[go: up one dir, main page]

WO2018010615A1 - Novel non-ionic polyamide rheology modifier for aqueous coating - Google Patents

Novel non-ionic polyamide rheology modifier for aqueous coating Download PDF

Info

Publication number
WO2018010615A1
WO2018010615A1 PCT/CN2017/092345 CN2017092345W WO2018010615A1 WO 2018010615 A1 WO2018010615 A1 WO 2018010615A1 CN 2017092345 W CN2017092345 W CN 2017092345W WO 2018010615 A1 WO2018010615 A1 WO 2018010615A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
ionic
rheology modifier
group
modifier composition
Prior art date
Application number
PCT/CN2017/092345
Other languages
French (fr)
Inventor
Wei-Jen Huang
Chun-Hung YEN
Tsai-Ling HUANG
Mei-Ching Lin
Hung-Yi Lin
Original Assignee
Deuchem (Shanghai) Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deuchem (Shanghai) Chemical Co., Ltd. filed Critical Deuchem (Shanghai) Chemical Co., Ltd.
Publication of WO2018010615A1 publication Critical patent/WO2018010615A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/60Polyamides or polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents

Definitions

  • a non-ionic rheology modifier composition for aqueous paints which prevents settlement of pigments and solid particles in paints.
  • pigment suspension or anti-settling agents are added into the composition.
  • the anti-settling agents can provide excellent pigment suspension and rheological properties to the aqueous coating composition. Applying pigment suspension or anti-settling agents can overcome the problem of settling that occurs in the paint. Without such anti-settling agents, pigments and other undissolved materials, upon settling, may be difficult to re-disperse in the coating system.
  • the additive, anti-settling agent is therefore in the art useful to control the rheological properties and pigment suspension properties of aqueous fluid systems containing finely divided solid particles and become easy to use.
  • a material which is useful as anti-settling or pigment suspension agents for organic (or non-aqueous) coating compositions is emulsifiable polyethylene wax dispersed in organic solvents. It was disclosed in U.S. Pat. Nos. 3,123,488 and 3,184,233. U.S. Pat. No. 3,985,568 described a creamy paste comprising finely divided particles of an emulsifiable polyethylene wax suspended in a sulfated/sulfonated castor oil solution which is useful for modifying the rheological and suspension properties of non-aqueous fluid systems containing finely divided solid particles.
  • U.S. Pat. No. 3,937,678 discloses that applying a mixture of an amide wax, obtained by reacting hydrogenated castor oil fatty acid, or an organic mixture containing hydrogenated castor oil fatty acid with amines, into non-aqueous fluid systems can improve the rheological properties and suspension properties of non-aqueous fluid systems containing finely divided solid particles.
  • Thickeners such as fumed silica or clays such as montmorillonite, hectorite, or attapulgite have been used in aqueous coating systems to correct pigment settling problems.
  • these materials have the disadvantage of lowering the gloss associated with the cured coating system and are difficult to use as a post-add correction at the completion of the preparation of a paint.
  • These materials are difficult to disperse during the manufacture of a paint and require high shear mixing equipment to achieve adequate dispersion.
  • U.S. Pat. No. 4,381,376 discloses a method for forming ionic copolymer salts from low molecular weight copolymer acids formed from ethylene and an alpha, beta-ethylenically unsaturated carboxylic acid having at least one carboxylic acid group, and cations having a valence of 1 to 3. These materials can be dispersion aids to disperse finely divided inert material such as pigments in a variety of non-aqueous polymer compositions including polypropylene and polyethylene.
  • U.S. Pat. No. 5,374,687 discloses a substance obtained by neutralizing, with a neutralizing agent, an emulsifying copolymer obtained from a ⁇ -olefin and an ⁇ , ⁇ -ethylenic unsaturated carboxylic acid.
  • the composition performed as an aqueous anti-settling agent.
  • This additive is liquid and thus has an advantage on handling, but it is insufficient in effect as an anti-settling agent for aluminum pigments or pearlescent pigments such as mica used in aqueous metallic paints.
  • U.S. Pat. No. 5,994,494 discloses an anti-settling agent for aqueous paint.
  • the composition was obtained by the following process: a polyamide, which is obtained by reacting a primary diamine having 2 to 12 carbon atoms with, in an amount in excess to the diamine, a dimer dicarboxylic acid, obtained by polymerizing an unsaturated fatty acid (common name: dimer acid) , or a mixture of a dimer acid with another dicarboxylic acid having 3 to 21 carbon atoms and/or a monocarboxylic acid having 2 to 22 carbon atoms.
  • the polyamide is neutralized with a neutralizing base, and then the neutralized polyamide is dispersed in a medium mainly composed of water.
  • Previously disclosed anti-settling agents having a polyamide composition included an aromatic solvent to improve the dehydration which would cause residual aromatic solvent to be left in the coating even though the a solvent removal process was applied (U.S. Pat. No. 5,994,494) .
  • many of the earlier anti-settling agents for aqueous coatings require the use of amine neutralizing agents. As a result the coating performance became sensitive to pH. In some instances, the neutralizing agent would also cause volatility problems.
  • the present invention overcomes the problems and disadvantages of the prior art by providing excellent pigment suspension and rheological properties to aqueous coating compositions without amine neutralizing agent and consequent pH sensitivity.
  • the invention provides for a non-ionic rheology modifier composition for aqueous paints which is derived from a process having steps of: reacting a multi-acid terminated polyamide with a mono-epoxy terminated polymer having a non-ionic hydrophilic segment to thereby form a polymer; and dispersing the polymer in water with co-solvent to obtain the rheology modifier dispersion.
  • the invention provides for a non-ionic rheology modifier composition for aqueous paints which is derived from a process which comprises: reacting a multi-acid terminated polyamide with an alkyl glycidyl ether to form an intermediate; reacting the intermediate with a mono-isocyanate terminated polymer having a non-ionic hydrophilic segment to thereby form a polymer; and dispersing the polymer in water with co-solvent to obtain the rheology modifier dispersion.
  • the invention provides for a non-ionic polyamide rheology modifier according to Formula (1)
  • X in Formula (1) is multi-acid terminated polyamide
  • R1 in Formula (1) is aliphatic, cycloaliphatic, or aromatic end group having 1 to 22 carbon atoms.
  • R2 in Formula (1) is the residue part of diisocyanate compound selected from the group consisting of toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate, and X’ in is poly (C 2-4 alkylene oxide) .
  • the object of this invention is to provide an anti-settling agent or pigment suspension agent from an aromatic free and non-volatile process, which is more eco-friendly when compared to the present materials used for anti-settling and pigment suspension in the aqueous coating systems.
  • the anti-settling agent is easy to handle, and is readily incorporated into aqueous compositions.
  • the process and the ratio of compositions are controlled in the manufacture of the materials used for anti-settling in our invention, the physical properties and the application properties are also controllable. Embodiments of rheological additives to achieve this object are described herein.
  • Non-ionic polyamide rheology modifier which may be obtained from a process which comprises reacting a multi-acid terminated polyamide with a mono-epoxy terminated polymer having a non-ionic hydrophilic segment. Subsequently, the polyamide is dispersed in water with co-solvent to obtain the rheology modifier at 25%solid content.
  • the multi-acid terminated polyamide is made by reacting at least one dicarboxylic acid and/or tricarboxylic acid having 3 to 54 carbon atoms and with at least one diamine.
  • the dicarboxylic acid is selected from the group consisting of propanedioic acid, succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, isophthalic acid and dimerized fatty acid.
  • the tricarboxylic acid is selected from the group consisting of citric acid, propane-1, 2, 3-tricarboxylic acid, 1, 2, 4-butanetricarboxylic acid, benzene-1, 3, 5-tricarboxylic acid, 1, 2, 4-benzenetricarboxylic acid, biphenyl-3, 4’ , 5-tricarboxylic acid and trimerized fatty acid.
  • the diamine is selected from the group consisting of ethylenediamine, 1, 4-diaminobutane, hexamethylenediamine, 1, 10-decamethylenediamine, 1, 11-undecamethylenediamine, 1, 12-dodecamethylenediamine, xylenediamine and 4, 4’ -diaminodiphenylmethane.
  • a mono-epoxy terminated polymer having a non-ionic hydrophilic segment is made by reacting an epichlorohydrin with a mono-hydroxyl non-ionic hydrophilic compound, or by reacting monoalkyl acid with di-glycidyl capped non-ionic hydrophilic compound.
  • the mono-hydroxyl non-ionic hydrophilic compound has a molecular weight ranging from 500 to 3000 g/mole and comprises a poly (C 2-4 alkylene oxide) and having an aliphatic, cycloaliphatic or aromatic end group having 1 to 22 carbon atoms.
  • a monoalkyl acid is selected from a group consisting of acetic acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behemic acid, 1, 2-hydroxystearic acid, and oleic acid.
  • the non-ionic hydrophilic segment of di-glycidyl capped compound has a molecular weight ranging from 500 to 3000 and comprises poly (C 2-4 alkylene oxide) segment containing 10%-100%ethylene oxide groups.
  • multi-acid terminated polyamide and mono-epoxy terminated polymer may be combined as different embodiments of a non-ionic polyamide rheology modifier.
  • non-ionic polyamide rheology modifier which may be obtained from a process which comprises reacting a multi-acid terminated polyamide with an alkyl glycidyl ether to form an intermediate and then reacting the intermediate with a mono-isocyanate terminated polymer having a non-ionic hydrophilic segment.
  • the multi-acid terminated polyamide is made by reacting at least one dicarboxylic acid and/or tricarboxylic acid having 3 to 54 carbon atoms and with at least one diamine.
  • the dicarboxylic acid is selected from the group consisting of propanedioic acid, succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, isophthalic acid and dimerized fatty acid.
  • the tricarboxylic acid is selected from the group consisting of citric acid, propane-1, 2, 3-tricarboxylic acid, 1, 2, 4-butanetricarboxylic acid, benzene-1, 3, 5-tricarboxylic acid, 1, 2, 4-benzenetricarboxylic acid, biphenyl-3, 4’ , 5-tricarboxylic acid and trimerized fatty acid.
  • the diamine is selected from the group consisting of ethylenediamine, 1, 4-diaminobutane, hexamethylenediamine, 1, 10-decamethylenediamine, 1, 11-undecamethylenediamine, 1, 12-dodecamethylenediamine, xylenediamine and 4, 4’ -diaminodiphenylmethane.
  • the alkyl glycidyl ether is selected from the group consisting of alkyl glycidyl ether with alkyl C2-C16, ex: ethyl glycidyl ether, glycidyl isopropyl ether, butyl glycidyl ether, glycidyl isobutyl ether, tert-butyl glycidyl ether, octyl glycidyl ether, decyl glycidyl ether, dodecyl glycidyl ether, tetradodecyl glycidyl ether and glycidyl hexadecyl ether.
  • the mono-isocyanate terminated polymer having a non-ionic hydrophilic segment is made by reacting a diisocyanate with mono-hydroxyl non-ionic hydrophilic compound.
  • the diisocyanate is selected from the group consisting of toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane-4, 4'-Diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate, or mixtures of such diisocyanates.
  • the mono-hydroxyl non-ionic hydrophilic compound has a molecular weight ranging from M from 500 to 3000 g/mole and comprises a poly (C 2-4 alkylene oxide) having an aliphatic, cycloaliphatic or aromatic end group having 1 to 22 carbon atoms.
  • multi-acid terminated polyamide, alkyl glycidyl ether and mono-isocyanate terminated polymer may be combined as different embodiments of a non-ionic polyamide rheology modifier.
  • the co-solvent is selected from a group consisting of ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether butyl Cellosolve solvent, N-methyl-2-pyrrolidone, 3-methoxy-3-methyl-1-butanol, 3-methoxy-3-methyl-1-butanol acetate, methyl-5- (dimethylamino) -2-methyl-5-oxopentanoate, N-formylmorpholine.
  • Y in Formula (1) is one of more of the end groups selected from the group consisting of:
  • R1 is aliphatic, cycloaliphatic, or aromatic end group having 1 to 22 carbon atoms.
  • R2 is the residue part of diisocyanate compound selected from the group consisting of toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate,
  • X’ is poly (C 2-4 alkylene oxide) .
  • MPEG1000 was charged in a four necked round bottom flask equipped with a stirring apparatus, a cold water condenser, a thermo-regulator and a nitrogen-inducing tube.
  • An equal equivalent epichlorohydrin was dropwise added into flask, the reaction was carried out at 60°Cfor three (3) hours and further extracted with 5%NaOH aqueous solution by separatory funnel to obtained the mono-epoxy capping polymer with non-ionic hydrophilic segment B-1.
  • Di-glycidyl PEG1000 and triethylamine as catalyst were charged in a four necked round bottom flask equipped with a stirring apparatus, a cold water condenser, a thermo-regulator and a nitrogen-inducing tube.
  • Half-equivalent lauric acid was pre-melt at 70°C and gradually added into flask, the reaction was carried out at 85°C for six (6) hours to obtain the mono-epoxy capping polymer with non-ionic hydrophilic segment B-2.
  • One (1) mole of MPEG550 was charged in a 1L four-necked flask equipped with a stirring apparatus, a thermo-regulator and a nitrogen-inducing tube, heated to 70°C, when the MPEG compound melted, one (1) mole of IPDI was gradually added into the flask, then cooled to 50°C, added 0.15 wt%of triethylamine.
  • a mono-isocyanate terminated polymer synthesis example C-1 was obtained in which the NCO%changed from 10.8%to 5.4%.
  • the mono-isocyanate terminated polymer synthesis example C-2 was carried out according to the synthesis step of example C-1, and the target intermediate was obtained in which the NCO%changed from 6.9%to 3.45%.
  • non-ionic polyamide rheology modifier synthesis examples were carried out according to the synthesis method of Example 1 with the composition showed in Table 4 to obtain non-ionic polyamide rheology modifier examples 2 to 4.
  • One (1) mole of multi-acid terminated polyamide A-3 was charged in a four necked round bottom flask equipped with a stirring apparatus, a cold water condenser, a thermo-regulator and a nitrogen-inducing tube, heated to 120°C to melt, 2 mole of BGE, 0.15 wt%of triethylamine as catalyst were added in flask, then the hydroxyl polyamide intermediate with acid value ⁇ 1 mg KOH/g was obtained by carrying out the reaction at 120°C for six (6) hours, then cooled to 70°C, and two (2) mole of mono-isocyanate terminated polymer C-1 was added into the flask and react with the hydroxyl polyamide intermediate for five (5) hours while the NCO%is lower than 0.1%to obtain the non-ionic polyamide rheology modifier.
  • non-ionic polyamide rheology modifier synthesis examples were carried out according to the synthesis method of Example 5 with the composition showed in TABLE 4 to obtain non-ionic polyamide rheology modifier examples 6-12.
  • Performance test of non-ionic polyamide rheology modifier for aqueous paint was carried out on aqueous styrene acrylic resin paint of the following composition in Table 5.
  • DI-water, Levelol W-469, DAPRO DF677, AS2610 and Deuadd MA-95 (10%) are mixed under stirring to give a basic coating as Part A.
  • BG and DI-water used as co-solvent, NUOSPESE FN265 and AWA40596 (50%) are mixed under stirring to give an aluminum paste as Part B.
  • Part B is added into Part A under stirring, then add rheology modifier and thickener Rheolate 150 to give an aqueous paint.
  • the KU viscosities of the aqueous paints were measured by KU viscometer at 25°C for initial and overnight.
  • Brookfield viscosities (cPs) at 25°C in 10 rpm to 100 rpm of the aqueous paints are measured using a DV-II viscometer with spindle LV3, and the ratio (viscosity at 10 rpm/viscosity at 100 rpm) is calculated.
  • the paint is diluted with deionized water so that the viscosity measured using a NK2 viscosity cup may be 12 to 15 seconds (25°C) , the diluted paint is transferred into a 50-mL glass test tube, and the percentage of the volume of the AWA40596 which settled to the volume of the whole paint is measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polyamides (AREA)
  • Paints Or Removers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A non-ionic rheology modifier which comprises polyamides that are prepared from an acid-terminated polymer with capping by a polymer containing a non-ionic hydrophilic segment, and dispersing in water thereafter, is made for use in aqueous paint, and that provides excellent pigment suspension and rheological properties to the aqueous based coating.

Description

NOVEL NON-IONIC POLYAMIDE RHEOLOGY MODIFIER FOR AQUEOUS COATING FIELD OF THE INVENTION
A non-ionic rheology modifier composition for aqueous paints which prevents settlement of pigments and solid particles in paints.
BACKGROUND
To prevent the settling of pigments or other finely divided solid particles used in the paint during storage, pigment suspension or anti-settling agents are added into the composition. The anti-settling agents can provide excellent pigment suspension and rheological properties to the aqueous coating composition. Applying pigment suspension or anti-settling agents can overcome the problem of settling that occurs in the paint. Without such anti-settling agents, pigments and other undissolved materials, upon settling, may be difficult to re-disperse in the coating system. The additive, anti-settling agent, is therefore in the art useful to control the rheological properties and pigment suspension properties of aqueous fluid systems containing finely divided solid particles and become easy to use.
Because the particle size of the pigment is large and the specific gravity is also large, aluminum pigments or pearlescent pigments such as mica or corrosion-resistant pigments as used in used in metallic paints and corrosion-resistant paints would cause settling readily in paint. In solvent type paints, amide wax type or polyethylene oxide wax type anti-settling agents are used for preventing settling, but many of these additives are unsuitable for use in aqueous paints.
A material which is useful as anti-settling or pigment suspension agents for organic (or non-aqueous) coating compositions is emulsifiable polyethylene wax dispersed in organic solvents. It was disclosed in U.S. Pat. Nos. 3,123,488 and 3,184,233. U.S. Pat. No. 3,985,568 described a creamy paste comprising finely divided particles of an emulsifiable polyethylene wax suspended in a sulfated/sulfonated castor oil solution which is useful for modifying the rheological and suspension properties of non-aqueous fluid systems containing finely divided solid particles.
U.S. Pat. No. 3,937,678 discloses that applying a mixture of an amide wax, obtained by reacting hydrogenated castor oil fatty acid, or an organic mixture containing hydrogenated castor  oil fatty acid with amines, into non-aqueous fluid systems can improve the rheological properties and suspension properties of non-aqueous fluid systems containing finely divided solid particles.
Thickeners such as fumed silica or clays such as montmorillonite, hectorite, or attapulgite have been used in aqueous coating systems to correct pigment settling problems. However, these materials have the disadvantage of lowering the gloss associated with the cured coating system and are difficult to use as a post-add correction at the completion of the preparation of a paint. These materials are difficult to disperse during the manufacture of a paint and require high shear mixing equipment to achieve adequate dispersion.
U.S. Pat. No. 4,381,376 discloses a method for forming ionic copolymer salts from low molecular weight copolymer acids formed from ethylene and an alpha, beta-ethylenically unsaturated carboxylic acid having at least one carboxylic acid group, and cations having a valence of 1 to 3. These materials can be dispersion aids to disperse finely divided inert material such as pigments in a variety of non-aqueous polymer compositions including polypropylene and polyethylene.
U.S. Pat. No. 5,374,687 discloses a substance obtained by neutralizing, with a neutralizing agent, an emulsifying copolymer obtained from a α-olefin and an α, β-ethylenic unsaturated carboxylic acid. The composition performed as an aqueous anti-settling agent. This additive is liquid and thus has an advantage on handling, but it is insufficient in effect as an anti-settling agent for aluminum pigments or pearlescent pigments such as mica used in aqueous metallic paints.
U.S. Pat. No. 5,994,494 discloses an anti-settling agent for aqueous paint. The composition was obtained by the following process: a polyamide, which is obtained by reacting a primary diamine having 2 to 12 carbon atoms with, in an amount in excess to the diamine, a dimer dicarboxylic acid, obtained by polymerizing an unsaturated fatty acid (common name: dimer acid) , or a mixture of a dimer acid with another dicarboxylic acid having 3 to 21 carbon atoms and/or a monocarboxylic acid having 2 to 22 carbon atoms. The polyamide is neutralized with a neutralizing base, and then the neutralized polyamide is dispersed in a medium mainly composed of water.
In recent years, examination of aqueous paints has actively been made because of environmental and ease of use concerns. As a result anti-settling agents for aqueous systems are naturally sought. Although, as stated above, various ones have hitherto been proposed as  aqueous anti-settling agents, they have had problems, e.g. that they are insufficient in effect to prevent the settling of pigments having large particle sizes and large specific gravities, for example, aluminum pigments and pearlescent pigments such as mica used in aqueous metallic paints, corrosion-resistant pigments used in aqueous corrosion-resistant paints. Additionally luster and water resistance are lowered.
Previously disclosed anti-settling agents having a polyamide composition included an aromatic solvent to improve the dehydration which would cause residual aromatic solvent to be left in the coating even though the a solvent removal process was applied (U.S. Pat. No. 5,994,494) . Additionally, many of the earlier anti-settling agents for aqueous coatings require the use of amine neutralizing agents. As a result the coating performance became sensitive to pH. In some instances, the neutralizing agent would also cause volatility problems.
The present invention overcomes the problems and disadvantages of the prior art by providing excellent pigment suspension and rheological properties to aqueous coating compositions without amine neutralizing agent and consequent pH sensitivity.
SUMMARY OF INVENTION
In one embodiment, the invention provides for a non-ionic rheology modifier composition for aqueous paints which is derived from a process having steps of: reacting a multi-acid terminated polyamide with a mono-epoxy terminated polymer having a non-ionic hydrophilic segment to thereby form a polymer; and dispersing the polymer in water with co-solvent to obtain the rheology modifier dispersion.
In another embodiment, the invention provides for a non-ionic rheology modifier composition for aqueous paints which is derived from a process which comprises: reacting a multi-acid terminated polyamide with an alkyl glycidyl ether to form an intermediate; reacting the intermediate with a mono-isocyanate terminated polymer having a non-ionic hydrophilic segment to thereby form a polymer; and dispersing the polymer in water with co-solvent to obtain the rheology modifier dispersion.
In yet another embodiment, the invention provides for a non-ionic polyamide rheology modifier according to Formula (1)
Figure PCTCN2017092345-appb-000001
. X in Formula (1) is multi-acid terminated polyamide,
n=2~6, and Y in Formula (1) is one of more of the end groups including:
Figure PCTCN2017092345-appb-000002
where R1 in Formula (1) is aliphatic, cycloaliphatic, or aromatic end group having 1 to 22 carbon atoms. In one embodiment, R2 in Formula (1) is the residue part of diisocyanate compound selected from the group consisting of toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate, and X’ in is poly (C2-4 alkylene oxide) .
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The object of this invention is to provide an anti-settling agent or pigment suspension agent from an aromatic free and non-volatile process, which is more eco-friendly when compared to the present materials used for anti-settling and pigment suspension in the aqueous coating systems. The anti-settling agent is easy to handle, and is readily incorporated into aqueous compositions. Moreover, by using raw materials with designed composition instead of mixtures, the process and the ratio of compositions are controlled in the manufacture of the materials used for anti-settling in our invention, the physical properties and the application properties are also controllable. Embodiments of rheological additives to achieve this object are described herein.
One embodiment of the disclosure provides for a non-ionic polyamide rheology modifier which may be obtained from a process which comprises reacting a multi-acid terminated polyamide with a mono-epoxy terminated polymer having a non-ionic hydrophilic segment. Subsequently, the polyamide is dispersed in water with co-solvent to obtain the rheology modifier at 25%solid content.
In some embodiments, the multi-acid terminated polyamide is made by reacting at least one dicarboxylic acid and/or tricarboxylic acid having 3 to 54 carbon atoms and with at least one diamine. In such embodiments, the dicarboxylic acid is selected from the group consisting of propanedioic acid, succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, isophthalic acid and dimerized fatty acid. In another embodiment, the tricarboxylic acid is selected from the group consisting of citric acid, propane-1, 2, 3-tricarboxylic acid, 1, 2, 4-butanetricarboxylic acid, benzene-1, 3, 5-tricarboxylic acid, 1, 2, 4-benzenetricarboxylic acid, biphenyl-3, 4’ , 5-tricarboxylic acid and trimerized fatty acid. In each of the foregoing embodiments, the diamine is selected from the group consisting of ethylenediamine, 1, 4-diaminobutane, hexamethylenediamine, 1, 10-decamethylenediamine, 1, 11-undecamethylenediamine, 1, 12-dodecamethylenediamine, xylenediamine and 4, 4’ -diaminodiphenylmethane.
In some embodiments, a mono-epoxy terminated polymer having a non-ionic hydrophilic segment is made by reacting an epichlorohydrin with a mono-hydroxyl non-ionic hydrophilic compound, or by reacting monoalkyl acid with di-glycidyl capped non-ionic hydrophilic compound. In such embodiments, the mono-hydroxyl non-ionic hydrophilic compound has a molecular weight ranging from 500 to 3000 g/mole and comprises a poly (C2-4alkylene oxide) and having an aliphatic, cycloaliphatic or aromatic end group having 1 to 22 carbon atoms.
In some embodiments where a monoalkyl acid is reacted with di-glycidyl capped non-ionic hydrophilic compound, a monoalkyl acid is selected from a group consisting of acetic acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behemic acid, 1, 2-hydroxystearic acid, and oleic acid. In such embodiments, the non-ionic hydrophilic segment of di-glycidyl capped compound has a molecular weight ranging from 500 to 3000 and comprises poly (C2-4alkylene oxide) segment containing 10%-100%ethylene oxide groups.
Each of the foregoing embodiments of multi-acid terminated polyamide and mono-epoxy terminated polymer may be combined as different embodiments of a non-ionic polyamide rheology modifier.
Another embodiment of the disclosure provides for a non-ionic polyamide rheology modifier which may be obtained from a process which comprises reacting a multi-acid terminated polyamide with an alkyl glycidyl ether to form an intermediate and then reacting the intermediate with a mono-isocyanate terminated polymer having a non-ionic hydrophilic segment.
In one embodiment, the multi-acid terminated polyamide is made by reacting at least one dicarboxylic acid and/or tricarboxylic acid having 3 to 54 carbon atoms and with at least one diamine. In such embodiments, the dicarboxylic acid is selected from the group consisting of propanedioic acid, succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, isophthalic acid and dimerized fatty acid. In another embodiment, the tricarboxylic acid is selected from the group consisting of citric acid, propane-1, 2, 3-tricarboxylic acid, 1, 2, 4-butanetricarboxylic acid, benzene-1, 3, 5-tricarboxylic acid, 1, 2, 4-benzenetricarboxylic acid, biphenyl-3, 4’ , 5-tricarboxylic acid and trimerized fatty acid. In each of the foregoing embodiments, the diamine is selected from the group consisting of ethylenediamine, 1, 4-diaminobutane, hexamethylenediamine, 1, 10-decamethylenediamine, 1, 11-undecamethylenediamine, 1, 12-dodecamethylenediamine, xylenediamine and 4, 4’ -diaminodiphenylmethane.
In one embodiment, the alkyl glycidyl ether is selected from the group consisting of alkyl glycidyl ether with alkyl C2-C16, ex: ethyl glycidyl ether, glycidyl isopropyl ether, butyl glycidyl ether, glycidyl isobutyl ether, tert-butyl glycidyl ether, octyl glycidyl ether, decyl glycidyl ether, dodecyl glycidyl ether, tetradodecyl glycidyl ether and glycidyl hexadecyl ether.
In another embodiment, the mono-isocyanate terminated polymer having a non-ionic hydrophilic segment is made by reacting a diisocyanate with mono-hydroxyl non-ionic hydrophilic compound. In such embodiments, the diisocyanate is selected from the group consisting of toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane-4, 4'-Diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate, or mixtures of such diisocyanates. In such embodiments, the mono-hydroxyl non-ionic hydrophilic compound has a  molecular weight ranging from M from 500 to 3000 g/mole and comprises a poly (C2-4alkylene oxide) having an aliphatic, cycloaliphatic or aromatic end group having 1 to 22 carbon atoms.
Each of the foregoing embodiments of multi-acid terminated polyamide, alkyl glycidyl ether and mono-isocyanate terminated polymer may be combined as different embodiments of a non-ionic polyamide rheology modifier.
For each of the foregoing embodiments of non-ionic polyamide rheology modifier, the co-solvent is selected from a group consisting of ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether butyl Cellosolve solvent, N-methyl-2-pyrrolidone, 3-methoxy-3-methyl-1-butanol, 3-methoxy-3-methyl-1-butanol acetate, methyl-5- (dimethylamino) -2-methyl-5-oxopentanoate, N-formylmorpholine.
In another embodiment of the disclosure provides for a non-ionic polyamide rheology modifier according to Formula (1)
Figure PCTCN2017092345-appb-000003
wherein X is multi-acid terminated polyamide and n=2~6. Y in Formula (1) is one of more of the end groups selected from the group consisting of:
Figure PCTCN2017092345-appb-000004
In some embodiments, R1 is aliphatic, cycloaliphatic, or aromatic end group having 1 to 22 carbon atoms. In some other embodiments, R2 is the residue part of diisocyanate compound selected from the group consisting of toluene diisocyanate, isophorone diisocyanate,  hexamethylene diisocyanate, diphenylmethane-4, 4'-diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate,
and X’ is poly (C2-4 alkylene oxide) .
EXAMPLES
Example A-1: Multi-Acid Terminated Polyamide Synthesis
0.49 mole of dimer acid and 0.11 mole of adipic acid were charged in a 1L four-necked flask equipped with a stirring apparatus, a thermos-regulator, a diversion device and a nitrogen-inducing tube, then stirred and heated to 50℃. 0.4 mole of ethylenediamine was gradually added and the exothermic situation was observed, the mixture was stirred and gradually heated to 175℃ to carry out dehydration reaction. A brown multi-acid terminated polyamide A-1 with acid value of 74 mg KOH/g was obtained by two (2) hour reaction.
Examples A-2-A-8: Multi-Acid Terminated Polyamide Synthesis Examples
Other multi-acid terminated polyamide synthesis examples were carried out according to the synthesis method of Example 1 with the composition showed in Table 1 to obtain multi-acid terminated polyamides A-2 to A-8.
Table 1 Composition of Synthesis Examples of Multi-Acid Terminated Polyamides
Figure PCTCN2017092345-appb-000005
Examples B1-B2: Mono-Epoxy Terminated Polymer With Non-Ionic Hydrophilic Segment Synthesis
MPEG1000 was charged in a four necked round bottom flask equipped with a stirring apparatus, a cold water condenser, a thermo-regulator and a nitrogen-inducing tube. An equal  equivalent epichlorohydrin was dropwise added into flask, the reaction was carried out at 60℃for three (3) hours and further extracted with 5%NaOH aqueous solution by separatory funnel to obtained the mono-epoxy capping polymer with non-ionic hydrophilic segment B-1.
Di-glycidyl PEG1000 and triethylamine as catalyst were charged in a four necked round bottom flask equipped with a stirring apparatus, a cold water condenser, a thermo-regulator and a nitrogen-inducing tube. Half-equivalent lauric acid was pre-melt at 70℃ and gradually added into flask, the reaction was carried out at 85℃ for six (6) hours to obtain the mono-epoxy capping polymer with non-ionic hydrophilic segment B-2.
Table 2 Synthesis Examples of Mono-Epoxy Terminated Polymer With Non-Ionic Hydrophilic Segment
Figure PCTCN2017092345-appb-000006
Examples C1-C2: Mono-isocyanate Terminated Polymer with Non-Ionic Hydrophilic Segment Synthesis
One (1) mole of MPEG550 was charged in a 1L four-necked flask equipped with a stirring apparatus, a thermo-regulator and a nitrogen-inducing tube, heated to 70℃, when the MPEG compound melted, one (1) mole of IPDI was gradually added into the flask, then cooled to 50℃, added 0.15 wt%of triethylamine. A mono-isocyanate terminated polymer synthesis example C-1 was obtained in which the NCO%changed from 10.8%to 5.4%.
The mono-isocyanate terminated polymer synthesis example C-2 was carried out according to the synthesis step of example C-1, and the target intermediate was obtained in which the NCO%changed from 6.9%to 3.45%.
Table 3 Synthesis Examples of Mono-isocyanate Terminated Polymer with Non-Ionic Hydrophilic Segment
Figure PCTCN2017092345-appb-000007
Example 1: Non-Ionic Polyamide Rheology Modifier Synthesis
One (1) mole of multi-acid terminated polyamide A-1 and 2 mole of mono-epoxy terminated polymer B-1 were charged in a four necked round bottom flask equipped with a stirring apparatus, a cold water condenser, a thermo-regulator and a nitrogen-inducing tube. 0.15 wt%of triethyl amine as catalyst added into flask and the reaction was carried out at 120℃ for six (6) hours to obtain the non-ionic rheology modifier example 1.
Examples 2-4: Non-Ionic Polyamide Rheology Modifier Synthesis Examples
Other non-ionic polyamide rheology modifier synthesis examples were carried out according to the synthesis method of Example 1 with the composition showed in Table 4 to obtain non-ionic polyamide rheology modifier examples 2 to 4.
Example 5: Non-Ionic Polyamide Rheology Modifier Synthesis
One (1) mole of multi-acid terminated polyamide A-3 was charged in a four necked round bottom flask equipped with a stirring apparatus, a cold water condenser, a thermo-regulator and a nitrogen-inducing tube, heated to 120℃ to melt, 2 mole of BGE, 0.15 wt%of triethylamine as catalyst were added in flask, then the hydroxyl polyamide intermediate with acid value<1 mg KOH/g was obtained by carrying out the reaction at 120℃ for six (6) hours, then cooled to 70℃, and two (2) mole of mono-isocyanate terminated polymer C-1 was added into the flask and react with the hydroxyl polyamide intermediate for five (5) hours while the NCO%is lower than 0.1%to obtain the non-ionic polyamide rheology modifier.
Example 6-12: Non-Ionic Polyamide Rheology Modifier Synthesis Examples
Other non-ionic polyamide rheology modifier synthesis examples were carried out according to the synthesis method of Example 5 with the composition showed in TABLE 4 to obtain non-ionic polyamide rheology modifier examples 6-12.
Table 4 Synthesis Examples of Non-Ionic Polyamide Rheology Modifier
Figure PCTCN2017092345-appb-000008
TEST EXAMPLE
Performance test of non-ionic polyamide rheology modifier for aqueous paint was carried out on aqueous styrene acrylic resin paint of the following composition in Table 5.
Table 5 Composition of Aqueous Styrene Acrylic Resin Paint
Figure PCTCN2017092345-appb-000009
Method of the preparation of aqueous paints:
DI-water, Levelol W-469, DAPRO DF677, AS2610 and Deuadd MA-95 (10%) are mixed under stirring to give a basic coating as Part A. BG and DI-water used as co-solvent, NUOSPESE FN265 and AWA40596 (50%) are mixed under stirring to give an aluminum paste as Part B. Part B is added into Part A under stirring, then add rheology modifier and thickener Rheolate 150 to give an aqueous paint.
Evaluation of KU viscosity and Brookfield viscosity of aqueous paints:
The KU viscosities of the aqueous paints were measured by KU viscometer at 25℃ for initial and overnight.
The Brookfield viscosities (cPs) at 25℃ in 10 rpm to 100 rpm of the aqueous paints are measured using a DV-II viscometer with spindle LV3, and the ratio (viscosity at 10 rpm/viscosity at 100 rpm) is calculated.
Anti-settling test:
The paint is diluted with deionized water so that the viscosity measured using a NK2 viscosity cup may be 12 to 15 seconds (25℃) , the diluted paint is transferred into a 50-mL glass test tube, and the percentage of the volume of the AWA40596 which settled to the volume of the whole paint is measured.
Table 6 Performance Test of Examples (2%Dosage)
Figure PCTCN2017092345-appb-000010
(Continued) Table 6 Performance Test of Examples (2%Dosage)
Figure PCTCN2017092345-appb-000011
Results of performance test of non-ionic polyamide rheology modifier for aqueous paint were shown in Table 6. The results showed that the rheology modifier in this invention exerts good effect in thixotropic properties, prevention of settling of metallic pigment and contributes to an improved pigment orientation of metal pigment when using in aqueous paint system.

Claims (23)

  1. A non-ionic rheology modifier composition for aqueous paints which is derived from a process which comprises:
    (1) reacting a multi-acid terminated polyamide with a mono-epoxy terminated polymer having a non-ionic hydrophilic segment to thereby form a polymer; and
    (2) dispersing the polymer in water with co-solvent to obtain the rheology modifier dispersion.
  2. The non-ionic rheology modifier composition of claim 1, wherein the multi-acid terminated polyamide is obtained by reacting at least one dicarboxylic acid and/or tricarboxylic acid having 3 to 54 carbon atoms with at least one diamine.
  3. The non-ionic rheology modifier composition of claim 2, wherein the dicarboxylic acid is selected from the group consisting of propanedioic acid, succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, isophthalic acid and dimerized fatty acid.
  4. The non-ionic rheology modifier composition of claim 2, wherein the tricarboxylic acid is selected from the group consisting of, citric acid, propane-1, 2, 3-tricarboxylic acid, 1, 2, 4-butanetricarboxylic acid, benzene-1, 3, 5-tricarboxylic acid, 1, 2, 4-benzenetricarboxylic acid, biphenyl-3, 4’ , 5-tricarboxylic acid and trimerized fatty acid.
  5. The non-ionic rheology modifier composition of claim 2 wherein the diamine is selected from the group consisting of ethylenediamine, 1, 4-diaminobutane, hexamethylenediamine, 1, 10-decamethylenediamine, 1, 11-undecamethylenediamine, 1, 12-dodecamethylenediamine, xylenediamine and 4, 4’ -diaminodiphenylmethane.
  6. The non-ionic rheology modifier composition of claim 1, wherein the mono-epoxy terminated polymer having a non-ionic hydrophilic segment is obtained by
    (1) reacting an epichlorohydrin with a mono-hydroxyl non-ionic hydrophilic compound or
    (2) reacting a monoalkyl acid with a di-glycidyl terminated non-ionic hydrophilic compound.
  7. The non-ionic rheology modifier composition of claim 6, wherein the mono-hydroxyl non-ionic hydrophilic compound comprises a poly (C2-4alkylene oxide) having an aliphatic, cycloaliphatic or aromatic end group having 1 to 22 carbon atoms  and wherein the  mono-hydroxyl non-ionic hydrophilic compound has a molecular weight ranging from 500 to 3000 g/mole.
  8. The non-ionic rheology modifier composition of claim 6, wherein the monoalkyl acid is selected from a group consisting of acetic acid, butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, 1, 2-hydroxystearic acid, and oleic acid.
  9. The non-ionic rheology modifier composition of claim 6, wherein the non-ionic hydrophilic segment of the i-glycidyl terminated non-ionic hydrophilic compound has a molecular weight ranging from 500 to 3000 and comprises a segment of poly (C2-4-alkylene oxide) containing 10%-100%ethylene oxide groups. 
  10. A non-ionic rheology modifier composition for aqueous paints which is derived from a process which comprises:
    (1) reacting a multi-acid terminated polyamide with an alkyl glycidyl ether to form an intermediate;
    (2)reacting the intermediate with a mono-isocyanate terminated polymer having a non-ionic hydrophilic segment to thereby form a polymer; and
    (3) dispersing the polymer in water with co-solvent to obtain the rheology modifier dispersion.
  11. The non-ionic rheology modifier composition of claim 10, wherein the multi-acid terminated polyamide is obtained by reacting at least one dicarboxylic acid and/or tricarboxylic acid having 3 to 54 carbon atoms with at least one diamine.
  12. The non-ionic rheology modifier composition of claim 11, wherein the dicarboxylic acid is selected from the group consisting of propanedioic acid, succinic acid, glutamic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, isophthalic acid and dimerized fatty acid.
  13. The non-ionic rheology modifier composition of claim 11, wherein the tricarboxylic acid is selected from the group consisting of, citric acid, propane-1, 2, 3-tricarboxylic acid, 1, 2, 4-butanetricarboxylic acid, benzene-1, 3, 5-tricarboxylic acid, 1, 2, 4-benzenetricarboxylic acid, biphenyl-3, 4’ , 5-tricarboxylic acid and trimerized fatty acid.
  14. The non-ionic rheology modifier composition of claim 11 wherein the diamine is selected from the group consisting of ethylenediamine, 1, 4-diaminobutane, hexamethylenediamine, 1, 10-decamethylenediamine, 1, 11-undecamethylenediamine, 1, 12-dodecamethylenediamine, xylenediamine and 4, 4’ -diaminodiphenylmethane.
  15. The non-ionic rheology modifier composition of claim 10, wherein the alkyl glycidyl ether is selected from the group consisting of alkyl glycidyl ether wherein the alkyl group has two to sixteen carbon atoms, such as ethyl glycidyl ether, glycidyl isopropyl ether, butyl glycidyl ether, glycidyl isobutyl ether, tert-butyl glycidyl ether, octyl glycidyl ether, decyl glycidyl ether, dodecyl glycidyl ether, tetradodecyl glycidyl ether and glycidyl hexadecyl ether.
  16. The non-ionic rheology modifier composition of claim 10, wherein the mono-isocyanate terminated polymer is made by reacting a diisocyanate with mono-hydroxyl non-ionic hydrophilic compound.
  17. The non-ionic rheology modifier composition of claim 11, wherein the diisocyanate is selected from the group consisting of toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane-4, 4'-Diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate, or mixtures of such diisocyanates.
  18. The non-ionic rheology modifier composition of claim 11, wherein the mono-hydroxyl non-ionic hydrophilic compound comprises a poly (C2-4alkylene oxide) n and an aliphatic, cycloaliphatic or aromatic end group having 1 to 22 carbon atoms  and wherein the mono-hydroxyl non-ionic hydrophilic compound has a molecular weight ranging from 500 to 3000 g/mole, .
  19. The non-ionic rheology modifier composition of claim 1 or claim 10, wherein the co-solvent is selected from a group consisting of ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether butyl Cellosolve solvent, N-methyl-2-pyrrolidone, 3-methoxy-3-methyl-1-butanol, 3-methoxy-3-methyl-1-butanol acetate, methyl-5-(dimethylamino) -2-methyl-5-oxopentanoate, N-formylmorpholine.
  20. A non-ionic polyamide rheology modifier according to Formula (1)
    Figure PCTCN2017092345-appb-100001
    wherein X is multi-acid terminated polyamide, n=2~6, and Y in Formula (1) is one of more of the end groups selected from the group consisting of:
    Figure PCTCN2017092345-appb-100002
    where R1 is aliphatic, cycloaliphatic, or aromatic end group having 1 to 22 carbon atoms,
    R2 is the residue part of diisocyanate compound selected from the group consisting of toluene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, diphenylmethane-4,4'-diisocyanate, dicyclohexylmethane-4, 4'-di-isocyanate, 1, 4-bis (2-isocyanato-2-yl) benzene, trimethyl hexamethylene diisocyanate,
    and X’ is poly (C2-4 alkylene oxide) .
  21. The composition according to claim 20, wherein Y is:
    Figure PCTCN2017092345-appb-100003
  22. The composition according to claim 20, wherein Y is:
    Figure PCTCN2017092345-appb-100004
  23. The composition according to claim 20, wherein Y is:
    Figure PCTCN2017092345-appb-100005
PCT/CN2017/092345 2016-07-15 2017-07-10 Novel non-ionic polyamide rheology modifier for aqueous coating WO2018010615A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610557145.0A CN107629538B (en) 2016-07-15 2016-07-15 Novel nonionic polyamide rheology modifiers for aqueous coatings
CN201610557145.0 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018010615A1 true WO2018010615A1 (en) 2018-01-18

Family

ID=60952810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092345 WO2018010615A1 (en) 2016-07-15 2017-07-10 Novel non-ionic polyamide rheology modifier for aqueous coating

Country Status (2)

Country Link
CN (1) CN107629538B (en)
WO (1) WO2018010615A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772943B2 (en) * 2017-04-19 2020-10-21 日本製鉄株式会社 Painted steel plate
CN113999390A (en) * 2021-10-29 2022-02-01 江西省龙海化工有限公司 Polyurea modified polyamide aqueous rheological additive and preparation method thereof
CN117304732A (en) * 2023-09-27 2023-12-29 江苏富琪森新材料有限公司 A thixotropic agent and its preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162242A1 (en) * 2000-06-08 2001-12-12 Elementis Specialties, Inc. Rheological additives and paint and coating compositions containing such additives exhibiting improved intercoat adhesion
CN102746501A (en) * 2012-06-21 2012-10-24 广州市乾顺化工有限公司 Manufacturing method of dispersant and dispersant
CN104403100A (en) * 2014-12-16 2015-03-11 东莞市隆海新材料科技有限公司 Method for preparing water-based polyamide thixotropic anti-settling agent
CN105001417A (en) * 2015-07-15 2015-10-28 上海核心新材料科技有限公司 Modified polyamide structural rheological agent as well as preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648778B (en) * 2016-03-02 2017-12-15 深圳天鼎新材料有限公司 A kind of preparation method of non-ionic hydrophilic fatty acid amide Organosiliconcopolymere softening agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162242A1 (en) * 2000-06-08 2001-12-12 Elementis Specialties, Inc. Rheological additives and paint and coating compositions containing such additives exhibiting improved intercoat adhesion
CN102746501A (en) * 2012-06-21 2012-10-24 广州市乾顺化工有限公司 Manufacturing method of dispersant and dispersant
CN104403100A (en) * 2014-12-16 2015-03-11 东莞市隆海新材料科技有限公司 Method for preparing water-based polyamide thixotropic anti-settling agent
CN105001417A (en) * 2015-07-15 2015-10-28 上海核心新材料科技有限公司 Modified polyamide structural rheological agent as well as preparation method and application thereof

Also Published As

Publication number Publication date
CN107629538A (en) 2018-01-26
CN107629538B (en) 2022-01-14

Similar Documents

Publication Publication Date Title
DE69812462T2 (en) Anti-settling agent for aqueous paints
CN102093805B (en) Waterborne epoxy intermediate paint
JP5400005B2 (en) Epoxy resin composition and coating composition containing the same
WO2018010615A1 (en) Novel non-ionic polyamide rheology modifier for aqueous coating
EP0528363A2 (en) Polyamide ester rheological additive, a solution containing the additive and thickened compositions containing the additive
HK1202301A1 (en) Water-based epoxy resin paint composition. anticorrosive painting method, and painted body
JP5756372B2 (en) Non-aqueous solvent-free anticorrosion coating powder sag-preventing agent and method for producing the same
NO875094L (en) REOLOGICAL POLYAMIDE ADDITIVE.
CN113227282B (en) Powdery thixotropic agent for non-aqueous coating and non-aqueous coating composition containing the same
TWI876104B (en) Rheology control agent for aqueous resin and aqueous coating composition
US11453791B2 (en) Powder particulate diamide-polyolefin wax mixture
JP7028591B2 (en) Modified acrylic resin-based paint composition, laminated coating film, substrate with coating film and its manufacturing method
TW201805373A (en) Novel non-ionic polyamide rheology modifier for aqueous coating
KR930008154B1 (en) Liquid Precipitation Preventer for Organic Coating Compositions
JP6704344B2 (en) Cationic alkyd resin
KR102357089B1 (en) Anti-settling agent composition for water-based paint
JP2022505753A (en) Rheological additive based on 1,5-pentamethylenediamine, which may be bio-based
JP7382732B2 (en) putty composition
KR100814004B1 (en) Process for preparing water-soluble amide wax
JPH07304867A (en) Water-dispersible type curing agent composition and aqueous resin composition
JP2007314688A (en) Resin for aqueous coating, method for producing the same and aqueous coating composition
CN120265719A (en) Viscosity modifier, adhesion promoter, and non-aqueous coating composition
US20240002582A1 (en) Rheology control agent
US20230151154A1 (en) Viscosity modifier and film-forming agent containing same
JP2015178601A (en) Aqueous dispersion of core/shell type curing agent particle and one-pack thermosetting resin emulsion

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17826951

Country of ref document: EP

Kind code of ref document: A1