13 of the beam 21 is joined to the connection portions, a pair of plastic hinge 13 1, 13 3, 13 2, 13 4 are respectively formed. From the state described later plastically rotation angle theta 1 and theta 2 is 0 (radian), the plastic rotational angle theta 1 and theta 2 shown in FIGS. 5-7 is deformed to a positive state.
  • the flange 23 on the tension side of the beam 21 (in this example, the flange 23 1 located on the upper side of the pair of flanges 23 of the beam 21, hereinafter also referred to as the upper flange 23 1 ) is out of plane with the flange 13 of the column steel frame 12.
  • the column steel 12 which is a steel frame causes out-of-plane deformation of the flange 13 and local yielding of the web 14.
  • a local yield 14 a is formed on the web 14 of the column steel frame 12.
  • plastic hinge 13 1 is formed.
  • a flange 23 on the compression side of the beam 21 (in this example, of the pair of flanges 23 of the beam 21, a flange 23 2 positioned on the lower side: hereinafter also referred to as a lower flange 23 2 ).
  • the flange 13 of the column steel frame 12 is pushed out of the plane, the flange 13 is deformed out of the plane to cause local yielding of the web 14, and the concrete 16 inside the flange 13 is subjected to bearing failure. Yes.
  • the bearing fracture portion 16 b is formed in the concrete 16.
  • the bearing fracture portion 16b is shown with hatching in FIG.
  • the flange 13 of the column steel 12, plastic hinge 13 2 is formed.
  • the bearing strength of concrete is larger than the cone-shaped fracture strength. Therefore, the neutral axis C1 that satisfies the balance condition in the cross section of the joint portion 31 is made of the beam stake H b (beam stake (composition)) (mm). than the vertical center located in the flange 23 2 side of the compression side.
  • This collapse mechanism assumes a state in which the joint 31 is rotated by an angle ⁇ (radian) with respect to the bending moment at the end of the beam 21.
  • the variables used in this collapse mechanism are x, y, and z (mm) shown in the figure.
  • the variable x is a coefficient that determines the position of the neutral axis C ⁇ b> 1 with respect to the bending moment at the end of the beam 21, and can take any value between 0 and 1.
  • variable x when the bending moment on the end of the beam 21 is applied from the tension side of the flange 23 1 of the outer surface of the beam 21 in the ratio Sei Ryo H b of the distance to the neutral axis C1 is there.
  • the variable y is between plastic hinge 13 1 and plastic hinge 13 3 located above the upper flange 23 1 of the beam 21, the length in the wood longitudinal direction of the column steel 12.
  • the variable z is between plastic hinge 13 2 and plastic hinge 13 4 located below the lower flange 23 and second beam 21, the length in the wood longitudinal direction of the column steel 12. Note that the variables y and z can take any positive number (a value greater than 0).
  • the out-of-plane deformation amounts ⁇ 1 and ⁇ 2 (mm) at the intersections of the flange 13 of the column steel frame 12 and the flanges 23 1 and 23 2 of the beam 21 are as follows: Using the formulas (1) and (2), the following formulas (3) and (4) can be used. Here, it is assumed that the plate thickness of the flange 23 of the beam 21 is t bf (mm) and the width of the rigid zone assumed at the intersection of the flange 13 and the flange 23 is t ′ (mm).
  • the plastic rotation angles ⁇ 1 and ⁇ 2 (radian) generated in the yield hinge line of the flange 13 of the column steel frame 12 can be expressed by the following equations (5) and (6).
  • FIG. 8 shows actual stress-strain characteristics of steel materials such as the column steel frame 12 and the beam 21.
  • the horizontal axis in FIG. 8 represents the strain of the steel material, and the vertical axis represents the stress acting on the steel material.
  • the steel material has an elastic region R1 in which the stress increases proportionally as the strain increases from a state where the strain is zero.
  • the range where the strain is larger than that of the elastic region R1 is the non-elastic region R2.
  • the rate of increase in stress is lower than in the elastic region R1.
  • Stress at the boundary between the elastic region R1 and the non-elastic region R2 is a yield stress sigma 1.
  • the stress is lower than the maximum stress ⁇ 2 .
  • a model having a rigid-plastic relationship indicated by a line L1 in FIG. 9 is used as the stress-strain characteristics of the column steel 12 and the beam 21.
  • the horizontal axis in FIG. 9 represents the strain of the steel material, and the vertical axis represents the stress acting on the steel material.
  • the stress increases with zero strain.
  • the stress becomes the yield stress ⁇ 1
  • the steel material yields.
  • the strain increases without changing the stress.
  • strain hardening is not considered.
  • the yield moment M 0 (N) per unit length of the yield hinge line of the flange 13 of the column steel 12 and the yield axial force N 0 c (N N per unit length of the discontinuous line generated in the web 14 of the column steel 12 / Mm) is given by the following equations (7) and (8), respectively.
  • the plate thickness of the flange 13 of the column steel 12 is t cf (mm)
  • the plate thickness of the web 14 of the column steel 12 is t cw (mm)
  • the yield strength of the flange 13 of the column steel 12 is ⁇ cfy (N / Mm 2 )
  • the yield strength of the web 14 of the column steel frame 12 is ⁇ cwy (N / mm 2 ).
  • the internal work W cf due to the out-of-plane deformation of the flange 13 of the column steel frame 12 is given by the following formula (9) as the sum of work due to plastic rotation of each yield hinge line. Further, the internal work W cw due to local yielding of the web 14 of the column steel frame 12 is given by the following equation (10) as the sum of work due to plastic flow generated on each discontinuous line.
  • Internal work W RC1 by cone breakage occurring tensile side of the flange 23 1 around the concrete cover 16a of the beam 21 is given by (11) below.
  • Internal work W RC2 according Bearing destruction within the concrete 16 occurring in the compression side of the flange 23 2 around the beam 21 is given by the following equation (12).
  • the width of the flange 13 of the column steel frame 12 is B c (mm)
  • the cover thickness of the concrete 16 with respect to the flange 13 of the column steel frame 12 is d (mm) (see FIG. 2)
  • the compressive strength (design criteria) of the concrete 16 Strength) is F c (N / mm 2 )
  • the bearing effect coefficient of concrete 16 is ⁇ ( ⁇ ) (1.5 in this embodiment).
  • the compression strength F c of the concrete 16 can be obtained by the "Test Method of Compressive Strength for concrete" described in JIS A1108.
  • the collapse bending moment M (Nmm) for the joint 31 is given by the following equation (13). That is, the sum of the internal work W cf , the internal work W cw , the internal work W RC1, and the internal work W RC2 is a joint portion with respect to the collapse bending moment M of the joint portion 31 and the bending moment of the end portion of the beam 21.
  • a first equation according to the following equation (13) that is equal to the product of the rotation angle ⁇ of 31 is derived.
  • the total plastic bending moment j M p (Nmm) which is the minimum value of the collapse bending moment M, is obtained by simultaneously solving the following equation (14) and is given by the following equations (15) to (18): It is done.
  • the following equation (14) is an equation representing that values obtained by partial differentiation of the collapse bending moment M with respect to the variables x, y, and z are each equal to zero.
  • the variables x, y, and z are obtained from the following equations (16) to (18).
  • the total plastic bending moment j M p represents the bending moment when the steel material yields in FIG. 9 and corresponds to the total plastic yield strength of the joint portion 31.
  • the variable y is larger than the variable z. This is because the bearing strength of concrete becomes larger than the cone-shaped fracture strength as described above. If compression strength F c of the concrete 16 is zero (if the pillars 11 of the steel frame of the pillar without a reinforcing bar 15 and concrete 16), and the variable y and the variable z is equal.
  • the flange 13 of the column steel frame 12 corresponding to the range of the variable y above the beam 21 indicated by the plastic hinge, the range of the fault of the beam 21, and the range of the variable z below the beam 21, respectively. Only is pulled or compressed.
  • the variable y is larger than the variable z.
  • the range of values obtained by the expression (H b + 2y) with P1 as the center of the range is wider.
  • the flange 13 of the column steel 12 and the web 14 are all connected in a range R6 including the range in which the flange 13 of the column steel 12 is pulled by the beam 21. It joins by the strong junction part 17.
  • the range R7 other than the range R6 in the material length direction of the column steel frame 12, that is, the range R7 that is not joined by the full strong joint 17 is joined by the non-total strong joint 18.
  • the reinforcing bars 15 of the pillars 11 and the concrete 16 are shown in a transparent manner.
  • the range R6 is a range of values obtained by the formula (H b + 2W) with the center P1 of the beam 21 as the center of the range.
  • W is y or more by said (19) Formula.
  • the range in which the web 14 and the flange 13 to which the beam 21 is bonded is fully strong bonded, and the center P ⁇ b> 1 of the beam 21 is set as the range.
  • the value is set in the range obtained by the formula of (H b + 2W) as the center.
  • a range other than the above range a range in which the web 14 and the flange 13 to which the beam 21 is bonded is not fully bonded
  • the beam-column joint structure 1 when viewed along the material length direction, it is obtained by an expression of (H b + 2y) with at least the center P1 of the beam 21 (see FIG. 10) as the center of the range.
  • the total strong joint 17 is formed in the range of values, and the non-total strong joint 18 is formed in a range other than the above range. From the viewpoint of further reducing the manufacturing cost, the total strong joint 17 is within the range of the value obtained by the expression (H b + 2y) with the center P1 (see FIG. 10) of the beam 21 as the center of the range. It is preferable that the non-fully strong joint 18 is formed in a range other than the above range.
  • variable W is a value greater than or equal to the variable y according to the above equation (19).
  • the variable W may be longer than the variable y by, for example, 50 (mm) or more.
  • the value obtained by the expression (H b + 2W) may be, for example, 1.1 to 1.2 times the value obtained by the expression (H b + 2y).
  • outside air may enter the shield used for arc welding. For this reason, since the spark of arc welding is difficult to stabilize and the proof stress of the part which started arc welding is not stabilized, it is preferable to provide a run-up section at the start of arc welding.
  • a groove processing is performed on the end of the web 14 and the like in advance. Furthermore, it is preferable that an ultrasonic flaw detection test or the like is performed on the range R6 to confirm that the infusible portion between the web 14 and the flange 13 is not formed.
  • the column-beam joint structure 1 and the design method of the column-beam joint structure 1 of the present embodiment even if a load acts on the beam 21 from above and below, the center of the fault of the beam 21 is obtained. Only the flange 13 of the column steel frame 12 within the range of the value obtained by the formula of (H b + 2y) as the center of the range is pulled by the beam 21. Therefore, in the material length direction of the column steel 12, at least the flange 13 and the web 14 in the range where the flange 13 of the column steel 12 is pulled are strongly joined, so that the web 14 and the flange 13 are connected to the column steel 12 in this range. No welded part is formed.
  • the web 14 and the flange 13 of the column steel frame 12 in the remaining range are non-fully joined.
  • the manufacturing cost can be reduced. Therefore, the web 14 and the flange 13 of the column steel frame 12 are fully strongly joined in a necessary range, and the range in which the full strength is joined is narrowed, thereby suppressing breakage of the welded portion joining the web 14 and the flange 13. And the increase in the manufacturing cost of the column beam junction structure 1 can be suppressed.
  • the flange 13 and the web 14 are fully joined in a range in which tensile stress acts on the flange 13 of the column steel frame 12, and the flange 13 and the web 14 are in a range where the flange 13 and the web 14 are not fully joined. May be joined by a method other than full strength joining.
  • the range in which the tensile stress acts on the flange 13 of the column steel frame 12 to cause local yielding in the web 14 of the column steel frame 12 is a range R9 shown in FIG. That is, in the wood longitudinal direction of the column steel 12 is in the range of up to the neutral axis C1 from plastic hinge 13 1.
  • the yield strength ⁇ cfy of the flange 13 of the column steel 12 is equal to the yield strength ⁇ cwy of the web 14 of the column steel 12.
  • the ratio of the width B c of the flange 13 of the column steel 12 to the plate thickness t cf of the flange 13 of the column steel 12 is 3.0 or more.
  • the ratio of the thickness t cf of the flange 13 of the pillar steel 12 against the plate thickness t cw web 14 (iii) column steel 12 is 3.33 or less.
  • the influence of the cover concrete is about 10% on the frequently used specifications of the column beam connection structure 1.
  • the following equation (20) is obtained by modifying the above equation (19) using the limitation of (i) and the assumption of (iv). That is, the variable y is the ratio of the width B c of the flange 13 of the column steel 12, the plate thickness t cf of the flange 13 of the column steel 12 to the plate thickness t cw of the web 14 of the column steel 12, and the flange of the column steel 12. It can be seen that this is represented by the ratio of the width B c of the flange 13 of the column steel frame 12 to twice the plate thickness t cf of 13.
  • the range R6 of the all strong joints 17 in the present embodiment is a range of values obtained by the formula (H b + 2W) with the center P1 of the beam 21 being the center of the range.
  • W is not less than y according to the above equation (21).
  • the ratio of the width B c of the flange 13 of the column steel 12 to twice the plate thickness t cf of the flange 13 of the column steel 12 is 2.0 or more, and the column steel frame with respect to the plate thickness t cw of the web 14 of the column steel 12
  • the value of the variable y is 1.0 B c .
  • the ratio of the width B c of the flange 13 of the column steel 12 to twice the plate thickness t cf of the flange 13 of the column steel 12 is set to 5.0 or more, and the column steel 12 has a ratio t cw of the web 14 of the column steel 12 when the ratio of the thickness t cf of the flange 13 is 2.5 or less, the value of the variable y becomes 0.5B c.
  • the range in which the web 14 and the flange 13 of the column steel frame 12 are fully strong-bonded in the specifications such as the frequently used plate thickness It depends only due H b of width B c and beam 21 of the flange 13 of the pillar steel 12. For this reason, it is possible to easily obtain a range in which the web 14 and the flange 13 of the column steel frame 12 are fully joined.
  • FIG. 11 the variable y in this embodiment to verify the accuracy of the evaluation that the 0.75B c may be described in the third embodiment.
  • the range in which the plastic strain corresponding to the variable y is distributed is obtained by finite element analysis.
  • the analysis model used for the finite element analysis is shown in FIGS.
  • the analysis model in FIG. 12 is a 1 ⁇ 4 model representing the column-beam joint structure 1.
  • the first surface S1 and the second surface S2 are symmetric surfaces under analysis conditions.
  • the analysis model of FIG. 12 shows a case where the column 11 of the beam-column joint structure 1 is a steel frame and is a column steel frame 12 having an H-shaped cross section.
  • the conditions for finite element analysis are shown below.
  • the element of the analysis model was an 8-node solid element.
  • the extra height of the weld metal portion of the portion where the end portion of the beam 21 is welded to the column steel frame 12 is set to 1 ⁇ 4 of the plate thickness of the flange 23 of the beam 21. However, when the plate thickness of the flange 23 of the beam 21 is 40 mm or more, the extra height is set to 10 mm.
  • the weld metal part between the web 14 of the column steel frame 12 and the flange 13 has a leg length and an extra height of 10 mm.
  • FIG. 15 shows stress-strain characteristics used for the elements of the column steel frame 12 and the beam 21.
  • the horizontal axis in FIG. 15 represents strain, and the vertical axis represents stress.
  • an alternate long and short dash line L6 is a line representing the average stress-average strain of the tensile test result.
  • a solid line L7 is a line modeling the average stress-average strain of the tensile test result.
  • a dotted line L8 is a line obtained by converting the modeled average stress-average strain into true stress-true strain. In the finite element analysis, the average stress-average strain characteristic indicated by the dotted line L8 was used.
  • FIG. 16 shows the stress-strain characteristics used for the weld metal element.
  • the horizontal axis in FIG. 16 represents strain, and the vertical axis represents stress.
  • an alternate long and short dash line L11 is a line representing the average stress-average strain of the tensile test result.
  • a solid line L12 is a line modeling the average stress-average strain of the tensile test result.
  • a dotted line L13 is a line obtained by converting the modeled average stress-average strain into true stress-true strain. In the finite element analysis, the average stress-average strain characteristic represented by the dotted line L13 was used.
  • Table 1 shows a list of analysis variable ratios of the analysis model.
  • the dimensions of the column steel frame 12 and the beam 21 were set so that each ratio is a combination of the values shown in Table 1 that are frequently used. That is, the ratio value was determined as follows.
  • (A) The ratio of the width B c to the plate thickness t cf in the flange 13 of the column steel frame 12 is 3.0 or more and 8.0 or less.
  • the ratio of H c to the width B c of the flange 13 in the column steel frame 12 is 1.7 or more and 3.5 or less.
  • the ratio of the fault H b of the beam 21 relative to blame H c pillar steel 12, is 0.7 to 1.5.
  • the ratio of the width B b of the flange 23 of the beam 21 to the width B c of the flange 13 of the column steel frame 12 is 0.5 or more and 1.0 or less.
  • the ratio of the plate thickness t bw of the web 24 of the beam 21 to the plate thickness t cw of the web 14 of the column steel frame 12 is 0.5 or more and 1.0 or less.
  • the dimensions were determined as follows.
  • H c due pillar steel 12 was set to a fixed value of 600 mm.
  • the width B c of the flange 13 in the column steel frame 12 was determined by the variable of the ratio of the claw H c to the width B c of the flange 13 in the column steel frame 12.
  • I Depending on the variable of the ratio of the width of the column steel frame 12 to the plate thickness t cw of the web 14 and the ratio of the width B c to the plate thickness t cf of the flange 13 of the column steel frame 12, the plate thickness t cw of the web 14 and The plate thickness tcf of the flange 13 was determined.
  • the plate thickness t bw of the web 24 of the beam 21 is determined by the variable of the ratio of the width B b of the flange 23 of the beam 21 to the width B c of the flange 13 of the column steel frame 12.
  • the plate thickness t bf of the flange 23 of the beam 21 was determined so that the bending strength of the beam 21 was 1.2 times or more the local strength of the joint 31. At this time, when the ratio of the width B b to the plate thickness t bf at the flange 23 of the beam 21 is the FD rank, the plate thickness t of the flange 23 of the beam 21 is set to the boundary value between the FD rank and the FC rank. The bf was thickened.
  • the plate thickness t bf of the flange 23 of the beam 21 is thinner than the plate thickness t bw of the web 24 of the beam 21, the plate thickness t bf of the flange 23 of the beam 21 is set to the plate thickness of the web 24 of the beam 21. equal to t bw .
  • M the ratio of the plate thickness t cf of the flange 13 to the plate thickness t cw of the web 14 in the column steel frame 12 exceeds 3.33, the analysis case is excluded.
  • the excluded analysis cases are cases where the frequency of use is low.
  • analysis case 1 A list of dimensions of the column steel frame 12 and the beam 21 determined by these procedures is shown as analysis case 1 to analysis case 56 in Tables 2 and 3.
  • Tables 2 and 3 the analysis case number in which the ratio of the width of the column steel 12 to the plate thickness t cw of the web 14 is 12.0 is the case where the column steel 12 has a cross-shaped cross section with a flange.
  • the analysis case number in which the ratio of the width of the column steel frame 12 to the thickness t cw of the web 14 is 32.0 is the case where the column steel frame 12 has an H-shaped cross section.
  • FIG. 17 shows an example of the result of obtaining the plastic strain in the case of analysis case 2 (because the Hb of the beam 21 is 900 mm).
  • the horizontal axis in FIG. 17 represents the equivalent plastic strain, and the vertical axis represents the position of the beam 21 relative to the center of the fault. Note that the upper position is positive. Further, in FIG. 17
  • a line L ⁇ b> 16 represented by a square plot indicates a state when the yielding of the joint portion 31 of the column beam joint structure 1 starts.
  • a line L17 represented by a rhombus plot shows a state when the end of the beam 21 is rotated by 0.02 radian (about 1.15 °).
  • the time when the yielding of the joint 31 starts is defined as a state where the tilt is reduced to 1/3 with respect to the initial rotation angle-bending moment of the joint 31.
  • the state in which the end of the beam 21 is rotated 0.02 (radian) means the maximum displacement that occurs in the building when an earthquake occurs.
  • the equivalent plastic strain of the weld toe portion 19a that is, the plastic strain of the web 14 of the column steel frame 12 is distributed around the position of the flange 23 of the beam 21.
  • the plastic strain was distributed to the range X of about 105 mm outside the beam 21.
  • the plastic strain is distributed to the range X of about 150 (mm) on the outer side of the beam 21.
  • FIG. 18 shows the result of obtaining the range X in which the plastic strain is distributed in each analysis case in a state where the end of the beam 21 is rotated 0.02 (radian).
  • the horizontal axis of FIG. 18 represents the width B c of the flange 13 of the pillar steel 12, the vertical axis represents the range X in which the plastic strain is distributed.
  • Range X in which the plastic strain is distributed has been found to be in the range of 1.1 times or less of the width B c in the flange 13 of the column steel 12.
  • the range R6 of the above-described strong joint portion 17 in the present embodiment is a range of values obtained by the formula (H b + 2W) with the center P1 of the beam 21 being the center of the range.
  • W is equal to or greater than 1.1B c. That is, in the analytical model of the beam-column joint structure 1, the weld metal portion 19 in the range of the value obtained by the expression (H b + 2W) with the center P 1 of the beam 21 as the center of the range is defined as the total strong joint 17. The weld metal part 19 other than the full strong joint 17 is defined as a non-full strong joint 18.
  • the column steel frame 12 is a cross-shaped cross section with a flange or an H-shaped cross section, and the specifications such as a thickness that is frequently used are column steel frames.
  • the plastic strain is distributed in the column steel frames 12 in the range below the value obtained by the formula (H b + 2.2B c ) with the center of the range of the beam 21 as the center of the range with respect to the 12 material length directions.
  • the web 14 and the flange 13 of the column steel frame 12 in the remaining range are joined by non-fully strong joining. For this reason, when a load acts on the beam 21, the welded portion that joins the web 14 and the flange 13 in the column steel frame 12 is less likely to break.
  • the range in which the web 14 and the flange 13 are completely strongly joined in the column steel frame 12 is determined only by the width B c of the flange 13 of the column steel frame 12 and H b of the beam 21. Therefore, it is possible to easily obtain a range in which the web 14 of the column steel frame 12 and the flange 13 are fully joined.
  • FIG. 20 shows a result of obtaining the range X in which the plastic strain is distributed in each analysis case in a state where the end portion of the beam 21 is rotated by 0.04 (radian). 0.03 (radian) rotation state, and, 0.04 (radian) in a rotating state, 1.2 times the range X are both width in the flange 13 of the column steel 12 B c which plastic strain is distributed It was found that the following range.
  • Rael considered the end of the beam 21 also increases the angle rotated, the range X in which the plastic strain is distributed is saturated in a range of less than 1.2 times the width B c. In this case, it is possible to withstand a sufficiently large earthquake by fully joining in the range of the value obtained by at least the formula (H b + 2.4B c ) with the center of the H b as the center of the range.
  • FIG. 11 of the second embodiment will be described.
  • the range X in which the plastic strain is distributed was obtained for 56 analysis cases corresponding to the second embodiment.
  • Range plastic strain is distributed X was found to be in the range of 0.75 times the width B c in the flange 13 of the column steel 12. It was found that the plasticization range at the time of yield strength in the finite element analysis results could be evaluated on the safe side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

Provided is a beam-column connection structure that is a non-diaphragm-shaped beam-column connection structure provided with a column of steel-reinforced concrete construction or steel construction and a beam of steel construction that is connected to the column, wherein the column includes a flanged column steel frame with a cross-shaped or H-shaped cross-section that comprises a web, a flange, and a full-strength connection section and a non-full-strength connection section which connect the web and flange together; and the full-strength connection section is formed at least in the area where tensile stress acts on the flange of the column steel frame when a bending moment acts on the beam.

Description

柱梁接合構造Beam-column joint structure
 本発明は、柱梁接合構造に関する。
 本願は、2016年7月11日に日本に出願された特願2016-137010号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a column beam connection structure.
This application claims priority based on Japanese Patent Application No. 2016-137010 for which it applied to Japan on July 11, 2016, and uses the content here.
 従来、鉄骨構造物の建物において柱梁接合構造が採用されている(例えば、特許文献1参照)。
 特許文献1の柱梁接合構造は、ノンダイアフラム形式の鋼管柱、及びこの鋼管柱に直接接続された梁を備えている。鋼管柱は、梁が直接溶接される柱梁仕口部と、梁が接続されない非柱梁仕口部とから構成されている。柱梁仕口部の外径と非柱梁仕口部の外径とは、同径である。柱梁仕口部の肉厚は、非柱梁仕口部の肉厚よりも厚い。
 柱梁接合構造をノンダイアフラム形式とすることで、柱梁接合構造を構成する部品点数が削減される。さらに、部品の加工数が低減されることで、柱梁接合構造の製造コストが抑えられる。
Conventionally, a column beam connection structure is adopted in a building of a steel structure (for example, refer to Patent Document 1).
The column beam connection structure of Patent Document 1 includes a non-diaphragm type steel pipe column and a beam directly connected to the steel pipe column. The steel pipe column is composed of a column beam joint where the beam is directly welded and a non-column beam joint where the beam is not connected. The outer diameter of the column beam joint and the outer diameter of the non-column beam joint are the same. The wall thickness of the column beam joint is greater than the wall thickness of the non-column beam joint.
By making the beam-column joint structure a non-diaphragm type, the number of parts constituting the beam-column joint structure is reduced. Furthermore, the manufacturing cost of the column beam connection structure can be reduced by reducing the number of parts processed.
日本国特開2010-229660号公報Japanese Unexamined Patent Publication No. 2010-229660
 ここで、特許文献1の鋼管柱に代えて、H形断面またはフランジ付き十字形断面等の柱鉄骨が用いられる場合がある。そして、例えば、柱鉄骨のフランジの板厚等が規格外の場合、柱鉄骨を、圧延ではなく、ウェブとフランジとを溶接して製造する。この場合、柱鉄骨のフランジに梁が溶接により接合される。 Here, instead of the steel pipe column of Patent Document 1, a column steel frame having an H-shaped cross section or a cross-shaped cross section with a flange may be used. For example, when the thickness of the flange of the column steel frame is out of specification, the column steel frame is manufactured by welding the web and the flange instead of rolling. In this case, the beam is joined to the flange of the column steel frame by welding.
 梁に荷重が作用すると、柱梁接合構造に曲げモーメントが作用する。この曲げモーメントにより、柱鉄骨のフランジに、引っ張られる部分及び圧縮される部分が生じる。この際、柱鉄骨のウェブとフランジとが部分溶け込み溶接又は隅肉溶接で接合されていると、接合部にウェブとフランジとが接合されていない切欠き状の不溶着部が存在するため、梁に作用する荷重により、この不溶着部を起点として接合部の破断が生じる虞がある。 When a load is applied to the beam, a bending moment is applied to the beam-column joint structure. Due to this bending moment, a portion to be pulled and a portion to be compressed are generated in the flange of the column steel frame. At this time, if the web of the column steel frame and the flange are joined by partial penetration welding or fillet weld, there is a notched welded part where the web and flange are not joined at the joint, Due to the load acting on the joint portion, there is a possibility that the joint portion may be broken starting from the non-welded portion.
 ウェブとフランジとの接合部に不溶着部が形成されないようにするために、ウェブとフランジとを全て完全溶け込み溶接により接合し、ウェブとフランジとを全強接合することが行われている。この全強接合により、接合部に亀裂が生じにくくなる。
 しかしながら、完全溶け込み溶接によりウェブとフランジとを接合する場合、部分溶け込み溶接又は隅肉溶接によりウェブとフランジとを接合する場合に比べて製造コストが増加する。完全溶け込み溶接では、フランジにウェブを突き合せ溶接する部分に開先加工が必要になるとともに、開先加工により生じた空間を溶接で埋め戻しするために、溶接金属がより多く必要になるからである。また、完全溶け込み溶接では、溶接後に超音波探傷試験等を行い、不溶着部が形成されていないことを確認する必要があるからである。
 このような、完全溶け込み溶接による製造コストの増加は、ノンダイアフラム形式とすることによる製造コストの低減を相殺してしまい、ノンダイアフラム形式とすることの利点を損なう虞がある。
In order to prevent the welded portion from being formed at the joint between the web and the flange, the web and the flange are all joined by full penetration welding, and the web and the flange are fully joined. This full strength bonding makes it difficult for cracks to occur at the joint.
However, when the web and the flange are joined by full penetration welding, the manufacturing cost increases compared to the case where the web and the flange are joined by partial penetration welding or fillet welding. Full penetration welding requires a groove in the part where the web is butt-welded to the flange, and more weld metal is needed to fill the space created by the groove with welding. is there. Moreover, in complete penetration welding, it is necessary to perform an ultrasonic flaw detection test or the like after welding to confirm that no welded portion is formed.
Such an increase in manufacturing cost due to complete penetration welding offsets a reduction in manufacturing cost due to the non-diaphragm type, which may impair the advantages of the non-diaphragm type.
 本発明は、上記事情に鑑みてなされたものであり、梁に荷重が作用した際の、柱鉄骨のウェブとフランジとの接合部の破断を抑制しつつ、製造コストの増加を抑制することが可能な柱梁接合構造の提供を目的とする。 The present invention has been made in view of the above circumstances, and suppresses an increase in manufacturing cost while suppressing breakage of a joint portion between a column steel web and a flange when a load is applied to a beam. The purpose is to provide a possible beam-to-column structure.
 本発明は、上記課題を解決するために、以下を採用する。
 (1)本発明の一態様に係る柱梁接合構造は、鉄骨鉄筋コンクリート造又は鉄骨造の柱と、前記柱に接合された鉄骨造の梁とを備えるノンダイアフラム形式の柱梁接合構造であって、前記柱は、ウェブと、フランジと、これらウェブ及びフランジを互いに接合する全強接合部および非全強接合部とを有する、フランジ付き十字形断面又はH形断面の柱鉄骨を有し、少なくとも、前記梁に曲げモーメントが作用した際に前記柱鉄骨の前記フランジに引張応力が作用する範囲において、前記全強接合部が形成されている。
The present invention employs the following in order to solve the above problems.
(1) A column beam connection structure according to an aspect of the present invention is a non-diaphragm column beam connection structure including a steel reinforced concrete structure or a steel structure column and a steel beam bonded to the column. The pillar has a flanged cruciform cross-section or H-section pillar steel having a web, a flange, and a full strong joint and a non-full strong joint joining the web and the flange together, In the range where a tensile stress acts on the flange of the column steel when a bending moment acts on the beam, the all strong joints are formed.
 (2)上記(1)の態様において、前記全強接合部は、前記梁のせいの中心を範囲の中心とした、下記の式を用いて得られるH+2yの値以上の範囲において形成されていてもよい。ただし、B:前記柱鉄骨の前記フランジの幅(mm)、tcf:前記柱鉄骨の前記フランジの板厚(mm)、tcw:前記柱鉄骨の前記ウェブの板厚(mm)、σcfy:前記柱鉄骨の前記フランジの降伏強さ(N/mm)、σcwy:前記柱鉄骨の前記ウェブの降伏強さ(N/mm)、H:前記梁のせい(mm)、F:前記柱のコンクリートの圧縮強度(N/mm)、d:前記柱鉄骨の前記フランジに対するコンクリートのかぶり厚さ(mm)とし、前記柱が鉄骨造の場合、Fおよびdはゼロとする。 (2) In the aspect of the above (1), the all strong joints are formed in a range not less than the value of H b + 2y obtained by using the following formula, with the center of the range of the beam being the center of the range. It may be. However, B c: width of the flange of said post steel (mm), t cf: thickness of the flange of said post steel (mm), t cw: said web having a thickness of said post steel (mm), sigma cfy : yield strength (N / mm 2 ) of the flange of the column steel, σ cwy : yield strength (N / mm 2 ) of the web of the column steel, H b : blame of the beam (mm), F c : compressive strength (N / mm 2 ) of the concrete of the column, d: cover thickness (mm) of the concrete with respect to the flange of the column steel, and when the column is a steel structure, F c and d are zero And
Figure JPOXMLDOC01-appb-M000002
                  
Figure JPOXMLDOC01-appb-M000002
                  
 上記(1)に記載の態様によれば、柱鉄骨のフランジに引張応力が作用する範囲に柱鉄骨のフランジとウェブとを接合する全強接合部が形成されるため、フランジとウェブの不溶着部がこの範囲に形成されない。柱鉄骨において、フランジに引張応力が作用する範囲は、不溶着部を起点としてフランジとウェブとの接合部の破断が生じやすいが、この範囲に不溶着部が形成されないため、梁に荷重が作用したときに接合部の破断が生じにくくなる。また、全強接合部が形成された範囲以外の範囲には、非全強接合部が形成される。したがって、柱鉄骨におけるフランジとウェブとの接合部の破断を抑制しつつ、製造コストの増加を抑制することができる。 According to the aspect described in (1) above, since the full strength joint portion for joining the flange of the column steel frame and the web is formed in a range where the tensile stress acts on the flange of the column steel frame, the flange and the web are not welded. The part is not formed in this range. In column steel frames, the range in which tensile stress acts on the flange tends to cause the fracture of the joint between the flange and the web starting from the non-welded part.However, since the non-welded part is not formed in this range, the load acts on the beam. When it does, it becomes difficult to produce the fracture | rupture of a junction part. Moreover, a non-total strong junction part is formed in ranges other than the range in which the total strong junction part was formed. Therefore, an increase in manufacturing cost can be suppressed while suppressing breakage of the joint between the flange and the web in the column steel frame.
 上記(2)に記載の態様によれば、梁に対して上方及び下方から作用した荷重により引っ張られる範囲(梁のせいの中心を範囲の中心としたH+2yの値の範囲)に全強接合部が形成される。また、全強接合部が形成された範囲以外の範囲には、非全強接合部が形成される。そのため、梁に対して上方及び下方から荷重が作用しても、柱鉄骨におけるフランジとウェブとの接合部の破断を抑制することができるとともに、製造コストの増加を抑制することができる。 According to the aspect described in (2) above, the strength is fully increased in a range pulled by a load acting on the beam from above and below (the range of the value of H b + 2y with the center of the beam being the center of the range). A joint is formed. Moreover, a non-total strong junction part is formed in ranges other than the range in which the total strong junction part was formed. Therefore, even if a load acts on the beam from above and below, it is possible to suppress breakage of the joint between the flange and the web in the column steel frame, and it is possible to suppress an increase in manufacturing cost.
本発明の第1実施形態に係る柱梁接合構造を示す斜視図であって、その一部を透過させた図である。It is a perspective view which shows the beam-column joining structure which concerns on 1st Embodiment of this invention, Comprising: It is the figure which permeate | transmitted the part. 上記柱梁接合構造の柱を示す断面図である。It is sectional drawing which shows the column of the said beam-column joining structure. 上記柱の柱鉄骨における非全強接合部を示す部分断面図である。It is a fragmentary sectional view which shows the non-total strong junction part in the column steel frame of the said column. 上記柱の柱鉄骨における他の非全強接合部を示す部分断面図である。It is a fragmentary sectional view which shows the other non-fully strong joint part in the column steel frame of the said column. 上記柱梁接合構造を示す断面図であって、全塑性耐力時の崩壊機構を説明するための図である。It is sectional drawing which shows the said beam-column joining structure, Comprising: It is a figure for demonstrating the collapse mechanism at the time of a total plastic yield strength. 図5のA1-A1線より見た側面図あって、かぶりコンクリートのコーン状破壊を説明するための図である。FIG. 6 is a side view seen from the line A1-A1 in FIG. 5 for explaining the cone-like fracture of the cover concrete. 図5のA1-A1線より見た側面図であって、コンクリートの支圧破壊を説明するための図である。FIG. 6 is a side view seen from the line A1-A1 of FIG. 5 for explaining the bearing failure of concrete. 鋼材における実際の応力-ひずみ特性を説明するための図である。It is a figure for demonstrating the actual stress-strain characteristic in steel materials. モデル化した、鋼材の応力-ひずみ特性を説明するための図である。It is a figure for demonstrating the stress-strain characteristic of steel materials modeled. 上記柱鉄骨の側面図であって、全強接合部及び非全強接合部が形成される範囲を示す図である。It is a side view of the said column steel frame, Comprising: It is a figure which shows the range in which a total strong junction part and a non-total strong junction part are formed. 本発明の第2実施形態において、変数yを予測した精度を検証するための図である。It is a figure for verifying the accuracy which predicted variable y in a 2nd embodiment of the present invention. 本発明の第3実施形態において、柱梁接合構造の解析に用いた解析モデルを示す斜視図である。In 3rd Embodiment of this invention, it is a perspective view which shows the analysis model used for the analysis of a column beam connection structure. 上記解析モデルの要部を示す斜視図である。It is a perspective view which shows the principal part of the said analysis model. 図13のA方向より見た図である。It is the figure seen from the A direction of FIG. 上記柱梁接合構造の有限要素解析において柱鉄骨及び梁の要素に用いた応力-ひずみ特性を示す図である。It is a figure which shows the stress-strain characteristic used for the element of a column steel frame and a beam in the finite element analysis of the said column beam connection structure. 上記柱梁接合構造の有限要素解析において溶接金属部の要素に用いた応力-ひずみ特性を示す図である。It is a figure which shows the stress-strain characteristic used for the element of the weld metal part in the finite element analysis of the said column beam connection structure. 上記柱梁接合構造の有限要素解析の結果から塑性ひずみを求めた結果の一例を示す図である。It is a figure which shows an example of the result of having calculated | required the plastic strain from the result of the finite element analysis of the said beam-column joining structure. 梁の端部が0.02(radian)回転した状態における、梁のフランジ幅と塑性ひずみが分布している範囲との関係を示す図である。It is a figure which shows the relationship between the flange width of a beam and the range where the plastic strain is distributed in the state which the edge part of the beam rotated 0.02 (radian). 梁の端部が0.03(radian)回転した状態における、梁のフランジ幅と塑性ひずみが分布している範囲との関係を示す図である。It is a figure which shows the relationship between the flange width of a beam and the range where the plastic strain is distributed in the state which the edge part of the beam rotated 0.03 (radian). 梁の端部が0.04(radian)回転した状態における、梁のフランジ幅と塑性ひずみが分布している範囲との関係を示す図である。It is a figure which shows the relationship between the flange width of a beam and the range where the plastic strain is distributed in the state which the edge part of the beam rotated 0.04 (radian).
 以下、本発明の各実施形態について図面を参照しながら詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
(第1実施形態)
 図1は、本発明の第1実施形態に係る柱梁接合構造1を示す斜視図である。なお、図1では、発明の理解を容易にするため、柱梁接合構造1の一部を透過させて表示している。図1に示すように、柱梁接合構造1は、鉄骨鉄筋コンクリート(SRC)造の柱11と、鉄骨造の梁21と、柱11と梁21とを接合する接合部31と、を備えている。そして、柱梁接合構造1は、柱11への梁21の接合に際してダイアフラム(スチフナ)を用いない形式、すなわちノンダイアフラム形式である。
(First embodiment)
FIG. 1 is a perspective view showing a beam-column joint structure 1 according to a first embodiment of the present invention. In FIG. 1, in order to facilitate understanding of the invention, a part of the beam-column joint structure 1 is shown in a transparent manner. As shown in FIG. 1, the column-beam joint structure 1 includes a steel reinforced concrete (SRC) column 11, a steel beam 21, and a joint 31 that joins the column 11 and the beam 21. . The column beam connection structure 1 is of a type that does not use a diaphragm (stiffener) when the beam 21 is bonded to the column 11, that is, a non-diaphragm type.
 柱11は、上記のように鉄骨鉄筋コンクリート造であり、ウェブ14及びフランジ13を有する柱鉄骨12と、柱鉄骨12を囲う複数本の鉄筋15と、コンクリート16とを有している。柱鉄骨12、及び複数本の鉄筋15は、コンクリート16の内部に埋設されている。なお、柱11は、鉄骨鉄筋コンクリート造に限られず、例えば、鉄筋15及びコンクリート16を備えない鉄骨造の柱であってもよい。 The column 11 is made of steel reinforced concrete as described above, and has a column steel frame 12 having a web 14 and a flange 13, a plurality of reinforcing bars 15 surrounding the column steel frame 12, and concrete 16. The column steel frame 12 and the plurality of reinforcing bars 15 are embedded in the concrete 16. Note that the pillar 11 is not limited to a steel-framed reinforced concrete structure, and may be a steel-framed pillar that does not include the reinforcing bars 15 and the concrete 16, for example.
 図2は、柱梁接合構造1の柱鉄骨12を示す図であって、材長方向(長手方向)に垂直で且つ全強接合部17を通る断面で見た場合の断面図である。また、図3は、柱梁接合構造1の柱鉄骨12を示す図であって、材長方向に垂直で且つ非全強接合部18Aを通る断面で見た場合の部分断面図である。また、図4は、柱梁接合構造1の柱鉄骨12を示す図であって、材長方向に垂直で且つ非全強接合部18Bを通る断面で見た場合の部分断面図である。 FIG. 2 is a view showing the column steel frame 12 of the beam-to-column connection structure 1, and is a cross-sectional view when viewed in a cross section that is perpendicular to the material length direction (longitudinal direction) and passes through the full strength joint portion 17. FIG. 3 is a diagram showing the column steel frame 12 of the beam-column joint structure 1 and is a partial cross-sectional view when viewed in a cross section perpendicular to the material length direction and passing through the non-total strong joint 18A. FIG. 4 is a view showing the column steel frame 12 of the beam-column joint structure 1 and is a partial cross-sectional view when seen in a cross section perpendicular to the material length direction and passing through the non-total strong joint 18B.
 図1~図4に示すように、フランジ付き十字形断面の柱鉄骨12は、ウェブ14の端部(ウェブ14の幅方向における端部)とフランジ13とを互いに溶接して接合することにより得られる。ウェブ14の端部とフランジ13とは、図2に示す完全溶け込み溶接により形成された全強接合部17(全強接合されている部分)と、図3に示す部分溶け込み溶接により形成された非全強接合部18A(全強接合以外の方法で接合されている部分)と、図4に示す隅肉溶接により形成された非全強接合部18B(全強接合以外の方法で接合されている部分)とで接合されている。
 なお、ウェブ14の端部とフランジ13とが、全強接合部17と非全強接合部18Aとで接合されていてもよいし、全強接合部17と非全強接合部18Bとで接合されていてもよい。すなわち、ウェブ14の端部とフランジ13とが、全強接合部17と、非全強接合部18Aおよび非全強接合部18Bのうちいずれか一方とで接合されていてもよい。
As shown in FIGS. 1 to 4, a flanged cross-shaped column steel frame 12 is obtained by welding and joining the end of the web 14 (the end in the width direction of the web 14) and the flange 13 together. It is done. The end portion of the web 14 and the flange 13 are formed by a fully-strong welded portion 17 (a portion that is fully-strengthened) shown in FIG. 2 and a non-filled portion shown in FIG. Total strong joint 18A (part joined by a method other than full strong joint) and non-full strong joint 18B formed by fillet welding shown in FIG. 4 (joined by a method other than full strong joint) Part).
In addition, the edge part of the web 14 and the flange 13 may be joined by the full strong joint part 17 and the non-full strong joint part 18A, or joined by the full strong joint part 17 and the non-full strong joint part 18B. May be. That is, the end portion of the web 14 and the flange 13 may be joined by the all strong joint portion 17 and any one of the non-fully strong joint portion 18A and the non-fully strong joint portion 18B.
 ここで、「完全溶け込み溶接」とは、溶接継手部に開先を設けて母材(本発明では柱鉄骨のウェブ)の全断面を完全に溶接し、溶接のど厚が母材の厚さ(板厚)以上となる全強接合部(母材の耐力を下回らない耐力の接合部)を形成することを意味する。また、「部分溶け込み溶接」とは、溶接継手部に部分的に開先を設け、母材断面の一部を溶接する溶接方法であり、異形隅肉溶接が一例として挙げられる。また、「隅肉溶接」とは、開先を設けずに設置した互いに直交する柱鉄骨のウェブ及びフランジの隅部に、三角形状の断面を有する溶接金属を置くものである。 Here, “complete penetration welding” means that a weld is provided in the weld joint and the entire cross section of the base material (in the present invention, the column steel web) is completely welded, and the weld throat thickness is the thickness of the base material ( It means that all the strong joints (sheet thickness) or more (joints with a proof strength not lower than the proof stress of the base material) are formed. Further, “partial penetration welding” is a welding method in which a groove is partially provided in the weld joint and a part of a cross section of the base metal is welded, and an irregular fillet weld is given as an example. Further, the “fillet welding” is a method in which a weld metal having a triangular cross section is placed at the corners of the webs and flanges of pillar steel frames that are installed without providing a groove.
 部分溶け込み溶接及び隅肉溶接は、溶接継手の断面内に溶接不溶着部が存在することを許容する溶接方法である。また、日本建築学会編、「日本建築学会建築工事標準仕様書・同解説 JASS6 鉄骨工事」には、完全溶け込み溶接により形成された全強接合部には、内部欠陥がないことを超音波探傷試験等によって確認しなければならないことが記載されている。そのため、溶接仕様として突き合わせる母材との全断面が完全に溶接される場合でも、溶接後に超音波探傷試験等によって内部欠陥が無いことを確認することが望ましい。 Partial penetration welding and fillet welding are welding methods that allow a weld non-welded portion to exist in the cross section of the weld joint. In addition, in the Architectural Institute of Japan edition, “Architectural Institute of Japan Standard Specification for Architectural Construction, JAS6 Steel Construction”, an ultrasonic flaw detection test is conducted to confirm that all strong joints formed by full penetration welding have no internal defects. It is described that it must be confirmed by, for example. Therefore, even when the entire cross section with the base material to be matched as a welding specification is completely welded, it is desirable to confirm that there is no internal defect by an ultrasonic flaw detection test or the like after welding.
 すなわち、柱鉄骨12のフランジ13とウェブ14とが全強接合されている部分は、柱鉄骨12のフランジ13とウェブ14とが完全溶け込み溶接により接合されている全強接合部17である。一方で、柱鉄骨12のフランジ13とウェブ14とが全強接合以外の方法で接合されている部分は、柱鉄骨12のフランジ13とウェブ14とが部分溶け込み溶接(非全強接合)により接合されている非全強接合部18A、又は柱鉄骨12のフランジ13とウェブ14とが隅肉溶接(非全強接合)により接合されている非全強接合部18Bである。 That is, the portion where the flange 13 of the column steel frame 12 and the web 14 are fully strong-bonded is the full-strength joint portion 17 where the flange 13 of the column steel frame 12 and the web 14 are joined by complete penetration welding. On the other hand, the flange 13 of the column steel frame 12 and the web 14 are joined by a method other than full strength joining, and the flange 13 of the column steel frame 12 and the web 14 are joined by partial penetration welding (non-total strength joining). The non-fully strong joint 18A or the flange 13 of the column steel frame 12 and the web 14 are joined together by fillet welding (non-fully strong joint).
 図3に示す部分溶け込み溶接により形成された非全強接合部18Aは、例えばSAW(サブマージアーク溶接:Submerged Arc Welding)によりウェブ14の端部に形成されてかつ、ウェブ14及びフランジ13を互いに接合する溶接金属部18a及び18bから構成されている。これら溶接金属部18a及び18bは、ウェブ14をその厚さ方向(板厚方向)に挟むように形成されている。なお、上記のように非全強接合部18Aは部分溶け込み溶接により形成されているため、溶接金属部18aと溶接金属部18bとの間には、切欠き状の不溶着部18cが形成されている。 3 is formed at the end of the web 14 by, for example, SAW (Submerged Arc Welding), and the web 14 and the flange 13 are joined to each other. It consists of weld metal parts 18a and 18b. These weld metal portions 18a and 18b are formed so as to sandwich the web 14 in the thickness direction (plate thickness direction). In addition, since the non-fully strong joint 18A is formed by partial penetration welding as described above, a notch-shaped non-welded portion 18c is formed between the weld metal portion 18a and the weld metal portion 18b. Yes.
 図4に示す隅肉溶接により形成された非全強接合部18Bは、非全強接合部18Aと同様に、ウェブ14の端部に形成されてかつ、ウェブ14及びフランジ13を互いに接合する溶接金属部18d及び18eから構成されている。そして、上記のように非全強接合部18Bは隅肉溶接により形成されているため、溶接金属部18dと溶接金属部18eとの間には、切欠き状の不溶着部18fが形成されている。
 なお、本明細書において、非全強接合部18A及び非全強接合部18Bを区別しないで呼ぶときには、非全強接合部18と総称する。
The non-fully strong joint 18B formed by fillet welding shown in FIG. 4 is formed at the end of the web 14 and welds the web 14 and the flange 13 together, as with the non-fully strong joint 18A. It consists of metal parts 18d and 18e. Since the non-fully strong joint 18B is formed by fillet welding as described above, a notch-like welded portion 18f is formed between the weld metal portion 18d and the weld metal portion 18e. Yes.
In the present specification, when the non-total strong joint portion 18A and the non-total strong joint portion 18B are referred to without being distinguished, they are collectively referred to as the non-total strong joint portion 18.
 一方、完全溶け込み溶接により形成された全強接合部17は、一対の溶接金属部が、これらの間に不溶着部が形成されることなく一体化している(図2参照)。 On the other hand, in the all strong joint portion 17 formed by complete penetration welding, a pair of weld metal portions are integrated without forming a non-welded portion therebetween (see FIG. 2).
 柱梁接合構造1の柱鉄骨12では、ウェブ14と、梁21が接合されたフランジ13とは、柱鉄骨12の材長方向(長手方向)における所定の範囲で全強接合されるとともに、上記所定の範囲以外の範囲で全強接合以外の方法により接合されている。換言すれば、柱梁接合構造1の柱鉄骨12では、上記所定の範囲にフランジ13とウェブ14とを接合する全強接合部17が形成され、上記所定の範囲以外の範囲にフランジ13とウェブ14とを接合する非全強接合部18が形成されている(図10参照)。すなわち、柱鉄骨12では、その材長方向(長手方向)に沿って見た場合に、フランジ13とウェブ14とを接合する全強接合部17及び非全強接合部18が形成されており、これら全強接合部17及び非全強接合部18間には隙間が生じていない(全強接合部17及び非全強接合部18は連続している)。
 なお、上記所定の範囲の詳細については、後述する。また、柱鉄骨12は、上述したフランジ付き十字形断面に限られず、ウェブ14の端部とフランジ13とが互いに溶接されたH形断面としてもよい。
In the column steel frame 12 of the column beam connection structure 1, the web 14 and the flange 13 to which the beam 21 is bonded are all strongly bonded within a predetermined range in the material length direction (longitudinal direction) of the column steel frame 12. Bonding is performed by a method other than full strength bonding in a range other than the predetermined range. In other words, in the column steel frame 12 of the beam-column joint structure 1, the entire strong joint 17 that joins the flange 13 and the web 14 is formed in the predetermined range, and the flange 13 and the web are in a range other than the predetermined range. 14 is formed (see FIG. 10). That is, in the column steel frame 12, when viewed along the material length direction (longitudinal direction), the full strong joint 17 and the non-full strong joint 18 that join the flange 13 and the web 14 are formed. There is no gap between the total strong joint 17 and the non-total strong joint 18 (the total strong joint 17 and the non-total strong joint 18 are continuous).
Details of the predetermined range will be described later. The column steel frame 12 is not limited to the above-mentioned cross-shaped cross section with a flange, and may have an H-shaped cross section in which the end of the web 14 and the flange 13 are welded to each other.
 複数本の鉄筋15は、図2に示す柱鉄骨12の材長方向から見た場合、矩形の基準線上に配置されている。
 コンクリート16は、材長方向に垂直な断面が正方形又は長方形である。
The plurality of reinforcing bars 15 are arranged on a rectangular reference line when viewed from the length direction of the column steel frame 12 shown in FIG.
The concrete 16 has a square or rectangular cross section perpendicular to the material length direction.
 図1に示すように、梁21は、H形鋼製であり、ウェブ24と、このウェブ24の両端部に接合された一対のフランジ23とを有している。梁21は、柱鉄骨12のフランジ13の外面に接合されてかつ、フランジ13に対して垂直に延びている。なお、梁21は鉄骨であり、例えば鋼板で構成されている。 As shown in FIG. 1, the beam 21 is made of H-shaped steel, and includes a web 24 and a pair of flanges 23 joined to both ends of the web 24. The beam 21 is joined to the outer surface of the flange 13 of the column steel frame 12 and extends perpendicular to the flange 13. Note that the beam 21 is a steel frame, and is made of, for example, a steel plate.
 梁21のフランジ23は、接合部31において柱鉄骨12のフランジ13に溶接により接合されている。梁21のウェブ24は、柱鉄骨12のフランジ13に溶接又はシヤープレートを介した高力ボルト摩擦接合により接合されている。柱鉄骨12のフランジ13と梁21とが接合された接合部31(溶接部、及び、溶接部近傍の柱鉄骨12及び梁21を含む)は、コンクリート16により囲われている。すなわち、柱鉄骨12のコンクリート16に、梁21の一部が埋設されている。 The flange 23 of the beam 21 is joined to the flange 13 of the column steel frame 12 by welding at the joint 31. The web 24 of the beam 21 is joined to the flange 13 of the column steel frame 12 by welding or high strength bolt friction joining via a shear plate. A joint portion 31 (including the welded portion and the column steel frame 12 and the beam 21 in the vicinity of the welded portion) where the flange 13 and the beam 21 of the columnar steel frame 12 are joined is surrounded by the concrete 16. That is, a part of the beam 21 is embedded in the concrete 16 of the column steel frame 12.
 なお、本明細書では、柱鉄骨12のウェブ14とフランジ13との接合について、溶接接合することを前提としたが、溶接接合に限られず、例えば、接着接合、圧接接合、またはアモルファス接合などを用いてもよい。すなわち、ウェブ14とフランジ13とを接合する全強接合部17が、接着接合、圧接接合、またはアモルファス接合などにより形成されていてもよい。同様に、ウェブ14とフランジ13とを接合する非全強接合部18が、接着接合、圧接接合、またはアモルファス接合などにより形成されていてもよい。 In the present specification, it is assumed that the web 14 of the column steel frame 12 and the flange 13 are joined by welding. However, the present invention is not limited to welding joining, for example, adhesive joining, pressure welding, or amorphous joining. It may be used. That is, the total strong joint 17 that joins the web 14 and the flange 13 may be formed by adhesive bonding, pressure welding, amorphous bonding, or the like. Similarly, the non-fully strong joint 18 that joins the web 14 and the flange 13 may be formed by adhesive bonding, pressure welding, amorphous bonding, or the like.
[1.本発明で提案する崩壊機構]
 次に、柱梁接合構造1の崩壊機構について説明する。本発明では、図5から図7に示す機構を仮定している。図5から図7は、梁21の上方から荷重が作用し(梁21の一対のフランジ23のうち、上側に位置するフランジ23に上方から荷重が作用し)、この荷重によって柱梁接合構造1に生じた曲げモーメントにより柱梁接合構造1が変形した後の状態を示している。なお、図5は、梁21のフランジ23に垂直な断面で見た場合の部分断面図であって、全塑性耐力時の崩壊機構を説明するための図である。また、図6は、図5のA1-A1より見た側面図であって、かぶりコンクリートのコーン状破壊を説明するための図である。また、図7は、図5のA1-A1線より見た側面図であって、コンクリートの支圧破壊を説明するための図である。
[1. Collapse mechanism proposed in the present invention]
Next, the collapse mechanism of the column beam connection structure 1 will be described. In the present invention, the mechanism shown in FIGS. 5 to 7 is assumed. In FIGS. 5 to 7, a load is applied from above the beam 21 (a load is applied to the upper flange 23 of the pair of flanges 23 of the beam 21). The state after the beam-column joint structure 1 is deformed by the bending moment generated in FIG. FIG. 5 is a partial cross-sectional view when seen in a cross-section perpendicular to the flange 23 of the beam 21 and is a view for explaining a collapse mechanism at the time of full plastic yield strength. FIG. 6 is a side view as seen from A1-A1 in FIG. 5, for explaining the cone-shaped fracture of the cover concrete. FIG. 7 is a side view seen from the line A1-A1 of FIG. 5 and is a view for explaining the bearing pressure failure of concrete.
 図5に示すように、柱鉄骨12のフランジ13の上方に塑性ヒンジ13及び13、下方に塑性ヒンジ13及び13が形成されるとする。すなわち、梁21が接合されたフランジ13における梁21の一対のフランジ23が接続された部分に、一対の塑性ヒンジ13、13、13、13がそれぞれ形成されるとする。後述する塑性回転角度θ及びθが0(radian)の状態から、図5から図7に示す塑性回転角度θ及びθが正の状態まで変形したとする。
 梁21の引張側のフランジ23(この例では、梁21の一対のフランジ23のうち、上側に位置するフランジ23:以下、上側フランジ23とも称する)が柱鉄骨12のフランジ13を面外に引き抜く力に対しては、鉄骨である柱鉄骨12は、フランジ13の面外変形とウェブ14の局部降伏を生じる。これにより、柱鉄骨12のウェブ14に局部降伏14aが形成される。また、柱鉄骨12のフランジ13には、塑性ヒンジ13が形成される。
 柱鉄骨12のフランジ13が面外に変形することよって、フランジ13の外側のかぶりコンクリート16aがコーン状破壊する。かぶりコンクリート16aの側面16a1を、図6中にハッチングを付して示している。
As shown in FIG. 5, the plastic hinges 13 1 and 13 3 above the flange 13 of the pillar steel 12, the plastic hinge 13 2 and 13 4 are formed downward. That is, the pair of flanges 23 of the beam 21 in the flange 13 of the beam 21 is joined to the connection portions, a pair of plastic hinge 13 1, 13 3, 13 2, 13 4 are respectively formed. From the state described later plastically rotation angle theta 1 and theta 2 is 0 (radian), the plastic rotational angle theta 1 and theta 2 shown in FIGS. 5-7 is deformed to a positive state.
The flange 23 on the tension side of the beam 21 (in this example, the flange 23 1 located on the upper side of the pair of flanges 23 of the beam 21, hereinafter also referred to as the upper flange 23 1 ) is out of plane with the flange 13 of the column steel frame 12. For the pulling force, the column steel 12 which is a steel frame causes out-of-plane deformation of the flange 13 and local yielding of the web 14. As a result, a local yield 14 a is formed on the web 14 of the column steel frame 12. Further, the flange 13 of the column steel 12, plastic hinge 13 1 is formed.
When the flange 13 of the column steel frame 12 is deformed out of plane, the cover concrete 16a outside the flange 13 is broken in a cone shape. A side surface 16a1 of the cover concrete 16a is shown with hatching in FIG.
 図5に示すように、梁21の圧縮側のフランジ23(この例では、梁21の一対のフランジ23のうち、下側に位置するフランジ23:以下、下側フランジ23とも称する)が柱鉄骨12のフランジ13を面外に押し込む力に対しては、フランジ13が内側に面外変形してウェブ14の局部降伏が生じ、フランジ13の内側のコンクリート16が支圧破壊すると仮定している。すなわち、コンクリート16に、支圧破壊部16bが形成される。支圧破壊部16bを、図7中にハッチングを付して示している。また、柱鉄骨12のフランジ13には、塑性ヒンジ13が形成される。
 一般にコンクリートの支圧耐力はコーン状破壊耐力よりも大きくなるので、接合部31の断面内の釣合条件を満たす中立軸C1は、梁せいH(梁のせい(成))(mm)の上下方向の中心よりも圧縮側のフランジ23側に位置する。
As shown in FIG. 5, a flange 23 on the compression side of the beam 21 (in this example, of the pair of flanges 23 of the beam 21, a flange 23 2 positioned on the lower side: hereinafter also referred to as a lower flange 23 2 ). Assuming that the flange 13 of the column steel frame 12 is pushed out of the plane, the flange 13 is deformed out of the plane to cause local yielding of the web 14, and the concrete 16 inside the flange 13 is subjected to bearing failure. Yes. In other words, the bearing fracture portion 16 b is formed in the concrete 16. The bearing fracture portion 16b is shown with hatching in FIG. Further, the flange 13 of the column steel 12, plastic hinge 13 2 is formed.
In general, the bearing strength of concrete is larger than the cone-shaped fracture strength. Therefore, the neutral axis C1 that satisfies the balance condition in the cross section of the joint portion 31 is made of the beam stake H b (beam stake (composition)) (mm). than the vertical center located in the flange 23 2 side of the compression side.
 本崩壊機構は、梁21の端部の曲げモーメントに対して接合部31が角度θ(radian)回転した状態を仮定している。ただし、角度θは微小な角度であり、tanθ=θ等と近似することができる。
 本崩壊機構で用いる変数は、図中に示すx、y、及び、z(mm)である。変数xは、梁21の端部の曲げモーメントに対する中立軸C1の位置を決定する係数であり、0以上1以下の任意の値を取り得る。具体的には、変数xは、梁21の端部に曲げモーメントが作用したときの、梁21の引張側のフランジ23の外表面から中立軸C1までの距離の梁せいHに対する比である。また、変数yは、梁21の上側フランジ23の上方に位置する塑性ヒンジ13及び塑性ヒンジ13間の、柱鉄骨12の材長方向における長さである。また、変数zは、梁21の下側フランジ23の下方に位置する塑性ヒンジ13及び塑性ヒンジ13間の、柱鉄骨12の材長方向における長さである。なお、変数y及びzは、任意の正数(0よりも大きい値)を取り得る。
 これら変数x、y、及びzを用いて、柱鉄骨12のフランジ13と、梁21のフランジ23及び23との交差部における面外変形量δ及びδ(mm)は、下記の(1)式及び(2)式を用いて、下記の(3)式及び(4)式により表わすことができる。ここで、梁21のフランジ23の板厚をtbf(mm)、フランジ13及びフランジ23の交差部に仮定する剛域の幅をt’(mm)とする。
This collapse mechanism assumes a state in which the joint 31 is rotated by an angle θ (radian) with respect to the bending moment at the end of the beam 21. However, the angle θ is a minute angle and can be approximated as tan θ = θ or the like.
The variables used in this collapse mechanism are x, y, and z (mm) shown in the figure. The variable x is a coefficient that determines the position of the neutral axis C <b> 1 with respect to the bending moment at the end of the beam 21, and can take any value between 0 and 1. Specifically, the variable x, when the bending moment on the end of the beam 21 is applied from the tension side of the flange 23 1 of the outer surface of the beam 21 in the ratio Sei Ryo H b of the distance to the neutral axis C1 is there. Furthermore, the variable y is between plastic hinge 13 1 and plastic hinge 13 3 located above the upper flange 23 1 of the beam 21, the length in the wood longitudinal direction of the column steel 12. Further, the variable z is between plastic hinge 13 2 and plastic hinge 13 4 located below the lower flange 23 and second beam 21, the length in the wood longitudinal direction of the column steel 12. Note that the variables y and z can take any positive number (a value greater than 0).
Using these variables x, y, and z, the out-of-plane deformation amounts δ 1 and δ 2 (mm) at the intersections of the flange 13 of the column steel frame 12 and the flanges 23 1 and 23 2 of the beam 21 are as follows: Using the formulas (1) and (2), the following formulas (3) and (4) can be used. Here, it is assumed that the plate thickness of the flange 23 of the beam 21 is t bf (mm) and the width of the rigid zone assumed at the intersection of the flange 13 and the flange 23 is t ′ (mm).
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
 柱鉄骨12のフランジ13の降伏ヒンジ線に生じる塑性回転角度θ及びθ(radian)は、下記の(5)式及び(6)式によって表わすことができる。 The plastic rotation angles θ 1 and θ 2 (radian) generated in the yield hinge line of the flange 13 of the column steel frame 12 can be expressed by the following equations (5) and (6).
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
〔2.崩壊曲げモーメント〕
 柱鉄骨12及び梁21のような、鋼材の実際の応力-ひずみ特性を、図8に示す。図8の横軸は鋼材のひずみを表し、縦軸は鋼材に作用する応力を表す。鋼材には、ひずみがゼロの状態から、ひずみが増加するのにしたがって応力が比例して増加する弾性領域R1がある。弾性領域R1よりもひずみが大きい範囲が、非弾性領域R2である。非弾性領域R2では、弾性領域R1よりも応力の増加率が低下する。弾性領域R1と非弾性領域R2との境界となる応力が、降伏応力σである。
 非弾性領域R2では、最大応力σにおいて応力が最大値となる。最大応力σに対応するひずみよりもひずみが大きくなると、応力は最大応力σよりも低下する。鋼材は、ひずみεにおいて破断する。
[2. Collapse bending moment)
FIG. 8 shows actual stress-strain characteristics of steel materials such as the column steel frame 12 and the beam 21. The horizontal axis in FIG. 8 represents the strain of the steel material, and the vertical axis represents the stress acting on the steel material. The steel material has an elastic region R1 in which the stress increases proportionally as the strain increases from a state where the strain is zero. The range where the strain is larger than that of the elastic region R1 is the non-elastic region R2. In the inelastic region R2, the rate of increase in stress is lower than in the elastic region R1. Stress at the boundary between the elastic region R1 and the non-elastic region R2 is a yield stress sigma 1.
In inelastic regions R2, stress becomes maximum at the maximum stress sigma 2. When the strain becomes larger than the strain corresponding to the maximum stress σ 2 , the stress is lower than the maximum stress σ 2 . Steel, breaks in strain epsilon 1.
 これに対して、本実施形態では、極限解析の手法を用いて理論解を求めるにあたり、柱鉄骨12及び梁21の応力-ひずみ特性として、図9に線L1で示す剛塑性関係となるモデルを仮定している。図9の横軸は鋼材のひずみを表し、縦軸は鋼材に作用する応力を表す。
 このモデルでは、ひずみがゼロのままで応力が増加する。応力が降伏応力σとなったときに、鋼材が降伏する。鋼材が降伏した後は、応力が変わらずにひずみが増加する。なお、このモデルでは、ひずみ硬化を考慮していない。
On the other hand, in this embodiment, in obtaining the theoretical solution using the limit analysis method, a model having a rigid-plastic relationship indicated by a line L1 in FIG. 9 is used as the stress-strain characteristics of the column steel 12 and the beam 21. Assumes. The horizontal axis in FIG. 9 represents the strain of the steel material, and the vertical axis represents the stress acting on the steel material.
In this model, the stress increases with zero strain. When the stress becomes the yield stress σ 1 , the steel material yields. After the steel yields, the strain increases without changing the stress. In this model, strain hardening is not considered.
 次に、崩壊曲げモーメントの詳細について説明する。
 柱鉄骨12のフランジ13の降伏ヒンジ線の単位長さあたりの降伏モーメントM(N)、及び柱鉄骨12のウェブ14に生ずる不連続線の単位長さあたりの降伏軸力N (N/mm)は、それぞれ下記の(7)式及び(8)式で与えられる。
 ここで、柱鉄骨12のフランジ13の板厚をtcf(mm)、柱鉄骨12のウェブ14の板厚をtcw(mm)、柱鉄骨12のフランジ13の降伏強さをσcfy(N/mm)、柱鉄骨12のウェブ14の降伏強さをσcwy(N/mm)とする。
Next, details of the collapse bending moment will be described.
The yield moment M 0 (N) per unit length of the yield hinge line of the flange 13 of the column steel 12 and the yield axial force N 0 c (N N per unit length of the discontinuous line generated in the web 14 of the column steel 12 / Mm) is given by the following equations (7) and (8), respectively.
Here, the plate thickness of the flange 13 of the column steel 12 is t cf (mm), the plate thickness of the web 14 of the column steel 12 is t cw (mm), and the yield strength of the flange 13 of the column steel 12 is σ cfy (N / Mm 2 ), and the yield strength of the web 14 of the column steel frame 12 is σ cwy (N / mm 2 ).
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
 柱鉄骨12のフランジ13の面外変形による内部仕事Wcfは、各降伏ヒンジ線の塑性回転による仕事の和として、下記の(9)式で与えられる。また、柱鉄骨12のウェブ14の局部降伏による内部仕事Wcwは、各々の不連続線上で生じる塑性流れによる仕事の和として、下記の(10)式で与えられる。
 梁21の引張側のフランジ23周りのかぶりコンクリート16aに生じるコーン状破壊による内部仕事WRC1は、下記の(11)式で与えられる。梁21の圧縮側のフランジ23周りに生じる内部のコンクリート16の支圧破壊による内部仕事WRC2は、下記の(12)式で与えられる。
 ここで、柱鉄骨12のフランジ13の幅をB(mm)、柱鉄骨12のフランジ13に対するコンクリート16のかぶり厚さをd(mm)(図2参照)、コンクリート16の圧縮強度(設計基準強度)をF(N/mm)、コンクリート16の支圧効果係数をλ(-)(本実施形態では1.5とする)とする。なお、コンクリート16の圧縮強度Fは、JIS A1108に記載の「コンクリートの圧縮強度試験方法」により得ることができる。
The internal work W cf due to the out-of-plane deformation of the flange 13 of the column steel frame 12 is given by the following formula (9) as the sum of work due to plastic rotation of each yield hinge line. Further, the internal work W cw due to local yielding of the web 14 of the column steel frame 12 is given by the following equation (10) as the sum of work due to plastic flow generated on each discontinuous line.
Internal work W RC1 by cone breakage occurring tensile side of the flange 23 1 around the concrete cover 16a of the beam 21 is given by (11) below. Internal work W RC2 according Bearing destruction within the concrete 16 occurring in the compression side of the flange 23 2 around the beam 21 is given by the following equation (12).
Here, the width of the flange 13 of the column steel frame 12 is B c (mm), the cover thickness of the concrete 16 with respect to the flange 13 of the column steel frame 12 is d (mm) (see FIG. 2), and the compressive strength (design criteria) of the concrete 16 Strength) is F c (N / mm 2 ), and the bearing effect coefficient of concrete 16 is λ (−) (1.5 in this embodiment). The compression strength F c of the concrete 16 can be obtained by the "Test Method of Compressive Strength for concrete" described in JIS A1108.
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
 仮想仕事の原理より、接合部31についての崩壊曲げモーメントM(Nmm)は下記の(13)式で与えられる。すなわち、内部仕事Wcfと、内部仕事Wcwと、内部仕事WRC1と、内部仕事WRC2との和が、接合部31の崩壊曲げモーメントMと、梁21の端部の曲げモーメントに対する接合部31の回転角度θとの積に等しいという下記の(13)式による第一方程式が導かれる。
 崩壊曲げモーメントMの最小値である全塑性曲げモーメント(Nmm)は、下記の(14)式を連立して解くことで求められ、下記の(15)式から(18)式によって与えられる。
 下記の(14)式は、崩壊曲げモーメントMを変数x、y、及びzで偏微分した値がそれぞれゼロに等しいことを表す方程式である。下記の(16)式から(18)式により、変数x、y、及びzが求められる。
 なお、全塑性曲げモーメントは、図9において鋼材が降伏したときの曲げモーメントを表し、接合部31の全塑性耐力に相当する。基本的に、変数yは変数zよりも大きい。これは、上述のようにコンクリートの支圧耐力はコーン状破壊耐力よりも大きくなるためである。コンクリート16の圧縮強度Fがゼロである場合(柱11が鉄筋15及びコンクリート16を備えない鉄骨造の柱の場合)には、変数yと変数zとが等しくなる。
From the principle of virtual work, the collapse bending moment M (Nmm) for the joint 31 is given by the following equation (13). That is, the sum of the internal work W cf , the internal work W cw , the internal work W RC1, and the internal work W RC2 is a joint portion with respect to the collapse bending moment M of the joint portion 31 and the bending moment of the end portion of the beam 21. A first equation according to the following equation (13) that is equal to the product of the rotation angle θ of 31 is derived.
The total plastic bending moment j M p (Nmm), which is the minimum value of the collapse bending moment M, is obtained by simultaneously solving the following equation (14) and is given by the following equations (15) to (18): It is done.
The following equation (14) is an equation representing that values obtained by partial differentiation of the collapse bending moment M with respect to the variables x, y, and z are each equal to zero. The variables x, y, and z are obtained from the following equations (16) to (18).
The total plastic bending moment j M p represents the bending moment when the steel material yields in FIG. 9 and corresponds to the total plastic yield strength of the joint portion 31. Basically, the variable y is larger than the variable z. This is because the bearing strength of concrete becomes larger than the cone-shaped fracture strength as described above. If compression strength F c of the concrete 16 is zero (if the pillars 11 of the steel frame of the pillar without a reinforcing bar 15 and concrete 16), and the variable y and the variable z is equal.
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
 上記の(17)式に、上記の(7)式及び(8)式により与えられる降伏モーメントM、単位長さあたりの降伏軸力N を代入して整理すると、下記の(19)式が得られる。
 なお、柱11が鉄筋15及びコンクリート16を備えない鉄骨造の柱の場合には、下記の(19)式において、コンクリート16の圧縮強度F、及びコンクリート16のかぶり厚さdをゼロとして計算すればよい。
When the yield moment M 0 and the yield axial force N 0 c per unit length given by the above formulas (7) and (8) are substituted into the above formula (17) and rearranged, the following (19) The formula is obtained.
When the column 11 is a steel-framed column that does not include the reinforcing bar 15 and the concrete 16, the calculation is performed with the compressive strength F c of the concrete 16 and the cover thickness d of the concrete 16 being zero in the following equation (19). do it.
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
 上述のように、塑性ヒンジにより示した梁21よりも上方の変数yの範囲、梁21のせいの範囲、及び、梁21よりも下方の変数zの範囲にそれぞれ対応する柱鉄骨12のフランジ13のみが、引っ張られたり圧縮されたりする。基本的に、変数yは変数zよりも大きい。梁21のせいの中心P1から上方に(H/2+y)の式により得られる値の範囲、及び、中心P1から下方に(H/2+z)の式により得られる値の範囲よりも、中心P1を範囲の中心とした(H+2y)の式により得られる値の範囲の方が広い。このため、梁21に上方及び下方から荷重が作用しても、梁21のせいの中心P1(図10参照)を範囲の中心とした(H+2y)の式により得られる値の範囲の柱鉄骨12のフランジ13のみが、梁21により引っ張られることが分かる。 As described above, the flange 13 of the column steel frame 12 corresponding to the range of the variable y above the beam 21 indicated by the plastic hinge, the range of the fault of the beam 21, and the range of the variable z below the beam 21, respectively. Only is pulled or compressed. Basically, the variable y is larger than the variable z. The value range obtained by the expression (H b / 2 + y) upward from the center P1 due to the beam 21 and the value range obtained by the expression (H b / 2 + z) downward from the center P1. The range of values obtained by the expression (H b + 2y) with P1 as the center of the range is wider. For this reason, even if a load is applied to the beam 21 from above and below, the column in the range of values obtained by the expression (H b + 2y) with the center P1 (see FIG. 10) of the beam 21 as the center of the range. It can be seen that only the flange 13 of the steel frame 12 is pulled by the beam 21.
 このため、図10に示すように、柱鉄骨12の材長方向において、柱鉄骨12のフランジ13が梁21により引っ張られる範囲を含む範囲R6において、柱鉄骨12のフランジ13とウェブ14とを全強接合部17により接合する。一方、柱鉄骨12の材長方向において範囲R6以外の範囲R7、すなわち全強接合部17で接合されていない範囲R7は、非全強接合部18で接合する。なお、図10において、柱11の鉄筋15、及びコンクリート16を透過して示している。
 ここで、範囲R6は、梁21のせいの中心P1を範囲の中心とした(H+2W)の式により得られる値の範囲である。そして、Wは、上記の(19)式によるy以上である。
For this reason, as shown in FIG. 10, in the length direction of the column steel 12, the flange 13 of the column steel 12 and the web 14 are all connected in a range R6 including the range in which the flange 13 of the column steel 12 is pulled by the beam 21. It joins by the strong junction part 17. FIG. On the other hand, the range R7 other than the range R6 in the material length direction of the column steel frame 12, that is, the range R7 that is not joined by the full strong joint 17 is joined by the non-total strong joint 18. In FIG. 10, the reinforcing bars 15 of the pillars 11 and the concrete 16 are shown in a transparent manner.
Here, the range R6 is a range of values obtained by the formula (H b + 2W) with the center P1 of the beam 21 as the center of the range. And W is y or more by said (19) Formula.
 本実施形態の柱梁接合構造1の設計方法では、柱鉄骨12において、ウェブ14と、梁21が接合されたフランジ13とを全強接合する範囲を、梁21のせいの中心P1を範囲の中心とした(H+2W)の式により得られる値の範囲に設定する。また、柱鉄骨12において、上記の範囲以外の範囲(ウェブ14と、梁21が接合されたフランジ13とを全強接合しない範囲)を、非全強接合するように(全強接合以外で接合するように)設定する。
 すなわち、柱梁接合構造1では、材長方向に沿って見た場合に、少なくとも、梁21のせいの中心P1(図10参照)を範囲の中心とした(H+2y)の式により得られる値の範囲に全強接合部17が形成され、上記の範囲以外の範囲に非全強接合部18が形成される。なお、製造コストをより低減する観点からは、梁21のせいの中心P1(図10参照)を範囲の中心とした(H+2y)の式により得られる値の範囲に全強接合部17が形成され、上記の範囲以外の範囲に非全強接合部18が形成されていることが好ましい。この場合、ウェブ14とフランジ13を全強接合により接合する範囲を、梁の上方及び下方から作用する荷重によりフランジ13が引っ張られる範囲のみとすることができるため、ウェブ14とフランジ13との接合部の破断を抑制しつつ、製造コストの増加をさらに抑制できる。 
In the design method of the column beam connection structure 1 of this embodiment, in the column steel frame 12, the range in which the web 14 and the flange 13 to which the beam 21 is bonded is fully strong bonded, and the center P <b> 1 of the beam 21 is set as the range. The value is set in the range obtained by the formula of (H b + 2W) as the center. Further, in the column steel frame 12, a range other than the above range (a range in which the web 14 and the flange 13 to which the beam 21 is bonded is not fully bonded) is non-fully bonded (bonded other than the fully bonded). To set).
That is, in the beam-column joint structure 1, when viewed along the material length direction, it is obtained by an expression of (H b + 2y) with at least the center P1 of the beam 21 (see FIG. 10) as the center of the range. The total strong joint 17 is formed in the range of values, and the non-total strong joint 18 is formed in a range other than the above range. From the viewpoint of further reducing the manufacturing cost, the total strong joint 17 is within the range of the value obtained by the expression (H b + 2y) with the center P1 (see FIG. 10) of the beam 21 as the center of the range. It is preferable that the non-fully strong joint 18 is formed in a range other than the above range. In this case, since the range in which the web 14 and the flange 13 are joined by full strength joining can be limited to the range in which the flange 13 is pulled by the load acting from above and below the beam, the joining of the web 14 and the flange 13 is possible. An increase in manufacturing cost can be further suppressed while suppressing breakage of the part.
 上述のように、変数Wは、上記の(19)式による変数y以上の値である。変数Wは、変数yよりも例えば50(mm)以上長くしてもよい。また、(H+2W)の式により得られる値は、例えば、(H+2y)の式により得られる値の1.1倍以上1.2倍以下としても良い。
 また、アーク溶接の開始時には、アーク溶接に用いられるシールド内に外気が入ることがある。このため、アーク溶接の火花が安定しにくく、アーク溶接を開始した部分の耐力が安定しないので、アーク溶接の開始時には助走区間を設けることが好ましい。
 また、全強接合部17を形成した範囲R6には、ウェブ14の端部等に予め開先加工が施されていることが好ましい。さらに、この範囲R6に対して超音波探傷試験等を行い、ウェブ14とフランジ13との不溶着部が形成されていないことを確認することが好ましい。
As described above, the variable W is a value greater than or equal to the variable y according to the above equation (19). The variable W may be longer than the variable y by, for example, 50 (mm) or more. Further, the value obtained by the expression (H b + 2W) may be, for example, 1.1 to 1.2 times the value obtained by the expression (H b + 2y).
In addition, at the start of arc welding, outside air may enter the shield used for arc welding. For this reason, since the spark of arc welding is difficult to stabilize and the proof stress of the part which started arc welding is not stabilized, it is preferable to provide a run-up section at the start of arc welding.
Further, in the range R6 where the all strong joints 17 are formed, it is preferable that a groove processing is performed on the end of the web 14 and the like in advance. Furthermore, it is preferable that an ultrasonic flaw detection test or the like is performed on the range R6 to confirm that the infusible portion between the web 14 and the flange 13 is not formed.
 以上に説明したように、本実施形態の柱梁接合構造1及び柱梁接合構造1の設計方法によれば、梁21に上方及び下方から荷重が作用しても、梁21のせいの中心を範囲の中心とした(H+2y)の式により得られる値の範囲内の柱鉄骨12のフランジ13のみが、梁21により引っ張られる。そのため、柱鉄骨12の材長方向において、少なくとも、柱鉄骨12のフランジ13が引っ張られる範囲のフランジ13とウェブ14とを全強接合することで、この範囲の柱鉄骨12にウェブ14とフランジ13との不溶着部が形成されない。そして、残りの範囲における柱鉄骨12のウェブ14とフランジ13とは、非全強接合する。
 これにより、梁21に荷重が作用して曲げモーメントが生じた際に、柱鉄骨12において、ウェブ14とフランジ13とを接合する溶接部の破断を抑制することができる。また、ウェブ14とフランジ13とを全て全強接合する場合と比較して、製造コストを低減することができる。
 したがって、柱鉄骨12のウェブ14とフランジ13とを必要な範囲において全強接合して全強接合する範囲を狭くすることで、ウェブ14とフランジ13とを接合する溶接部の破断を抑制しつつ、柱梁接合構造1の製造コストの増加を抑えることができる。
As described above, according to the column-beam joint structure 1 and the design method of the column-beam joint structure 1 of the present embodiment, even if a load acts on the beam 21 from above and below, the center of the fault of the beam 21 is obtained. Only the flange 13 of the column steel frame 12 within the range of the value obtained by the formula of (H b + 2y) as the center of the range is pulled by the beam 21. Therefore, in the material length direction of the column steel 12, at least the flange 13 and the web 14 in the range where the flange 13 of the column steel 12 is pulled are strongly joined, so that the web 14 and the flange 13 are connected to the column steel 12 in this range. No welded part is formed. And the web 14 and the flange 13 of the column steel frame 12 in the remaining range are non-fully joined.
Thereby, when a load acts on the beam 21 and a bending moment is generated, it is possible to suppress breakage of the welded portion that joins the web 14 and the flange 13 in the column steel frame 12. Moreover, compared with the case where all the webs 14 and the flanges 13 are all strongly joined, the manufacturing cost can be reduced.
Therefore, the web 14 and the flange 13 of the column steel frame 12 are fully strongly joined in a necessary range, and the range in which the full strength is joined is narrowed, thereby suppressing breakage of the welded portion joining the web 14 and the flange 13. And the increase in the manufacturing cost of the column beam junction structure 1 can be suppressed.
 なお、柱鉄骨12のフランジ13に引張応力が作用する範囲でフランジ13とウェブ14とを全強接合し、フランジ13とウェブ14とが全強接合されていない範囲は、フランジ13とウェブ14とを全強接合以外の方法で接合してもよい。柱鉄骨12のフランジ13に引張応力が作用して柱鉄骨12のウェブ14に局部降伏が生じている範囲は、図5に示す範囲R9となる。すなわち、柱鉄骨12の材長方向において、塑性ヒンジ13から中立軸C1までの範囲である。
 柱鉄骨12のフランジ13に引張応力が作用している範囲内で柱鉄骨12のフランジ13とウェブ14とが全強接合されているため、この範囲R9内の柱鉄骨12にウェブ14とフランジ13との不溶着部が形成されない。フランジ13に引張応力が作用している範囲R9内は、不溶着部を起点として溶接部の破断が生じやすいが、この範囲R9内に不溶着部が形成されないため、梁21に荷重が作用したときに柱鉄骨12におけるウェブ14とフランジ13との溶接部の破断が生じにくくなる。
 したがって、必要な範囲に全強接合するとともに全強接合する範囲を狭くすることで、柱梁接合構造1の製造コストを抑えることができる。
It should be noted that the flange 13 and the web 14 are fully joined in a range in which tensile stress acts on the flange 13 of the column steel frame 12, and the flange 13 and the web 14 are in a range where the flange 13 and the web 14 are not fully joined. May be joined by a method other than full strength joining. The range in which the tensile stress acts on the flange 13 of the column steel frame 12 to cause local yielding in the web 14 of the column steel frame 12 is a range R9 shown in FIG. That is, in the wood longitudinal direction of the column steel 12 is in the range of up to the neutral axis C1 from plastic hinge 13 1.
Since the flange 13 of the column steel 12 and the web 14 are fully strongly joined within the range where the tensile stress is applied to the flange 13 of the column steel 12, the web 14 and the flange 13 are connected to the column steel 12 within this range R9. No welded part is formed. In the range R9 in which the tensile stress is applied to the flange 13, the welded portion is likely to break starting from the non-welded portion. However, since the non-welded portion is not formed in this range R9, a load is applied to the beam 21. Sometimes, the welded portion between the web 14 and the flange 13 in the column steel frame 12 is less likely to break.
Therefore, it is possible to reduce the manufacturing cost of the column beam connection structure 1 by performing full strength joining within a necessary range and narrowing the range of full strength joining.
(第2実施形態)
 次に、本発明の第2実施形態について図11を参照しながら説明する。なお、上述した構成要素と同一の構成要素については、同一の符号を付すことにより、以下での重複説明を省略する。
 本実施形態では、上記第1実施形態のように極限解析の手法を用いて理論解を求めるとともに、使用頻度の高い柱梁接合構造1の厚さ等の諸元に限定すること等により、全強接合する範囲を容易に求められるようにしている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. In addition, about the component same as the component mentioned above, the duplicate description below is abbreviate | omitted by attaching | subjecting the same code | symbol.
In the present embodiment, as in the first embodiment, the theoretical solution is obtained by using the limit analysis method, and by limiting to the specifications such as the thickness of the column-beam joint structure 1 that is frequently used, The range to be strongly joined is easily obtained.
 具体的には、以下の(i)から(iii)の限定、及び(iv)の仮定をしている。
 (i)柱鉄骨12のフランジ13の降伏強さσcfyと柱鉄骨12のウェブ14の降伏強さσcwyとが等しい。
 (ii)柱鉄骨12のフランジ13の板厚tcfの2倍に対する柱鉄骨12のフランジ13の幅Bの比が3.0以上である。
 (iii)柱鉄骨12のウェブ14の板厚tcwに対する柱鉄骨12のフランジ13の板厚tcfの比が3.33以下である。
 (iv)かぶりコンクリートの影響を無視する(Fをゼロとする)。
Specifically, the following restrictions (i) to (iii) and assumptions (iv) are made.
(I) The yield strength σ cfy of the flange 13 of the column steel 12 is equal to the yield strength σ cwy of the web 14 of the column steel 12.
(Ii) The ratio of the width B c of the flange 13 of the column steel 12 to the plate thickness t cf of the flange 13 of the column steel 12 is 3.0 or more.
The ratio of the thickness t cf of the flange 13 of the pillar steel 12 against the plate thickness t cw web 14 (iii) column steel 12 is 3.33 or less.
(Iv) ignoring the effect of the concrete cover (the F c is zero).
 なお、柱梁接合構造1の、使用頻度の高い諸元に対してはかぶりコンクリートの影響は10%程度であることが分かっている。
 (i)の限定及び(iv)の仮定を用いて上記の(19)式を変形することで、下記の(20)式が得られる。
 すなわち、変数yは、柱鉄骨12のフランジ13の幅B、柱鉄骨12のウェブ14の板厚tcwに対する柱鉄骨12のフランジ13の板厚tcfの比、及び、柱鉄骨12のフランジ13の板厚tcfの2倍に対する柱鉄骨12のフランジ13の幅Bの比で表されることが分かる。
In addition, it has been found that the influence of the cover concrete is about 10% on the frequently used specifications of the column beam connection structure 1.
The following equation (20) is obtained by modifying the above equation (19) using the limitation of (i) and the assumption of (iv).
That is, the variable y is the ratio of the width B c of the flange 13 of the column steel 12, the plate thickness t cf of the flange 13 of the column steel 12 to the plate thickness t cw of the web 14 of the column steel 12, and the flange of the column steel 12. It can be seen that this is represented by the ratio of the width B c of the flange 13 of the column steel frame 12 to twice the plate thickness t cf of 13.
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000009
 
 柱鉄骨12のウェブ14の板厚tcwに対する柱鉄骨12のフランジ13の板厚tcfの比については、(iii)の限定における上限値の3.33を上記の(20)式に代入する。柱鉄骨12のフランジ13の板厚tcfの2倍に対する柱鉄骨12のフランジ13の幅Bの比については、(ii)の限定における下限値の3.0を上記の(20)式に代入する。これらにより、下記の(21)式が得られる。
 下記の(20)式において、(ii)の限定である(B/(2tcf))の式により得られる値の下限値の3.0、及び、(iii)の限定である(tcf/tcw)の式により得られる値の上限値の3.33を下記の(20)式に代入することで、(ii)及び(iii)の限定における変数yの最大値が約0.75Bと求まる。
The ratio of the thickness t cf of the flange 13 of the pillar steel 12 against the plate thickness t cw web 14 pillars steel 12, substituting 3.33 upper limit value (20) of said at Limited (iii) . For the ratio of the width B c of the flange 13 of the column steel 12 to twice the plate thickness t cf of the flange 13 of the column steel 12, the lower limit value 3.0 in the limitation of (ii) is expressed by the above equation (20). substitute. As a result, the following equation (21) is obtained.
In the following formula (20), the lower limit value of 3.0 obtained by the formula (B c / (2t cf )), which is the limit of (ii), and the limit of (iii) (t cf By substituting 3.33 which is the upper limit of the value obtained by the equation of / t cw ) into the following equation (20), the maximum value of the variable y in the limitation of (ii) and (iii) is about 0.75B. c .
Figure JPOXMLDOC01-appb-M000010
 
Figure JPOXMLDOC01-appb-M000010
 
 すなわち、本実施形態における上述の全強接合部17の範囲R6は、梁21のせいの中心P1を範囲の中心とした(H+2W)の式により得られる値の範囲とした。ただし、Wは、上記の(21)式によるy以上である。 That is, the range R6 of the all strong joints 17 in the present embodiment is a range of values obtained by the formula (H b + 2W) with the center P1 of the beam 21 being the center of the range. However, W is not less than y according to the above equation (21).
 なお、柱鉄骨12のフランジ13の板厚tcfの2倍に対する柱鉄骨12のフランジ13の幅Bの比を2.0以上とし、柱鉄骨12のウェブ14の板厚tcwに対する柱鉄骨12のフランジ13の板厚tcfの比を4.0以下とした場合には、変数yの値は1.0Bとなる。柱鉄骨12のフランジ13の板厚tcfの2倍に対する柱鉄骨12のフランジ13の幅Bの比を5.0以上とし、柱鉄骨12のウェブ14の板厚tcwに対する柱鉄骨12のフランジ13の板厚tcfの比を2.5以下とした場合には、変数yの値は0.5Bとなる。 Note that the ratio of the width B c of the flange 13 of the column steel 12 to twice the plate thickness t cf of the flange 13 of the column steel 12 is 2.0 or more, and the column steel frame with respect to the plate thickness t cw of the web 14 of the column steel 12 When the ratio of the plate thickness t cf of the 12 flanges 13 is 4.0 or less, the value of the variable y is 1.0 B c . The ratio of the width B c of the flange 13 of the column steel 12 to twice the plate thickness t cf of the flange 13 of the column steel 12 is set to 5.0 or more, and the column steel 12 has a ratio t cw of the web 14 of the column steel 12 when the ratio of the thickness t cf of the flange 13 is 2.5 or less, the value of the variable y becomes 0.5B c.
 以上に説明したように、本実施形態の柱梁接合構造1によれば、使用頻度の高い板厚等の諸元において、柱鉄骨12のウェブ14とフランジ13とを全強接合する範囲が、柱鉄骨12のフランジ13の幅B及び梁21のせいHだけで決まる。このため、柱鉄骨12のウェブ14とフランジ13とを全強接合する範囲を容易に求めることができる。
 なお、本実施形態で変数yを0.75Bとした評価の精度を検証した図11については、第3実施形態において説明を行う。
As described above, according to the beam-column joint structure 1 of the present embodiment, the range in which the web 14 and the flange 13 of the column steel frame 12 are fully strong-bonded in the specifications such as the frequently used plate thickness, It depends only due H b of width B c and beam 21 of the flange 13 of the pillar steel 12. For this reason, it is possible to easily obtain a range in which the web 14 and the flange 13 of the column steel frame 12 are fully joined.
Note that FIG. 11 the variable y in this embodiment to verify the accuracy of the evaluation that the 0.75B c may be described in the third embodiment.
(第3実施形態)
 次に、本発明の第3実施形態について図12から図20を参照しながら説明する。なお、上述した構成要素と同一の構成要素については、同一の符号を付すことにより、以下での重複説明を省略する。
 上記第1実施形態及び第2実施形態では、極限解析の手法を用いて理論解を求め、柱11と梁21との接合部31における全塑性曲げモーメントの柱11のウェブ14の塑性化範囲に基づいて、全強接合部17の範囲を設定した。ただし、接合部31が降伏した後には鋼材のひずみ硬化によって塑性化範囲は拡大する場合がある。
 これに対して、本実施形態では、接合部31が大きく変形して接合部31の塑性化範囲が拡大した場合においても上述の全強接合部17の範囲が十分であるための条件を検討する。本実施形態では、変数yに相当する塑性ひずみが分布している範囲を有限要素解析により求めた。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIGS. In addition, about the component same as the component mentioned above, the duplicate description below is abbreviate | omitted by attaching | subjecting the same code | symbol.
In the first embodiment and the second embodiment, a theoretical solution is obtained using a limit analysis technique, and the plasticity of the web 14 of the column 11 having the total plastic bending moment j M p at the joint portion 31 between the column 11 and the beam 21 is obtained. The range of all strong joints 17 was set based on the conversion range. However, after the joint portion 31 yields, the plasticizing range may be expanded by strain hardening of the steel material.
On the other hand, in this embodiment, even when the junction part 31 deform | transforms greatly and the plasticization range of the junction part 31 expands, the conditions for the range of the above-mentioned all the strong junction parts 17 are examined. . In this embodiment, the range in which the plastic strain corresponding to the variable y is distributed is obtained by finite element analysis.
 有限要素解析に用いた解析モデルを、図12から図14に示す。図12の解析モデルは、柱梁接合構造1を表す1/4モデルである。この1/4モデルでは、第一の面S1及び第二の面S2を解析条件の対称面とした。
 図12の解析モデルは、柱梁接合構造1の柱11が鉄骨造であってH形断面の柱鉄骨12である場合を示している。
The analysis model used for the finite element analysis is shown in FIGS. The analysis model in FIG. 12 is a ¼ model representing the column-beam joint structure 1. In the ¼ model, the first surface S1 and the second surface S2 are symmetric surfaces under analysis conditions.
The analysis model of FIG. 12 shows a case where the column 11 of the beam-column joint structure 1 is a steel frame and is a column steel frame 12 having an H-shaped cross section.
 有限要素解析の条件を以下に示す。
(I)解析モデルの要素は、8節点ソリッド要素とした。
(II)梁21の端部が柱鉄骨12に溶接された部分の溶接金属部の余盛り高さは、梁21のフランジ23の板厚の1/4とした。ただし、梁21のフランジ23の板厚が40mm以上の場合は、余盛り高さを10mmとした。
(III)柱鉄骨12のウェブ14とフランジ13との溶接金属部は、脚長及び余盛り高さを共に10mmとした。
The conditions for finite element analysis are shown below.
(I) The element of the analysis model was an 8-node solid element.
(II) The extra height of the weld metal portion of the portion where the end portion of the beam 21 is welded to the column steel frame 12 is set to ¼ of the plate thickness of the flange 23 of the beam 21. However, when the plate thickness of the flange 23 of the beam 21 is 40 mm or more, the extra height is set to 10 mm.
(III) The weld metal part between the web 14 of the column steel frame 12 and the flange 13 has a leg length and an extra height of 10 mm.
(IV)柱鉄骨12及び梁21の材料特性には、建築構造用圧延鋼材であるSN490の引張試験結果をモデル化した応力-ひずみ特性を用いた。図15に柱鉄骨12及び梁21の要素に用いた応力-ひずみ特性を示す。図15の横軸はひずみを表し、縦軸は応力を表す。図15において、一点鎖線L6は、引張試験結果の平均応力-平均ひずみを表す線である。また、実線L7は、引張試験結果の平均応力-平均ひずみをモデル化した線である。また、点線L8は、モデル化した平均応力-平均ひずみを、真応力-真ひずみに変換した線である。なお、有限要素解析には、点線L8が表す平均応力-平均ひずみ特性を用いた。 (IV) The material characteristics of the column steel frame 12 and the beam 21 were stress-strain characteristics that modeled the tensile test results of SN490, which is a rolled steel for building structures. FIG. 15 shows stress-strain characteristics used for the elements of the column steel frame 12 and the beam 21. The horizontal axis in FIG. 15 represents strain, and the vertical axis represents stress. In FIG. 15, an alternate long and short dash line L6 is a line representing the average stress-average strain of the tensile test result. A solid line L7 is a line modeling the average stress-average strain of the tensile test result. A dotted line L8 is a line obtained by converting the modeled average stress-average strain into true stress-true strain. In the finite element analysis, the average stress-average strain characteristic indicated by the dotted line L8 was used.
(V)各溶接金属部の材料特性には、YGW18ワイヤの引張試験結果をモデル化した応力-ひずみ特性を用いた。図16に溶接金属部の要素に用いた応力-ひずみ特性を示す。図16の横軸はひずみを表し、縦軸は応力を表す。図16において、一点鎖線L11は、引張試験結果の平均応力-平均ひずみを表す線である。また、実線L12は、引張試験結果の平均応力-平均ひずみをモデル化した線である。また、点線L13は、モデル化した平均応力-平均ひずみを、真応力-真ひずみに変換した線である。なお、有限要素解析には、点線L13が表す平均応力-平均ひずみ特性を用いた。
(VI)柱鉄骨12及び梁21の降伏強さを380MPa、引張強さを519MPaとした。
(VII)溶接金属部の降伏強さを526MPa、引張強さを606MPaとした。
(VIII)梁21の、柱鉄骨12とは反対の端に荷重F(図12参照)を作用させて、鉛直方向の一方向強制変位を与える荷重条件とした。
(V) As the material characteristics of each weld metal part, stress-strain characteristics modeling the tensile test result of YGW18 wire were used. FIG. 16 shows the stress-strain characteristics used for the weld metal element. The horizontal axis in FIG. 16 represents strain, and the vertical axis represents stress. In FIG. 16, an alternate long and short dash line L11 is a line representing the average stress-average strain of the tensile test result. A solid line L12 is a line modeling the average stress-average strain of the tensile test result. A dotted line L13 is a line obtained by converting the modeled average stress-average strain into true stress-true strain. In the finite element analysis, the average stress-average strain characteristic represented by the dotted line L13 was used.
(VI) The yield strength of the column steel frame 12 and the beam 21 was 380 MPa, and the tensile strength was 519 MPa.
(VII) The yield strength of the weld metal part was 526 MPa, and the tensile strength was 606 MPa.
(VIII) The load F (see FIG. 12) was applied to the end of the beam 21 opposite to the column steel frame 12 to provide a load condition for applying a unidirectional forced displacement in the vertical direction.
 解析モデルの解析変数の比の一覧を、表1に示す。柱鉄骨12及び梁21の寸法の諸元は、各比率が使用頻度の高い、表1に示す値の組み合わせとなるように設定した。
 すなわち、以下のように比の値を決めた。
(a)柱鉄骨12のフランジ13における板厚tcfに対する幅Bの比が、3.0以上8.0以下である。
(b)柱鉄骨12のウェブ14における板厚tcwに対する幅の比(幅厚比)が、柱鉄骨12がフランジ付き十字形断面の場合に12.0以上である。なお、柱鉄骨12がH形断面の場合には、この比は24.0以上である。
(c)柱鉄骨12におけるフランジ13の幅Bに対するせいHの比が、1.7以上3.5以下である。
(d)柱鉄骨12のせいHに対する梁21のせいHの比が、0.7以上1.5以下である。
(e)柱鉄骨12のフランジ13の幅Bに対する梁21のフランジ23の幅Bの比が、0.5以上1.0以下である。
(f)柱鉄骨12のウェブ14の板厚tcwに対する梁21のウェブ24の板厚tbwの比が、0.5以上1.0以下である。
Table 1 shows a list of analysis variable ratios of the analysis model. The dimensions of the column steel frame 12 and the beam 21 were set so that each ratio is a combination of the values shown in Table 1 that are frequently used.
That is, the ratio value was determined as follows.
(A) The ratio of the width B c to the plate thickness t cf in the flange 13 of the column steel frame 12 is 3.0 or more and 8.0 or less.
(B) The ratio of the width (thickness ratio) of the column steel frame 12 to the plate thickness t cw of the web 14 is 12.0 or more when the column steel frame 12 has a cross-shaped cross section with a flange. When the column steel frame 12 has an H-shaped cross section, this ratio is 24.0 or more.
(C) The ratio of H c to the width B c of the flange 13 in the column steel frame 12 is 1.7 or more and 3.5 or less.
(D) the ratio of the fault H b of the beam 21 relative to blame H c pillar steel 12, is 0.7 to 1.5.
(E) The ratio of the width B b of the flange 23 of the beam 21 to the width B c of the flange 13 of the column steel frame 12 is 0.5 or more and 1.0 or less.
(F) The ratio of the plate thickness t bw of the web 24 of the beam 21 to the plate thickness t cw of the web 14 of the column steel frame 12 is 0.5 or more and 1.0 or less.
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
 具体的には、以下のように寸法を決めた。
(g)柱鉄骨12のせいHは、600mmの固定値とした。
(h)柱鉄骨12におけるフランジ13の幅Bに対するせいHの比の変数により、柱鉄骨12におけるフランジ13の幅Bを決めた。
(i)柱鉄骨12のウェブ14における板厚tcwに対する幅の比、及び、柱鉄骨12のフランジ13における板厚tcfに対する幅Bの比の変数により、ウェブ14の板厚tcw及びフランジ13の板厚tcfを決めた。
(j)柱鉄骨12のせいHに対する梁21のせいHの比、及び、柱鉄骨12のウェブ14の板厚tcwに対する梁21のウェブ24の板厚tbwの比の変数により、梁21のせいH及び梁21のフランジ23の幅Bを決めた。
Specifically, the dimensions were determined as follows.
(G) H c due pillar steel 12 was set to a fixed value of 600 mm.
(H) The width B c of the flange 13 in the column steel frame 12 was determined by the variable of the ratio of the claw H c to the width B c of the flange 13 in the column steel frame 12.
(I) Depending on the variable of the ratio of the width of the column steel frame 12 to the plate thickness t cw of the web 14 and the ratio of the width B c to the plate thickness t cf of the flange 13 of the column steel frame 12, the plate thickness t cw of the web 14 and The plate thickness tcf of the flange 13 was determined.
(J) By the variable of the ratio of the width H b of the beam 21 to the thickness H c of the column steel frame 12 and the ratio of the thickness t bw of the web 24 of the beam 21 to the thickness t cw of the web 14 of the column steel frame 12, decided width B b of the flange 23 of the fault H b and the beam 21 of the beam 21.
(k)柱鉄骨12のフランジ13の幅Bに対する梁21のフランジ23の幅Bの比の変数により、梁21のウェブ24の板厚tbwを決めた。
(l)梁21のフランジ23の板厚tbfは、接合部31の局所耐力に対して梁21の曲げ耐力が1.2倍以上となるように決めた。このとき、梁21のフランジ23における板厚tbfに対する幅Bの比がFDランクとなる場合には、FDランクとFCランクの境界値となるように、梁21のフランジ23の板厚tbfを厚くした。また、梁21のフランジ23の板厚tbfが梁21のウェブ24の板厚tbwよりも薄くなる場合には、梁21のフランジ23の板厚tbfを梁21のウェブ24の板厚tbwと等しくした。
(m)柱鉄骨12におけるウェブ14の板厚tcwに対するフランジ13の板厚tcfの比が3.33を超える場合は、その解析ケースを除外した。除外した解析ケースは、使用頻度が低いケースである。
(K) The plate thickness t bw of the web 24 of the beam 21 is determined by the variable of the ratio of the width B b of the flange 23 of the beam 21 to the width B c of the flange 13 of the column steel frame 12.
(L) The plate thickness t bf of the flange 23 of the beam 21 was determined so that the bending strength of the beam 21 was 1.2 times or more the local strength of the joint 31. At this time, when the ratio of the width B b to the plate thickness t bf at the flange 23 of the beam 21 is the FD rank, the plate thickness t of the flange 23 of the beam 21 is set to the boundary value between the FD rank and the FC rank. The bf was thickened. When the plate thickness t bf of the flange 23 of the beam 21 is thinner than the plate thickness t bw of the web 24 of the beam 21, the plate thickness t bf of the flange 23 of the beam 21 is set to the plate thickness of the web 24 of the beam 21. equal to t bw .
(M) In the case where the ratio of the plate thickness t cf of the flange 13 to the plate thickness t cw of the web 14 in the column steel frame 12 exceeds 3.33, the analysis case is excluded. The excluded analysis cases are cases where the frequency of use is low.
 これらの手順によって決めた柱鉄骨12及び梁21の寸法の諸元の一覧を、表2及び表3において解析ケース1から解析ケース56として示す。
 なお、表2及び表3において、柱鉄骨12のウェブ14における板厚tcwに対する幅の比が12.0の解析ケース番号は、柱鉄骨12がフランジ付き十字形断面の場合である。また、柱鉄骨12のウェブ14における板厚tcwに対する幅の比が32.0の解析ケース番号は、柱鉄骨12がH形断面の場合である。
A list of dimensions of the column steel frame 12 and the beam 21 determined by these procedures is shown as analysis case 1 to analysis case 56 in Tables 2 and 3.
In Tables 2 and 3, the analysis case number in which the ratio of the width of the column steel 12 to the plate thickness t cw of the web 14 is 12.0 is the case where the column steel 12 has a cross-shaped cross section with a flange. The analysis case number in which the ratio of the width of the column steel frame 12 to the thickness t cw of the web 14 is 32.0 is the case where the column steel frame 12 has an H-shaped cross section.
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
 表2及び表3に示した合計56の解析ケースの有限要素解析を実施した。各解析ケースにおいて、図13及び図14に示す溶接金属部19の溶接止端部19aの相当塑性ひずみを柱鉄骨12の材長方向にわたり求めた。
 図17に、塑性ひずみを求めた結果の一例を解析ケース2(梁21のせいHは900mm)の場合で示す。図17の横軸は相当塑性ひずみを表し、縦軸は梁21のせいの中心に対する位置を表す。なお、位置は上方を正とする。
 また、図17において、正方形のプロットにより表される線L16は、柱梁接合構造1の接合部31の降伏が始まったときの状態を示す。一方、菱形のプロットにより表される線L17は、梁21の端部が0.02radian(約1.15°)回転したときの状態を示す。
A total of 56 analysis cases shown in Table 2 and Table 3 were subjected to finite element analysis. In each analysis case, the equivalent plastic strain of the weld toe portion 19a of the weld metal portion 19 shown in FIGS. 13 and 14 was obtained over the length direction of the column steel frame 12.
FIG. 17 shows an example of the result of obtaining the plastic strain in the case of analysis case 2 (because the Hb of the beam 21 is 900 mm). The horizontal axis in FIG. 17 represents the equivalent plastic strain, and the vertical axis represents the position of the beam 21 relative to the center of the fault. Note that the upper position is positive.
Further, in FIG. 17, a line L <b> 16 represented by a square plot indicates a state when the yielding of the joint portion 31 of the column beam joint structure 1 starts. On the other hand, a line L17 represented by a rhombus plot shows a state when the end of the beam 21 is rotated by 0.02 radian (about 1.15 °).
 ここで、接合部31の降伏が始まったときとは、接合部31の初期の回転角-曲げモーメントの傾きに対して、傾きが1/3まで低下したときの状態と定義する。梁21の端部が0.02(radian)回転した状態は、地震が起きたときに建築物に生じる最大の変位を意味する。 Here, the time when the yielding of the joint 31 starts is defined as a state where the tilt is reduced to 1/3 with respect to the initial rotation angle-bending moment of the joint 31. The state in which the end of the beam 21 is rotated 0.02 (radian) means the maximum displacement that occurs in the building when an earthquake occurs.
 線L16及び線L17のいずれにおいても、溶接止端部19aの相当塑性ひずみ、すなわち柱鉄骨12のウェブ14の塑性ひずみは、梁21のフランジ23の位置を中心に分布していることが分かった。
 接合部31の降伏が始まったときには、梁21のせいの外側に約105mmの範囲Xまで塑性ひずみが分布していることが分かった。一方で、梁21の端部が0.02(radian)回転した状態では、梁21のせいの外側に約150(mm)の範囲Xまで塑性ひずみが分布していることが分かった。
It was found that in both the line L16 and the line L17, the equivalent plastic strain of the weld toe portion 19a, that is, the plastic strain of the web 14 of the column steel frame 12 is distributed around the position of the flange 23 of the beam 21. .
When the yielding of the joint 31 began, it was found that the plastic strain was distributed to the range X of about 105 mm outside the beam 21. On the other hand, in the state where the end portion of the beam 21 is rotated 0.02 (radian), it has been found that the plastic strain is distributed to the range X of about 150 (mm) on the outer side of the beam 21.
 梁21の端部が0.02(radian)回転した状態における各解析ケースで、塑性ひずみが分布している範囲Xを求めた結果を図18に示す。図18の横軸は柱鉄骨12のフランジ13の幅Bを表し、縦軸は塑性ひずみが分布している範囲Xを表す。
 塑性ひずみが分布している範囲Xは、柱鉄骨12のフランジ13における幅Bの1.1倍以下の範囲であることが分かった。
 このため、本実施形態における上述の全強接合部17の範囲R6は、梁21のせいの中心P1を範囲の中心とした(H+2W)の式により得られる値の範囲とした。ただし、Wは1.1B以上である。すなわち、柱梁接合構造1の解析モデルにおいて、梁21のせいの中心P1を範囲の中心とした(H+2W)の式により得られる値の範囲の溶接金属部19を全強接合部17とし、全強接合部17以外の溶接金属部19を非全強接合部18とする。
FIG. 18 shows the result of obtaining the range X in which the plastic strain is distributed in each analysis case in a state where the end of the beam 21 is rotated 0.02 (radian). The horizontal axis of FIG. 18 represents the width B c of the flange 13 of the pillar steel 12, the vertical axis represents the range X in which the plastic strain is distributed.
Range X in which the plastic strain is distributed has been found to be in the range of 1.1 times or less of the width B c in the flange 13 of the column steel 12.
For this reason, the range R6 of the above-described strong joint portion 17 in the present embodiment is a range of values obtained by the formula (H b + 2W) with the center P1 of the beam 21 being the center of the range. However, W is equal to or greater than 1.1B c. That is, in the analytical model of the beam-column joint structure 1, the weld metal portion 19 in the range of the value obtained by the expression (H b + 2W) with the center P 1 of the beam 21 as the center of the range is defined as the total strong joint 17. The weld metal part 19 other than the full strong joint 17 is defined as a non-full strong joint 18.
 以上に説明したように、本実施形態の柱梁接合構造1によれば、柱鉄骨12がフランジ付き十字形断面又はH形断面であって使用頻度の高い厚さ等の諸元において、柱鉄骨12の材長方向に対して梁21のせいの中心を範囲の中心とした(H+2.2B)の式により得られる値の範囲以下の範囲の柱鉄骨12に塑性ひずみが分布する。柱鉄骨12における塑性ひずみが分布する範囲のフランジ13とウェブ14とを全強接合することで、この範囲内の柱鉄骨12にウェブ14とフランジ13との不溶着部が形成されない。残りの範囲における柱鉄骨12のウェブ14とフランジ13とは、非全強接合で接合する。このため、梁21に荷重が作用した際に、柱鉄骨12においてウェブ14とフランジ13とを接合する溶接部の破断が生じにくくなる。
 また、柱鉄骨12においてウェブ14とフランジ13とを全強接合する範囲が、柱鉄骨12のフランジ13の幅B及び梁21のせいHだけで決まる。したがって、柱鉄骨12のウェブ14とフランジ13とを全強接合する範囲を容易に求めることができる。
As described above, according to the beam-column joint structure 1 of the present embodiment, the column steel frame 12 is a cross-shaped cross section with a flange or an H-shaped cross section, and the specifications such as a thickness that is frequently used are column steel frames. The plastic strain is distributed in the column steel frames 12 in the range below the value obtained by the formula (H b + 2.2B c ) with the center of the range of the beam 21 as the center of the range with respect to the 12 material length directions. By fully joining the flange 13 and the web 14 in the range where the plastic strain in the column steel frame 12 is distributed, the welded portion between the web 14 and the flange 13 is not formed on the column steel frame 12 in this range. The web 14 and the flange 13 of the column steel frame 12 in the remaining range are joined by non-fully strong joining. For this reason, when a load acts on the beam 21, the welded portion that joins the web 14 and the flange 13 in the column steel frame 12 is less likely to break.
In addition, the range in which the web 14 and the flange 13 are completely strongly joined in the column steel frame 12 is determined only by the width B c of the flange 13 of the column steel frame 12 and H b of the beam 21. Therefore, it is possible to easily obtain a range in which the web 14 of the column steel frame 12 and the flange 13 are fully joined.
 なお、梁21の端部が0.03(radian)回転した状態における、各解析ケースで塑性ひずみが分布している範囲Xを求めた結果を図19に示す。また、梁21の端部が0.04(radian)回転した状態における、各解析ケースで塑性ひずみが分布している範囲Xを求めた結果を図20に示す。
 0.03(radian)回転した状態、及び、0.04(radian)回転した状態において、塑性ひずみが分布している範囲Xは、共に柱鉄骨12のフランジ13における幅Bの1.2倍以下の範囲であることが分かった。
 すなわち、梁21の端部が回転した角度が大きくなっても、塑性ひずみが分布している範囲Xは幅Bの1.2倍以下の範囲で飽和すると考えらえる。この場合、梁21のせいHの中心を範囲の中心とした少なくとも(H+2.4B)の式により得られる値の範囲で全強接合することで、充分大きな地震に対しても耐えられることが分かった。
In addition, the result of having calculated | required the range X in which the plastic strain is distributed in each analysis case in the state which the edge part of the beam 21 rotated 0.03 (radian) is shown in FIG. Further, FIG. 20 shows a result of obtaining the range X in which the plastic strain is distributed in each analysis case in a state where the end portion of the beam 21 is rotated by 0.04 (radian).
0.03 (radian) rotation state, and, 0.04 (radian) in a rotating state, 1.2 times the range X are both width in the flange 13 of the column steel 12 B c which plastic strain is distributed It was found that the following range.
That is, Rael considered the end of the beam 21 also increases the angle rotated, the range X in which the plastic strain is distributed is saturated in a range of less than 1.2 times the width B c. In this case, it is possible to withstand a sufficiently large earthquake by fully joining in the range of the value obtained by at least the formula (H b + 2.4B c ) with the center of the H b as the center of the range. I found out that
 ここで、上記第2実施形態の図11について説明する。表2及び表3に示した解析ケースのうち、第2実施形態に該当する56の解析ケースについて、塑性ひずみが分布している範囲Xを求めた。
 塑性ひずみが分布している範囲Xは、柱鉄骨12のフランジ13における幅Bの0.75倍以下の範囲であることが分かった。有限要素解析結果の降伏耐力時点の塑性化範囲を、もれなく安全側に評価できていることが分かった。
Here, FIG. 11 of the second embodiment will be described. Among the analysis cases shown in Tables 2 and 3, the range X in which the plastic strain is distributed was obtained for 56 analysis cases corresponding to the second embodiment.
Range plastic strain is distributed X was found to be in the range of 0.75 times the width B c in the flange 13 of the column steel 12. It was found that the plasticization range at the time of yield strength in the finite element analysis results could be evaluated on the safe side.
 以上、本発明の各実施形態を説明したが、これらの実施形態は、例として提示したものであり、本発明の範囲がこれらの実施形態のみに限定されるものではない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although each embodiment of this invention was described, these embodiment is shown as an example and the range of this invention is not limited only to these embodiment. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.
 1: 柱梁接合構造
 11: 柱
 12: 柱鉄骨
 13、23: フランジ
 13、13、13、13: 塑性ヒンジ
 14、24: ウェブ
 17: 全強接合部
 18: 非全強接合部
 21: 梁
1: Column beam connection structure 11: Column 12: Column steel 13, 23: Flange 13 1 , 13 2 , 13 3 , 13 4 : Plastic hinge 14, 24: Web 17: Total strength joint 18: Non-total strength joint 21: Beam

Claims (2)

  1.  鉄骨鉄筋コンクリート造又は鉄骨造の柱と、前記柱に接合された鉄骨造の梁とを備えるノンダイアフラム形式の柱梁接合構造であって、
     前記柱は、ウェブと、フランジと、これらウェブ及びフランジを互いに接合する全強接合部および非全強接合部とを有する、フランジ付き十字形断面又はH形断面の柱鉄骨を有し、
     少なくとも、前記梁に曲げモーメントが作用した際に前記柱鉄骨の前記フランジに引張応力が作用する範囲において、前記全強接合部が形成されている
    ことを特徴とする柱梁接合構造。
    A non-diaphragm-type column beam connection structure comprising a steel reinforced concrete or steel frame column and a steel beam bonded to the column,
    The column has a flanged cruciform or H-shaped column steel frame having a web, a flange, and a full strong joint and a non-full strong joint joining the web and the flange to each other;
    The beam-to-column connection structure is characterized in that the strong joint portion is formed at least in a range in which a tensile stress is applied to the flange of the column steel when a bending moment is applied to the beam.
  2.  前記全強接合部は、前記梁のせいの中心を範囲の中心とした、下記の式を用いて得られるH+2yの値以上の範囲において形成されている
    ことを特徴とする請求項1に記載の柱梁接合構造。
     ただし、B:前記柱鉄骨の前記フランジの幅(mm)、tcf:前記柱鉄骨の前記フランジの板厚(mm)、tcw:前記柱鉄骨の前記ウェブの板厚(mm)、σcfy:前記柱鉄骨の前記フランジの降伏強さ(N/mm)、σcwy:前記柱鉄骨の前記ウェブの降伏強さ(N/mm)、H:前記梁のせい(mm)、F:前記柱のコンクリートの圧縮強度(N/mm)、d:前記柱鉄骨の前記フランジに対するコンクリートのかぶり厚さ(mm)とし、前記柱が鉄骨造の場合、Fおよびdはゼロとする。
    Figure JPOXMLDOC01-appb-M000001
     
    The all strong joints are formed in a range not less than a value of H b + 2y obtained by using the following formula, with the center of the range being the center of the extent of the beam. Column beam connection structure of description.
    However, B c: width of the flange of said post steel (mm), t cf: thickness of the flange of said post steel (mm), t cw: said web having a thickness of said post steel (mm), sigma cfy : yield strength (N / mm 2 ) of the flange of the column steel, σ cwy : yield strength (N / mm 2 ) of the web of the column steel, H b : blame of the beam (mm), F c : compressive strength (N / mm 2 ) of the concrete of the column, d: cover thickness (mm) of the concrete with respect to the flange of the column steel, and when the column is a steel structure, F c and d are zero And
    Figure JPOXMLDOC01-appb-M000001
PCT/JP2017/025262 2016-07-11 2017-07-11 Beam-column connection structure WO2018012495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201809986UA SG11201809986UA (en) 2016-07-11 2017-07-11 Beam-to-column connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016137010A JP6827278B2 (en) 2016-07-11 2016-07-11 How to design a beam-column joint structure
JP2016-137010 2016-07-11

Publications (1)

Publication Number Publication Date
WO2018012495A1 true WO2018012495A1 (en) 2018-01-18

Family

ID=60953044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025262 WO2018012495A1 (en) 2016-07-11 2017-07-11 Beam-column connection structure

Country Status (3)

Country Link
JP (1) JP6827278B2 (en)
SG (1) SG11201809986UA (en)
WO (1) WO2018012495A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112942862B (en) * 2021-02-03 2022-09-20 安徽华升项目管理有限公司 Steel bar supporting device of prestressed concrete column

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696137A (en) * 1985-02-01 1987-09-29 Arbed S.A. Beam-column junction
JP2002004425A (en) * 2000-06-20 2002-01-09 Sumitomo Metal Ind Ltd Column-beam joint, rolled H-section steel for column and method of manufacturing the same
JP2003290918A (en) * 2002-03-28 2003-10-14 Katsura Steel:Kk Welded wide flange shape, and method for manufacturing the same
JP2015190296A (en) * 2014-03-31 2015-11-02 新日鐵住金株式会社 H-shaped steel and column-beam joining structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696137A (en) * 1985-02-01 1987-09-29 Arbed S.A. Beam-column junction
JP2002004425A (en) * 2000-06-20 2002-01-09 Sumitomo Metal Ind Ltd Column-beam joint, rolled H-section steel for column and method of manufacturing the same
JP2003290918A (en) * 2002-03-28 2003-10-14 Katsura Steel:Kk Welded wide flange shape, and method for manufacturing the same
JP2015190296A (en) * 2014-03-31 2015-11-02 新日鐵住金株式会社 H-shaped steel and column-beam joining structure

Also Published As

Publication number Publication date
JP6827278B2 (en) 2021-02-10
JP2018009303A (en) 2018-01-18
SG11201809986UA (en) 2018-12-28

Similar Documents

Publication Publication Date Title
JP5741356B2 (en) Column-to-column joints of ramen frames
JP2017036653A (en) Column-beam joining structure and method, method of designing column-beam joining structure, and program for designing column-beam joining structure
JP5999749B2 (en) Direct connection method for steel diaphragm beam-to-column joint and inner diaphragm with protrusions
JP6681277B2 (en) Joint strength evaluation method of beam-column joint structure, method of designing beam-column joint structure, and beam-column joint structure
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP5808593B2 (en) Reinforcement structure of steel perforated beams
JP5577676B2 (en) Column and beam welded joint structure
JP5579582B2 (en) Method of joining buckling stiffening braces and buckling stiffening braces
JP2018178466A (en) Damper and method for manufacturing damper
WO2018012495A1 (en) Beam-column connection structure
JP5483666B2 (en) building
JP2020041319A (en) Joint structure of main structure and brace
WO2010103801A1 (en) Seismic resistant steel structure and method for designing same
JP5973968B2 (en) Column beam welded joint and manufacturing method thereof
JP6152809B2 (en) Beam-column joint structure
JP7195081B2 (en) Scallops and beam end joints using the scallops
JP2012188872A (en) Concrete filled circular steel pipe column
JP6996544B2 (en) Seismic retrofitting method for existing structures
JP2024092476A (en) Beam-column joint and design method thereof
JP7138460B2 (en) Steel beam reinforcement method and steel beam
JP5558156B2 (en) H-shaped steel beam
JP7609090B2 (en) Steel beam and steel column joint structure and H-shaped steel used for this
JP7622723B2 (en) Joint structure between square steel pipe column and H-shaped steel beam and manufacturing method for joint structure
JP6250461B2 (en) Damper brace
JP7542019B2 (en) Steel beam-column joint structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17827622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827622

Country of ref document: EP

Kind code of ref document: A1