[go: up one dir, main page]

WO2018004004A1 - 核酸複合体 - Google Patents

核酸複合体 Download PDF

Info

Publication number
WO2018004004A1
WO2018004004A1 PCT/JP2017/024268 JP2017024268W WO2018004004A1 WO 2018004004 A1 WO2018004004 A1 WO 2018004004A1 JP 2017024268 W JP2017024268 W JP 2017024268W WO 2018004004 A1 WO2018004004 A1 WO 2018004004A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
nucleic acid
substituted
compound
unsubstituted
Prior art date
Application number
PCT/JP2017/024268
Other languages
English (en)
French (fr)
Inventor
上原 啓嗣
康裕 鈴木
俊正 春元
宏徒 岩井
麻奈 牧野
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Priority to CA3029508A priority Critical patent/CA3029508A1/en
Priority to ES17820358T priority patent/ES2952757T3/es
Priority to CN201780040847.4A priority patent/CN109415401B/zh
Priority to JP2018525319A priority patent/JP7022687B2/ja
Priority to EP17820358.4A priority patent/EP3498724B1/en
Priority to AU2017287536A priority patent/AU2017287536B9/en
Priority to US16/314,015 priority patent/US12251446B2/en
Priority to KR1020197002874A priority patent/KR102520362B1/ko
Publication of WO2018004004A1 publication Critical patent/WO2018004004A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/341Gapmers, i.e. of the type ===---===
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a nucleic acid complex and a pharmaceutical composition containing the nucleic acid complex.
  • nucleic acid drugs antisense, decoy nucleic acid, ribozyme, siRNA, miRNA, antimiRNA and the like are known. Nucleic acid drugs are expected to be clinically applied to various diseases that have been difficult to treat because of their versatility that can control all genes in cells. Nucleic acid drugs are expected as next-generation drugs after antibodies and low-molecular-weight drugs because of their high target selectivity and activity in cells. However, it is a problem that nucleic acid drugs are difficult to deliver to target tissues.
  • nucleic acid complex conjuggated nucleic acid
  • Targeting compounds include ligands that can bind to receptors expressed extracellularly.
  • GalNAc N-acetyl-D-galactosamine
  • ASGPR asialoglycoprotein receptor
  • Patent Documents 1 and 2 disclose the following nucleic acid complexes.
  • Ac represents an acetyl group.
  • Patent Document 3 discloses a nucleic acid complex having the following structure having the same sugar ligand-tether unit as Patent Documents 1 and 2.
  • Patent Document 4 discloses a nucleic acid complex having the following structure as a sugar ligand-tether unit.
  • CD209 also known as DC-SIGN, Dendritic Cell-Specific Intercellular Adhesion Molecule 3-Graving Nonintegrin
  • CD206 also known as MR1, Macrophage Mannose Rceptor 1
  • CD206 is expressed on the surface of macrophages and dendritic cells
  • CD209 is expressed on the surface of dendritic cells on the skin and mucosal tissues, lymphoid tissues such as tonsils, lymph nodes, and spleen, both of which are HIV. It is known to be involved in virus supplementation (Non-patent Documents 2 and 3).
  • Patent Document 5 discloses that a conjugate of a sugar molecule such as mannose or fucose and an antigen is used for immune induction.
  • An object of the present invention is to provide a novel nucleic acid complex.
  • the present invention relates to the following (1) to (22).
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted carbon number A group selected from the group consisting of 3 to 20 alkynyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, substituted or unsubstituted heteroalicyclic groups, and substituted or unsubstituted aralkyl groups
  • Y 1 and Y 2 are each independently a group selected from the group consisting of an oxygen atom, a sulfur atom, and NR 3 ;
  • R 3 is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atom
  • R 1 ′ and R 2 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted group.
  • Y 1 ′ and Y 2 ′ are each independently a group selected from the group consisting of an oxygen atom, a sulfur atom, and NR 3 ′ , R 3 ′ is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • R 1 ′′ and R 2 ′′ each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, substituted or unsubstituted From the group consisting of a substituted alkynyl group having 3 to 20 carbon atoms, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted heteroalicyclic group, and a substituted or unsubstituted aralkyl group
  • Y 1 ′′ and Y 2 ′′ are each independently a group selected from the group consisting of an oxygen atom, a sulfur atom, and NR 3 ′′ , R 3 ′′ is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • an unsubstituted alkynyl group having 3 to 20 carbon atoms a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted heteroalicyclic group, and a substituted or unsubstituted aralkyl group.
  • a group selected from the group; Y 1 '' 'and Y 2' '' are each independently, an oxygen atom, a group selected from the group consisting of sulfur atom, and NR 3 '', R 3 ′ ′′ is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • (11) The nucleic acid complex according to any one of (1) to (10), wherein the linker has any one of the following structures. (Where X 1 is CH or a nitrogen atom. X 2 to X 4 are each independently CH or a nitrogen atom. ) (12) The nucleic acid complex according to any one of (1) to (11), wherein the linker has the following structure. (13) The nucleic acid complex according to any one of (1) to (12), wherein the linker has any one of the following structures. (14) The nucleic acid complex according to any one of (1) to (13), wherein the linker has the following structure.
  • a pharmaceutical composition containing the nucleic acid complex of the present invention can be administered to a mammal to treat various related diseases in vivo.
  • the result of the mRNA knockdown test of the human monocyte origin dendritic cell by CD45 antisense oligonucleotide (ASO) of the test example 1 is shown.
  • the result of the protein knockdown test of the dendritic cell derived from a human monocyte using ASO with respect to Beta-2 Microglobulin (B2M) of Test Example 2 is shown.
  • the result of the protein knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 3 is shown.
  • the result of the mRNA knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 4 is shown.
  • the result of the protein knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 5 is shown.
  • the result of the protein knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 6 is shown.
  • the result of the protein knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 7 is shown.
  • the result of the protein knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 8 is shown.
  • the result of the protein knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 9 is shown.
  • the result of the protein knockdown test of the human monocyte-derived dendritic cell using B2M-siRNA of Test Example 10 is shown.
  • the result of the protein knockdown test of the dendritic cell derived from a mature human monocyte using B2M-siRNA of Experiment 11 is shown.
  • the result of the protein knockdown test of the dendritic cell derived from a mature human monocyte using HPRT1-siRNA of Experiment 12 is shown.
  • the result of the protein knockdown test of the human monocyte-derived macrophage cell using B2M-siRNA of Test Example 13 is shown.
  • the nucleic acid complex of the present invention is a nucleic acid complex in which a sugar chain ligand is bound to an oligonucleotide via a linker, and the sugar chain ligand has an O-linked mannose at the non-reducing end of the sugar chain ligand. It is.
  • the nucleic acid complex has a sugar chain ligand, a linker, and an oligonucleotide as its intramolecular components, and the sugar chain ligand and the oligonucleotide are linked by binding via the linker.
  • the bond between the sugar chain ligand or oligonucleotide and the linker is preferably a covalent bond.
  • the nucleic acid complex of the present invention has a structure of sugar chain ligand-linker-oligonucleotide.
  • the sugar chain ligand has an O-linked mannose at the non-reducing end
  • a known structure can be adopted for the linker and oligonucleotide. That is, in a conventionally known nucleic acid complex having each structure of a sugar chain ligand, a linker and an oligonucleotide, the nucleic acid complex in which the sugar chain ligand is a sugar chain ligand having an O-linked mannose at the non-reducing end in the present invention is within the scope of the invention.
  • the sugar chain ligand has O-linked mannose at the non-reducing end.
  • O-linked mannose examples include the following structures.
  • the mannose O bond may be an ⁇ bond or a ⁇ bond, but preferably the mannose O bond is an ⁇ bond.
  • the sugar chain has a non-reducing end and a reducing end, and in the present invention, the non-reducing end is O-linked mannose.
  • the non-reducing end being O-linked mannose means having O-linked mannose at the outermost part of the sugar chain ligand and not having any other structure.
  • the sugar chain ligand means a group derived from a saccharide (monosaccharide, disaccharide, trisaccharide, polysaccharide, etc.) capable of binding to a receptor expressed in a target cell, and includes those containing a non-natural structure.
  • Monosaccharides that are saccharide units are naturally occurring, for example, allose, altose, arabinose, cladinose, erythrose, erythrulose, fructose, fucitol, fucosamine, fucose, fucose, galactosamine, galactosaminitol, N- Acetyl-galactosamine, galactose, glucosamine, N-acetyl-glucosamine, glucosaminitol, glucose, glucose-6-phosphate, gulose, glyceraldehyde, glyceromanno-heptose, glycerol, glycerone, gulose, idose, lyxose, mannosamine, mannose , Mannose-6-phosphate, psicose, quinobose, quinovosamine, rhamnitol, rhamnosamine, rhamnose, ribos
  • the sugar chain ligand preferably includes a non-natural structure, which means that the non-natural structure includes a structure other than the above monosaccharide.
  • Each monosaccharide in the saccharide may be D-form or L-form, or may be a mixture of D-form and L-form in an arbitrary ratio.
  • amino sugars galactosamine, glucosamine, mannosamine, fucosamine, quinovosamine, neuraminic acid, muramic acid, lactose diamine, acosamine, basilosamine, daunosamine, desosamine, forosamine, galosamine, canosamine, kansosamine (kansamine) Micaminose, mycosamine, perosamine, punoimosamine, purpurosamine, rhodosamine and the like.
  • the amino group of the amino sugar may be substituted with an acetyl group or the like.
  • the sugar chain ligand preferably has a structure showing binding affinity to CD209 and / or CD206.
  • the non-reducing end when the non-reducing end is O-linked mannose, it exhibits binding affinity for CD209 and / or CD206.
  • the sugar chain ligand exhibits binding affinity to CD209 and / or CD206, whereby the nucleic acid complex binds to a receptor expressed on the cell surface of dendritic cells or macrophages, and the oligonucleotide is delivered to the cells as a nucleic acid drug. Can do.
  • the sugar chain ligand preferably has a structure bonded to the cyclohexane skeleton via an ether bond at the 1-position of mannose.
  • the cyclohexane skeleton exists as a non-natural structure in the sugar chain ligand, and examples of the structure bonded to the cyclohexane skeleton through an ether bond at the 1-position of mannose include the following structures.
  • the cyclohexane ring may have a substituent, and the glycosidic bond of mannose with cyclohexane may be an ⁇ bond or a ⁇ bond.
  • R 1 and R 2 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms, a substituted or unsubstituted carbon number A group selected from the group consisting of 3 to 20 alkynyl groups, substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, substituted or unsubstituted heteroalicyclic groups, and substituted or unsubstituted aralkyl groups
  • Y 1 and Y 2 are each independently a group selected from the group consisting of an oxygen atom, a sulfur atom, and NR 3 ;
  • R 3 is a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms,
  • Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include methyl, ethyl, propyl, cyclopropyl, isopropyl, butyl, cyclobutyl, isobutyl, pentyl, cyclopentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl , Pentadecyl, and icosyl, but are not particularly limited.
  • Examples of the substituent in the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include hydroxy, halogen, mercapto, nitro, cyano, carboxy, carbamoyl, C1-C3 alkoxy, C1-C3 alkylthio, amino, C1-C3.
  • Examples thereof include a substituent selected from the group consisting of monoalkylamino and C1-C3 dialkylamino.
  • the number of substituents is, for example, 1 to 3, and when having a plurality of substituents, the plurality of substituents may be the same or different.
  • a substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms a substituted or unsubstituted alkynyl group having 3 to 20 carbon atoms, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group
  • the substituent in the substituted or unsubstituted aralkyl group has the same meaning as the substituent in the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms may be a group containing one or more double bonds in the substituted or unsubstituted alkyl group having 2 to 20 carbon atoms.
  • the substituted or unsubstituted alkynyl group having 3 to 20 carbon atoms may be any group containing one or more triple bonds in the substituted or unsubstituted alkyl group having 3 to 20 carbon atoms.
  • Examples of the substituted or unsubstituted aryl group include aromatic rings such as a phenyl group, a naphthyl group, and an anthracenyl group, but are not particularly limited.
  • the substituted or unsubstituted heteroaryl group means a heteroaromatic ring having a nitrogen atom, oxygen atom or sulfur atom in the ring, for example, 5 to 5 having 1 to 3 nitrogen atoms, oxygen atoms or sulfur atoms.
  • a 6-membered aromatic ring is mentioned.
  • the substituted or unsubstituted heteroalicyclic group means a heteroaliphatic ring having a nitrogen atom, oxygen atom or sulfur atom in the ring, and has, for example, 1 to 3 nitrogen atoms, oxygen atoms or sulfur atoms Examples include 5- to 6-membered aliphatic rings.
  • the substituted or unsubstituted aralkyl group may be any group in which the substituted or unsubstituted alkyl group is substituted with a substituted or unsubstituted aryl group.
  • the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms examples include a group containing one or more aryl groups, and specific examples include a substituted or unsubstituted benzyl group or phenethyl group.
  • Y 1 and Y 2 are preferably oxygen atoms, and preferably NH.
  • R 1 and R 2 are each independently preferably a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, and among them, R 1 and R 2 are preferably methyl groups.
  • R 1 and R 2 are preferably each independently a substituted or unsubstituted aralkyl group, Y 1 and Y 2 are NH, and R 1 and R 2 are substituted or unsubstituted aralkyl groups More preferably, Y 1 and Y 2 are NH, and R 1 and R 2 are 4-hydroxybenzyl group, 4- (hydroxymethyl) benzyl group or 4- (methoxymethyl) benzyl group Even more preferred.
  • the specific structure in the structure in which the mannose is bonded to the cyclohexane skeleton through an ether bond at the 1-position is not particularly limited, and for example, has the following structure.
  • R 1 ′ , R 2 ′ , Y 1 ′ , Y 2 ′ and R 3 ′ are synonymous with the corresponding R 1 , R 2 , Y 1 , Y 2 and R 3 , respectively.
  • sugar chain ligand having the structure described above include sugar chain ligands having any one of the following structures.
  • R 1, R 2, Y 1 and Y 2 are as defined above, R 1 ′′ , R 2 ′′ , Y 1 ′′ , Y 2 ′′ and R 3 ′′ are respectively synonymous with the corresponding R 1 , R 2 , Y 1 , Y 2 and R 3 and are preferable.
  • the combination of substituents is also synonymous.
  • examples of the sugar chain ligand having the structure described above include sugar chain ligands represented by any one of the following structures.
  • R 1 ′ , R 2 ′ , Y 1 ′ and Y 2 ′ are as defined above
  • R 1 ''' , R 2 ''' , Y 1 ''' , Y 2 ''' and R 3 ''' are respectively corresponding to R 1 , R 2 , Y 1 , Y 2 and R 3
  • R 1 ′ , R 2 ′ , Y 1 ′ and Y 2 ′ are as defined above
  • R 1 ''' , R 2 ''' , Y 1 ''' , Y 2 '' and R 3 ''' are respectively corresponding to R 1 , R 2 , Y 1 , Y 2 and R 3
  • R 1 ′ , R 2 ′ , Y 1 ′ and Y 2 ′ are as defined above
  • the sugar chain ligand structure in the present invention is disclosed in International Publication No. 2011/000721, Molecular Diversity, 2011, Volume 15, p347-360, Chemistry A European Journal, 2013. 19th volume, p. 4786-4797 and ACS Chemical Biology, 2010, 5th volume, p301-312.
  • the oligonucleotide in the present invention, an oligonucleotide known to be used as a nucleic acid drug can be used.
  • the nucleic acid pharmaceutical means nucleotides used as antisense, decoy nucleic acid, ribozyme, siRNA, miRNA, antimiRNA and the like.
  • the linker and the oligonucleotide are not only bound to the linker via the 3′-position or the 5′-position of the sugar moiety constituting the nucleotide, but are also bound to the linker via the base moiety constituting the nucleotide. May be.
  • an oligonucleotide may be understood as a group having a structure that connects a linker and an oligonucleotide.
  • the oligonucleotide is represented by —OP (Z) (Z ′) O— (wherein Z And Z ′ are each independently an oxygen atom or a sulfur atom.)
  • Z And Z ′ are each independently an oxygen atom or a sulfur atom.
  • the oligonucleotide as X is —OP (Z) (Z ′) O It may be understood as an oligonucleotide.
  • the oligonucleotide may be a single-stranded or double-stranded oligonucleotide.
  • the linker and the oligonucleotide in the nucleic acid complex may be bound by a nucleotide such as an oligonucleotide.
  • the linker and the oligonucleotide are bound at the 3 ′ end or 5 ′ end of the oligonucleotide.
  • the linker is preferably bonded to the 3 ′ end or 5 ′ end of the sense strand constituting the double-stranded nucleic acid.
  • the linker is not limited to this bond. Absent.
  • a nucleic acid containing a base sequence complementary to the target mRNA is called an antisense nucleotide
  • a nucleic acid containing a base sequence complementary to the base sequence of the antisense nucleotide is also called a sense nucleotide.
  • the oligonucleotide constituting the nucleic acid complex used in the present invention may have any shape as long as it has the ability to control the expression of a target gene when introduced into a mammalian cell. Double-stranded oligonucleotides are preferably used.
  • the oligonucleotide may be any molecule as long as it is a nucleotide or a polymer of molecules having functions equivalent to nucleotides, such as DNA that is a polymer of deoxyribonucleotides, RNA that is a polymer of ribonucleotides, A chimeric nucleic acid which is a polymer of RNA is exemplified.
  • a nucleotide polymer in which at least one nucleotide such as deoxyribonucleotide or ribonucleotide is substituted with a molecule having a function equivalent to nucleotide may be used.
  • uracil (U) in RNA is uniquely read as thymine (T) in DNA.
  • molecules having functions equivalent to nucleotides include nucleotide derivatives modified with nucleotides.
  • deoxyribonucleotides or molecules modified with ribonucleotides are preferably used.
  • nucleotide derivative examples include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, base-modified nucleotides and the like, and nucleotides modified with at least one of the sugar moiety, phosphodiester bond and base.
  • the sugar moiety-modified nucleotide may be any nucleotide as long as it is a part or all of the chemical structure of the sugar of the nucleotide, modified or substituted with any substituent, or substituted with any atom.
  • '-Modified nucleotides are preferably used.
  • the 2′-OH group of ribose is OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 , CN, F, Cl, Br and I.
  • Examples include modified nucleotides.
  • a crosslinked nucleic acid (BNA) having two cyclic structures by introducing a crosslinked structure into the sugar moiety is also preferably used.
  • a locked artificial nucleic acid (LNA) in which an oxygen atom at the 2 ′ position and a carbon atom at the 4 ′ position are cross-linked via methylene [Tetrahedron Letters, 38, 8735 (1997) and Tetrahedron, 54 , 3607 (1998)]
  • Ethylene bridged nucleic acid (ENA) [Nucleic Acid Research, 32, e175 (2004)], Constrained Ethyl (cEt) 75, J 2010)]
  • PNA peptide nucleic acid
  • OPNA oxypeptide nucleic acids
  • PRNA peptide ribonucleic acid
  • the phosphodiester bond-modified nucleotide is any nucleotide that has been modified or substituted with an arbitrary substituent for a part or all of the chemical structure of the phosphodiester bond of the nucleotide, or with any atom.
  • nucleotide in which a phosphodiester bond is replaced with a phosphorothioate bond examples include nucleotides in which a diester bond is substituted with a phosphoramidate bond, and preferably nucleotides in which a phosphodiester bond is substituted with a phosphorothioate bond.
  • any or all of the nucleotide base chemical structure modified or substituted with an arbitrary substituent or substituted with an arbitrary atom may be used.
  • oxygen atoms are substituted with sulfur atoms
  • hydrogen atoms are substituted with alkyl groups having 1 to 6 carbon atoms
  • halogen groups methyl groups are hydrogen atoms, hydroxymethyl groups, alkyl with 2 to 6 carbon atoms
  • an amino group is substituted with an alkyl group having 1 to 6 carbon atoms, an alkanoyl group having 1 to 6 carbon atoms, an oxo group, a hydroxy group, or the like.
  • 5-methylcytosine is used as a base-modified nucleotide instead of cytosine (C).
  • the nucleotide derivative include a peptide, protein, sugar, lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, a nucleotide derivative in which at least one of nucleotide or sugar moiety, phosphodiester bond or base is modified. Examples include those obtained by adding another chemical substance such as fluorescein, rhodamine, coumarin, and dye, directly or via a linker.
  • 5′-polyamine-added nucleotide derivatives Specifically, 5′-polyamine-added nucleotide derivatives, cholesterol-added nucleotide derivatives, and steroid-added nucleotide derivatives.
  • Bile acid addition nucleotide derivatives vitamin addition nucleotide derivatives, Cy5 addition nucleotide derivatives, Cy3 addition nucleotide derivatives, 6-FAM addition nucleotide derivatives, and biotin addition nucleotide derivatives
  • a conductor a conductor.
  • the nucleotide derivative may form a crosslinked structure such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, and a structure obtained by combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid.
  • Oligonucleotides include those in which some or all of the atoms in the molecule are replaced with atoms (isotopes) having different mass numbers.
  • complementary means a relationship that allows base pairing between two bases, for example, a moderate hydrogen such as a relationship between adenine and thymine or uracil, and a relationship between guanine and cytosine. It means a double-stranded structure as a whole double-stranded region through a bond.
  • “complementary” includes not only a case where two nucleotide sequences are completely complementary, but also having 0-30%, 0-20% or 0-10% mismatch bases between nucleotide sequences.
  • an antisense oligonucleotide complementary to a target mRNA means that one or more base substitutions may be included in the base sequence that is completely complementary to the partial base sequence of the target mRNA.
  • the antisense oligonucleotide has 1 to 8, preferably 1 to 6, 1 to 4, 1 to 3, particularly 2 or 1 mismatch bases with respect to the target sequence of the target gene. You may have.
  • the term “complementary” includes a case where one nucleotide sequence is a sequence in which one or more bases are added and / or deleted in a base sequence that is completely complementary to the other nucleotide sequence.
  • the target mRNA and antisense oligonucleotide may have one or two bulge bases in the antisense strand and / or target mRNA region due to base addition and / or deletion in the antisense oligonucleotide.
  • the term “complementary” includes the meaning of “complementary”.
  • the antisense oligonucleotide used in the present invention is an oligonucleotide complementary to DNA encoding a target gene, mRNA precursor transcribed from DNA encoding the target gene, mRNA, microRNA precursor, or microRNA.
  • the anti-sense oligonucleotide suppresses the action of DNA, mRNA precursor, mRNA, microRNA precursor or microRNA by forming a double strand with the DNA, mRNA precursor or mRNA targeted.
  • Antisense oligonucleotides include not only those that are completely complementary to the target DNA, mRNA precursor, mRNA, microRNA precursor or microRNA, but also DNA, mRNA precursor, mRNA, microRNA precursor or microRNA and a stream.
  • the antisense oligonucleotide is a nucleic acid that hybridizes to a target gene, it may be introduced into the form of a hairpin oligomer or circular oligomer, and may contain structural elements such as internal or terminal bulges or loops. .
  • the length of the antisense oligonucleotide is 8 to 80 bases, preferably 8 to 30 bases.
  • it can be 8 to 20 bases, 10 to 20 bases, 13 to 20 bases, 13 to 16 bases, 13 bases, 14 bases, 15 bases, 16 bases, 17 bases, 18 bases, 19 bases, 20 bases.
  • an antisense oligonucleotide When an antisense oligonucleotide is introduced into a cell, it can sterically inhibit the binding to a complementary mRNA precursor or mRNA and translation into a protein, thereby suppressing the expression of a target gene.
  • antisense oligonucleotides can bind to a complementary microRNA precursor or microRNA in a cell and sterically inhibit the function of the microRNA.
  • Antisense oligonucleotides may also bind to complementary mRNA and mRNA precursor in the cell and cleave the mRNA and mRNA precursor.
  • RNase H an action via RNase H, which is an endonuclease that cleaves RNA strands of double strands of RNA and DNA.
  • RNase H an endonuclease that cleaves RNA strands of double strands of RNA and DNA.
  • the antisense oligonucleotide preferably has 0 to 80% sugar-modified nucleotides, more preferably 10 to 60%, and even more preferably 20 to 50%.
  • the continuous DNA region having a sugar-modified nucleotide is more preferably 4 to 20, more preferably 4 to 15, and most preferably 5 to 10.
  • the position of the sugar-modified nucleotide in the antisense oligonucleotide is preferably arranged near the 5 ′ end and / or near the 3 ′ end, and / or within a position within 25% of the total length from the 5 ′ end and / or More preferably, it is arranged at a position within 25% of the total length from the 3 ′ end.
  • Antisense oligonucleotides can also induce the suppression of target gene expression by forming a double strand with a complementary oligonucleic acid and introducing it into a cell as a double-stranded nucleic acid (WO 2005/113571). See).
  • the position at which the double-stranded nucleic acid is modified with a ligand is preferably the 5 ′ end or 3 ′ end of a complementary oligonucleic acid.
  • the antisense oligonucleotide used in the present invention can enhance the expression of the target gene by using a base sequence complementary to the promoter sequence of the target gene (International Publication No. 2013/173601 and International See published 2013/173637).
  • the method for producing the antisense oligonucleotide is not particularly limited, and examples thereof include a method using a known chemical synthesis or an enzymatic transcription method.
  • known chemical synthesis methods include phosphoramidite method, phosphorothioate method, phosphotriester method, CEM method [Nucleic Acid Research, 35, 3287 (2007)], and the like, for example, ABI3900 high-throughput nucleic acid synthesis Can be synthesized by a machine (Applied Biosystems). After the synthesis is completed, elimination from the solid phase, deprotection of the protecting group, purification of the target product, and the like are performed.
  • an antisense oligonucleotide having a purity of 90% or more, preferably 95% or more by purification is desirable to obtain an antisense oligonucleotide having a purity of 90% or more, preferably 95% or more by purification.
  • a transcription method using a phage RNA polymerase for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having a target base sequence as a template.
  • the double-stranded oligonucleotide used in the present invention includes a nucleic acid containing a base sequence complementary to a part of the base sequence of the target mRNA and / or a base sequence complementary to the base sequence of the nucleic acid. As long as it is a nucleic acid, it may be comprised from any oligonucleotide or its derivative (s). In the double-stranded oligonucleotide used in the present invention, a nucleic acid containing a base sequence complementary to a target mRNA sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid are duplexed.
  • the double-stranded oligonucleotide that suppresses the expression of the target protein used in the present invention is a nucleic acid that includes a base sequence complementary to the target mRNA sequence and that suppresses the expression of the target protein.
  • a nucleic acid comprising a strand nucleic acid or a nucleic acid containing a base sequence complementary to the target mRNA sequence and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid, and two which suppress the expression of the target protein A strand nucleic acid is preferably used.
  • a double-stranded oligonucleotide uses a molecule consisting of a nucleic acid containing a base sequence complementary to the promoter sequence of the target gene and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid, Target gene expression can also be enhanced [Nucleic Acid Research, 41, 10086 (2013), Hepatology, 59, 216 (2014)].
  • a double-stranded oligonucleotide refers to a nucleotide in which two oligonucleotides are paired and have a double-stranded region.
  • a double-stranded region refers to a portion where nucleotides constituting a double strand or a derivative thereof constitute a base pair to form a double strand.
  • the double-stranded region is usually 11 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, and further preferably 17 to 21 base pairs.
  • the single-stranded oligonucleotide constituting the double-stranded oligonucleotide usually comprises 11 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, and more preferably 15 to 25 bases. More preferably, it consists of a base, particularly preferably 17-23 bases.
  • a double-stranded oligonucleotide has an additional nucleotide or nucleotide derivative that does not form a duplex on the 3 ′ side or 5 ′ side following the double-stranded region, this is called an overhang.
  • the nucleotide constituting the overhang may be ribonucleotide, deoxyribonucleotide or a derivative thereof.
  • the double-stranded oligonucleotide having an overhang one having an overhang of 1 to 6 bases, usually 1 to 3 bases at the 3 ′ end or 5 ′ end of at least one strand is used.
  • Those having a protruding portion made of a base are preferably used, for example, those having a protruding portion made of dTdT or UU.
  • Overhangs can be present in antisense oligonucleotides only, sense oligonucleotides only, and both antisense and sense oligonucleotides, but double-stranded oligonucleotides with overhangs in antisense oligonucleotides are preferred Used.
  • the antisense oligonucleotide includes a double-stranded region followed by a protruding portion.
  • a nucleic acid having the same sequence as the base sequence of the target gene or its complementary strand may be used, but the 5 ′ end or 3 ′ end of at least one strand of the nucleic acid may be used.
  • a double-stranded nucleic acid consisting of a nucleic acid from which 1 to 4 bases are deleted and a nucleic acid containing a base sequence complementary to the base sequence of the nucleic acid may be used.
  • Double-stranded oligonucleotides are double-stranded RNA (dsRNA) in which RNA forms a double strand, double-stranded DNA (dsDNA) in which DNA forms a double strand, or RNA and DNA are double-stranded. It may be a hybrid nucleic acid that forms Alternatively, one or both of the double strands may be a chimeric nucleic acid of DNA and RNA. Preferred is double-stranded RNA (dsRNA).
  • the second nucleotide from the 5 ′ end of the antisense oligonucleotide is preferably complementary to the second deoxyribonucleotide from the 3 ′ end of the target mRNA sequence, and the second to seventh positions from the 5 ′ end of the antisense oligonucleotide. More preferably, the nucleotide is completely complementary to the 2-7th deoxyribonucleotide from the 3 ′ end of the target mRNA sequence, and the 2-11th nucleotide from the 5 ′ end of the antisense oligonucleotide is More preferably, it is completely complementary to the 2-11th deoxyribonucleotide from the 3 ′ end.
  • the 11th nucleotide from the 5 ′ end of the antisense oligonucleotide is preferably complementary to the 11th deoxyribonucleotide from the 3 ′ end of the target mRNA sequence, and 9-13 from the 5 ′ end of the antisense oligonucleotide. More preferably, the 9th nucleotide is completely complementary to the 9th to 13th deoxyribonucleotides from the 3 ′ end of the target mRNA sequence, and the 7th to 15th nucleotides from the 5 ′ end of the antisense oligonucleotide are the target mRNA. More preferably, it is completely complementary to the 7th to 15th deoxyribonucleotides from the 3 ′ end of the sequence.
  • the modified nucleotide is preferably contained in an amount of 50 to 100%, more preferably 70 to 100%, and still more preferably 90 to 100% with respect to the nucleotide in the double-stranded nucleic acid region.
  • Double-stranded oligonucleotides can be synthesized chemically and can generally be synthesized by using solid phase oligonucleotide synthesis methods (see, eg, Usman et al., US Pat. No. 5,804,683). Description: US Pat. No. 5,831,071; US Pat. No. 5,998,203; US Pat. No. 6,117,657; US Pat. No. 6,353,098 U.S. Patent 6,362,323; U.S. Patent 6,437,117; U.S. Patent 6,469,158; Scaringe et al., U.S. Patent 6,111,086. No. specification; US Pat. No. 6,008,400; see US Pat. No. 6,111,086).
  • RNA may be produced enzymatically or by partial / total organic synthesis, and modified ribonucleotides can be introduced in vitro by enzymatic or organic synthesis.
  • each chain is prepared chemically. Methods for chemically synthesizing RNA molecules are known in the art [see Nucleic Acids Research, 32, 936 (1998)].
  • RNA used in the present invention includes a sequence of 15 to 30 bases, preferably 17 to 25 bases, more preferably 19 to 23 bases of mRNA of the target gene (hereinafter referred to as sequence X) and complementary to sequence X.
  • RNA containing a typical base sequence hereinafter referred to as complementary sequence X ′
  • complementary sequence X ′ RNA containing a typical base sequence
  • Examples include RNA having a hairpin structure in which strand RNA, the sense oligonucleotide and the antisense oligonucleotide are connected by a spacer oligonucleotide.
  • sequence X chain RNA containing only sequence X as a base
  • sequence X chain 1 to 6 at the 3 ′ end or 5 ′ end or both ends of sequence X chain, preferably Includes RNA having 2 to 4 nucleotides added identically or differently.
  • Antisense oligonucleotides containing complementary sequence X ′ include RNA containing only complementary sequence X ′ as a base (hereinafter referred to as complementary sequence X ′ strand), 3 ′ end of complementary sequence X ′ strand Alternatively, double-stranded RNA or the like in which 1 to 6, preferably 2 to 4 nucleotides are added to the 5 ′ end or both ends, the same or different, can be mentioned.
  • a spacer oligonucleotide of RNA having a hairpin structure in which a sense oligonucleotide containing the sequence X and an antisense oligonucleotide containing the complementary sequence X ′ are connected by a spacer oligonucleotide a nucleotide having 6 to 12 bases is preferable.
  • the 5 ′ end sequence is preferably 2 U's.
  • An example of the spacer oligonucleotide is an oligonucleotide having a base sequence of UUCAAGGA.
  • Either of the two RNAs connected by the spacer oligonucleotide may be on the 5 ′ side, and the sense strand containing the sequence X is preferably on the 5 ′ side.
  • the nucleotide added to the sequence X chain and the complementary sequence X ′ chain, and the base of the spacer oligonucleotide may be any one or more of guanine, adenine, cytosine, thymine and uracil, and bind to each base.
  • the sugar to be added may be ribose, deoxyribose, or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group, but the added nucleotide is either uridylic acid (U) or deoxythymidylic acid (dT) 1 type or 2 types are more preferable.
  • the nucleotide base sequence added to the 3 ′ end of the sequence X chain may be the same base sequence as the nucleotide base sequence adjacent to the sequence X in the mRNA of the target gene.
  • the nucleotide base sequence added to the 3 ′ end of the complementary sequence X ′ chain may be a base sequence complementary to the nucleotide base sequence adjacent to the sequence X in the mRNA of the target gene.
  • RNA used in the present invention include, for example, (a) a double-stranded RNA comprising a sense oligonucleotide containing the sequence X and an antisense oligonucleotide containing the complementary sequence X ′, and the sequence X is the target A sequence consisting of 19 to 21 bases of mRNA of a gene, comprising a sense oligonucleotide comprising 2 to 4 identically or differently added nucleotides at the 3 ′ end of the sequence X strand and the sequence X strand, and antisense A double-stranded RNA comprising an oligonucleotide having 2 to 4 identically or differently added nucleotides to the complementary sequence X ′ strand and the 3 ′ end of the complementary sequence X ′ strand; (b) a sense oligo comprising the sequence X A double-stranded RNA consisting of an antisense oligonucleotide comprising a nucleo
  • RNA used in the present invention preferably includes RNA having an action of suppressing the expression of the target gene using RNA interference (RNAi).
  • RNAi RNA interference
  • oligonucleotides Single-stranded oligonucleotides were synthesized using the solid phase phosphoramidite method [see Nucleic Acids Research, 30, 2435 (1993)], deprotected, and NAP-5 columns (Amersham Pharmacia Biotech, Piscataway). , NJ).
  • the oligomer is an Amersham Source 15Q column -1.0 cm using a 15 minute linear gradient. height. Purify using ion exchange high performance liquid chromatography (IE-HPLC) at 25 cm (Amersham Pharmacia Biotech, Piscataway, NJ). The gradient changes from 90:10 buffer A: B to 52:48 buffer A: B, buffer A is 100 mmol / L Tris pH 8.5, and buffer B is 100 mmol / L.
  • each single-stranded oligonucleotide is determined by capillary electrophoresis (CE) on a Beckman PACE 5000 (Beckman Coulter, Inc., Fullerton, Calif.).
  • CE capillaries have an inner diameter of 100 ⁇ m and contain ssDNA 100R Gel (Beckman-Coulter).
  • Typically, about 0.6 nmole of oligonucleotide is injected into the capillary and run in an electric field of 444 V / cm and detected by UV absorbance at 260 nm.
  • Denatured tris-borate-7 mol / L-urea running buffer is purchased from Beckman-Coulter.
  • Single-stranded oligonucleotides are obtained that are at least 90% pure as assessed by CE for use in the experiments described below. Compound identity is determined according to the manufacturer's recommended protocol according to Voyager DE. TM. Verified by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectroscopy on a Biospectrometry workstation (Applied Biosystems, Foster City, Calif.). The relative molecular mass of a single stranded oligonucleotide can be obtained within 0.2% of the expected molecular mass.
  • MALDI-TOF matrix-assisted laser desorption ionization-time-of-flight
  • Single-stranded oligonucleotides are resuspended at a concentration of 100 ⁇ mol / L in a buffer consisting of 100 mmol / L potassium acetate, 30 mmol / L HEPES, pH 7.5. Complementary sense and antisense strands are mixed in equal molar amounts to obtain a final solution of 50 ⁇ mol / L double stranded oligonucleotide. The sample is heated to 95 ° C. for 5 minutes and allowed to cool to room temperature before use. Double-stranded nucleic acids are stored at ⁇ 20 ° C. Single-stranded oligonucleotides are lyophilized or stored at ⁇ 80 ° C. in nuclease-free water.
  • linker in the present invention, any linker known to be used as a nucleic acid complex can be used.
  • the linker structure include, for example, International Publication No. 2009/073809, International Publication No. 2013/075035, International Publication No. 2015/105083, International Publication No. 2014/179620, International Publication No. 2015/006740, International Publication No.
  • the structure disclosed in Japanese Patent Publication No. 2017/010575 can be adopted.
  • the linker may have a linear structure, but preferably has any one of the following structures that form a branched structure. For example, by having the following branch, a nucleic acid complex having a plurality of sugar chain ligands in the molecule can be obtained, and it is preferable to have 2 to 8 sugar chain ligands.
  • X 1 is CH or a nitrogen atom.
  • X 2 to X 4 are each independently CH or a nitrogen atom.
  • the linker further has any one of the following structures.
  • linker when the linker has the following structure, for example, International Publication No. 2009/073809, International Publication No. 2013/075035, International Publication No. 2015/105083, International Publication No. 2014/179620, International Publication No.
  • a linker can be produced with reference to 2015/006740 and WO 2017/010575.
  • X 1 has the same meaning as above.
  • the nucleic acid complex of the present invention can be produced by the method exemplified below.
  • X 2 to X 4 are independently the same as defined above.
  • X 2 to X 4 are all CH, for example, and are represented by the following structure in this case.
  • the nucleic acid complex of the present invention is preferably a nucleic acid complex represented by the following formula 1.
  • Formula 1 In Formula 1, X is an oligonucleotide; X 2 to X 4 are independently the same as defined above.
  • L1 and L2 are each independently a sugar chain ligand; S1, S2 and S3 are each independently a partial structure constituting a linker.
  • the following structure is a linker: S1, S2 and S3 are partial structures constituting the linker, X 2 to X 4 are independently the same as defined above.
  • the nucleic acid complex of Formula 1 will be described. However, the description of Formula 1 can be applied by replacing the nucleic acid complex as having the following structure.
  • S4 may be understood synonymously with S1 and S2, X 1 is as defined above, L3 is carbohydrate ligands.
  • S1 and S2 can be bonded to the benzene ring at the ortho position, meta position, and para position with respect to the substitution position on the benzene ring of S3, respectively, but the nucleic acid complex represented by Formula 1-1 below The body is preferred.
  • the bond of S1 and S2 to the benzene ring in Formula 1 means that it can be at any position other than the substitution position of S3 on the benzene ring.
  • Formula 1-1 In Formula 1-1, X, L1, L2, S1, S2, and S3 are as defined above. In the present specification, the same meaning as described above will be described by exemplifying the inside of Formula 1-1. For each of X, L1, L2, S1, and S2 in Formula 1-1, X, L1, This means that it can be the same group as defined for L2, S1 and S2.
  • S3 and oligonucleotide not only bind to S3 via the 3′-position or 5′-position of the sugar moiety constituting the nucleotide, but also bind to S3 via the base moiety constituting the nucleotide. May be.
  • the oligonucleotide may be understood as a group having a structure that binds S3 and the oligonucleotide.
  • the oligonucleotide is represented by —OP (Z) (Z ′) O— (wherein Z and Z Are each independently an oxygen atom or a sulfur atom), and the oligonucleotide as X is -OP (Z) (Z ') O-oligo It may be understood as a nucleotide.
  • S1 and S2 are not particularly limited as long as L1 and L2 that are sugar chain ligands are linked to a benzene ring, and a known structure used in a nucleic acid complex is adopted. Also good. S1 and S2 may be the same or different.
  • the sugar chain ligands L1 and L2 are preferably linked to S1 and S2 by a glycosidic bond, and S1 and S2 are connected to a benzene ring, for example, —CO—, —NH—, —O—, —S. They may be linked by a —, —O—CO—, —S—CO—, —NH—CO—, —CO—O—, —CO—S— or —CO—NH— bond.
  • S3 is a linker having a binding site with an oligonucleotide, and is not particularly limited as long as it is a structure that links X, which is an oligonucleotide, to a benzene ring, and has a known structure used in a nucleic acid complex. May be adopted.
  • X that is an oligonucleotide is preferably linked to S3 by a phosphodiester bond, and S3 is linked to a benzene ring, for example, —CO—, —NH—, —O—, —S—, —O—CO. They may be linked by a —, —S—CO—, —NH—CO—, —CO—O—, —CO—S— or —CO—NH— bond.
  • Examples of the partial structure constituting the linker of S1, S2, and S3 include, for example, International Publication No. 2009/073809, International Publication No. 2013/075035, International Publication No. 2015/105083, International Publication No. 2014/179620, International Publication No. You may employ
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 2.
  • Formula 2 In Equation 2, X, X 2 to X 4 , L1, L2 and S3 are as defined above, P1, P2, P3, P4, P5 and P6, and T1 and T2 are each independently absent or —CO—, —NH—, —O—, —S—, —O—CO—.
  • -S-CO-, -NH-CO-, -CO-O-, -CO-S- or -CO-NH- Q1, Q2, Q3 and Q4 are each independently absent or substituted or unsubstituted alkylene having 2 to 12 carbon atoms, — (CH 2 CH 2 O) n —CH 2 CH 2 —.
  • N is an integer from 0 to 99
  • B1 and B2 are each independently a bond or any structure represented by the following formula 2-1, and the terminal black dot in each structure is P2, P3, or P5, respectively.
  • P1 and P4 are each independently absent or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, —CO—O—, —CO—S— or —CO—NH—, preferably —O—, —O—CO, —NH—CO— or —CO—NH—, , —NH—CO— or —CO—NH— is preferable, and —NH—CO— is more preferable.
  • P1 or P4 is, for example, —NH—CO—, it has a partial structure of —NH—CO—benzene ring.
  • Q1, Q2, Q3 and Q4 are each independently absent, substituted or unsubstituted alkylene having 1 to 12 carbons or — (CH 2 CH 2 O) n —CH 2 CH 2 —.
  • N is an integer of 1 to 99, preferably a substituted or unsubstituted alkylene having 1 to 12 carbon atoms, more preferably an unsubstituted alkylene having 1 to 12 carbon atoms, and unsubstituted More preferred is alkylene having 1 to 6 carbon atoms, and still more preferred is unsubstituted alkylene having 1 to 4 carbon atoms.
  • P2 and P5 are each independently absent or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, —CO—O—, —CO—S— or —CO—NH—, preferably absent, —CO—O— or —CO—NH—, absent, —CO—NH -Is more preferable.
  • P2 and P5 are, for example, —CO—NH—, they have partial structures of B1-CO—NH-Q1 and B2-CO—NH-Q3.
  • Formula 3-1 Formula 3-2 Formula 3-3: In formulas 3-1 to 3-3, m5 and m6 are each independently an integer of 0 to 10, and the terminal black dot in the structure of Formula 3-1 to Formula 3-3 is the point of attachment to B1 or B2 or P1 or P4, respectively. is there.
  • B1 and B2 are each independently a bond or any structure represented by the following formula, and the terminal black dot in each structure is P2 or P3 or P5 or P6, respectively.
  • m1, m2, m3 and m4 are each independently an integer of 0 to 10.
  • B1 and B2 are preferably groups derived from amino acids containing unnatural amino acids such as glutamic acid, aspartic acid, lysine, iminodiacetic acid, or amino alcohols such as 1,3-propanediol, and B1 and B2 are glutamic acids.
  • an aspartic acid-derived group the amino groups of glutamic acid and aspartic acid are bonded to each other, and P2 and P5 are preferably —NH—CO— bonds, and B1 and B2 are groups derived from lysine. In this case, the carboxyl group of lysine is bonded to each other, and P2 and P5 are preferably —CO—NH— bonds.
  • B1 and B2 are groups derived from iminodiacetic acid, Amino groups are bonded to form —CO— bonds as P2 and P5. Door is preferable.
  • X 2 to X 4 are each independently preferably CH, and more preferably X 2 to X 4 are CH at the same time.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formulas 4-1 to 4-9.
  • Formula 4-1 Formula 4-2: Formula 4-3: Formula 4-4: Formula 4-5: Formula 4-6: Formula 4-7: Formula 4-8: Formula 4-9: In formulas 4-1 to 4-9, X, L1, L2, S3, P3, P6, T1, T2, Q2, Q4, q2, and q4 are as defined above.
  • P3 and P6 are each independently absent or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, —CO—O—, —CO—S— or —CO—NH— is preferred, but —OCO— or —NH—CO— is preferred, and —NH—CO— is more preferred.
  • P3 and P6 are, for example, —NH—CO—, they have partial structures of B1-NH—CO—Q2 and B2-NH—CO—Q4, respectively.
  • T1 and T2 are each independently absent or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, —CO—O—, —CO—S— or —CO—NH— is preferred, but —O— or —S— is preferred, and —O— is more preferred.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 5.
  • P1 and P4 in Formula 2 P2 and P5, P3 and P6, Q1 and Q3, Q2 and Q4, B1 and B2, T1 and T2, L1 and L2, p1 and p2, q1 and q3, and q2 and q4 are the same.
  • Formula 5 In Formula 5, X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1, and q2 are as defined above.
  • X, S3, P1, P2, P3, Q1, Q2, B1, T1, L1, p1, q1 and q2 in Formula 5 may each be a suitable group as described above, but P1 may be —CO—. NH—, —NH—CO— or —O— is preferable. -(P2-Q1) q1- in Formula 5 preferably does not exist or has any structure represented by Formula 3-1 to Formula 3-3.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formulas 6-1 to 6-9.
  • Formula 6-1 Formula 6-2: Formula 6-3: Formula 6-4: Formula 6-5: Formula 6-6: Formula 6-7: Formula 6-8: Formula 6-9: In Formula 6-1 to Formula 6-9, X, S3, P3, Q2, T1, and L1 are as defined above.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by any of the following formulas 7-1 to 7-9.
  • each alkylene group moiety is introduced with an alkylene chain having a different chain length, and the amide bond or the like is substituted with another bond, thereby replacing Formula 7-1 to Formula 7 with each other.
  • Nucleic acid derivatives other than the nucleic acid complex having the structure represented by ⁇ 9 can also be produced.
  • the linker used in the nucleic acid complex of the present invention preferably has the following structure. (Where n1 is an integer of 1 to 100. ) n1 is preferably an integer of 5 to 95, more preferably an integer of 10 to 80, still more preferably an integer of 15 to 60, and even more preferably an integer of 20 to 40.
  • n2 and n3 are the same or different and are each preferably an integer of 5 to 95, more preferably an integer of 10 to 80, still more preferably an integer of 15 to 60, and an integer of 20 to 40 Even more preferably.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by the following formula 11.
  • Formula 11 In Formula 11, L1, L2, S1 and S2 are as defined above, P7 and P8 are each independently absent or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, -CO-O-, -CO-S- or -CO-NH- Q5, Q6 and Q7 are each independently absent, substituted or unsubstituted alkylene having 1 to 12 carbons or — (CH 2 CH 2 O) n8 —CH 2 CH 2 —, and n8 Is an integer from 0 to 99, B3 is any structure represented by the following formula 11-1, and means a bond with Q5 and Q6, respectively, in a broken line, Formula 11-1: q5 and q6 are each independently an integer of 0 to 10.
  • P7 is absent, or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, —CO—O—, — CO—S— or —CO—NH— is preferable, but —O—, —NH—CO— or —CONH— is preferable, and —O— or —NH—CO— is more preferable.
  • P7 is —O—, it has a partial structure of benzene ring —O—.
  • P8 is absent, or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, —CO—O—, — CO—S— or —CO—NH—, but when present, is preferably —CO—O— or —CO—NH—, more preferably —CO—NH—.
  • P8 is, for example, —CO—NH—, it has a partial structure of Q6-CO—NH—.
  • Q5, Q6 and Q7 are each independently absent, substituted or unsubstituted alkylene having 1 to 12 carbons or — (CH 2 CH 2 O) n8 —CH 2 CH 2 —, and n8 Is an integer of 0 to 99, preferably a substituted or unsubstituted alkylene having 1 to 12 carbon atoms, more preferably an unsubstituted alkylene having 1 to 12 carbon atoms, and an unsubstituted carbon number. It is more preferably 1 to 6 alkylene, and even more preferably unsubstituted alkylene having 1 to 4 carbon atoms.
  • q5 — is —O— (CH 2 ) m15 —NH— and —NH—CO— (CH 2 ) m16 —NH—, and each of m15 and m16 is independently 1 to An integer of 10 is preferred.
  • the nucleic acid complex is preferably a nucleic acid complex having a structure represented by any of the following formulas 12-1 to 12-12.
  • Formula 12-1 Formula 12-2: Formula 12-3: Formula 12-4: Formula 12-5: Formula 12-6: Formula 12-7: Formula 12-8: Formula 12-9: Formula 12-10: Formula 12-11: Formula 12-12: In formulas 12-1 to 12-12, X, L1, L2, S1 and S2 are as defined above, and n1 ′ to n12 ′ are each independently an integer of 1 to 10.
  • nucleic acid complex having the following structure.
  • Formula to formula, X, L1, S3 or n2 has the same meaning as described above.
  • the nucleic acid complex of the present invention is preferably a nucleic acid complex having both the structures of Formula 2 and Formula 11 in the nucleic acid complex represented by Formula 1, and the nucleic acid complex has the structure of Formula 11
  • Formula 2 may be Formula 4-1 to Formula 4-9, Formula 6-1 to Formula 6-9, Formula 7-1 to Formula 7-9, or Well, when Formula 2 is Formula 4-1 to Formula 4-9, Formula 6-1 to Formula 6-9, or Formula 7-1 to Formula 7-9, Formula 11 is replaced with Formula 12-1 to Formula 12-9. Equation 12-12 may also be used.
  • the nucleic acid complex of the present invention is a nucleic acid complex represented by formula 1, wherein any one structure of formula 4-1 to formula 4-9 and any one structure of formula 12-1 to formula 12-12 are used.
  • sugar chain ligand when the sugar chain ligand is represented by “Ligand”, “L1” or the like, a part of the linker directly bonded to the sugar chain ligand (for example, —O— (CH 2 ) 2 — ) May be included.
  • the nucleic acid complex of the present invention may form a salt with a pharmaceutically acceptable anion when a hydrogen ion is coordinated to a lone electron pair on any nitrogen atom.
  • examples of the pharmaceutically acceptable anion include inorganic ions such as chloride ion, bromide ion, nitrate ion, sulfate ion and phosphate ion, acetate ion, oxalate ion, maleate ion, and fumarate ion.
  • organic acid ions such as citrate ion, benzoate ion, and methanesulfonate ion.
  • a method for producing the nucleic acid complex of the present invention will be described.
  • introduction and removal of a protective group commonly used in organic synthetic chemistry Methods e.g., Protective Groups in Organic Synthesis, third edition, by TW Greene, John Wiley & Sons Inc. (1999), etc.] can be used to produce the target compound.
  • the order of reaction steps such as introduction of substituents can be changed as necessary.
  • the nucleic acid polymer represented by Formula 1 can also be synthesized by solid phase synthesis.
  • the nucleic acid polymer represented by Formula 1 can be synthesized with reference to a synthesis method of a linker structure known as a nucleic acid complex.
  • the synthesis of the L1-benzene ring unit with S1 as the linker and the L2-benzene ring unit with S2 as the linker in the nucleic acid complex represented by formula 1 is exemplified by the nucleic acid complex represented by formula 2 as an example. explain.
  • the L1-benzene ring unit and the L2-benzene ring unit in the nucleic acid complex represented by Formula 2 are linked by P1, P2, P3, P4, P5, and P6, and T1 and T2.
  • P1, P2, P3, P4, P5, and P6 and T1 and T2 —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO— , —CO—O—, —CO—S— or —CO—NH— bond may be selected from, for example, 4th edition experimental chemistry course 19 “Synthesis of organic compounds I” Maruzen (1992), 4th edition experimental chemistry course 20 With reference to the method of coupling reaction described in “Synthesis of Organic Compounds II”, Maruzen (1992)), etc., synthesis is appropriately performed by selecting an appropriate raw material for forming the structure represented by Formula 2. be able to.
  • a partial structure of the L1-benzene ring unit can be produced by bonding a compound having Q1 as a partial structure and a compound having B1 as a partial structure in this order from the benzene ring.
  • a compound having L1 and Q2 as a partial structure is separately synthesized, and a compound having L1 and Q2 as a partial structure is combined with a compound having a partial structure of an L1-benzene ring unit having Q1 and B1 as partial structures.
  • an L1-benzene ring unit structure can be produced.
  • a partial structure of the L2-benzene ring unit can be produced by combining a compound having Q3 as a partial structure and a compound having B2 as a partial structure, sequentially from the benzene ring. .
  • a compound having L2 and Q4 as a partial structure is separately synthesized, and a compound having L2 and Q4 as a partial structure is combined with a compound having a partial structure of an L2-benzene ring unit having Q3 and B2 as partial structures.
  • an L2-benzene ring unit structure can be produced.
  • Compounds having Q1 as a partial structure the compound having the Q3 as a partial structure, alkylene or 1 to 10 carbon atoms - (CH 2 CH 2 O) n -CH 2 CH 2 - in at both ends, a hydroxyl group, a carboxyl group , An amino group, and a compound having a thiol group.
  • the compound having B1 as a partial structure and the compound having B2 as a partial structure have any structure represented by the following formula 2-1, and each of the terminal black circle points in each structure has a hydroxyl group and a carboxyl group, respectively. , An amino group, or a compound having a thiol group.
  • Formula 2-1 Specific examples of the compound having B1 as a partial structure and the compound having B2 as a partial structure include glycol, glutamic acid, aspartic acid, lysine, Tris, iminodiacetic acid, 2-amino-1,3-propanediol and the like. Glutamic acid, aspartic acid, lysine and iminodiacetic acid are preferred.
  • An L1-benzene ring unit structure may be produced by synthesizing a compound having L1, Q2 and B1 as a partial structure, and then combining with Q1 and a compound having a benzene ring.
  • An L2-benzene ring unit structure may be produced by synthesizing a compound having L2, Q4, and B2 as a partial structure and then combining Q3 with a compound having a benzene ring.
  • [L1-T1- (Q2- P3) q2 -] p1 -B1- and substructure is (P2-Q1) q1 a -P1-, [L2-T2- (Q3 -P6) q4 -] p2 -B2- (P5-Q3)
  • the partial structure which is q3- P2- may be the same or different, but is preferably the same.
  • L3-T1-Q2 of carbohydrate ligands As a unit corresponding to L1-T1-Q2 of carbohydrate ligands, e.g., L3-T1-Q2-COOH , L3-T1- (Q2-P3) q2-1 -Q2-NH 2 and the like. Specific examples thereof include L3-O—alkylene-COOH having 1 to 12 carbon atoms, L3-alkylene-CO—NH having 1 to 12 carbon atoms, and alkylene-NH 2 having 2 to 12 carbon atoms.
  • L3 is not particularly limited as long as it is a sugar chain ligand derivative that becomes L1 by deprotection.
  • the substituent of the sugar chain ligand is not particularly limited as long as it is a substituent widely used in the field of carbohydrate chemistry, but an Ac group is preferable.
  • the synthesis of the L1-benzene ring unit using S1 as the linker and the L2-benzene ring unit using S2 as the linker were specifically referred to the methods described in the examples, and the number of carbon atoms of the alkylene chain was appropriately increased or decreased.
  • the terminal amino group and terminal carboxyl group may be represented by —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO—, —CO—O—.
  • —CO—S— or —CONH— can be synthesized by using a compound converted into a group capable of forming a bond.
  • glycan ligands of L1 are exemplified by mannose derivatives, mannose or N-acetylgalactosamine, but can be carried out by changing to other glycan ligands.
  • the synthesis of the X-benzene ring unit using S3 as a linker in the nucleic acid complex represented by Formula 1 will be described using, for example, the nucleic acid complex represented by Formula 11 as an example.
  • the X-benzene ring unit in the nucleic acid complex represented by Formula 11 has bonds represented by P7 and P8 in addition to the oligonucleotide bond.
  • —CO—NH— bond is, for example, 4th edition experimental chemistry course 19 “Synthesis of organic compounds I” Maruzen (1992), 4th edition experimental chemistry course 20 “Organic compounds synthesis II”, Maruzen (1992). ) Can be synthesized as appropriate by selecting an appropriate raw material for forming the structure represented by Formula 11 with reference to the method of the coupling reaction described in (1).
  • a partial structure of the X-benzene ring unit can be produced by sequentially bonding a compound having Q5 as a partial structure and a compound having B3 as a partial structure from the benzene ring.
  • a compound having X and Q7 as a partial structure, or a compound having X and Q6 as a partial structure are separately synthesized, and a compound having X and Q7 as a partial structure or a compound having X and Q6 as a partial structure is combined with a benzene ring and Q5.
  • An X-benzene ring unit structure can be produced by constructing the B3 moiety by bonding with a compound having a partial structure of the X-benzene ring unit as a partial structure.
  • an end-binding functional group as disclosed in the Examples is taken as an example.
  • An X-benzene ring unit structure can be produced by reacting the conjugated oligonucleotide to form a triazole ring by cycloaddition to form a B3 moiety.
  • the L1-benzene ring unit structure, the L2-benzene ring unit structure, and the X-benzene ring unit structure can be produced sequentially, but the L1-benzene ring unit structure and the L2-benzene ring unit structure are synthesized. Then, it is preferable to bond the X-benzene ring unit structure.
  • X having an oligonucleotide moiety is preferably introduced into the compound near the final step of the synthesis of the sugar chain ligand complex.
  • P1 and P4 are —NH—CO—, —O—CO— or —S—CO—
  • the L1-benzene ring unit structure and the L2-benzene ring unit structure are produced by the following method. Can do. (Wherein Q1, Q2, Q3, Q4, Q5, P2, P3, P5, P6, P7, T1, T2, L1, L2, q1, q2, q3 and q4 are as defined above, respectively, and q2 ′ is q1 represents an integer smaller than q2, q4 ′ represents an integer smaller than q4, and P1 ′ and P4 ′ each independently represent —NH—CO—, —O—CO— or —S—CO—.
  • B1 ′ and B2 ′ are any of the structures of the following formulae 1 and PG1, PG2, PG3, PG4, PG5, PG6 and PG7 each represents a suitable protecting group.) formula: m1, m2, m3 or m4 each independently represents an integer of 0 to 10.
  • Compound (IC) is obtained by adding compound (IA) and compound (IB) to a triphenylphosphine polymer carrier in a solvent such as tetrohydrofuran and diisopropyl azodicarboxylate toluene under ice cooling. It can be produced by reacting the solution.
  • a solvent such as tetrohydrofuran and diisopropyl azodicarboxylate toluene
  • solvent examples include methanol, ethanol, dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methylpyrrolidone, pyridine, water and the like can be mentioned, and these can be used alone or in combination.
  • Compound (IA) can be obtained as a commercial product.
  • Compound (ID) can be produced by reacting compound (IC) in a solvent such as methanol in the presence of a base under ice-cooling.
  • a solvent such as methanol
  • the solvent include those exemplified in Step 1 of Production Method 1.
  • the base include cesium carbonate, potassium carbonate, potassium hydroxide, sodium hydroxide, sodium methoxide, potassium tert-butoxide, triethylamine, diisopropylethylamine, N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4. 0] -7-undecene (DBU), N, N-dimethyl-4-aminopyridine (DMAP) and the like.
  • DBU 1,8-diazabicyclo [5.4. 0] -7-undecene
  • DMAP N-dimethyl-4-aminopyridine
  • Compound (IF) comprises compound (ID) and compound (IE) without solvent or in a solvent, 1 to 30 equivalents of base, condensing agent and optionally 0.01 to 30 equivalents. It can be produced by reacting at a temperature between room temperature and 200 ° C. for 5 minutes to 100 hours in the presence of an additive.
  • Solvents include dichloromethane, chloroform, 1,2-dichloroethane, toluene, ethyl acetate, acetonitrile, diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, dioxane, N, N-dimethylformamide (DMF), N, N-dimethyl.
  • Examples thereof include acetamide, N-methylpyrrolidone and pyridine, and these may be used alone or in combination.
  • the condensing agent include 1,3-dicyclohexanecarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), carbonyldiimidazole, benzotriazol-1-yloxytris (Dimethylamino) phosphonium hexafulholophosphate, (benzotriazol-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate, O- (7-azabenzotriazol-1-yl) -N, N, N ′, N '-Tetramethyluronium hexafluorophosphate (HATU), O- (benzotriazol-1-yl) -N, N,
  • Process 4 Compound (IH) can be produced using compound (IF) and compound (IG) under the same conditions as in Step 3 of Production Method 1.
  • Compound (IJ) can be produced using compound (IH) and compound (II) under the same conditions as in Step 3 of Production Method 1. In addition, by repeating the DP step and the step 5, the compound (IJ) adjusted to the desired q1 value can be produced.
  • Step 6 Compound (IL) can be produced using Compound (IJ) and Compound (IK) under the same conditions as in Step 3 of Production Method 1, Step 2 of Production Method 1.
  • Step 7 Compound (IN) can be produced using compound (IL) and compound (IM) under the same conditions as in Step 3 of Production Method 1.
  • Process 8-10 Compound (I ′) can be produced using compound (IO), compound (IP) and compound (IQ) under the same conditions as in Step 3 of Production Method 1. Further, by repeating the DP step and the step 8, the compound (I ′) adjusted to the desired q 3 value can be produced.
  • An L1-benzene ring unit structure and an L2-benzene ring unit structure in which P1 and P4 in Formula 2 are —O—, and X2 to X4 are CH can be produced by the following method. (Wherein Q1, Q2, Q3, Q4, P2, P3, P5, P6, T1, T2, L1, L2, q1, q2, q3, q4, q2 ′, q4 ′, Z, B1 ′ or B2 ′ are Each having the same meaning as described above, and PG8, PG9, PG10, PG11, PG12, PG13 and PG14 each represents an appropriate protecting group)
  • Step 13 Compound (II-C) is prepared by dissolving compound (II-A) and compound (II-B) in a solvent such as N, N′-dimethylformamide and adding a base such as potassium hydrogen carbonate to room temperature to 200 ° C. Can be produced by reacting for 5 minutes to 100 hours.
  • a solvent such as N, N′-dimethylformamide
  • a base such as potassium hydrogen carbonate
  • Examples of the solvent include those exemplified in Process 2 of Production Process 1.
  • Examples of the base include those exemplified in Step 3 of Production Method 1.
  • Step 14 Compound (II-E) is prepared by dissolving compound Compound (II-C) and Compound (II-D) in a solvent such as N, N′-dimethylformamide and adding a base such as potassium hydrogen carbonate to room temperature to 200 ° C. It can be produced by reacting for 5 minutes to 100 hours.
  • a solvent what was illustrated at the process 2 of the manufacturing process 1 is mentioned.
  • the base include those exemplified in Step 3 of Production Method 1.
  • Compound (II-A) can be obtained as a commercial product.
  • Step 15 Compound (II-G) can be produced using compound (II-E) and compound (II-F) under the same conditions as in Step 3 of Production Method 1.
  • Step 16 Compound (II-I) can be produced using compound (II-G) and compound (II-H) under the same conditions as in Step 3 of Production Method 1. In addition, by repeating the DP step and the step 16, the compound (II-I) adjusted to the desired q1 value can be produced.
  • Step 17 Compound (II-K) can be produced using compound (II-I) and compound (II-J) under the same conditions as in Step 2 of Production Method 1.
  • Step 18 Compound (II-M) can be produced using compound (II-K) and compound (II-L) under the same conditions as in Step 3 of Production Method 1.
  • Step 19-21 Compound (II ′) can be produced using Compound (II-M), Compound (II-N), Compound (II-O) and Compound (II-P) under the same conditions as in Step 3 of Production Method 1. Can do. Moreover, the compound (II ') adjusted to desired q3 can be manufactured by performing DP process and the process 19 repeatedly.
  • Compound (II-B), Compound (II-D), Compound (II-F), Compound (II-H), Compound (II-J), Compound (II-L), Compound (II-N), Compound (II-O) and Compound (II-P) are commercially available, or “Experimental Chemistry Course 4th Edition, Organic Synthesis, p. 258, Maruzen (1992)”, “March's Advanced Organic Chemistry: Reactions, Machinery” , can be obtained by and Structure, 7 th Edition "combining methods described, or analogous thereto method.
  • a compound represented by the following formula 6 is used as an intermediate.
  • Formula 6 (In Formula 6, Y 9 and Y 10 may be groups represented as P1 and P4, but are preferably an oxygen atom or —NH—.
  • R 17 and R 18 are each independently a hydrogen atom, a maleimide group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a t-butoxycarbonyl group (Boc group), or a benzyloxycarbonyl group (Z group).
  • P9 to P11 and T3 are each independently absent, or —CO—, —NH—, —O—, —S—, —O—CO—, —S—CO—, —NH—CO -, -CO-O-, -CO-S- or -CO-NH-, Q8 to Q10 are absent or substituted or unsubstituted alkylene having 2 to 12 carbon atoms, —CH 2 CH 2 — (OCH 2 CH 2 O) n— or —CH 2 CH 2 — (CH 2 CH 2 O) n—CH 2 CH 2 —, n is an integer from 0 to 99, R19 is a hydrogen atom, a maleimide
  • the nucleic acid complex of the present invention can be produced by reacting the compound of formula 6 having a sugar chain ligand with the compound of formula 7.
  • Formula 7 :
  • nucleic acid complex in the present specification can also be obtained as salts such as acid addition salts, metal salts, ammonium salts, organic amine addition salts, amino acid addition salts, and the like.
  • Examples of the acid addition salt include inorganic acid salts such as hydrochloride, sulfate, and phosphate, and organic acid salts such as acetate, maleate, fumarate, citrate, and methanesulfonate.
  • Examples of the metal salt include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, zinc salt and the like.
  • Examples of ammonium salts include ammonium and tetramethyl. Examples thereof include salts such as ammonium.
  • Examples of organic amine addition salts include addition salts such as morpholine and piperidine.
  • Examples of amino acid addition salts include addition salts such as lysine, glycine and phenylalanine.
  • a salt of the nucleic acid complex of the present specification When it is desired to prepare a salt of the nucleic acid complex of the present specification, it can be purified as it is when the complex is obtained in a desired salt form, and when it is obtained in a free form, the complex Is dissolved or suspended in a suitable solvent, and the corresponding acid or base is added, followed by isolation and purification.
  • the complex salt When converting the counter ion forming the complex salt into a different counter ion, the complex salt is dissolved or suspended in a suitable solvent, and then acid, base and / or salt (sodium chloride, chloride). Isolation and purification may be performed by adding several equivalents to a large excess of an inorganic salt such as ammonium).
  • nucleic acid complexes of the present specification may have stereoisomers such as geometric isomers and optical isomers, tautomers, etc., but all possible isomers and mixtures thereof are also included. Included in the present invention.
  • nucleic acid complex of the present specification may exist in the form of an adduct with water or various solvents, and these adducts are also included in the present invention.
  • nucleic acid complex of the present invention includes those in which some or all of the atoms in the molecule are replaced with atoms (isotopes) having different mass numbers (for example, deuterium atoms).
  • nucleic acid complex of the present invention Specific examples of the nucleic acid complex of the present invention are shown below. However, the nucleic acid complex of the present invention is not limited to these.
  • the band structure in the figure represents an oligonucleotide.
  • the pharmaceutical composition of the present invention comprises a nucleic acid complex.
  • the nucleic acid complex of the present invention is recognized by the target cell and introduced into the cell when the sugar chain ligand has O-linked mannose at the non-reducing end.
  • the nucleic acid complex of the present invention can be administered to a mammal and suppressed by reducing or stopping the expression of the target gene in vivo, and can be used for treatment of a disease associated with the target gene.
  • the nucleic acid complex of the present invention is used as a therapeutic agent or prophylactic agent, it is desirable to use the administration route that is most effective in the treatment and is not particularly limited. Administration, subcutaneous administration, intramuscular administration and the like can be mentioned, and intravenous administration is preferred.
  • the dose varies depending on the disease state, age, route of administration, etc. of the administration subject, but it may be administered such that the daily dose converted to a double-stranded oligonucleotide is 0.1 ⁇ g to 1000 mg, for example. More preferably, the dose is 1 to 100 mg.
  • preparations suitable for intravenous administration or intramuscular administration include injections, and the prepared liquid can be used as it is, for example, in the form of injections, but from the liquid, for example, filtration, centrifugation, etc. Can be used after removing the solvent by lyophilizing the solution and / or lyophilizing a solution to which an excipient such as mannitol, lactose, trehalose, maltose or glycine is added. You can also.
  • an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine or EDTA, or an isotonic agent such as glycerin, glucose or sodium chloride. Moreover, it can also be cryopreserved by adding a cryopreservation agent such as glycerin.
  • the proton nuclear magnetic resonance spectra ( 1 H NMR) shown in the examples are those measured at 270 MHz, 300 MHz, or 400 MHz, and exchangeable protons may not be clearly observed depending on the compound and measurement conditions. is there. Moreover, although what is usually used is used as the notation of the multiplicity of signals, br represents an apparently wide signal.
  • Process 3 Compound 3 (0.9372 g, 2.8809 mmol) synthesized in Step 2 and ⁇ -alanine methyl ester hydrochloride (manufactured by Tokyo Chemical Industry Co., Ltd., 0.8082 g, 5.7902 mmol) are dissolved in N, N'-dimethylformamide (10 mL). , Diisopropylethylamine (2.52 mL, 14.40 mmol), and 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (2.1908 g, 5.76 mmol). In addition, the mixture was stirred overnight at room temperature.
  • Process 8 Compound 8 (0.0521 g, 0.0464 mmol) synthesized in Step 7 was dissolved in dichloromethane (2 mL), trifluoroacetic acid (0.2 mL, 32.4 mmol) was added under ice cooling, and the mixture was stirred overnight at room temperature. . Compound 9 was obtained quantitatively by evaporating the solvent from the reaction solution under reduced pressure.
  • Step 9 Using Compound 2 (2.1 g, 5.940 mmol) synthesized in Step 1 of Example 1, Compound 10 was quantitatively obtained in the same manner as in Step 4 of Example 1.
  • Step 11 Compound 12 was quantitatively obtained in the same manner as in Step 2 of Example 1 using Compound 11 (0.248 g, 0.632 mmol) synthesized in Step 10.
  • Step 16 1) Synthesis of Compound 17 Using Compound 13 (0.0209 g, 0.0375 mmol) synthesized in Step 12 and carboxyl- (12 ethylene glycol) ethylamine (Thermo Scientific, 0.0674 g, 0.1091 mmol), the same as Step 13 Compound 17 (0.0580 g, yield 99%) was obtained by the method described above.
  • Compound 19 was quantitatively obtained in the same manner as in Step 12, using Compound 17 (0.0580 g, 0.0375 mmol) synthesized in Step 16.
  • Process 18 (a): Compound 13 (10 mg, 17.9 ⁇ mol) synthesized in Step 12 of Example 2 was dissolved in a mixed solution of tetrahydrofuran (90 ⁇ L) and phosphate buffer (90 ⁇ L) to obtain carboxyl- (12 oligo Ethylene glycol) ethylamine (manufactured by Thermo Scientific, 22.1 mg, 35.8 ⁇ mol) was added, and the mixture was stirred at room temperature under an argon atmosphere for 1 h. The solvent was distilled off under reduced pressure, followed by extraction with chloroform and a 10% aqueous citric acid solution, and then drying over anhydrous magnesium sulfate.
  • carboxyl- (12 oligo Ethylene glycol) ethylamine manufactured by Thermo Scientific, 22.1 mg, 35.8 ⁇ mol
  • Step 19 (a) Compound 17 (14 mg, 8.9 ⁇ mol) synthesized in Step 18 was dissolved in tetrahydrofuran (90 ⁇ L), L-glutamic acid di-tert-butyl ester (Watanabe Chemical Co., Ltd., 5.2 mg, 17.9 ⁇ mol), Add 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (6.8 mg, 17.9 ⁇ mol), diisopropylethylamine (3.1 ⁇ L, 17.9 ⁇ mol), Stir overnight at room temperature under an argon atmosphere.
  • Process 20 (a): Compound 22a was quantitatively obtained in the same manner as in Step 8 of Example 1 using Compound 21a (4.5 mg, 2.1 ⁇ mol) synthesized in Step 19. ESI-MS m / z: 1822 (M + H) + (b); Compound 22b was quantitatively obtained in the same manner as in Step 8 of Example 1 using Compound 21b (4.5 mg, 2.1 ⁇ mol) synthesized in Step 19. ESI-MS m / z: 2878 (M + H) +
  • Step 21 Compound 12 (10 mg, 27.4 ⁇ mol) synthesized in Step 11 of Example 2 was dissolved in tetrahydrofuran (274.7 ⁇ mol), and L-glutamic acid di-tert-butyl ester (Watanabe Chemical Co., Ltd., 32.5 mg, 109.8 ⁇ mol) 2- (1H-benzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (41.7 mg, 109.8 ⁇ mol) and diisopropylethylamine (24.2 ⁇ L, 137.3 ⁇ mol) were added. The mixture was stirred overnight at room temperature under an argon atmosphere.
  • Step 22 Compound 23 (139.4 mg, 164.6 ⁇ mol) synthesized in Step 21 was dissolved in methylene chloride (1.3 mL) and trifluoroacetic acid (0.3 mL), and stirred overnight at room temperature. The solvent was distilled off under reduced pressure to obtain Compound 24 quantitatively.
  • Step 23 Compound 24 (100 mg, 160.7 ⁇ mol) synthesized in Step 22 was dissolved in dimethylamine (1 mL), and N-hydroxysuccinimide (81.3 mg, 707 ⁇ mol), 1-ethyl-3- (3-dimethylamino) Propyl) carbodiimide hydrochloride (135.4 mg, 707 ⁇ mol) was added, and the mixture was stirred overnight at room temperature under an argon atmosphere to obtain a crude product of compound 25.
  • Process 24 (a): Compound 25 (16.2 mg, 16 ⁇ mol) synthesized in Step 23 was dissolved in phosphate buffer (95 ⁇ L), carboxyl- (ethylene glycol) ethylamine (80.4 mg, 129.8 ⁇ mol) was added, and The mixture was stirred for 1 h under an argon atmosphere. The solvent was distilled off under reduced pressure, and the residue was purified by reverse phase high performance liquid chromatography to obtain compound 26a (6.2 mg, yield 21%).
  • Step 25 Compound 7 (0.8 mg, 1.249 ⁇ mol) synthesized in Step 6 of Example 1, synthesized by the method described in ACS Chemical Biology, Vol. 5, pp. 301-312, 2010 ⁇ (1,2) ⁇ (1,6) pseudomannotriose (3.0 mg, 5.0 ⁇ mol), 2- (1H-benzotriazol-1-yl) -1,1,3 , 3-Tetramethyluronium hexafluorophosphate (3.8 mg, 10 ⁇ mol) and diisopropylethylamine (1.7 ⁇ L, 10 ⁇ mol) are dissolved in N, N-dimethylacetamide (1 mL) and allowed to stand at room temperature for 2 days. did. The mixture was purified by reverse phase high performance liquid chromatography to give compound 25 (1.6 mg, 71% yield). ESI-MS m / z: 1802 (M-H) -
  • Step 26 Using compound 9 (0.9 mg, 1.04 ⁇ mol) synthesized in Step 8 of Example 1, ⁇ (1,2) ⁇ (1,6) pseudomannotriose (8.34 g, 8.34 ⁇ mol) described in Step 25, Compound 26 (2.3 mg, yield 68%) was obtained in the same manner as in Step 25.
  • Step 27 Compound 13 (0.6 mg, 0.00111 mmol) synthesized in Step 12 of Example 2 and ⁇ (1,2) ⁇ (1,6) pseudomannotriose (2.0 mg, 0.00334 mmol) described in Step 25 of Example 5 ) To give compound 29 (1.1 mg, yield 65%) in the same manner as in Step 13 of Example 2.
  • Step 28 Compound 30 (0.3 mg, 15% yield) was obtained in the same manner as in Step 25 of Example 5 using Compound 14 (0.66 mg, 0.00111 mmol) synthesized in Step 13 of Example 2.
  • Step 29 Compound 31 (0.4 mg, 18% yield) was obtained in the same manner as in Step 25 of Example 5 using Compound 16 (0.91 mg, 0.00111 mmol) synthesized in Step 15 of Example 2.
  • Step 31 Using Compound 18 (2.91 mg, 0.00111 mmol) synthesized in Step 16 of Example 2, Compound 33 (2.2 mg, 52% yield) was obtained in the same manner as in Step 25 of Example 5.
  • Process 32 (a): Compound 34a (2 mg, 44% yield) was obtained in the same manner as in Step 25 of Example 5 using Compound 22a (2 mg, 1.1 ⁇ mol) obtained in Step 20 of Example 3. It was. ESI-MS m / z: 2073 (M-2H) 2- (b); Compound 34b (1.8 mg, 37% yield) was obtained in the same manner as in Step 25 of Example 5 using Compound 22a (3.1 mg, 1.1 ⁇ mol) obtained in Step 20 of Example 3. It was. ESI-MS m / z: 2601 (M-2H) 2-
  • Step 34 Compound 36 (0.9602 g, 2.1460 mmol) synthesized by the method described in Journal of American Chemical Society, Vol. 136, pp. 16958-16961, 2014, N, N ' -Dimethylformamide (10 mL), N-Boc-ethylenediamine (Sigma Aldrich, 0.6877 g, 4.292 mmol), diisopropylethylamine (1.90 mL, 10.87 mmol), and 2- (1H-benzotriazole-1- Yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (manufactured by Wako Pure Chemical Industries, 1.6437 g, 4.3229 mmol) was added, and the mixture was stirred at room temperature overnight.
  • Synthesis step 36 of compound 39 The same method as in Step 25 of Example 5 using Compound 7 (4.36 mg, 0.006 mmol) synthesized in Step 6 of Example 1 and Compound 38 (10 mg, 0.02 mmol) synthesized in Step 35 of Comparative Example 1 Gave compound 39 (7 mg, yield 65%).
  • Step 38 Using an end-linkable functionalized compound 41 synthesized by the method described in Molecules, 17, 13825-13854, 2012, ACS nano, Vol. 9, 9652 Compound 42 was obtained by the method described on page -9664, 2015.
  • Step 39 The end-linked functional group was synthesized by the method described in Molecules, Vol. 17, pages 13825-13854, 2012 using Symmetric Doubler Phosphoramidite (Glen Research, catalog number 10-1920-90).
  • a dimethyl sulfoxide solution of N-succinimidyl 3- (2-pyridyldithiol) propionate was added to compound 43 and allowed to stand at room temperature for 4 hours in a phosphate buffer.
  • Dithiothreitol was added to the reaction solution and allowed to stand overnight at room temperature.
  • the mixture was subjected to gel filtration (Nap column, manufactured by GE Healthcare, elution solvent; 20 mmol / L acetic acid / sodium acetate buffer (pH 5.0) and ultrafiltration to obtain Compound 44.
  • Process 40 Compound 45 was obtained in the same manner as in Step 39, using dibenzocyclooctyne-N-hydroxysuccinimide ester.
  • Step 41 Compound 42 synthesized in Step 38 of Example 8 was added to compound 46 synthesized by the method described in ACS Chemical Biology, Vol. 5, No. 3, pp. 301-312, 2010 for 1 hour at room temperature. Left to stand.
  • Anion exchange chromatography GE Healthcare, MonoQ 5 / 50GL, 10 ⁇ m, 5.0 mm x 50 mm, solution A: 10 mM Tris buffer / 30% acetonitrile, solution B: 10 mM Tris buffer / 30% acetonitrile / 1M NaBr gradient
  • reversed-phase liquid chromatography Waters, X BridgeC18, 5 ⁇ m, 4.6 mm x 250 mm, 0.1 M triethylammonium acetate buffer, B solution: gradient with acetonitrile).
  • Table 3a and Table 3b show the nucleic acid sequences and mass spectrometry results of the nucleic acid complex synthesized according to this example.
  • the "Compound” column is described as follows: [Compound number in the table] _ [Position where a ligand or the like in a nucleic acid binds] _ [Abbreviation of nucleic acid sequence in a nucleic acid complex]-[Type of nucleic acid (ASO or ssRNA)].
  • n is DNA
  • N (M) is 2'-O-methyl modified RNA
  • N (F) is 2'-fluorine modified RNA
  • N (L) is LNA
  • 5 (L) is LNAmC
  • ss indicates the sense strand, as indicates the antisense strand
  • bold letters indicate the modification groups corresponding to the compound numbers in the examples. The same applies to each table below.
  • Step 38 The single-stranded nucleic acid complex synthesized in Step 41 is mixed buffer (100 mmol / L potassium acetate, 30 mmol / L 2- [4- (2-hydroxyethyl) piperazin-1-yl] ethanesulfonic acid, The concentration was adjusted (50 ⁇ mol / L) with (HEPES) -KOH (pH 7.4), 2 mmol / L magnesium acetate). The sense strand and the antisense strand (50 ⁇ mol / L) were mixed in equal amounts and allowed to stand at 80 ° C. for 10 minutes. The antisense strand sequence is as described in Table 2. The temperature was gradually lowered and the mixture was allowed to stand at 37 ° C.
  • nucleic acid complexes synthesized by this example are shown in Table 4, and the nucleic acid sequences in the nucleic acid complexes are shown in Table 5.
  • the description of “compound column” in Table 5 indicates [compound number in table] _ [abbreviation of nucleic acid sequence in nucleic acid complex] ⁇ [type of nucleic acid (siRNA)], and “single strand name”
  • the sense strand (ss) is [compound number in the table] _ [position where a ligand or the like in a nucleic acid binds] _ [abbreviation of nucleic acid sequence in a nucleic acid complex]-[type of nucleic acid (ssRNA)]
  • the antisense strand (as) indicates [abbreviation of nucleic acid sequence in nucleic acid complex]-[type of nucleic acid (as-RNA)], respectively.
  • Table 7a and Table 7b show the nucleic acid sequences and mass spectrometry results of the nucleic acid complex synthesized by this comparative example.
  • “Compound column” is described as follows: [Compound number in table] _ [Position where a ligand or the like in nucleic acid binds] _ [Abbreviation of nucleic acid sequence in nucleic acid complex] _ [Type of nucleic acid] (ASO or ssRNA)].
  • Process 40 The single-chain sugar chain complex synthesized in Step 43 was obtained in the same manner as in Step 42 of Example 8 to obtain a double-chain sugar chain complex.
  • the nucleic acid complexes synthesized by this comparative example are shown in Table 8, and the nucleic acid sequences in the nucleic acid complexes are shown in Table 9.
  • the description of “compound column” in Table 9 indicates [compound number in table] _ [abbreviation of nucleic acid sequence in nucleic acid complex] _ [type of nucleic acid (siRNA)], and “single strand name”
  • the sense strand (ss) indicates [compound number in the table] _ [position where a ligand or the like binds in nucleic acid] _ [abbreviation of nucleic acid sequence in nucleic acid complex] -type of nucleic acid (ssRNA)
  • antisense strand (as) indicate [abbreviation of nucleic acid sequence in nucleic acid complex]-[type of nucleic acid (as-RNA)], respectively.
  • Step 42 Compound 75 (3.7 g, 14.63 mmol, 63% yield) was obtained in the same manner as in Step 4 of Example 1 using Compound 2 (8.17 g, 23.12 mmol) synthesized in Step 1 of Example 1.
  • Step 43 Compound 75 (3.70 g, 14.63 mmol) synthesized in Step 42 of Example 9 was dissolved in tetrahydrofuran (10 mL), and benzoyl chloride (4.12 mL, 29.3 mmol) was added under ice cooling, followed by 1 hour at room temperature. Stir. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (chloroform / methanol) to obtain Compound 76 (3.82 g, 9.86 mmol, yield 67%).
  • Step 44 Using Compound 76 (3.82 g, 9.86 mmol) synthesized in Step 43 of Example 9, Compound 77 (3.07 g, 8.56 mmol, yield 87%) was obtained in the same manner as in Step 2 of Example 1.
  • Step 45 Compound 77 (213 mg, 0.592 mmol) synthesized in Step 44 of Example 9 and iminodiacetic acid di-tert-butyl ester (375 mg, 1.529 mmol) were used in the same manner as in Step 7 of Example 1. 78 was obtained quantitatively.
  • Step 46 STEP1: Using Compound 78 (482 mg, 0.593 mmol) synthesized in Step 45 of Example 9, was dissolved in methanol (10 mL), and catalytic hydrogen reduction with palladium / carbon was performed. The solvent was distilled off from the resulting solution fraction under reduced pressure.
  • STEP 2 Using the obtained crude product, a coupling compound having an alkyl azide group was obtained by the same method as in Step 9 of Example 2.
  • STEP 3 Compound 79 (238 mg, 92% yield) was obtained in the same manner as in Step 8 of Example 1 using the compound obtained in STEP 2.
  • Step 47 Using Compound 79 (0.8 mg, 1.346 ⁇ mol) synthesized in Step 46 of Example 9, Compound 80 (1.3 mg, 0.445 ⁇ mol) was obtained in the same manner as in Step 26 of Example 5.
  • Step 48 1,3-Dihydroxy-2-aminopropane 81 (Tokyo Kasei Kogyo Co., Ltd., 0.55 g, 6.03 mmol) was dissolved in dimethyl sulfoxide (15 mL). Under ice cooling, aqueous sodium hydroxide solution (2 mmol / L, 3 mL) ), Tert-butyl acrylate (1.93 g, 15.07 mmol) dissolved in dimethyl sulfoxide (2.2 mL) was gradually added, and the mixture was reacted at room temperature for 4 hours. Water was added to the mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate.
  • Step 49 Using compound 82 (0.150 g, 0.433 mmol) synthesized in step 48 of Example 10, compound 83 was quantitatively obtained in the same manner as in step 7 of Example 1.
  • Step 50 (Z deprotection, alkylazide amidation, TFA deprotection)
  • Compound 84 (91.4 mg, 0.114 mmol, 67% yield) was obtained in the same manner as in Step 46 of Example 9 using Compound 83 (0.149 g, 0.147 mmol) synthesized in Step 49 of Example 10.
  • Step 51 Using Compound 84 (1.3 mg, 1.4 ⁇ mol) synthesized in Step 51 of Example 10, Compound 85 (2.4 mg, 0.768 ⁇ mol, yield 54.9%) was obtained in the same manner as in Step 26 of Example 5.
  • Step 52 3,5-Dihydroxybenzoic acid 86 (Tokyo Kasei Kogyo Co., Ltd., 2.11 g, 13.69 mmol) was dissolved in N, N'-dimethylformamide (35 mL), and potassium bicarbonate (1.716 g, 17.14 mmol) and bromide were dissolved. Benzyl (3.51 g, 2.439 mL, 20.54 mmol) was added, and the mixture was stirred at room temperature for 4 hours. Saturated ammonium chloride was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was washed with water and dried over anhydrous sodium sulfate.
  • Step 53 Compound 87 (3.34 g, 13.69 mmol) synthesized in Step 52 was dissolved in N, N'-dimethylformamide (40 mL), and potassium carbonate (7.57 g, 54.8 mmol) and tert-butylbromoacetic acid (4.42 mL, 30.1 mmol) were dissolved. ) And stirred at 90 ° C. for 4 hours. Saturated ammonium chloride was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was washed with saturated brine and dried over anhydrous sodium sulfate.
  • Step 54 Compound 88 (5.67 g, 12.00 mmol) synthesized in step 53 was dissolved in dichloromethane (40 mL), trifluoroacetic acid (10 mL, 130.0 mmol) was added, and the mixture was stirred at room temperature overnight. The solvent was distilled off under reduced pressure to obtain a crude product of Compound 89.
  • Step 55 Using iminodiacetic acid di-tert-butyl ester (0.407 g, 1.660 mmol) and compound 89 synthesized in Step 54 of Example 11 (0.239 g, 0.664 mmol) in the same manner as in Step 1 of Example 1, compound 90 was obtained quantitatively.
  • Step 56 Compound 90 (541 mg, 0.664 mmol) synthesized in Step 55 of Example 11 was used, dissolved in methanol (8 mL), and subjected to catalytic hydrogen reduction with palladium / carbon. The solvent was distilled off from the resulting solution fraction under reduced pressure.
  • a coupling compound was obtained in the same manner as in Step 7 of Example 1 using the obtained crude product and 3-azidopropan-1-amine (0.101 g, 1.009 mmol).
  • STEP 3 Compound 91 was quantitatively obtained in the same manner as in Step 8 of Example 1 using the obtained compound and the crude product.
  • Step 57 Using Compound 84 (2.0 mg, 1.476 ⁇ mol) synthesized in Step 50 of Example 10, Compound 92 (2.0 mg, 47% yield) was obtained in the same manner as in Step 26 of Example 5.
  • Step 58 Compound 77 (63 mg, 0.175 mmol) synthesized in Step 44 of Example 9 was dissolved in dichloromethane (5 mL), triethylamine (0.24 mL, 1.75 mmol) was added, and then pentafluorophenyl-2,2,2- Trifluoroacetic acid (0.119 mL, 0.699 mmol) was added and stirred at room temperature for 4 hours. Chloroform was added to the mixture, and the organic layer was washed with 10% aqueous citric acid solution, saturated brine, and aqueous sodium hydrogen carbonate solution, and dried over anhydrous magnesium sulfate. Compound 93 was obtained quantitatively by distilling off the solvent under reduced pressure.
  • ESI-MS m / z (detected as a monoester (compound with one PEP added)) 524 (M-H) -
  • Step 59 Compound 93 (0.121 g, 0.175 mmol) synthesized in step 58 of Example 12 was dissolved in dimethyl sulfoxide (8 mL), carboxyl- (12 oligoethylene glycol) ethylamine (0.510 g, 0.444 mmol) was added, and The mixture was stirred for 1 h under an argon atmosphere. The solvent was distilled off under reduced pressure, followed by extraction with chloroform and a 10% aqueous citric acid solution, and then drying over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain a crude product of Compound 94.
  • Step 60 Compound 95 was quantitatively obtained in the same manner as in Step 7 of Example 1, using Compound 94 (0.333 g, 0.092 mmol) synthesized in Step 59 of Example 12.
  • Step 61 Compound 96 (0.0825 g, yield 58%) was obtained in the same manner as in Step 42 of Example 9 using Compound 95 (0.138 g, 0.045 mmol) synthesized in Step 60 of Example 12.
  • Step 62 Using compound 96 (4.2 mg, 14.04 ⁇ mol) synthesized in step 61 of Example 12, compound 97 (2.1 mg, yield 29%) was obtained in the same manner as in step 26 of Example 5.
  • Step 63 The same method as in Step 7 of Example 1 using Compound 94 (0.189 g, 0.052 mmol) synthesized in Step 59 of Example 12 and Compound 82 (0.051 g, 0.148 mmol) synthesized in Step 48 of Example 10 Gave compound 98 (0.087 g, 51% yield).
  • Step 64 Using Compound 98 (0.087 g, 0.027 mmol) synthesized in Step 63 of Example 13, Compound 99 (38.5 mg, 43% yield) was obtained in the same manner as in Step 42 of Example 9.
  • Step 65 Using Compound 99 (4.7 mg, 1.403 ⁇ mol) synthesized in Step 64 of Example 13, Compound 100 (2.4 mg, yield 32%) was obtained in the same manner as in Step 26 of Example 5.
  • Step 66 An active ester was obtained in the same manner as in Step 58 of Example 12, using Compound 86 (0.0678 g, 0.1888 mmol) synthesized in Step 54 of Example 11.
  • Compound 101 (0.2819 g, 0.108 mmol, yield 58.1%) was obtained in the same manner as in Step 59 of Example 12 using the active ester (0.1283 g, 0.185 mmol) obtained from STEP1.
  • Step 64 Compound 102 (0.085 g, 0.028 mmol, 26% yield) was obtained in the same manner as in Step 45 of Example 9, using Compound 101 (0.282 g, 0.108 mmol) synthesized in Step 66 of Example 14.
  • Step 64 Compound 103 (57.9 mg, 66% yield) was obtained in the same manner as in Step 56 of Example 11 using Compound 102 (84.5 mg, 0.028 mmol) synthesized in Step 67 of Example 14.
  • Step 69 Compound 104 (2.6 mg, 33% yield) was obtained in the same manner as in Step 26 of Example 5 using Compound 103 (4.8 mg, 1.528 ⁇ mol) synthesized in Step 69 of Example 14.
  • Step 70 [STEP1] Using compound 86 (4 mg, 0.011 mmol) synthesized in Step 54 of Example 11 to obtain a compound (6.0 mg, yield 36%) obtained by adding a ligand in the same manner as in Step 26 of Example 5 did. [STEP2] Using the compound (6.0 mg, 3.94 ⁇ mol) obtained from STEP1, Compound 105 (5.6 mg, 99% yield) was obtained by the same method as STEP1 in Example 9, Step 42. ESI-MS m / z: 1522 (M-H) -
  • Step 71 Using Compound 99 (0.204 g, 0.067 mmol) synthesized in Step 67 of Example 14, Compound 106 was quantitatively obtained in the same manner as in Step 45 of Example 9.
  • Step 72 Using Compound 106 (16.7 mg, 5.22 ⁇ mol) synthesized in Step 71 of Example 16, Compound 107 (6.3 mg, yield 23%) was obtained in the same manner as in Step 26 of Example 5.
  • Step 73 Using Compound 107 (6.3 mg, 1.218 ⁇ mol) synthesized in Step 72 of Example 16, Compound 108 (5.6 mg, yield 90%) was obtained in the same manner as STEP 1 in Example 9 Step 46.
  • Step 74 Using compound 109 (0.209 g, 0.414 mmol) synthesized by the method described in International Publication No. 2009/073809, Compound 110 (0.116 g, 43% yield) was prepared in the same manner as in Step 9 of Example 2. I got it. ESI-MS m / z: 645 (M + H) +
  • Step 75 Compound 111 was quantitatively obtained in the same manner as in Step 44 of Example 9, using Compound 110 (0.116 g, 0.179 mmol) synthesized in Step 74 of Example 17.
  • Step 76 Compound 112 (1.6 mg, yield 40%) was obtained in the same manner as in Step 26 of Example 5 using Compound 111 (1.1 mg, 1.821 ⁇ mol) synthesized in Step 75 of Example 17.
  • Step 77 Compound 113 (88.2 mg, 43% yield) was obtained in the same manner as in Step 62 of Example 14 using Compound 111 (30 mg, 0.05 mmol) synthesized in Step 75 of Example 17.
  • Step 78 Using compound 113 (8.1 mg, 2.098 ⁇ mol) synthesized in Step 77 of Example 18, compound 114 (5.9 mg, yield 50.%) was obtained in the same manner as in Step 26 of Example 5.
  • Step 79 Using iminodiacetic acid di-tert-butyl ester 115 (manufactured by Tokyo Chemical Industry Co., Ltd., 0.197 g, 0.803 mmol), Compound 116 was quantitatively obtained in the same manner as in Step 9 of Example 2.
  • Step 81 Compound 118 (1.1 mg, 0.766 mmol, 29% yield) was obtained in the same manner as in Step 26 of Example 5 using Compound 117 (1.2 g, 2.62 mmol) synthesized in Step 76 of Example 17.
  • Step 82 Using Compound 82 (0.159 g, 0.459 mmol) synthesized in Step 47 of Example 10, Compound 119 (0.096 g, 0.197 mmol, 43% yield) was obtained in the same manner as in Step 9 of Example 2. .
  • Step 83 Compound 120 was quantitatively obtained in the same manner as in Step 41 of Example 9, using Compound 119 (96 mg, 0.197 mmol) synthesized in Step 82 of Example 20.
  • Step 84 Using compound 120 (1.0 mg, 2.55 ⁇ mol) synthesized in step 83 of Example 20, compound 121 (2.6 mg, yield 66%) was obtained in the same manner as in step 26 of Example 5.
  • Step 85 Compound 122 (1 g, 0.914 mmol) and 4- (aminomethyl) phenol hydrochloride (0.362 g) synthesized by the method described in Chemistry European Journal, Vol. 19, pages 4786-4797, 2013 , 2.287 mmol), and the compound 123 (0.22 g, 23% yield) was obtained by the literature method described above.
  • Step 86 Compound 123 (0.2 g, 0.191 mmol) synthesized in Step 85 of Example 21 was dissolved in 25% aqueous ammonia solution, pyridine (2 mL) and trimethylphosphine (0.12 mL) were added, and the mixture was stirred at room temperature for 16 hours. . The mixture was concentrated under reduced pressure, and the residue was purified by column chromatography to obtain Compound 124 (0.048 g, yield 25%). ESI-MS m / z: 1037 (M + H) +
  • Step 87 [STEP1] Chemistry European Journal, Vol. 19, pp. 4786-4797, Compound 122 (0.5 g, 0.457 mmol) synthesized by the method described in 2013 was used in the same manner as in Step 84. A coupling compound (0.2 g, yield 42%) was obtained.
  • Step 88 [STEP1] Using compound 5 (3.39 g, 8.584 mmol) synthesized in Step 4 of Example 1 in the same manner as in Step 10 of Example 2, a coupling compound having an azide group was obtained as a crude product (2.293 g, yield). Rate 50%). [STEP2] STEP1 Using the obtained compound (2.293 g, 4.29 mmol), the carboxylic acid ester hydrolyzate (2.021 g, 93% yield) was obtained in the same manner as in Step 2 of Example 1. did [STEP3] Using the compound (0.100 g, 0.197 mmol) obtained in STEP2, an active ester was quantitatively obtained in the same manner as in Step 54 of Example 12.
  • Compound 124 (9.9 mg, 0.069 mmol) synthesized in Step 86 of Example 21 was dissolved in methanol (500 ⁇ L), 28% sodium methoxide / methanol solution (14 uL) was added, and then at room temperature. Let stand overnight. The mixture was purified by reverse phase chromatography (water / acetonitrile) to quantitatively obtain the desired product from which the benzoyl group was deprotected.
  • Step 90 Compound 129 (11 mg, 48%) was obtained in the same manner as in Step 26 of Example 5 using Compound 126 (24 mg, 7.30 ⁇ mol) synthesized in Step 18 of Example 3.
  • Step 91 Synthesis of Compound 130 [STEP1] Using compound 22b (4 mg, 1.342 ⁇ mol) synthesized in Step 20 of Example 3, a ligand adduct (0.9 mg, 10%) was obtained in the same manner as in Step 26 of Example 5. [STEP2] The compound (0.9 mg, 0.129 ⁇ mol) obtained from STEP 1 was dissolved in methanol (0.6 mL), sodium methoxide (2 ⁇ L, 10 ⁇ mol) was added, and the mixture was reacted at room temperature for 3 hours. The reaction solution was collected by reverse phase chromatography and freeze-dried to obtain Compound 130 (0.3 mg, 44%).
  • Example 25 Synthesis of nucleic acid complex 3 Step 92
  • Method 1 Single-stranded nucleic acid complexes 132 described in Table 11-1 to Table 11-4 using the compounds described in Table 10-1 to Table 10-3 in the same manner as in Step 38 of Example 9 ⁇ 151 was obtained.
  • X and Y in Table 11-3 represent the nucleotide structure of the 3 ′ end of the oligonucleotide.
  • Method 2 An oligonucleotide synthesized with the method described in Molecules, Vol. 17, pp. 13825-13843, 2012, and an amino group-modified oligonucleotide and Compound 105 were used.
  • Table 11-3 The single-stranded nucleic acid complexes 152 and 153 described in Table 11-3 were obtained by the method of Vol. 22, 1723-1728, 2011.
  • Table 12 shows the sequence and mass spectrometry results of the nucleic acid complex synthesized according to this example.
  • Table 10-1 The single-stranded nucleic acid complexes 152 and 153 described in Table 11-3 were obtained by the method of Vol. 22, 1723-1728, 2011.
  • Table 12 shows the sequence and mass spectrometry results of the nucleic acid complex synthesized according to this example.
  • Table 10-1 The single-stranded nucleic acid complex synthesized according to this example.
  • Step 92 The single-chain sugar chain complex synthesized in Step 91 was obtained in the same manner as in Step 38 of Example 8 to obtain a double-chain sugar chain complex 154-175.
  • the nucleic acid complexes synthesized according to this example are shown in Table 13-1 to Table 13-4.
  • X and Y in Table 13-3 represent the nucleotide at the 3 ′ end of the sense strand.
  • Table 14 shows the sequences of nucleic acid complexes synthesized according to this example.
  • the description of “compound column” in Table 14 indicates [compound number in table] _ [abbreviation of nucleic acid sequence in nucleic acid complex] _ [type of nucleic acid (siRNA)], and “single strand name” column
  • the sense strand (ss) indicates [compound number in the table] _ [position where a ligand or the like in a nucleic acid binds] _ [abbreviation of nucleic acid sequence in a nucleic acid complex] -type of nucleic acid (ssRNA)
  • the antisense strand (as) indicates [abbreviation of nucleic acid sequence in nucleic acid complex]-[type of nucleic acid (as-RNA)], respectively.
  • Example 27 Synthesis of nucleic acid complex 5 Step 93
  • nucleic acid complexes having different sequences in Compound 148 were obtained.
  • the sequences of nucleic acid complexes and the results of mass spectrometry are shown in Table 15, and the sequences of double-stranded complexes are shown in Table 16.
  • Test example 1 mRNA knockdown test of human monocyte-derived dendritic cells by CD45 ASO RMI 1640 medium containing 10% fetal bovine serum (RPMI1640 medium, manufactured by Nacalai Tesque, 30264-56) (hereinafter 10% FBS RPMI1640 Medium) and DNase I solution (DNase I Solution, StemCell Technology, 07900) and thawed human CD14-positive monocytes (Untouched Frozen NPB-CD14 + Monocytes, Allcells, PB011F) according to the attached protocol .
  • RPMI1640 medium 10% fetal bovine serum
  • DNase I solution DNase I Solution
  • StemCell Technology StemCell Technology
  • recombinant human interleukin-4 (Recombinant Human IL-4 Protein, manufactured by R & D System, 204-IL) (hereinafter referred to as IL-4) at a final concentration of 100 ng / mL
  • recombinant human granulocyte monocyte colony stimulating factor (Recombinant Human GM-CSF Protein CF, R & D System, 215-GM-050 / CF) (hereinafter referred to as GM-CSF) was added to a final concentration of 50 ng / mL, and 10 6 cells / mL was added.
  • the cells were seeded at a density on a suspension culture multiplate (SUMILON, MS-8006R) and cultured at 37 ° C. under 5% CO 2 .
  • Half and half of the medium was replaced with 10% FBS RPMI1640 medium containing IL-4 100 ng / mL and GM-CSF 50 ng / mL 3 days and 6 days after the start of the culture, and induced into dendritic cells.
  • Cells were collected 8 days after the start of culture, and adherent cells were also collected using an ethylenediaminetetraacetic acid solution (0.2 g / L-EDTA Solution, manufactured by Nacalai Tesque, 14367-74).
  • KAC_008 is 2 points of 1 ⁇ mol / L and 0.3 ⁇ mol / L
  • KAC_009 and KAC_CTR_001 are 4 points of 1 ⁇ mol / L, 0.3 ⁇ mol / L, 0.1 ⁇ mol / L and 0.03 umol / L
  • KAC_CTR_002 is 1 ⁇ mol / L L
  • N 3.
  • a nucleic acid complex solution prepared at 50 ⁇ M in a citrate buffer (20 mM Citrate (pH 7), 150 mM NaCl) is used as an Optimem (Opti-MEM® I Reduced Serum Medium, Life Technologies, 31985-070
  • the solution was diluted to 5 ⁇ M, and for further dilution of the solution, a solution prepared so that the citrate buffer and the optimem were 1: 9 was used.
  • 20 ⁇ L of the diluted nucleic acid complex solution was added to each cell solution, and 20 ⁇ L of the diluted solution was added to the negative control group, followed by culturing at 37 ° C. under 5% CO 2 for 2 days.
  • the cell lysate containing RNA was prepared using the Superprep Cell Lysis Kit (SuperPrep (registered trademark) Cell Lysis & RT Kit for qPCR, manufactured by TOYOBO, SCQ-101). for qPCR) and reverse transcription reaction was performed according to the instructions attached to the kit to prepare cDNA.
  • SuperPrep registered trademark
  • Cell Lysis & RT Kit for qPCR
  • reverse transcription reaction was performed according to the instructions attached to the kit to prepare cDNA.
  • GAPDH 3-phosphate dehydrogenase
  • the amount of mRNA amplification of CD45 and GAPDH in the negative control group was measured in the same manner, and the semi-quantitative value of CD45 mRNA was calculated.
  • Tackman probe Hs00894727_m1 (Applied Biosystems) is used to measure CD45 gene
  • Hs02758991_g1 (Applied Biosystems) is used to measure GAPDH gene
  • TaqMan Gene Expression Master Mix (Applied Biosystems) is used as a reaction reagent. , 4369542) according to the attached protocol.
  • the target mRNA amount of the nucleic acid complex was calculated as a relative ratio when the CD45 mRNA amount in the negative control group (ASO non-introduced group) was 1.
  • FIG. 1 shows the result of expressing the relative proportion of the mRNA amount as the mean ⁇ standard deviation. From these results, it was confirmed that the test samples (KAC_008, KAC_009) showed a stronger knockdown effect than the comparative controls (KAC_CTR_001, KAC_CTR_002).
  • Test Example 2 Protein knockdown test of human monocyte-derived dendritic cells using ASO against Beta-2 Microglobulin (hereinafter referred to as B2M)
  • B2M Beta-2 Microglobulin
  • dendritic cells were isolated from human CD14-positive monocyte cells. It was induced, seeded on an ultra-low adsorption 6-well plate (Corning, 3471), and cultured under conditions of 37 ° C. and 5% CO 2 . Three days later, half of the medium was exchanged with 10% FBS RPMI1640 medium containing IL-4 100 ng / mL and GM-CSF 50 ng / mL to induce dendritic cells.
  • the dilution of the nucleic acid complex solution was performed according to the following procedure. Dilute each nucleic acid complex solution prepared at 40 ⁇ M in citrate buffer to 1.5 ⁇ M with Optimem, and further dilute the solution prepared so that citrate buffer and Optimem are 3 to 77. Dilution was performed. 20 uL of the diluted nucleic acid complex solution was added to each cell solution, and 20 ⁇ L of the diluted solution was added to the negative control group, and cultured at 37 ° C. under 5% CO 2 conditions.
  • the cells are collected, and after centrifugation, resuspended in 80 ⁇ L of 10% FBS RPMI1640 medium containing fresh IL-4 100 ng / mL and GM-CSF 50 ng / mL at 37 ° C, 5% CO 2
  • the culture was further continued under conditions for 3 days.
  • the cell washing solution was prepared by adding 2.5% of a 10% sodium azide solution (Nacalai Tesque) to 0.5 mL of 0.5 M EDTA solution (EDTA (0.5 It was prepared by adding 685 ⁇ L of M), pH 8.0, manufactured by Ambion, AM9260G).
  • an FcR blocking solution was prepared by adding an FcR blocking reagent, human (Miltenyi Biotech, 130-059-901) so that the washing solution was 20% (v / v).
  • an FcR blocking reagent human (Miltenyi Biotech, 130-059-901) so that the washing solution was 20% (v / v).
  • the cells were collected and centrifuged, and then washed once with a washing solution. After removing the supernatant, 90 ⁇ L of FcR blocking solution was added and allowed to stand on ice for 30 minutes for blocking reaction.
  • Test Example 3 Protein knockdown test of human monocyte-derived dendritic cells using B2M-siRNA Dendritic cells were induced in the same manner as in Test 2, and the cells were placed in an ultra-low adsorption 96-well plate 6 days after the start of culture. Sowing. KsiRC_010, KsiRC_011 and KsiRC_012 were used as test samples, and KsiRC_CTR_001 without a ligand and KsiRC_013 and KsiRC_014 with a GalNAc ligand were provided as comparative controls.
  • the dilution of the nucleic acid complex solution was performed according to the following procedure. Dilute each nucleic acid prepared at 40 ⁇ M in citrate buffer to 15 ⁇ M with Optimem, and further dilute the solution with a solution prepared so that citrate buffer and Optimem are 21 to 35. went. 20 ⁇ L of the diluted nucleic acid complex solution was added to each cell solution, and 20 ⁇ L of the diluted solution was added to the negative control group and cultured under conditions of 37 ° C. and 5% CO 2 .
  • the expression level of mRNA was measured in the same manner as in Test Example 1.
  • the B2M gene measurement uses Taqman probe Hs00984230_m1 (Applied Biosystems), GAPDH gene measurement uses Hs02758991_g1 (Applied Biosystems), and the reaction reagent is TaqMan Gene Expression Master Mix. It carried out according to.
  • the target mRNA level of the siRNA-introduced sample was calculated as a relative ratio in the siRNA non-introduced group (negative control group) where the B2M mRNA level was 1.
  • FIG. 4 shows the result of expressing the relative proportion of the mRNA amount as the mean ⁇ standard deviation.
  • the test sample (KsiRC_010) showed a marked improvement in knockdown activity compared to the control (KsiRC_CTR_001).
  • Test Example 5 Protein knockdown test of human monocyte-derived dendritic cells using B2M-siRNA Dendritic cells were induced in the same manner as in Test Example 3, and after 6 days from the start of culture, they were placed on ultra-low adsorption 96-well plates. Cells were seeded. KsiRC_010, KsiRC_003, KsiRC_004, KsiRC_005, KsiRC_006, KsiRC_008, KsiRC_001, KsiRC_002, KsiRC_007 were used as test samples, and the siRNA sequences of KsiRC_CTR_001 and KsiRC_008 without the ligand were used as comparison controls. Provided.
  • the dilution of the nucleic acid complex solution was performed according to the following procedure. Dilute each nucleic acid prepared at 20 ⁇ M in citrate buffer to 5 ⁇ M with Optimem, and further dilute the solution using a solution prepared so that citrate buffer and Optimem are 1: 3. went. 20 ⁇ L of the diluted nucleic acid complex solution was added to each cell solution, and 20 ⁇ L of the diluted solution was added to the negative control group and cultured under conditions of 37 ° C. and 5% CO 2 .
  • Antibody to B2M on new plate (APC anti-human ⁇ 2-microglobulin Antibody, Biolegend, 316312) 5 ⁇ L, LIVE / DEAD (registered trademark) Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific L34957) 1 ⁇ L, HLA- Prepare a mixture containing 5 ⁇ L of antibody against DR (Brilliant Violet 421 TM anti-human HLA-DR Antibody, Biolegend, 307635) and 5 ⁇ L of antibody against CD11c (PE anti-human CD11c Antibody, Biolegend, 301606) Then, 65 uL of the cell solution subjected to the blocking operation was added and left on ice for 1 hour.
  • the cells were then collected, washed 3 times with a washing solution, resuspended in 200 ⁇ L, and measured with a BD FACSVerse TM flow cytometer (Becton Dickinson). FlowJo 7.6.5 was used for the analysis.
  • the cells were gated with forward scattered light (FSC) and side scattered light (SSC), and the negative fraction of LIVE DEAD was used as a living cell, and HLA-DR and CD11c positive fractions were analyzed.
  • the expression level of the cell surface antigen was measured based on the value of geometric means of the fluorescence intensity as the average fluorescence intensity of the APC channel. The obtained values are shown in FIG. Average values are shown for the negative control group.
  • test samples showed a significant B2M protein knockdown compared to the comparison controls (KsiRC_CTR_001, KsiRC_009).
  • Test Example 6 mRNA knockdown test of human monocyte-derived dendritic cells using B2M-siRNA X-VIVO15 TM medium (X-VIVO TM 15 Chemically Defined, Serum-free Hematopoietic Cell Medium, Lonza, 04-418Q ) was used to thaw human CD14-positive monocytes (Untouched Frozen NPB-CD14 + Monocytes, Allcells, PB011F) according to the attached protocol.
  • IL-4 recombinant human interleukin-4 (Recombinant Human IL-4 Protein, manufactured by R & D System, 204-IL) (hereinafter referred to as IL-4) at a final concentration of 100 ng / mL
  • IL-CSF recombinant human granulocyte monocyte colony stimulating factor
  • GM-CSF human granulocyte monocyte colony stimulating factor
  • the new IL-4 100 ng / mL and X-VIVO 15 TM medium containing GM-CSF 100 ng / mL were resuspended to a 500,000 cells / mL after centrifugation, ultra low adsorption 96well plates (Corning Inc., 3474) was seeded at 200 ⁇ L, and further cultured at 37 ° C. under 5% CO 2 for 3 days.
  • FIG. 7 shows the result of expressing the relative proportion of the mRNA amount as an average ⁇ standard deviation.
  • test samples showed improved knockdown activity compared to the control (KsiRC_CTR_001).
  • the target mRNA level of the siRNA-introduced sample was calculated as a relative ratio in the siRNA non-introduced group (negative control group) where the B2M mRNA level was 1.
  • FIG. 8 shows the result of expressing the relative proportion of the mRNA amount as the mean ⁇ standard deviation.
  • the test sample (KsiRC_020) showed improved knockdown activity compared to the control (KsiRC_CTR_001).
  • Test Example 9 mRNA knockdown test of human monocyte-derived dendritic cells using B2M-siRNA Human monocyte-derived dendritic cells were induced in the same manner as in Test Example 6 to evaluate the activity of various B2M siRNAs.
  • KsiRC_023, KsiRC_024, KsiRC_021 and KsiRC_028 were used, and KsiRC_CTR_001 without a ligand was provided as a comparative control.
  • the cells were collected, and then the expression level of mRNA was measured by the same method as in Test Example 8.
  • the target mRNA level of the siRNA-introduced sample was calculated as a relative ratio in the siRNA non-introduced group (negative control group) where the B2M mRNA level was 1.
  • FIG. 9 shows the result of expressing the relative proportion of the mRNA amount as mean ⁇ standard deviation.
  • the test samples (KsiRC_023, KsiRC_024, KsiRC_021, KsiRC_028) showed improved knockdown activity compared to the control (KsiRC_CTR_001).
  • the target mRNA level of the siRNA-introduced sample was calculated as a relative ratio in the siRNA non-introduced group (negative control group) where the B2M mRNA level was 1.
  • FIG. 10 shows the result of expressing the relative proportion of the mRNA amount as the mean ⁇ standard deviation.
  • the test samples (KsiRC_035, KsiRC_036, KsiRC_022, KsiRC_033, KsiRC_034) showed improved knockdown activity compared to the control (KsiRC_CTR_001).
  • Test Example 11 mRNA knockdown test of mature human monocyte-derived dendritic cells using B2M-siRNA Human monocyte-derived dendritic cells were induced in the same manner as in Test Example 6, and the cells were cultured 6 days after the start of culture. after recovery, the new IL-4 100 ng / mL and X-VIVO 15 TM medium containing GM-CSF 100 ng / mL were resuspended to a 500,000 cells / mL, ultra low adsorption 96well plates (Corning Co., 3474 ) 200 ⁇ L at a time.
  • the CD40 antibody described in the patent (WO02 / 088186, Clone: KM341-1-19) was added, and matured dendritic cells were cultured by culturing at 37 ° C under 5% CO 2 for 3 days. Prepared. Re to Cells were harvested 9 days after the initiation of culture, a 625,000 cells / mL in X-VIVO 15 TM medium after centrifugation containing the new IL-4 100 ng / mL and GM-CSF 100 ng / mL, CD40 antibody The suspension was suspended and seeded at 80 ⁇ L each in an ultra-low adsorption 96-well plate (Corning, 3474).
  • KsiRC_003, KsiRC_031, KsiRC_001 were used as test samples, and KsiRC_CTR_001 without a ligand was provided as a comparative control.
  • the target mRNA level of the siRNA-introduced sample was calculated as a relative ratio in the siRNA non-introduced group (negative control group) where the B2M mRNA level was 1.
  • FIG. 11 shows the result of expressing the relative proportion of the mRNA amount as the mean ⁇ standard deviation.
  • the test samples (KsiRC_003, KsiRC_031, KsiRC_001) showed improved knockdown activity compared to the control (KsiRC_CTR_001).
  • Test Example 12 Hypoxanthine-guanine phosphoribosyl-lancerase 1 (hereinafter referred to as HPRT1) -mRNA knockdown test of human monocyte-derived dendritic cells using siRNA Sphere-derived dendritic cells were induced to evaluate the activity of various HPRT1 siRNAs.
  • KsiRC_037 was used as a test sample, and KsiRC_CTR_002 without a ligand was provided as a comparative control.
  • Test Example 13 mRNA knockdown test of human monocyte-derived macrophage cells using B2M-siRNA Using X-VIVO15 TM medium, human CD14-positive monocyte cells (Untouched Frozen NPB-CD14 + Monocytes, Allcells, PB011F) Thawed according to the attached protocol.
  • GM-CSF was added to a final concentration of 100 ng / mL, diluted to a density of 375,000 cells / mL, and then 96-well plate (Nunc TM MicroWell TM 96-Well Microplates, manufactured by Thermo Fisher Scientific, 167008) Monocyte-derived macrophage cells were prepared by seeding the cells with 200 ⁇ L and culturing under conditions of 37 ° C. and 5% CO 2 . Seven days after the start of the culture, the supernatant was removed, and 80 ⁇ L of X-VIVO15 TM medium containing 125 ng / mL of fresh GM-CSF was added.
  • KsiRC_001, KsiRC_030, KsiRC_031 and KsiRC_032 were used as test samples, and KsiRC_CTR_001 without a ligand was provided as a comparative control.
  • add 20 ⁇ L of the nucleic acid complex solution diluted with Optimem to the cell solution and add 20 ⁇ L of the diluted solution to the negative control group under conditions of 37 ° C and 5% CO 2. For 4 days.
  • the target mRNA level of the siRNA-introduced sample was calculated as a relative ratio in the siRNA non-introduced group (negative control group) where the B2M mRNA level was 1.
  • FIG. 13 shows the result of expressing the relative proportion of the mRNA amount as the mean ⁇ standard deviation.
  • the test samples (KsiRC_001, KsiRC_030, KsiRC_031 and KsiRC_032) showed improved knockdown activity compared to the control (KsiRC_CTR_001).
  • the nucleic acid complex of the present invention can be administered to a mammal and used to treat various related diseases in vivo.
  • SEQ ID NO: 1 shows the nucleotide sequence of CD45-ASO.
  • SEQ ID NO: 2 shows the base sequence of ApoB-ASO.
  • SEQ ID NO: 3 shows the base sequence of B2M-ASO.
  • SEQ ID NO: 4 shows the base sequence of B2M-ssRNA.
  • SEQ ID NO: 5 shows the base sequence of B2M-asRNA.
  • Sequence number 6 shows the base sequence of GAPDH-ssRNA.
  • SEQ ID NO: 7 shows the base sequence of GAPDH-asRNA.
  • SEQ ID NO: 8 shows the base sequence of Hprt-1 ssRNA.
  • SEQ ID NO: 9 shows the base sequence of Hprt-1asRNA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Saccharide Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、糖鎖リガンドがリンカーを介してオリゴヌクレオチドと結合した核酸複合体であって、糖鎖リガンドが、糖鎖リガンドの非還元末端にO結合マンノースを有する、核酸複合体、を提供する。

Description

核酸複合体
 本発明は、核酸複合体および該核酸複合体を含む医薬組成物等に関する。
 核酸医薬として、アンチセンス、デコイ核酸、リボザイム、siRNA、miRNAおよびantimiRNAなどが知られている。核酸医薬は、細胞内のあらゆる遺伝子を制御できる汎用性の高さから、今まで治療困難とされてきたさまざまな疾患への臨床応用が期待されている。
 また、核酸医薬は、細胞内における標的選択性と活性の高さから抗体、低分子医薬に次ぐ、次世代医薬として期待されている。
 しかしながら、核酸医薬は、標的組織への送達が困難であることが問題点として挙げられる。
 インビボにおける効果的な核酸医薬の送達法の1つとして、標的化化合物と核酸との核酸複合体(コンジュゲート核酸)を用いることが報告されている。標的化化合物としては、細胞外に発現する受容体に結合可能なリガンドが挙げられる。その中でも特に、肝細胞に極めて高発現しているアシアロ糖タンパク質受容体(ASGPR)に結合可能であるリガンドとしてN-アセチル-D-ガラクトサミン(GalNAc)等を利用した核酸複合体が複数報告されている。近年では、これらのリガンドとsiRNA類とを結合した核酸複合体が肝細胞に効率的に送達されることが報告されている(非特許文献1)。
 標的化化合物とオリゴヌクレオチドの複合体として、特許文献1および2には、例えば、以下に示す核酸複合体が開示されている。
Figure JPOXMLDOC01-appb-C000020
(式中、Acはアセチル基を表す。以下、本明細書において同様である。)
 また、特許文献3には、特許文献1および2と同様の糖リガンド-テザーユニットを有する以下の構造を有する核酸複合体が開示されている。
Figure JPOXMLDOC01-appb-C000021
 また、特許文献4には、糖リガンド-テザーユニットとして、以下に示す構造を有する核酸複合体が開示されている。
Figure JPOXMLDOC01-appb-C000022
 特許文献1~4に報告されているような従来の核酸複合体は、標的臓器としては肝臓がほとんどであり、その適用範囲は限定されている。したがって、肝臓以外の標的臓器として、細胞に効果を示す核酸複合体の開発が強く望まれている。
 CD209(別名 DC-SIGN, Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin)およびCD206(別名 MR1, Macrophage Mannose Rceptor 1)等のC型レクチンは、樹状細胞、マクロファージ、好中球等の免疫系細胞に発現しており、その機能の一つとしてウイルスや細菌等の外来異物の捕捉が報告されている。CD206は、マクロファージや樹状細胞の表面に発現し、CD209は皮膚や粘膜組織上の樹状細胞、扁桃、リンパ節、脾臓といったリンパ組織の樹状細胞の表面に発現しており、両者ともにHIV等のウイルスの補足に関与することが知られている(非特許文献2,3)。
 CD206およびCD209を利用した送達技術として、特許文献5には、マンノースやフコース等の糖分子と抗原のコンジュゲートを免疫誘導に利用することが開示されている。
国際公開第2009/073809号 国際公開第2013/075035号 国際公開第2015/105083号 国際公開第2014/179620号 国際公開第2006/093524号
ジャーナルオブアメリカンケミカルソサイエティー (Journal of American Chemical Society),2014年,第136巻,p16958?16961 ネイチャーレビューズイミュノロジー (Nature Reviews Immunology),2009年,第9巻,p465?479 ネイチャーレビューズイミュノロジー (Nature Reviews Immunology),2003年,第3巻,p697?709
 本発明の目的は、新規核酸複合体を提供することにある。
 本発明は、以下の(1)~(22)に関する。
(1)
 糖鎖リガンドがリンカーを介してオリゴヌクレオチドと結合した核酸複合体であって、糖鎖リガンドが、糖鎖リガンドの非還元末端にO結合マンノースを有する、核酸複合体。
(2)
 糖鎖リガンドが、CD209および/またはCD206に結合親和性を示す構造を有する、(1)に記載の核酸複合体。
(3)
 糖鎖リガンドが、O結合マンノースの1位でエーテル結合を介してシクロヘキサン骨格と結合している、(1)または(2)に記載の核酸複合体。
(4)
 糖鎖リガンドが、下記構造を有する、(1)~(3)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000023
(式中、
 RおよびRは、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
 YおよびYは、それぞれ独立して、酸素原子、硫黄原子、およびNR3からなる群から選択される基であり、
 R3は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
(5)
 糖鎖リガンドが、下記構造で示される、(1)~(4)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000024
(式中、
 R およびR は、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
 Y およびY は、それぞれ独立して、酸素原子、硫黄原子、およびNR3 からなる群から選択される基であり、
 R3 は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
(6)
 YおよびYまたはY およびY がNHである、(4)または(5)に記載の核酸複合体。
(7)
 RおよびR2、またはR およびR が置換または非置換のアラルキル基である、(6)に記載の核酸複合体。
(8)
 糖鎖リガンドが、下記構造で示される、(1)~(7)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000025
(式中、
 R ’’およびR ’’は、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
 Y ’’およびY ’’は、それぞれ独立して、酸素原子、硫黄原子、およびNR ’’からなる群から選択される基であり、
 R ’’は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
(9)
 糖鎖リガンドが、下記構造で示される、(8)に記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000026
(式中、
 R ’’’およびR ’’’は、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
 Y ’ ’’およびY ’ ’’は、それぞれ独立して、酸素原子、硫黄原子、およびNR ’’からなる群から選択される基であり、
 R ’ ’’は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
(10)
 糖鎖リガンドを2~8個有する、(1)~(9)のいずれかに記載の核酸複合体。
(11)
 リンカーが、下記構造のいずれかの構造を有する、(1)~(10)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000027
(式中、
 Xは、CHまたは窒素原子である。
 X~Xは、それぞれ独立して、CHまたは窒素原子である。)
(12)
 リンカーが、下記構造を有する、(1)~(11)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000028
(13)
 リンカーが、下記構造のいずれかの構造を有する、(1)~(12)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000029
(14)
 リンカーが、下記構造を有する、(1)~(13)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000030
(式中、
 n1は、1~100の整数である。)
(15)
 リンカーが、下記構造のいずれかの構造を有する、(1)~(13)のいずれかに記載の核酸複合体。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(式中、
 n2およびn3は、それぞれ独立して、1~100の整数である。)
(16)
 前記オリゴヌクレオチドが修飾ヌクレオチドを含む、(1)~(15)のいずれかに記載の核酸複合体。
(17)
 (1)~(16)のいずれかに記載の核酸複合体を含む、医薬組成物。
(18)
 細胞内に導入するための、(17)に記載の医薬組成物。
(19)
 前記細胞が樹状細胞またはマクロファージである、(18)に記載の医薬組成物。
(20)
 静脈内投与または皮下投与される、(17)~(19)のいずれかに記載の医薬組成物。
(21)
 (1)~(16)のいずれかに記載の核酸複合体または(17)~(20)のいずれかに記載の医薬組成物を、それを必要とする患者に投与することを含む、疾患の治療または予防方法。
(22)
 前記患者が哺乳動物である、(21)に記載の治療または予防方法。
 例えば本発明の核酸複合体を含む医薬組成物を、哺乳動物に投与して、生体内において、各種関連疾患を治療することができる。
試験例1のCD45 アンチセンスオリゴヌクレオチド(ASO)によるヒト単球由来樹状細胞のmRNAノックダウン試験の結果を示す。 試験例2のBeta-2 Microglobulin(B2M)に対するASOを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例3のB2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例4のB2M-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験の結果を示す。 試験例5のB2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例6のB2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例7のB2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例8のB2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例9のB2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例10のB2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例11のB2M-siRNAを用いた成熟ヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例12のHPRT1-siRNAを用いた成熟ヒト単球由来樹状細胞のタンパク質ノックダウン試験の結果を示す。 試験例13のB2M-siRNAを用いたヒト単球由来マクロファージ細胞のタンパク質ノックダウン試験の結果を示す。
 本発明の核酸複合体は、糖鎖リガンドがリンカーを介してオリゴヌクレオチドと結合した核酸複合体であって、糖鎖リガンドが、糖鎖リガンドの非還元末端にO結合マンノースを有する、核酸複合体である。
 核酸複合体は、糖鎖リガンドと、リンカーと、オリゴヌクレオチドとをその分子内構成要素として有し、糖鎖リガンドと、オリゴヌクレオチドとが、リンカーを介して結合することにより連結する。糖鎖リガンド又はオリゴヌクレオチドと、リンカーとの結合は、好ましくは共有結合である。
 本発明の核酸複合体は、糖鎖リガンド―リンカー―オリゴヌクレオチドという構造を有する。
 本発明においては、糖鎖リガンドが、非還元末端にO結合マンノースを有していれば、リンカー及びオリゴヌクレオチドは、公知の構造を採用することができる。
 すなわち、糖鎖リガンド、リンカー及びオリゴヌクレオチドの各構造を有する従来公知の核酸複合体において、糖鎖リガンドを本発明における非還元末端にO結合マンノースを有する糖鎖リガンドとした核酸複合体は、本発明の範囲内となる。
 本発明において、糖鎖リガンドは、非還元末端にO結合マンノースを有する。
 O結合マンノースの構造としては、下記構造が挙げられる。
Figure JPOXMLDOC01-appb-C000043
 マンノースのO結合は、α結合であってもよく、β結合であってもよいが、好ましくは、マンノースのO結合は、α結合である。
 通常、糖鎖は、非還元末端と、還元末端を有し、本発明においては、非還元末端がO結合マンノースである。
 非還元末端がO結合マンノースであるとは、糖鎖リガンドの最外部において、O結合マンノースを有し、他の構造をさらに有していないことを意味する。
 糖鎖リガンドは、標的細胞に発現している受容体に結合可能な糖類(単糖、二糖、三糖および多糖など)に由来する基を意味し、非天然構造を含むものが挙げられる。
 糖類のユニットである単糖としては、天然に存在するものとして、例えば、アロース、アルトース、アラビノース、クラジノース、エリトロース、エリスルロース、フルクトース、フシトール、フコサミン、フコース、フクロース、ガラクトサミン、ガラクトサミニトール、N-アセチル-ガラクトサミン、ガラクトース、グルコサミン、N-アセチル-グルコサミン、グルコサミニトール、グルコース、グルコース-6-リン酸、グロース、グリセルアルデヒド、グリセロマンノ-ヘプトース、グリセロール、グリセロン、グロース、イドース、リキソース、マンノサミン、マンノース、マンノース-6-リン酸、プシコース、キノボース、キノボサミン、ラムニトール、ラムノサミン、ラムノース、リボース、リブロース、セドヘプツロース、ソルボース、タガトース、タロース、酒石酸、トレオース、キシロース、およびキシルロース等が挙げられ、これら単糖がグリコシド結合により結合し糖類として天然に存在している。
 本発明においては、糖鎖リガンドは、非天然構造を含むものが好ましく、非天然構造として上記単糖以外の構造を含むことを意味する。
 糖類における各単糖は、D体またはL体であってもよく、D体とL体の任意割合による混合物であってもよい。
 糖類は、デオキシ糖(アルコールヒドロキシ基を水素原子に置換したもの)、アミノ糖(アルコールヒドロキシ基をアミノ基に置換したもの)、チオ糖(アルコールヒドロキシ基をチオールに置換したもの、またはC=OをC=Sに置換したもの、または環酸素を硫黄に置換したもの)、セレノ糖、テルロ糖、アザ糖(環炭素を窒素に置換したもの)、イミノ糖(環酸素を窒素に置換したもの)、ホスファノ糖(環酸素をリンに置換したもの)、ホスファ糖(環炭素をリンに置換したもの)、C-置換単糖(非末端炭素原子における水素原子を炭素原子で置換したもの)、不飽和単糖、アルジトール(カルボニル基をCHOH基で置換したもの)、アルドン酸(アルデヒド基をカルボキシ基に置換したもの)、ケトアルドン酸、ウロン酸、アルダル酸などを含んでいてもよい。
 アミノ糖としては、糖類におけるアミノ単糖として、ガラクトサミン、グルコサミン、マンノサミン、フコサミン、キノボサミン、ノイラミン酸、ムラミン酸、ラクトースジアミン、アコサミン、バシロサミン、ダウノサミン、デソサミン、フォロサミン、ガロサミン、カノサミン、カンソサミン(kansosamine)、ミカミノース、ミコサミン、ペロサミン、プノイモサミン、プルプロサミン(purpurosamine)、ロドサミンなどが挙げられる。また、アミノ糖のアミノ基は、アセチル基などで置換されていてもよい。
 本発明において、糖鎖リガンドが、CD209および/またはCD206に結合親和性を示す構造を有することが好ましい。
 本発明においては、非還元末端がO結合マンノースであることにより、CD209および/またはCD206に結合親和性を示すこととなる。
 糖鎖リガンドが、CD209および/またはCD206に結合親和性を示すことにより、樹状細胞またはマクロファージの細胞表面に発現する受容体に核酸複合体が結合し、当該細胞にオリゴヌクレオチドを核酸医薬として送達し得る。
 糖鎖リガンドは、マンノースの1位でエーテル結合を介してシクロヘキサン骨格と結合した構造を有することが好ましい。
 シクロヘキサン骨格は、糖鎖リガンドにおける非天然構造として存在し、マンノースの1位でエーテル結合を介してシクロヘキサン骨格と結合した構造としては、下記構造を有することが挙げられる。
Figure JPOXMLDOC01-appb-C000044
 なお、シクロヘキサン環は、置換基を有していてもよく、マンノースのシクロヘキサンとのグリコシド結合は、α結合であってもよく、β結合であってもよい。
 マンノースの1位でエーテル結合を介してシクロヘキサン骨格と結合した構造としては、例えば、下記構造が好ましい。
Figure JPOXMLDOC01-appb-C000045
 式中、
 RおよびRは、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
 YおよびYは、それぞれ独立して、酸素原子、硫黄原子、およびNR3からなる群から選択される基であり、
 R3は、水素原子または置換または非置換の炭素数1~20のアルキル基である。
 本明細書において、それぞれ独立してとは、各基が、同時に規定される他の基と独立して選択肢の中から選択される基であることを意味し、同一または異なっていてもよい。
 置換または非置換の炭素数1~20のアルキル基としては、例えば、メチル、エチル、プロピル、シクロプロピル、イソプロピル、ブチル、シクロブチル、イソブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、ヘプチル、オクチル、ノニル、デシル、ペンタデシル、イコシルが挙げられるが特に限定されない。
 置換または非置換の炭素数1~20のアルキル基における置換基としては、例えば、ヒドロキシ、ハロゲン、メルカプト、ニトロ、シアノ、カルボキシ、カルバモイル、C1-C3アルコキシ、C1~C3アルキルチオ、アミノ、C1-C3モノアルキルアミノ、C1-C3ジアルキルアミノからなる群から選ばれる置換基が挙げられる。
 置換基の数は、例えば、1~3であり、複数の置換基を有する場合、複数の置換基は、同一または異なっていてもよい。
 本明細書において、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、お置換または非置換のアラルキル基における置換基について、置換または非置換の炭素数1~20のアルキル基における置換基と同義である。
 置換または非置換の炭素数2~20のアルケニル基としては、置換または非置換の炭素数2~20のアルキル基において1以上の2重結合を含む基であればよい。置換または非置換の炭素数3~20のアルキニル基としては、置換または非置換の炭素数3~20のアルキル基において1以上の3重結合を含む基であればよい。
 置換または非置換のアリール基としては、フェニル基、ナフチル基、アントラセニル基等の芳香環が挙げられるが、特に限定されない。
 置換または非置換のヘテロアリール基としては、窒素原子、酸素原子または硫黄原子を環内に有する複素芳香環を意味し、例えば、1~3個の窒素原子、酸素原子または硫黄原子を有する5~6員の芳香環が挙げられる。
 置換または非置換のヘテロ脂環基としては、窒素原子、酸素原子または硫黄原子を環内に有する複素脂肪族環を意味し、例えば、1~3個の窒素原子、酸素原子または硫黄原子を有する5~6員の脂肪族環が挙げられる。
 置換または非置換のアラルキル基としては、置換または非置換のアルキル基が、置換または非置換のアリール基で置換された基であればよく、置換または非置換の炭素数1~20のアルキル基において置換基として1以上のアリール基を含む基が挙げられ、具体的には、置換または非置換のベンジル基もしくはフェネチル基等が挙げられる。
 YおよびYは酸素原子であることが好ましく、NHであることも好ましい。
 RおよびRは、それぞれ独立して、置換または非置換の炭素数1~20のアルキル基であることが好ましく、中でも、RおよびRがメチル基であることが好ましい。RおよびRは、それぞれ独立して、置換または非置換のアラルキル基であることも好ましく、YおよびYがNHであり、かつ、RおよびRが置換または非置換のアラルキル基であることがより好ましく、YおよびYがNHであり、かつ、RおよびRが4-ヒドロキシベンジル基、4-(ヒドロキシメチル)ベンジル基または4-(メトキシメチル)ベンジル基であることがさらにより好ましい。
 マンノースの1位でエーテル結合を介してシクロヘキサン骨格と結合した構造における具体的構造としては、特に限定されるものではないが、例えば、下記構造を有する。
Figure JPOXMLDOC01-appb-C000046
 式中、
 R 、R 、Y 、Y およびR3 は、それぞれ対応する、R、R、Y、YおよびR3と同義である。
 上述した構造を有する糖鎖リガンドとして具体的には、下記構造のいずれかの構造で示される糖鎖リガンドが例示できる。
Figure JPOXMLDOC01-appb-C000047
 式中、
 R、R、YおよびYは、上記と同義であり、
 R ’’、R ’’、Y ’’、Y ’’およびR ’’は、それぞれ対応する、R、R、Y、YおよびR3と同義であり、好ましい置換基の組み合わせも同義である。
 上述した構造を有する糖鎖リガンドとしてより具体的には、下記構造のいずれかの構造で示される糖鎖リガンドが例示できる。
Figure JPOXMLDOC01-appb-C000048
 式中、
 R1 、R 、Y1 およびY は、前記と同義であり、
 R1 ’’’、R ’’’、Y1 ’’’、Y ’’’およびR ’’’は、それぞれ対応する、R、R、Y、YおよびR3と同義であり、好ましい置換基の組み合わせも同義である。
 本発明における糖鎖リガンド構造は、国際公開第2011/000721号、モレキュラーダイバーシティー (Molecular Diversity),2011年,大15巻,p347-360、ケミストリー エー・ヨーロピアン・ジャーナル(Chemistry A European Journal),2013年,第19巻,p4786-4797およびエーシーエス・ケミカル・バイオロジー (ACS Chemical Biology),2010年,第5巻,p301-312を参考に製造することができる。
 本発明における「オリゴヌクレオチド」としては、核酸医薬として用いることが知られたオリゴヌクレオチドを用いることができる。本発明において、核酸医薬とは、アンチセンス、デコイ核酸、リボザイム、siRNA、miRNAおよびantimiRNAなどとして用いられるヌクレオチドを意味する。
 本発明においては、リンカーとオリゴヌクレオチドは、ヌクレオチドを構成する糖部分の3’位または5’位を介してリンカーと結合するだけでなく、ヌクレオチドを構成する塩基部分を介してリンカーと結合していてもよい。本発明においては、オリゴヌクレオチドは、リンカーとオリゴヌクレオチドを結合する構造を有する基として理解されてよく、例えば、オリゴヌクレオチドが、-O-P(Z)(Z’)O-(式中、ZおよびZ’は、それぞれ独立して、酸素原子またはイオウ原子である。)を介してリンカーと結合している場合、Xとしてのオリゴヌクレオチドとしては、-O-P(Z)(Z’)O-オリゴヌクレオチドとして理解されてもよい。
 また、オリゴヌクレオチドは、一本鎖または二本鎖のオリゴヌクレオチドであってもよい。
 核酸複合体におけるリンカーとオリゴヌクレオチドは、オリゴヌクレオチドなどのヌクレオチドで結合してもよいが、例えばオリゴヌクレオチドの3’末端または5’末端で結合する。オリゴヌクレオチドが二本鎖である場合には、リンカーは、二本鎖核酸を構成するセンス鎖の3’末端または5’末端と結合していることが好ましいが、当該結合に限定されるものではない。
 本発明において、標的mRNAに対して相補的な塩基配列を含む核酸をアンチセンスヌクレオチドと称し、アンチセンスヌクレオチドの塩基配列に対して相補的な塩基配列を含む核酸をセンスヌクレオチドとも称する。
 本発明で用いられる核酸複合体を構成するオリゴヌクレオチドは、哺乳動物細胞に導入された場合、標的遺伝子の発現を制御する能力を有するものであればいかなる形状でもよく、一本鎖のオリゴヌクレオチドまたは二本鎖のオリゴヌクレオチドが好適に用いられる。
 オリゴヌクレオチドとしては、ヌクレオチドまたはヌクレオチドと同等の機能を有する分子の重合体であればいかなる分子であってもよく、例えばデオキシリボヌクレオチドの重合体であるDNA、リボヌクレオチドの重合体であるRNA、DNAとRNAの重合体であるキメラ核酸が挙げられる。また、DNA、RNAおよびキメラ核酸において、少なくとも一つのデオキシリボヌクレオチドやリボヌクレオチド等のヌクレオチドがヌクレオチドと同等の機能を有する分子で置換されたヌクレオチド重合体であってもよい。なお、RNA中のウラシル(U)は、DNAにおいてはチミン(T)に一義的に読み替えられる。
ヌクレオチドと同等の機能を有する分子としては、例えば、ヌクレオチドに修飾を施したヌクレオチド誘導体等が挙げられ、例えばDNAまたはRNAと比較して、ヌクレアーゼ耐性の向上もしくは安定化させるため、相補鎖核酸とのアフィニティーを上げるため、細胞透過性を上げるため、または可視化させるために、デオキシリボヌクレオチドまたはリボヌクレオチドに修飾を施した分子等が好適に用いられる。
 ヌクレオチド誘導体としては、例えば糖部修飾ヌクレオチド、リン酸ジエステル結合修飾ヌクレオチド、塩基修飾ヌクレオチド等、糖部、リン酸ジエステル結合および塩基の少なくとも一つが修飾されたヌクレオチド等が挙げられる。
 糖部修飾ヌクレオチドとしては、ヌクレオチドの糖の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよいが、2’-修飾ヌクレオチドが好ましく用いられる。
 2’-修飾ヌクレオチドとしては、例えばリボースの2’-OH基がOR、R、R’OR、SH、SR、NH、NHR、NR、N、CN、F、Cl、BrおよびIからなる群(Rはアルキルまたはアリール、好ましくは炭素数1~6のアルキルであり、R’はアルキレン、好ましくは炭素数1~6のアルキレンである)から選択される置換基で置換された2’-修飾ヌクレオチドが挙げられ、2’-修飾としては、好ましくはF、メトキシ基およびエトキシ基での置換が挙げられる。また、2-(methoxy)ethoxy基、3-aminopropoxy基、2-[(N,N-dimethylamino)oxy]ethoxy基、3-(N,N-dimethylamino)propoxy基、2-[2-(N,N-Dimethylamino)ethoxy]ethoxy基、2-(methylamino)-2-oxoethoxy基、2-(N-methylcarbamoyl)ethoxy基および2-cyanoethoxy 基からなる群から選択される置換基で置換された2’-修飾ヌクレオチド等も挙げられる。
 また、糖部修飾ヌクレオチドとしては、糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)も好適に用いられる。具体的には、2´位の酸素原子と4´位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA) [Tetrahedron Letters, 38, 8735 (1997)およびTetrahedron, 54, 3607 (1998)]、エチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[Nucleic Acid Research, 32, e175 (2004)]、Constrained Ethyl (cEt)[The Journal of Organic Chemistry 75, 1569 (2010)]、Amido-Bridged Nucleic Acid (AmNA)[Chem Bio Chem 13, 2513 (2012)]および2’-O,4’-C-Spirocyclopropylene bridged nucleic acid (scpBNA)[Chem. Commun., 51, 9737 (2015)]等が挙げられる。
 さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)]、ペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等も糖部修飾ヌクレオチドとして挙げられる。
 リン酸ジエステル結合修飾ヌクレオチドとしては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、リン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロジチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がアルキルホスホネート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロアミデート結合に置換されたヌクレオチド等が挙げられ、好ましくはリン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチドが挙げられる。
 塩基修飾ヌクレオチドとしては、ヌクレオチドの塩基の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、塩基内の酸素原子が硫黄原子で置換されたもの、水素原子が炭素数1~6のアルキル基、ハロゲン基で置換されたもの、メチル基が水素原子、ヒドロキシメチル基、炭素数2~6のアルキル基で置換されたもの、アミノ基が炭素数1~6のアルキル基、炭素数1~6のアルカノイル基、オキソ基、ヒドロキシ基等に置換されたものが挙げられる。なお、シトシン(C)の代わりに5-メチルシトシン(5-mC)を塩基修飾ヌクレオチドとして用いることも、本発明の好ましい形態の一つである。
 ヌクレオチド誘導体としては、ヌクレオチドまたは糖部、リン酸ジエステル結合もしくは塩基の少なくとも一つが修飾されたヌクレオチド誘導体に、ペプチド、蛋白質、糖、脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、色素など、別の化学物質を、直接またはリンカーを介して付加したものもあげられ、具体的には、5’-ポリアミン付加ヌクレオチド誘導体、コレステロール付加ヌクレオチド誘導体、ステロイド付加ヌクレオチド誘導体、胆汁酸付加ヌクレオチド誘導体、ビタミン付加ヌクレオチド誘導体、Cy5付加ヌクレオチド誘導体、Cy3付加ヌクレオチド誘導体、6-FAM付加ヌクレオチド誘導体、およびビオチン付加ヌクレオチド誘導体等があげられる。
 ヌクレオチド誘導体は、核酸内の他のヌクレオチドまたはヌクレオチド誘導体とアルキレン構造、ペプチド構造、ヌクレオチド構造、エーテル構造、エステル構造、およびこれらの少なくとも一つを組み合わせた構造等の架橋構造を形成してもよい。
 オリゴヌクレオチドは、その分子中の一部あるいは全部の原子が質量数の異なる原子(同位体)で置換されたものも包含する。
 本明細書において「相補」とは、2つの塩基間で塩基対合をし得る関係を意味し、例えば、アデニンとチミンまたはウラシルとの関係、並びにグアニンとシトシンとの関係のように緩やかな水素結合を介して、二重鎖領域全体として2重螺旋構造をとるものをいう。
 本明細書において「相補的」とは、2つのヌクレオチド配列が完全に相補する場合だけでなく、ヌクレオチド配列間で0~30%、0~20%または0~10%のミスマッチ塩基を有することができ、例えば、標的mRNAに対して相補的なアンチセンスオリゴヌクレオチドは、標的mRNAの部分塩基配列と完全に相補する塩基配列において、1つまたは複数の塩基の置換を含んでよいことを意味する。具体的には、アンチセンスオリゴヌクレオチドは、標的遺伝子の標的配列に対して1~8個、好ましくは1~6個、1~4個、1~3個、特に2個または1個のミスマッチ塩基を有していてもよい。
 また、「相補的」とは、一方のヌクレオチド配列が、他方のヌクレオチド配列と完全に相補する塩基配列において、1つまたは複数の塩基が付加および/または欠失した配列である場合を包含する。例えば、標的mRNAとアンチセンスオリゴヌクレオチドとは、アンチセンスオリゴヌクレオチドにおける塩基の付加および/または欠失により、アンチセンス鎖および/または標的mRNA領域に1個または2個のバルジ塩基を有してもよい。
 ただし、以下、「相補的」と記載する箇所において、「相補」の意味も包含する形で記載する。
 本発明で用いられるアンチセンスオリゴヌクレオチドとは、標的遺伝子をコードするDNA、標的遺伝子をコードするDNAから転写されるmRNA前駆体、mRNA、microRNA前駆体またはmicroRNAに対して相補的なオリゴヌクレオチドであり、当該アンチセンスオリゴヌクレオチドが標的とするDNA、mRNA前駆体またはmRNAと二本鎖を形成することによりDNA、mRNA前駆体、mRNA、microRNA前駆体またはmicroRNAの働きを抑制する。
 アンチセンスオリゴヌクレオチドには、標的となるDNA、mRNA前駆体、mRNA、microRNA前駆体またはmicroRNAと完全に相補的であるもののみならず、DNA、mRNA前駆体、mRNA、microRNA前駆体またはmicroRNAとストリジェントな条件でハイブリダイズできる限り、1もしくは数個のミスマッチが存在するものも含まれる。
 アンチセンスオリゴヌクレオチドとは、標的遺伝子にハイブリダイズする核酸であれば、ヘアピンオリゴマー、環状オリゴマーの形態中に導入されてもよく、内部または末端のバルジまたはループなどの構造要素を含有してもよい。
 アンチセンスオリゴヌクレオチドの長さは、8~80塩基であり、8~30塩基が好ましい。例えば、8~20塩基、10~20塩基、13~20塩基、13~16塩基、13塩基、14塩基、15塩基、16塩基、17塩基、18塩基、19塩基、20塩基であり得る。
 アンチセンスオリゴヌクレオチドは、細胞内に導入されると、相補的なmRNA前駆体またはmRNAと結合し蛋白質に翻訳されるのを立体的に阻害して、標的遺伝子の発現を抑制することができる。
 またアンチセンスオリゴヌクレオチドは、細胞内において、相補的なmicroRNA前駆体またはmicroRNAと結合し、microRNAの機能を立体的に阻害することもできる。
 またアンチセンスオリゴヌクレオチドは、細胞内において、相補的なmRNA及びmRNA前駆体と結合し、mRNA及びmRNA前駆体を切断することもある。このような例として、RNAとDNAの二重鎖のRNA鎖を切断するエンドヌクレアーゼであるRNaseHを介した作用が知られている。本発明の細胞内のアンチセンスオリゴヌクレオチドがmRNA及びmRNA前駆体と二重鎖を形成するとRNaseHに認識され、相補的なmRNA鎖を酵素的に分解することができる。
 RNaseHによるmRNA及びmRNA前駆体の切断を誘導するには、4~80個の連続したDNA領域を持つアンチセンスオリゴヌクレオチドが好ましい。この場合、アンチセンスオリゴヌクレオチドは0~80%の糖部修飾ヌクレオチドを持つことが好ましく、10~60%がより好ましく、20~50%がさらに好ましい。また、糖部修飾ヌクレオチドを持つ場合の連続したDNA領域は、4~20個がより好ましく、4~15個がさらに好ましく、5~10個が最も好ましい。更に、アンチセンスオリゴヌクレオチドにおける糖部修飾ヌクレオチドの位置は、5’末端近傍および/または3’末端近傍に配置することが好ましく、5’端から全長の長さの25%以内の位置および/または3’端から全長の長さの25%以内の位置に配置することがより好ましい。
 アンチセンスオリゴヌクレオチドは、相補的なオリゴ核酸と二重鎖を形成させ、二重鎖核酸として細胞内に導入することで標的遺伝子の発現抑制を誘導することもできる(国際公開第2005/113571号を参照)。この場合の二重鎖核酸をリガンドで修飾する位置は、相補的なオリゴ核酸の5’末端または3’末端が好ましい。
 本発明で用いられるアンチセンスオリゴヌクレオチドは、標的遺伝子のプロモーター配列等に対して相補的な塩基配列を用いることで、標的遺伝子の発現を亢進させることもできる(国際公開第2013/173601号および国際公開第2013/173637号を参照)。
 アンチセンスオリゴヌクレオチドを製造する方法としては、特に限定されず、公知の化学合成を用いる方法、あるいは、酵素的転写法等が挙げられる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスホロチオエート法、ホスホトリエステル法、CEM法[Nucleic Acid Research, 35, 3287 (2007)]等を挙げることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)により合成することができる。合成が終了した後は、固相からの脱離、保護基の脱保護および目的物の精製等を行う。精製により、純度90%以上、好ましくは95%以上のアンチセンスオリゴヌクレオチドを得るのが望ましい。本発明のアンチセンスオリゴヌクレオチドを製造する酵素的転写法としては、目的の塩基配列を有したプラスミドまたはDNAを鋳型としてファージRNAポリメラーゼ、例えば、T7、T3、またはSP6RNAポリメラーゼを用いた転写による方法が挙げられる。
 本発明で用いられる二本鎖のオリゴヌクレオチドは、標的mRNAの一部の塩基配列に対して相補的な塩基配列を含む核酸および/または該核酸の塩基配列に対して相補的な塩基配列を含む核酸であれば、いずれのオリゴヌクレオチドまたはその誘導体から構成されていてもよい。
 本発明で用いられる二本鎖のオリゴヌクレオチドは、標的mRNA配列に対して相補的な塩基配列を含む核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とが、二重鎖を形成することができればいずれの長さでもよいが、二重鎖を形成できる配列の長さは、通常11~35塩基であり、15~30塩基が好ましく、17~25塩基がより好ましく、17~23塩基がさらに好ましく、19~23塩基が特に好ましい。
 本発明で用いられる、標的タンパク質の発現を抑制する二本鎖のオリゴヌクレオチドとしては、標的mRNA配列に対して相補的な塩基配列を含む核酸であって、かつ標的タンパク質の発現を抑制する一本鎖核酸、もしくは標的mRNA配列に対して相補的な塩基配列を含む核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなり、かつ標的タンパク質の発現を抑制する二本鎖核酸が好適に用いられる。
 二本鎖のオリゴヌクレオチドは、標的遺伝子のプロモーター配列等に相補的な塩基配列を含む核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなる分子を用いることで、標的遺伝子の発現を亢進させることもできる[Nucleic Acid Research, 41, 10086 (2013)、Hepatology, 59, 216 (2014)]。
 二本鎖のオリゴヌクレオチドとは、二本のオリゴヌクレオチドが対合し二重鎖領域を有するヌクレオチドをいう。二重鎖領域とは、二本鎖を構成するヌクレオチドまたはその誘導体が塩基対を構成して二重鎖を形成している部分をいう。二重鎖領域は、通常11~27塩基対であり、15~25塩基対が好ましく、15~23塩基対がより好ましく、17~21塩基対がさらに好ましい。
 二本鎖のオリゴヌクレオチドを構成する一本鎖のオリゴヌクレオチドは、通常11~30塩基からなるが、15~29塩基からなることが好ましく、15~27塩基からなることがより好ましく、15~25塩基からなることがさらに好ましく、17~23塩基からなることが特に好ましい。
 二本鎖のオリゴヌクレオチドにおいて、二重鎖領域に続く3’側または5’側に二重鎖を形成しない追加のヌクレオチドまたはヌクレオチド誘導体を有する場合には、これを突出部(オーバーハング)と呼ぶ。突出部を有する場合には、突出部を構成するヌクレオチドはリボヌクレオチド、デオキシリボヌクレオチドまたはこれらの誘導体であってもよい。
 突出部を有する二本鎖のオリゴヌクレオチドとしては、少なくとも一方の鎖の3’末端または5’末端に1~6塩基、通常は1~3塩基からなる突出部を有するものが用いられるが、2塩基からなる突出部を有するものが好ましく用いられ、例えばdTdTまたはUUからなる突出部を有するものがあげられる。突出部は、アンチセンスオリゴヌクレオチドのみ、センスオリゴヌクレオチドのみ、およびアンチセンスオリゴヌクレオチドとセンスオリゴヌクレオチドの両方に有することができるが、アンチセンスオリゴヌクレオチドに突出部を有する二本鎖のオリゴヌクレオチドが好ましく用いられる。なお、アンチセンスオリゴヌクレオチドは、二重鎖領域とそれに続く突出部とを含む。
 二本鎖のオリゴヌクレオチドとしては、標的遺伝子の塩基配列またはその相補鎖の塩基配列と同一の配列からなる核酸を用いてもよいが、該核酸の少なくとも一方の鎖の5’末端または3’末端が1~4塩基削除された核酸と、該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなる二本鎖核酸を用いてもよい。
 二本鎖のオリゴヌクレオチドは、RNA同士が二重鎖を形成した二本鎖RNA(dsRNA)、DNA同士が二重鎖を形成した二本鎖DNA(dsDNA)、またはRNAとDNAが二重鎖を形成したハイブリッド核酸であってもよい。あるいは、二本鎖のうちの一方もしくは両方の鎖がDNAとRNAとのキメラ核酸であってもよい。好ましくは二本鎖RNA(dsRNA)である。
 アンチセンスオリゴヌクレオチドの5’末端から2番目のヌクレオチドは、標的mRNA配列の3’末端から2番目のデオキシリボヌクレオチドと相補であることが好ましく、アンチセンスオリゴヌクレオチドの5’末端から2~7番目のヌクレオチドが、標的mRNA配列の3’末端から2~7番目のデオキシリボヌクレオチドと完全に相補であることがより好ましく、アンチセンスオリゴヌクレオチドの5’末端から2~11番目のヌクレオチドが、標的mRNA配列の3’末端から2~11番目のデオキシリボヌクレオチドと完全に相補であることがさらに好ましい。また、アンチセンスオリゴヌクレオチドの5’末端から11番目のヌクレオチドが、標的mRNA配列の3’末端から11番目のデオキシリボヌクレオチドと相補であることが好ましく、アンチセンスオリゴヌクレオチドの5’末端から9~13番目のヌクレオチドが、標的mRNA配列の3’末端から9~13番目のデオキシリボヌクレオチドと完全に相補であることがより好ましく、アンチセンスオリゴヌクレオチドの5’末端から7~15番目のヌクレオチドが、標的mRNA配列の3’末端から7~15番目のデオキシリボヌクレオチドと完全に相補であることがさらに好ましい。
 二本鎖核酸領域内のヌクレオチドに対して、修飾ヌクレオチドは、50~100%含まれることが好ましく、70~100%含まれることがより好ましく、90~100%含まれることがさらに好ましい。
 二本鎖のオリゴヌクレオチドは化学的に合成することができ、一般に固相オリゴヌクレオチド合成法を使用することによって合成することができる(たとえば、Usman et al.,米国特許第5,804,683号明細書;米国特許第5,831,071号明細書;米国特許第5,998,203号明細書;米国特許第6,117,657号明細書;米国特許第6,353,098号明細書;米国特許第6,362,323号明細書;米国特許第6,437,117号明細書;米国特許第6,469,158号明細書;Scaringe et al.,米国特許第6,111,086号明細書;米国特許第6,008,400号明細書;米国特許第6,111,086号明細書を参照)。
 RNAは、酵素的または部分/全有機合成によって生成してもよく、また修飾されたリボヌクレオチドは、インビトロで酵素的または有機合成によって導入することができる。一つの態様において、それぞれの鎖は、化学的に調製される。RNA分子を化学的に合成する方法は、当該技術分野において公知である[Nucleic Acids Research, 32, 936 (1998)を参照]。
 本発明で用いられるRNAとしては、標的遺伝子のmRNAの連続する15~30塩基、好ましくは17~25塩基、より好ましくは19~23塩基の配列(以下、配列Xとする)および配列Xと相補的な塩基の配列(以下、相補的配列X’とする)を含んでいるRNAがあげられ、例えば、配列Xを含むセンスオリゴヌクレオチドおよび相補的配列X’を含むアンチセンスオリゴヌクレオチドからなる二本鎖RNA、該センスオリゴヌクレオチドと該アンチセンスオリゴヌクレオチドとが、スペーサーオリゴヌクレオチドでつながれたヘアピン構造を有するRNAが挙げられる。
 配列Xを含むセンスオリゴヌクレオチドとしては、塩基として配列Xのみを含んでいるRNA(以下、配列X鎖とする)、配列X鎖の3’端もしくは5’端または両端に1~6個、好ましくは2~4個のヌクレオチドが同一または異なって付加されたRNAが挙げられる。
 相補的配列X’を含むアンチセンスオリゴヌクレオチドとしては、塩基として相補的配列X’のみを含んでいるRNA(以下、相補的配列X’鎖とする)、相補的配列X’鎖の3’端もしくは5’端または両端に1~6個、好ましくは2~4個のヌクレオチドが同一または異なって付加された、二本鎖RNA等が挙げられる。
 配列Xを含むセンスオリゴヌクレオチドと相補的配列X’を含むアンチセンスオリゴヌクレオチドとが、スペーサーオリゴヌクレオチドでつながれたヘアピン構造を有するRNAのスペーサーオリゴヌクレオチドとしては、6~12塩基のヌクレオチドが好ましく、その5’端の配列は2個のUであるのが好ましい。スペーサーオリゴヌクレオチドの例として、UUCAAGAGAの塩基配列からなるオリゴヌクレオチドがあげられる。スペーサーオリゴヌクレオチドによってつながれる2つのRNAの順番はどちらが5’側になってもよく、配列Xを含むセンス鎖が5’側になることが好ましい。
 配列X鎖および相補的配列X’鎖に付加されるヌクレオチド、ならびにスペーサーオリゴヌクレオチドの塩基は、グアニン、アデニン、シトシン、チミンおよびウラシルのいずれか1種または複数種でもよく、またそれぞれの塩基に結合する糖が、リボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースのいずれでもよいが、付加されるヌクレオチドとしては、ウリジル酸(U)およびデオキシチミジル酸(dT)のいずれか1種または2種がより好ましい。また、配列X鎖の3’端に付加されるヌクレオチドの塩基の配列を、標的遺伝子のmRNA内で配列Xと隣接するヌクレオチドの塩基の配列と同じ塩基配列としてもよい。また、相補的配列X’鎖の3’端に付加されるヌクレオチドの塩基の配列を、標的遺伝子のmRNA内で配列Xと隣接するヌクレオチドの塩基の配列と相補的な塩基配列としてもよい。
 本発明で用いられるRNAのより好ましい例としては、例えば、(a)配列Xを含むセンスオリゴヌクレオチドおよび相補的配列X’を含むアンチセンスオリゴヌクレオチドからなる二本鎖RNAであり、配列Xが標的遺伝子のmRNAの連続する19~21塩基の配列であって、センスオリゴヌクレオチドが配列X鎖および配列X鎖の3’端に2~4個の同一または異なって付加されたヌクレオチドからなり、アンチセンスオリゴヌクレオチドが相補的配列X’鎖および相補的配列X’鎖の3’端に2~4個の同一または異なって付加されたヌクレオチドからなる二本鎖RNA、(b)配列Xを含むセンスオリゴヌクレオチドおよび相補的配列X’を含むアンチセンスオリゴヌクレオチドからなる二本鎖RNAであり、配列Xが標的遺伝子のmRNAの連続する23~25塩基の配列であって、センスオリゴヌクレオチドが配列X鎖であり、アンチセンスオリゴヌクレオチドが相補的配列X’鎖である二本鎖RNA、(c)配列Xを含むセンスオリゴヌクレオチドおよび相補的配列X’を含むアンチセンスオリゴヌクレオチドからなる二本鎖RNAであり、配列Xが標的遺伝子のmRNAの連続する23~27塩基の配列であって、センスオリゴヌクレオチドが配列X鎖および配列X鎖の3’端に2~4個の同一または異なって付加されたヌクレオチドからなり、アンチセンスオリゴヌクレオチドが相補的配列X’鎖および相補的配列X’鎖の3’端に2~4個の同一または異なって付加されたヌクレオチドからなり、相補的配列X’鎖の3’端に付加されるヌクレオチドの塩基の配列が、標的遺伝子のmRNA内で配列Xと隣接するヌクレオチドの塩基の配列と相補的な塩基配列である、二本鎖RNA等が挙げられる。
 また、本発明で用いられるRNAとしては、好ましくはRNA干渉(RNAi)を利用した該標的遺伝子の発現抑制作用を有するRNAが挙げられる。
 一本鎖のオリゴヌクレオチドは、固相ホスホロアミダイト法[Nucleic Acids Research, 30,2435 (1993)を参照]を使用して合成され、脱保護され、およびNAP-5カラム(Amersham Pharmacia Biotech、Piscataway、NJ)上で脱塩される。オリゴマーは、15分工程のリニア勾配を使用するAmersham Source 15Qカラム-1.0cm。高さ.25 cm (Amersham Pharmacia Biotech、Piscataway、NJ)でのイオン交換高性能液体クロマトグラフィー(IE-HPLC)を使用して精製する。勾配は、90:10の緩衝液A:Bから52:48の緩衝液A:Bに変化し、緩衝液Aは100mmol/L Tris pH 8.5であり、および緩衝液Bは、100mmol/L Tris pH 8.5(1mol/LのNaCl)である。試料は、260nmにてモニターされ、全長オリゴヌクレオチド種に対応するピークは、収集され、プールされ、NAP-5カラムで脱塩され、および凍結乾燥される。
 各一本鎖のオリゴヌクレオチドの純度は、Beckman PACE 5000(Beckman Coulter、Inc., Fullerton, Calif)でのキャピラリー電気泳動(CE)によって決定される。CEキャピラリーは、100μmの内径を有し、ssDNA 100R Gel(Beckman-Coulter)を含む。典型的には、約0.6nmoleのオリゴヌクレオチドをキャピラリーに注射して、444V/cmの電界において実行して、260nmにおけるUV吸光度によって検出される。変性トリス-ホウ酸-7mol/L-尿素泳動緩衝液は、Beckman-Coulterから購入する。以下に記述した実験に使用するための、CEによって評価すると少なくとも90%純粋である一本鎖のオリゴヌクレオチドが得られる。化合物同一性は、製造業者の推奨プロトコルにしたがって、Voyager DE.TM.Biospectometryワークステーション(Applied Biosystems、Foster City,、Calif.)でのマトリックス支援レーザー脱離イオン化-飛行時間型(MALDI-TOF)質量分光法によって検証される。一本鎖のオリゴヌクレオチドの相対的な分子質量は、予想される分子質量の0.2%以内で得ることができる。
 一本鎖のオリゴヌクレオチドは、100mmol/L 酢酸カリウム、30mmol/L HEPES、pH 7.5からなる緩衝液中に100μmol/L濃度にて再懸濁させる。相補的センス鎖およびアンチセンス鎖を同等のモル量で混合して、50μmol/L二本鎖のオリゴヌクレオチドの最終溶液を得る。試料を95℃まで5分間加熱して、使用前に室温に冷却させる。二本鎖核酸は、-20℃にて保存する。一本鎖のオリゴヌクレオチドは、凍結乾燥させるか、またはヌクレアーゼフリー水中に、-80℃で貯蔵する。
 本発明における「リンカー」としては、核酸複合体として用いることが知られた任意のをリンカーを用いることができる。
 リンカー構造の例示としては、例えば、国際公開第2009/073809号、国際公開第2013/075035号、国際公開第2015/105083号、国際公開第2014/179620号、国際公開第2015/006740号、国際公開第2017/010575号に開示される構造を採用することができる。
 リンカーは、直鎖構造であってもよいが、分岐構造となる下記構造のいずれかの構造を有することが好適である。
 例えば下記分岐を有することにより、複数の糖鎖リガンドを分子内に有する核酸複合体とすることができ、糖鎖リガンドを2~8個有することが好適である。
Figure JPOXMLDOC01-appb-C000049
 式中、
 Xは、CHまたは窒素原子である。
 X~Xは、それぞれ独立して、CHまたは窒素原子である。
 リンカーは、下記構造のいずれかの構造をさらに有していることが好適である。
Figure JPOXMLDOC01-appb-C000050
 本発明において、リンカーが、下記構造を有する場合、例えば、国際公開第2009/073809号、国際公開第2013/075035号、国際公開第2015/105083号、国際公開第2014/179620号、国際公開第2015/006740号、国際公開第2017/010575号を参考にしてリンカーを製造することができる。
Figure JPOXMLDOC01-appb-C000051
 Xは、上記と同義である。
 本発明において、リンカーが、下記構造を有する場合、以下に例示するような方法により本発明の核酸複合体を製造することができる。
Figure JPOXMLDOC01-appb-C000052
 X~Xは、それぞれ独立して、上記と同義である。X~Xは、例えば全てCHであり、この場合は下記構造で表される。
Figure JPOXMLDOC01-appb-C000053
 これらの場合、本発明の核酸複合体は、下記式1で表される核酸複合体であることが好適である。
式1:
Figure JPOXMLDOC01-appb-C000054
 式1中、
 Xは、オリゴヌクレオチドであり、
 X~Xは、それぞれ独立して、上記と同義である。
 L1およびL2は、それぞれ独立して、糖鎖リガンドであり、
 S1、S2およびS3は、それぞれ独立して、リンカーを構成する部分構造である。
 式1においては、下記構造がリンカーであり、
Figure JPOXMLDOC01-appb-C000055
 S1、S2およびS3は、リンカーを構成する部分構造であり、
 X~Xは、それぞれ独立して、上記と同義である。
 なお、以下、上記式1の核酸複合体について説明するが、核酸複合体が、以下の構造を有するとして置き換えて、式1での説明を適用できる。
Figure JPOXMLDOC01-appb-C000056
 なお、S4は、S1およびS2と同義に理解することができ、Xは、上記と同義であり、L3は、糖鎖リガンドである。
 式1において、S1およびS2は、S3のベンゼン環上の置換位置に対して、それぞれオルト位、メタ位、パラ位でベンゼン環と結合し得るが、下記式1-1で表される核酸複合体であることが好適である。式1におけるS1およびS2のベンゼン環への結合手は、ベンゼン環上のS3の置換位置以外で任意の位置であり得ることを意味する。
式1-1:
Figure JPOXMLDOC01-appb-C000057
式1-1中、
 X、L1、L2、S1、S2およびS3は、それぞれ前記と同義である。
 本明細書において、前記と同義とは、式1-1中を例示して説明すると、式1-1中のX、L1、L2、S1およびS2それぞれについて、式1において前記するX、L1、L2、S1およびS2それぞれについての定義と同様の基であり得ることを意味している。
 本発明においては、S3とオリゴヌクレオチドは、ヌクレオチドを構成する糖部分の3’位または5’位を介してS3と結合するだけでなく、ヌクレオチドを構成する塩基部分を介してS3と結合していてもよい。本発明においては、オリゴヌクレオチドは、S3とオリゴヌクレオチドを結合する構造を有する基として理解されてよく、例えば、オリゴヌクレオチドが、-OP(Z)(Z’)O-(式中、ZおよびZ’は、それぞれ独立して、酸素原子またはイオウ原子である。)を介してS3と結合している場合、Xとしてのオリゴヌクレオチドとしては、-O-P(Z)(Z’)O-オリゴヌクレオチドとして理解されてもよい。
 式1において、S1とS2は、糖鎖リガンドであるL1とL2と、ベンゼン環とを連結する構造であれば特に限定されるものではなく、核酸複合体において用いられる公知の構造を採用してもよい。S1とS2は、同一であってもよく、異なっていてもよい。
 糖鎖リガンドであるL1とL2は、S1およびS2とグリコシド結合により連結していることが好ましく、S1およびS2は、ベンゼン環と、例えば、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-結合によりそれぞれ連結していてもよい。
 S3は、オリゴヌクレオチドとの結合部を有するリンカーであり、オリゴヌクレオチドであるXと、ベンゼン環とを連結する構造であれば特に限定されるものではなく、核酸複合体において用いられる公知の構造を採用してよい。
 オリゴヌクレオチドであるXは、S3とホスホジエステル結合により連結していることが好ましく、S3は、ベンゼン環と、例えば、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-結合により連結していてもよい。
 S1、S2およびS3のリンカーを構成する部分構造としては、例えば、国際公開第2009/073809号、国際公開第2013/075035号、国際公開第2015/105083号、国際公開第2014/179620号、国際公開第2015/006740号に開示される構造を採用してもよい。
 本発明において、核酸複合体は、下記式2で表される構造を有する核酸複合体であることが好適である。
式2:
Figure JPOXMLDOC01-appb-C000058
 式2中、
 X、X~X、L1、L2およびS3は、それぞれ前記と同義であり、
 P1、P2、P3、P4、P5およびP6、ならびにT1およびT2は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q1、Q2、Q3およびQ4は、それぞれ独立して、存在しないか、または、置換もしくは非置換の炭素数2~12のアルキレン、-(CHCHO)-CHCH-であり、nは0~99の整数であり、
 B1およびB2は、それぞれ独立して、結合手であるか、または、下記式2-1で表されるいずれかの構造であり、各構造における末端の黒丸点は、それぞれ、P2またはP3あるいはP5またはP6との結合点であり、m1、m2、m3およびm4は、それぞれ独立して、0~10の整数であり、
式2-1:
Figure JPOXMLDOC01-appb-C000059
 p1およびp2は、それぞれ独立して、1、2または3の整数であり、
 q1、q2、q3およびq4は、それぞれ独立して、0~10の整数であり、
 ただし、p1およびp2がそれぞれ2または3の整数であるとき、それぞれのP3およびP6、Q2およびQ4、T1およびT2ならびにL1およびL2は、同一または異なっていてもよい。
 P1およびP4は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-O-、-O-CO、-NH-CO-または-CO-NH-であることが好ましく、-O-、-NH-CO-または-CO-NH-であることが好ましく、-NH-CO-であることがさらに好ましい。
 P1またはP4が、例えば、-NH-CO-である場合、-NH-CO-ベンゼン環という部分構造を有する。
 Q1、Q2、Q3およびQ4は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)-CHCH-であり、nは1~99の整数であるが、置換もしくは無置換の炭素数1~12のアルキレンであることが好ましく、無置換の炭素数1~12のアルキレンであることがより好ましく、無置換の炭素数1~6のアルキレンであることがさらに好ましく、無置換の炭素数1~4のアルキレンであることがよりさらに好ましい。
 P2およびP5は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、存在しないか、-CO-O-または-CO-NH-であることが好ましく、存在しないか、-CO-NH-であることがより好ましい。P2およびP5が、例えば、-CO-NH-である場合、B1-CO-NH-Q1およびB2-CO-NH-Q3という部分構造を有する。
 -(P2-Q1)q1-および-(P5-Q3)q3-がそれぞれ独立して、存在しないか、または下記式3-1~式3-3で表されるいずれかの構造であることが好適である。
式3-1:
Figure JPOXMLDOC01-appb-C000060
式3-2:
Figure JPOXMLDOC01-appb-C000061
式3-3:
Figure JPOXMLDOC01-appb-C000062
式3-1~3-3中、
 m5およびm6は、それぞれ独立して、0~10の整数であり、式3-1~式3-3の構造における末端の黒丸点は、それぞれ、B1またはB2あるいはP1またはP4との結合点である。
 B1およびB2は、それぞれ独立して、結合手であるか、または、下記式で表されるいずれかの構造であり、各構造における末端の黒丸点は、それぞれ、P2またはP3あるいはP5またはP6との結合点であり、m1、m2、m3およびm4は、それぞれ独立して、0~10の整数である。
Figure JPOXMLDOC01-appb-C000063
 B1およびB2は、グルタミン酸、アスパラギン酸、リジン、イミノ二酢酸等の非天然アミノ酸を含むアミノ酸、または1,3-プロパンジオール等のアミノアルコールに由来する基であることが好ましく、B1およびB2がグルタミン酸およびアスパラギン酸に由来する基である場合、グルタミン酸およびアスパラギン酸のアミノ基がそれぞれ結合して、P2およびP5として、-NH-CO-結合であることが好ましく、B1およびB2がリジンに由来する基である場合、リジンのカルボキシル基がそれぞれ結合して、P2およびP5として、-CO-NH-結合であることが好ましく、B1およびB2がイミノ二酢酸に由来する基である場合、イミノ二酢酸のアミノ基がそれぞれ結合して、P2およびP5として、-CO-結合となることが好ましい。
 X~Xは、それぞれ独立して、CHであることが好ましく、X~Xが同時にCHであることがより好ましい。
 本発明において、核酸複合体は、下記式4-1~4-9で表される構造を有する核酸複合体であることが好適である。
式4-1:
Figure JPOXMLDOC01-appb-C000064
式4-2:
Figure JPOXMLDOC01-appb-C000065
式4-3:
Figure JPOXMLDOC01-appb-C000066
式4-4:
Figure JPOXMLDOC01-appb-C000067
式4-5:
Figure JPOXMLDOC01-appb-C000068
式4-6:
Figure JPOXMLDOC01-appb-C000069
式4-7:
Figure JPOXMLDOC01-appb-C000070
式4-8:
Figure JPOXMLDOC01-appb-C000071
式4-9:
Figure JPOXMLDOC01-appb-C000072
 式4-1~4-9中、
 X、L1、L2、S3、P3、P6、T1、T2、Q2、Q4、q2およびq4はそれぞれ前記と同義である。
 P3およびP6は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-OCO-または-NH-CO-であることが好ましく、-NH-CO-であることがより好ましい。P3およびP6が、例えば、-NH-CO-である場合、それぞれ、B1-NH-CO-Q2およびB2-NH-CO-Q4という部分構造を有する。
 T1およびT2は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-O-または-S-であることが好ましく、-O-であることがより好ましい。
 本発明において、核酸複合体は、下記式5で表される構造を有する核酸複合体であることが好適である。
 式5では、式2におけるP1とP4、P2とP5、P3とP6、Q1とQ3、Q2とQ4、B1とB2、T1とT2、L1とL2、p1とp2、q1とq3ならびにq2とq4がそれぞれ同一である。
式5:
Figure JPOXMLDOC01-appb-C000073
 式5中、
 X、S3、P1、P2、P3、Q1、Q2、B1、T1、L1、p1、q1およびq2はそれぞれ前記と同義である。
 また、式5におけるX、S3、P1、P2、P3、Q1、Q2、B1、T1、L1、p1、q1およびq2は、各々、上述した好適な基であって良いが、P1が-CO-NH-、-NH-CO-または-O-であることが好ましい。
 式5における-(P2-Q1)q1-は、存在しないか、または上記式3-1~式3-3で表されるいずれかの構造であることが好適である。
 本発明において、核酸複合体は、下記式6-1~6-9で表される構造を有する核酸複合体であることが好適である。
式6-1:
Figure JPOXMLDOC01-appb-C000074
式6-2:
Figure JPOXMLDOC01-appb-C000075
式6-3:
Figure JPOXMLDOC01-appb-C000076
式6-4:
Figure JPOXMLDOC01-appb-C000077
式6-5:
Figure JPOXMLDOC01-appb-C000078
式6-6:
Figure JPOXMLDOC01-appb-C000079
式6-7:
Figure JPOXMLDOC01-appb-C000080
式6-8:
Figure JPOXMLDOC01-appb-C000081
式6-9:
Figure JPOXMLDOC01-appb-C000082
 式6-1~式6-9中、
 X、S3、P3、Q2、T1、およびL1は、それぞれ前記と同義である。
 本発明において、核酸複合体は、下記式7-1~式7-9のいずれかで表される構造を有する核酸複合体であることが好適である。
式7-1:
Figure JPOXMLDOC01-appb-C000083
式7-2:
Figure JPOXMLDOC01-appb-C000084
式7-3:
Figure JPOXMLDOC01-appb-C000085
式7-4:
Figure JPOXMLDOC01-appb-C000086
式7-5:
Figure JPOXMLDOC01-appb-C000087
式7-6:
Figure JPOXMLDOC01-appb-C000088
式7-7:
Figure JPOXMLDOC01-appb-C000089
式7-8:
Figure JPOXMLDOC01-appb-C000090
式7-9:
Figure JPOXMLDOC01-appb-C000091
式7-10:
Figure JPOXMLDOC01-appb-C000092
式7-11:
Figure JPOXMLDOC01-appb-C000093
式7-12:
Figure JPOXMLDOC01-appb-C000094
式7-13:
Figure JPOXMLDOC01-appb-C000095
式7-14:
Figure JPOXMLDOC01-appb-C000096
式7-15:
Figure JPOXMLDOC01-appb-C000097
式7-16:
Figure JPOXMLDOC01-appb-C000098
式7-17:
Figure JPOXMLDOC01-appb-C000099
式7-18:
Figure JPOXMLDOC01-appb-C000100
式7-19:
Figure JPOXMLDOC01-appb-C000101
式7-20:
Figure JPOXMLDOC01-appb-C000102
式7-21:
Figure JPOXMLDOC01-appb-C000103
 式7-1~式7-21中、
 X、L1、L2、S3、n2またはn3は、それぞれ前記と同義である。L1とL2は同一であってもよく、異なっていてもよく、同一であることが好適である。
 式7-1~式7-9において、各アルキレン基部分を鎖長の異なるアルキレン鎖を導入することにより、また、アミド結合等を他の結合に置換することにより、式7-1~式7-9で表される構造を有する核酸複合体以外の核酸誘導体を製造することもできる。
 上述したように、本発明の核酸複合体に用いられるリンカーは、下記構造を有することが好適である。
Figure JPOXMLDOC01-appb-C000104
(式中、
 n1は、1~100の整数である。)
 n1は5~95の整数であることが好ましく、10~80の整数であることがより好ましく、15~60の整数であることがさらに好ましく、20~40の整数であることがよりさらに好ましい。
 n2およびn3はそれぞれ同一または異なって、5~95の整数であることが好ましく、10~80の整数であることがより好ましく、15~60の整数であることがさらに好ましく、20~40の整数であることがよりさらに好ましい。
 本発明において、核酸複合体は、下記式11で表される構造を有する核酸複合体であることが好適である。
式11:
Figure JPOXMLDOC01-appb-C000105
 式11中、
 L1、L2、S1およびS2は、それぞれ前記と同義であり、
 P7およびP8は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q5、Q6およびQ7は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n8-CHCH-であり、n8は0~99の整数であり、
 B3は、、下記式11-1で表されるいずれかの構造であり、破線において、それぞれ、Q5およびQ6との結合手を意味し、
式11-1:
Figure JPOXMLDOC01-appb-C000106
 q5およびq6は、それぞれ独立して、0~10の整数である。
 P7は、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、-O-、-NH-CO-または-CONH-であることが好ましく、-O-または-NH-CO-であることがより好ましい。P7が、例えば、-O-である場合、ベンゼン環-O-という部分構造を有する。
 P8は、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であるが、存在する場合、-CO-O-または-CO-NH-であることが好ましく、-CO-NH-であることがより好ましい。P8が、例えば、-CO-NH-である場合、Q6-CO-NH-という部分構造を有する。
 Q5、Q6およびQ7は、それぞれ独立して、存在しないか、または、置換もしくは無置換の炭素数1~12のアルキレンまたは-(CHCHO)n8-CHCH-であり、n8は0~99の整数であるが、置換もしくは無置換の炭素数1~12のアルキレンであることが好ましく、無置換の炭素数1~12のアルキレンであることがより好ましく、無置換の炭素数1~6のアルキレンであることがさらに好ましく、無置換の炭素数1~4のアルキレンであることがよりさらに好ましい。
 -(P7-Q5)q5-は、-O-(CHm15-NH-および-NH-CO-(CHm16-NH-であり、m15およびm16は、それぞれ独立して、1~10の整数であることが好適である。
 本発明において、核酸複合体は、下記式12-1~式12-12のいずれかで表される構造を有する核酸複合体であることが好適である。
式12-1:
Figure JPOXMLDOC01-appb-C000107
式12-2:
Figure JPOXMLDOC01-appb-C000108
式12-3:
Figure JPOXMLDOC01-appb-C000109
式12-4:
Figure JPOXMLDOC01-appb-C000110
式12-5:
Figure JPOXMLDOC01-appb-C000111
式12-6:
Figure JPOXMLDOC01-appb-C000112
式12-7:
Figure JPOXMLDOC01-appb-C000113
式12-8:
Figure JPOXMLDOC01-appb-C000114
式12-9:
Figure JPOXMLDOC01-appb-C000115
式12-10:
Figure JPOXMLDOC01-appb-C000116
式12-11:
Figure JPOXMLDOC01-appb-C000117
式12-12:
Figure JPOXMLDOC01-appb-C000118
 式12-1~12-12中、
 X、L1、L2、S1およびS2は、それぞれ前記と同義であり、n1’~n12’はそれぞれ独立して、1~10の整数である。
 本発明の別の好ましい態様の一つとして、以下の構造を有する核酸複合体が挙げられる。
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
 式~式中、
 X、L1、S3またはn2はそれぞれ前記と同義である。
 本発明の核酸複合体は、式1で表される核酸複合体において、式2および式11の構造を併せて持つ核酸複合体であることが好ましく、該核酸複合体において、式11の構造であって、式2が、式4-1~式4-9であってもよく、式6-1~式6-9であってもよく、式7-1~式7-9であってもよく、式2が、式4-1~式4-9、式6-1~式6-9、あるいは式7-1~式7-9である場合に、式11が、式12-1~式12-12であってもよい。本発明の核酸複合体は、式1で表される核酸複合体において、式4-1~式4-9のいずれか1つの構造および式12-1~式12-12のいずれか1つの構造を併せて持つ核酸複合体、式6-1~式6-9のいずれか1つの構造および式12-1~式12-12のいずれか1つの構造を併せて持つ核酸複合体、式7-1~式7-9のいずれか1つの構造および式12-1~式12-12のいずれか1つの構造を併せて持つ核酸複合体であることがより好適である。
 なお、本明細書において、糖鎖リガンドを「Ligand」や「L1」等で表す場合には、糖鎖リガンドに直接結合しているリンカーの一部(例えば、-O-(CH-)を含んで表す場合もある。
 本発明の核酸複合体は、いずれかの窒素原子上の孤立電子対に、水素イオンが配位した場合に、製薬上許容し得る陰イオンと塩を形成していてもよい。
 本発明において、製薬上許容し得る陰イオンとしては、例えば塩化物イオン、臭化物イオン、硝酸イオン、硫酸イオン、リン酸イオン等の無機イオン、酢酸イオン、シュウ酸イオン、マレイン酸イオン、フマル酸イオン、クエン酸イオン、安息香酸イオン、メタンスルホン酸イオン等の有機酸イオン等が挙げられる。
 本発明の核酸複合体の製造法について説明する。なお、以下に示す製造法において、定義した基が該製造法の条件下で変化するかまたは該製造法を実施するのに不適切な場合、有機合成化学で常用される保護基の導入および除去方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法]等を用いることにより、目的化合物を製造することができる。また、必要に応じて置換基導入等の反応工程の順序を変えることもできる。
 式1で表される核酸重合体は、固相合成によっても合成することができる。
 式1で表される核酸重合体は、核酸複合体として公知のリンカー構造の合成方法を参考にして合成することができる。
 式1で表される核酸複合体における、S1をリンカーとしたL1-ベンゼン環ユニットやS2をリンカーとしたL2-ベンゼン環ユニットの合成は、例えば、式2で表される核酸複合体を例として説明する。
 式2で表される核酸複合体におけるL1-ベンゼン環ユニットやL2-ベンゼン環ユニットは、P1、P2、P3、P4、P5、およびP6ならびにT1およびT2により連結している。
 P1、P2、P3、P4、P5、およびP6ならびにT1およびT2の-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-または-CO-NH-結合は、例えば、第4版実験化学講座19「有機化合物の合成I」丸善(1992年)、第4版実験化学講座20「有機化合物の合成II」、丸善(1992年))等に記載の結合反応の方法を参考にして、式2で表される構造を形成するのに適切な原料を選択することにより適宜合成することができる。
 また、ベンゼン環から順次、Q1を部分構造として有する化合物、B1を部分構造として有する化合物を結合させることで、L1-ベンゼン環ユニットの部分構造を製造することができる。
 L1とQ2を部分構造として有する化合物を別途合成し、L1とQ2を部分構造として有する化合物をベンゼン環、Q1およびB1を部分構造として有するL1-ベンゼン環ユニットの部分構造を有する化合物と結合させることにより、L1-ベンゼン環ユニット構造を製造することができる。
 L2-ベンゼン環ユニットについても同様に、ベンゼン環から順次、Q3を部分構造として有する化合物、B2を部分構造として有する化合物を結合させることで、L2-ベンゼン環ユニットの部分構造を製造することができる。
 L2とQ4を部分構造として有する化合物を別途合成し、L2とQ4を部分構造として有する化合物をベンゼン環、Q3およびB2を部分構造として有するL2-ベンゼン環ユニットの部分構造を有する化合物と結合させることにより、L2-ベンゼン環ユニット構造を製造することができる。
 Q1を部分構造として有する化合物、Q3を部分構造として有する化合物としては、炭素数1~10のアルキレンまたは-(CHCHO)-CHCH-の両末端に、水酸基、カルボキシル基、アミノ基、チオール基を有する化合物が挙げられる。
 B1を部分構造として有する化合物、B2を部分構造として有する化合物としては、下記式2-1で表されるいずれかの構造を有し、各構造における末端の黒丸点において、それぞれ、水酸基、カルボキシル基、アミノ基、またはチオール基を有する化合物が挙げられる。
式2-1:
Figure JPOXMLDOC01-appb-C000121
 B1を部分構造として有する化合物、B2を部分構造として有する化合物の具体例としては、グリコール、グルタミン酸、アスパラギン酸、リジン、Tris、イミノ二酢酸、2-アミノ-1,3-プロパンジオール等が挙げられ、グルタミン酸、アスパラギン酸、リジン、イミノ二酢酸が好ましい。
 L1、Q2およびB1を部分構造として有する化合物を合成してから、Q1とベンゼン環を有する化合物と結合することにより、L1-ベンゼン環ユニット構造を製造してもよい。
 L2、Q4およびB2を部分構造として有する化合物を合成してから、Q3とベンゼン環を有する化合物と結合することにより、L2-ベンゼン環ユニット構造を製造してもよい。
 本発明においては、[L1-T1-(Q2-P3)q2-]p1-B1-(P2-Q1)q1-P1-である部分構造と、[L2-T2-(Q3-P6)q4-]p2-B2-(P5-Q3)q3-P2-である部分構造とは同一または異なっていても良いが、同一であることが好ましい。
 糖鎖リガンドのL1-T1-Q2に相当するユニットとして、例えば、L3-T1-Q2-COOH、L3-T1-(Q2-P3)q2-1-Q2-NH等が挙げられる。具体的には、L3-O―炭素数1~12のアルキレン―COOHや、L3-炭素数1~12のアルキレン-CO-NH-炭素数2~12のアルキレン-NH等が挙げられる。
 L3は、脱保護することにより、L1となる糖鎖リガンド誘導体であれば特に限定されない。糖鎖リガンドの置換基としては、糖質化学の分野で汎用される置換基であれば特に限定されないが、Ac基が好ましい。
 S1をリンカーとしたL1-ベンゼン環ユニットやS2をリンカーとしたL2-ベンゼン環ユニットの合成は、具体的には実施例に記載の方法を参考にして、アルキレン鎖の炭素数を適宜増減し、また、末端アミノ基や末端カルボキシル基を、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-または-CONH-結合を形成し得る基に変換した化合物を用いることにより、合成することができる。また、L1の糖鎖リガンドについても、実施例においては、マンノース誘導体、マンノースまたはN-アセチルガラクトサミンを例示しているが、他の糖鎖リガンドに変更して実施することができる。
 式1で表される核酸複合体における、S3をリンカーとしたX-ベンゼン環ユニットの合成は、例えば、式11で表される核酸複合体を例として説明する。
 式11で表される核酸複合体におけるX-ベンゼン環ユニットは、オリゴヌクレオチドの結合以外に、P7およびP8により表される結合を有する。
 P7およびP8の-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-または-CO-NH-結合は、例えば、第4版実験化学講座19「有機化合物の合成I」丸善(1992年)、第4版実験化学講座20「有機化合物の合成II」、丸善(1992年))に記載の結合反応の方法を参考にして、式11で表される構造を形成するのに適切な原料を選択することにより適宜合成することができる。
 また、ベンゼン環から順次、Q5を部分構造として有する化合物、B3を部分構造として有する化合物を結合させることで、X-ベンゼン環ユニットの部分構造を製造することができる。
 XとQ7を部分構造として有する化合物や、XとQ6を部分構造として有する化合物を別途合成し、XとQ7を部分構造として有する化合物やXとQ6を部分構造として有する化合物をベンゼン環およびQ5を部分構造として有するX-ベンゼン環ユニットの部分構造を有する化合物と結合させて、B3部分を構築することにより、X-ベンゼン環ユニット構造を製造することができる。
 具体的には、ベンゼン環およびQ5を部分構造として有するX-ベンゼン環ユニットの部分構造を有する化合物の末端にアジド基を有する場合を例にとると、実施例に開示するような末端結合性官能基化したオリゴヌクレオチドを反応させることにより、環化付加させて、トリアゾール環を形成させて、B3部分を構築することにより、X-ベンゼン環ユニット構造を製造することができる。
 Q5を部分構造として有する化合物、Q6を部分構造として有する化合物、Q7を部分構造として有する化合物としては、炭素数1~10のアルキレンまたは-(CHCHO)n8-CHCH-の両末端に、水酸基、カルボキシル基、アミノ基、チオール基を有する化合物が挙げられる。
 L1-ベンゼン環ユニット構造、L2-ベンゼン環ユニット構造と、X-ベンゼン環ユニット構造とは、それぞれ順次製造していくことができるが、L1-ベンゼン環ユニット構造およびL2-ベンゼン環ユニット構造を合成してから、X-ベンゼン環ユニット構造を結合させることが好ましい。特に、オリゴヌクレオチド部分を有するXについては、糖鎖リガンド複合体合成の最終工程近くで化合物内に導入することが好ましい。
製造方法1
 式1-1においてP1およびP4が-NH-CO-、-O-CO-または-S-CO-である、L1-ベンゼン環ユニット構造およびL2-ベンゼン環ユニット構造は以下の方法で製造することができる。
Figure JPOXMLDOC01-appb-C000122
(式中、Q1、Q2、Q3、Q4、Q5、P2、P3、P5、P6、P7、T1、T2、L1、L2、q1、q2、q3およびq4はそれぞれ前記と同義であり、q2’はq2より1小さい整数を表し、q4’はq4より1小さい整数を表し、P1’およびP4’は、それぞれ独立して、-NH-CO-、-O-CO-または-S-CO-を表し、ZはH、OH、NH、SH、塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ、p-トルエンスルホニルオキシまたはカルボン酸を表し、B1’およびB2’は下記式の構造体のいずれか1つを表し、PG1、PG2、PG3、PG4、PG5、PG6およびPG7はそれぞれ適切な保護基を表す。)
式:
Figure JPOXMLDOC01-appb-C000123
m1、m2、m3またはm4はそれぞれ独立して、0~10の整数を表す。
工程1
 化合物(I-C)は、化合物(I-A)と化合物(I-B)を、テトロヒドロフラン等の溶媒中、トリフェニルホスフィンポリマー担持体を加え、氷冷下、ジイソプロピルアゾジカルボキシレートトルエン溶液を反応させる事により製造する事ができる。
 溶媒としては、例えばメタノール、エタノール、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジン、水等があげられ、これらは単独でまたは混合して用いられる。
 化合物(I-A)は市販品として得る事ができる。
工程2
 化合物(I-D)は化合物(I-C)を用い、メタノール等の溶媒中、氷冷下、塩基の存在下、反応させる事により製造する事ができる。
 溶媒としては、製造方法1工程1で例示したものが挙げられる。
 塩基としては、例えば炭酸セシウム、炭酸カリウム、水酸化カリウム、水酸化ナトリウム、ナトリウムメトキシド、カリウム tert-ブトキシド、トリエチルアミン、ジイソプロピルエチルアミン、N-メチルモルホリン、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、N,N-ジメチル-4-アミノピリジン(DMAP)等が挙げられる。
工程3
 化合物(I-F)は化合物(I-D)および化合物(I-E)を、無溶媒でまたは溶媒中、1~30当量の塩基、縮合剤および必要に応じて0.01~30当量の添加剤の存在下、室温と200 ℃の間の温度で、5分間~100時間反応させることにより製造することができる。
 溶媒としては、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、トルエン、酢酸エチル、アセトニトリル、ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、ジオキサン、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチルピロリドン、ピリジンがあげられ、これらは単独でまたは混合して用いられる。
 塩基としては、製造方法1工程2で例示したものが挙げられる。
  縮合剤としては、例えば1,3-ジシクロヘキサンカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩(EDC)、カルボニルジイミダゾール、ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルホロホスファート、(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム ヘキサフルオロホスファート、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスファート(HATU)、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロホスファート(HBTU)、ヨウ化 2-クロロ-1-メチルピリジニウム等が挙げられる。
 添加剤としては、例えば1-ヒドロキシベンゾトリアゾール(HOBt)、4-ジメチルアミノピリジン(DMAP)等が挙げられる。
工程4
 化合物(I-H)は化合物(I-F)および化合物(I-G)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
工程5
 化合物(I-J)は化合物(I-H)および化合物(I-I)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
 また、DP工程と工程5を繰り返し行うことで、望みのq1の値に調整された化合物(I-J)を製造することができる。
工程6
 化合物(I-L)は化合物(I-J)および化合物(I-K)を用い、製造方法1の工程3製造方法1の工程2と同様の条件で製造する事ができる。
工程7
 化合物(I-N)は化合物(I-L)および化合物(I-M)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
工程8~10
 化合物(I’)は化合物(I-O)、化合物(I-P)および化合物 (I-Q)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
 また、DP工程と工程8を繰り返し行うことで、望みのq3の値に調整された化合物(I’)を製造することができる。
工程DP
 有機合成化学で常用される方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法等]を適切に用いることで製造することができる。
 化合物(I-B)、化合物(I-E)、化合物(I-G)、化合物(I-I)、化合物(I-K)、化合物(I-M)、化合物(I-O)、化合物(I-P)および化合物(I-Q)は市販品として、または「実験化学講座第4版 有機合成、p. 258、丸善(1992年)」、「March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition」に記載の方法を組み合わせる事、もしくはそれに準じた方法で得る事ができる。
製造方法2
 式2においてP1およびP4が-O-であり、X2~X4がCHであるL1-ベンゼン環ユニット構造およびL2-ベンゼン環ユニット構造は以下の方法で製造することができる。
Figure JPOXMLDOC01-appb-C000124
(式中、Q1、Q2、Q3、Q4、P2、P3、P5、P6、T1、T2、L1、L2、q1、q2、q3、q4、q2’、q4’、Z、B1’またはB2’はそれぞれ前記と同義でありPG8、PG9、PG10、PG11、PG12、PG13およびPG14はそれぞれ適切な保護基を表す)
工程13
 化合物(II-C)は化合物(II-A)と化合物(II-B)をN,N’-ジメチルホルムアミドな等の溶媒に溶解し、炭酸水素カリウム等の塩基を加えて、室温~200℃にて5分間~100時間反応させる事により製造する事ができる。
 溶媒としては、製造工程1の工程2に例示したものが挙げられる。
 塩基としては、製造方法1の工程3で例示したものが挙げられる。
工程14
 化合物(II-E)は化合物化合物(II-C)と化合物(II-D)をN,N’-ジメチルホルムアミド等の溶媒に溶解し、炭酸水素カリウム等の塩基を加えて、室温~200℃で5分間~100時間反応させる事により製造する事ができる。
 溶媒としては、製造工程1の工程2で例示したものが挙げられる。
 塩基としては、製造方法1の工程3で例示したものが挙げられる。
 化合物(II-A)は市販品として得る事ができる。
工程15
 化合物(II-G)は化合物(II-E)および化合物(II-F)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
工程16
 化合物(II-I)は化合物(II-G)および化合物(II-H)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
 また、DP工程と工程16を繰り返し行うことで、望みのq1の値に調整された化合物(II-I)を製造することができる。
工程17
 化合物(II-K)は化合物(II-I)および化合物(II-J)を用い、製造方法1の工程2と同様の条件で製造する事ができる。
工程18
 化合物(II-M)は化合物(II-K)および化合物(II-L)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
工程19-21
 化合物(II’)は化合物(II-M), 化合物(II-N), 化合物(II-O)および化合物(II-P)を用い、製造方法1の工程3と同様の条件で製造する事ができる。
 また、DP工程と工程19を繰り返し行うことで、望みのq3に調整された化合物(II’)を製造することができる。
工程DP
 有機合成化学で常用される方法[例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス第3版(Protective Groups in Organic Synthesis, third edition)、グリーン(T.W.Greene)著、John Wiley&Sons Inc.(1999年)等に記載の方法等]を適切に用いることで製造することができる。
 化合物(II-B),化合物(II-D),化合物(II-F),化合物(II-H),化合物(II-J),化合物(II-L),化合物(II-N),化合物(II-O)および化合物(II-P)は市販品として、または「実験化学講座第4版 有機合成、p. 258、丸善(1992年)」、「March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Edition」に記載の方法を組み合わせる事、もしくはそれに準じた方法で得る事ができる。
 本発明においては、下記式6で表される化合物が中間体として挙げられる。
式6:
Figure JPOXMLDOC01-appb-C000125
(式6中、
 YおよびY10は、P1およびP4として示される基であってもよいが、好適には、酸素原子または-NH-であり、
 R17およびR18は、それぞれ独立して、水素原子、マレイミド基、置換もしくは非置換の炭素数1~20のアルキル基、t-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基(Z基)、9-フルオレニルメチルオキシカルボニル基(Fmoc基)、-[Q8-P9]q7-R19、または-[Q9-P10]q8-B4-[(P11-Q10)q7p3-T3-L3であり、
 P9~P11およびT3は、それぞれ独立して、存在しないか、または、-CO-、-NH-、-O-、-S-、-O-CO-、-S-CO-、-NH-CO-、-CO-O-、-CO-S-もしくは-CO-NH-であり、
 Q8~Q10は、存在しないか、または、置換もしくは非置換の炭素数2~12のアルキレン、-CHCH-(OCHCHO)n-または-CHCH-(CHCHO)n-CHCH-であり、nは0~99の整数であり、
 R19は、水素原子、マレイミド基、置換もしくは非置換の炭素数1~20のアルキル基、t-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基(Z基)、9-フルオレニルメチルオキシカルボニル基(Fmoc基)であり、
 B4は、それぞれ独立して、結合手であるか、または、下記式で表される群からなる炭素骨格構造であり、各炭素骨格構造における末端の黒丸点は、それぞれ、カルボニル基またはP9との結合点であり、m1およびm2は、それぞれ独立して、0~10の整数であり、
Figure JPOXMLDOC01-appb-C000126
 p3は、1、2または3の整数であり、
 q7は、0~10の整数であり、
 L3は、保護されていてもよい糖鎖リガンドである。
 本発明においては、糖鎖リガンドを有する式6の化合物を、式7の化合物と反応させることにより、本発明の核酸複合体を製造することができる。
式7:
Figure JPOXMLDOC01-appb-C000127
 本明細書における核酸複合体は、例えば酸付加塩、金属塩、アンモニウム塩、有機アミン付加塩、アミノ酸付加塩等の塩として得ることも可能である。
 酸付加塩としては、例えば塩酸塩、硫酸塩、リン酸塩等の無機酸塩、酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、メタンスルホン酸塩等の有機酸塩が挙げられ、金属塩としては、例えばナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩、亜鉛塩等が挙げられ、アンモニウム塩としては、例えばアンモニウム、テトラメチルアンモニウム等の塩が挙げられ、有機アミン付加塩としては、例えば、モルホリン、ピペリジン等の付加塩が挙げられ、アミノ酸付加塩としては、例えば、リジン、グリシン、フェニルアラニン等の付加塩が挙げられる。
 本明細書の核酸複合体の塩を調製したい場合には、該複合体が所望の塩の形で得られるときはそのまま精製すればよく、また、遊離の形で得られるときは、該複合体を適当な溶媒に溶解または懸濁し、対応する酸または塩基を加え、単離・精製すればよい。また、該複合体塩を形成する対イオンを異なる対イオンに変換する際には、該複合体塩を適当な溶媒に溶解または懸濁した後、酸、塩基および/または塩(塩化ナトリウム、塩化アンモニウム等の無機塩等)を数当量~大過剰量加えて単離、精製すればよい。
 本明細書の核酸複合体の中には、幾何異性体、光学異性体等の立体異性体、互変異性体等が存在し得るものもあるが、全ての可能な異性体およびそれらの混合物も本発明に包含される。
 また、本明細書の核酸複合体は、水または各種溶媒との付加物の形で存在することもああり、これらの付加物も本発明に包含される。
 さらに、本発明の核酸複合体は、分子中の一部あるいは全部の原子が質量数の異なる原子(同位体)(例えば、重水素原子等)で置換されたものも包含される。
 本発明の核酸複合体の具体例を示す。ただし、本発明の核酸複合体は、これらに限定されるものではない。図中の帯状構造はオリゴヌクレオチドを表す。
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
 本発明の医薬組成物は、核酸複合体を含む。本発明の核酸複合体は、糖鎖リガンドが非還元末端にO結合マンノースを有することにより、標的細胞に認識され、細胞内に導入される。
 本発明の核酸複合体は、哺乳動物に投与して、生体内において、標的遺伝子の発現を低下または停止させることで抑制し、標的遺伝子に関連する疾患の治療に用いることができる。
 本発明の核酸複合体を治療剤または予防剤として使用する場合、投与経路としては、治療に際し最も効果的な投与経路を使用するのが望ましく、特に限定されるものではないが、例えば、静脈内投与、皮下投与及び筋肉内投与等が挙げられ、好ましくは静脈内投与である。
 投与量は、投与対象の病状や年齢、投与経路等によって異なるが、例えば二本鎖のオリゴヌクレオチドに換算した1日投与量が0.1μg~1000 mgとなるように投与すればよく、1日投与量が1~100 mgとなるように投与することがより好ましい
 静脈内投与または筋肉内投与に適当な製剤としては、例えば注射剤があげられ、調製した液剤をそのまま例えば注射剤等の形態として用いることも可能であるが、該液剤から例えば濾過、遠心分離等によって溶媒を除去して使用することも、該液剤を凍結乾燥して使用する、および/または例えばマンニトール、ラクトース、トレハロース、マルトースもしくはグリシン等の賦形剤を加えた液剤を凍結乾燥して使用することもできる。
 注射剤の場合、液剤または溶媒を除去または凍結乾燥した組成物に、例えば水、酸、アルカリ、種々の緩衝液、生理食塩水またはアミノ酸輸液等を混合して注射剤を調製することが好ましい。また、例えばクエン酸、アスコルビン酸、システインもしくはEDTA等の抗酸化剤、またはグリセリン、ブドウ糖もしくは塩化ナトリウム等の等張化剤等を添加して注射剤を調製することも可能である。また、例えばグリセリン等の凍結保存剤を加えて凍結保存することもできる。
 次に、実施例および試験例により、本発明を具体的に説明する。ただし、本発明はこれら実施例および試験例に限定されるものではない。なお、実施例に示されたプロトン核磁気共鳴スペクトル(1H NMR)は、270MHz、300MHzまたは400MHzで測定されたものであり、化合物および測定条件によっては交換性プロトンが明瞭には観測されないことがある。また、シグナルの多重度の表記としては通常用いられるものを用いているが、brとは見かけ上幅広いシグナルであることを表す。
実施例1 リンカーユニットの合成1
化合物9合成
Figure JPOXMLDOC01-appb-C000134
工程1
 5-ヒドロキシイソフタル酸ジメチル(化合物1, 和光純薬工業社製, 5.0443 g, 24 mmol)をテトラヒドロフラン(和光純薬工業社製25 mL)に溶解し、2-(tert-ブトキシカルボニルアミノ)-1-エタノール((東京化成工業社製, 4.0343 g, 25.03 mmol)、およびトリフェニルホスフィン ポリマー担持体(アルドリッチ社製, 6.61 g, 25.2 mmol)を加えた後、氷冷下、40%ジイソプロピルアゾジカルボキシレート(DIAD)トルエン溶液 (東京化成工業社製, 13.26 mL, 25.2 mmol)を加え、室温にて一晩攪拌した。反応液をろ過し、減圧下、ろ液を留去した後、残渣をアミノシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル=95/5~80/20)で精製することにより、化合物2(5.3071 g, 収率63%)を得た。
ESI-MS m/z: 254 (M + H)+, 脱Boc体として検出
工程2
 工程1で合成した化合物2(5.3071 g, 15.02 mmol)をメタノール(25 mL)に溶解し、氷冷下、2mol/L水酸化ナトリウム水溶液(和光純薬工業社製, 13 mL)を加え、室温にて4時間攪拌した。反応液を氷冷し、10%クエン酸水溶液を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去することにより、化合物3を定量的に得た。
ESI-MS m/z: 324 (M - H)-
工程3
 工程2で合成した化合物3(0.9372 g, 2.8809 mmol)、βアラニンメチルエステル塩酸塩(東京化成工業株式会社製, 0.8082 g, 5.7902 mmol)をN, N’-ジメチルホルムアミド(10 mL)に溶解し、ジイソプロピルエチルアミン(2.52 mL, 14.40 mmol)、および2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩 (2.1908 g,  5.76 mmol)を加えて、室温にて終夜撹拌した。反応液を氷冷し、10%クエン酸水溶液を加え、クロロホルムで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物4を定量的に得た。
ESI-MS m/z: 496 (M + H)+
工程4
 工程3で合成した化合物4(0.9622 g, 1.9518 mmol)を用い、ジクロロメタン(10 mL)に溶解し、氷冷下、トリフルオロ酢酸(2.5mL, 32.4 mmol)を加えて、室温にて2時間攪拌した。反応液を減圧下、溶媒を留去することにより、化合物5を定量的に得た。
ESI-MS m/z: 396 (M + H)+
工程5
 工程4で合成した化合物5(0.1146 g, 0.290 mmol)およびN-スクシンイミジル15-アジド-4,7,10,13-テトラオキサペンタデカン酸(N3-PEG4-NHS, 東京化成工業株式会社製, 0.0750 g, 0.1931 mmol)をテトラヒドロフラン(6 mL)に溶解し、ジイソプロピルエチルアミン(0.337 mL, 1.931 mmol)を加えて、室温にて2時間攪拌した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製することにより、化合物6を定量的に得た。
ESI-MS m/z: 669 (M + H)+
工程6
 工程5で合成した化合物6(0.1291 g, 0.193 mmol)を用い、工程2と同様の方法で化合物7を定量的に得た。
ESI-MS m/z: 641 (M + H)+
1H-NMR (DMSO-D6) δ: 2.35 (2H, t, J = 7.2 Hz), 2.51-2.54 (4H, m), 3.38-3.65 (24H, m), 4.07 (2H, t, J = 5.4 Hz), 7.51 (2H, br s), 7.89 (1H, br s), 8.13 (1H, dd, J = 5.3, 2.7 Hz), 8.63 (2H, t, J = 5.4 Hz)
工程7
 工程6で合成した化合物7(0.1252 g, 0.193 mmol)およびL-グルタミン酸 ジ-tert-ブチルエステル(渡辺化学株式会社製, 0.1180 g, 0.399 mmol)を用い、工程3と同様の方法で化合物8(0.0521 g, 収率24%)を得た。
ESI-MS m/z: 1124 (M + H)+
工程8
 工程7で合成した化合物8(0.0521 g, 0.0464 mmol)を用い、ジクロロメタン(2 mL)に溶解し、氷冷下、トリフルオロ酢酸(0.2 mL, 32.4 mmol)を加えて、室温にて終夜攪拌した。反応液を減圧下、溶媒を留去することにより、化合物9を定量的に得た。
ESI-MS m/z: 899 (M + H)+
1H -NMR (DMSO-D6) δ: 1.70-1.82 (2H, m), 1.90-2.02 (2H, m), 2.23-2.30 (4H, m), 2.35 (2H, t, J = 5.3 Hz), 2.44 (4H, t, J = 7.4 Hz), 3.38-3.65 (24H, m), 4.07 (2H, t, J = 5.3 Hz), 4.17-4.26 (2H, m), 7.51 (2H, d, J = 1.3 Hz), 7.89 (1H, br s), 8.13 (1H, dd, J = 10.0, 5.0 Hz), 8.21 (2H, d, J = 7.6 Hz), 8.57 (2H, t, J = 5.8 Hz)
実施例2 リンカーユニットの合成2
化合物19の合成
Figure JPOXMLDOC01-appb-C000135
工程9
 実施例1の工程1で合成した化合物2(2.1 g, 5.940 mmol)を用い、実施例1の工程4と同様の方法で化合物10を定量的に得た。
ESI-MS m/z: 254 (M + H)+
1H-NMR (DMSO-D6) δ: 3.26 (2H, t, J = 5.1 Hz), 3.90 (6H, s), 4.30 (2H, t, J = 5.1 Hz), 7.77 (2H, dd, J = 1.5, 0.8 Hz), 8.13 (1H, dd, J = 1.4, 0.7 Hz).
工程10
 工程9で合成した化合物10 (0.427 g, 1.686 mmol)とオーガニック・アンド・バイオモレキュラー・ケミストリー (Organic & Biomolecular chemistry), 第13巻, 1778?1791頁, 2015年に記載された方法で合成した6-アジドヘキサン酸ピロリジニルエステル(0.6 g, 2.360 mmol)を用い、実施例1の工程5と同様の方法で化合物11(0.248 g, 収率38%)を得た。
ESI-MS m/z: 393 (M + H)+
1H-NMR (CDCl3) δ: 1.37-1.44 (2H, m), 1.64-1.69 (4H, m), 2.23 (2H, t, J = 7.5 Hz), 3.25 (2H, t, J = 6.8 Hz), 3.71 (2H, dd, J = 5.3, 2.7 Hz), 3.95 (6H, s), 4.13 (2H, t, J = 6.7 Hz), 7.75 (2H, dd, J = 1.5, 0.8 Hz), 8.30 (1H, dd, J = 1.4, 0.7 Hz).
工程11
 工程10で合成した化合物11(0.248 g, 0.632 mmol)を用い、実施例1の工程2と同様の方法で化合物12を定量的に得た。
ESI-MS m/z: 365 (M + H)+
1H-NMR (MeOD) δ: 1.37-1.41 (2H, m), 1.60-1.65 (4H, m), 2.25 (2H, t, J = 7.4 Hz), 3.25 (2H, t, J = 6.7 Hz), 3.63 (2H, t, J = 4.9 Hz), 4.18 (2H, t, J = 5.2 Hz), 7.79 (2H, dd, J = 1.6, 0.8 Hz), 8.27 (1H, dd, J = 1.4, 0.7 Hz).
工程12
 工程11で得られた化合物12(0.230 mg, 0.631 mmol)をテトラヒドロフラン(274.7μL)に溶解し、N-ヒドロキシスクシイミド(0.174 g, 1.515 mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩 (0.313 g, 1.515 mmol)を加え、室温、アルゴン雰囲気下にて一晩撹拌した。減圧下で溶媒留去し、その後、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物13の粗生成物を得た。
ESI-MS m/z: 559 (M + H)+
工程13
 工程12で合成した化合物13(0.200 g, 0.358 mmol)、6-アミノヘキサン酸(ナカライテスク社製、0.141 g, 1.074 mmol)およびジイソプロピルエチルアミン(0.139 mL, 1.074 mmol)を用い、リン酸緩衝液/ジメチルスルホキシド混合溶媒中 (v/v = 1/1, 50 mL)にて、室温で終夜攪拌した。反応液に10%クエン酸溶液(50 mL)を加え、クロロホルムで抽出した後、有機層を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去することで化合物14(0.157 g, 収率74%)を得た。
ESI-MS m/z: 591 (M + H)+
1H-NMR (DMSO-D6) δ: 1.26-1.33 (8H, m), 1.51-1.53 (10H, m), 2.10 (2H, t, J = 7.2 Hz), 2.21 (4H, t, J = 7.4 Hz), 3.25 (8H, t, J = 6.5 Hz), 4.08 (2H, t, J = 5.4 Hz), 7.48-7.51 (2H, br m), 7.87-7.89 (1H, br m), 8.07-8.08 (1H, br m), 8.53-8.54 (2H, br m).
工程14
 工程13で合成した化合物14(0.1442 g, 0.2441 mmol)を用い、工程12と同様の方法で化合物15を定量的に得た。
ESI-MS m/z: 785 (M + H)+
工程15
 工程14で合成した化合物15(0.0958 g, 0.1221 mmol)を用い、工程13と同様の方法で化合物16を定量的に得た。
ESI-MS m/z: 818 (M + H)+
工程16
1)化合物17の合成
 工程12で合成した化合物13(0.0209 g, 0.0375 mmol)とカルボキシル-(12エチレングリコール)エチルアミン(サーモサイエンティフィック社製, 0.0674 g, 0.1091 mmol)を用い、工程13と同様の方法で化合物17(0.0580 g, 収率99%)を得た。
ESI-MS m/z: 1564 (M + H)+
2)化合物18の合成
 工程12で合成した化合物13(0.0047 g, 0.00654 mmol)とカルボキシル-(24エチレングリコール)エチルアミン(サーモサイエンティフィック社製,0.0225 g, 0.01963 mmol)を用い、工程13と同様の方法で化合物18(0.0144 g, 収率79%)を得た。
ESI-MS m/z: 2622 (M + H)+
工程17
1)化合物19の合成
 工程16で合成した化合物17(0.0580 g, 0.0375 mmol)を用い、工程12と同様の方法で化合物19を定量的に得た。
ESI-MS m/z: 1759 (M + H)+
1H-NMR (DMSO-D6) δ: 1.22-1.25 (6H, m), 2.10 (2H, t, J = 7.5 Hz), 2.81 (8H, br s), 2.93 (4H, t, J = 6.1 Hz), 3.26-3.27 (6H, m), 3.43-3.45 (2H, m), 3.49-3.50 (92H, m), 3.71 (4H, t, J = 6.0 Hz), 4.07 (2H, t, J = 6.0 Hz), 7.53 (2H, dd, J = 1.5, 0.8 Hz), 7.93 (1H, dd, J = 1.5, 0.8 Hz), 8.05-8.07 (1H, br m), 8.59-8.61 (2H, br m).
2)化合物20の合成
 工程16で合成した化合物18(0.0580 g, 0.0375 mmol)を用い、工程12と同様の方法で化合物20を定量的に得た。
ESI-MS m/z: 2817 (M + H)+
実施例3 リンカーユニットの合成3
化合物22の合成
Figure JPOXMLDOC01-appb-C000136
工程18
(a);実施例2の工程12で合成した化合物13(10 mg, 17.9 μmol)をテトラヒドロフラン(90 μL)とリン酸緩衝液 (90 μL)との混合溶液に溶解し、カルボキシル-(12オリゴエチレングリコール)エチルアミン(サーモサイエンティフィック社製,22.1 mg, 35.8 μmol)を加え、室温、アルゴン雰囲気下にて1h撹拌した。減圧下で溶媒留去し、その後、クロロホルム、10%クエン酸水溶液にて抽出した後、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物17の粗生成物を得た。
ESI-MS m/z: 1564 (M+H)+
(b);実施例2の工程12で合成した化合物13(10 mg, 17.9 μmol)をテトラヒドロフラン(90 μL)とリン酸緩衝液 (90μL)との混合溶液に溶解し、カルボキシル-(24オリゴエチレングリコール)エチルアミン(サーモサイエンティフィック社製,41 mg, 35.8μmol)を加え、室温、アルゴン雰囲気下にて1h撹拌した。減圧下で溶媒留去し、その後、クロロホルム、10%クエン酸水溶液にて抽出した後、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物18の粗生成物を得た。
ESI-MS m/z: 2622 (M + H)+
工程19
(a);工程18で合成した化合物17(14 mg, 8.9 μmol)をテトラヒドロフラン(90μL)に溶解し、L-グルタミン酸 ジ-tert-ブチルエステル(渡辺化学株式会社製, 5.2 mg, 17.9 μmol)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩 (6.8 mg, 17.9 μmol)、ジイソプロピルエチルアミン(3.1 μL, 17.9μmol)を加え、室温でアルゴン雰囲気下、一晩撹拌した。減圧下で溶媒留去し、その後、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、逆相高速液体クロマトグラフィーによって精製し、化合物21a (4.5 mg, 収率25%)を得た。
ESI-MS m/z: 2046 (M + H)+
1H-NMR (CDCl3) δ: 1.44-1.46 (36H, m), 1.61-1.66 (4H, m), 1.89-1.91 (4H, m), 2.06-2.16 (2H, m), 2.20-2.37 (6H, m), 2.50 (4H, t, J = 6.0 Hz), 3.26 (2H, t, J = 6.8 Hz), 3.59-3.68 (98H, m), 3.71-3.76 (4H, m), 4.14 (2H, t, J = 5.2 Hz), 4.48-4.50 (2H, m), 7.59 (2H, dd, J = 1.3, 0.6 Hz), 7.92 (1H, br s).
(b);工程18で合成した化合物18(23.4 mg, 8.9 μmol)をテトラヒドロフラン(90 μL)に溶解し、L-グルタミン酸α,γ-ジ(t-ブチルエステル)塩酸塩(5.2 mg, 17.9 μmol)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩(6.8 mg, 17.9 μmol)、ジイソプロピルエチルアミン(3.1 μL, 17.9 μmol)を加え、室温でアルゴン雰囲気下、一晩撹拌した。減圧下で溶媒留去し、その後、クロロホルムで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。その後、逆相高速液体クロマトグラフィーによって精製し、化合物21b(7.4 mg, 収率27%)を得た。
ESI-MS m/z: 1553 (M - 2H)2-
1H-NMR (CDCl3) δ: 1.44 (18H, s), 1.46 (18H, s), 1.62-1.67 (4H, m), 1.86-1.89 (2H, m), 2.20-2.36 (10H, m), 2.51 (4H, t, J = 5.8 Hz), 3.26 (2H, t, J = 7.0 Hz), 3.63-3.65 (194H, m), 3.73-3.76 (4H, m), 4.14 (2H, t, J = 5.1 Hz), 4.46-4.50 (2H, m), 7.60 (2H, dd, J = 1.0, 0.5 Hz), 7.92 (1H, br s)
工程20
(a);工程19で合成した化合物21a(4.5 mg, 2.1 μmol)を用い、実施例1の工程8と同様の方法により化合物22aを定量的に得た。
ESI-MS m/z: 1822 (M + H)+
(b);工程19で合成した化合物21b(4.5 mg, 2.1 μmol)を用い、実施例1の工程8と同様の方法により化合物22bを定量的に得た。
ESI-MS m/z: 2878 (M + H)+
実施例4 リンカーユニットの合成4
化合物26の合成
Figure JPOXMLDOC01-appb-C000137
工程21
 実施例2の工程11で合成した化合物12(10 mg, 27.4 μmol)をテトラヒドロフラン(274.7 μmol)に溶解し、L-グルタミン酸 ジ-tert-ブチルエステル(渡辺化学株式会社製, 32.5 mg, 109.8 μmol)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩(41.7 mg, 109.8 μmol)、ジイソプロピルエチルアミン(24.2 μL, 137.3 μmol)を加え、室温でアルゴン雰囲気下、一晩撹拌した。減圧下で溶媒留去し、その後、クロロホルム、10%クエン酸水溶液にて抽出した後、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物23の粗生成物を得た。
ESI-MS m/z: 847 (M + H)+
工程22
 工程21で合成した化合物23(139.4 mg, 164.6 μmol)を塩化メチレン(1.3 mL)およびトリフルオロ酢酸(0.3 mL)に溶解し、室温で一晩撹拌した。減圧下で溶媒留去し、化合物24を定量的に得た。
ESI-MS m/z: 623 (M + H)+
工程23
 工程22で合成した化合物24(100 mg, 160.7 μmol)をジメチルアミン(1 mL)に溶解し、N-ヒドロキシスクシイミド (81.3 mg, 707 μmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(135.4 mg, 707 μmol)を加え、室温、アルゴン雰囲気下にて一晩撹拌し、化合物25の粗生成物を得た。
ESI-MS m/z: 1011 (M + H)+
工程24
(a);工程23で合成した化合物25(16.2 mg, 16 μmol)をリン酸緩衝液(95 μL)に溶解し、カルボキシル-(エチレングリコール)エチルアミン(80.4 mg, 129.8 μmol)を加え、室温、アルゴン雰囲気下にて1h撹拌した。減圧下で溶媒留去し、逆相高速液体クロマトグラフィーによって精製し、化合物26a(6.2 mg, 収率21%)を得た。
ESI-MS m/z: 1511 (M + 2H)2+
(b);工程23で合成した化合物25(16.2 mg, 16 μmol)をリン酸緩衝液 (95 μL)に溶解し、カルボキシル-(エチレングリコール)エチルアミン(149.3 mg, 129.8 μmol)を加え、室温、アルゴン雰囲気下にて1h撹拌した。減圧下で溶媒留去し、逆相高速液体クロマトグラフィーによって精製し、化合物26b(5.5 mg, 収率11%)を得た。
ESI-MS m/z: 2566 (M + 2H)2+
実施例5 糖鎖リガンド-リンカーユニットの合成1
化合物27,28の合成
Figure JPOXMLDOC01-appb-C000138
工程25
 実施例1の工程6で合成した化合物7(0.8 mg, 1.249 μmol)、エーシーエス・ケミカル・バイオロジー (ACS Chemical Biology), 第5巻, 301?312頁, 2010年に記載された方法で合成したアミノエチル基が修飾されたα(1,2)α(1,6)シュードマンノトリオース (3.0 mg, 5.0 μmol)、2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリン酸塩 (3.8 mg, 10 μmol)、ジイソプロピルエチルアミン (1.7 μL, 10 μmol)をN,N-ジメチルアセトアミド (1 mL)に溶解し、室温で二日間静置した。混合物を、逆相高速液体クロマトグラフィーによって精製し、化合物25(1.6 mg, 収率71%)を得た。
ESI-MS m/z: 1802 (M - H)-
工程26
 実施例1の工程8で合成した化合物9(0.9 mg, 1.04 μmol)、工程25に記載のα(1,2)α(1,6)シュードマンノトリオース (8.34 g, 8.34 μmol)を用い、工程25と同様の方法で化合物26(2.3 mg, 収率68%)を得た。
ESI-MS m/z: 1611 (M - 2H)2-
実施例6 糖鎖リガンド-リンカーユニットの合成2
化合物29,30,31,32,33の合成
Figure JPOXMLDOC01-appb-C000139
工程27
 実施例2の工程12で合成した化合物13(0.6 mg, 0.00111 mmol)および実施例5の工程25に記載のα(1,2)α(1,6)シュードマンノトリオース(2.0 mg, 0.00334 mmol)を用い、実施例2の工程13と同様の方法で化合物29(1.1 mg, 収率65%)を得た。
ESI-MS m/z: 1528 (M + H)+
工程28
 実施例2の工程13で合成した化合物14(0.66 mg, 0.00111 mmol)を用い、実施例5の工程25と同様の方法で化合物30 (0.3 mg, 収率15%)を得た。
ESI-MS m/z: 1754 (M + H)+
工程29
 実施例2の工程15で合成した化合物16(0.91 mg, 0.00111 mmol)を用い、実施例5の工程25と同様の方法で化合物31 (0.4 mg, 収率18%)を得た。
ESI-MS m/z: 1981 (M + H)+
工程30
 実施例2の工程17で合成した化合物19(1.95 mg, 0.00111 mmol)を用い、実施例2の工程13と同様の方法で化合物32(0.5 mg, 収率17%)を得た。
ESI-MS m/z: 2728 (M + H)+
工程31
 実施例2の工程16で合成した化合物18(2.91 mg, 0.00111 mmol)を用い 、実施例5の工程25と同様の方法で化合物33 (2.2 mg, 収率52%)を得た。
ESI-MS m/z: 1892 (M + 2H)2+
実施例7 糖鎖リガンド-リンカーユニットの合成3
化合物34,35の合成
Figure JPOXMLDOC01-appb-C000140
工程32
(a);実施例3の工程20で得られた化合物22a(2 mg, 1.1 μmol)を用い、実施例5の工程25と同様の方法で化合物34a(2 mg, 収率44%)を得た。
ESI-MS m/z: 2073 (M - 2H)2-
(b);実施例3の工程20で得られた化合物22a(3.1 mg, 1.1 μmol)を用い、実施例5の工程25と同様の方法で化合物34b(1.8 mg, 収率37%)を得た。
ESI-MS m/z: 2601 (M - 2H)2-
工程33
(a);実施例4の工程24で得られた化合物26a(3.1 mg, 1.1 μmol)を用い、実施例5の工程25と同様の方法で化合物35a(3 mg, 収率55%)を得た。
ESI-MS m/z;;2671 (M - 2H)2-
(b);実施例4の工程24で得られた化合物26b(2.7 mg, 0.5 μmol)を用い、実施例5の工程25と同様の方法で化合物35b(2.2 mg, 収率56%)を得た。
ESI-MS m/z; 2486 (M - 2H)2-
比較例1 糖鎖リガンド-リンカーユニットの合成4
化合物38の合成
Figure JPOXMLDOC01-appb-C000141
工程34
 ジャーナル・オブ・アメリカン・ケミカル・ソサイエティー (Journal of American Chemical Society), 第136巻, 16958?16961頁, 2014年に記載された方法で合成した化合物36 (0.9602 g, 2.1460 mmol)をN,N’-ジメチルホルムアミド (10 mL)に溶解し、N-Boc-エチレンジアミン (シグマアルドリッチ社製, 0.6877 g, 4.292 mmol)、ジイソプロピルエチルアミン (1.90 mL, 10.87 mmol)、および2-(1H-ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウム ヘキサフルオロリン酸塩 (和光純薬工業社製, 1.6437 g, 4.3229 mmol)を加えて、室温にて終夜攪拌した。反応液に水を加え、クロロホルムで2回抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物37の粗生成物を得た。
ESI-MS m/z: 590 (M + H)+
工程35
 工程34で合成した化合物37 (1.2654 g, 2.1460 mmol)をジクロロメタン (15 mL)に溶解し、トリフルオロ酢酸 (4 mL)を加えて、室温にて一晩攪拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、逆相カラムクロマトグラフィー (水/メタノール=80/20)で溶出させることにより、化合物38(0.3879 g, 収率37 %)を得た。
ESI-MS m/z: 490 (M + H)+
1H-NMR (DMSO-D6) δ: 1.46-1.52 (4H, m), 1.78 (3H, s), 1.90 (3H, s), 2.00 (3H, s), 2.08 (2H, t, J = 7.4 Hz), 2.11 (3H, s), 2.85 (2H, t, J = 6.3 Hz), 3.27 (2H, dd, J = 12.3, 6.2 Hz), 3.67-3.69 (1H, m), 3.68-3.73 (1H, m), 3.86-3.90 (1H, m), 4.01-4.04 (3H, m), 4.49 (1H, d, J = 8.4 Hz), 4.97 (1H, dd, J = 11.3, 3.4 Hz), 5.22 (1H, d, J = 3.5 Hz), 7.86 (1H, d, J = 9.1 Hz), 7.95-8.02 (1H, m).
比較例2 糖鎖リガンド-リンカーユニットの合成5
Figure JPOXMLDOC01-appb-C000142
化合物39の合成
工程36
 実施例1の工程6で合成した化合物7(4.36 mg, 0.006 mmol)、比較例1の工程35で合成した化合物38(10 mg, 0.02 mmol) を用い、実施例5の工程25と同様の方法で化合物39 (7 mg, 収率65%)を得た。
ESI-MS m/z: 1581 (M - H)-
化合物40の合成
工程37
 実施例1の工程8で合成した化合物9(10 mg, 0.011 mmol))、比較例1の工程35で合成した化合物38(43.9 mg, 0.090 mmol) を用い、実施例5の工程25と同様の方法で化合物39 (22 mg, 収率72%)を得た。
ESI-MS m/z: 2785 (M - 2H)2-
実施例8 核酸複合体の合成1
Figure JPOXMLDOC01-appb-C000143
工程38
 モレキュールズ(Molecules), 第17巻, 13825-13854頁, 2012年に記載された方法で合成した末端結合性官能基化した化合物41を用いて、エーシーエスナノ(ACS nano)、第9巻、9652-9664頁、2015年に記載された方法により化合物42を得た。
工程39
 Symmetric Doubler Phosphoramidite(Glen Research社製, カタログ番号 10-1920-90)を用い モレキュールズ(Molecules), 第17巻, 13825-13854頁, 2012年に記載された方法で合成した末端結合性官能基化した化合物43にN-スクシイミジル3-(2-ピリジルジチオール)プロピオネートのジメチルスルホキシド溶液を加え、リン酸緩衝液中で室温、4時間静置した。反応溶液にジチオトレイトールを添加し、室温で一晩静置した。混合物をゲルろ過処理(Napカラム、GEヘルスケア社製、溶出溶媒; 20mmol/L酢酸/酢酸ナトリウム緩衝液 (pH5.0)および限外ろ過を行うことで化合物44を得た。
工程40
 ジベンゾサイクロオクチン-N-ヒドロキシスクシイミドエステルを用い、工程39と同様の方法で化合物45を得た。
Figure JPOXMLDOC01-appb-C000144
工程41
 ACSケミカルバイオロジー、第5巻、3号、301-312頁, 2010年に記載された方法で合成した化合物46に実施例8の工程38で合成した化合物42を加えて、室温にて1時間静置した。陰イオン交換クロマトグラフィー(GE Healthcare, MonoQ 5/50GL, 10μm, 5.0 mm x 50 mm、A液: 10mM Tris緩衝液/30%アセトニトリル, B液: 10mM Tris緩衝液/30%アセトニトリル/1M NaBrによるグラジエント)あるいは逆相液体クロマトグラフィー (ウォーターズ, X BridgeC18, 5μm, 4.6 mmx250 mm、0.1M酢酸トリエチルアンモニウム緩衝液, B液:アセトニトリルによるグラジエント)のいずれかの方法で精製する事により、1本鎖の核酸複合体47を得た。
 表1の化合物群もしくはバイオコンジュゲートケミストリー(Bioconjugate Chemistry), 第14巻, 232-238頁、2003年に記載された方法で合成した糖鎖マレイミド付加体に、モレキュールズ(Molecules), 第17巻, 13825-13854頁, 2012年に記載された方法で合成した末端結合性官能基化したチオール核酸、化合物42、44もしくは45を用い、同様の方法により表2の核酸複合体を得た。
表1
Figure JPOXMLDOC01-appb-T000145
Figure JPOXMLDOC01-appb-T000146
表2
Figure JPOXMLDOC01-appb-T000147
Figure JPOXMLDOC01-appb-T000148
 本実施例により合成した核酸複合体における核酸の配列および質量分析結果を表3aおよび表3bに示す。なお、表3aおよび表3bにおける「化合物」欄の記載は、[表中の化合物番号]_[核酸おけるリガンド等が結合する位置]_[核酸複合体における核酸配列の略号]-[核酸の種類(ASOまたはssRNA)]を示す。
表3a
Figure JPOXMLDOC01-appb-T000149
表3b
Figure JPOXMLDOC01-appb-T000150
 表中、nはDNAを、N(M)は2’-O-メチル修飾RNAを、N(F)は2’-フッ素修飾RNAを、N(L)はLNAを、5(L)はLNAmCを、^はホスホロチオエート修飾を、ssはセンス鎖を、asはアンチセンス鎖を、太文字番号は実施例中の化合物番号に相当する修飾基をそれぞれ示す。以下、各表において同様である。
工程38
 工程41で合成した1本鎖の核酸複合体は、混合緩衝液(100 mmol/L酢酸カリウム、30 mmol/L 2-[4-(2-ヒドロキシエチル)ピペラジン-1-イル]エタンスルホン酸、HEPES)-KOH(pH 7.4)、2 mmol/L酢酸マグネシウム)にて濃度調整(50 μmol/L)した。センス鎖とアンチセンス鎖(50 μmol/L)を各々等量混合し、80℃で10分間静置した。アンチセンス鎖配列は、表2に記載されている通りである。徐々に温度を下げ、37℃で1時間静置し、2本鎖の核酸複合体を得た。
 本実施例により合成した核酸複合体を表4に示し、核酸複合体における核酸の配列を表5に示す。なお、表5における「化合物欄」の記載は、[表中の化合物番号]_[核酸複合体における核酸配列の略号]-[核酸の種類(siRNA)]を示し、また「一本鎖名称」欄の記載おいて、センス鎖(ss)は[表中の化合物番号]_[核酸おけるリガンド等が結合する位置]_[核酸複合体における核酸配列の略号]-[核酸の種類(ssRNA)]を示し、アンチセンス鎖(as)は[核酸複合体における核酸配列の略号]-[核酸の種類(as-RNA)]をそれぞれ示す。
表4
Figure JPOXMLDOC01-appb-T000151
Figure JPOXMLDOC01-appb-T000152
表5
Figure JPOXMLDOC01-appb-T000153
 比較例3 核酸複合体の合成2
工程43
 比較例2の工程36および37で合成した化合物39および40に実施例8の工程37で合成した化合物42を添加し、室温にて1時間静置した。反応混合物に炭酸ナトリウムを加え、4℃で一晩静置した。実施例8の工程41と同様の方法で精製する事により、表6の核酸複合体を得た。
表6
Figure JPOXMLDOC01-appb-T000154
 本比較例により合成した核酸複合体における核酸の配列および質量分析結果を表7aおよび表7bに示す。なお、表7aおよび表7bにおける「化合物欄」の記載は、[表中の化合物番号]_[核酸おけるリガンド等が結合する位置]_[核酸複合体における核酸配列の略号]_[核酸の種類(ASOまたはssRNA)]を示す。
表7a
Figure JPOXMLDOC01-appb-T000155
表7b
Figure JPOXMLDOC01-appb-T000156
工程40
 工程43で合成した1本鎖の糖鎖複合体は、実施例8の工程42と同様の方法で2本鎖の糖鎖複合体を得た。
 本比較例により合成した核酸複合体を表8に示し、核酸複合体における核酸の配列を表9に示す。なお、表9における「化合物欄」の記載は、[表中の化合物番号]_[核酸複合体における核酸配列の略号]_[核酸の種類(siRNA)]を示し、また「一本鎖名称」欄の記載おいて、センス鎖(ss)は[表中の化合物番号]_[核酸おけるリガンド等が結合する位置]_[核酸複合体における核酸配列の略号]-核酸の種類(ssRNA)を示し、アンチセンス鎖(as)は[核酸複合体における核酸配列の略号]-[核酸の種類(as-RNA)]をそれぞれ示す。
表8
Figure JPOXMLDOC01-appb-T000157
表9
Figure JPOXMLDOC01-appb-T000158
実施例9 糖鎖リガンド-リンカーユニットの合成6
Figure JPOXMLDOC01-appb-C000159
工程42
 実施例1の工程1で合成した化合物2 (8.17 g, 23.12 mmol)を用い、実施例1の工程4と同様の方法で化合物75を(3.7 g, 14.63 mmol, 収率63%)得た。
ESI-MS m/z: 254 (M + H)+ 
工程43
 実施例9の工程42で合成した化合物75 (3.70 g, 14.63 mmol)をテトラヒドロフラン (10 mL)に溶解し、氷冷下、塩化ベンゾイル (4.12 mL, 29.3  mmol)を加えて、室温にて1時間攪拌した。反応液を減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製することにより、化合物76 (3.82 g, 9.86 mmol, 収率67%)を得た。
ESI-MS m/z: 432 (M + HCOO)-
工程44
 実施例9の工程43で合成した化合物76 (3.82 g, 9.86 mmol)を用い、実施例1の工程2と同様の方法で化合物77を(3.07 g, 8.56 mmol, 収率87%)得た。
ESI-MS m/z: 360 (M + H)+
工程45
 実施例9の工程44で合成した化合物77 (213 mg, 0.592 mmol)およびイミノ二酢酸ジ-tert-ブチルエステル (375 mg, 1.529 mmol)を用い、実施例1の工程7と同様の方法で化合物78を定量的に得た。
ESI-MS m/z: 858 (M + HCOO)- 
工程46
 STEP1: 実施例9の工程45で合成した化合物78 (482 mg, 0.593 mmol)を用い、をメタノール (10 mL)に溶解し、パラジウム/炭素による接触水素還元を行った。得られた溶液留分を減圧下、溶媒を留去をした。
 STEP2: 得られた粗生成物を用い、実施例2の工程9と同様の方法でアルキルアジド基を有するカップリング化合物を得た。
 STEP3: STEP2で得られた化合物を用い、実施例1の工程8と同様の方法で化合物79 (238 mg,収率92%)を得た。
ESI-MS m/z: 595 (M + H)+
工程47
 実施例9の工程46で合成した化合物79 (0.8 mg, 1.346 μmol)を用い、実施例5の工程26と同様の方法で化合物80を(1.3 mg, 0.445 μmol,)得た。
ESI-MS m/z: 2918 (M - H)- 
実施例10 糖鎖リガンド-リンカーユニットの合成7
Figure JPOXMLDOC01-appb-C000160
工程48
 1,3-ジヒドロキシ2-アミノプロパン81 (東京化成工業社製, 0.55 g, 6.03 mmol)をジメチルスルホキシド(15 mL)に溶解し、氷冷下、水酸化ナトリウム水溶液(2 mmol/L, 3 mL)を加えた後、ジメチルスルホキシド(2.2  mL)に溶解したアクリル酸tert-ブチルエステル (1.93 g, 15.07 mmol)を徐々に添加し、室温で4時間反応した。混合物に水を加え、酢酸エチルで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール= 98/2 ⇒ 90/10)で精製することにより、化合物82 (0.74 g, 収率35%)を得た。
ESI-MS m/z: 348 (M + H)+
工程49
 実施例10の工程48で合成した化合物82 (0.150 g, 0.433 mmol)を用い、実施例1の工程7と同様の方法で化合物83を定量的に得た。
ESI-MS m/z: 1062 (M + HCOO)-
工程50(Zの脱保護、アルキルアジドのアミド化、TFAの脱保護)
 実施例10の工程49で合成した化合物83 (0.149 g, 0.147 mmol)を用い、実施例9の工程46と同様の方法で化合物84を(91.4 mg, 0.114 mmol, 収率67%)得た。
ESI-MS m/z: 799 (M + H)+ 
工程51
 実施例10の工程51で合成した化合物84 (1.3 mg, 1.4 μmol)を用い、実施例5の工程26と同様の方法で化合物85を(2.4 mg, 0.768 μmol, 収率54.9%)得た。
ESI-MS m/z: 1562 (M + 2H) 2+ 
実施例11 糖鎖リガンドーリンカーユニットの合成8
工程52
 3,5-ジヒドロキシ安息香酸86(東京化成工業社製, 2.11 g, 13.69 mmol)をN, N’-ジメチルホルムアミド(35 mL)に溶解し、炭酸水素カリウム(1.716 g, 17.14 mmol)および臭化ベンジル(3.51 g, 2.439 mL, 20.54 mmol)を加えて、室温にて4時間攪拌した。反応液に飽和塩化アンモニウムを加え、ジクロロメタンで抽出した後、有機層を水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(へプタン/酢酸エチル=50/50)で精製することにより、化合物87を定量的に得た。
ESI-MS m/z: 245 (M + H)+ 
工程53
 工程52で合成した化合物87(3.34 g, 13.69 mmol)をN, N’-ジメチルホルムアミド(40 mL)に溶解し、炭酸カリウム(7.57 g, 54.8 mmol)およびtert-ブチルブロモ酢酸(4.42 mL, 30.1 mmol)を加え、90℃で4時間攪拌した。反応液に飽和塩化アンモニウムを加え、ジクロロメタンで抽出した後、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下、溶媒を留去し、残渣をシリカゲルカラムクロマトグラフィー(へプタン/酢酸エチル=75/25)で精製することにより、化合物88(5.67 g, 収率88%)を得た。
ESI-MS m/z: 471 (M - H)- 
工程54
 工程53で合成した化合物88(5.67 g, 12.00 mmol)をジクロロメタン(40 mL)に溶解し、トリフルオロ酢酸(10 mL, 130.0 mmol)を加え、室温で終夜攪拌した。減圧下、溶媒を留去し、化合物89の粗生成物を得た。
ESI-MS m/z: 359 (M - H)- 
工程55
 イミノ二酢酸ジ-tert-ブチルエステル (0.407 g, 1.660 mmol)および実施例11の工程54で合成した化合物89 (0.239 g, 0.664 mmol)を用い、実施例1の工程7と同様の方法で化合物90を定量的に得た。
ESI-MS m/z: 813 (M - H)-
工程56
[STEP1] 実施例11の工程55で合成した化合物90 (541 mg, 0.664 mmol)を用い、メタノール (8 mL)に溶解し、パラジウム/炭素による接触水素還元を行った。得られた溶液留分を減圧下、溶媒を留去をした。
 [STEP2] 得られた粗生成物および3-アジドプロパン-1-アミン(0.101 g, 1.009 mmol)を用い、実施例1の工程7と同様の方法ででカップリング化合物を得た。
 STEP3: 得られた化合物引退して粗生成物を用い、実施例1の工程8と同様の方法で化合物91を定量的に得た。
ESI-MS m/z: 583 (M + H)+
工程57
 実施例10の工程50で合成した化合物84 (2.0 mg, 1.476 μmol)を用い、実施例5の工程26と同様の方法で化合物92を(2.0 mg, 収率47%)得た。
ESI-MS m/z: 1456 (M + 2H) 2+
実施例12 糖鎖リガンドーリンカーユニットの合成9
Figure JPOXMLDOC01-appb-C000162
工程58
 実施例9の工程44で合成した化合物77(63 mg, 0.175 mmol)をジクロロメタン(5 mL)に溶解し、トリエチルアミン(0.24 mL, 1.75 mmol)を加えた後にペンタフルオロフェニル-2,2,2-トリフルオロ酢酸(0.119 mL, 0.699 mmol)を加えて、室温で4時間撹拌した。混合物にクロロホルム添加し、有機層を10%クエン酸水溶液、飽和食塩水、および炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去することで化合物93を定量的に取得した。
ESI-MS m/z:(モノエステル体(PEPが一つ付加した化合物)として検出) 524 (M - H)-
工程59
 実施例12の工程58で合成した化合物93 (0.121 g, 0.175 mmol)をジメチルスルホキシド (8 mL)に溶解し、カルボキシル-(12オリゴエチレングリコール)エチルアミン(0.510 g, 0.444 mmol)を加え、室温、アルゴン雰囲気下にて1h撹拌した。減圧下で溶媒留去し、その後、クロロホルム、10%クエン酸水溶液にて抽出した後、無水硫酸マグネシウムで乾燥した。減圧下、溶媒を留去し、化合物94の粗生成物を得た。
ESI-MS m/z: 2614 (M-H)- 
工程60
 実施例12の工程59で合成した化合物94 (0.333 g, 0.092 mmol)を用い、実施例1の工程7と同様の方法で化合物95を定量的に得た。
ESI-MS m/z: 1537 (M + 2H)2+
工程61
 実施例12の工程60で合成した化合物95 (0.138 g, 0.045 mmol)を用い、実施例9の工程42と同様の方法で化合物96を(0.0825 g, 収率58%)得た。
ESI-MS m/z: 1426 (M + 2H)2+
工程62
 実施例12の工程61で合成した化合物96 (4.2 mg, 14.04 μmol)を用い、実施例5の工程26と同様の方法で化合物97を(2.1 mg, 収率29%)得た。
ESI-MS m/z: 2590 (M + 2H) 2+
実施例13 糖鎖リガンドーリンカーユニットの合成10
Figure JPOXMLDOC01-appb-C000163
工程63
 実施例12の工程59で合成した化合物94 (0.189 g, 0.052 mmol)および実施例10 の工程48で合成した化合物 82(0.051 g, 0.148 mmol)を用い、実施例1の工程7と同様の方法で化合物98を(0.087 g, 収率51%)得た。
ESI-MS m/z: 1639 (M + 2H) 2+
工程64
 実施例13の工程63で合成した化合物98 (0.087 g, 0.027 mmol)を用い、実施例9の工程42と同様の方法で化合物99を(38.5 mg,収率43%)得た。
ESI-MS m/z: 1529 (M + 2H) 2+ 
工程65
 実施例13の工程64で合成した化合物99 (4.7 mg, 1.403 μmol)を用い、実施例5の工程26と同様の方法で化合物100を(2.4 mg,収率32%)得た。
ESI-MS m/z: 2689 (M + 2H)2+ 
実施例14 糖鎖リガンドーリンカーユニットの合成11
Figure JPOXMLDOC01-appb-C000164
工程66
[STEP1] 実施例11の工程54で合成した化合物86(0.0678 g, 0.1888 mmol)を用い、実施例12の工程58と同様の方法により活性エステル体を取得した。
[STEP2] STEP1より取得した活性エステル(0.1283 g, 0.185 mmol)を用い、実施例12 の工程59と同様の方法により化合物101(0.2819 g, 0.108 mmol, 収率58.1%)を取得した。
ESI-MS m/z: 2615 (M - H)- 
工程64
 実施例14の工程66で合成した化合物101 (0.282 g, 0.108 mmol)を用い、実施例9の工程45と同様の方法で化合物102(0.085 g, 0.028 mmol, 収率26%)を得た。
ESI-MS m/z:( tBu基が脱離した状態で検出) 712 (M + 4H)4+ 
工程64
 実施例14の工程67で合成した化合物102 (84.5 mg, 0.028 mmol)を用い、実施例11の工程56と同様の方法で化合物103を(57.9 mg,収率66%)得た。
ESI-MS m/z: 2837 (M - H)-
工程69
 実施例14の工程69で合成した化合物103 (4.8 mg, 1.528 μmol)を用い、実施例5の工程26と同様の方法で化合物104(2.6 mg,収率33%)を得た。
ESI-MS m/z: 2584 (M + 2H) 2+ 
実施例15 糖鎖リガンドーリンカーユニットの合成12
Figure JPOXMLDOC01-appb-C000165
工程70
[STEP1] 実施例11の工程54で合成した化合物86(4 mg, 0.011 mmol)を用い、実施例5の工程26と同様の方法でリガンド付加した化合物を(6.0 mg,収率36%)取得した。
[STEP2] STEP1より取得した化合物(6.0 mg, 3.94 μmol)を用い、実施例9 工程42のSTEP1と同様の方法により化合物105(5.6 mg,収率99%)を取得した。
ESI-MS m/z: 1522 (M - H)-
実施例16 糖鎖リガンドーリンカーユニットの合成13
Figure JPOXMLDOC01-appb-C000166
工程71
 実施例14の工程67で合成した化合物99 (0.204 g, 0.067 mmol)を用い、実施例9の工程45と同様の方法で化合物106を定量的に得た。
ESI-MS m/z: 2846 (M - H)-
工程72
 実施例16の工程71で合成した化合物106 (16.7 mg, 5.22 μmol)を用い、実施例5の工程26と同様の方法で化合物107(6.3 mg,収率23%)を得た。
ESI-MS m/z: 2586 (M - H)-
工程73
 実施例16の工程72で合成した化合物107(6.3 mg, 1.218 μmol)を用い、実施例9 工程46のSTEP1と同様の方法により化合物108(5.6 mg,収率90%)を取得した。
ESI-MS m/z: 2540 (M - 2H) 2- 
実施例17 糖鎖リガンドーリンカーユニットの合成14
Figure JPOXMLDOC01-appb-C000167
工程74
 国際公開2009/073809号に記載された方法で合成した化合物109(0.209 g, 0.414 mmol)を用いて、実施例2の工程9と同様の方法により化合物110(0.116 g,収率43%)を取得した。
ESI-MS m/z: 645 (M + H)+
工程75
 実施例17の工程74で合成した化合物110 (0.116 g, 0.179 mmol)を用い、実施例9の工程44と同様の方法で化合物111を定量的に得た。
ESI-MS m/z: 477 (M + H)+
工程76
 実施例17の工程75で合成した化合物111 (1.1 mg, 1.821 μmol)を用い、実施例5の工程26と同様の方法で化合物112(1.6 mg,収率40%)を得た。
ESI-MS m/z: 2219 (M - H)-
実施例18 糖鎖リガンドーリンカーユニットの合成15
Figure JPOXMLDOC01-appb-C000168
工程77
 実施例17の工程75で合成した化合物111 (30 mg, 0.05 mmol)を用い、実施例14の工程62と同様の方法で化合物113(88.2 mg,収率43%)を得た。
ESI-MS m/z: 1930 (M - 2H) 2-
工程78
 実施例18の工程77で合成した化合物113 (8.1 mg, 2.098 μmol)を用い、実施例5の工程26と同様の方法で化合物114(5.9 mg,収率50. %)を得た。
ESI-MS m/z: 2801 (M - 2H)2-
実施例19 糖鎖リガンドーリンカーユニットの合成16
Figure JPOXMLDOC01-appb-C000169
工程79
 イミノ二酢酸ジ-tert-ブチルエステル115(東京化成工業社製, 0.197 g, 0.803 mmol)を用いて、実施例2の工程9と同様の方法により化合物116を定量的に取得した。
ESI-MS m/z:[ tBu基が脱離した状態で検出] 273 (M + H)+
工程80
 実施例19の工程79で合成した化合物116 (0.309 g, 0.803 mmol)を用い、実施例9の工程45と同様の方法で化合物117を定量的に得た。
ESI-MS m/z: 273 (M + H)+
工程81
 実施例17の工程76で合成した化合物117 (1.2 g, 2.62 mmol)を用い、実施例5の工程26と同様の方法で化合物118(1.1 mg, 0.766 mmol, 収率29%)を得た。
ESI-MS m/z: 1436 (M + H)+
実施例20 糖鎖リガンドーリンカーユニットの合成17
Figure JPOXMLDOC01-appb-C000170
工程82
 実施例10の工程47で合成した化合物82 (0.159 g, 0.459 mmol)を用いて、実施例2の工程9と同様の方法により化合物119(0.096 g, 0.197 mmol, 収率43%)を取得した。
ESI-MS m/z: 487 (M + H)+
工程83
 実施例20の工程82で合成した化合物119 (96 mg, 0.197 mmol)を用い、実施例9の工程41と同様の方法で化合物120を定量的に得た。
ESI-MS m/z: 375 (M + H)+
工程84
 実施例20の工程83で合成した化合物120 (1.0 mg, 2.55 μmol)を用い、実施例5の工程26と同様の方法で化合物121(2.6 mg,収率66%)を得た。
ESI-MS m/z: 1539 (M + H)+
実施例21 糖鎖リガンドーリンカーユニットの合成18
Figure JPOXMLDOC01-appb-C000171
工程85
 ケミストリー ヨーロピアンジャーナル(Chemistry European Journal), 第19巻, 4786-4797頁, 2013年に記載された方法で合成した化合物122 (1 g, 0.914 mmol)および4-(アミノメチル)フェノール塩酸塩(0.362 g, 2.287 mmol)を用い、前述記載の文献方法により化合物123(0.22 g, 収率23%)を得た。
ESI-MS m/z: 1062 (M + H)+ 
工程86
 実施例21の工程85で合成した化合物123(0.2 g, 0.191 mmol)を25%アンモニア水溶液に溶解し、ピリジン(2 mL)およびトリメチルホスフィン(0.12 mL)を添加した後、室温で16時間撹拌した。 混合物を減圧濃縮し、残査をカラムクロマトグラフィーで精製する事で化合物124(0.048 g, 収率25%)を取得した。
ESI-MS m/z: 1037 (M + H)+
工程87
[STEP1] ケミストリー ヨーロピアンジャーナル(Chemistry European Journal), 第19巻, 4786-4797頁, 2013年に記載された方法で合成した化合物122 (0.5 g, 0.457 mmol)を用い、工程84と同様の方法によりカップリング化合物 (0.2 g, 収率42%)を得た。
[STEP2] STEP1で合成した化合物 (0.2 g, 0.191 mmol)をノルマルブタノール(2 mL)に溶解し、白金/炭素(200 mg)を用いて12時間接触還元を行った。反応液を減圧濃縮し、残査をカラムクロマトグラフィーで精製する事で化合物125(0.060 g, 収率30%)を取得した。
ESI-MS m/z: 1019 (M + H)+
実施例22 糖鎖リガンドーリンカーユニットの合成19
Figure JPOXMLDOC01-appb-C000172
工程88
[STEP1] 実施例1の工程4で合成した化合物5(3.39 g, 8.584 mmol)を用い実施例2の工程10と同様の方法でアジド基を有するカップリング化合物を粗生成物(2.293 g, 収率50%)として得た。
[STEP2] STEP1得られた化合物 (2.293 g, 4.29 mmol)を用い、実施例1の実の工程2と同様の方法により、カルボン酸エステルを加水分解体(2.021 g, 収率93%)を取得した
[STEP3] STEP2で得られた化合物(0.100 g, 0.197 mmol)を用いて実施例12の工程54と同様の方法により活性エステル体を定量的に取得した。
[STEP3] STEP3の方法で得られた活性エステル(0.214g, 0.255 mmol)を用い、実施例12の工程55と同様の方法により化合物126(0.216 g, 収率85%)を得た。
ESI-MS m/z: 2763 (M - H)-
工程89
R= R1における結果を以下に示した。 R2の場合においても同様の結果が得られる
[STEP1] 実施例21の工程86で合成した化合物124(9.9 mg, 0.069 mmol)をメタノール(500 μL)に溶解し、28%ナトリウムメトキシド/メタノール溶液(14 uL)を添加した後、室温で一晩静置した。混合物を逆相クロマトグラフィー(水/アセトニトリル)で精製する事によりベンゾイル基が脱保護された目的物を定量的に取得した。
[STEP2] 実施例21の工程87で取得した化合物125(1.4 mg, 0.502 μmol)およびSTEP1より取得した化合物(4.2 mg, 5.02 μmol)を用い、実施例5の工程26と同様の方法で化合物127(0.6 mg, 収率30%)を取得した。
ESI-MS m/z: 1982 (M - 2H) 2- 
実施例23 糖鎖リガンドーリンカーユニットの合成20
Figure JPOXMLDOC01-appb-C000173
工程90
 実施例3の工程18で合成した化合物126 (24 mg, 7.30 μmol)を用い、実施例5の工程26と同様の方法で化合物129(11 mg, 48%)を得た。
ESI-MS m/z: 1608 (M - 2H) 2-
実施例24 糖鎖リガンドーリンカーユニットの合成21
Figure JPOXMLDOC01-appb-C000174
工程91
化合物130の合成
[STEP1]  実施例3の工程20で合成した化合物22b (4 mg, 1.342 μmol)を用い、実施例5の工程26と同様の方法でリガンド付加体 (0.9 mg, 10%)を得た。
[STEP2] STEP1より取得した化合物(0.9 mg, 0.129 μmol)をメタノール(0.6 mL)に溶解し、ナトリウムメトキシド(2 μL, 10 μmol)を添加後、室温で3時間反応させた。 反応液を逆相クロマトグラフィーで分取し、凍結乾燥する事で化合物130(0.3 mg, 44%)を取得した。
ESI-MS m/z: 2642 (M - 2H)2-
化合物131の合成
 実施例3の工程20で合成した化合物22b (22 mg, 5.88 μmol)を用い、実施例5の工程26と同様の方法で化合物131(3.6 mg, 17%)を得た。
ESI-MS m/z: 1851 (M + 2H) 2+
実施例25 核酸複合体の合成3
工程92
[Method 1]実施例9の工程38と同様の方法で表10-1~表10-3記載の化合物を用いて第表11-1~表11-4記載の一本鎖の核酸複合体132~151を得た。表11-3中のX,Yはオリゴヌクレオチドの3’末端のヌクレオチド構造を表す。
[Method 2] モレキュールズ(Molecules)、第17巻、13825-13843頁、2012年に記載された方法で合成した末端がアミノ基で修飾されたオリゴヌクレオチドおよび化合物105を用い、バイオコンジュゲートケミストリー, 第22巻,1723-1728頁, 2011年の方法にて表11-3記載の一本鎖の核酸複合体152および153を得た。
 本実施例により合成した核酸複合体の配列および質量分析結果を表12に示す。
表10-1
Figure JPOXMLDOC01-appb-T000175
表10-2
Figure JPOXMLDOC01-appb-T000176
表11-1
Figure JPOXMLDOC01-appb-T000177
表11-2
Figure JPOXMLDOC01-appb-T000178
表11-3
Figure JPOXMLDOC01-appb-T000179
表11-4
Figure JPOXMLDOC01-appb-T000180
表12
Figure JPOXMLDOC01-appb-T000181
実施例26 核酸複合体の合成4
工程92
 工程91で合成した1本鎖の糖鎖複合体は、実施例8の工程38と同様の方法で2本鎖の糖鎖複合体154-175を得た。本実施例により合成した核酸複合体を表13-1~表13-4に示す。表13-3中のX,Yはセンス鎖の3’末端のヌクレオチドを表す。
表13-1
Figure JPOXMLDOC01-appb-T000182
第13-2
Figure JPOXMLDOC01-appb-T000183
表13-3
Figure JPOXMLDOC01-appb-T000184
表13-4
Figure JPOXMLDOC01-appb-T000185
 本実例により合成した核酸複合体の配列を表14に示す。なお表14における「化合物欄」の記載は、[表中の化合物番号]_[核酸複合体における核酸配列の略号]_[核酸の種類(siRNA)]を示し、また「一本鎖名称」欄の記載おいて、センス鎖(ss)は[表中の化合物番号]_[核酸おけるリガンド等が結合する位置]_[核酸複合体における核酸配列の略号]-核酸の種類(ssRNA)を示し、アンチセンス鎖(as)は[核酸複合体における核酸配列の略号]-[核酸の種類(as-RNA)]をそれぞれ示す。
表14
Figure JPOXMLDOC01-appb-T000186
Figure JPOXMLDOC01-appb-T000187
実施例27 核酸複合体の合成5
工程93
実施例26, 27と同様の方法で、化合物148において配列の異なる核酸複合体をそれぞれ得た。以下に核酸複合体の配列および質量分析結果を表15、二本鎖複合体の配列を表16に示す。
表15
Figure JPOXMLDOC01-appb-T000188
表16
Figure JPOXMLDOC01-appb-T000189
試験例1: CD45 ASOによるヒト単球由来樹状細胞のmRNAノックダウン試験
 10%ウシ胎児血清を含むアールピーエムアイ1640培地 (RPMI1640培地, ナカライテスク社製, 30264-56)(以下10%FBS RPMI1640培地と記載)及びDNase I溶液 (DNase I Solution , StemCell Technology社製, 07900)を用い、ヒトCD14陽性単球細胞 (Untouched Frozen NPB-CD14+ Monocytes, Allcells社製, PB011F)を添付のプロトコルに従って融解した。
 その後、組み換えヒトインターロイキン-4 (Recombinant Human IL-4 Protein, R&D System社製, 204-IL)(以下IL-4と記載)を最終濃度100 ng/mL、組み換えヒト顆粒球単球コロニー刺激因子 (Recombinant Human GM-CSF Protein CF, R&D System社製, 215-GM-050/CF) (以下GM-CSFと記載)を最終濃度50 ng/mLとなるように添加し、106 cells/mLの密度で浮遊培養用マルチプレート (SUMILON社製, MS-8006R)に播種し、37 ℃、5%CO2条件下で培養した。
 培養開始から3日後及び6日後にIL-4 100 ng/mL及びGM-CSF 50 ng/mLを含む10%FBS RPMI1640培地で培地を半量交換し、樹状細胞へ誘導した。
 培養開始から8日後に細胞を回収し、また接着細胞もエチレンジアミン四酢酸溶液 (0.2g/L‐EDTA Solution, ナカライテスク社製, 14367-74)を用いて回収した。遠心操作の後に新しいIL-4 100 ng/mL及びGM-CSF 50 ng/mLを含む10%FBS RPMI1640培地に1,250,000 cells/mLとなるよう再懸濁させ、超低吸着96wellプレート (Corning社製, 3474)に80uLずつ播種した。
 被験サンプルとしてはKAC_008及びKAC_009を用い、比較対照としてリガンドを持たないKAC_CTR_001及びCD45遺伝子には相補部位を有さないKAC_CTR_002を設けた。KAC_008の最終濃度は1 μmol/L及び0.3 μmol/Lの2点、KAC_009及びKAC_CTR_001は1 μmol/L, 0.3 μmol/L, 0.1 μmol/Lおよび0.03 umol/Lの4点、KAC_CTR_002は1 μmol/L、N=3で実施した。
 核酸複合体溶液の希釈については以下の手順で行った。クエン酸緩衝液 (20 mM Citrate(pH7), 150 mM NaCl)に50 μMで調製された核酸複合体溶液をオプティメム (Opti-MEM(登録商標) I Reduced Serum Medium, Life technologies社製, 31985-070)で5 μMへ希釈し、更なる溶液の希釈にはクエン酸緩衝液とオプティメムが1対9となるように調製した溶液を用いて希釈を行った。希釈した核酸複合体溶液を20 μLずつ細胞溶液に添加、陰性対照群には希釈溶液を20 μL添加して、37 ℃、5%CO2条件下で2日間培養した。
 RNAを含む細胞溶解液の調製にはスーパープレップセルライシスキット (SuperPrep(登録商標) Cell Lysis & RT Kit for qPCR, TOYOBO社製, SCQ-101)を用い、同キット付属のアールティーキット (RT Kit for qPCR)を用いてキットに添付された説明書に従って逆転写反応を行い、cDNAを作成した。
 このcDNAをPCR反応の鋳型に用い、QuantStudio 12K Flex リアルタイムPCRシステム (アプライドバイオシステムズ社製)を用い、タックマンプローブ (Taqman probe)法によりCD45の遺伝子、及び対照としてグリセルアルデヒド3リン酸デヒドロゲナーゼ (Glyceraldehyde 3-phosphate dehydrogenase)(以下GAPDHと記載)の遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、GAPDHのmRNA増幅量を内部対照として、CD45のmRNAの準定量値を算出した。また、陰性対照群におけるCD45及びGAPDHのmRNA増幅量を同様にそれぞれ測定し、CD45のmRNAの準定量値を算出した。
 CD45遺伝子の測定にはタックマンプローブHs00894727_m1 (アプライドバイオシステムズ社製)を、GAPDH遺伝子の測定にはHs02758991_g1 (アプライドバイオシステムズ社製)を用い、反応試薬にはTaqMan Gene Expression Master Mix (アプライドバイオシステムズ社製, 4369542)を用いて添付のプロトコルに従って実施した。核酸複合体(ASO導入検体)の標的mRNA量は、陰性対照群(ASO未導入群)におけるCD45のmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図1に示す。
 本結果から、被験サンプル(KAC_008, KAC_009) が比較対照 (KAC_CTR_001, KAC_CTR_002)に比べ、強いノックダウン効果を示す事を確認した。
試験例2:Beta-2 Microglobulin(以下B2Mと記載)に対するASOを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験
 試験例1と同様の手順でヒトCD14陽性単球細胞から樹状細胞を誘導し、超低吸着6 well plate (Corning社製, 3471)に播種し、37 ℃、5%CO2条件下で培養した。3日後にIL-4 100 ng/mL及びGM-CSF 50 ng/mLを含む10%FBS RPMI1640培地で培地を半量交換させ、樹状細胞へ誘導した。
 培養開始から6日後に細胞を回収し、遠心操作の後に新しいIL-4 100 ng/mL及びGM-CSF 50ng/mLを含む10%FBS RPMI1640培地に125000 cells/mLとなるよう再懸濁させ、超低吸着96 well plate (Corning社製, 3474)に80 μLずつ播種した。
 被験サンプルとしてKAC_010及びKAC_012を用い、比較対照としてリガンドを有さないKAC_CTR_003及びGalNAcリガンドを有するKAC_013, KAC_014を設けた。各ASOの最終濃度は0.3 μmol/L, 0.1 μmol/Lの2点、N=2で実施した。
 核酸複合体溶液の希釈については以下の手順で行った。クエン酸緩衝液に40 μMで調製された各核酸複合体溶液をオプティメムで1.5 μMに希釈し、更なる溶液の希釈にはクエン酸緩衝液とオプティメムが3対77となるように調製した溶液を用い希釈を行った。希釈した核酸複合体溶液を20uLずつ細胞溶液に添加し、陰性対照群には希釈溶液を20 μL添加し、37 ℃、5%CO2条件下で培養した。
 核酸添加1日後に細胞を回収し、遠心操作後に新しいIL-4 100 ng/mL及びGM-CSF 50 ng/mLを含む10%FBS RPMI1640培地 80 μLに再懸濁させ37 ℃、5%CO2条件下でさらに3日間培養した。
 細胞の洗浄溶液は、1%(w/v) BSA含有リン酸緩衝生理食塩水 500 mLに対し、10%アジ化ナトリウム溶液(ナカライテスク社製)を2.5 mL, 0.5 M EDTA溶液 (EDTA (0.5 M), pH 8.0, Ambion社製, AM9260G)を685 μL加えることで調製した。また、上記洗浄溶液に対し20 %(v/v)となるようFcR ブロッキング試薬, ヒト (ミルテニーバイオテク社製、130-059-901)を加えることでFcRブロッキング溶液調製した。
 核酸添加4日後に細胞を回収、遠心操作を行った後に、洗浄溶液で一度洗浄操作を行った。上清を除いた後にFcRブロッキング溶液を90 μLずつ添加し、氷上30分静置することでブロッキング反応を行った。
 新しいプレートにFcRブロッキング溶液15 μLとB2Mタンパク質に対する抗体 (APC anti-human β2-microglobulin Antibody, Biolegend社製, 316312) 5 μLの混合液を用意しておき、FcRブロッキング後の細胞溶液を80uL加え氷上静置することで抗体を反応させた。
 1時間後細胞を回収し、洗浄溶液で3回洗浄を行ったのちに200 μLに再懸濁してBD FACSCantoTM II フローサイトメーター (ベクトン・ディッキンソン社製)にて測定した。
 解析ではFlowJo 7.6.5 (トミーデジタルバイオロジー社製)を用い、前方散乱光(FSC)と側方散乱光(SSC)で細胞画分にゲートをかけ、平均蛍光強度 (Mean Fluorescence Intensity)(以下MFIと記載)として幾何平均(Geometric means of the fluorescence intensity)の値により、細胞表面抗原の発現量を測定した。
 MFI値の平均値を表した結果を図2に示す。本結果から、被験サンプル(KAC_010, KAC_012)が、比較対照 (KAC_013, KAC_014, KAC_CTR_003)に比べ、低濃度域においてB2Mタンパク質を強くノックダウンする事を確認した。
試験例3:B2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験
 試験2と同様の手順で樹状細胞を誘導し、培養開始から6日後に超低吸着96 wellプレートに細胞を播種した。
 被験サンプルとしてKsiRC_010, KsiRC_011及びKsiRC_012を用い、比較対照としてリガンドを有さないKsiRC_CTR_001及びGalNAcリガンドを有するKsiRC_013及びKsiRC_014を設けた。各siRNAの最終濃度は3 μmol/L, 1 μmol/L, 0.3 μmol/Lの3点、N=1で実施し、核酸を含まない陰性対照群に関してはN=3で実施した。
 核酸複合体溶液の希釈については以下の手順で行った。クエン酸緩衝液に40 μMで調製された各核酸をオプティメムで15 μMへ希釈し、更なる溶液の希釈にはクエン酸緩衝液とオプティメムが21対35となるように調製した溶液を用い希釈を行った。希釈した核酸複合体溶液を20 μLずつ細胞溶液に添加し、陰性対照群には希釈溶液を20 μL添加して37 ℃、5%CO2条件下で培養した。
 核酸添加4日後に細胞を回収し、遠心操作を行った後に洗浄溶液で一度洗浄操作を行い、その後は試験例2と同様の手法で細胞表面抗原のB2Mタンパク質の発現量を測定及び解析を実施した。
 その結果を図3に示す。陰性対照群については平均±標準偏差を示す。被験サンプル(KsiRC_010, KsiRC_011, KsiRC_012)は、比較対照(KsiRC_013, KsiRC_014, KsiRC_CTR_001)に比べ、顕著なB2Mタンパク質のノックダウンを示した。
試験例4:B2M-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験
 試験例2と同様の手順で樹状細胞を誘導し、培養開始から6日後に超低吸着96wellプレートに細胞を播種した。
 被験サンプルとしてはKsiRC_010を用い、比較対照としてリガンドを有さないKsiRC_CTR_001を設けた。各siRNAの最終濃度は3 μmol/L, 1 μmol/L, 0.3 μmol/Lの3点、N=3で実施した。
 核酸複合体溶液の希釈及び添加については試験例3と同様の手法で行い、37 ℃、5%CO2条件下で培養した。
 核酸添加4日後に細胞を回収し、遠心操作を行った後に洗浄溶液で一度洗浄操作を行い、その後は試験例1と同様の手法でmRNAの発現量を測定した。
 B2M遺伝子の測定にはタックマンプローブHs00984230_m1 (アプライドバイオシステムズ社製) を、GAPDH遺伝子の測定にはHs02758991_g1 (アプライドバイオシステムズ社製)を用い、反応試薬にはTaqMan Gene Expression Master Mixを用いて添付のプロトコルに従って実施した。siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図4に示す。
 被験サンプル (KsiRC_010)は, 比較対照 (KsiRC_CTR_001)に比べ顕著なノックダウン活性の向上を示した。
試験例5:B2M-siRNAを用いたヒト単球由来樹状細胞のタンパク質ノックダウン試験
 試験例3と同様の手順で樹状細胞を誘導し、培養開始から6日後に超低吸着96 wellプレートに細胞を播種した。
 被験サンプルとしてKsiRC_010, KsiRC_003, KsiRC_004, KsiRC_005, KsiRC_006, KsiRC_008, KsiRC_001, KsiRC_002, KsiRC_007を用い、比較対照にはリガンドを有さないKsiRC_CTR_001、KsiRC_008のsiRNA配列を変更したコントロール体KsiRC_009 (GAPDH標的配列)を設けた。各siRNAの最終濃度は1 μmol/L, 0.3 μmol/Lの2点、N=1で実施し、核酸を含まない陰性対照群に関してはN=2で実施した。
 核酸複合体溶液の希釈については以下の手順で行った。クエン酸緩衝液に20 μMで調製された各核酸をオプティメムで5 μMに希釈し、更なる溶液の希釈にはクエン酸緩衝液とオプティメムが1対3となるように調製した溶液を用い希釈を行った。希釈した核酸複合体溶液を20 μLずつ細胞溶液に添加し、陰性対照群には希釈溶液を20 μL添加して37 ℃、5%CO2条件下で培養した。
 核酸添加4日後細胞を回収し、遠心操作を行った後に、洗浄溶液で一度洗浄操作を行った。上清を除いた後にFcRブロッキング溶液を75 μLずつ添加し、氷上30分静置することでブロッキング反応を行った。
 新しいプレートにB2Mに対する抗体 (APC anti-human β2-microglobulin Antibody, Biolegend社製, 316312) 5 μL、LIVE/DEAD(登録商標) Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific社 L34957) 1 μL、HLA-DRに対する抗体 (Brilliant Violet 421TM anti-human HLA-DR Antibody, Biolegend社製, 307635) 5 μL、CD11cに対する抗体 (PE anti-human CD11c Antibody, Biolegend社製, 301606) 5 μLを含む混合液を用意し、ブロッキング操作をした細胞溶液を65uL加え氷上で1時間静置した。
 その後細胞を回収し、洗浄溶液で3回洗浄を行ったのちに、200 μLに再懸濁してBD FACSVerseTM フローサイトメーター (ベクトン・ディッキンソン社製)にて測定した。
 解析ではFlowJo 7.6.5を用いた。前方散乱光 (FSC)と側方散乱光 (SSC)で細胞にゲートをかけ、LIVE DEADの陰性画分を生細胞としてHLA-DR及びCD11c陽性画分を解析対象とした。APCチャネルの平均蛍光強度として幾何平均 (Geometric means of the fluorescence intensity)の値により、細胞表面抗原の発現量を測定した。
 得られた値を図5に示す。陰性対照群については平均値を示す。被験サンプル (KsiRC_010, KsiRC_003, KsiRC_004, KsiRC_005, KsiRC_006, KsiRC_008, KsiRC_001, KsiRC_002, KsiRC_007)は、比較対照 (KsiRC_CTR_001, KsiRC_009)に比べ、顕著なB2Mタンパク質のノックダウンを示した。
試験例6: B2M-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験
 X-VIVO15TM培地 (X-VIVOTM 15 Chemically Defined, Serum-free Hematopoietic Cell Medium, Lonza社製, 04-418Q)を用い、ヒトCD14陽性単球細胞 (Untouched Frozen NPB-CD14+ Monocytes, Allcells社製, PB011F)を添付のプロトコルに従って融解した。
 その後、組み換えヒトインターロイキン-4 (Recombinant Human IL-4 Protein, R&D System社製, 204-IL)(以下IL-4と記載)を最終濃度100 ng/mL、組み換えヒト顆粒球単球コロニー刺激因子 (Human GM-CSF premium grade, Miltenyi Biotec社製, 130-093-864, 130-093-865) (以下GM-CSFと記載)を最終濃度100 ng/mLとなるように添加し、106 cells/mLの密度で6 wellプレート (Falcon(R) マルチウェルセルカルチャープレート 6 well, Corning社製, 353046)に播種し、37 ℃、5%CO2条件下で培養した。培養開始から2日後及び3日後に培地を交換し、樹状細胞へ誘導した。
 培養開始から6日後に細胞を回収し、また接着細胞もエチレンジアミン四酢酸溶液 (0.2g/L‐EDTA Solution, ナカライテスク社製, 14367-74)を用いて回収した。遠心操作の後に新しいIL-4 100 ng/mL及びGM-CSF 100 ng/mLを含むX-VIVO15TM培地に500,000 cells/mLとなるよう再懸濁させ、超低吸着96wellプレート (Corning社製, 3474)に200 μLずつ播種し、37 ℃、5%CO2条件下でさらに3日間培養した。
 培養開始から9日後に細胞を回収し、遠心操作の後に新しいIL-4 100 ng/mL及びGM-CSF 100 ng/mLを含むX-VIVO15TM培地に625,000 cells/mLとなるよう再懸濁させ、超低吸着96wellプレートに80μLずつ播種した。
 被験サンプルとしてはKsiRC_025, KsiRC_027及びKsiRC_029を用い、比較対照としてリガンドを持たないKsiRC_CTR_001を設けた。各siRNAの最終濃度は0.3 μmol/L, 0.1 μmol/L、N=3で実施した。
 試験例1-5と同様にオプティメム (Opti-MEM(登録商標) I Reduced Serum Medium, Life technologies社製, 31985-070, 31985-088)を用いて希釈した核酸複合体溶液を20 μLずつ細胞溶液に添加、陰性対照群には希釈溶液を20 μL添加して、37 ℃、5%CO2条件下で4日間培養した。
 核酸添加4日後に細胞を回収し、その後は試験例4と同様の手法でmRNAの発現量を測定した。
 siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図6に示す。
被験サンプル (KsiRC_025, KsiRC_027及びKsiRC_029)は, 比較対照 (KsiRC_CTR_001)に比べ顕著なノックダウン活性の向上を示した。
試験例7: B2M-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験
 試験例6と同様の手法でヒト単球由来樹状細胞を誘導し、各種B2M siRNAの活性を評価した。
 被験サンプルとしてはKsiRC_030, KsiRC_031, KsiRC_032, KsiRC_015, KsiRC_016, KsiRC_018, KsiRC_019及びKsiRC_017を用い、比較対照としてリガンドを持たないKsiRC_CTR_001を設けた。各siRNAの最終濃度は0.03 μmol/L, 0.01 μmol/L、N=3で実施した。
 核酸添加4日後に細胞を回収し、その後は試験例6と同様の手法でmRNAの発現量を測定した。
 siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図7に示す。
 被験サンプル (KsiRC_030, KsiRC_031, KsiRC_032, KsiRC_015, KsiRC_016, KsiRC_018, KsiRC_019及びKsiRC_017)は, 比較対照 (KsiRC_CTR_001)に比べノックダウン活性の向上を示した。
試験例8: B2M-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験
 試験例6と同様の手法でヒト単球由来樹状細胞を誘導し、各種B2M siRNAの活性を評価した。
 被験サンプルとしてはKsiRC_020を用い、比較対照としてリガンドを持たないKsiRC_CTR_001を設けた。各siRNAの最終濃度は0.03 μmol/L, 0.01 μmol/L、N=3で実施した。
 核酸添加4日後に細胞を回収し、その後は試験例7と同様の手法でmRNAの発現量を測定した。
 siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図8に示す。
 被験サンプル (KsiRC_020)は, 比較対照 (KsiRC_CTR_001)に比べノックダウン活性の向上を示した。
試験例9: B2M-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験
 試験例6と同様の手法でヒト単球由来樹状細胞を誘導し、各種B2M siRNAの活性を評価した。
 被験サンプルとしてはKsiRC_023, KsiRC_024, KsiRC_021及びKsiRC_028を用い、比較対照としてリガンドを持たないKsiRC_CTR_001を設けた。各siRNAの最終濃度は0.03 μmol/L, 0.01 μmol/L、N=3で実施した。
 核酸添加4日後に細胞を回収し、その後は試験例8と同様の手法でmRNAの発現量を測定した。
 siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図9に示す。
 被験サンプル (KsiRC_023, KsiRC_024, KsiRC_021, KsiRC_028)は, 比較対照(KsiRC_CTR_001)に比べノックダウン活性の向上を示した。
試験例10: B2M-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験
 試験例6と同様の手法でヒト単球由来樹状細胞を誘導し、各種B2M siRNAの活性を評価した。
 被験サンプルとしてはKsiRC_035, KsiRC_036, KsiRC_022, KsiRC_033, KsiRC_034)を用い、比較対照としてリガンドを持たないKsiRC_CTR_001を設けた。各siRNAの最終濃度は0.01 μmol/L, 0.003 μmol/L、N=3で実施した。
 核酸添加4日後に細胞を回収し、その後は試験例9と同様の手法でmRNAの発現量を測定した。
 siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図10に示す。
 被験サンプル (KsiRC_035, KsiRC_036, KsiRC_022, KsiRC_033, KsiRC_034)は, 比較対照 (KsiRC_CTR_001)に比べノックダウン活性の向上を示した。
試験例11: B2M-siRNAを用いた成熟ヒト単球由来樹状細胞のmRNAノックダウン試験
 試験例6と同様の手法でヒト単球由来樹状細胞を誘導し、培養開始から6日後に細胞を回収後、新しいIL-4 100 ng/mL及びGM-CSF 100 ng/mLを含むX-VIVO15TM培地に500,000 cells/mLとなるよう再懸濁させ、超低吸着96wellプレート (Corning社製, 3474)に200μLずつ播種した。この際、特許記載のCD40 抗体(国際公開第02/088186号,Clone:KM341-1-19)を添加し、37 ℃、5%CO2条件下で3日間培養することで成熟樹状細胞を調製した。
 培養開始から9日後に細胞を回収し、遠心操作の後に新しいIL-4 100 ng/mL及びGM-CSF 100 ng/mL, CD40抗体を含むX-VIVO15TM培地に625,000 cells/mLとなるよう再懸濁させ、超低吸着96wellプレート (Corning社製, 3474)に80μLずつ播種した。
 被験サンプルとしてはKsiRC_003, KsiRC_031, KsiRC_001を用い、比較対照としてリガンドを持たないKsiRC_CTR_001を設けた。各siRNAの最終濃度は0.3 μmol/L, 0.1 μmol/L、N=3で実施した。
 試験例1-5と同様にオプティメムを用いて希釈した核酸複合体溶液を20 μLずつ細胞溶液に添加、陰性対照群には希釈溶液を20 μL添加して、37 ℃、5%CO2条件下で4日間培養した。
 核酸添加4日後に細胞を回収し、その後は試験例10と同様の手法でmRNAの発現量を測定した。siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図11に示す。
 被験サンプル (KsiRC_003, KsiRC_031, KsiRC_001)は, 比較対照(KsiRC_CTR_001)に比べノックダウン活性の向上を示した。
試験例12:ヒポキサンチン-グアニンホスホリボシル卜ランスフェラ一ゼ1(以下HPRT1と記載)-siRNAを用いたヒト単球由来樹状細胞のmRNAノックダウン試験
 試験例11と同様の手法で成熟ヒト単球由来樹状細胞を誘導し、各種HPRT1 siRNAの活性を評価した。
 被験サンプルとしてはKsiRC_037を用い、比較対照としてリガンドを持たないKsiRC_CTR_002を設けた。各siRNAの最終濃度は0.3 μmol/L, 0.1 μmol/L, 0.03 μmol/L、N=3で実施した。
 核酸添加4日後に細胞を回収し、その後は試験例11と同様の手法でmRNAの発現量を測定した。
 HPRT1遺伝子の測定にはタックマンプローブHs99999909_m1 (アプライドバイオシステムズ社製) を、GAPDH遺伝子の測定にはHs02758991_g1 (アプライドバイオシステムズ社製)を用い、反応試薬にはTaqMan Gene Expression Master Mixを用いて添付のプロトコルに従って実施した。siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、HPRT1のmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図12に示す。
 被験サンプル (KsiRC_037)は, 比較対照 (KsiRC_CTR_002)に比べノックダウン活性の向上を示した。
試験例13: B2M-siRNAを用いたヒト単球由来マクロファージ細胞のmRNAノックダウン試験
 X-VIVO15TM培地を用い、ヒトCD14陽性単球細胞 (Untouched Frozen NPB-CD14+ Monocytes, Allcells社製, PB011F)を添付のプロトコルに従って融解した。
 その後、GM-CSFを最終濃度100 ng/mLとなるように添加し、375,000 cells/mLの密度に希釈後、96 wellプレート (NuncTM MicroWellTM 96-Well Microplates, Thermo Fisher Scientific社製, 167008)に200 μL播種、37 ℃、5%CO2条件下で培養することで単球由来マクロファージ細胞を調製した。
 培養開始から7日後に上清を除去し、新しい GM-CSF 125 ng/mLを含むX-VIVO15TM培地を80 μLずつ添加した。
 被験サンプルとしてはKsiRC_001, KsiRC_030, KsiRC_031及びKsiRC_032を用い、比較対照としてリガンドを持たないKsiRC_CTR_001を設けた。各siRNAの最終濃度は1 μmol/L, 0.3 μmol/L, 0.1 μmol/L、N=3で実施した。
 試験例1-5と同様にオプティメムを用いて希釈した核酸複合体溶液を20 μLずつ細胞溶液に添加、陰性対照群には希釈溶液を20 μL添加して、37 ℃、5%CO2条件下で4日間培養した。
 核酸添加4日後に細胞を回収し、その後は試験例12と同様の手法でmRNAの発現量を測定した。siRNA導入検体の標的mRNA量は、siRNA未導入群 (陰性対照群)における、B2MのmRNA量を1としたときの相対的な割合として算出した。そのmRNA量の相対的な割合を平均±標準偏差で表した結果を図13に示す。
被験サンプル (KsiRC_001, KsiRC_030, KsiRC_031及びKsiRC_032)は, 比較対照 (KsiRC_CTR_001)に比べノックダウン活性の向上を示した。
 本発明の核酸複合体は、哺乳動物に投与して、生体内において、各種関連疾患を治療するために用いることができる。
 配列番号1は、CD45-ASOの塩基配列を示す。
 配列番号2は、ApoB-ASOの塩基配列を示す。
 配列番号3は、B2M-ASOの塩基配列を示す。
 配列番号4は、B2M-ssRNAの塩基配列を示す。
 配列番号5は、B2M-asRNAの塩基配列を示す。
 配列場号6は、GAPDH-ssRNAの塩基配列を示す。
 配列番号7は、GAPDH-asRNAの塩基配列を示す。
 配列番号8は、Hprt-1ssRNAの塩基配列を示す。
 配列番号9は、Hprt-1asRNAの塩基配列を示す。

Claims (20)

  1.  糖鎖リガンドがリンカーを介してオリゴヌクレオチドと結合した核酸複合体であって、糖鎖リガンドが、糖鎖リガンドの非還元末端にO結合マンノースを有する、核酸複合体。
  2.  糖鎖リガンドが、CD209および/またはCD206に結合親和性を示す構造を有する、請求項1に記載の核酸複合体。
  3.  糖鎖リガンドが、O結合マンノースの1位でエーテル結合を介してシクロヘキサン骨格と結合している、請求項1または2に記載の核酸複合体。
  4.  糖鎖リガンドが、下記構造を有する、請求項1~3のいずれか1項に記載の核酸複合体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     RおよびRは、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
     YおよびYは、それぞれ独立して、酸素原子、硫黄原子、およびNR3からなる群から選択される基であり、
     R3は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
  5. Figure JPOXMLDOC01-appb-C000002
    (式中、
     R およびR は、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
     Y およびY は、それぞれ独立して、酸素原子、硫黄原子、およびNR3 からなる群から選択される基であり、
     R3 は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
  6.  YおよびYまたはY およびY がNHである、請求項4または5に記載の核酸複合体。
  7.  RおよびRまたはR およびR が置換または非置換のアラルキル基である、請求項6に記載の核酸複合体。
  8.  糖鎖リガンドが、下記構造で示される、請求項1~7のいずれか1項に記載の核酸複合体。
    Figure JPOXMLDOC01-appb-C000003
    (式中、
     R ’’およびR ’’は、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
     Y ’’およびY ’’は、それぞれ独立して、酸素原子、硫黄原子、およびNR ’’からなる群から選択される基であり、
     R ’’は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
  9.  糖鎖リガンドが、下記構造で示される、請求項8に記載の核酸複合体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     R ’’’およびR ’’’は、それぞれ独立して、水素原子、置換または非置換の炭素数1~20のアルキル基、置換または非置換の炭素数2~20のアルケニル基、置換または非置換の炭素数3~20のアルキニル基、置換または非置換のアリール基、置換または非置換のヘテロアリール基、置換または非置換のヘテロ脂環基、および置換または非置換のアラルキル基からなる群から選択される基であり、
     Y ’ ’’およびY ’ ’’は、それぞれ独立して、酸素原子、硫黄原子、およびNR ’’からなる群から選択される基であり、
     R ’ ’’は、水素原子あるいは置換または非置換の炭素数1~20のアルキル基である。)
  10.  糖鎖リガンドを2~8個有する、請求項1~9のいずれか1項に記載の核酸複合体。
  11.  リンカーが、下記構造のいずれかの構造を有する、請求項1~10のいずれか1項に記載の核酸複合体。
    Figure JPOXMLDOC01-appb-C000005
    (式中、
     Xは、CHまたは窒素原子である。
     X~Xは、それぞれ独立して、CHまたは窒素原子である。)
  12.  リンカーが、下記構造を有する、請求項1~11のいずれか1項に記載の核酸複合体。
    Figure JPOXMLDOC01-appb-C000006
  13.  リンカーが、下記構造を有する、請求項1~12のいずれか1項に記載の核酸複合体。
    Figure JPOXMLDOC01-appb-C000007
    (式中、
     n1は、1~100の整数である。)
  14.  リンカーが、下記構造のいずれかの構造を有する、請求項1~12のいずれか1項に記載の核酸複合体。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    (式中、
     n2およびn3は、それぞれ独立して、1~100の整数である。)
  15.  前記オリゴヌクレオチドが修飾ヌクレオチドを含む、請求項1~14のいずれか1項に記載の核酸複合体。
  16.  請求項1~15のいずれか1項に記載の核酸複合体を含む、医薬組成物。
  17.  細胞内に導入するための、請求項16に記載の医薬組成物。
  18.  前記細胞が樹状細胞またはマクロファージである、請求項17に記載の医薬組成物。
  19.  静脈内投与または皮下投与される、請求項16~18のいずれか1項に記載の医薬組成物。
  20.  請求項1~15のいずれか1項に記載の核酸複合体または請求項16~19のいずれか1項に記載の医薬組成物を、それを必要とする患者に投与することを含む、疾患の治療または予防方法。
PCT/JP2017/024268 2016-06-30 2017-06-30 核酸複合体 WO2018004004A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3029508A CA3029508A1 (en) 2016-06-30 2017-06-30 Nucleic acid conjugate
ES17820358T ES2952757T3 (es) 2016-06-30 2017-06-30 Complejo de ácidos nucleicos
CN201780040847.4A CN109415401B (zh) 2016-06-30 2017-06-30 核酸复合物
JP2018525319A JP7022687B2 (ja) 2016-06-30 2017-06-30 核酸複合体
EP17820358.4A EP3498724B1 (en) 2016-06-30 2017-06-30 Nucleic acid complex
AU2017287536A AU2017287536B9 (en) 2016-06-30 2017-06-30 Nucleic acid complex
US16/314,015 US12251446B2 (en) 2016-06-30 2017-06-30 Nucleic acid conjugate
KR1020197002874A KR102520362B1 (ko) 2016-06-30 2017-06-30 당쇄 리간드가 링커를 통해 올리고뉴클레오티드와 결합한 핵산 복합체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-131054 2016-06-30
JP2016131054 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018004004A1 true WO2018004004A1 (ja) 2018-01-04

Family

ID=60786901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024268 WO2018004004A1 (ja) 2016-06-30 2017-06-30 核酸複合体

Country Status (10)

Country Link
US (1) US12251446B2 (ja)
EP (1) EP3498724B1 (ja)
JP (1) JP7022687B2 (ja)
KR (1) KR102520362B1 (ja)
CN (1) CN109415401B (ja)
AU (1) AU2017287536B9 (ja)
CA (1) CA3029508A1 (ja)
ES (1) ES2952757T3 (ja)
TW (1) TWI746590B (ja)
WO (1) WO2018004004A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027009A1 (ja) * 2017-08-02 2019-02-07 協和発酵キリン株式会社 核酸複合体
WO2019027015A1 (ja) * 2017-08-02 2019-02-07 協和発酵キリン株式会社 核酸複合体
WO2021153687A1 (ja) 2020-01-30 2021-08-05 エーザイ・アール・アンド・ディー・マネジメント株式会社 核酸複合体及びそれを含む医薬組成物
EP3902813A4 (en) * 2018-12-28 2022-05-04 Sirnaomics, Inc. TARGETED DELIVERY OF THERAPEUTIC MOLECULES

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3012967A1 (en) * 2016-01-29 2017-08-03 Kyowa Hakko Kirin Co., Ltd. Nucleic acid conjugate
WO2021060506A1 (ja) * 2019-09-27 2021-04-01 Agc株式会社 パーフルオロアルキル基含有核酸及びその製造方法
EP4326334A1 (en) 2021-04-23 2024-02-28 GanNA Bio, Inc. Glycan modified nucleic acids, methods of preparation, and therapeutic uses
WO2023187760A1 (en) * 2022-04-01 2023-10-05 Genevant Sciences Gmbh Mannose-targeted compositions
WO2024086767A2 (en) * 2022-10-21 2024-04-25 Ganna Bio, Inc. Glycan conjugate compositions and methods

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804683A (en) 1992-05-14 1998-09-08 Ribozyme Pharmaceuticals, Inc. Deprotection of RNA with alkylamine
US5831071A (en) 1992-05-14 1998-11-03 Ribozyme Pharmaceuticals, Inc. Synthesis deprotection analysis and purification of RNA and ribozymes
US5998203A (en) 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
US6008400A (en) 1995-06-09 1999-12-28 Scaringe; Stephen Orthoester reagents for use as protecting groups in oligonucleotide synthesis
US6111086A (en) 1998-02-27 2000-08-29 Scaringe; Stephen A. Orthoester protecting groups
US6117657A (en) 1993-09-02 2000-09-12 Ribozyme Pharmaceuticals, Inc. Non-nucleotide containing enzymatic nucleic acid
US6437117B1 (en) 1992-05-14 2002-08-20 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification for RNA and ribozymes
WO2002088186A1 (en) 2001-04-27 2002-11-07 Kirin Beer Kabushiki Kaisha Anti-cd40 monoclonal antibody
WO2005113571A2 (en) 2004-05-13 2005-12-01 The University Of North Carolina At Chapel Hill Methods for the delivery of oligomeric compounds
WO2006093524A2 (en) 2004-07-16 2006-09-08 The General Hospital Corporation Antigen-carbohydrate conjugates
WO2009073809A2 (en) 2007-12-04 2009-06-11 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
WO2011000721A1 (en) 2009-07-03 2011-01-06 Universita' Degli Studi Di Milano Inhibitors of microbial infections
WO2013075035A1 (en) 2011-11-18 2013-05-23 Alnylam Pharmaceuticals Rnai agents, compositions and methods of use thereof for treating transthyretin (ttr) associated diseases
WO2013173637A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating gene expression
WO2013173601A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating bdnf expression
WO2014179620A1 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
WO2015006740A2 (en) 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
WO2015069932A1 (en) * 2013-11-06 2015-05-14 Solstice Biologics, Ltd. Polynucleotide constructs having disulfide groups
WO2015105083A1 (ja) 2014-01-07 2015-07-16 塩野義製薬株式会社 アンチセンスオリゴヌクレオチド及び糖誘導体を含む二本鎖オリゴヌクレオチド
WO2017010575A1 (ja) 2015-07-16 2017-01-19 協和発酵キリン株式会社 β2GPI遺伝子発現抑制核酸複合体
WO2017131236A1 (ja) * 2016-01-29 2017-08-03 協和発酵キリン株式会社 核酸複合体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301872B2 (ja) 2007-08-29 2013-09-25 国立大学法人東北大学 チオール基含有感紫外線化合物および、その用途
JP2013075035A (ja) 2011-09-30 2013-04-25 Canon Inc 光断層像撮像方法、光断層像撮像装置およびプログラム
EP3230393B1 (en) * 2014-12-12 2019-04-24 Marcella Chiari New clickable polymers and gels for microarray and other applications

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804683A (en) 1992-05-14 1998-09-08 Ribozyme Pharmaceuticals, Inc. Deprotection of RNA with alkylamine
US5831071A (en) 1992-05-14 1998-11-03 Ribozyme Pharmaceuticals, Inc. Synthesis deprotection analysis and purification of RNA and ribozymes
US6353098B1 (en) 1992-05-14 2002-03-05 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US6437117B1 (en) 1992-05-14 2002-08-20 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification for RNA and ribozymes
US6469158B1 (en) 1992-05-14 2002-10-22 Ribozyme Pharmaceuticals, Incorporated Synthesis, deprotection, analysis and purification of RNA and ribozymes
US6117657A (en) 1993-09-02 2000-09-12 Ribozyme Pharmaceuticals, Inc. Non-nucleotide containing enzymatic nucleic acid
US6362323B1 (en) 1993-09-02 2002-03-26 Ribozyme Pharmaceuticals, Inc. Non-nucleotide containing nucleic acid
US6008400A (en) 1995-06-09 1999-12-28 Scaringe; Stephen Orthoester reagents for use as protecting groups in oligonucleotide synthesis
US5998203A (en) 1996-04-16 1999-12-07 Ribozyme Pharmaceuticals, Inc. Enzymatic nucleic acids containing 5'-and/or 3'-cap structures
US6111086A (en) 1998-02-27 2000-08-29 Scaringe; Stephen A. Orthoester protecting groups
WO2002088186A1 (en) 2001-04-27 2002-11-07 Kirin Beer Kabushiki Kaisha Anti-cd40 monoclonal antibody
WO2005113571A2 (en) 2004-05-13 2005-12-01 The University Of North Carolina At Chapel Hill Methods for the delivery of oligomeric compounds
WO2006093524A2 (en) 2004-07-16 2006-09-08 The General Hospital Corporation Antigen-carbohydrate conjugates
WO2009073809A2 (en) 2007-12-04 2009-06-11 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
WO2011000721A1 (en) 2009-07-03 2011-01-06 Universita' Degli Studi Di Milano Inhibitors of microbial infections
WO2013075035A1 (en) 2011-11-18 2013-05-23 Alnylam Pharmaceuticals Rnai agents, compositions and methods of use thereof for treating transthyretin (ttr) associated diseases
WO2013173637A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating gene expression
WO2013173601A1 (en) 2012-05-16 2013-11-21 Rana Therapeutics, Inc. Compositions and methods for modulating bdnf expression
WO2014179620A1 (en) 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
WO2014179629A2 (en) * 2013-05-01 2014-11-06 Isis Pharmaceuticals, Inc. Compositions and methods
WO2015006740A2 (en) 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
WO2015069932A1 (en) * 2013-11-06 2015-05-14 Solstice Biologics, Ltd. Polynucleotide constructs having disulfide groups
WO2015105083A1 (ja) 2014-01-07 2015-07-16 塩野義製薬株式会社 アンチセンスオリゴヌクレオチド及び糖誘導体を含む二本鎖オリゴヌクレオチド
WO2017010575A1 (ja) 2015-07-16 2017-01-19 協和発酵キリン株式会社 β2GPI遺伝子発現抑制核酸複合体
WO2017131236A1 (ja) * 2016-01-29 2017-08-03 協和発酵キリン株式会社 核酸複合体

Non-Patent Citations (36)

* Cited by examiner, † Cited by third party
Title
"March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure"
"Organic & Biomolecular chemistry", vol. 13, 2015, pages: 1778 - 1791
"The Fourth Series of Experimental Chemistry", vol. 19, 1992, MARUZEN CO., LTD., article "Synthesis of Organic Compound I"
"The Fourth Series of Experimental Chemistry", vol. 20, 1992, MARUZEN CO., LTD., article "Synthesis of Organic Compound II"
"The Fourth Series of Experimental Chemistry, Organic Synthesis", 1992, MARUZEN CO., LTD, pages: 258
ACC. CHEM. RES., vol. 32, 1999, pages 624
ACS CHEMICAL BIOLOGY, vol. 5, 2010, pages 301 - 312
ACS CHEMICAL BIOLOGY, vol. 5, no. 3, 2010, pages 301 - 312
ACS NANO, vol. 9, 2015, pages 9652 - 9664
BIOCONJUGATE CHEMISTRY, vol. 14, 2003, pages 232 - 238
BIOCONJUGATE CHEMISTRY, vol. 22, 2011, pages 1723 - 1728
CHEM BIO CHEM, vol. 13, 2012, pages 2513
CHEM. COMMUN., vol. 51, 2015, pages 9737
CHEMISTRY A EUROPEAN JOURNAL, vol. 19, 2013, pages 4786 - 4797
CHEMISTRY EUROPEAN JOURNAL, vol. 19, 2013, pages 4786 - 4797
HEPATOLOGY, vol. 59, 2014, pages 216
J. AM. CHEM. SOC., vol. 122, 2000, pages 6900
J. AM. CHEM. SOC., vol. 123, 2001, pages 4653
JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 136, 2014, pages 16958 - 16961
MOLECULAR DIVERSITY, vol. 15, 2011, pages 347 - 360
MOLECULES, vol. 17, 2012, pages 13825 - 13843
MOLECULES, vol. 17, 2012, pages 13825 - 13854
NATURE REVIEWS IMMUNOLOGY, vol. 3, 2003, pages 697 - 709
NATURE REVIEWS IMMUNOLOGY, vol. 9, 2009, pages 465 - 479
NUCLEIC ACID RESEARCH, vol. 32, 2004, pages e175
NUCLEIC ACID RESEARCH, vol. 35, 2007, pages 3287
NUCLEIC ACID RESEARCH, vol. 41, 2013, pages 10086
NUCLEIC ACIDS RESEARCH, vol. 30, 1993, pages 2435
NUCLEIC ACIDS RESEARCH, vol. 32, 1998, pages 936
OBERMAJER, N. ET AL.: "Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists", MOLECULAR DIVERSITY, vol. 15, 2011, pages 347 - 60, XP007918908, DOI: doi:10.1007/s11030-010-9285-y *
T.W. GREENE: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS INC
T.W. GREENE: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS INC.
TETRAHEDRON LETTERS, vol. 38, 1997, pages 8735
TETRAHEDRON, vol. 54, 1998, pages 3607
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 75, 2010, pages 1569
VARGA, NORBERT ET AL.: "Selective Targeting of Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin (DC-SIGN) with Mannose-Based Glycomimetics: Synthesis and Interaction Studies of Bis(benzylamide) Derivatives of a Pseudomannobioside", CHEMISTRY -A EUROPEAN JOURNAL, vol. 19, no. 15, 18 February 2013 (2013-02-18), pages 4786 - 97, XP055601003, DOI: 10.1002/chem.201202764 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027009A1 (ja) * 2017-08-02 2019-02-07 協和発酵キリン株式会社 核酸複合体
WO2019027015A1 (ja) * 2017-08-02 2019-02-07 協和発酵キリン株式会社 核酸複合体
EP3902813A4 (en) * 2018-12-28 2022-05-04 Sirnaomics, Inc. TARGETED DELIVERY OF THERAPEUTIC MOLECULES
CN115244064A (zh) * 2018-12-28 2022-10-25 圣诺制药公司 治疗性分子的靶向递送
WO2021153687A1 (ja) 2020-01-30 2021-08-05 エーザイ・アール・アンド・ディー・マネジメント株式会社 核酸複合体及びそれを含む医薬組成物
EP4071163A4 (en) * 2020-01-30 2024-03-20 Eisai R&D Management Co., Ltd. NUCLEIC ACID COMPLEX AND PHARMACEUTICAL COMPOSITION CONTAINING SAME

Also Published As

Publication number Publication date
US12251446B2 (en) 2025-03-18
US20190192674A1 (en) 2019-06-27
AU2017287536B2 (en) 2021-03-11
ES2952757T3 (es) 2023-11-03
KR102520362B1 (ko) 2023-04-10
EP3498724B1 (en) 2023-06-21
CN109415401B (zh) 2023-02-03
CN109415401A (zh) 2019-03-01
TW201803572A (zh) 2018-02-01
CA3029508A1 (en) 2018-01-04
TWI746590B (zh) 2021-11-21
EP3498724A4 (en) 2020-03-18
JP7022687B2 (ja) 2022-02-18
AU2017287536A1 (en) 2019-02-21
EP3498724A1 (en) 2019-06-19
JPWO2018004004A1 (ja) 2019-04-18
KR20190022832A (ko) 2019-03-06
AU2017287536B9 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
JP7022687B2 (ja) 核酸複合体
JP6853193B2 (ja) 核酸複合体
WO2017010575A1 (ja) β2GPI遺伝子発現抑制核酸複合体
WO2012074038A1 (ja) 修飾1本鎖ポリヌクレオチド
TW201909925A (zh) 核酸複合體
KR20240070519A (ko) 1'-알킬 개질된 리보스 유도체 및 사용 방법
KR20240082361A (ko) 올리고뉴클레오티드의 생체내 전달에 사용하기 위한 2'-알킬 또는 3'-알킬 변형된 리보스 유도체
WO2020111280A1 (ja) 核酸複合体
WO2019027009A1 (ja) 核酸複合体
KR20240169616A (ko) 5'-변형된 카르보시클릭 리보뉴클레오티드 유도체 및 사용 방법
JP2019024444A (ja) 核酸複合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018525319

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3029508

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197002874

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017820358

Country of ref document: EP

Effective date: 20190130

ENP Entry into the national phase

Ref document number: 2017287536

Country of ref document: AU

Date of ref document: 20170630

Kind code of ref document: A