[go: up one dir, main page]

WO2018003828A1 - Suspension control device - Google Patents

Suspension control device Download PDF

Info

Publication number
WO2018003828A1
WO2018003828A1 PCT/JP2017/023679 JP2017023679W WO2018003828A1 WO 2018003828 A1 WO2018003828 A1 WO 2018003828A1 JP 2017023679 W JP2017023679 W JP 2017023679W WO 2018003828 A1 WO2018003828 A1 WO 2018003828A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping force
vehicle
lateral acceleration
unit
control device
Prior art date
Application number
PCT/JP2017/023679
Other languages
French (fr)
Japanese (ja)
Inventor
隆介 平尾
賢太郎 糟谷
修之 一丸
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018003828A1 publication Critical patent/WO2018003828A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements

Definitions

  • the present invention relates to a suspension control device suitably used for a vehicle such as a four-wheel automobile.
  • a configuration is known in which a lateral acceleration is calculated from a vehicle steering angle and a vehicle speed, and a target damping force of each suspension provided in the vehicle is calculated using the lateral acceleration.
  • a target damping force of each suspension provided in the vehicle is calculated using the lateral acceleration.
  • there is also known one that compensates for a change in steering torque when vehicle behavior stabilization control is performed see, for example, Patent Document 1).
  • An object of the present invention is to provide a suspension control device that can suppress a roll acting on a vehicle.
  • a suspension control apparatus is provided between a vehicle body and a wheel of a vehicle, a damping force adjustment type shock absorber capable of adjusting a generated damping force, and a steering torque of a steering provided in the vehicle.
  • a steering torque information acquisition unit that acquires information, and controls a damping force generated by the damping force adjusting shock absorber according to an acquisition result of the steering torque information acquisition unit.
  • a suspension control device is provided between a vehicle body and a wheel of a vehicle, and a damping force adjustment type shock absorber capable of adjusting a generated damping force, and a steering provided in the vehicle.
  • a steering torque information acquisition unit that acquires steering torque information; and an unsprung resonance extraction unit that extracts an unsprung resonance frequency component from the acquisition result of the steering torque information acquisition unit, the extraction result of the unsprung resonance extraction unit Based on the above, adjustment control of the damping force generated by the damping force adjusting type shock absorber is performed.
  • FIG. 1 is a circuit diagram showing an electric circuit of a four-wheeled vehicle equipped with a suspension control device according to a first embodiment of the present invention. It is a control block diagram which shows the suspension control apparatus in FIG. It is a control block diagram which shows the suspension control apparatus by 2nd Embodiment. It is a control block diagram which shows the suspension control apparatus by 3rd Embodiment.
  • a vehicle body 1 constitutes the body of a four-wheeled vehicle, and a left front wheel 2A, a right front wheel 2B, a left rear wheel 3A, and a right rear wheel 3B are provided on the lower side of the vehicle body 1, for example. ing.
  • the left front wheel suspension device 4A (hereinafter referred to as FL damper 4A) is provided between the left front wheel 2A side and the vehicle body 1.
  • a right front wheel suspension device 4B (hereinafter referred to as FR damper 4B) is provided between the right front wheel 2B side and the vehicle body 1.
  • These dampers 4A and 4B are configured as, for example, hydraulic damping force adjustment type shock absorbers capable of adjusting the generated damping force.
  • the dampers 4A and 4B are provided with actuators (not shown) including damping force adjusting valves, solenoids, etc. in order to continuously adjust the damping force characteristics from hard characteristics (hard characteristics) to soft characteristics (soft characteristics). ) Is attached.
  • each damper 4A, 4B is comprised by the semi-active damper which controls the flow of a working fluid with an actuator, for example.
  • the damping force adjusting actuator is not necessarily configured to continuously change the damping force characteristic, and may be configured to intermittently adjust in two stages or three or more stages.
  • the dampers 4A and 4B only need to be able to switch the damping force, and may be pneumatic dampers or electromagnetic dampers.
  • the left rear wheel suspension device 5A (hereinafter referred to as RL damper 5A) is provided between the left rear wheel 3A side and the vehicle body 1.
  • the right rear wheel suspension device 5B (hereinafter referred to as the RR damper 5B) is provided between the right rear wheel 3B side and the vehicle body 1.
  • These dampers 5A and 5B are configured as hydraulic damping force adjusting shock absorbers that can adjust the generated damping force.
  • the dampers 5A and 5B are provided with actuators (not shown) including damping force adjusting valves, solenoids, etc., in order to continuously adjust the damping force characteristics from hard characteristics (hard characteristics) to soft characteristics (soft characteristics). ) Is attached.
  • each damper 5A, 5B is comprised by the semi-active damper which controls the flow of a working fluid with an actuator, for example.
  • the damping force adjusting actuator is not necessarily configured to continuously change the damping force characteristic, and may be configured to intermittently adjust in two stages or three or more stages.
  • the dampers 5A and 5B only need to be able to switch the damping force, and may be pneumatic dampers or electromagnetic dampers.
  • the steering angle sensor 6 detects a steering operation amount of the vehicle. That is, the steering angle sensor 6 detects a steering angle (corresponding to a front wheel steering angle ⁇ f described later) when the driver of the vehicle operates the steering 7 (steering wheel) during turning. Then, the steering angle sensor 6 outputs a detection signal (steering angle signal) to the control device 12 described later.
  • the vehicle speed sensor 8 detects a traveling speed of the vehicle (corresponding to a vehicle speed V described later).
  • the vehicle speed sensor 8 outputs a detection signal (vehicle speed signal) to the control device 12 described later.
  • the torque sensor 9 detects the steering torque (steering torque M described later) of the shaft 10 that is twisted by the steering force when the driver of the vehicle operates the steering 7. Then, the torque sensor 9 outputs the detection signal (torque signal) to the control device 12 described later.
  • the torque sensor 9 constitutes a steering torque information acquisition unit of the present invention. Note that the steering torque information acquisition unit may acquire and use information from a steering control device that controls the steering, in addition to the control device having means for detecting steering torque.
  • the vehicle height sensors 11A to 11D are for detecting the height dimension of the vehicle body 1.
  • the vehicle height sensor 11A is provided, for example, in the vicinity of the FL damper 4A, and the vehicle height sensor 11B is provided in the vicinity of the FR damper 4B.
  • the vehicle height sensor 11C is provided, for example, in the vicinity of the RL damper 5A, and the vehicle height sensor 11D is provided in the vicinity of the RR damper 5B. Then, the vehicle height sensors 11A to 11D output detection signals (height signal) to the control device 12 described later.
  • control device 12 that performs anti-roll control of the vehicle body 1 will be described.
  • the control device 12 is configured by a microcomputer or the like and is mounted on the vehicle body 1. When it is determined that the vehicle is in a roll state, the control device 12 performs control to increase the damping force generated by the FL damper 4A, the FR damper 4B, the RL damper 5A, and the RR damper 5B.
  • a steering angle sensor 6, a vehicle speed sensor 8, a torque sensor 9, and vehicle height sensors 11A to 11D are connected.
  • the output side of the control device 12 is connected to an actuator (not shown) of the FL damper 4A, the FR damper 4B, the RL damper 5A, the RR damper 5B, and the like.
  • the control device 12 includes a first roll rate calculation unit 13, a second roll rate calculation unit 16, a roll rate selection unit 20, a target damping force calculation unit 21, and a relative speed calculation unit 30. It is configured to include.
  • the second roll rate calculation unit 16, the roll rate selection unit 20, and the target damping force calculation unit 21 constitute a roll suppression control unit of the present invention.
  • the first roll rate calculation unit 13 for calculating the first roll rate R1 will be described.
  • the first roll rate calculation unit 13 estimates and calculates the first roll rate R1 from the detection result (steering torque M) of the torque sensor 9.
  • the first roll rate calculation unit 13 constitutes a first roll rate calculation unit of the present invention.
  • the first roll rate calculation unit 13 includes a lateral acceleration estimation unit 14 and a differentiation unit 15.
  • the lateral acceleration estimator 14 stores (stores) a map (not shown) indicating the correspondence between steering torque and lateral acceleration calculated by, for example, experiments. Therefore, the lateral acceleration estimation unit 14 can calculate the first lateral acceleration ⁇ y1 by inputting the torque signal (steering torque M) output from the torque sensor 9 to this map.
  • the differentiation unit 15 calculates a lateral jerk by differentiating the first lateral acceleration ⁇ y1. This lateral jerk almost coincides with the roll rate. In this way, the first roll rate calculation unit 13 can calculate the first roll rate R1 estimated from the steering torque M. The first roll rate R1 is output to the roll rate selection unit 20 described later.
  • the second roll rate calculation unit 16 estimates and calculates the second roll rate R2 from the steering angle (front wheel steering angle ⁇ f) detected by the steering angle sensor 6 and the vehicle speed V detected by the vehicle speed sensor 8. is there.
  • the second roll rate calculation unit 16 constitutes a second roll rate calculation unit of the present invention.
  • the second roll rate calculation unit 16 includes a vehicle model unit 17, a phase adjustment filter 18, and a differentiation unit 19.
  • the vehicle model unit 17 estimates the yaw rate r by using the vehicle model of the following equation 1 from the steering angle (front wheel rudder angle ⁇ f) and the vehicle speed V.
  • the yaw rate r can be obtained by the equation (1) when a linear model of the vehicle is assumed and dynamic characteristics are ignored.
  • V is the vehicle speed (m / s)
  • A is the stability factor (S2 / m2)
  • ⁇ f is the front wheel steering angle (rad)
  • Gf is the steering gear ratio
  • L is the wheelbase (m).
  • the relationship between the second lateral acceleration ⁇ y2 and the yaw rate r can be obtained by the following equation (2). That is, the second lateral acceleration ⁇ y2 is calculated by multiplying the calculated yaw rate r by the vehicle speed V.
  • the phase adjustment filter 18 is used to compensate for the dynamics from the vehicle steering angle to the occurrence of lateral acceleration.
  • the phase adjustment filter 18 is constituted by a secondary filter represented by, for example, a second-order lag equation.
  • the differentiation unit 19 differentiates the second lateral acceleration ⁇ y2 to calculate the lateral jerk.
  • the lateral jerk almost coincides with the roll rate.
  • the second roll rate calculation unit 16 can calculate the second roll rate R2 estimated from the front wheel steering angle ⁇ f and the vehicle speed V.
  • the second roll rate R2 is output to the roll rate selection unit 20 described later.
  • the roll rate selection unit 20 has a larger value between the first roll rate R1 calculated by the first roll rate calculation unit 13 and the second roll rate R2 calculated by the second roll rate calculation unit 16.
  • the roll rate (R1 or R2) is selected.
  • This roll rate selection unit 20 constitutes a roll rate selection unit of the present invention.
  • the control device 12 includes a first roll rate calculation unit 13 and a roll rate selection unit 20.
  • the first roll rate calculation unit 13 estimates and calculates the first roll rate R1 from the steering torque M acting on the steering 7 when the frictional force of the road surface changes.
  • the control device 12 uses the larger roll rate of the first roll rate R1 and the second roll rate R2 estimated and calculated based on the vehicle steering angle ⁇ f and the vehicle speed V to It is configured to perform roll control.
  • the target damping force calculation unit 21 that calculates the target damping force of each damper 4A, 4B, 5A, 5B will be described.
  • the target damping force calculation unit 21 calculates the target damping force of each damper 4A, 4B, 5A, 5B using the roll rate (R1 or R2) selected by the roll rate selection unit 20.
  • the target damping force calculation unit 21 constitutes a target damping force calculation unit of the present invention.
  • the target damping force calculation unit 21 includes target damping force calculation units 22 and 23, sign inversion units 24 and 25, and damper command value calculation units 26, 27, 28, and 29.
  • the target damping force calculation units 22 and 23 multiply the roll rate (R1 or R2) selected by the roll rate selection unit 20 by the Fr gain for the right front wheel 2B and the Rr gain for the right rear wheel 3B to suppress the roll.
  • the sign reversing units 24 and 25 multiply “ ⁇ 1” in order to reverse the roll damping target damping force between the left front wheel 2A and the left rear wheel 3A with the right front wheel 2B and the right rear wheel 3B.
  • the damper command value calculation units 26, 27, 28, and 29 store the target damping force and the relative speed estimated by the relative speed calculation unit 30 in advance.
  • the necessary current value is output from the characteristic map of the damper.
  • the relative speed calculation unit 30 can calculate the relative speed of the front wheels 2A and 2B by differentiating the difference between the detection value of the vehicle height sensor 11A and the detection value of the vehicle height sensor 11B, for example. Further, the relative speed calculation unit 30 can calculate the relative speed on the rear wheels 3A and 3B side by differentiating the difference between the detection value of the vehicle height sensor 11C and the detection value of the vehicle height sensor 11D, for example.
  • the damper command value calculation units 26, 27, 28, and 29 use, as current values, damper command values to be output to the actuators (not shown) of the FL damper 4A, FR damper 4B, RL damper 5A, and RR damper 5B. calculate.
  • the dampers 4A, 4B, 5A, and 5B are controlled so that the damping force characteristics are continuously variable between hardware and software, or variable in multiple stages, according to the current value (damper command value) supplied to the actuator.
  • the suspension control device has the above-described configuration, and next, an anti-roll control process for the vehicle body 1 by the control device 12 will be described.
  • the steering 7 is operated in the order of, for example, straight ahead ⁇ transient turn ⁇ steady turn ⁇ transient turn ⁇ straight forward.
  • the steering angle is kept almost neutral, and when the vehicle reaches a transient turn, the steering angle is increased by a necessary angle.
  • the steering angle is maintained at a substantially constant angle so as to maintain the required angle.
  • an operation to return the steering angle to neutral is performed. Become neutral.
  • the lateral acceleration generated in the vehicle increases or decreases so as to be substantially proportional to the steering angle.
  • the roll angle of the vehicle body 1 is also increased or decreased so as to be substantially proportional to the steering angle and the lateral acceleration.
  • the lateral acceleration is calculated from the steering angle and the vehicle speed of the vehicle, and the target damping force of each suspension provided in the vehicle is calculated using the lateral acceleration, thereby controlling the ride comfort of the vehicle (anti-antistatic). Roll control).
  • the roll rate (from the steering torque M acting on the steering 7) ( The first roll rate R1) is calculated.
  • the control device 12 controls the damping force generated by the FL damper 4A, the FR damper 4B, the RL damper 5A, and the RR damper 5B according to the magnitude of the steering torque M.
  • the control device 12 selects a roll rate having a larger value from the first roll rate R1 and the second roll rate R2 by the roll rate selection unit 20, and based on the roll rate (R1 or R2).
  • the damping force generated by the FL damper 4A, the FR damper 4B, the RL damper 5A, and the RR damper 5B is increased.
  • the anti-roll control of the vehicle can be performed using the first roll rate R1. Further, by controlling the torque change caused by the road surface vertical input and output in the same manner, it is possible to suppress the sprung vibration caused by the road surface input. Therefore, it is possible to effectively suppress the behavior of the roll acting on the vehicle, thereby improving the riding comfort of the vehicle.
  • FIG. 3 shows a second embodiment of the present invention.
  • the feature of the second embodiment resides in that a target damping force of each damper is calculated by extracting a signal of the unsprung resonance frequency from the steering torque signal.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the control device 31 is configured by a microcomputer or the like and is mounted on the vehicle body 1.
  • the control device 31 performs control to increase the damping force generated by the FL damper 4A and the FR damper 4B based on the vertical speed of the wheel in the roll direction.
  • the steering angle sensor 6, the vehicle speed sensor 8, the torque sensor 9, and the vehicle height sensors 11A and 11B are connected.
  • the output side of the control device 31 is connected to an actuator (not shown) of the FL damper 4A and the FR damper 4B.
  • the control device 31 shown in FIG. 3 is mounted on a two-wheel steering (2WS) vehicle and controls the FL damper 4A for the left front wheel 2A and the FR damper 4B for the right front wheel 2B. It is said.
  • the control of the RL damper 5A for the left rear wheel 3A and the RR damper 5B for the right rear wheel 3B may be performed separately in the same manner.
  • the unsprung resonance extraction unit 32 performs a band-pass filter process on the torque signal (steering torque M) output from the torque sensor 9 to thereby generate a signal (unsprung resonance) of an unsprung resonance frequency (for example, about 10 to 16 Hz). Frequency component).
  • the unsprung resonance frequency component is a frequency component at which the vibration in the vertical direction of the wheel becomes the largest.
  • the unsprung resonance extracting unit 32 constitutes the unsprung resonance extracting unit of the present invention. This unsprung resonance frequency component is output to the wheel vertical speed difference extraction unit 33.
  • the wheel vertical speed difference extraction unit 33 calculates the vertical speed difference in the roll direction of the front wheels 2A and 2B based on the unsprung resonance frequency component. That is, the vertical speed difference between the left front wheel 2A and the right front wheel 2B can be calculated by converting the steering torque M to a force applied to the steering 7 by multiplying the gain and integrating the value.
  • the sign reversing unit 34 multiplies “ ⁇ 1” in order to reverse the wheel vertical speed difference between the left front wheel 2A and the right front wheel 2B.
  • the target damping force calculation units 35 and 36 multiply the wheel vertical speed difference by the Fr gain for the right front wheel 2B and the Fl gain for the left front wheel 2A to obtain the target damping force for roll suppression.
  • the damper command value calculation units 37 and 38 store the dampers stored in advance from the target damping force and the relative speed estimated by the relative speed calculation unit 39.
  • the necessary current value is output from the characteristic map.
  • the relative speed calculation unit 39 is configured in substantially the same manner as the relative speed calculation unit 30, and calculates the relative speed of the front wheels 2A and 2B from the detection signal of the vehicle height sensor 11A and the detection signal of the vehicle height sensor 11B. .
  • the damper command value calculation units 37 and 38 calculate the damper command value to be output to the actuators (not shown) of the FL damper 4A and the FR damper 4B as the current value.
  • Each of the dampers 4A and 4B is controlled so that the damping force characteristic is continuously variable between hardware and software according to the current value (damper command value) supplied to the actuator, or variable in a plurality of stages.
  • the anti-roll control of the vehicle can be performed using the steering torque M acting on the steering 7.
  • the damping force can be increased as early as possible from the occurrence of the steering kickback.
  • vibration can be detected without providing a sensor under the spring (under the damper).
  • FIG. 4 shows a third embodiment of the present invention.
  • a feature of the third embodiment is that a larger lateral acceleration is selected from the first lateral acceleration estimated by the steering torque and the second lateral acceleration estimated by the steering angle and the vehicle speed. Then, based on the lateral acceleration, there is a configuration in which control is performed to increase the damping force generated in each damper 4A, 4B, 5A, 5B. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the left front wheel suspension device 41A (hereinafter referred to as FL damper 41A) is provided between the left front wheel 2A side and the vehicle body 1.
  • the right front wheel suspension device 41B (hereinafter referred to as FR damper 41B) is provided between the right front wheel 2B side and the vehicle body 1.
  • Each of the dampers 41A and 41B is configured as a hydraulic damping force adjusting buffer that can adjust the generated damping force.
  • Each of the dampers 41A and 41B is provided with a hydraulic actuator (not shown) using hydraulic oil, for example.
  • the actuator may be a pneumatic actuator using compressed air, an electric actuator using an electric actuator, or an electromagnetic actuator using electromagnetic force such as a linear motor. That is, each of the dampers 41A and 41B is configured as an active damper that can actively generate a thrust (vibration suppression force) by an actuator.
  • the left rear wheel suspension device 42A (hereinafter referred to as the RL damper 42A) is provided between the left rear wheel 3A side and the vehicle body 1.
  • the right rear wheel suspension device 42B (hereinafter referred to as the RR damper 42B) is provided between the right rear wheel 3B side and the vehicle body 1.
  • Each of the dampers 42A and 42B is configured as a hydraulic damping force adjusting shock absorber capable of adjusting the generated damping force.
  • Each of the dampers 42A and 42B is provided with a hydraulic actuator (not shown) using hydraulic oil, for example.
  • the actuator may be a pneumatic actuator using compressed air, an electric actuator using an electric actuator, or an electromagnetic actuator using electromagnetic force such as a linear motor. That is, each of the dampers 42A and 42B is configured as an active damper that can actively generate a thrust (vibration suppression force) by an actuator.
  • the control device 43 is constituted by a microcomputer or the like and is mounted on the vehicle body 1.
  • the control device 43 performs control to increase the damping force generated by the FL damper 41A, the FR damper 41B, the RL damper 42A, and the RR damper 42B when it is determined that the vehicle is in a roll state.
  • a steering angle sensor 6, a vehicle speed sensor 8, a torque sensor 9, and vehicle height sensors 11A to 11D are connected.
  • an output side of the control device 43 is connected to an actuator (not shown) of the FL damper 41A, the FR damper 41B, the RL damper 42A, the RR damper 42B, and the like.
  • the control device 43 includes a lateral acceleration estimation unit 44, a lateral acceleration calculation unit 45, a lateral acceleration selection unit 48, a target damping force calculation unit 49, and a relative speed calculation unit 59.
  • the lateral acceleration calculation unit 45, the lateral acceleration selection unit 48, and the target damping force calculation unit 49 constitute a roll suppression control unit of the present invention.
  • the lateral acceleration estimation unit 44 that calculates the first lateral acceleration ⁇ y1 will be described.
  • the lateral acceleration estimator 44 estimates and calculates the first lateral acceleration ⁇ y1 from the detection result (steering torque M) of the torque sensor 9.
  • the lateral acceleration estimation unit 44 constitutes a first lateral acceleration calculation unit of the present invention.
  • the lateral acceleration estimation unit 44 stores (stores) a map (not shown) indicating the correspondence between the steering torque and the lateral acceleration calculated by, for example, experiments. Therefore, the lateral acceleration estimation unit 44 can calculate the first lateral acceleration ⁇ y1 by inputting the torque signal (steering torque M) output from the torque sensor 9 to this map.
  • the first lateral acceleration ⁇ y1 is output to a lateral acceleration selection unit 48 described later.
  • the lateral acceleration calculation unit 45 estimates and calculates the second lateral acceleration ⁇ y2 from the steering angle (front wheel steering angle ⁇ f) detected by the steering angle sensor 6 and the vehicle speed V detected by the vehicle speed sensor 8.
  • the lateral acceleration calculation unit 45 constitutes a second lateral acceleration calculation unit of the present invention.
  • the lateral acceleration calculation unit 45 includes a vehicle model unit 46 and a phase adjustment filter 47.
  • the yaw rate r is estimated by using the vehicle model of the above equation 1 based on the steering angle (front wheel steering angle ⁇ f) and the vehicle speed V, as in the vehicle model unit 17 of the first embodiment. To do.
  • the second lateral acceleration ⁇ y2 is calculated by multiplying the calculated yaw rate r by the vehicle speed V. Further, the phase adjustment filter 47 is used to compensate for the dynamics from the vehicle steering angle to the occurrence of lateral acceleration.
  • the second lateral acceleration ⁇ y2 is output to a lateral acceleration selection unit 48 described later.
  • the lateral acceleration selection unit 48 has a larger value of the lateral acceleration ( ⁇ y1 or ⁇ y1) calculated from the first lateral acceleration ⁇ y1 calculated by the lateral acceleration estimation unit 44 and the second lateral acceleration ⁇ y2 calculated by the lateral acceleration calculation unit 45. ⁇ y2) is selected.
  • the lateral acceleration selection unit 48 constitutes a lateral acceleration selection unit of the present invention.
  • the first lateral acceleration ⁇ y1 is estimated and calculated from the steering torque M acting on the steering wheel 7 when the frictional force on the road surface changes. Then, the control device 43 uses the larger lateral acceleration of the first lateral acceleration ⁇ y1 and the second lateral acceleration ⁇ y2 estimated and calculated based on the vehicle steering angle ⁇ f and the vehicle speed V to perform anti-rolling. It is set as the structure which performs control.
  • the target damping force calculation unit 49 that calculates the target damping force of each of the dampers 41A, 41B, 42A, and 42B will be described.
  • the target damping force calculation unit 49 calculates the target damping force of each of the dampers 41A, 41B, 42A, and 42B using the lateral acceleration ( ⁇ y1 or ⁇ y2) selected by the lateral acceleration selection unit 48.
  • the target damping force calculation unit 49 constitutes a target damping force calculation unit of the present invention.
  • the target damping force calculation unit 49 includes a roll angle calculation unit 50, target damping force calculation units 51 and 52, sign inversion units 53 and 54, and damper command value calculation units 55, 56, 57, and 58. Yes.
  • the roll angle calculation unit 50 calculates the roll angle from the lateral acceleration ( ⁇ y1 or ⁇ y2) selected by the lateral acceleration selection unit 48.
  • the roll angle can be calculated by multiplying the lateral acceleration by the roll angle per unit lateral acceleration.
  • the target damping force calculation units 51 and 52 multiply the roll angle calculated by the roll angle calculation unit 50 by the Fr gain for the right front wheel 2B and the Rr gain for the right rear wheel 3B, thereby achieving the target damping for roll suppression.
  • the sign reversing units 53 and 54 multiply “ ⁇ 1” in order to reverse the roll damping target damping force between the left front wheel 2A and the left rear wheel 3A with the right front wheel 2B and the right rear wheel 3B.
  • the damper command value calculation units 55, 56, 57, and 58 use the target damping force and the relative speed calculation unit 59 to calculate the target damping force.
  • a necessary current value is output from a damper characteristic map stored in advance from the estimated relative speed.
  • the relative speed calculation unit 59 calculates the relative speed of the front wheels 2A and 2B from the detection signal of the vehicle height sensor 11A and the detection signal of the vehicle height sensor 11B. In addition, the relative speed calculation unit 59 calculates the relative speed on the rear wheels 3A and 3B side from the detection signal of the vehicle height sensor 11C and the detection signal of the vehicle height sensor 11D.
  • the damper command value calculation units 55, 56, 57, and 58 use the damper command value to be output to the actuators (not shown) of the FL damper 41A, the FR damper 41B, the RL damper 42A, and the RR damper 42B as a current value. calculate.
  • Each of the dampers 41A, 41B, 42A, and 42B is controlled so that the damping force characteristic is continuously variable between hardware and software or in a plurality of stages according to the current value (damper command value) supplied to the actuator.
  • the anti-roll control of the vehicle can be performed using the steering torque M as in the first embodiment.
  • the roll angle is controlled by using the lateral acceleration, so that it can be suitably used for, for example, an active suspension and an air suspension that can generate thrust.
  • the relative speed calculation unit 30 calculates the relative speed by differentiating the detection values of the vehicle height sensors 11A to 11D
  • the present invention is not limited to this.
  • the relative acceleration is calculated from the detection values of the vertical acceleration sensors attached to the unsprung side and the unsprung side of each damper, and this value is integrated to obtain the relative speed. May be calculated, and it is not particularly necessary to limit the calculation method. Further, the relative speed may be handled as a constant value. The same applies to the second and third embodiments.
  • the value calculated from the vehicle height sensors 11A and 11B is used as the relative speed. Based on the calculation result of the wheel vertical speed difference extraction unit 33, the following equation (3) You may make it calculate based on.
  • the wheel vertical speed difference extraction unit 33 multiplies the steering torque M by a gain to convert it into a force applied to the steering wheel 7 and integrates the value to the left front wheel 2A.
  • the case where the vertical speed difference with the right front wheel 2B is calculated has been described as an example.
  • the present invention is not limited to this.
  • the steering torque M may be converted into a force applied to the steering wheel 7 by multiplying the gain, and the anti-roll control may be performed using a differential value or a proportional value.
  • the calculation method is not particularly limited.
  • a damping force adjusting type shock absorber that is provided between a vehicle body and a wheel of the vehicle and that can adjust a generated damping force, and steering torque information of a steering provided in the vehicle.
  • a steering torque information acquisition unit to acquire, and controls the damping force generated by the damping force adjusting shock absorber according to the acquisition result of the steering torque information acquisition unit.
  • a roll for controlling a damping force generated by the damping force adjusting buffer so as to suppress the roll by using a lateral acceleration estimated from the speed and steering angle of the vehicle is further provided, and the control by the roll suppression control unit is changed according to the acquisition result of the steering torque information acquisition unit.
  • the roll control control part is A second roll rate calculation unit for estimating and calculating a second roll rate from the steering angle and the speed of the vehicle, and a roll having a larger value among the first roll rate and the second roll rate.
  • a roll rate selecting unit that selects a rate; and a target damping force calculating unit that calculates a target damping force of the damping force adjusting shock absorber using the roll rate selected by the roll rate selecting unit.
  • the apparatus further comprises a first lateral acceleration calculation unit that estimates and calculates the first lateral acceleration from the acquisition result of the steering torque information acquisition unit, and the roll suppression control unit includes: A second lateral acceleration computing unit that estimates and computes a second lateral acceleration from the steering angle and the speed of the vehicle; and a lateral acceleration having a larger value of the first lateral acceleration and the second lateral acceleration. And a target damping force calculation unit that calculates a target damping force of the damping force adjusting shock absorber using the lateral acceleration selected by the lateral acceleration selection unit.
  • a damping force adjustment type shock absorber that is provided between the vehicle body and the wheel of the vehicle and that can adjust the generated damping force, and steering torque information of the steering provided in the vehicle are provided.
  • a steering torque information acquisition unit to acquire, and an unsprung resonance extraction unit to extract an unsprung resonance frequency component from the acquisition result of the steering torque information acquisition unit, and based on the extraction result of the unsprung resonance extraction unit, Adjusting and controlling damping force generated by damping force adjustment type shock absorber.
  • the control signal when the steering torque decreases, the control signal is corrected so as to increase the damping force in the direction in which the roll returns, and when the steering torque increases, the control signal is increased so as to increase the damping force in the direction in which the roll increases. It may be corrected.
  • a control signal may be obtained linearly by applying a correction coefficient, or stepwise correction such as two steps or three steps may be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Provided is a suspension control device with which it is possible to minimize roll acting on a vehicle. This suspension control device is provided with: a damping-force-adjusting shock absorber that is provided between the body of a vehicle and a vehicle wheel and can adjust generated damping force; and a steering torque information acquisition unit that acquires steering torque information of a steering wheel provided to the vehicle. The suspension control device controls the damping force generated by the damping-force-adjusting shock absorber, in accordance with the acquired results from the steering torque information acquisition unit.

Description

サスペンション制御装置Suspension control device
 本発明は、例えば4輪自動車等の車両に好適に用いられるサスペンション制御装置に関する。 The present invention relates to a suspension control device suitably used for a vehicle such as a four-wheel automobile.
 車両のアンチロール制御として、例えば車両の操舵角と車速とから横加速度を算出し、この横加速度を用いて車両に設けられた各サスペンションの目標減衰力を算出する構成が知られている。また、車両の挙動安定制御が行われているときに、操舵トルク変化を補償するものも知られている(例えば、特許文献1参照)。 As a vehicle anti-roll control, for example, a configuration is known in which a lateral acceleration is calculated from a vehicle steering angle and a vehicle speed, and a target damping force of each suspension provided in the vehicle is calculated using the lateral acceleration. In addition, there is also known one that compensates for a change in steering torque when vehicle behavior stabilization control is performed (see, for example, Patent Document 1).
特開2009-173169号公報JP 2009-173169 A
 ところで、上述した車両のアンチロール制御では、操舵角が一定で路面の摩擦力が変化すると、実横加速度が変化してロールが発生することになる。しかし、操舵角は変化していないのでアンチロール制御が作動せず、車両に作用するロールが大きくなってしまう虞がある。 Incidentally, in the anti-roll control of the vehicle described above, when the steering angle is constant and the frictional force on the road surface changes, the actual lateral acceleration changes and rolls are generated. However, since the steering angle has not changed, the anti-roll control does not operate, and the roll acting on the vehicle may become large.
 本発明の目的は、車両に作用するロールを抑制することができるようにしたサスペンション制御装置を提供することにある。 An object of the present invention is to provide a suspension control device that can suppress a roll acting on a vehicle.
 本発明の一実施形態によるサスペンション制御装置は、車両の車体と車輪との間に設けられ、発生する減衰力を調整可能な減衰力調整式緩衝器と、前記車両に設けられたステアリングのステアリングトルク情報を取得するステアリングトルク情報取得部と、を備え、前記ステアリングトルク情報取得部の取得結果に応じて、前記減衰力調整式緩衝器で発生する減衰力を制御する。 A suspension control apparatus according to an embodiment of the present invention is provided between a vehicle body and a wheel of a vehicle, a damping force adjustment type shock absorber capable of adjusting a generated damping force, and a steering torque of a steering provided in the vehicle. A steering torque information acquisition unit that acquires information, and controls a damping force generated by the damping force adjusting shock absorber according to an acquisition result of the steering torque information acquisition unit.
 また、本発明の一実施形態によるサスペンション制御装置は、車両の車体と車輪との間に設けられ、発生する減衰力を調整可能な減衰力調整式緩衝器と、前記車両に設けられたステアリングのステアリングトルク情報を取得するステアリングトルク情報取得部と、前記ステアリングトルク情報取得部の取得結果からばね下共振周波数成分を抽出するばね下共振抽出部と、を備え、前記ばね下共振抽出部の抽出結果に基づき、前記減衰力調整式緩衝器で発生する減衰力の調整制御を行う。 A suspension control device according to an embodiment of the present invention is provided between a vehicle body and a wheel of a vehicle, and a damping force adjustment type shock absorber capable of adjusting a generated damping force, and a steering provided in the vehicle. A steering torque information acquisition unit that acquires steering torque information; and an unsprung resonance extraction unit that extracts an unsprung resonance frequency component from the acquisition result of the steering torque information acquisition unit, the extraction result of the unsprung resonance extraction unit Based on the above, adjustment control of the damping force generated by the damping force adjusting type shock absorber is performed.
 本発明の一実施形態によれば、車両に作用するロールの挙動を効果的に抑制して、ひいては車両の乗り心地を向上することができる。 According to one embodiment of the present invention, it is possible to effectively suppress the behavior of the roll acting on the vehicle, thereby improving the ride comfort of the vehicle.
本発明の第1の実施の形態によるサスペンション制御装置が搭載された4輪自動車の電気回路を示す回路図である。1 is a circuit diagram showing an electric circuit of a four-wheeled vehicle equipped with a suspension control device according to a first embodiment of the present invention. 図1中のサスペンション制御装置を示す制御ブロック図である。It is a control block diagram which shows the suspension control apparatus in FIG. 第2の実施の形態によるサスペンション制御装置を示す制御ブロック図である。It is a control block diagram which shows the suspension control apparatus by 2nd Embodiment. 第3の実施の形態によるサスペンション制御装置を示す制御ブロック図である。It is a control block diagram which shows the suspension control apparatus by 3rd Embodiment.
 以下、本発明の実施の形態によるサスペンション制御装置を、例えば4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。 Hereinafter, a suspension control device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings, taking as an example a case where the suspension control device is applied to a four-wheeled vehicle.
 図1および図2は、本発明の第1の実施の形態を示している。図1中、車体1は、4輪自動車のボディを構成するもので、該車体1の下側には、例えば左前輪2A,右前輪2Bと左後輪3A,右後輪3Bとが設けられている。 1 and 2 show a first embodiment of the present invention. In FIG. 1, a vehicle body 1 constitutes the body of a four-wheeled vehicle, and a left front wheel 2A, a right front wheel 2B, a left rear wheel 3A, and a right rear wheel 3B are provided on the lower side of the vehicle body 1, for example. ing.
 左前輪用サスペンション装置4A(以下、FLダンパ4Aという)は、左前輪2A側と車体1との間に介装して設けられている。一方、右前輪用サスペンション装置4B(以下、FRダンパ4Bという)は、右前輪2B側と車体1との間に介装して設けられている。これらダンパ4A,4Bは、例えば発生する減衰力を調整可能な油圧式の減衰力調整式緩衝器として構成されている。そして、ダンパ4A,4Bには、その減衰力特性をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整するため、減衰力調整バルブ、ソレノイド等からなるアクチュエータ(図示せず)が付設されている。このとき、各ダンパ4A,4Bは、例えばアクチュエータにより作動流体の流れを制御するセミアクティブダンパによって構成されている。 The left front wheel suspension device 4A (hereinafter referred to as FL damper 4A) is provided between the left front wheel 2A side and the vehicle body 1. On the other hand, a right front wheel suspension device 4B (hereinafter referred to as FR damper 4B) is provided between the right front wheel 2B side and the vehicle body 1. These dampers 4A and 4B are configured as, for example, hydraulic damping force adjustment type shock absorbers capable of adjusting the generated damping force. The dampers 4A and 4B are provided with actuators (not shown) including damping force adjusting valves, solenoids, etc. in order to continuously adjust the damping force characteristics from hard characteristics (hard characteristics) to soft characteristics (soft characteristics). ) Is attached. At this time, each damper 4A, 4B is comprised by the semi-active damper which controls the flow of a working fluid with an actuator, for example.
 なお、減衰力調整用のアクチュエータは、減衰力特性を必ずしも連続的に変化させる構成である必要はなく、2段階または3段階以上で断続的に調整する構成であってもよい。また、ダンパ4A,4Bは、減衰力を切換えられればよく、空圧式ダンパや電磁式ダンパであってもよい。 Note that the damping force adjusting actuator is not necessarily configured to continuously change the damping force characteristic, and may be configured to intermittently adjust in two stages or three or more stages. The dampers 4A and 4B only need to be able to switch the damping force, and may be pneumatic dampers or electromagnetic dampers.
 左後輪用サスペンション装置5A(以下、RLダンパ5Aという)は、左後輪3A側と車体1との間に介装して設けられている。一方、右後輪用サスペンション装置5B(以下、RRダンパ5Bという)は、右後輪3B側と車体1との間に介装して設けられている。これらダンパ5A,5Bは、発生する減衰力を調整可能な油圧式の減衰力調整式緩衝器として構成されている。そして、ダンパ5A,5Bには、その減衰力特性をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整するため、減衰力調整バルブ、ソレノイド等からなるアクチュエータ(図示せず)が付設されている。このとき、各ダンパ5A,5Bは、例えばアクチュエータにより作動流体の流れを制御するセミアクティブダンパによって構成されている。 The left rear wheel suspension device 5A (hereinafter referred to as RL damper 5A) is provided between the left rear wheel 3A side and the vehicle body 1. On the other hand, the right rear wheel suspension device 5B (hereinafter referred to as the RR damper 5B) is provided between the right rear wheel 3B side and the vehicle body 1. These dampers 5A and 5B are configured as hydraulic damping force adjusting shock absorbers that can adjust the generated damping force. The dampers 5A and 5B are provided with actuators (not shown) including damping force adjusting valves, solenoids, etc., in order to continuously adjust the damping force characteristics from hard characteristics (hard characteristics) to soft characteristics (soft characteristics). ) Is attached. At this time, each damper 5A, 5B is comprised by the semi-active damper which controls the flow of a working fluid with an actuator, for example.
 なお、減衰力調整用のアクチュエータは、減衰力特性を必ずしも連続的に変化させる構成である必要はなく、2段階または3段階以上で断続的に調整する構成であってもよい。また、ダンパ5A,5Bは、減衰力を切換えられればよく、空圧式ダンパや電磁式ダンパであってもよい。 Note that the damping force adjusting actuator is not necessarily configured to continuously change the damping force characteristic, and may be configured to intermittently adjust in two stages or three or more stages. The dampers 5A and 5B only need to be able to switch the damping force, and may be pneumatic dampers or electromagnetic dampers.
 操舵角センサ6は、車両のステアリング操作量を検出するものである。即ち、操舵角センサ6は、車両の運転者が旋回走行時等にステアリング7(ハンドル)を操作するときの操舵角(後述の前輪舵角δfに対応する)を検出するものである。そして、操舵角センサ6は、検出信号(操舵角信号)を後述の制御装置12に出力する。 The steering angle sensor 6 detects a steering operation amount of the vehicle. That is, the steering angle sensor 6 detects a steering angle (corresponding to a front wheel steering angle δf described later) when the driver of the vehicle operates the steering 7 (steering wheel) during turning. Then, the steering angle sensor 6 outputs a detection signal (steering angle signal) to the control device 12 described later.
 車速センサ8は、車両の走行速度(後述の車速Vに対応する)を検出するものである。そして、車速センサ8は、検出信号(車速信号)を後述の制御装置12に出力する。 The vehicle speed sensor 8 detects a traveling speed of the vehicle (corresponding to a vehicle speed V described later). The vehicle speed sensor 8 outputs a detection signal (vehicle speed signal) to the control device 12 described later.
 トルクセンサ9は、車両の運転者がステアリング7を操作したときの操舵力によって捩れるシャフト10の操舵トルク(後述のステアリングトルクM)を検出するものである。そして、トルクセンサ9は、その検出信号(トルク信号)を後述の制御装置12に出力する。トルクセンサ9は、本発明のステアリングトルク情報取得部を構成している。なお、ステアリングトルク情報取得部は、ステアリングトルクを検出する手段を制御装置が備えているものの他、ステアリングを制御するステアリング制御装置からの情報を取得して用いても良い。 The torque sensor 9 detects the steering torque (steering torque M described later) of the shaft 10 that is twisted by the steering force when the driver of the vehicle operates the steering 7. Then, the torque sensor 9 outputs the detection signal (torque signal) to the control device 12 described later. The torque sensor 9 constitutes a steering torque information acquisition unit of the present invention. Note that the steering torque information acquisition unit may acquire and use information from a steering control device that controls the steering, in addition to the control device having means for detecting steering torque.
 車高センサ11A~11Dは、車体1の高さ寸法を検出するものである。車高センサ11Aは、例えばFLダンパ4Aの近傍に設けられ、車高センサ11Bは、FRダンパ4Bの近傍に設けられている。また、車高センサ11Cは、例えばRLダンパ5Aの近傍に設けられ、車高センサ11Dは、RRダンパ5Bの近傍に設けられている。そして、車高センサ11A~11Dは、その検出信号(高さ信)を後述の制御装置12に出力する。 The vehicle height sensors 11A to 11D are for detecting the height dimension of the vehicle body 1. The vehicle height sensor 11A is provided, for example, in the vicinity of the FL damper 4A, and the vehicle height sensor 11B is provided in the vicinity of the FR damper 4B. Further, the vehicle height sensor 11C is provided, for example, in the vicinity of the RL damper 5A, and the vehicle height sensor 11D is provided in the vicinity of the RR damper 5B. Then, the vehicle height sensors 11A to 11D output detection signals (height signal) to the control device 12 described later.
 次に、車体1のアンチロール制御を行う制御装置12について説明する。 Next, the control device 12 that performs anti-roll control of the vehicle body 1 will be described.
 制御装置12は、マイクロコンピュータ等によって構成され、車体1に搭載されている。この制御装置12は、車両がロール状態であることを判断したときに、FLダンパ4A、FRダンパ4B、RLダンパ5A、RRダンパ5Bで発生する減衰力を高める制御を行う。制御装置12の入力側には、操舵角センサ6、車速センサ8、トルクセンサ9、および車高センサ11A~11D等に接続されている。一方、制御装置12の出力側には、FLダンパ4A、FRダンパ4B、RLダンパ5A、RRダンパ5Bのアクチュエータ(図示せず)等に接続されている。 The control device 12 is configured by a microcomputer or the like and is mounted on the vehicle body 1. When it is determined that the vehicle is in a roll state, the control device 12 performs control to increase the damping force generated by the FL damper 4A, the FR damper 4B, the RL damper 5A, and the RR damper 5B. On the input side of the control device 12, a steering angle sensor 6, a vehicle speed sensor 8, a torque sensor 9, and vehicle height sensors 11A to 11D are connected. On the other hand, the output side of the control device 12 is connected to an actuator (not shown) of the FL damper 4A, the FR damper 4B, the RL damper 5A, the RR damper 5B, and the like.
 図2に示すように、制御装置12は、第1のロールレイト演算部13、第2のロールレイト演算部16、ロールレイト選択部20、目標減衰力算出部21、および相対速度算出部30を含んで構成されている。この場合、第2のロールレイト演算部16、ロールレイト選択部20、目標減衰力算出部21は、本発明のロール抑制制御部を構成している。 As shown in FIG. 2, the control device 12 includes a first roll rate calculation unit 13, a second roll rate calculation unit 16, a roll rate selection unit 20, a target damping force calculation unit 21, and a relative speed calculation unit 30. It is configured to include. In this case, the second roll rate calculation unit 16, the roll rate selection unit 20, and the target damping force calculation unit 21 constitute a roll suppression control unit of the present invention.
 まず、第1のロールレイトR1を演算する第1のロールレイト演算部13について説明する。 First, the first roll rate calculation unit 13 for calculating the first roll rate R1 will be described.
 第1のロールレイト演算部13は、トルクセンサ9の検出結果(ステアリングトルクM)から第1のロールレイトR1を推定演算するものである。この第1のロールレイト演算部13は、本発明の第1のロールレイト演算部を構成している。そして、第1のロールレイト演算部13は、横加速度推定部14と微分部15とを含んで構成されている。 The first roll rate calculation unit 13 estimates and calculates the first roll rate R1 from the detection result (steering torque M) of the torque sensor 9. The first roll rate calculation unit 13 constitutes a first roll rate calculation unit of the present invention. The first roll rate calculation unit 13 includes a lateral acceleration estimation unit 14 and a differentiation unit 15.
 横加速度推定部14には、例えば実験等により算出されたステアリングトルクと横加速度との対応関係を示すマップ(図示せず)が記憶(格納)されている。従って、横加速度推定部14は、トルクセンサ9から出力されたトルク信号(ステアリングトルクM)をこのマップに入力することにより、第1の横加速度αy1を算出することができる。 The lateral acceleration estimator 14 stores (stores) a map (not shown) indicating the correspondence between steering torque and lateral acceleration calculated by, for example, experiments. Therefore, the lateral acceleration estimation unit 14 can calculate the first lateral acceleration αy1 by inputting the torque signal (steering torque M) output from the torque sensor 9 to this map.
 微分部15では、第1の横加速度αy1を微分することにより、横加加速度(ジャーク)を算出する。この横加加速度は、ロールレイトとほぼ一致する。このようにして、第1のロールレイト演算部13は、ステアリングトルクMから推定された第1のロールレイトR1を算出することができる。そして、この第1のロールレイトR1は、後述のロールレイト選択部20に出力される。 The differentiation unit 15 calculates a lateral jerk by differentiating the first lateral acceleration αy1. This lateral jerk almost coincides with the roll rate. In this way, the first roll rate calculation unit 13 can calculate the first roll rate R1 estimated from the steering torque M. The first roll rate R1 is output to the roll rate selection unit 20 described later.
 次に、第2のロールレイトR2を推定演算する第2のロールレイト演算部16について説明する。 Next, the second roll rate calculation unit 16 that estimates and calculates the second roll rate R2 will be described.
 第2のロールレイト演算部16は、操舵角センサ6により検出された操舵角(前輪舵角δf)と車速センサ8により検出された車速Vとから第2のロールレイトR2を推定演算するものである。この第2のロールレイト演算部16は、本発明の第2のロールレイト演算部を構成している。そして、第2のロールレイト演算部16は、車両モデル部17、位相調整用フィルタ18、微分部19を含んで構成されている。 The second roll rate calculation unit 16 estimates and calculates the second roll rate R2 from the steering angle (front wheel steering angle δf) detected by the steering angle sensor 6 and the vehicle speed V detected by the vehicle speed sensor 8. is there. The second roll rate calculation unit 16 constitutes a second roll rate calculation unit of the present invention. The second roll rate calculation unit 16 includes a vehicle model unit 17, a phase adjustment filter 18, and a differentiation unit 19.
 まず、車両モデル部17では、操舵角(前輪舵角δf)と車速Vとにより、下記の数1式の車両モデルを用いてヨーレイトrを推定する。ここで、ヨーレイトrは、車両の線形モデルを仮定し、動特性を無視すると、数1の式で求めることができる。但し、Vは車速(m/s)、Aはスタビリティファクタ(S2/m2)、δfは前輪舵角(rad)、Gfはステアリングギアレシオ、Lはホイールベース(m)である。 First, the vehicle model unit 17 estimates the yaw rate r by using the vehicle model of the following equation 1 from the steering angle (front wheel rudder angle δf) and the vehicle speed V. Here, the yaw rate r can be obtained by the equation (1) when a linear model of the vehicle is assumed and dynamic characteristics are ignored. Where V is the vehicle speed (m / s), A is the stability factor (S2 / m2), δf is the front wheel steering angle (rad), Gf is the steering gear ratio, and L is the wheelbase (m).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、第2の横加速度αy2とヨーレイトrとの関係は、下記の数2の式で求めることができる。即ち、第2の横加速度αy2は、算出したヨーレイトrに車速Vを乗算して算出する。 Further, the relationship between the second lateral acceleration αy2 and the yaw rate r can be obtained by the following equation (2). That is, the second lateral acceleration αy2 is calculated by multiplying the calculated yaw rate r by the vehicle speed V.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、位相調整用フィルタ18を用いて車両の操舵角から横加速度発生までのダイナミクスを補償する。このとき、位相調整用フィルタ18は、例えば2次遅れ系の式で表される2次フィルタによって構成されている。次に、微分部19では、第2の横加速度αy2を微分して横加加速度を算出する。横加加速度は、ロールレイトとほぼ一致する。このようにして、第2のロールレイト演算部16は、前輪舵角δfと車速Vとから推定された第2のロールレイトR2を算出することができる。そして、この第2のロールレイトR2は、後述のロールレイト選択部20に出力される。 Then, the phase adjustment filter 18 is used to compensate for the dynamics from the vehicle steering angle to the occurrence of lateral acceleration. At this time, the phase adjustment filter 18 is constituted by a secondary filter represented by, for example, a second-order lag equation. Next, the differentiation unit 19 differentiates the second lateral acceleration αy2 to calculate the lateral jerk. The lateral jerk almost coincides with the roll rate. In this way, the second roll rate calculation unit 16 can calculate the second roll rate R2 estimated from the front wheel steering angle δf and the vehicle speed V. The second roll rate R2 is output to the roll rate selection unit 20 described later.
 ロールレイト選択部20は、第1のロールレイト演算部13で演算された第1のロールレイトR1と、第2のロールレイト演算部16で演算された第2のロールレイトR2とのうち大きい値のロールレイト(R1またはR2)を選択するものである。このロールレイト選択部20は、本発明のロールレイト選択部を構成している。 The roll rate selection unit 20 has a larger value between the first roll rate R1 calculated by the first roll rate calculation unit 13 and the second roll rate R2 calculated by the second roll rate calculation unit 16. The roll rate (R1 or R2) is selected. This roll rate selection unit 20 constitutes a roll rate selection unit of the present invention.
 即ち、車両の走行中に操舵角が一定で路面の摩擦力が変化すると、実横加速度が変化してロールが発生することになる。しかし、操舵角は変化していないので、例えば第1のロールレイト演算部13およびロールレイト選択部20を省いた構成では、アンチロール制御が作動せず、車両に作用するロールが大きくなってしまう虞がある。 That is, when the steering angle is constant and the frictional force of the road surface changes while the vehicle is running, the actual lateral acceleration changes and rolls are generated. However, since the steering angle has not changed, for example, in a configuration in which the first roll rate calculation unit 13 and the roll rate selection unit 20 are omitted, the anti-roll control does not operate and the roll acting on the vehicle becomes large. There is a fear.
 これに対し、第1の実施の形態では、制御装置12は第1のロールレイト演算部13およびロールレイト選択部20を備えている。このため、第1のロールレイト演算部13は、路面の摩擦力が変化したときにステアリング7に作用するステアリングトルクMから第1のロールレイトR1を推定演算している。そして、制御装置12は、この第1のロールレイトR1と、車両の操舵角δfと車速Vとにより推定算出された第2のロールレイトR2とのうち、大きい方のロールレイトを用いて、アンチロール制御を行う構成としている。 On the other hand, in the first embodiment, the control device 12 includes a first roll rate calculation unit 13 and a roll rate selection unit 20. For this reason, the first roll rate calculation unit 13 estimates and calculates the first roll rate R1 from the steering torque M acting on the steering 7 when the frictional force of the road surface changes. Then, the control device 12 uses the larger roll rate of the first roll rate R1 and the second roll rate R2 estimated and calculated based on the vehicle steering angle δf and the vehicle speed V to It is configured to perform roll control.
 次に、各ダンパ4A,4B,5A,5Bの目標減衰力を算出する目標減衰力算出部21について説明する。 Next, the target damping force calculation unit 21 that calculates the target damping force of each damper 4A, 4B, 5A, 5B will be described.
 目標減衰力算出部21は、ロールレイト選択部20により選択されたロールレイト(R1またはR2)を用いて各ダンパ4A,4B,5A,5Bの目標減衰力を算出するものである。この目標減衰力算出部21は、本発明の目標減衰力算出部を構成している。そして、目標減衰力算出部21は、目標減衰力演算部22,23、符号反転部24,25、ダンパ指令値算出部26,27,28,29を含んで構成されている。 The target damping force calculation unit 21 calculates the target damping force of each damper 4A, 4B, 5A, 5B using the roll rate (R1 or R2) selected by the roll rate selection unit 20. The target damping force calculation unit 21 constitutes a target damping force calculation unit of the present invention. The target damping force calculation unit 21 includes target damping force calculation units 22 and 23, sign inversion units 24 and 25, and damper command value calculation units 26, 27, 28, and 29.
 目標減衰力演算部22,23では、ロールレイト選択部20により選択されたロールレイト(R1またはR2)に右前輪2B用のFrゲイン,右後輪3B用のRrゲインを乗算することでロール抑制の目標減衰力とする。符号反転部24,25は、ロール抑制用の目標減衰力を左前輪2A,左後輪3Aで右前輪2B,右後輪3Bとは反転させるため、「-1」を乗算する。 The target damping force calculation units 22 and 23 multiply the roll rate (R1 or R2) selected by the roll rate selection unit 20 by the Fr gain for the right front wheel 2B and the Rr gain for the right rear wheel 3B to suppress the roll. The target damping force. The sign reversing units 24 and 25 multiply “−1” in order to reverse the roll damping target damping force between the left front wheel 2A and the left rear wheel 3A with the right front wheel 2B and the right rear wheel 3B.
 このようにして各輪の目標減衰力を演算した後には、ダンパ指令値算出部26,27,28,29において、この目標減衰力と相対速度算出部30により推定した相対速度とから前もって記憶しておいたダンパの特性マップにより必要な電流値を出力する。 After calculating the target damping force of each wheel in this way, the damper command value calculation units 26, 27, 28, and 29 store the target damping force and the relative speed estimated by the relative speed calculation unit 30 in advance. The necessary current value is output from the characteristic map of the damper.
 この場合、相対速度算出部30は、例えば車高センサ11Aの検出値と車高センサ11Bの検出値との差を微分することにより、前輪2A,2B側の相対速度を算出することができる。また、相対速度算出部30は、例えば車高センサ11Cの検出値と車高センサ11Dの検出値との差を微分することにより、後輪3A,3B側の相対速度を算出することができる。 In this case, the relative speed calculation unit 30 can calculate the relative speed of the front wheels 2A and 2B by differentiating the difference between the detection value of the vehicle height sensor 11A and the detection value of the vehicle height sensor 11B, for example. Further, the relative speed calculation unit 30 can calculate the relative speed on the rear wheels 3A and 3B side by differentiating the difference between the detection value of the vehicle height sensor 11C and the detection value of the vehicle height sensor 11D, for example.
 これにより、ダンパ指令値算出部26,27,28,29は、FLダンパ4A,FRダンパ4B,RLダンパ5A,RRダンパ5Bのアクチュエータ(図示せず)に出力すべきダンパ指令値を電流値として算出する。そして、各ダンパ4A,4B,5A,5Bは、アクチュエータに供給された電流値(ダンパ指令値)に従って減衰力特性がハードとソフトの間で連続的に、または複数段で可変に制御される。 Accordingly, the damper command value calculation units 26, 27, 28, and 29 use, as current values, damper command values to be output to the actuators (not shown) of the FL damper 4A, FR damper 4B, RL damper 5A, and RR damper 5B. calculate. The dampers 4A, 4B, 5A, and 5B are controlled so that the damping force characteristics are continuously variable between hardware and software, or variable in multiple stages, according to the current value (damper command value) supplied to the actuator.
 本実施の形態によるサスペンション制御装置は、上述の如き構成を有するもので、次に、制御装置12による車体1のアンチロール制御処理について説明する。 The suspension control device according to the present embodiment has the above-described configuration, and next, an anti-roll control process for the vehicle body 1 by the control device 12 will be described.
 車両が道路のコーナ部に差し掛かって旋回走行を行うときには、例えば直進→過渡旋回→定常旋回→過渡旋回→直進の順序でステアリング7の操作が行われる。車両の直進時には、操舵角がほぼ零となって中立に保たれ、過渡旋回に達すると、操舵角が必要な角度分だけ増大される。定常旋回になると、操舵角は必要角度を保つようにほぼ一定の角度に保持され、その後の過渡旋回に達すると、操舵角を中立に戻す操作が行われ、直進走行に戻ったときには、ほぼ零となって中立に保たれる。この場合、車両に発生する横加速度は、操舵角にほぼ比例するように増減する。また、車体1のロール角についても、操舵角および横加速度にほぼ比例するように増減する。 When the vehicle approaches the corner of the road and turns, the steering 7 is operated in the order of, for example, straight ahead → transient turn → steady turn → transient turn → straight forward. When the vehicle is traveling straight, the steering angle is kept almost neutral, and when the vehicle reaches a transient turn, the steering angle is increased by a necessary angle. When the vehicle turns into a steady turn, the steering angle is maintained at a substantially constant angle so as to maintain the required angle. When the subsequent transient turn is reached, an operation to return the steering angle to neutral is performed. Become neutral. In this case, the lateral acceleration generated in the vehicle increases or decreases so as to be substantially proportional to the steering angle. Further, the roll angle of the vehicle body 1 is also increased or decreased so as to be substantially proportional to the steering angle and the lateral acceleration.
 ところで、従来技術では、車両の操舵角と車速とから横加速度を算出し、この横加速度を用いて車両に設けられた各サスペンションの目標減衰力を算出することにより、車両の乗り心地制御(アンチロール制御)を行っている。 By the way, in the prior art, the lateral acceleration is calculated from the steering angle and the vehicle speed of the vehicle, and the target damping force of each suspension provided in the vehicle is calculated using the lateral acceleration, thereby controlling the ride comfort of the vehicle (anti-antistatic). Roll control).
 この場合、車両の旋回走行中に路面の摩擦力が変化すると、実横加速度が変化して、車両にロールが発生することになる。しかし、操舵角に変化がないのでアンチロール制御が作動せず、車両に作用するロールが大きくなってしまう虞がある。また、実横加速度信号は、路面入力による影響も含んでいるので、ローパスフィルタを強くかける必要があり、アンチロール制御に使用するのは困難である。 In this case, if the frictional force of the road surface changes while the vehicle is turning, the actual lateral acceleration changes, and the vehicle rolls. However, since there is no change in the steering angle, the anti-roll control does not operate, and the roll acting on the vehicle may become large. Moreover, since the actual lateral acceleration signal includes the influence of road surface input, it is necessary to apply a low pass filter strongly, and it is difficult to use it for anti-roll control.
 そこで、第1の実施の形態では、車両の操舵角δfと車速Vとからロールレイト(第2のロールレイトR2)を算出するのに加えて、ステアリング7に作用するステアリングトルクMからロールレイト(第1のロールレイトR1)を算出している。そして、制御装置12は、ステアリングトルクMの大きさに応じて、FLダンパ4A,FRダンパ4B,RLダンパ5A,RRダンパ5Bで発生する減衰力を制御している。 Therefore, in the first embodiment, in addition to calculating the roll rate (second roll rate R2) from the vehicle steering angle δf and the vehicle speed V, the roll rate (from the steering torque M acting on the steering 7) ( The first roll rate R1) is calculated. The control device 12 controls the damping force generated by the FL damper 4A, the FR damper 4B, the RL damper 5A, and the RR damper 5B according to the magnitude of the steering torque M.
 即ち、例えば車両の走行中に路面の摩擦力が大きくなった場合には、ステアリングトルクMが大きくなるので、第1のロールレイトR1は変化することになる。そして、制御装置12は、ロールレイト選択部20により第1のロールレイトR1と第2のロールレイトR2とのうちの大きい値のロールレイトを選択して、そのロールレイト(R1またはR2)に基づき、FLダンパ4A,FRダンパ4B,RLダンパ5A,RRダンパ5Bで発生する減衰力を高める制御を行う。 That is, for example, when the frictional force on the road surface increases while the vehicle is running, the steering torque M increases, and therefore the first roll rate R1 changes. Then, the control device 12 selects a roll rate having a larger value from the first roll rate R1 and the second roll rate R2 by the roll rate selection unit 20, and based on the roll rate (R1 or R2). The damping force generated by the FL damper 4A, the FR damper 4B, the RL damper 5A, and the RR damper 5B is increased.
 これにより、車両の走行中に路面の摩擦力が変化して車両にロールが発生した場合に、車両の操舵角δfおよび車速Vに変化がなかったとしても、ステアリング7に作用するステアリングトルクMにより算出された第1のロールレイトR1が第2のロールレイトR2よりも大きければ、この第1のロールレイトR1を用いて車両のアンチロール制御を行うことができる。また、路面の上下入力により発生するトルク変化についても同様に制御することで、路面入力に起因するばね上振動を抑制することができる。従って、車両に作用するロールの挙動を効果的に抑制して、ひいては車両の乗り心地を向上することができる。 As a result, even if the vehicle steering angle δf and the vehicle speed V do not change when the road frictional force changes and the vehicle rolls while the vehicle is running, the steering torque M acting on the steering 7 If the calculated first roll rate R1 is greater than the second roll rate R2, the anti-roll control of the vehicle can be performed using the first roll rate R1. Further, by controlling the torque change caused by the road surface vertical input and output in the same manner, it is possible to suppress the sprung vibration caused by the road surface input. Therefore, it is possible to effectively suppress the behavior of the roll acting on the vehicle, thereby improving the riding comfort of the vehicle.
 次に、図3は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、ステアリングトルク信号からばね下共振周波数の信号を抽出して各ダンパの目標減衰力を算出する構成としたことにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 3 shows a second embodiment of the present invention. The feature of the second embodiment resides in that a target damping force of each damper is calculated by extracting a signal of the unsprung resonance frequency from the steering torque signal. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 制御装置31は、マイクロコンピュータ等によって構成され、車体1に搭載されている。この制御装置31は、車輪のロール方向の上下速度に基づきFLダンパ4A、FRダンパ4Bで発生する減衰力を高める制御を行う。制御装置31の入力側には、操舵角センサ6、車速センサ8、トルクセンサ9、車高センサ11A,11B等に接続されている。一方、制御装置31の出力側には、FLダンパ4A、FRダンパ4Bのアクチュエータ(図示せず)等に接続されている。 The control device 31 is configured by a microcomputer or the like and is mounted on the vehicle body 1. The control device 31 performs control to increase the damping force generated by the FL damper 4A and the FR damper 4B based on the vertical speed of the wheel in the roll direction. On the input side of the control device 31, the steering angle sensor 6, the vehicle speed sensor 8, the torque sensor 9, and the vehicle height sensors 11A and 11B are connected. On the other hand, the output side of the control device 31 is connected to an actuator (not shown) of the FL damper 4A and the FR damper 4B.
 この場合、図3に示す制御装置31は、2輪操舵(2WS)の車両に搭載されたもので、左前輪2A用のFLダンパ4Aと右前輪2B用のFRダンパ4Bとの制御を行うものとしている。なお、4輪操舵(4WS)の車両の場合には、左後輪3A用のRLダンパ5Aと右後輪3B用のRRダンパ5Bとの制御を同様にして別個に行えばよい。 In this case, the control device 31 shown in FIG. 3 is mounted on a two-wheel steering (2WS) vehicle and controls the FL damper 4A for the left front wheel 2A and the FR damper 4B for the right front wheel 2B. It is said. In the case of a four-wheel steering (4WS) vehicle, the control of the RL damper 5A for the left rear wheel 3A and the RR damper 5B for the right rear wheel 3B may be performed separately in the same manner.
 ばね下共振抽出部32は、トルクセンサ9から出力されたトルク信号(ステアリングトルクM)にバンドパスフィルタ処理を行うことにより、ばね下共振周波数(例えば、10~16Hz程度)の信号(ばね下共振周波数成分)を抽出する。即ち、このばね下共振周波数成分は、車輪の上下方向の振動が最も大きくなる周波数成分である。ばね下共振抽出部32は、本発明のばね下共振抽出部を構成している。そして、このばね下共振周波数成分は、車輪上下速度差抽出部33に出力される。 The unsprung resonance extraction unit 32 performs a band-pass filter process on the torque signal (steering torque M) output from the torque sensor 9 to thereby generate a signal (unsprung resonance) of an unsprung resonance frequency (for example, about 10 to 16 Hz). Frequency component). In other words, the unsprung resonance frequency component is a frequency component at which the vibration in the vertical direction of the wheel becomes the largest. The unsprung resonance extracting unit 32 constitutes the unsprung resonance extracting unit of the present invention. This unsprung resonance frequency component is output to the wheel vertical speed difference extraction unit 33.
 車輪上下速度差抽出部33は、ばね下共振周波数成分を基に前輪2A,2Bのロール方向の上下速度差を算出するものである。即ち、左前輪2Aと右前輪2Bとの上下速度差は、ステアリングトルクMにゲインを乗算することによりステアリング7にかかる力に変換し、その値を積分することで算出することができる。 The wheel vertical speed difference extraction unit 33 calculates the vertical speed difference in the roll direction of the front wheels 2A and 2B based on the unsprung resonance frequency component. That is, the vertical speed difference between the left front wheel 2A and the right front wheel 2B can be calculated by converting the steering torque M to a force applied to the steering 7 by multiplying the gain and integrating the value.
 この場合、左前輪2Aと右前輪2Bとが同相に上下する場合には、ステアリング7にかかる力は相殺されるので、ステアリングトルクMに変化はない。一方、左前輪2Aと右前輪2Bとが逆相で上下する場合には、ステアリング7に力がかかることになる。従って、ステアリングトルクMの値に基づき左前輪2Aと右前輪2Bとの上下速度差を算出することができる。 In this case, when the left front wheel 2A and the right front wheel 2B move up and down in phase, the force applied to the steering 7 is canceled out, and the steering torque M does not change. On the other hand, when the left front wheel 2A and the right front wheel 2B move up and down in opposite phases, a force is applied to the steering wheel 7. Therefore, the vertical speed difference between the left front wheel 2A and the right front wheel 2B can be calculated based on the value of the steering torque M.
 符号反転部34は、車輪上下速度差を左前輪2Aで右前輪2Bとは反転させるため、「-1」を乗算する。そして、目標減衰力演算部35,36では、車輪上下速度差に右前輪2B用のFrゲイン,左前輪2A用のFlゲインを乗算することでロール抑制の目標減衰力とする。 The sign reversing unit 34 multiplies “−1” in order to reverse the wheel vertical speed difference between the left front wheel 2A and the right front wheel 2B. The target damping force calculation units 35 and 36 multiply the wheel vertical speed difference by the Fr gain for the right front wheel 2B and the Fl gain for the left front wheel 2A to obtain the target damping force for roll suppression.
 このようにして各輪の目標減衰力を演算した後には、ダンパ指令値算出部37,38において、この目標減衰力と相対速度算出部39により推定した相対速度から前もって記憶しておいたダンパの特性マップにより必要な電流値を出力する。この場合、相対速度算出部39は、相対速度算出部30とほぼ同様に構成され、車高センサ11Aの検出信号と車高センサ11Bの検出信号とから前輪2A,2B側の相対速度を算出する。 After calculating the target damping force of each wheel in this way, the damper command value calculation units 37 and 38 store the dampers stored in advance from the target damping force and the relative speed estimated by the relative speed calculation unit 39. The necessary current value is output from the characteristic map. In this case, the relative speed calculation unit 39 is configured in substantially the same manner as the relative speed calculation unit 30, and calculates the relative speed of the front wheels 2A and 2B from the detection signal of the vehicle height sensor 11A and the detection signal of the vehicle height sensor 11B. .
 これにより、ダンパ指令値算出部37,38は、FLダンパ4A,FRダンパ4Bのアクチュエータ(図示せず)に出力すべきダンパ指令値を電流値として算出する。そして、各ダンパ4A,4Bは、アクチュエータに供給された電流値(ダンパ指令値)に従って減衰力特性がハードとソフトの間で連続的に、または複数段で可変に制御される。 Thereby, the damper command value calculation units 37 and 38 calculate the damper command value to be output to the actuators (not shown) of the FL damper 4A and the FR damper 4B as the current value. Each of the dampers 4A and 4B is controlled so that the damping force characteristic is continuously variable between hardware and software according to the current value (damper command value) supplied to the actuator, or variable in a plurality of stages.
 かくして、このように構成された第2の実施の形態でも、ステアリング7に作用するステアリングトルクMを用いて車両のアンチロール制御を行うことができる。特に、第2の実施の形態では、ステアリングキックバックの発生から可及的に早いタイミングで減衰力を高めることができる。また、ばね下(ダンパ下)にセンサを設けていなくても、振動の検出を行うことができる。 Thus, even in the second embodiment configured as described above, the anti-roll control of the vehicle can be performed using the steering torque M acting on the steering 7. In particular, in the second embodiment, the damping force can be increased as early as possible from the occurrence of the steering kickback. Further, vibration can be detected without providing a sensor under the spring (under the damper).
 次に、図4は本発明の第3の実施の形態を示している。第3の実施の形態の特徴は、ステアリングトルクにより推定演算された第1の横加速度と、操舵角および車速とにより推定演算された第2の横加速度とのうち大きい値の横加速度を選択して、その横加速度に基づき、各ダンパ4A,4B,5A,5Bで発生する減衰力を高める制御を行う構成としたことにある。なお、第3の実施の形態では、前述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。 Next, FIG. 4 shows a third embodiment of the present invention. A feature of the third embodiment is that a larger lateral acceleration is selected from the first lateral acceleration estimated by the steering torque and the second lateral acceleration estimated by the steering angle and the vehicle speed. Then, based on the lateral acceleration, there is a configuration in which control is performed to increase the damping force generated in each damper 4A, 4B, 5A, 5B. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 左前輪用サスペンション装置41A(以下、FLダンパ41Aという)は、左前輪2A側と車体1との間に介装して設けられている。一方、右前輪用サスペンション装置41B(以下、FRダンパ41Bという)は、右前輪2B側と車体1との間に介装して設けられている。各ダンパ41A,41Bは、発生する減衰力を調整可能な油圧式の減衰力調整式緩衝器として構成されている。 The left front wheel suspension device 41A (hereinafter referred to as FL damper 41A) is provided between the left front wheel 2A side and the vehicle body 1. On the other hand, the right front wheel suspension device 41B (hereinafter referred to as FR damper 41B) is provided between the right front wheel 2B side and the vehicle body 1. Each of the dampers 41A and 41B is configured as a hydraulic damping force adjusting buffer that can adjust the generated damping force.
 各ダンパ41A,41Bには、例えば作動油を用いた油圧式のアクチュエータ(図示せず)が付設されている。なお、アクチュエータは、圧縮空気を用いた空圧式、電動アクチュエータを用いた電動式、およびリニアモータ等のように電磁力を用いた電磁式のアクチュエータでもよい。即ち、各ダンパ41A,41Bは、アクチュエータによって推力(制振力)を能動的に発生させることができるアクティブダンパとして構成されている。 Each of the dampers 41A and 41B is provided with a hydraulic actuator (not shown) using hydraulic oil, for example. The actuator may be a pneumatic actuator using compressed air, an electric actuator using an electric actuator, or an electromagnetic actuator using electromagnetic force such as a linear motor. That is, each of the dampers 41A and 41B is configured as an active damper that can actively generate a thrust (vibration suppression force) by an actuator.
 左後輪用サスペンション装置42A(以下、RLダンパ42Aという)は、左後輪3A側と車体1との間に介装して設けられている。一方、右後輪用サスペンション装置42B(以下、RRダンパ42Bという)は、右後輪3B側と車体1との間に介装して設けられている。各ダンパ42A,42Bは、発生する減衰力を調整可能な油圧式の減衰力調整式緩衝器として構成されている。 The left rear wheel suspension device 42A (hereinafter referred to as the RL damper 42A) is provided between the left rear wheel 3A side and the vehicle body 1. On the other hand, the right rear wheel suspension device 42B (hereinafter referred to as the RR damper 42B) is provided between the right rear wheel 3B side and the vehicle body 1. Each of the dampers 42A and 42B is configured as a hydraulic damping force adjusting shock absorber capable of adjusting the generated damping force.
 各ダンパ42A,42Bには、例えば作動油を用いた油圧式のアクチュエータ(図示せず)が付設されている。なお、アクチュエータは、圧縮空気を用いた空圧式、電動アクチュエータを用いた電動式、およびリニアモータ等のように電磁力を用いた電磁式のアクチュエータでもよい。即ち、各ダンパ42A,42Bは、アクチュエータによって推力(制振力)を能動的に発生させることができるアクティブダンパとして構成されている。 Each of the dampers 42A and 42B is provided with a hydraulic actuator (not shown) using hydraulic oil, for example. The actuator may be a pneumatic actuator using compressed air, an electric actuator using an electric actuator, or an electromagnetic actuator using electromagnetic force such as a linear motor. That is, each of the dampers 42A and 42B is configured as an active damper that can actively generate a thrust (vibration suppression force) by an actuator.
 制御装置43は、マイクロコンピュータ等によって構成され、車体1に搭載されている。この制御装置43は、車両がロール状態であることを判断したときに、FLダンパ41A、FRダンパ41B、RLダンパ42A、RRダンパ42Bで発生する減衰力を高める制御を行う。制御装置43の入力側には、操舵角センサ6、車速センサ8、トルクセンサ9、および車高センサ11A~11D等に接続されている。一方、制御装置43の出力側には、FLダンパ41A、FRダンパ41B、RLダンパ42A、RRダンパ42Bのアクチュエータ(図示せず)等に接続されている。 The control device 43 is constituted by a microcomputer or the like and is mounted on the vehicle body 1. The control device 43 performs control to increase the damping force generated by the FL damper 41A, the FR damper 41B, the RL damper 42A, and the RR damper 42B when it is determined that the vehicle is in a roll state. On the input side of the control device 43, a steering angle sensor 6, a vehicle speed sensor 8, a torque sensor 9, and vehicle height sensors 11A to 11D are connected. On the other hand, an output side of the control device 43 is connected to an actuator (not shown) of the FL damper 41A, the FR damper 41B, the RL damper 42A, the RR damper 42B, and the like.
 図4に示すように、制御装置43は、横加速度推定部44、横加速度演算部45、横加速度選択部48、目標減衰力算出部49、および相対速度算出部59を含んで構成されている。この場合、横加速度演算部45、横加速度選択部48、目標減衰力算出部49は、本発明のロール抑制制御部を構成している。 As shown in FIG. 4, the control device 43 includes a lateral acceleration estimation unit 44, a lateral acceleration calculation unit 45, a lateral acceleration selection unit 48, a target damping force calculation unit 49, and a relative speed calculation unit 59. . In this case, the lateral acceleration calculation unit 45, the lateral acceleration selection unit 48, and the target damping force calculation unit 49 constitute a roll suppression control unit of the present invention.
 まず、第1の横加速度αy1を演算する横加速度推定部44について説明する。 First, the lateral acceleration estimation unit 44 that calculates the first lateral acceleration αy1 will be described.
 横加速度推定部44は、トルクセンサ9の検出結果(ステアリングトルクM)から第1の横加速度αy1を推定演算するものである。この横加速度推定部44は、本発明の第1の横加速度演算部を構成している。横加速度推定部44には、例えば実験等により算出されたステアリングトルクと横加速度との対応関係を示すマップ(図示せず)が記憶(格納)されている。従って、横加速度推定部44は、トルクセンサ9から出力されたトルク信号(ステアリングトルクM)をこのマップに入力することにより、第1の横加速度αy1を算出することができる。そして、この第1の横加速度αy1は、後述の横加速度選択部48に出力される。 The lateral acceleration estimator 44 estimates and calculates the first lateral acceleration αy1 from the detection result (steering torque M) of the torque sensor 9. The lateral acceleration estimation unit 44 constitutes a first lateral acceleration calculation unit of the present invention. The lateral acceleration estimation unit 44 stores (stores) a map (not shown) indicating the correspondence between the steering torque and the lateral acceleration calculated by, for example, experiments. Therefore, the lateral acceleration estimation unit 44 can calculate the first lateral acceleration αy1 by inputting the torque signal (steering torque M) output from the torque sensor 9 to this map. The first lateral acceleration αy1 is output to a lateral acceleration selection unit 48 described later.
 次に、第2の横加速度αy2を推定演算する横加速度演算部45について説明する。 Next, the lateral acceleration calculation unit 45 that estimates and calculates the second lateral acceleration αy2 will be described.
 横加速度演算部45は、操舵角センサ6により検出された操舵角(前輪舵角δf)と車速センサ8により検出された車速Vとから第2の横加速度αy2を推定演算するものである。この横加速度演算部45は、本発明の第2の横加速度演算部を構成している。そして、横加速度演算部45は、車両モデル部46、位相調整用フィルタ47を含んで構成されている。 The lateral acceleration calculation unit 45 estimates and calculates the second lateral acceleration αy2 from the steering angle (front wheel steering angle δf) detected by the steering angle sensor 6 and the vehicle speed V detected by the vehicle speed sensor 8. The lateral acceleration calculation unit 45 constitutes a second lateral acceleration calculation unit of the present invention. The lateral acceleration calculation unit 45 includes a vehicle model unit 46 and a phase adjustment filter 47.
 車両モデル部46では、第1の実施の形態の車両モデル部17と同様に、操舵角(前輪舵角δf)と車速Vとにより、上述の数1式の車両モデルを用いてヨーレイトrを推定する。次に、算出したヨーレイトrに車速Vを乗算することにより、第2の横加速度αy2を算出する。また、位相調整用フィルタ47を用いて車両の操舵角から横加速度発生までのダイナミクスを補償する。そして、この第2の横加速度αy2は、後述の横加速度選択部48に出力される。 In the vehicle model unit 46, the yaw rate r is estimated by using the vehicle model of the above equation 1 based on the steering angle (front wheel steering angle δf) and the vehicle speed V, as in the vehicle model unit 17 of the first embodiment. To do. Next, the second lateral acceleration αy2 is calculated by multiplying the calculated yaw rate r by the vehicle speed V. Further, the phase adjustment filter 47 is used to compensate for the dynamics from the vehicle steering angle to the occurrence of lateral acceleration. The second lateral acceleration αy2 is output to a lateral acceleration selection unit 48 described later.
 横加速度選択部48は、横加速度推定部44で演算された第1の横加速度αy1と、横加速度演算部45で演算された第2の横加速度αy2とのうち大きい値の横加速度(αy1またはαy2)を選択するものである。この横加速度選択部48は、本発明の横加速度選択部を構成している。 The lateral acceleration selection unit 48 has a larger value of the lateral acceleration (αy1 or αy1) calculated from the first lateral acceleration αy1 calculated by the lateral acceleration estimation unit 44 and the second lateral acceleration αy2 calculated by the lateral acceleration calculation unit 45. αy2) is selected. The lateral acceleration selection unit 48 constitutes a lateral acceleration selection unit of the present invention.
 即ち、車両の走行中に操舵角が一定で路面の摩擦力が変化すると、実横加速度が変化してロールが発生することになる。しかし、操舵角は変化していないのでアンチロール制御が作動せず、車両に作用するロールが大きくなってしまう虞がある。 That is, when the steering angle is constant and the frictional force of the road surface changes while the vehicle is running, the actual lateral acceleration changes and rolls are generated. However, since the steering angle has not changed, the anti-roll control does not operate, and the roll acting on the vehicle may become large.
 そこで、第3の実施の形態では、路面の摩擦力が変化したときにステアリング7に作用するステアリングトルクMから第1の横加速度αy1を推定演算している。そして、制御装置43は、第1の横加速度αy1と、車両の操舵角δfと車速Vとにより推定算出された第2の横加速度αy2とのうち、大きい方の横加速度を用いて、アンチロール制御を行う構成としている。 Therefore, in the third embodiment, the first lateral acceleration αy1 is estimated and calculated from the steering torque M acting on the steering wheel 7 when the frictional force on the road surface changes. Then, the control device 43 uses the larger lateral acceleration of the first lateral acceleration αy1 and the second lateral acceleration αy2 estimated and calculated based on the vehicle steering angle δf and the vehicle speed V to perform anti-rolling. It is set as the structure which performs control.
 次に、各ダンパ41A,41B,42A,42Bの目標減衰力を算出する目標減衰力算出部49について説明する。 Next, the target damping force calculation unit 49 that calculates the target damping force of each of the dampers 41A, 41B, 42A, and 42B will be described.
 目標減衰力算出部49は、横加速度選択部48により選択された横加速度(αy1またはαy2)を用いて各ダンパ41A,41B,42A,42Bの目標減衰力を算出するものである。この目標減衰力算出部49は、本発明の目標減衰力算出部を構成している。そして、目標減衰力算出部49は、ロール角算出部50、目標減衰力演算部51,52、符号反転部53,54、ダンパ指令値算出部55,56,57,58を含んで構成されている。 The target damping force calculation unit 49 calculates the target damping force of each of the dampers 41A, 41B, 42A, and 42B using the lateral acceleration (αy1 or αy2) selected by the lateral acceleration selection unit 48. The target damping force calculation unit 49 constitutes a target damping force calculation unit of the present invention. The target damping force calculation unit 49 includes a roll angle calculation unit 50, target damping force calculation units 51 and 52, sign inversion units 53 and 54, and damper command value calculation units 55, 56, 57, and 58. Yes.
 ロール角算出部50では、横加速度選択部48で選択された横加速度(αy1またはαy2)からロール角を算出する。ロール角は、横加速度に単位横加速度当りのロール角を乗算することにより算出することができる。 The roll angle calculation unit 50 calculates the roll angle from the lateral acceleration (αy1 or αy2) selected by the lateral acceleration selection unit 48. The roll angle can be calculated by multiplying the lateral acceleration by the roll angle per unit lateral acceleration.
 そして、目標減衰力演算部51,52では、ロール角算出部50により算出されたロール角に右前輪2B用のFrゲイン,右後輪3B用のRrゲインを乗算することでロール抑制の目標減衰力とする。符号反転部53,54は、ロール抑制用の目標減衰力を左前輪2A,左後輪3Aで右前輪2B,右後輪3Bとは反転させるため、「-1」を乗算する。 Then, the target damping force calculation units 51 and 52 multiply the roll angle calculated by the roll angle calculation unit 50 by the Fr gain for the right front wheel 2B and the Rr gain for the right rear wheel 3B, thereby achieving the target damping for roll suppression. Power. The sign reversing units 53 and 54 multiply “−1” in order to reverse the roll damping target damping force between the left front wheel 2A and the left rear wheel 3A with the right front wheel 2B and the right rear wheel 3B.
 このようにして目標減衰力を加算または減算して各輪の目標減衰力を演算した後には、ダンパ指令値算出部55,56,57,58において、この目標減衰力と相対速度算出部59により推定した相対速度とから前もって記憶しておいたダンパの特性マップにより必要な電流値を出力する。 After the target damping force is calculated by adding or subtracting the target damping force in this way, the damper command value calculation units 55, 56, 57, and 58 use the target damping force and the relative speed calculation unit 59 to calculate the target damping force. A necessary current value is output from a damper characteristic map stored in advance from the estimated relative speed.
 この場合、相対速度算出部59は、車高センサ11Aの検出信号と車高センサ11Bの検出信号とから前輪2A,2B側の相対速度を算出する。また、相対速度算出部59は、車高センサ11Cの検出信号と車高センサ11Dの検出信号とから後輪3A,3B側の相対速度を算出する。 In this case, the relative speed calculation unit 59 calculates the relative speed of the front wheels 2A and 2B from the detection signal of the vehicle height sensor 11A and the detection signal of the vehicle height sensor 11B. In addition, the relative speed calculation unit 59 calculates the relative speed on the rear wheels 3A and 3B side from the detection signal of the vehicle height sensor 11C and the detection signal of the vehicle height sensor 11D.
 これにより、ダンパ指令値算出部55,56,57,58は、FLダンパ41A,FRダンパ41B,RLダンパ42A,RRダンパ42Bのアクチュエータ(図示せず)に出力すべきダンパ指令値を電流値として算出する。そして、各ダンパ41A,41B,42A,42Bは、アクチュエータに供給された電流値(ダンパ指令値)に従って減衰力特性がハードとソフトの間で連続的に、または複数段で可変に制御される。 Thereby, the damper command value calculation units 55, 56, 57, and 58 use the damper command value to be output to the actuators (not shown) of the FL damper 41A, the FR damper 41B, the RL damper 42A, and the RR damper 42B as a current value. calculate. Each of the dampers 41A, 41B, 42A, and 42B is controlled so that the damping force characteristic is continuously variable between hardware and software or in a plurality of stages according to the current value (damper command value) supplied to the actuator.
 かくして、このように構成された第3の実施の形態においても第1の実施の形態と同様にステアリングトルクMを用いて車両のアンチロール制御を行うことができる。特に、第3の実施の形態では、横加速度を用いてロール角を制御しているので、例えば自らが推力を発生可能なアクティブサスペンションおよびエアサスペンションに好適に用いることができる。 Thus, also in the third embodiment configured as described above, the anti-roll control of the vehicle can be performed using the steering torque M as in the first embodiment. In particular, in the third embodiment, the roll angle is controlled by using the lateral acceleration, so that it can be suitably used for, for example, an active suspension and an air suspension that can generate thrust.
 なお、上述した第1の実施の形態では、相対速度算出部30において相対速度を車高センサ11A~11Dの検出値を微分することにより算出した場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば各ダンパのばね下側とばね上側とにそれぞれ取り付けた上下方向の加速度センサによる検出値から相対加速度を算出し、この値を積分することで、相対速度を算出してもよく、特に算出方法を限定する必要はないものである。また、相対速度を一定値として取り扱ってもよい。このことは、第2、第3の実施の形態についても同様である。 In the above-described first embodiment, the case where the relative speed calculation unit 30 calculates the relative speed by differentiating the detection values of the vehicle height sensors 11A to 11D has been described as an example. However, the present invention is not limited to this. For example, the relative acceleration is calculated from the detection values of the vertical acceleration sensors attached to the unsprung side and the unsprung side of each damper, and this value is integrated to obtain the relative speed. May be calculated, and it is not particularly necessary to limit the calculation method. Further, the relative speed may be handled as a constant value. The same applies to the second and third embodiments.
 また、上述した第2の実施の形態では、相対速度を車高センサ11A,11Bから算出した値を用いているが、車輪上下速度差抽出部33の演算結果に基づき、下記の数3の式を基に算出するようにしてもよい。 In the second embodiment described above, the value calculated from the vehicle height sensors 11A and 11B is used as the relative speed. Based on the calculation result of the wheel vertical speed difference extraction unit 33, the following equation (3) You may make it calculate based on.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、上述した第2の実施の形態では、車輪上下速度差抽出部33でステアリングトルクMにゲインを乗算することによりステアリング7にかかる力に変換し、その値を積分することで左前輪2Aと右前輪2Bとの上下速度差を算出した場合を例に挙げて説明した。しかし本発明はこれに限らず、例えばステアリングトルクMにゲインを乗算することによりステアリング7にかかる力に変換し、その値を微分による算出値または比例による算出値によりアンチロール制御を行ってもよく、特に算出方法を限定する必要はないものである。 In the second embodiment described above, the wheel vertical speed difference extraction unit 33 multiplies the steering torque M by a gain to convert it into a force applied to the steering wheel 7 and integrates the value to the left front wheel 2A. The case where the vertical speed difference with the right front wheel 2B is calculated has been described as an example. However, the present invention is not limited to this. For example, the steering torque M may be converted into a force applied to the steering wheel 7 by multiplying the gain, and the anti-roll control may be performed using a differential value or a proportional value. The calculation method is not particularly limited.
 以上説明した実施の形態に基づくサスペンション制御装置として、例えば以下に述べる態様のものが考えられる。 As a suspension control device based on the embodiment described above, for example, the following modes can be considered.
 サスペンション制御装置の第1の態様としては、車両の車体と車輪との間に設けられ発生する減衰力を調整可能な減衰力調整式緩衝器と、前記車両に設けられたステアリングのステアリングトルク情報を取得するステアリングトルク情報取得部と、を備え、前記ステアリングトルク情報取得部の取得結果に応じて、前記減衰力調整式緩衝器で発生する減衰力を制御する。 As a first aspect of the suspension control device, there is provided a damping force adjusting type shock absorber that is provided between a vehicle body and a wheel of the vehicle and that can adjust a generated damping force, and steering torque information of a steering provided in the vehicle. A steering torque information acquisition unit to acquire, and controls the damping force generated by the damping force adjusting shock absorber according to the acquisition result of the steering torque information acquisition unit.
 第2の態様としては、第1の態様において、前記車両の速度及び操舵角から推定した横加速度を用いてロールを抑制するように前記減衰力調整式緩衝器で発生する減衰力を制御するロール抑制制御部をさらに備え、前記ステアリングトルク情報取得部の取得結果に応じて、前記ロール抑制制御部による制御を変更する。 As a second aspect, in the first aspect, a roll for controlling a damping force generated by the damping force adjusting buffer so as to suppress the roll by using a lateral acceleration estimated from the speed and steering angle of the vehicle. A suppression control unit is further provided, and the control by the roll suppression control unit is changed according to the acquisition result of the steering torque information acquisition unit.
 第3の態様としては、第2の態様において、前記ステアリングトルク情報取得部の取得結果から第1のロールレイトを推定演算する第1のロールレイト演算部をさらに有し、前記ロール抑制制御部は、前記車両の前記操舵角と前記速度とから第2のロールレイトを推定演算する第2のロールレイト演算部と、前記第1のロールレイトと前記第2のロールレイトとのうち大きい値のロールレイトを選択するロールレイト選択部と、前記ロールレイト選択部により選択された前記ロールレイトを用いて前記減衰力調整式緩衝器の目標減衰力を算出する目標減衰力算出部と、を備える。 As a 3rd mode, in the 2nd mode, it further has the 1st roll rate calculating part which carries out an estimation calculation of the 1st roll rate from the acquisition result of the steering torque information acquisition part, The roll control control part is A second roll rate calculation unit for estimating and calculating a second roll rate from the steering angle and the speed of the vehicle, and a roll having a larger value among the first roll rate and the second roll rate. A roll rate selecting unit that selects a rate; and a target damping force calculating unit that calculates a target damping force of the damping force adjusting shock absorber using the roll rate selected by the roll rate selecting unit.
 第4の態様としては、第2の態様において、前記ステアリングトルク情報取得部の取得結果から第1の横加速度を推定演算する第1の横加速度演算部をさらに備え、前記ロール抑制制御部は、前記車両の前記操舵角と前記速度とから第2の横加速度を推定演算する第2の横加速度演算部と、前記第1の横加速度と前記第2の横加速度とのうち大きい値の横加速度を選択する横加速度選択部と、前記横加速度選択部により選択された前記横加速度を用いて前記減衰力調整式緩衝器の目標減衰力を算出する目標減衰力算出部と、を備える。 As a fourth aspect, in the second aspect, the apparatus further comprises a first lateral acceleration calculation unit that estimates and calculates the first lateral acceleration from the acquisition result of the steering torque information acquisition unit, and the roll suppression control unit includes: A second lateral acceleration computing unit that estimates and computes a second lateral acceleration from the steering angle and the speed of the vehicle; and a lateral acceleration having a larger value of the first lateral acceleration and the second lateral acceleration. And a target damping force calculation unit that calculates a target damping force of the damping force adjusting shock absorber using the lateral acceleration selected by the lateral acceleration selection unit.
 サスペンション制御装置の第5の態様としては、車両の車体と車輪との間に設けられ発生する減衰力を調整可能な減衰力調整式緩衝器と、前記車両に設けられたステアリングのステアリングトルク情報を取得するステアリングトルク情報取得部と、前記ステアリングトルク情報取得部の取得結果からばね下共振周波数成分を抽出するばね下共振抽出部と、を備え、前記ばね下共振抽出部の抽出結果に基づき、前記減衰力調整式緩衝器で発生する減衰力の調整制御を行う。 As a fifth aspect of the suspension control device, a damping force adjustment type shock absorber that is provided between the vehicle body and the wheel of the vehicle and that can adjust the generated damping force, and steering torque information of the steering provided in the vehicle are provided. A steering torque information acquisition unit to acquire, and an unsprung resonance extraction unit to extract an unsprung resonance frequency component from the acquisition result of the steering torque information acquisition unit, and based on the extraction result of the unsprung resonance extraction unit, Adjusting and controlling damping force generated by damping force adjustment type shock absorber.
 なお、上記実施の態様では、操舵角と車速から求められるロールレイトや横加速度と、ステアリングトルクから求められるロールレイトや横加速度とを選択的に選ぶ例を示したが、これに限らず、操舵角と車速から求められるロールレイトや横加速度をステアリングトルクが変化した際に、その変化量に応じて、操舵角と車速から求められるロールレイトや横加速度を補正することで、制御信号を作成してもよい。 In the above embodiment, an example has been shown in which the roll rate and lateral acceleration obtained from the steering angle and the vehicle speed and the roll rate and lateral acceleration obtained from the steering torque are selectively selected. When the steering torque changes the roll rate and lateral acceleration obtained from the angle and vehicle speed, a control signal is created by correcting the roll rate and lateral acceleration obtained from the steering angle and vehicle speed according to the amount of change. May be.
 例えば、ステアリングトルクが下がった場合、ロールが戻る方向に対する減衰力を高めるように制御信号を補正し、また、ステアリングトルクが上がった場合、ロールが大きくなる方向の減衰力を高めるように制御信号を補正してもよい。この場合、補正係数をかけることで、リニアに制御信号を得てもよく、2段階や3段階のような、段階的な補正をしてもよい。 For example, when the steering torque decreases, the control signal is corrected so as to increase the damping force in the direction in which the roll returns, and when the steering torque increases, the control signal is increased so as to increase the damping force in the direction in which the roll increases. It may be corrected. In this case, a control signal may be obtained linearly by applying a correction coefficient, or stepwise correction such as two steps or three steps may be performed.
 以上、本発明のいくつかの実施形態について説明してきたが、上述した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 Although several embodiments of the present invention have been described above, the above-described embodiments of the present invention are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention can be changed and improved without departing from the spirit thereof, and the present invention includes equivalents thereof. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
 本願は、2016年6月28日出願の日本特許出願番号2016-127942号に基づく優先権を主張する。2016年6月28日出願の日本特許出願番号2016-127942号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-127942 filed on June 28, 2016. The entire disclosure including the specification, claims, drawings and abstract of Japanese Patent Application No. 2016-127942 filed on June 28, 2016 is incorporated herein by reference in its entirety.
 1 車体、 2A 左前輪、 2B 右前輪、 3A 左後輪、 3B 右後輪、 4A,41A 左前輪用サスペンション装置(減衰力調整式緩衝器)、 4B,41B 右前輪用サスペンション装置(減衰力調整式緩衝器)、 5A,42A 左前輪用サスペンション装置(減衰力調整式緩衝器)、 5B,42B 右後輪用サスペンション装置(減衰力調整式緩衝器)、 6 操舵角センサ、 7 ステアリング、 9 トルクセンサ(ステアリングトルク情報取得部)、 12,31,43 制御装置、 13 第1のロールレイト演算部(第1のロールレイト演算部)、 16 第2のロールレイト演算部(第2のロールレイト演算部)、 20 ロールレイト選択部(ロールレイト選択部)、 21 目標減衰力算出部(目標減衰力算出部)、 32 ばね下共振抽出部(ばね下共振抽出部)、 33 車輪上下速度差抽出部、 44 横加速度推定部(第1の横加速度演算部)、 45 横加速度演算部(第2の横加速度演算部)、 48 横加速度選択部(横加速度選択部)、 49 目標減衰力算出部(目標減衰力算出部) 1 body, 2A left front wheel, 2B right front wheel, 3A left rear wheel, 3B right rear wheel, 4A, 41A left front wheel suspension device (damping force adjustable shock absorber), 4B, 41B right front wheel suspension device (damping force adjustment) 5A, 42A Left front wheel suspension device (damping force adjustment type shock absorber), 5B, 42B Suspension device for right rear wheel (damping force adjustment type shock absorber), 6 Steering angle sensor, 7 Steering, 9 Torque Sensor (steering torque information acquisition unit), 12, 31, 43 control device, 13 first roll rate calculation unit (first roll rate calculation unit), 16 second roll rate calculation unit (second roll rate calculation) Part), 20 roll rate selection part (roll rate selection part), 21 target damping force calculation part (target) Damping force calculation unit), 32 unsprung resonance extraction unit (unsprung resonance extraction unit), 33 wheel vertical speed difference extraction unit, 44 lateral acceleration estimation unit (first lateral acceleration calculation unit), 45 lateral acceleration calculation unit (first 2 lateral acceleration calculation unit), 48 lateral acceleration selection unit (lateral acceleration selection unit), 49 target damping force calculation unit (target damping force calculation unit)

Claims (5)

  1.  サスペンション制御装置であって、
     車両の車体と車輪との間に設けられ、発生する減衰力を調整可能な減衰力調整式緩衝器と、
     前記車両に設けられたステアリングのステアリングトルク情報を取得するステアリングトルク情報取得部と、
     を備え、
     前記ステアリングトルク情報取得部の取得結果に応じて、前記減衰力調整式緩衝器で発生する減衰力を制御する
     サスペンション制御装置。
    A suspension control device,
    A damping force adjustable shock absorber provided between the vehicle body and the wheel of the vehicle and capable of adjusting the generated damping force;
    A steering torque information acquisition unit for acquiring steering torque information of steering provided in the vehicle;
    With
    A suspension control device that controls a damping force generated by the damping force adjusting shock absorber according to an acquisition result of the steering torque information acquisition unit.
  2.  請求項1に記載のサスペンション制御装置であって、
     前記車両の速度及び操舵角から推定した横加速度を用いてロールを抑制するように、前記減衰力調整式緩衝器で発生する減衰力を制御するロール抑制制御部をさらに備え、
     前記ステアリングトルク情報取得部の取得結果に応じて、前記ロール抑制制御部による制御を変更する
     サスペンション制御装置。
    The suspension control device according to claim 1,
    A roll suppression control unit that controls a damping force generated by the damping force adjusting shock absorber so as to suppress a roll using a lateral acceleration estimated from a speed and a steering angle of the vehicle;
    A suspension control device that changes control by the roll suppression control unit in accordance with an acquisition result of the steering torque information acquisition unit.
  3.  請求項2に記載のサスペンション制御装置であって、
     前記ステアリングトルク情報取得部の取得結果から第1のロールレイトを推定演算する第1のロールレイト演算部をさらに備え、
     前記ロール抑制制御部は、
     前記車両の前記操舵角と前記速度とから第2のロールレイトを推定演算する第2のロールレイト演算部と、
     前記第1のロールレイトと前記第2のロールレイトとのうち大きい値のロールレイトを選択するロールレイト選択部と、
     前記ロールレイト選択部により選択された前記ロールレイトを用いて前記減衰力調整式緩衝器の目標減衰力を算出する目標減衰力算出部と、
     を備える、サスペンション制御装置。
    The suspension control device according to claim 2,
    A first roll rate calculation unit that estimates and calculates a first roll rate from the acquisition result of the steering torque information acquisition unit;
    The roll suppression control unit
    A second roll rate calculation unit that estimates and calculates a second roll rate from the steering angle and the speed of the vehicle;
    A roll rate selecting unit for selecting a roll rate having a large value from the first roll rate and the second roll rate;
    A target damping force calculation unit that calculates a target damping force of the damping force adjusting shock absorber using the roll rate selected by the roll rate selection unit;
    A suspension control device comprising:
  4.  請求項2に記載のサスペンション制御装置であって、
     前記ステアリングトルク情報取得部の取得結果から第1の横加速度を推定演算する第1の横加速度演算部をさらに備え、
     前記ロール抑制制御部は、
     前記車両の前記操舵角と前記速度とから第2の横加速度を推定演算する第2の横加速度演算部と、
     前記第1の横加速度と前記第2の横加速度とのうち大きい値の横加速度を選択する横加速度選択部と、
     前記横加速度選択部により選択された前記横加速度を用いて前記減衰力調整式緩衝器の目標減衰力を算出する目標減衰力算出部と、
     を備える、サスペンション制御装置。
    The suspension control device according to claim 2,
    A first lateral acceleration calculation unit that estimates and calculates the first lateral acceleration from the acquisition result of the steering torque information acquisition unit;
    The roll suppression control unit
    A second lateral acceleration calculator that estimates and calculates a second lateral acceleration from the steering angle and the speed of the vehicle;
    A lateral acceleration selection unit that selects a lateral acceleration having a larger value from the first lateral acceleration and the second lateral acceleration;
    A target damping force calculation unit that calculates a target damping force of the damping force adjusting buffer using the lateral acceleration selected by the lateral acceleration selection unit;
    A suspension control device comprising:
  5.  サスペンション制御装置であって、
     車両の車体と車輪との間に設けられ、発生する減衰力を調整可能な減衰力調整式緩衝器と、
     前記車両に設けられたステアリングのステアリングトルク情報を取得するステアリングトルク情報取得部と、
     前記ステアリングトルク情報取得部の取得結果からばね下共振周波数成分を抽出するばね下共振抽出部と、
     を備え、
     前記ばね下共振抽出部の抽出結果に基づき、前記減衰力調整式緩衝器で発生する減衰力の調整制御を行う
     サスペンション制御装置。
    A suspension control device,
    A damping force adjustable shock absorber provided between the vehicle body and the wheel of the vehicle and capable of adjusting the generated damping force;
    A steering torque information acquisition unit for acquiring steering torque information of steering provided in the vehicle;
    An unsprung resonance extraction unit that extracts an unsprung resonance frequency component from the acquisition result of the steering torque information acquisition unit;
    With
    A suspension control device that performs adjustment control of a damping force generated by the damping force adjustment type shock absorber based on an extraction result of the unsprung resonance extraction unit.
PCT/JP2017/023679 2016-06-28 2017-06-28 Suspension control device WO2018003828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016127942A JP2019142244A (en) 2016-06-28 2016-06-28 Suspension control device
JP2016-127942 2016-06-28

Publications (1)

Publication Number Publication Date
WO2018003828A1 true WO2018003828A1 (en) 2018-01-04

Family

ID=60785304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023679 WO2018003828A1 (en) 2016-06-28 2017-06-28 Suspension control device

Country Status (2)

Country Link
JP (1) JP2019142244A (en)
WO (1) WO2018003828A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210008943A1 (en) * 2019-07-12 2021-01-14 Honda Motor Co., Ltd. Electric suspension device
CN113829822A (en) * 2020-06-08 2021-12-24 丰田自动车株式会社 Vehicle running state control device and vehicle running state control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182505A (en) * 1981-05-01 1982-11-10 Kayaba Ind Co Ltd Antiroll system of vehicle
JPS59160614A (en) * 1984-02-27 1984-09-11 Nissan Motor Co Ltd Suspension for vehicle
JPS63263119A (en) * 1987-04-21 1988-10-31 Nissan Motor Co Ltd Vehicle hydraulic supply device
JPH023510A (en) * 1988-06-10 1990-01-09 Honda Motor Co Ltd Suspension device
JP2004161073A (en) * 2002-11-11 2004-06-10 Koyo Seiko Co Ltd Motor-driven power steering device
JP2006248413A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Roll characteristic control device for vehicle
JP2009173169A (en) * 2008-01-24 2009-08-06 Toyota Motor Corp Vehicle control device
JP2010116073A (en) * 2008-11-13 2010-05-27 Mitsubishi Motors Corp Vehicle suspension device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182505A (en) * 1981-05-01 1982-11-10 Kayaba Ind Co Ltd Antiroll system of vehicle
JPS59160614A (en) * 1984-02-27 1984-09-11 Nissan Motor Co Ltd Suspension for vehicle
JPS63263119A (en) * 1987-04-21 1988-10-31 Nissan Motor Co Ltd Vehicle hydraulic supply device
JPH023510A (en) * 1988-06-10 1990-01-09 Honda Motor Co Ltd Suspension device
JP2004161073A (en) * 2002-11-11 2004-06-10 Koyo Seiko Co Ltd Motor-driven power steering device
JP2006248413A (en) * 2005-03-11 2006-09-21 Toyota Motor Corp Roll characteristic control device for vehicle
JP2009173169A (en) * 2008-01-24 2009-08-06 Toyota Motor Corp Vehicle control device
JP2010116073A (en) * 2008-11-13 2010-05-27 Mitsubishi Motors Corp Vehicle suspension device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210008943A1 (en) * 2019-07-12 2021-01-14 Honda Motor Co., Ltd. Electric suspension device
JP2021014209A (en) * 2019-07-12 2021-02-12 本田技研工業株式会社 Electric suspension device
JP7153615B2 (en) 2019-07-12 2022-10-14 本田技研工業株式会社 electric suspension device
CN113829822A (en) * 2020-06-08 2021-12-24 丰田自动车株式会社 Vehicle running state control device and vehicle running state control method
CN113829822B (en) * 2020-06-08 2024-04-02 丰田自动车株式会社 Vehicle running state control device and vehicle running state control method

Also Published As

Publication number Publication date
JP2019142244A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5809474B2 (en) Body posture control device
US9375990B2 (en) Suspension control device
US10703162B2 (en) Suspension control system
US8880293B2 (en) Vehicle motion control apparatus and suspension control apparatus
US8718872B2 (en) Vehicle attitude controller
US7747368B2 (en) Vehicle damping force control with roll angle and pitch angle
US7715963B2 (en) Stabilizer control apparatus
CN108891410B (en) Vehicle attitude control device
CN104417564B (en) Vehicle Behavior Control Device
US20070156314A1 (en) Damping force control apparatus for vehicle
JP6130816B2 (en) Control device for damping force variable damper
JP2010208619A (en) Vehicle behavior control device
KR20110014078A (en) Suspension control unit
US20090112402A1 (en) Control device for a variable damper
JP6285591B1 (en) Suspension control device and suspension device
JP6753911B2 (en) Control device for variable damping force damper
EP1892179B1 (en) Variable rear wheel toe angle control system for a vehicle
US10226979B2 (en) Damping force control device for vehicle
WO2018003828A1 (en) Suspension control device
JP5808615B2 (en) Suspension control device
JP4998758B2 (en) Vehicle integrated control device
WO2018173303A1 (en) Control device and suspension device
JP7624381B2 (en) Vehicle attitude control device
JP5154277B2 (en) Control method and control device for damping force variable damper
JP7253516B2 (en) suspension system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17820182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP