[go: up one dir, main page]

WO2018007768A1 - Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en sec-mals, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique - Google Patents

Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en sec-mals, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique Download PDF

Info

Publication number
WO2018007768A1
WO2018007768A1 PCT/FR2017/051853 FR2017051853W WO2018007768A1 WO 2018007768 A1 WO2018007768 A1 WO 2018007768A1 FR 2017051853 W FR2017051853 W FR 2017051853W WO 2018007768 A1 WO2018007768 A1 WO 2018007768A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
natural rubber
mals
sec
composition according
Prior art date
Application number
PCT/FR2017/051853
Other languages
English (en)
Inventor
Françoise GRANET
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Publication of WO2018007768A1 publication Critical patent/WO2018007768A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3432Six-membered rings
    • C08K5/3437Six-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • Rubber composition comprising a cut of natural rubbers having a molecular weight distribution, seen in SEC-MALS, respectively unimodal or bimodal, process for preparation and tire component
  • the present invention relates to a rubber composition in which the natural rubbers are selected according to their molecular weight distribution.
  • Natural rubber is an elastomer very widely used in the field of pneumatics because of its remarkable properties. For example, it is used in rubber compositions for the manufacture of semi-finished for vehicles carrying heavy loads, because of the compromise of performance that it can bring to the tire.
  • the natural rubber used as elastomer in the rubber compositions comes from the rubbery dry material of the natural rubber latex, extracted from Hevea brasiliensis.
  • Molecular weight and molecular weight distribution play an important role in the blending properties of polymers.
  • Commonly known techniques such as GPC (gel permeation chromatography) or SEC (size exclusion chromatography) which allows the separation of polymer chains according to their size are used to study the macromolecular structure of polymers.
  • Subramaniam [1972] (1) was the first to study the molecular weight distribution (MDD) of fresh natural rubber (NR) latex in SEC.
  • MDD molecular weight distribution
  • NR fresh natural rubber
  • Subramaniam [1993] (2) distinguished three types of distribution:
  • Type 1 distinct bimodal distribution with a peak in the region of low molecular weights whose height is substantially equal to or slightly less at the height of the peak in the region of high molecular weights.
  • Type 2 distinct bimodal distribution with a peak in the region of low molecular weights whose height is at least two times smaller at the height of the peak in the high molecular weight region.
  • Type 3 unimodal distribution
  • Natural polyisoprene also called natural rubber, is obtained from rubber latex from the rubber groove.
  • the coagulation of the latex may be a so-called “natural” coagulation (coagulation of the latex in the bleeding cup mainly due to the naturally occurring microbial activity) or so-called “artificial” coagulation, for example "chemical” by addition of acid or of salts.
  • the natural rubber used is derived from a mixture of several coagulated latices, originating from several parcels of trees, without specifying their profile or their distribution of molecular masses.
  • the strong raw recovery (increased stress at high elongations) may result in a higher potential for crystallization under tension and therefore an improvement in the performance of the composition in stations such as carcass plies (holding or maintaining distance of the wires for example).
  • the subject of the invention is a rubber composition based on at least:
  • a crosslinking system characterized in that said natural rubber is a blend (i) of a natural rubber having a molecular weight distribution, seen in SEC-MALS, bimodal and (ii) a natural rubber having a molecular weight distribution, seen in SEC-MALS, unimodal and having an index of initial plasticity, PO, less than 20, in mass proportions (i): (ii) ranging from 90 ⁇ to 20:80.
  • said natural rubber is a blend (i) of a natural rubber having a molecular weight distribution, seen in SEC-MALS, bimodal and (ii) a natural rubber having a molecular weight distribution, seen in SEC- MALS, unimodal and having an initial plasticity index, PO, of less than 20, in mass proportions (i): (ii) ranging from 90: 10 to 30: 70, more preferably from 70:30 to 30:70, more preferably from 60:40 to 40:60, more preferably from 50:50.
  • the rubber composition advantageously comprises between 30 and 100 phr of reinforcing filler.
  • the reinforcing filler is advantageously carbon black or a reinforcing inorganic filler or a blend of these fillers.
  • the carbon black represents more than 50% by weight of the reinforcing filler.
  • the rubber composition When containing a reinforcing inorganic filler, the rubber composition also comprises a coupling agent.
  • the reinforcing inorganic filler is a silica.
  • the reinforcing filler is carbon black.
  • the elastomeric matrix may comprise another diene elastomer.
  • the elastomeric matrix comprises more than 50 phr of natural rubber, more advantageously 100 phr.
  • the invention also relates to a method for preparing a rubber composition according to the invention, characterized in that it comprises the following steps:
  • step b) selecting a natural rubber having a molecular weight distribution, seen in SEC-MALS, unimodal and having an index of initial plasticity, PO, less than 20; incorporating into the elastomeric matrix, comprising a mixture of the natural rubbers selected in steps a) and b), in a rubber mass ratio of step a): rubber of step b) ranging from 90:10 to 20:80, during a so-called non-productive first step, the other ingredients of the composition, with the exception of the crosslinking system, thermomechanically kneading the whole until a maximum temperature of between 1 and 190 ° C is reached;
  • the invention also relates to a tire component comprising a composition according to the invention, advantageously further comprising wire reinforcing elements.
  • Said component is advantageously chosen from the carcass ply and the crown plies.
  • the invention also relates to a tire comprising a component according to the invention.
  • the invention also relates to the use of natural rubber having a molecular weight distribution, seen in SEC-MALS, bimodal, and natural rubber having a molecular weight distribution, seen in SEC-MALS, unimodal and having a subscript of initial plasticity, P0, less than 20, in cutting to improve the processability, the green properties, the hysteresis of a rubber composition, without deterioration of rigidity.
  • a rubber composition is then particularly suitable for use in a tire component comprising said rubber composition and wire reinforcing elements.
  • Figure 1 first derivative of the refractive index signal (broken line), obtained during SEC-MALS chromatography of RRIM600 natural rubber
  • Figure 2 first derivative of the refractive index signal (broken line), obtained during SEC-MALS chromatography of PB217 latex
  • the natural rubber samples were dissolved in a solvent (THF) for 7 days at 30 ° C. at a concentration of 2 mg / ml.
  • the soluble part after passing through a sieve of 1 ⁇ , was injected into columns of the SEC MALS (Steric Exclusion Chromatography + Multiangle Light Scanning Detector) according to the protocol described by Kim (2009) 3 (Kim, Chandy, Sainte-Beuve , Jerome, Guilbert, Stéphane, Bonfils, Frédéric, Study of chain branching in natural rubber using size-exclusion chromatography coupled with a multiangle light scattering detector (SEC-MALS, European Polymer Journal Vol.45 issue 8 August, 2009. 2249 -2259).
  • SEC-MALS European Polymer Journal Vol.45 issue 8 August, 2009. 2249 -2259.
  • the detection system is dual: a differential refractometric concentration detector and a MALS, a multi-angle light scattering detector sensitive to the variation of intensity scattered according to the size of the objects.
  • the raw data of the detectors are exported and processed in the EXCEL spreadsheet for calculation and graphical expression of the first derivative.
  • the curve of strength green elongation is carried out on a specimen, of raw mixture, in dumbbell shape thanks to a traction machine.
  • the test specimen has two ends connected together by a rod of thickness E of 2.5 mm, length L 26mm and width W 6mm.
  • the test piece is subjected to a simple pull at a speed of 100 mm / min by moving a jaw of an "INSTRON 4501" commercial traction machine relative to a fixed jaw of said machine, said jaws enclosing said ends. with the same clamping pressure of 2 bar.
  • the experiment is carried out at a temperature of 23 ° C. and at a humidity of 50%.
  • results will be indicated in base 100, the value 100 being attributed to the witness.
  • a result less than 100 indicating a decrease in the value concerned, and vice versa, a result greater than 100, will indicate an increase in the value concerned.
  • a disk-shaped test piece is compressed between the parallel plates of a plasma meter so as to reach a fixed thickness of 1 millimeter.
  • the test piece is thus maintained for 15 seconds to reach a temperature of equilibrium close to that of the trays. It is then subjected to a constant compression force of 100 N for 15 seconds.
  • the final thickness of the specimen (in hundredths of a millimeter) is considered as a measure of plasticity.
  • the spacing of the mixer rolls should be adjusted to a final thickness sheet of about 1.7 mm.
  • the plasticity measurement must be carried out within a period not exceeding 4 hours.
  • the initial plasticity index (PO) is the median value of the measurements obtained with the three test pieces analyzed.
  • the rubber compositions according to the invention are based on at least:
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • composition based on is meant a composition comprising the mixture and / or the reaction product of the various constituents used, some of these basic constituents being capable of or intended to react with each other, at least partly, during the different phases of manufacture of rubber compositions, belts and tires, in particular during their vulcanization.
  • natural rubber with bimodal molecular weight distribution is meant, in the sense of the invention, a natural rubber having a molecular weight distribution, seen in SEC-MALS, bimodal. It may also be called “bimodal natural rubber”.
  • natural rubber with unimodal molecular weight distribution is intended to mean a natural rubber having a molecular weight distribution, seen in SEC-MALS, unimodal. It may also be called “unimodal natural rubber”.
  • initial plasticity means the Wallace plasticity of the natural rubber, as measured by the protocol according to the invention.
  • cutting is intended to mean the mixture of natural rubber with a bimodal molecular mass distribution and unimodal molecular weight distribution natural rubber which also has an initial plasticity index of less than 20.
  • the invention is characterized by the use in cutting natural rubbers selected according to their molecular weight distribution. This molecular weight distribution is observed by SEC-MALS chromatography.
  • RI reactive index
  • SEC-MALS chromatography In order to discriminate more easily natural rubbers having a unimodal or bimodal molecular weight distribution, a first derivative has been applied at any point of the RI (refractive index) signal in a 24-point pitch. The derivative exacerbates the slope changes of the RI signal. Thus during a linear evolution, the derivative will be constant and during a slope break (change of population) the derivative is reversed.
  • the presence of several populations in the mass distribution is characterized by peaks on the graph of the first derivative.
  • a natural rubber has a bimodal molecular weight distribution when on the graph of the first derivative of the refractive index signal, obtained during the SEC-MALS chromatography, two distinct peaks are observed.
  • Each peak includes an ascending slope, a summit and a downward slope.
  • Figure 1 the space between the beginning of the upward slope and the end of the downward slope of each peak is indicated by a double-arrow.
  • the natural rubber having a bimodal molecular weight distribution may be derived from a latex obtained by natural coagulation or by chemical coagulation, in particular acid coagulation, for example with acetic acid.
  • the latex may be, in particular and without limitation, provided that the distribution is bimodal within the meaning of the invention, resulting from the following varieties of Hevea brasiliensis: RRIM600, GT1, CDC429, PR107 ....
  • a natural rubber has a unimodal molecular weight distribution when on the graph of the first derivative of the refractive index signal, obtained during the SEC-MALS chromatography, a single distinct peak is observed.
  • Natural rubber having a unimodal molecular weight distribution may be derived from a latex obtained by natural coagulation or by chemical coagulation, in particular acid coagulation, for example with acetic acid.
  • the latex may be, in particular and in a nonlimiting manner, provided that the distribution is unimodal within the meaning of the invention, resulting from the following varieties of Hevea brasiliensis: PB217, CDC312, ....
  • the natural rubber is a blend comprising from 20% to 90% by weight, preferably from 30% to 90% by weight, more preferably from 30% to 70% by weight, more preferably from 40% to 60% by weight. weight, even more advantageously 50% by weight, based on the total weight of the cutting, of natural rubber having a molecular weight distribution, seen in SEC-MALS, bimodal.
  • the natural rubber is a blend comprising from 10% to 80% by weight, preferably from 10% to 70% by weight, more preferably from 30% to 70% by weight, more preferably from 40% to 60% by weight. weight, even more advantageously 50% by weight, with respect to the total weight of the cut, of natural rubber having a molecular weight distribution, seen in SEC-MALS, unimodal and having an index of initial plasticity of less than 20.
  • a bimodal natural rubber will make it possible to impart good green properties to a rubber composition comprising it.
  • a plasticized gum, T0 comprising a natural rubber resulting from a mixture of several non-specifically selected latexes is used as a control.
  • This natural rubber has previously undergone a plasticization step, the plasticization consisting of a mechanical work of the material allowing a decrease in its viscosity.
  • the initial plasticity index of unimodal natural rubber is advantageously less than 15.
  • the initial plasticity index of the unimodal natural rubber is advantageously between 5 and 20, more advantageously between 5 and 15.
  • compositions of the invention may contain diene elastomers, advantageously other than isoprenic, preferably in a minority by weight (i.e., for less than 50 phr).
  • the natural rubber as described above is preferably used alone, that is to say without mixing with another diene or polymer elastomer.
  • elastomer or “diene” rubber is generally meant an elastomer derived at least in part (i.e. a homopolymer or a copolymer) of monomers dienes (monomers bearing two carbon-carbon double bonds, conjugated or not).
  • this other elastomer is not a natural rubber.
  • diene elastomers in known manner, can be classified into two categories: those said to be “essentially unsaturated” and those termed “essentially saturated”.
  • essentially unsaturated diene elastomer is meant a diene elastomer derived at least in part from conjugated diene monomers having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%).
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within this definition and may instead be described as essentially saturated diene elastomers. "(low or very low diene origin, always less than 15%).
  • the term “highly unsaturated” diene elastomer is particularly understood to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • iene elastomer can be understood more particularly to be used in the compositions according to the invention:
  • diene elastomer any type of diene elastomer
  • the person skilled in the tire art will understand that the present invention is preferably implemented with essentially unsaturated diene elastomers, in particular of the type (a) or (b). ) above.
  • the diene elastomer is chosen from the group consisting of polybutadienes (BR), synthetic polyisoprenes (IR), the various butadiene copolymers, the various isoprene copolymers, and mixtures of these elastomers.
  • BR polybutadienes
  • IR synthetic polyisoprenes
  • the various butadiene copolymers the various isoprene copolymers, and mixtures of these elastomers.
  • Such copolymers are more preferably chosen from the group consisting of butadiene-styrene copolymers (SBR), the latter being prepared by emulsion polymerization (ESBR) as in solution (SSBR), the isoprene-butadiene copolymers (BIR ), isoprene-styrene copolymers (SIR) and isoprene-butadiene-styrene copolymers (SBIR).
  • SBR butadiene-styrene copolymers
  • ESBR emulsion polymerization
  • SBIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • SBIR isoprene-butadiene-styrene copolymers
  • polybutadienes those having a content (mol%) in units -1, 2 of between 4% and 80% or those having a content (mol%) of cis-1,4 more than 80% are particularly suitable.
  • synthetic polyisoprenes cis-1,4-polyisoprenes, preferably those having a content (mol%) of cis-1,4 bonds greater than 90%, are particularly suitable.
  • copolymers of butadiene or isoprene is meant in particular the copolymers obtained by copolymerization of at least one of these two monomers with one or more vinyl-aromatic compounds having from 8 to 20 carbon atoms.
  • vinyl aromatic compounds examples include styrene, ortho-, meta-, paramethylstyrene, the commercial mixture "vinyl-toluene", para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene, vinyinaphthalene.
  • the copolymers may contain between 99% and 20% of diene units and between 1% and 80% of vinyl aromatic units.
  • an isoprene elastomer other than natural rubber that is to say a homopolymer or copolymer of isoprene, in other words a diene elastomer chosen from the group consisting of synthetic polyisoprenes (IR), different isoprene copolymers and mixtures of these elastomers.
  • IR synthetic polyisoprenes
  • isoprene copolymers mention will in particular be made of copolymers of isobutene-isoprene (butyl rubber - IIR), isoprene-styrene (SIR), isoprene-butadiene (BIR) or isoprene-butadiene-styrene (SBIR).
  • the synthetic polyisoprene is preferably of the cis-1,4 type.
  • polyisoprenes having a level (mol%) of cis-1,4 bonds greater than 90%, more preferably still greater than 98%, are preferably used.
  • non-isoprenic diene elastomers mention may be made in particular of any unsaturated diene elastomer chosen in particular from the group consisting of polybutadienes (BR), in particular cis-1,4 or 1,2-syndiotactic polybutadienes, and those having a content (mol%) in units-1, 2 of between 4% and 80%, and butadiene copolymers, especially styrene-butadiene copolymers (SBR), and in particular those having a styrene content of between 5 and 50% by weight and more particularly between 20% and 40% by weight, a content (mol%) of -1,2 bonds of the butadiene part of between 4% and 65%, a content (mol%) of bonds trans-1,4, between 30% and 80%, styrene-butadiene-isoprene copolymers (SBIR), and mixtures of these different elastomers (BR, SBR and SBIR).
  • BR poly
  • compositions of the invention may contain:
  • the composition of the invention comprises any type of so-called reinforcing filler known for its ability to reinforce a rubber composition that can be used for the manufacture of tires, for example an organic filler such as carbon black, a reinforcing inorganic filler such as silica to which is associated in a known manner a coupling agent, or a mixture of these two types of filler.
  • an organic filler such as carbon black
  • a reinforcing inorganic filler such as silica to which is associated in a known manner a coupling agent, or a mixture of these two types of filler.
  • Such a reinforcing filler typically consists of nanoparticles whose average size (in mass) is less than one micrometer, generally less than 500 nm, most often between 20 and 200 nm, in particular and more preferably between 20 and 150 nm.
  • Suitable carbon blacks are all carbon blacks, especially blacks conventionally used in tires or their treads (so-called pneumatic grade blacks).
  • These carbon blacks can be used in the isolated state, as commercially available, or in any other form, for example as a carrier for some of the rubber additives used.
  • Reinforcing inorganic filler means any inorganic or mineral filler, irrespective of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or even “non-black” filler. as opposed to carbon black, capable of reinforcing on its own, without any other means than an intermediate coupling agent, a rubber composition intended for the manufacture of pneumatic tires, in other words able to replace, in its function reinforcement, a conventional carbon black of pneumatic grade; such a load is characterized generally, in a known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • Suitable reinforcing inorganic fillers are in particular mineral fillers of the siliceous type, preferentially silica (SiO 2 ).
  • the silica used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g, especially between 60 and 300 m 2 / g.
  • HDS highly dispersible precipitated silicas
  • reinforcing inorganic filler mention may also be made of mineral fillers of the aluminous type, in particular alumina (Al 2 O 3 ) or aluminum (oxide) hydroxides, or reinforcing titanium oxides, for example described in US 6,610,261 and US 6,747,087.
  • the physical state in which the reinforcing inorganic filler is present is immaterial, whether in the form of powder, microbeads, granules or beads.
  • reinforcing inorganic filler is also understood to mean mixtures of different reinforcing inorganic fillers, in particular of highly dispersible silicas as described above.
  • the BET surface area is determined in a known manner by gas adsorption using the Brunauer-Emmett-Teller method described in "The Journal of the American Chemical Society” Vol. 60, page 309, February 1938, more precisely according to the French standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points) - gas: nitrogen - degassing: 1 hour at 160 ° C. - relative pressure range p / po: 0.05 to 0.17).
  • the CTAB specific surface is the external surface determined according to the French standard NF T 45-007 of November 1987 (method B).
  • the total reinforcing filler content is between 30 and 100 phr. Below 30 phr, reinforcement of the rubber composition is insufficient to provide an adequate level of cohesion or wear resistance of the rubber component of the tire comprising this composition. Even more preferably, the total reinforcing filler content is at least 40 phr. Above 100 phr, there is a risk of increasing the hysteresis and therefore the rolling resistance of the tires. For this reason, the total reinforcing filler content is preferably in a range from 40 to 80 phr, in particular for use in a carcass ply and a tire crown ply.
  • the carbon black advantageously represents more than 50% by weight of the reinforcing filler.
  • the reinforcing filler is advantageously carbon black (100% by weight).
  • an at least bifunctional coupling agent (or bonding agent) is used in a well-known manner to ensure a sufficient chemical and / or physical connection between the inorganic filler (surface of its particles) and the diene elastomer.
  • organosilanes or at least bifunctional polyorganosiloxanes are used.
  • polysulfide silanes, called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
  • silane polysulfides more particularly of the polysulphides (especially disulphides, trisulphides or tetrasulphides) bis (alkoxyl (C 1 -C 4) alkyl (C 1 -C 4) alkyl silyl (-C C 4 )), such as, for example, bis (3-trimethoxysilylpropyl) or bis (3-triethoxysilylpropyl) polysulfides.
  • TESPT bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • silanes bearing at least one thiol function (so-called mercaptosilanes) and / or of at least one blocked thiol group, as described, for example, in the patents or patent applications US 6,849,754, WO 99/09036, WO 2006/023815, WO 2007/098080, WO 2010/072685 and WO 2008/055986.
  • -SH thiol function
  • the content of coupling agent is advantageously less than 20 phr, it being understood that it is generally desirable to use as little as possible.
  • the level of coupling agent is from 0.5% to 15% by weight relative to the amount of inorganic filler. Its level is preferably between 0.5 and 12 phr, more preferably in a range from 3 to 10 phr. This level is easily adjusted by those skilled in the art according to the level of inorganic filler used in the composition.
  • the rubber compositions according to the invention may also contain coupling activators, inorganic charge-covering agents or, more generally, processing aids which can be used in a known manner, thanks to an improvement in the dispersion of the the charge in the rubber matrix and a lowering of the viscosity of the compositions, to improve their ability to implement in the green state, these agents being for example hydrolysable silanes such as alkylalkoxysilanes, polyols, polyethers primary, secondary or tertiary amines, hydroxylated or hydrolyzable polyorganosiloxanes.
  • coupling activators such as alkylalkoxysilanes, polyols, polyethers primary, secondary or tertiary amines, hydroxylated or hydrolyzable polyorganosiloxanes.
  • the rubber compositions in accordance with the invention may also comprise all or part of the usual additives normally used in elastomer compositions intended for the manufacture of tires, for example pigments, protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants, anti-fatigue agents, reinforcing or plasticizing resins, acceptors (for example phenolic novolac resin) or methylene donors (for example HMT or H3M) as described, for example, in the application WO 02/10269, adhesion promoters such as cobalt-based compounds, plasticizing agents, preferably non-aromatic or very weakly aromatic selected from the group consisting of naphthenic oils, paraffinic oils, MES oils, TDAE oils, plasticizers ethers, ester plasticizers, hydrocarbon resins having a high Tg, preferably greater than 30 ° C, as described for example in applications WO 2005/087859, WO 2006/061064 and WO 2007/017060, and mixtures of such compounds
  • the crosslinking system is preferably a vulcanization system based on sulfur and an accelerator.
  • Any compound that can act as accelerator for vulcanizing diene elastomers in the presence of sulfur in particular those selected from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated as "MBTS”), N-cyclohexyl-2-benzothiazylsulfenamide (abbreviated “CBS”), N N-dicyclohexyl-2-benzothiazylsulfenamide (abbreviated “DCBS”), N-tert-butyl-2-benzothiazylsulfenamide (abbreviated "TBBS”), N-tert-butyl-2-benzothiazylsulfenimide (abbreviated "TBSI ”) and mixtures of these compounds.
  • a primary accelerator of the sulfenamide type is used.
  • the sulfur content is for example between 0.5 and 3.0 phr, that of the primary accelerator between 0.5 and 5.0 pce.
  • the rubbers of steps a) and b) do not undergo subsequent plastification; the plasticization consisting of a mechanical work of the matrix allowing a decrease in its viscosity.
  • the rubber composition according to the invention based on at least one elastomeric matrix comprising the rubbers of steps a) and b), a reinforcing filler is manufactured in suitable mixers, using two well-known successive preparation phases. of the person skilled in the art: a first phase of work or thermomechanical mixing (so-called "non-productive" phase) at high temperature, up to a maximum temperature of between 1 10 ° C. and 190 ° C., preferably between 130 ° C.
  • the process for preparing the rubber composition according to the invention comprises the following steps:
  • the final composition thus obtained can then be calendered, for example in the form of a sheet, a plate or extruded, for example to form a rubber profile used for the manufacture of a semi-finished tire product, such as treads, webs or other webs, underlays, various rubber blocks, reinforced or not with textile or metal reinforcements, intended to form a part of the tire structure, particularly its tread.
  • a semi-finished tire product such as treads, webs or other webs, underlays, various rubber blocks, reinforced or not with textile or metal reinforcements, intended to form a part of the tire structure, particularly its tread.
  • the vulcanization (or baking) can then be carried out in a known manner at a temperature generally of between 130 ° C. and 200 ° C., preferably under pressure, for a sufficient time which may vary, for example, between 5 and 90 min depending on the temperature. in particular the cooking temperature, the vulcanization system adopted and the kinetics of vulcanization of the composition under consideration.
  • the invention relates to the rubber compositions described above both in the so-called “raw” state (i.e., before firing) and in the so-called “cooked” or vulcanized state (i.e. after vulcanization).
  • the invention also relates to a rubber component comprising a reinforced rubber composition according to the invention.
  • the invention also relates to a tire of which at least one of its constituent elements is a rubber component comprising a reinforced rubber composition according to the invention.
  • the natural rubber is obtained after coagulation of the latex (chemical or natural coagulation).
  • the coagula are dried for 3 hours at about 120 ° C. Characterization of the gums:
  • Natural rubbers were characterized by SEC MALS.
  • a first derivative was applied at any point of the signal RI (refractive index) on a 24-point pitch in order to discriminate the molecular weight distribution. This derivative exacerbates slope changes. Thus during a linear evolution, the derivative will be constant and during a slope break (change of population) the derivative is reversed.
  • the natural rubbers resulting from varieties RRIM600, PR107, CDC429 have a molecular weight distribution, seen in SEC-MALS, bimodal.
  • the molecular weight distribution for the natural rubber from the variety RRIM600 is shown in FIG.
  • the natural rubbers resulting from varieties PB217, PB235, CDC312 have a molecular weight distribution, seen in SEC-MALS, unimodal.
  • the molecular weight distribution for the natural rubber from the variety PB217 is shown in FIG.
  • the natural rubbers used in the examples did not undergo a prior plasticization step.
  • a plasticized gum comprising a natural rubber resulting from a mixture of several non-specifically selected latexes is used as control T0.1.
  • This natural rubber has previously undergone a plasticization step, the plasticization consisting of a mechanical work of the material allowing a decrease in its viscosity.
  • compositions are given in the following table. Quantities are expressed in parts per 100 parts of elastomer (phr).
  • NR1 natural rubber resulting from a mixture of several latexes. This NR has undergone a plasticization step by mechanical treatment.
  • NR2 Natural rubber from the variety PB235 having a molecular weight distribution, seen in SEC-MALS, unimodal, and an initial plasticity index, P0, of 37
  • NR3 Natural rubber from the variety PB217 having a molecular weight distribution, seen in SEC-MALS, unimodal, and an initial plasticity index, PO, of 12
  • NR4 Natural rubber from the variety RRIM600 having a molecular weight distribution, seen in SEC-MALS, bimodal
  • the elastomer matrices (the selected natural rubbers) are introduced. After one minute of mixing, all the other compounds are introduced.
  • a pestle is performed in order to bring chaos into the mixture (improves the homogeneity of the mixture).
  • the mixture thus obtained is recovered at a " fallen" temperature of 165 ° C after a total mixing time of about five minutes.
  • This mixture is cooled on an external mixer at room temperature.
  • the vulcanization system is incorporated into the mix with the roll tool.
  • These compositions are then calendered in the form of plates (thickness of 2 to 3 mm) for the measurement of their properties.
  • compositions comprising natural rubbers having a molecular weight distribution seen in SEC-MALS, unimodal, and different initial plasticities was seen through the Mooney measurement.
  • Such a measurement has also been made for a composition comprising a blend of natural rubbers selected according to the invention.
  • the results are reported in the following table: Composition T0.1 T3 T1.1 T1.2 C1
  • composition comprising, as natural rubber, a natural rubber having a molecular weight distribution, seen in SEC-MALS, unimodal, and a plasticity index of less than 20 (T1.1) makes it possible to obtain a level of processability, seen through the Mooney, improved compared to the witness.
  • a composition comprising a blend according to the invention (C1) retains an improvement in the processability seen through the Mooney.
  • the mixture of the composition C1 makes it possible to obtain a level of processability, seen through the Mooney, almost identical to that observed with a mixture of the composition T0 containing a plasticized gum.
  • the mixture of the composition C1 makes it possible to obtain a raw reinforcement level, seen through the fracture stress, which is very much improved compared to the plasticized gum without penalizing the elongation.
  • the mixture of the composition C1 makes it possible to obtain a hysteresis level, seen through AG * (G * 0.1% -G * 50%) and tan (5) a max, improved with respect to the plasticized gum without marked penalty of stiffness seen through G * 50%.
  • a plasticized gum comprising a natural rubber resulting from a mixture of several non-selected latexes is used as a control T0.2.
  • This natural rubber has previously undergone a plasticization step, the plasticization consisting in a mechanical work of the material making it possible to reduce of its viscosity.
  • compositions are given in the following table. Quantities are expressed in parts per 100 parts of elastomer (phr).
  • NR1 natural rubber resulting from a mixture of several latexes. This NR has undergone a plasticization step by mechanical treatment.
  • NR2.2 Natural rubber from the variety CDC312 having a molecular weight distribution, seen in SEC-MALS, unimodal
  • NR2.3 Natural rubber from the variety CDC429 having a molecular weight distribution, view in SEC-MALS, bimodal
  • N-cyclohexyl-2-benzothiazyl sulfenamide (9) N-cyclohexyl-2-benzothiazyl sulfenamide ("Santocure CBS” from the company Flexsys)
  • elastomer matrices natural rubbers
  • a pestle is performed in order to bring chaos into the mixture (improves the homogeneity of the mixture).
  • the mixture thus obtained is recovered at a " fallen" temperature of 165 ° C after a total mixing time of about five minutes.
  • This mixture is cooled on an external mixer at room temperature.
  • the vulcanization system is incorporated into the mix with the roll tool.
  • These compositions are then calendered in the form of plates (thickness of 2 to 3 mm) for the measurement of their properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention a pour objet une composition de caoutchouc à base d'au moins: ─une matrice élastomérique comprenant du caoutchouc naturel, ─une charge renforçante, ─un système de réticulation, caractérisée en ce que ledit caoutchouc naturel est un coupage(i) d'un caoutchouc naturel ayant une distribution de masse moléculaire, vue en SEC-MALS, bimodale et (ii) d'un caoutchouc naturel ayant une distribution de masse moléculaire, vue en SEC-MALS, unimodale et ayant un indice de plasticité initiale, P0, inférieur à 20, en des proportions massiques allant de 90:10 à 20:80. Elle concerne également un procédé de préparation d'une telle composition, un composant de pneumatique la comprenant et un pneumatique comprenant ce composant.

Description

Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en SEC-MALS, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique La présente invention concerne une composition de caoutchouc dans laquelle on sélectionne les caoutchoucs naturels selon leur distribution de masses moléculaires.
Le caoutchouc naturel est un élastomère très largement utilisé dans le domaine du pneumatique en raison de ses propriétés remarquables. Par exemple, il est utilisé dans les compositions de caoutchouc destinées à la fabrication de semi-finis pour les véhicules transportant de lourdes charges, en raison du compromis de performance qu'il peut apporter au pneumatique.
Le caoutchouc naturel utilisé comme élastomère dans les compositions de caoutchouc provient de la matière sèche caoutchouteuse du latex de caoutchouc naturel, extraite de \'Hevea brasiliensis.
La masse moléculaire et la distribution des masses moléculaires jouent un rôle important dans les propriétés en mélanges des polymères. Des techniques communément connues telle que la GPC (gel permeation chromatography ) ou SEC (size exclusion chromatography) qui permet la séparation des chaînes du polymère selon leur taille sont utilisées pour étudier la structure macromoléculaire des polymères.
Subramaniam [1972] (1 ) a été le premier à étudier la distribution de masses moléculaires (DMM) de latex de caoutchouc naturel (NR) frais en SEC. La DMM du NR, vue au travers de la chromatographie est décrite comme étant soit unimodale, présence d'une population de chaînes macromoléculaires, soit bimodale présence de 2 populations de chaînes macromoléculaires.
Subramaniam [1993] (2) a distingué trois types de distribution :
Type 1 : distribution bimodale distincte avec un pic dans la région des bas poids moléculaires dont la hauteur est sensiblement égale ou légèrement moindre à la hauteur du pic dans la région des hauts poids moléculaires.
Type 2: distribution bimodale distincte avec un pic dans la région des bas poids moléculaires dont la hauteur est au moins deux fois plus petite à la hauteur du pic dans la région des hauts poids moléculaires.
Type 3: distribution unimodale L'étude de la distribution de masse moléculaire de caoutchouc naturel de RSS (Ribbed Smoked Sheet) de différentes variétés confirme une distinction de la distribution de masses moléculaires.
Liengprayon (2008)(3) montre que les variétés RRIM600, GT1 et BPM24 présentent une distribution de masses moléculaires bimodale alors que la variété PB235 montre une distribution unimodale.
Le polyisoprène naturel, encore appelé caoutchouc naturel, est obtenu à partir de latex issu de la saignée d'hévéa. La coagulation du latex peut être une coagulation dite « naturelle » (coagulation du latex dans la tasse de saignée principalement due à l'activité microbienne naturellement présente) ou une coagulation dite « artificielle », par exemple « chimique » par ajout d'acide ou de sels.
En caoutchouterie, en particulier pour la préparation de pneumatiques, le caoutchouc naturel utilisé est issu d'un mélange de plusieurs latex coagulés, provenant de plusieurs parcelles d'arbres, sans spécification de leur profil ni de leur distribution de masses moléculaires.
De manière surprenante, on a montré que l'utilisation en mélange de caoutchoucs naturels spécifiques, sélectionnés en fonction de leur distribution de masses moléculaires vue en SEC- MALS (Steric Exclusion Chromatography - Multiangle Light Scatering Detector), et de leur indice de plasticité initiale, permet ensuite d'obtenir une composition présentant une processabilité, un renforcement à cru (redressement de la Courbe Force Allongement (CFA) à cru) et un niveau d'hystérèse améliorés sans pénalisation de la rigidité.
Le fort redressement à cru (augmentation de la contrainte aux forts allongements) peut se traduire par un potentiel de cristallisation sous tension plus fort et donc une amélioration de la performance de la composition dans les postes tels que les nappes carcasses (tenue ou maintien de l'écart des fils par exemple).
L'invention a pour objet une composition de caoutchouc à base d'au moins :
- une matrice élastomérique comprenant du caoutchouc naturel,
- une charge renforçante,
- un système de réticulation, caractérisée en ce que ledit caoutchouc naturel est un coupage (i) d'un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale et (ii) d'un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale et ayant un indice de plasticité initiale, PO, inférieur à 20, en des proportions massiques (i) :(ii) allant de 90 A 0 à 20 :80.
Avantageusement, ledit caoutchouc naturel est un coupage (i) d'un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale et (ii) d'un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale et ayant un indice de plasticité initiale, P0, inférieur à 20, en des proportions massiques (i) :(ii) allant de 90 : 10 à 30 :70, plus avantageusement allant de 70 :30 à 30 :70, plus avantageusement allant de 60 :40 à 40 : 60, plus avantageusement de 50 :50.
La composition de caoutchouc comprend avantageusement entre 30 et 100 pce de charge renforçante. La charge renforçante est avantageusement du noir de carbone ou une charge inorganique renforçante ou un coupage de ces charges.
Avantageusement, le noir de carbone représente plus de 50% en masse de la charge renforçante.
Lorsqu'elle contient une charge inorganique renforçante, la composition de caoutchouc comprend également un agent de couplage.
En particulier, la charge inorganique renforçante est une silice.
En particulier, la charge renforçante est du noir de carbone.
La matrice élastomérique peut comprendre un autre élastomère diénique. Avantageusement, la matrice élastomérique comprend plus de 50 pce de caoutchouc naturel, plus avantageusement 100 pce.
L'invention a également pour objet un procédé de préparation d'une composition de caoutchouc selon l'invention, caractérisé en ce qu'il comprend les étapes suivantes :
a) sélectionner un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale ;
b) sélectionner un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale et ayant un indice de plasticité initiale, P0, inférieur à 20 ; incorporer à la matrice élastomérique, comprenant un mélange des caoutchouc naturels sélectionnés aux étapes a) et b), dans un rapport massique caoutchouc de l'étape a) : caoutchouc de l'étape b) allant de 90 : 10 à 20 :80, au cours d'une première étape dite non productive, les autres ingrédients de la composition, à l'exception du système de réticulation en malaxant thermomécaniquement le tout jusqu'à atteindre une température maximale comprise entre 1 10 et 190°C ;
refroidir l'ensemble à une température inférieure à 100°C ;
incorporer ensuite, au cours d'une seconde étape dite productive un système de réticulation ;
malaxer le tout jusqu'à une température maximale inférieure à 1 10°C
L'invention a également pour objet un composant de pneumatique comprenant une composition selon l'invention, avantageusement comprenant en outre des éléments de renforcement filaire. Ledit composant est avantageusement choisi parmi la nappe carcasse et les nappes de sommet.
L'invention a également pour objet un pneumatique comprenant un composant selon l'invention.
L'invention a également pour objet l'utilisation de caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale, et de caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale et ayant un indice de plasticité initiale, P0, inférieur à 20, en coupage pour améliorer la processabilité, les propriétés à cru, l'hystérèse d'une composition de caoutchouc, sans détérioration de la rigidité. Une telle composition de caoutchouc est ensuite particulièrement adaptée pour être utilisée dans un composant de pneumatique comprenant ladite composition de caoutchouc et des éléments de renforcement filaire.
DESCRIPTION DES FIGURES
Figure 1 ) : dérivée première du signal de l'indice de réfraction (trait discontinu), obtenu lors de la chromatographie SEC-MALS du caoutchouc naturel de RRIM600 Figure 2) : dérivée première du signal de l'indice de réfraction (trait discontinu), obtenu lors de la chromatographie SEC-MALS du latex PB217
I - MESURES ET TESTS UTILISES
A) Chromatographie SEC-MALS :
Les échantillons de caoutchouc naturel ont été mis en solution dans un solvant (THF) pendant 7 jours à 30 °C à une concentration de 2mg/mL. La partie soluble, après passage sur tamis de 1 μηι, a été injectée dans des colonnes de la SEC MALS (Steric Exclusion Chromatography + Multiangle Light Scatering Detector) selon le protocole décrit par Kim (2009)3 (Kim, Chandy; Sainte-Beuve, Jérôme; Guilbert, Stéphane; Bonfils, Frédéric. Study of chain branching in natural rubber using size-exclusion chromatography coupled with a multiangle light scattering detector (SEC-MALS. European Polymer Journal vol. 45 issue 8 August, 2009. p. 2249-2259).
Le système de détection est double : un détecteur réfractométrique différentiel de concentration et un MALS, un détecteur multiangle de diffusion de la lumière sensible à la variation de l'intensité diffusée selon la taille des objets. Les données brutes des détecteurs sont exportées et sont traitées dans le tableur EXCEL pour le calcul et l'expression graphique de la dérivée première.
B) Plasticité Mooney (avant cuisson) :
On utilise un consistomètre oscillant tel que décrit dans la norme française NF T 43-005 (1991 ). La mesure de plasticité Mooney se fait selon le principe suivant : la composition à l'état cru (i.e., avant cuisson) est moulée dans une enceinte cylindrique chauffée à 100°C. Après une minute de préchauffage, le rotor tourne au sein de l'éprouvette à 2 tours/minute et on mesure le couple utile pour entretenir ce mouvement après 4 minutes de rotation. La plasticité Mooney (ML 1 +4) est exprimée en "unité Mooney" (UM, avec 1 UM=0,83 Newton. mètre). Pour plus de lisibilité les résultats seront indiqués en base 100, la valeur 100 étant attribuée au témoin. Un résultat inférieur à 100 indiquant une diminution de la valeur concernée, et inversement, un résultat supérieur à 100, indiquera une augmentation de la valeur concernée C) Courbe force allongement (avant cuisson) :
La courbe de force allongement à cru est réalisée sur une éprouvette, de mélange cru, en forme d'haltère grâce à une machine de traction, L'éprouvette comporte deux extrémités reliées entre elles par une tige d'épaisseur E de 2,5mm, de longueur L 26mm et de largeur W 6mm. L'éprouvette subit une traction simple, à la vitesse de 100 mm/min par déplacement d'un mors d'une machine de traction de dénomination commerciale « INSTRON 4501 » par rapport à un mors fixe de ladite machine, lesdits mors enserrant lesdites extrémités avec une même pression de serrage de 2 bars.
Pour chaque éprouvette, les paramètres suivants sont calculés :
- Déformation relative α (%)=100 x D/L (D étant le déplacement dudit mors mobile en millimètres (mm) mesuré par le capteur de la machine au cours de chaque essai et L = 26 mm est la longueur initiale de l'éprouvette)
- Contrainte apparente F/S0 (MPa) qui représente le rapport de la force F (en N) mesurée par le capteur de la machine, sur la section initiale S0 de l'éprouvette (S0 = W.E en mm2, W= 6 mm et E = 2, 5 mm l'épaisseur de l'éprouvette avant la traction)
L'expérimentation est réalisée à une température de 23°C et à un taux d'humidité de 50%.
Pour plus de lisibilité les résultats seront indiqués en base 100, la valeur 100 étant attribuée au témoin. Un résultat inférieur à 100 indiquant une diminution de la valeur concernée, et inversement, un résultat supérieur à 100, indiquera une augmentation de la valeur concernée
D) Propriétés dynamiques (après cuisson)
Les propriétés dynamiques G* et tan(5) max sont mesurées sur un viscoanalyseur
(Metravib V A4000), selon la norme ASTM D 5992 - 96. On enregistre la réponse d'un échantillon de composition vulcanisée (éprouvette cylindrique de 4 mm d'épaisseur et de 400 mm2 de section), soumis à une sollicitation sinusoïdale en cisaillement simple alterné, à la fréquence de 10Hz, dans les conditions normales de température selon la norme ASTM D 1349 - 99. On effectue un balayage en amplitude de déformation crête à crête de 0, 1 à 50% (cycle aller), puis de 50% à 0.1 % (cycle retour). Le résultat exploité est le facteur de perte, tan(5). Pour le cycle retour, on indique la valeur maximale de tan(5) observée (tan(ô)max). Les valeurs de tan(5)max données ci-après sont mesurées à 60°C. Pour plus de lisibilité les résultats seront indiqués en base 100, la valeur 100 étant attribuée au témoin. Un résultat inférieur à 100 indiquant une diminution de la valeur concernée, et inversement, un résultat supérieur à 100, indiquera une augmentation de la valeur concernée.
E) Indice de plasticité initiale (plasticité Wallace)
Une éprouvette en forme de disque est comprimée entre les plateaux parallèles d'un Plastimètre, de façon à atteindre une épaisseur fixe de 1 millimètre. L'éprouvette est maintenue ainsi pendant 15 secondes pour atteindre une température d'équilibre voisine de celle des plateaux. Elle est ensuite soumise à une force de compression constante de 100 N durant 15 secondes. L'épaisseur finale de l'éprouvette (en centièmes de mm) est considérée comme une mesure de plasticité.
Préparation des éprouvettes :
L'écartement des cylindres du mélangeur devra être réglé de façon à obtenir une feuille d'épaisseur finale d'environ 1 ,7 mm.
Prélever une prise d'essai et la passer deux fois (en repliant la feuille entre les passages) entre les cylindres d'un mélangeur
Replier immédiatement la feuille obtenue.
A l'aide de l'emporte-pièce, découper trois pastilles dans la feuille repliée ayant une épaisseur comprise entre 3,0 mm et 3,8 mm.
Après refroidissement des pastilles pendant 30 minutes, la mesure de plasticité doit être effectuée dans un délai n'excédant pas 4 heures.
L'indice de plasticité initiale (P0), est la valeur médiane des mesures obtenues avec les trois éprouvettes analysées.
Il - Description détaillée
Les compositions de caoutchouc selon l'invention sont à base d'au moins :
- une matrice élastomérique comprenant du caoutchouc naturel,
- une charge renforçante,
- un système de réticulation,
tel que décrit en détail ci-après. Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des pourcentages en masse.
D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b).
Par l'expression composition "à base de", il faut entendre une composition comportant le mélange et/ou le produit de réaction des différents constituants utilisés, certains de ces constituants de base étant susceptibles de, ou destinés à réagir entre eux, au moins en partie, lors des différentes phases de fabrication des compositions de caoutchouc, des ceintures et des pneumatiques, en particulier au cours de leur vulcanisation.
Par ailleurs, le terme « pce » signifie au sens de l'invention, partie en poids pour cent parties d'élastomère total.
Par « caoutchouc naturel à distribution de masses moléculaires bimodale », on entend, au sens de l'invention, un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale. On pourra également le dénommer « caoutchouc naturel bimodal ».
Par « caoutchouc naturel à distribution de masses moléculaires unimodale », on entend, au sens de l'invention, un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale. On pourra également le dénommer « caoutchouc naturel unimodal ».
Par « plasticité initiale », on entend, au sens de l'invention, la plasticité Wallace du caoutchouc naturel, telle que mesurée par le protocole selon l'invention.
Par « coupage », on entend, au sens de l'invention le mélange de caoutchouc naturel à distribution de masse moléculaire bimodale et de caoutchouc naturel à distribution de masse moléculaire unimodale ayant en outre un indice de plasticité initiale inférieur à 20.
11-1. Elastomère diénique Caoutchouc naturel (NR : Natural Rubber)
L'invention se caractérise par l'utilisation en coupage de caoutchoucs naturels sélectionnés selon leur distribution de masses moléculaires. Cette distribution de masses moléculaires est observée par chromatographie SEC-MALS. Afin de discriminer plus facilement les caoutchoucs naturels ayant une distribution de masses moléculaires unimodale ou bimodale, une dérivée première a été appliquée en tout point du signal RI (indice de réfraction) sur un pas de 24 points. La dérivée exacerbe les changements de pentes du signal RI. Ainsi lors d'une évolution linéaire, la dérivée sera constante et lors d'une rupture de pente (changement de population) la dérivée s'inverse.
La présence de plusieurs populations dans la distribution de masse se caractérise par des pics sur le graphique de la dérivée première.
Au sens de la présente invention, un caoutchouc naturel a une distribution de masses moléculaires bimodale lorsque sur le graphique de la dérivée première du signal de l'indice de réfraction, obtenu lors de la chromatographie SEC-MALS, on observe deux pics distincts. Chaque pic comprend une pente ascendante, un sommet et une pente descendante. Sur la figure 1 , l'espace entre le début de la pente ascendante et la fin de la pente descendante de chaque pic est signalé par une double-flèche.
Le caoutchouc naturel ayant une distribution de masses moléculaires bimodale peut être issu d'un latex obtenu par coagulation naturelle ou par coagulation chimique, en particulier coagulation acide, par exemple à l'acide acétique.
Le latex peut être, en particulier et de façon non limitative, pourvu que la distribution soit bimodale au sens de l'invention, issu des récoltes des variétés d'Hevea brasiliensis suivantes : RRIM600, GT1 , CDC429, PR107....
Au sens de la présente invention, un caoutchouc naturel a une distribution de masses moléculaires unimodale lorsque sur le graphique de la dérivée première du signal de l'indice de réfraction, obtenu lors de la chromatographie SEC-MALS, on observe un seul pic distinct.
Le caoutchouc naturel ayant une distribution de masses moléculaires unimodale peut être issu d'un latex obtenu par coagulation naturelle ou par coagulation chimique, en particulier coagulation acide, par exemple à l'acide acétique.
Le latex peut être, en particulier et de façon non limitative, pourvu que la distribution soit unimodale au sens de l'invention, issu des récoltes des variétés d'Hevea brasiliensis suivantes : PB217, CDC312,....
Dans la composition, le caoutchouc naturel est un coupage comprenant de 20% à 90% en poids, avantageusement de 30% à 90% en poids, plus avantageusement de 30% à 70% en poids, plus avantageusement de 40% à 60% en poids, encore plus avantageusement 50% en poids, par rapport au poids total du coupage, de caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale.
Dans la composition, le caoutchouc naturel est un coupage comprenant de 10% à 80% en poids, avantageusement de 10% à 70% en poids, plus avantageusement de 30% à 70% en poids, plus avantageusement de 40% à 60% en poids, encore plus avantageusement 50% en poids, par rapport au poids total du coupage, de caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale et ayant un indice de plasticité initiale inférieur à 20. L'utilisation d'un caoutchouc naturel bimodal va permettre de conférer de bonnes propriétés à cru à une composition de caoutchouc le comprenant. Il semble qu'une teneur en caoutchouc naturel bimodal de 20% en poids, par rapport au poids total du coupage, soit suffisante pour que la composition de caoutchouc finale ait des propriétés de redressement à cru améliorées, par rapport au témoin qui est une gomme plastifiée comprenant un caoutchouc naturel résultant d'un mélange de plusieurs latex non sélectionnés spécifiquement.
L'utilisation d'un caoutchouc naturel unimodal, ayant en outre un indice de plasticité initiale inférieur à 20, va permettre de conférer de bonnes propriétés de processabilité, vue notamment au travers du Mooney, à une composition de caoutchouc le comprenant.
D'une manière surprenante et forte intéressante, le coupage de ces deux caoutchoucs sélectionnés va permettre de combiner les effets respectifs de chacun de ces caoutchoucs et ainsi d'obtenir un compromis entre la processabilité et les propriétés à cru. On utilise comme témoin une gomme plastifiée, T0, comprenant un caoutchouc naturel résultant d'un mélange de plusieurs latex non sélectionnés spécifiquement. Ce caoutchouc naturel a préalablement subi une étape de plastification, la plastification consistant en un travail mécanique du matériau permettant une diminution de sa viscosité.
En fonction du compromis recherché, l'homme du métier fera ensuite varier les proportions respectives entre les deux caoutchoucs naturels sélectionnés. On a constaté que seul un caoutchouc naturel unimodal ayant un indice de plasticité initiale inférieur à 20 permet d'améliorer la processabilité, vue au travers du Mooney, d'une composition le comprenant. L'indice de plasticité initiale du caoutchouc naturel unimodal est avantageusement inférieur à 15. L'indice de plasticité initiale du caoutchouc naturel unimodal est avantageusement compris entre 5 et 20, plus avantageusement compris entre 5 et 15.
En complément avec le caoutchouc naturel, les compositions de l'invention peuvent contenir des élastoméres diéniques, avantageusement autres qu'isopréniques, de préférence à titre minoritaire en poids (i.e., pour moins de 50 pce). Le caoutchouc naturel tel que décrit précédemment représente plus préférentiellement 60 à 100% en poids du total d'élastomères diéniques, soit 60 à 100 pce (pce = parties en poids pour cent parties d'élastomère).
Le caoutchouc naturel tel que décrit précédemment, est préférentiellement utilisé seul, c'est-à-dire sans mélange avec un autre élastomère diénique ou polymère.
Autre élastomère diénique
Par élastomère ou caoutchouc "diénique", on entend de manière générale un élastomère issu au moins en partie (i.e. un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
Dans le présent cadre, cet autre élastomère n'est pas un caoutchouc naturel.
Les élastoméres diéniques, de manière connue, peuvent être classés en deux catégories : ceux dits "essentiellement insaturés" et ceux dits "essentiellement saturés". Par élastomère diénique "essentiellement insaturé", on entend un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles). C'est ainsi, par exemple, que des élastoméres diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'alpha-oléfines type EPDM n'entrent pas dans cette définition et peuvent être qualifiés au contraire d'élastomères diéniques "essentiellement saturés" (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15%). Dans la catégorie des élastoméres diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%.
Ces définitions étant données, on entend plus particulièrement par élastomère diénique susceptible d'être utilisé dans les compositions conformes à l'invention:
(a) - tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone; (b) - tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinyle aromatique ayant de 8 à 20 atomes de carbone;
(c) - un copolymère ternaire obtenu par copolymérisation d'éthylène, d'une a-oléfine ayant 3 à 6 atomes de carbone avec un monomère diène non conjugué ayant de 6 à 12 atomes de carbone, comme par exemple les élastomères obtenus à partir d'éthylène, de propylène avec un monomère diène non conjugué du type précité tel que notamment l'hexadiène-1 ,4, l'éthylidène norbornène, le dicyclopentadiène;
(d) - un copolymère d'isobutène et d'isoprène (caoutchouc butyle), ainsi que les versions halogénées, en particulier chlorées ou bromées, de ce type de copolymère.
Bien qu'elle s'applique à tout type d'élastomère diénique, l'homme du métier du pneumatique comprendra que la présente invention est de préférence mise en œuvre avec des élastomères diéniques essentiellement insaturés, en particulier du type (a) ou (b) ci- dessus.
Plus préférentiellement, l'élastomère diénique est choisi dans le groupe constitué par les polybutadiènes (BR), les polyisoprènes de synthèse (IR), les différents copolymères de butadiène, les différents copolymères d'isoprène, et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), que ces derniers soient préparés par polymérisation en émulsion (ESBR) comme en solution (SSBR), les copolymères d'isoprène- butadiène (BIR), les copolymères d'isoprène-styrène (SIR) et les copolymères d'isoprène- butadiène-styrène (SBIR).
Parmi les polybutadiènes, conviennent en particulier ceux ayant une teneur (% molaire) en unités -1 ,2 comprise entre 4% et 80% ou ceux ayant une teneur (% molaire) en cis-1 ,4 supérieure à 80%. Parmi les polyisoprènes de synthèse, conviennent en particulier les cis- 1 ,4- polyisoprènes, de préférence ceux ayant un taux (% molaire) de liaisons cis-1 ,4 supérieur à 90%. Parmi les copolymères de butadiène ou d'isoprène, on entend en particulier les copolymères obtenus par copolymérisation d'au moins l'un de ces deux monomères avec un ou plusieurs composés vinyle-aromatique ayant de 8 à 20 atomes de carbone. A titre de composés vinyle-aromatique conviennent par exemple le styrène, l'ortho-, meta-, paraméthylstyrène, le mélange commercial "vinyle-toluène", le para-tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinyinaphtalène. Les copolymères peuvent contenir entre 99% et 20% d'unités diéniques et entre 1 % et 80% d'unités vinyle-aromatique.
On peut utiliser un élastomère isoprénique autre que le caoutchouc naturel, c'est-à-dire un homopolymère ou copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène et les mélanges de ces élastomères. Parmi les copolymères d'isoprène, on citera en particulier les copolymères d'isobutène-isoprène (caoutchouc butyle - IIR), d'isoprène-styrène (SIR), d'isoprène-butadiène (BIR) ou d'isoprène-butadiène-styrène (SBIR). Le polyisoprène de synthèse est de préférence du type cis-1 ,4. Parmi ces polyisoprènes de synthèse, sont utilisés de préférence des polyisoprènes ayant un taux (% molaire) de liaisons cis-1 ,4 supérieur à 90%, plus préférentiellement encore supérieur à 98%.
A titre d'élastomères diéniques autres qu'isopréniques, on citera notamment tout élastomère diénique du type insaturé choisi en particulier dans le groupe constitué par les polybutadiènes (BR), en particulier les polybutadiènes cis-1 ,4 ou 1 ,2-syndiotactique et ceux ayant une teneur (% molaire) en unités- 1 ,2 comprise entre 4% et 80%, et les copolymères de butadiène, notamment les copolymères de styrène-butadiène (SBR), et en particulier ceux ayant une teneur en styrène comprise entre 5 et 50% en poids et plus particulièrement entre 20% et 40% en poids, une teneur (% molaire) en liaisons -1 ,2 de la partie butadiénique comprise entre 4% et 65%, une teneur (% molaire) en liaisons trans-1 ,4 comprise entre 30% et 80%, les copolymères de styrène-butadiène-isoprène (SBIR), et les mélanges de ces différents élastomères (BR, SBR et SBIR).
Les compositions de l'invention peuvent contenir :
un mélange de caoutchoucs naturels tel que décrit précédemment à titre de seuls élastomères diéniques, ou
un mélange de caoutchoucs naturels tel que décrit précédemment, et d'au moins un autre élastomère diénique, le ou les élastomères diéniques pouvant être utilisés en association avec tout type d'élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères, par exemple des polymères thermoplastiques. 11.2. Charge renforçante :
La composition de l'invention comporte tout type de charge dite renforçante, connue pour ses capacités à renforcer une composition de caoutchouc utilisable pour la fabrication de pneumatiques, par exemple une charge organique telle que du noir de carbone, une charge inorganique renforçante telle que de la silice à laquelle est associé de manière connue un agent de couplage, ou encore un mélange de ces deux types de charge.
Une telle charge renforçante consiste typiquement en des nanoparticules dont la taille moyenne (en masse) est inférieure au micromètre, généralement inférieure à 500 nm, le plus souvent comprise entre 20 et 200 nm, en particulier et plus préférentiellement comprise entre 20 et 150 nm.
Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs conventionnellement utilisés dans les pneumatiques ou leurs bandes de roulement (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200, 300, ou les noirs de série 500, 600 ou 700 (grades ASTM), comme par exemple les noirs N1 15, N134, N234, N326, N330, N339, N347, N375, N550, N683, N772. Ces noirs de carbone peuvent être utilisés à l'état isolé, tels que disponibles commercialement, ou sous tout autre forme, par exemple comme support de certains des additifs de caoutchouterie utilisés.
Par "charge inorganique renforçante", doit être entendu ici toute charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche", charge "claire" ou même charge "non-noire" par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu'un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de bandages pneumatiques, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (-OH) à sa surface.
Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type siliceuse, préférentiellement la silice (Si02). La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m2/g, de préférence de 30 à 400 m2/g, notamment entre 60 et 300 m2/g. A titre de silices précipitées hautement dispersibles (dites "HDS"), on citera par exemple les silices « Ultrasil » 7000 et « Ultrasil » 7005 de la société Degussa, les silices « Zeosil » 1 165MP, 1 135MP et 1 1 15MP de la société Rhodia, la silice « Hi-Sil » EZ150G de la société PPG, les silices « Zeopol » 8715, 8745 et 8755 de la Société Huber, les silices à haute surface spécifique telles que décrites dans la demande WO 03/016387. A titre de charge inorganique renforçante, on citera également les charges minérales du type alumineuse, en particulier de l'alumine (Al203) ou des (oxyde)hydroxydes d'aluminium, ou encore des oxydes de titane renforçants, par exemple décrits dans US 6 610 261 et US 6 747 087. L'état physique sous lequel se présente la charge inorganique renforçante est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, ou encore de billes. Bien entendu on entend également par charge inorganique renforçante des mélanges de différentes charges inorganiques renforçantes, en particulier de silices hautement dispersibles telles que décrites ci-dessus.
L'homme du métier comprendra qu'à titre de charge équivalente de la charge inorganique renforçante décrite dans le présent paragraphe, pourrait être utilisée une charge renforçante d'une autre nature, notamment organique telle que du noir de carbone, dès lors que cette charge renforçante serait recouverte d'une couche inorganique telle que silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, nécessitant l'utilisation d'un agent de couplage pour établir la liaison entre la charge et l'élastomère. A titre d'exemple, on peut citer des noirs de carbone pour pneumatiques tels que décrits par exemple dans les documents brevet WO 96/37547,
WO 99/28380.
Dans le présent exposé, la surface spécifique BET est déterminée de manière connue par adsorption de gaz à l'aide de la méthode de Brunauer-Emmett-Teller décrite dans "The Journal of the American Chemical Society" Vol. 60, page 309, février 1938, plus précisément selon la norme française NF ISO 9277 de décembre 1996 (méthode volumétrique multipoints (5 points) - gaz: azote - dégazage: 1 heure à 160°C - domaine de pression relative p/po : 0.05 à 0.17). La surface spécifique CTAB est la surface externe déterminée selon la norme française NF T 45-007 de novembre 1987 (méthode B).
De manière préférentielle, le taux de charge renforçante totale est compris entre 30 et 100 pce. En deçà de 30 pce, le renforcement de la composition de caoutchouc est insuffisant pour apporter un niveau de cohésion ou de résistance à l'usure adéquats du composant caoutchouteux du pneumatique comprenant cette composition. De manière encore plus préférentielle, le taux de charge renforçante totale est d'au moins 40 pce. Au-delà de 100 pce, il existe un risque d'augmentation de l'hystérèse et donc de la résistance au roulement des pneumatiques. Pour cette raison, le taux de charge renforçante totale est de préférence dans un domaine allant de 40 à 80 pce, notamment pour un usage dans une nappe carcasse et une nappe de sommet de pneumatique.
Le noir de carbone représente avantageusement plus de 50% en masse de la charge renforçante. En particulier, la charge renforçante est avantageusement du noir de carbone (100% en masse).
Pour coupler la charge inorganique renforçante à l'élastomère diénique, on utilise de manière bien connue un agent de couplage (ou agent de liaison) au moins bifonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge inorganique (surface de ses particules) et l'élastomère diénique. On utilise en particulier des organosilanes ou des polyorganosiloxanes au moins bifonctionnels. On utilise notamment des silanes polysulfurés, dits "symétriques" ou "asymétriques" selon leur structure particulière, tels que décrits par exemple dans les demandes WO03/002648 (ou US 2005/016651 ) et WO03/002649 (ou US 2005/016650). A titre d'exemples de silanes polysulfurés, on citera plus particulièrement les polysulfures (notamment disulfures, trisulfures ou tétrasulfures) de bis-(alkoxyl(C1-C4)-alkyl(C1-C4)silyl- alkyl(Ci-C4)), comme par exemple les polysulfures de bis(3-triméthoxysilylpropyl) ou de bis(3- triéthoxysilylpropyl). Parmi ces composés, on utilise en particulier le tétrasulfure de bis(3- triéthoxysilylpropyl), en abrégé TESPT, de formule [(C2H50)3Si(CH2)3S2]2 ou le disulfure de bis-(triéthoxysilylpropyle), en abrégé TESPD, de formule [(C2H50)3Si(CH2)3S]2. On citera également à titre d'exemples préférentiels les polysulfures (notamment disulfures, trisulfures ou tétrasulfures) de bis-(monoalkoxyl(C1-C4)-dialkyl(C1-C4)silylpropyl), plus particulièrement le tétrasulfure de bis-monoéthoxydiméthylsilylpropyl tel que décrit dans la demande de brevet WO 02/083782 précitée (ou US 7 217 751 ).
A titre d'exemple d'agents de couplage autres qu'un alkoxysilane polysulfuré, on citera notamment des POS (polyorganosiloxanes) bifonctionnels ou encore des polysulfures d'hydroxysilane (R2 = OH dans la formule I ci-dessus) tels que décrits par exemple dans les demandes de brevet WO 02/30939 (ou US 6 774 255), WO 02/31041 (ou US 2004/051210), et WO2007/061550, ou encore des silanes ou POS porteurs de groupements fonctionnels azo-dicarbonyle, tels que décrits par exemple dans les demandes de brevet WO 2006/125532, WO 2006/125533, WO 2006/125534.
A titre d'exemples d'autres silanes sulfurés, on citera les silanes porteurs d'au moins une fonction thiol (-SH) (dits mercaptosilanes) et/ou d'au moins une fonction thiol bloqué, tels que décrits par exemple dans les brevets ou demandes de brevet US 6 849 754, WO 99/09036, WO 2006/023815, WO 2007/098080, WO 2010/072685 et WO 2008/055986.
Bien entendu pourraient être également utilisés des mélanges des agents de couplage précédemment décrits, comme décrit notamment dans la demande WO 2006/125534 précitée. La teneur en agent de couplage est avantageusement inférieure à 20 pce, étant entendu qu'il est en général souhaitable d'en utiliser le moins possible. Typiquement le taux d'agent de couplage représente de 0,5% à 15% en poids par rapport à la quantité de charge inorganique. Son taux est préférentiellement compris entre 0,5 et 12 pce, plus préférentiellement compris dans un domaine allant de 3 à 10 pce. Ce taux est aisément ajusté par l'homme du métier selon le taux de charge inorganique utilisé dans la composition.
II.3. Additifs divers :
Les compositions de caoutchouc conformes à l'invention peuvent également contenir des activateurs de couplage, des agents de recouvrement des charges inorganiques ou plus généralement des agents d'aide à la mise en œuvre susceptibles de manière connue, grâce à une amélioration de la dispersion de la charge dans la matrice de caoutchouc et à un abaissement de la viscosité des compositions, d'améliorer leur faculté de mise en œuvre à l'état cru, ces agents étant par exemple des silanes hydrolysables tels que des alkylalkoxysilanes, des polyols, des polyéthers, des aminés primaires, secondaires ou tertiaires, des polyorganosiloxanes hydroxylés ou hydrolysables.
Les compositions de caoutchouc conformes à l'invention peuvent comporter également tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastoméres destinées à la fabrication de pneumatiques, comme par exemple des pigments, des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, anti-oxydants, des agents anti-fatigue, des résines renforçantes ou plastifiantes, des accepteurs (par exemple résine phénolique novolaque) ou des donneurs de méthylène (par exemple HMT ou H3M) tels que décrits par exemple dans la demande WO 02/10269, des promoteurs d'adhésion tels que des composés à base de cobalt, des agents plastifiants, préférentiellement non aromatiques ou très faiblement aromatiques choisis dans le groupe constitué par les huiles naphténiques, paraffiniques, huiles MES, huiles TDAE, les plastifiants éthers, les plastifiants esters, les résines hydrocarbonées présentant une haute Tg, de préférence supérieure à 30 °C, telles que décrites par exemple dans les demandes WO 2005/087859, WO 2006/061064 et WO 2007/017060, et les mélanges de tels composés.
Le système de réticulation est préférentiellement un système de vulcanisation à base de soufre et d'un accélérateur. On peut utiliser tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, en particulier ceux choisis dans le groupe constitué par disulfure de 2-mercaptobenzothiazyle (en abrégé "MBTS"), N-cyclohexyl-2-benzothiazyle suifénamide (en abrégé "CBS"), N,N- dicyclohexyl- 2-benzothiazyle suifénamide (en abrégé "DCBS"), N-ter-butyl-2-benzothiazyle suifénamide (en abrégé "TBBS"), N-ter-butyl-2-benzothiazyle suifénimide (en abrégé "TBSI") et les mélanges de ces composés. De préférence, on utilise un accélérateur primaire du type suifénamide.
A ce système de vulcanisation viennent s'ajouter, incorporés au cours de la première phase non-productive et/ou au cours de la phase productive, du procédé décrit ci-après, divers accélérateurs secondaires ou activateurs de vulcanisation connus tels que oxyde de zinc, acide stéarique, dérivés guanidiques (en particulier diphénylguanidine), etc. Dans le cas d'une utilisation de la composition de l'invention en bande de roulement de pneumatique, le taux de soufre est par exemple compris entre 0,5 et 3,0 pce, celui de l'accélérateur primaire entre 0,5 et 5,0 pce.
11.4. Fabrication de la composition de caoutchouc :
Les caoutchoucs naturels sont tout d'abord sélectionnés. Ainsi, on sélectionne
a) un caoutchouc naturel ayant une distribution de masse moléculaire, vue en SEC-MALS, bimodale ;
b) un caoutchouc naturel ayant une distribution de masse moléculaire, vue en SEC-MALS, unimodale et un indice de plasticité initiale inférieur à 20 ; Avantageusement, les caoutchoucs des étapes a) et b) sont destinés à être ensuite utilisés en coupage dans des proportions massiques, caoutchouc de l'étape a) : caoutchouc de l'étape b) allant de 90 :10 à 20 :80, avantageusement allant de 90 :10 à 30 :70, plus avantageusement allant de 70 :30 à 30 :70, encore plus avantageusement allant de 60 :40 à 40 :60, encore plus avantageusement de 50 :50.
Avantageusement, les caoutchoucs des étapes a) et b) ne subissent pas de plastification subséquente ; la plastification consistant en un travail mécanique de la matrice permettant une diminution de sa viscosité. Ensuite, la composition de caoutchouc conforme à l'invention à base d'au moins une matrice élastomérique comprenant les caoutchoucs des étapes a) et b), une charge renforçante est fabriquée dans des mélangeurs appropriés, en utilisant deux phases de préparation successives bien connues de l'homme du métier : une première phase de travail ou malaxage thermomécanique (phase dite « non-productive ») à haute température, jusqu'à une température maximale comprise entre 1 10°C et 190°C, de préférence entre 130°C et 180°C, suivie d'une seconde phase de travail mécanique (phase dite « productive ») jusqu'à une plus basse température, typiquement inférieure à 1 10°C, par exemple entre 40°C et 100°C, phase de finition au cours de laquelle est incorporé le système de réticulation.
Le procédé pour préparer la composition de caoutchouc conforme à l'invention comprend les étapes suivantes :
i. incorporer à la matrice élastomérique comprenant les caoutchoucs des étapes a) et b), au cours d'une première étape dite non productive, la charge renforçante, ainsi que les autres ingrédients de la composition à l'exception du système de réticulation en malaxant thermomécaniquement le tout jusqu'à atteindre une température maximale comprise entre 1 10 et 190°C ;
ii. refroidir l'ensemble à une température inférieure à 100°C ;
iii. incorporer ensuite, au cours d'une seconde étape dite productive un système de réticulation ;
iv. malaxer le tout jusqu'à une température maximale inférieure à 1 10°C.
La composition finale ainsi obtenue peut ensuite être calandrée, par exemple sous la forme d'une feuille, d'une plaque ou encore extrudée, par exemple pour former un profilé de caoutchouc utilisé pour la fabrication d'un produit semi-fini pour pneumatique, tel que bandes de roulement, nappes ou autres bandes, sous-couches, divers blocs de caoutchouc, renforcés ou non de renforts textiles ou métalliques, destinés à former une partie de la structure du pneumatique, tout particulièrement sa bande de roulement.
La vulcanisation (ou cuisson) peut ensuite être conduite de manière connue à une température généralement comprise entre 130°C et 200°C, de préférence sous pression, pendant un temps suffisant qui peut varier par exemple entre 5 et 90 min en fonction notamment de la température de cuisson, du système de vulcanisation adopté et de la cinétique de vulcanisation de la composition considérée.
L'invention concerne les compositions de caoutchouc précédemment décrites tant à l'état dit "cru" (i.e. avant cuisson) qu'à l'état dit "cuit" ou vulcanisé (i.e. après vulcanisation).
L'invention a également pour objet un composant en caoutchouc comprenant une composition de caoutchouc renforcée selon l'invention. L'invention a également pour objet un pneumatique dont au moins un de ses éléments constitutifs est un composant en caoutchouc comprenant une composition de caoutchouc renforcée selon l'invention.
EXEMPLES
Dans les exemples qui suivent, le caoutchouc naturel est obtenu après coagulation du latex (coagulation chimique ou naturelle). Les coagulums sont séchés pendant 3h à environ 120°C. Caractérisation des gommes :
Les caoutchoucs naturels ont été caractérisés par SEC MALS. Une dérivée première a été appliquée en tout point du signal RI (indice de réfraction) sur un pas de 24 points afin de discriminer la distribution de masses moléculaires. Cette dérivée exacerbe les changements de pentes. Ainsi lors d'une évolution linéaire, la dérivée sera constante et lors d'une rupture de pente (changement de population) la dérivée s'inverse.
Les caoutchoucs naturels issus des variétés RRIM600, PR107, CDC429 présentent une distribution de masses moléculaires, vue en SEC-MALS, bimodale. La distribution de masses moléculaires pour le caoutchouc naturel issu de la variété RRIM600 est reportée sur la figure 1 .
Les caoutchoucs naturels issus des variétés PB217, PB235, CDC312 présentent une distribution de masses moléculaires, vue en SEC-MALS, unimodale. La distribution de masse moléculaire pour le caoutchouc naturel issu de la variété PB217 est reportée sur la figure 2. Les caoutchoucs naturels utilisés dans les exemples n'ont pas subi d'étape préalable de plastification.
EXEMPLE 1 :
Préparation des compositions :
On utilise comme témoin T0.1 , une gomme plastifiée comprenant un caoutchouc naturel résultant d'un mélange de plusieurs latex non sélectionnés spécifiquement. Ce caoutchouc naturel a préalablement subi une étape de plastification, la plastification consistant en un travail mécanique du matériau permettant une diminution de sa viscosité.
Les compositions sont données dans le tableau suivant. Les quantités sont exprimées en parties pour 100 parties d'élastomère (pce).
Figure imgf000023_0001
Tableau 1
NR1 : caoutchouc naturel résultant d'un mélange de plusieurs latex. Ce NR a subi une étape de plastification par traitement mécanique.
NR2 : Caoutchouc naturel issu de la variété PB235 ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale, et un indice de plasticité initiale, P0, de 37 (3) NR3 : Caoutchouc naturel issu de la variété PB217 ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale, et un indice de plasticité initiale, PO, de 12
(4) NR4 : Caoutchouc naturel issu de la variété RRIM600 ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale
(5) Noir de carbone N234
(6) 6PPD : N-(1 ,3-diméthylbutyl)-N'-phenyl-p-phenylènediamine: antioxydant
(7) TMQ :2,2,4-trimethyl-1 ,2-dihydroquinoline
(8) ZnO : Oxyde de Zinc
(9) SAD : Acide Stéarique
(10) N-cyclohexyl-2-benzothiazyl-sulfénamide (« Santocure CBS » de la société Flexsys)
Dans un mélangeur interne, dont la température de cuve initiale est d'environ 80°C, on introduit les matrices élastomères (les caoutchoucs naturels sélectionnés). Après une minute de mélangeage, l'ensemble des autres composés est introduit.
A 1 15°C et à 135°C, on effectue un coup de pilon afin d'apporter du chaos dans le mélange (améliore l'homogénéité du mélange). Le mélange ainsi obtenu est récupéré à une température de « tombée » de 165°C après une durée totale de mélangeage d'environ cinq minutes.
Ce mélange est refroidi sur mélangeur externe à température ambiante. Le système de vulcanisation est incorporé au mélange à l'outil à cylindres. Ces compositions sont ensuite calandrées sous forme de plaques (épaisseur de 2 à 3 mm) pour la mesure de leurs propriétés.
Essais de caractérisation - Résultats
A. Mooney
La processabilité des compositions comprenant des caoutchoucs naturels ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale, et différentes plasticités intiales a été vue au travers de la mesure Mooney. Une telle mesure a également été effectuée pour une composition comprenant un coupage de caoutchoucs naturels sélectionnés selon l'invention. Les résultats sont reportés dans le tableau suivant : Composition T0.1 T3 T1.1 T1.2 C1
Plasticité initiale, PO - 37 12 30 -
Mooney 100 1 12 76 113 95
Tableau 2
On constate qu'une composition comprenant comme caoutchouc naturel un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale, et un indice de plasticité inférieur à 20 (T1.1 ) permet d'obtenir un niveau de processabilité, vue au travers du Mooney, amélioré par rapport au témoin.
Au contraire, pour une composition comprenant comme caoutchouc naturel un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale, et un indice de plasticité initiale, P0, de 37 (T3) ou pour une composition comprenant comme caoutchouc naturel un caoutchouc naturel ayant une distribution de masse moléculaire, vue en SEC-MALS, bimodale (T1.2), aucune amélioration n'est observée, au contraire une dégradation est notée.
Une composition comprenant un coupage selon l'invention (C1 ) conserve une amélioration de la processabilité, vue au travers du Mooney.
B. propriétés des compositions selon l'invention
Figure imgf000025_0001
Le mélange de la composition C1 permet d'obtenir un niveau de processabilité, vu au travers du Mooney, quasi identique à celui observé avec un mélange de la composition T0 contenant une gomme plastifiée. Le mélange de la composition C1 permet d'obtenir un niveau de renforcement à cru, vu au travers de la contrainte rupture très nettement amélioré par rapport à la gomme plastifiée sans pénalisation de l'allongement.
Le mélange de la composition C1 permet d'obtenir un niveau d'hystérèse, vu au travers de AG* (G*0.1 %-G*50%) et de tan(5)a max, amélioré par rapport à la gomme plastifiée sans pénalisation marquée de la rigidité vue au travers de G*50%.
EXEMPLE 2 :
Dans cet autre exemple, on a fait varier les quantités respectives des caoutchoucs naturels sélectionnés.
Préparation des compositions :
On utilise comme témoin T0.2, une gomme plastifiée comprenant un caoutchouc naturel résultant d'un mélange de plusieurs latex non sélectionnés, spécifiquement Ce caoutchouc naturel a préalablement subi une étape de plastification, la plastification consistant en un travail mécanique du matériau permettant une diminution de sa viscosité.
Les compositions sont données dans le tableau suivant. Les quantités sont exprimées en parties pour 100 parties d'élastomère (pce).
Figure imgf000026_0001
Tableau 4 (1 ) NR1 : caoutchouc naturel résultant d'un mélange de plusieurs latex. Ce NR a subi une étape de plastification par traitement mécanique.
(2) NR2.2 : Caoutchouc naturel issu de la variété CDC312 ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale (3) NR2.3 : Caoutchouc naturel issu de la variété CDC429 ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale
(4) Noir de carbone N234
(5) 6PPD : N-(1 ,3-diméthylbutyl)-N'-phenyl-p-phenylènediamine: antioxydant
(6) TMQ :2,2,4-tnmethyl-1 ,2-dihydroquinoline
(7) ZnO : Oxyde de Zinc
(8) SAD : Acide Stéarique
(9) N-cyclohexyl-2-benzothiazyl-sulfénamide (« Santocure CBS » de la société Flexsys) Dans un mélangeur interne, dont la température de cuve initiale est d'environ 80°C, on introduit les matrices élastoméres (les caoutchoucs naturels sélectionnés). Après une minute de mélangeage, l'ensemble des autres composés est introduit.
A 1 15°C et à 135°C, on effectue un coup de pilon afin d'apporter du chaos dans le mélange (améliore l'homogénéité du mélange). Le mélange ainsi obtenu est récupéré à une température de « tombée » de 165°C après une durée totale de mélangeage d'environ cinq minutes.
Ce mélange est refroidi sur mélangeur externe à température ambiante. Le système de vulcanisation est incorporé au mélange à l'outil à cylindres. Ces compositions sont ensuite calandrées sous forme de plaques (épaisseur de 2 à 3 mm) pour la mesure de leurs propriétés.
Essais de caractérisation - Résultats
Figure imgf000028_0001
Tableau 5 En faisant varier les proportions respectives en chacun des caoutchoucs sélectionnés, on privilégie soit la processabilité soit les propriétés de redressement à cru.
Bibliographie
(1 ) Subramaniam [1972] Gel Permeation Chromatography of Natural Rubber. Rubber Chemistry and Technology. 346-358
(2) Subramaniam, A. (1993). Characterisation of natural rubber. In "Int Rubb Technol Conf, pp. 18.
(3) Liengprayoon, S. (2008). Characterization of lipid composition of sheet rubber from Hevea brasiliensis and relations with its structure and properties, Thèse Kasetsart university & Montpellier Supagro, Montpellier - 206 p

Claims

REVENDICATIONS
Composition de caoutchouc à base d'au moins :
a) une matrice élastomérique comprenant du caoutchouc naturel, b) une charge renforçante,
c) un système de réticulation,
caractérisée en ce que ledit caoutchouc naturel est un coupage (i) d'un caoutchouc naturel ayant une distribution de masse moléculaire, vue en SEC- MALS, bimodale et (ii) d'un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale, et ayant un indice de plasticité initiale inférieur à 20, en des proportions massiques (i) :(ii) allant de 90 :10 à 20 :80.
Composition de caoutchouc selon la revendication 1 , caractérisée en ce que le ratio massique (i) :(ii) va de 70 :30 à 30 :70.
Composition de caoutchouc selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend entre 30 et 100 pce de charge renforçante.
Composition de caoutchouc selon l'une quelconque des revendications précédentes, caractérisée en ce que la charge renforçante comprend un noir de carbone ou une charge inorganique renforçante ou un coupage de ces charges.
Composition de caoutchouc selon l'une quelconque des revendications précédentes, caractérisée en ce que le noir de carbone représente plus de 50% en masse de la charge renforçante
Composition de caoutchouc selon l'une quelconque des revendications précédentes, caractérisée en ce que la charge renforçante comprend une charge inorganique renforçante, en particulier une silice, et en ce que la composition comprend un agent de couplage.
7. Composition de caoutchouc selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la charge renforçante est du noir de carbone.
8. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la matrice élastomérique comprend un autre élastomère diénique.
9. Composition selon l'une quelconque des revendications précédentes, caractérisée en ce que la matrice élastomérique comprend plus de 50 pce de caoutchouc naturel, avantageusement 100 pce.
10. Procédé de préparation d'une composition de caoutchouc selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes :
a) sélectionner un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, bimodale ;
b) sélectionner un caoutchouc naturel ayant une distribution de masses moléculaires, vue en SEC-MALS, unimodale et ayant un indice de plasticité initiale, P0, inférieur à 20 ;
c) incorporer à la matrice élastomérique, comprenant un mélange des caoutchouc naturels sélectionnés aux étapes a) et b), dans un rapport massique caoutchouc de l'étape a) : caoutchouc de l'étape b) allant de 90 :10 à 20 :80, au cours d'une première étape dite non productive, les autres ingrédients de la composition, à l'exception du système de réticulation en malaxant thermomécaniquement le tout jusqu'à atteindre une température maximale comprise entre 1 10 et 190°C ;
d) refroidir l'ensemble à une température inférieure à 100°C ;
e) incorporer ensuite, au cours d'une seconde étape dite productive un système de réticulation ;
f) malaxer le tout jusqu'à une température maximale inférieure à 1 10°C
1 1 . Composant de pneumatique comprenant une composition selon l'une quelconque des revendications 1 à 9.
12. Composant de pneumatique selon la revendication 1 1 , comprenant en outre des éléments de renforcement filaire.
13. Composant selon la revendication 1 1 ou 12, caractérisé en ce que ledit composant est choisi parmi la nappe carcasse et les nappes de sommet.
14. Pneumatique comprenant un composant selon l'une quelconque des revendications 11 à 13.
PCT/FR2017/051853 2016-07-07 2017-07-07 Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en sec-mals, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique WO2018007768A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1656516A FR3053692B1 (fr) 2016-07-07 2016-07-07 Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moleculaire, vue en sec-mals, respectivement unimodale ou bimodale, procede de preparation et composant de pneumatique
FR1656516 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018007768A1 true WO2018007768A1 (fr) 2018-01-11

Family

ID=56787627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/051853 WO2018007768A1 (fr) 2016-07-07 2017-07-07 Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en sec-mals, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique

Country Status (2)

Country Link
FR (1) FR3053692B1 (fr)
WO (1) WO2018007768A1 (fr)

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037547A2 (fr) 1995-05-22 1996-11-28 Cabot Corporation Composes elastomeres incorporant des noirs de carbone traites au silicium
WO1999009036A1 (fr) 1997-08-21 1999-02-25 Osi Specialties, Inc. Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge
WO1999028380A1 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
US6610261B1 (en) 1997-11-28 2003-08-26 COMPAGNIE GéNéRALE DES ETABLISSEMENTS MICHELIN - MICHELIN & CIE Reinforcing aluminum-based filler and rubber composition comprising such a filter
US6747087B2 (en) 1999-05-28 2004-06-08 Michelin Recherche Et Technique S.A. Rubber composition for a tire, based on diene elastomer and a reinforcing titanium oxide
US6849754B2 (en) 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006023815A2 (fr) 2004-08-20 2006-03-02 General Electric Company Compositions cycliques de silanes mercaptofonctionnels bloquees derivees de diol
WO2006061064A1 (fr) 2004-10-28 2006-06-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2007061550A1 (fr) 2005-11-16 2007-05-31 Dow Corning Corporation Organosilanes et leur preparation et utilisation dans des compositions d’elastomere
WO2007098080A2 (fr) 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Composition de matière de charge non agglomérante à base de silane organofonctionnel
WO2008055986A2 (fr) 2006-11-10 2008-05-15 Rhodia Operations Procede de preparation d'alcoxysilanes (poly)sulfures et nouveaux produits intermediaires dans ce procede
WO2010072685A1 (fr) 2008-12-22 2010-07-01 Societe De Technologie Michelin Agent de couplage mercaptosilane bloque
FR3005659A1 (fr) * 2013-05-20 2014-11-21 Cabot Corp Composites d'elastomeres, melanges de ceux-ci et methodes de preparation
EP3000843A1 (fr) * 2013-06-18 2016-03-30 Sumitomo Rubber Industries, Ltd. Composition de caoutchouc pour pneu et pneu

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037547A2 (fr) 1995-05-22 1996-11-28 Cabot Corporation Composes elastomeres incorporant des noirs de carbone traites au silicium
WO1999009036A1 (fr) 1997-08-21 1999-02-25 Osi Specialties, Inc. Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge
WO1999028380A1 (fr) 1997-11-28 1999-06-10 Compagnie Generale Des Etablissements Michelin - Michelin & Cie Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse
US6610261B1 (en) 1997-11-28 2003-08-26 COMPAGNIE GéNéRALE DES ETABLISSEMENTS MICHELIN - MICHELIN & CIE Reinforcing aluminum-based filler and rubber composition comprising such a filter
US6747087B2 (en) 1999-05-28 2004-06-08 Michelin Recherche Et Technique S.A. Rubber composition for a tire, based on diene elastomer and a reinforcing titanium oxide
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
WO2002030939A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
WO2002031041A1 (fr) 2000-10-13 2002-04-18 Societe De Technologie Michelin Composition de caoutchouc comportant a titre d'agent de couplage un organosilane polyfonctionnel
US6774255B1 (en) 2000-10-13 2004-08-10 Michelin Recherche Et Technique, S.A. Polyfunctional organosilane usable as a coupling agent and process for the obtainment thereof
US20040051210A1 (en) 2000-10-13 2004-03-18 Jean-Claude Tardivat Rubber composition comprising a polyfunctional organosilane as coupling agent
WO2002083782A1 (fr) 2001-04-10 2002-10-24 Societe De Technologie Michelin Pneumatique et bande de roulement comportant comme agent de couplage un tetrasulfure de bis-alkoxysilane
US7217751B2 (en) 2001-04-10 2007-05-15 Michelin Recherche Et Technique S.A. Tire and tread comprising a bis-alkoxysilane tetrasulfide as coupling agent
US20050016650A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of very low specific surface area
WO2003002648A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a basse surface specifique
US20050016651A1 (en) 2001-06-28 2005-01-27 Michelin Recherche Et Technique S.A. Tire tread reinforced with a silica of low specific surface area
WO2003002649A1 (fr) 2001-06-28 2003-01-09 Societe De Technologie Michelin Bande de roulement pour pneumatique renforcee d'une silice a tres basse surface specifique
US6849754B2 (en) 2001-08-06 2005-02-01 Degussa Ag Organosilicon compounds
WO2003016387A1 (fr) 2001-08-13 2003-02-27 Societe De Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
WO2005087859A1 (fr) 2004-02-11 2005-09-22 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006023815A2 (fr) 2004-08-20 2006-03-02 General Electric Company Compositions cycliques de silanes mercaptofonctionnels bloquees derivees de diol
WO2006061064A1 (fr) 2004-10-28 2006-06-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2006125532A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
WO2006125533A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Compostion de cautchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
WO2006125534A1 (fr) 2005-05-26 2006-11-30 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
WO2007017060A1 (fr) 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc
WO2007061550A1 (fr) 2005-11-16 2007-05-31 Dow Corning Corporation Organosilanes et leur preparation et utilisation dans des compositions d’elastomere
WO2007098080A2 (fr) 2006-02-21 2007-08-30 Momentive Performance Materials Inc. Composition de matière de charge non agglomérante à base de silane organofonctionnel
WO2008055986A2 (fr) 2006-11-10 2008-05-15 Rhodia Operations Procede de preparation d'alcoxysilanes (poly)sulfures et nouveaux produits intermediaires dans ce procede
WO2010072685A1 (fr) 2008-12-22 2010-07-01 Societe De Technologie Michelin Agent de couplage mercaptosilane bloque
FR3005659A1 (fr) * 2013-05-20 2014-11-21 Cabot Corp Composites d'elastomeres, melanges de ceux-ci et methodes de preparation
EP3000843A1 (fr) * 2013-06-18 2016-03-30 Sumitomo Rubber Industries, Ltd. Composition de caoutchouc pour pneu et pneu

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM, CHANDY; SAINTE-BEUVE, JÉROME; GUILBERT, STÉPHANE; BONFILS, FRÉDÉRIC: "Study of chain branching in natural rubber using size-exclusion chromatography coupled with a multiangle light scattering detector (SEC-MALS", EUROPEAN POLYMER JOURNAL, vol. 45, no. 8, August 2009 (2009-08-01), pages 2249 - 2259, XP055289292, DOI: doi:10.1016/j.eurpolymj.2009.05.015
LIENGPRAYOON, S.: "Characterization of lipid composition of sheet rubber from Hevea brasiliensis and relations with its structure and properties", THESE KASETSART UNIVERSITY & MONTPELLIER SUPAGRO, 2008, pages 206
SUBRAMANIAM, A.: "Characterisation of natural rubber", INT RUBB TECHNOL CONF, 1993, pages 18
SUBRAMANIAM: "Gel Permeation Chromatography of Natural Rubber", RUBBER CHEMISTRY AND TECHNOLOGY, 1972, pages 346 - 358
THE JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 60, February 1938 (1938-02-01), pages 309

Also Published As

Publication number Publication date
FR3053692B1 (fr) 2018-06-22
FR3053692A1 (fr) 2018-01-12

Similar Documents

Publication Publication Date Title
EP2652015B1 (fr) Composition elastomerique presentant une bonne dispersion de la charge dans la matrice elastomerique
EP2104619B1 (fr) Systeme plastifiant et composition de caoutchouc pour pneumatique incorporant ledit systeme
EP2652022B1 (fr) Composition elastomerique presentant une tres bonne dispersion de la charge dans la matrice elastomerique
WO2018115715A1 (fr) Pneumatique pourvu d'un flanc externe a base d'une composition comprenant une poudrette de caoutchouc
WO2011113899A1 (fr) Flanc pour pneumatique
WO2018162855A1 (fr) Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un derive d'acrylate polyfonctionnel
WO2018162854A1 (fr) Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un acrylate de zinc
EP3558711B1 (fr) Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
WO2018115719A1 (fr) Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
WO2018115720A1 (fr) Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
WO2018115714A1 (fr) Composition de caoutchouc comprenant une poudrette de caoutchouc specifique
WO2021123566A1 (fr) Composition de caoutchouc
WO2013164203A1 (fr) Bande de roulement de pneumatique
EP3083769B1 (fr) Composition de caoutchouc a base majoritairement de caoutchouc naturel
WO2016096704A1 (fr) Bande de roulement de pneumatique
FR3044314A1 (fr) Composition de caoutchouc a base de caoutchouc naturel ayant une distribution de masse moleculaire, vue en sec-mals, bimodale, procede de preparation et composant de pneumatique
EP3233530B1 (fr) Flanc pour pneumatique
CA2969049C (fr) Flanc pour pneumatique
WO2018007768A1 (fr) Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en sec-mals, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique
WO2017103518A1 (fr) Procédé de préparation d'un mélange maître, comprenant un élastomère diénique, une charge organique renforçante et un agent antioxydant
WO2017017180A1 (fr) Procédé de préparation d'un caoutchouc naturel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17742502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17742502

Country of ref document: EP

Kind code of ref document: A1