WO2017222239A1 - Volatile organic compound recovery apparatus - Google Patents
Volatile organic compound recovery apparatus Download PDFInfo
- Publication number
- WO2017222239A1 WO2017222239A1 PCT/KR2017/006267 KR2017006267W WO2017222239A1 WO 2017222239 A1 WO2017222239 A1 WO 2017222239A1 KR 2017006267 W KR2017006267 W KR 2017006267W WO 2017222239 A1 WO2017222239 A1 WO 2017222239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- heat exchanger
- volatile organic
- high pressure
- liquid
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D90/00—Component parts, details or accessories for large containers
- B65D90/22—Safety features
- B65D90/30—Recovery of escaped vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/08—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/003—Filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B43/00—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
- F25B43/02—Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/84—Processes or apparatus using other separation and/or other processing means using filter
Definitions
- the present invention relates to a device for recovering volatile organic compounds, and more particularly, to a device for recovering volatile organic compounds designed to suppress the emission of volatile organic compounds generated in a crude oil storage tank and to make the best use of available energy. .
- Volatile organic compounds are organic compounds that evaporate easily due to their low boiling point, and contain various kinds of ingredients depending on their origin. Volatile organic compounds may be toxic or odorous and may contain flammable components. When volatile organic compounds are released into the atmosphere, they pollute the air, and therefore, a technique for treating them is required.
- Fossil fuels such as crude oil also contribute to the formation of volatile organic compounds. Excessive generation of volatile organic compounds in crude oil carriers and the like for transporting such crude oil is a problem. Volatile organic compounds occur especially during the loading or unloading of liquid cargo such as crude oil, and may be generated inside the tank during the transportation of crude oil to increase the pressure. Therefore, more effective treatment of such volatile organic compounds is required.
- the technical problem to be achieved by the present invention is to solve the above problems, to provide a volatile organic compound recovery apparatus designed to suppress the air emissions of volatile organic compounds generated in the crude oil storage tank and to make the best use of the available energy.
- the volatile organic compound recovery device includes a first compressor for compressing oil vapor supplied from a crude oil storage tank, a first heat exchanger for cooling a high pressure fluid passed through the first compressor, and the first heat exchanger.
- An expansion valve for depressurizing the first gas separated from the high pressure fluid through a high pressure fluid or a pretreatment unit, the high pressure fluid passing through the expansion valve, or the first gas is separated into a second gas and a second liquid.
- the second gas is supplied to the combustion engine, the second liquid includes a gas-liquid separator to supply to the storage tank.
- the apparatus may further include a second heat exchanger installed between the first heat exchanger and the expansion valve to heat exchange the second gas separated from the gas-liquid separator, and the high pressure fluid or the first gas.
- a third heat exchanger installed between the second heat exchanger and the expansion valve to heat-exchange the second liquid separated from the gas-liquid separator and the high pressure fluid or the first gas.
- the pretreatment unit may further include a pretreatment separator installed between the first heat exchanger and the second heat exchanger to separate the first gas from the high pressure fluid and to provide the second heat exchanger.
- the pretreatment unit may further include a water removal unit installed between the first heat exchanger and the pretreatment separator, or between the pretreatment separator and the second heat exchanger.
- the pretreatment unit may further include a second compressor installed between the pretreatment separator and the second heat exchanger to pressurize the first gas.
- the apparatus may further include a fourth heat exchanger installed between the second compressor and the second heat exchanger to cool the first gas.
- the apparatus may further include a branch pipe branched from a conduit through which the first gas flows between the second compressor and the gas-liquid separator, and a high pressure tank connected to the branch pipe to store the first gas.
- It may further include a pressure reducing valve formed in the branch pipe to control the pressure of the first gas flowing into the high pressure tank.
- It may further include an evaporator installed between the first heat exchanger and the second heat exchanger to convert the LNG into NG (Natural gas) by heat-exchanging the LNG (Liquefied natural gas), the high pressure fluid or the first gas.
- NG Natural gas
- LNG Liquified natural gas
- the pretreatment separator may be a three-phase separator that separates the first gas, water, and a first liquid comprising a component having a specific gravity smaller than that of the water.
- It may further include a filtration unit installed between the crude oil storage tank and the first compressor to remove the solid foreign matter and liquid foreign matter contained in the oil vapor.
- the volatile organic compounds generated in the crude oil storage tank and the like can be treated by a series of continuous treatment processes to minimize the emission of air.
- FIG. 1 is a block diagram of a volatile organic compound recovery apparatus according to a first embodiment of the present invention.
- FIG. 2 is a block diagram of a volatile organic compound recovery apparatus according to a second embodiment of the present invention.
- FIG. 3 is a block diagram of a volatile organic compound recovery apparatus according to a third embodiment of the present invention.
- FIG. 4 is a configuration diagram of a volatile organic compound recovery apparatus according to a fourth embodiment of the present invention.
- FIG. 5 is a configuration diagram of a volatile organic compound recovery apparatus according to a fifth embodiment of the present invention.
- FIG. 6 is a block diagram of a volatile organic compound recovery apparatus according to a sixth embodiment of the present invention.
- FIGS. 1 to 6 a sixth embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
- the solid arrows connecting the components indicate the 'flow' of the fluid and the 'pipe' through which the fluid flows. Therefore, even if not described with a separate sign it can be understood that the conduit is formed along each solid arrow.
- 'second gas' and 'second liquid' are defined as fluids generated by separation of a 'gas liquid separator' into a gas phase and a liquid phase.
- FIG. 1 is a block diagram of a volatile organic compound recovery apparatus according to a first embodiment of the present invention.
- the volatile organic compound recovery device 1 of the present invention is a continuous series of organic vapors generated in the crude oil storage tank A (which may include volatile organic compounds generated from crude oil and inert gas, etc., filled in the tank). Processing is continuously carried out through the processing step. Treatment steps include pressurization, depressurization, and temperature control of the fluid, phase change, and separation of fluids with different phases, temperature control of fluid through heat exchange between different fluids, and the like.
- the volatile organic compound recovery apparatus 1 is composed of a plurality of components organically connected to each other to perform such a process. Through a series of processes by the operation of these components it is possible to minimize the emissions by recovering volatile organic compounds, and also to improve the energy efficiency by recovering the available energy of the volatile organic compounds as much as possible.
- the volatile organic compound recovery apparatus 1 is configured as follows.
- the volatile organic compound recovery device (1) is a first heat exchanger for cooling the high pressure fluid (B) passed through the first compressor (10) and the first compressor (10) for compressing the oil vapor supplied from the crude oil storage tank (A). (20), an expansion valve (30) and an expansion valve (30) for depressurizing the first gas separated from the high pressure fluid (B) through the high pressure fluid (B) passing through the first heat exchanger (20) or the pretreatment unit;
- the high pressure fluid B, or the first gas passed through the gas is separated into a second gas C1 and a second liquid C2, and the second gas C1 is supplied to the combustion engine D, and the second liquid is supplied.
- the C2 includes a gas-liquid separator 40 for supplying the storage tank 100.
- the gas-liquid separator 40 may generate the second gas C1 and the second liquid C2 and provide the same to the combustion engine D or store the same in the storage tank 100. .
- the volatile organic compound recovery device 1 may include a pretreatment unit that separates the first gas from the high pressure fluid B that has passed through the first compressor 10 and participates in the recovery process, or may be formed without the pretreatment unit. Can be.
- a pretreatment unit that separates the first gas from the high pressure fluid B that has passed through the first compressor 10 and participates in the recovery process
- Can be In the first embodiment of the present invention, and the second embodiment to be described later, description will be made based on the case where the pretreatment unit is not provided. In this case, the available energy is directly recovered from the high pressure fluid B that has passed through the first compressor 10, and the first gas is not generated and thus does not participate in the energy recovery process.
- Figure 1 will be described in more detail with respect to each component and operation of the volatile organic compound recovery apparatus 1 according to the first embodiment of the present invention.
- the first compressor 10 pressurizes and compresses the oil vapor supplied from the crude oil storage tank (A). Crude oil is stored in the crude oil storage tank (A) and the oil vapor may include volatile organic compounds generated from the crude oil and some other substances (such as inert gas injected into the tank).
- the first compressor 10 converts the high pressure fluid B by pressurizing the oil vapor.
- the first compressor 10 may be formed to increase the pressure of the fluid using a rotary blade that rotates in the pressure chamber, or may be formed of a reciprocating compressor using a cylinder. However, this does not need to be understood as such an example of the formation method of the compressor.
- Various types of compressors can be applied by selectively and complexly utilizing various structures within the limit of fluid compression.
- the high pressure fluid B compressed by the first compressor 10 is supplied to the first heat exchanger 20.
- the filtration unit 90 is disposed in front of the first compressor 10.
- the filtration unit 90 may be installed between the crude oil storage tank A and the first compressor 10 to remove solid foreign matter and liquid foreign matter contained in the oil vapor. Unnecessary foreign substances contained in the oil vapor can be removed by the filtration unit 90 and a pure gas containing volatile organic compounds can be supplied to the first compressor 10 to improve the compression ratio and the energy recovery capability.
- the filtration unit 90 may include a scrubber, a centrifuge, and the like.
- the filtration unit 90 may be used to remove foreign substances such as soot, liquid droplets, etc. from the oil vapor by using the filtration unit 90. ) Can be supplied.
- Crude oil storage tank (A) may be installed on a vessel such as a crude oil transport ship, but need not be limited thereto.
- Crude oil storage tanks (A) include all refineries, transportation facilities, storage facilities, and other types of facilities for storing or importing crude oil.
- the crude oil storage tank (A) is stored crude oil to generate volatile organic compounds, and the volatile organic compound recovery device (1) of the present invention can effectively recover the volatile organic compounds generated from crude oil and the available energy contained therein.
- Crude oil storage tank (A) is a facility for storing the substances that cause the generation of volatile organic compounds such as crude oil, and even if not described separately, the object of application of the volatile organic compound recovery device (1) of the present invention is such a crude oil storage tank (A) It is not limited to. That is, the crude oil storage tank (A) is described herein by way of example, but the present invention can be applied to various other facilities in which volatile organic compounds are produced, and the technical concept of the present invention is limited to storage facilities such as crude oil. Need not be interpreted.
- the first heat exchanger 20 cools the high pressure fluid B that has passed through the first compressor 10.
- the high pressure fluid B having a temperature rise and passing through the first compressor 10 is cooled while passing through the first heat exchanger 20.
- the first heat exchanger 20 may include one or more flow paths connected to each other to allow heat exchange.
- the first heat exchanger 20 may have a structure in which a flow path through which the high pressure fluid B flows and a flow path through which the coolant flows contact each other to allow heat exchange.
- the cooling water supplied to the first heat exchanger 20 may be clear water, distilled water, or the like. When the present invention is applied to a facility such as a ship, sea water may be used as the cooling water. Depending on the situation, it is possible to cool the high pressure fluid (B) by heat exchange with various different types of cooling water.
- the high pressure fluid B which has passed through the first heat exchanger 20, passes through the expansion valve 30 and is decompressed. That is, the high pressure fluid B pressurized by the first compressor 10 may be expanded by the expansion valve 30 to reduce the pressure and rapidly lower the temperature. Through this it can be supplied by lowering the temperature of the fluid to a temperature that can be easily operated in the gas-liquid separator 40 of the rear end.
- the expansion valve 30 may be, for example, using a Joule-Thomson effect to depressurize and cool the pressurized fluid through the nozzle.
- the decompression rate of the expansion valve 30 may be appropriately set or adjusted in consideration of the operating temperature and the pressure of the gas-liquid separator 40.
- the gas-liquid separator 40 is a second gas through a high pressure fluid (B) (that is, a fluid that is compressed and supplied to the expansion valve at a high pressure state and depressurized while passing through the expansion valve as described above) through the expansion valve (30).
- B high pressure fluid
- the separated second gas C1 is supplied to the combustion engine D, and the second liquid C2 is supplied to the storage tank 100.
- the second gas (C1) and the second liquid (C2) are collected by separating the vapor of the above-mentioned volatile organic compounds into gaseous and liquid phases and contain flammable components, which are directly used as fuel of the combustion engine (D), or It can be converted into gaseous state and used as fuel.
- Gas-liquid separator 40 may be formed to separate the second gas (C1) and the second liquid (C2) by the difference in density, and discharge the second gas (C1) in the upper portion and the second liquid (C2) in the lower portion ) May be formed in the form of a container or drum for discharging.
- the fluid provided under the reduced pressure and cooling in the expansion valve 30 to the gas-liquid separator 40 may be separated into a gaseous phase and a liquid phase and used immediately as a fuel or may be stored as a fuel. It may also be used to lower the temperature by heat exchange with the high pressure fluid B before it is used or stored as fuel (see second embodiment 6, described below). That is, the gaseous and liquid components (second gas and second liquid) generated by the cooling process of the expansion valve 30 and the phase separation process of the gas-liquid separator 40 are provided as fuel, so that the available energy is effectively supplied through one or more paths. It is recovered.
- the second gas C1 is supplied to the combustion engine D after cooling the high pressure fluid B in the second heat exchanger 50 and is consumed.
- the second liquid C2 is consumed in the second heat exchanger 50.
- the cooled high pressure fluid B is recooled in the third heat exchanger 60 and then stored in the storage tank 100. In this way, the fluid containing the volatile organic compounds can be treated in a stepwise manner to recover available energy and greatly reduce the amount of emissions.
- the combustion engine D inflowing and consuming the second gas C1 may include a gas turbine, a gas burner, or the like. If the combustion engine (D) is an engine that generates rotational power, such as a gas turbine, the generator can be combined with the rotary shaft of the gas turbine to produce electric power. The waste heat is recovered at the rear of the gas turbine to generate steam and generate power using the engine. Combined with a heat recovery steam generator (HRSG) that produces energy, energy recovery can be greatly increased.
- a gas turbine or gas burner may be provided and selectively connected to drive a generator coupled to the gas turbine or to utilize thermal energy generated by the gas burner, and the second liquid C2 stored in the storage tank 100.
- the volatile organic compound recovery apparatus 1-1 is constructed as follows.
- the volatile organic compound recovery device 1-1 is a first compressor 10 for compressing oil vapor supplied from a crude oil storage tank A, and a first compressor for cooling the high pressure fluid B passed through the first compressor 10.
- Expansion valve 30 for reducing the pressure of the first gas separated from the high pressure fluid B through the heat exchanger 20, the first heat exchanger 20, or the pretreatment unit 30, an expansion valve ( The high pressure fluid B passed through 30 or the first gas is separated into a second gas C1 and a second liquid C2, and the second gas C1 is supplied to the combustion engine D.
- Second liquid (C2) is installed between the gas-liquid separator 40, the first heat exchanger 20 and the expansion valve 30 to supply to the storage tank 100, the second gas (C1) separated from the gas-liquid separator (40) ), A second heat exchanger 50 for exchanging the high pressure fluid B or the first gas, and the second heat exchanger 50 and the expansion valve 30 are separated from the gas-liquid separator 40.
- Second liquid (C2), high pressure fluid (B) or the 1 comprises a third heat exchanger 60 to heat the gas.
- the volatile organic compound recovery apparatus 1-1 includes a second heat exchanger 50 and a third heat exchanger between the first heat exchanger 20 and the expansion valve 30. 60) is installed to cool the fluid in stages.
- the second heat exchanger 50 and the third heat exchanger 60 are respectively injected into the expansion valve 30 by utilizing the second gas C1 and the second liquid C2 separated from the gas-liquid separator 40 as refrigerant. It is possible to greatly improve the cooling efficiency of the fluid.
- the second heat exchanger 50 and the third heat exchanger 60 are installed on a flow path through which the high pressure fluid B flows toward the expansion valve 30 as shown.
- the second heat exchanger (50) is installed between the first heat exchanger (20) and the expansion valve (30), and introduces a second gas (C1) separated from the gas-liquid separator (40) to exchange heat with the high pressure fluid (B). Let's do it.
- the third heat exchanger (60) is installed between the second heat exchanger (50) and the expansion valve (30) and introduces a second liquid (C2) separated from the gas-liquid separator (40) to supply the high pressure fluid (B). Heat exchange with.
- the second heat exchanger 50 and the third heat exchanger 60 may also include one or more flow paths connected to each other to enable heat exchange, and each of the flow paths through which the high pressure fluid B flows, and the second gas C1 or the first heat exchanger, respectively.
- the flow path in which the two liquids C2 flow may be formed in a structure in which the two liquids C2 are in contact with each other to allow heat exchange.
- the fluid provided under the reduced pressure and cooling in the expansion valve 30 to the gas-liquid separator 40 may be separated into a gaseous phase and a liquid phase and used immediately as a fuel or may be stored as a fuel. It may also be used to lower the temperature by heat exchange with the high pressure fluid (B) before it is used or stored as fuel. That is, the gaseous and liquid components (second gas and second liquid) generated by the cooling process of the expansion valve 30 and the phase separation process of the gas-liquid separator 40 are separated from the high pressure fluid B at the front end of the expansion valve 30. By heat exchange in stages, the cooling efficiency of the high pressure fluid (B) is greatly improved, and then provided as a fuel, the available energy is effectively recovered through various paths.
- the second gas C1 is supplied to the combustion engine D after cooling the high pressure fluid B in the second heat exchanger 50 and is consumed.
- the second liquid C2 is consumed in the second heat exchanger 50.
- the cooled high pressure fluid B is recooled in the third heat exchanger 60 and then stored in the storage tank 100. In this way, the fluid containing the volatile organic compounds can be treated in a stepwise manner to recover available energy and greatly reduce the amount of emissions.
- FIG. 3 is a block diagram of a volatile organic compound recovery apparatus according to a third embodiment of the present invention.
- the volatile organic compound recovery apparatus 1-2 separates the first gas from the high pressure fluid B that has passed through the first compressor 10 in the recovery process. And a preprocessing unit 70 for engaging.
- the high pressure fluid B passing through the first compressor 10 is separated into the first gas B1 and the first liquid B2 in the pretreatment unit 70.
- the first gas B1 is collected into the second gas C1 and the second liquid C2 through pressure change, heat change, phase change, and the like, and the first liquid B2 is stored in the storage tank 100. Stored.
- the pretreatment unit 70 By providing the pretreatment unit 70, the fluid handling capacity at the rear end is reduced, so that the energy of each treatment process is reduced and the available energy recovery can be increased.
- the pretreatment unit 70 is disposed between the first heat exchanger 20 and the second heat exchanger 50 as shown.
- the pretreatment unit 70 separates the high pressure fluid B, which has passed through the first heat exchanger 20, into the first gas B1 and the first liquid B2, and separates the first gas B1 from the second heat exchanger. 50) to the side.
- the pretreatment unit 70 includes a pretreatment separator 71, and the pretreatment separator 71 is installed between the first heat exchanger 20 and the second heat exchanger 50 so that the first gas (B) B1) is separated and provided to the second heat exchanger (50).
- the first gas B1 separated from the pretreatment separator 71 is supplied to the expansion valve 30 through additional processing, passes through the expansion valve 30, and is decompressed to thereby greatly reduce the temperature.
- the reduced pressure and cooled first gas B1 flows into the gas-liquid separator 40 and is separated into the second gas C1 and the second liquid C2, and the second heat exchanger 50 is processed as described above. ) And a third heat exchanger 60 to exchange heat with the first gas B1.
- the first gas B1 at the rear end of the pretreatment unit 70 passes through the second heat exchanger 50, the third heat exchanger 60, the expansion valve 30, the gas-liquid separator 40, and the like.
- the fluid B performs substantially the same process as the process performed while passing through the second heat exchanger 50, the third heat exchanger 60, the expansion valve 30, and the gas-liquid separator 40. Therefore, the detailed description thereof will be replaced with the above description. That is, the first gas B1 supplied from the pretreatment unit 70 to the second heat exchanger 50 is cooled by heat exchange with the second gas C1 provided to the second heat exchanger 50, and the second heat exchanger 50.
- the first gas B1 cooled in this manner is rapidly depressurized while passing through the expansion valve 30, and is rapidly reduced in temperature, and is separated from the gas-liquid separator 40 into the second gas C1 and the second liquid C2. .
- the second gas C1 and the second liquid C2 are consumed in the combustion engine D after passing through the second heat exchanger 50 and the third heat exchanger 60 or the storage tank 100. ) And used as needed.
- the volatile organic compound recovery apparatus 1-2 separates the first gas B1 from the high pressure fluid B through the pretreatment unit 70 in the above-described energy recovery process.
- the first gas B1 separates water and liquid components from the high pressure fluid B by using the pretreatment separator 71.
- the first gas B1 reduces the fluid treatment capacity by providing the first gas B1, which is a gaseous component, in the post-treatment process. The energy consumed in the process can be saved.
- the pretreatment unit 70 compresses the first gas B1 to a higher pressure, including a second compressor 73 for additionally pressurizing the first gas B1 at the rear end of the pretreatment separator 71, and expands the expansion valve.
- the pretreatment unit 70 includes a pretreatment separator 71, a water removal unit 72, a second compressor 73, and a fourth heat exchanger 74.
- the pretreatment separator 71 is installed between the first heat exchanger 20 and the second heat exchanger 50 as shown in the drawing, and introduces a high pressure fluid B that has passed through the first heat exchanger 20 so as to enter the first heat exchanger. It separates into gas B1, water B3, and the 1st liquid B2.
- the pretreatment separator (71) is introduced into the high pressure fluid (B) and separated into a first gas (B1) as a gaseous component, water (B3), and a first liquid (B2) composed of a component having a specific gravity smaller than that of water (B3).
- the separated first gas B1 passes through the water removal unit 72, the second compressor 73, and the fourth heat exchanger 74 to the second heat exchanger 50 as described above. Is provided.
- the first liquid B2 is stored in the storage tank 100 as shown and used together with the second liquid C2 as necessary.
- the first liquid B2 and the second liquid C2 may be stored together in the storage tank 100 or may be stored separately from the storage space.
- Water B3 may be stored in a waste water storage tank, for example a slop tank of a crude oil transport ship.
- the water removal unit 72 is installed between the pretreatment separator 71 and the second heat exchanger 50 to remove the water of the first gas B1.
- the first gas B1 is converted into a more pure gaseous phase component and thus is converted into a state where additional compression is easily performed.
- the second compressor 73 is installed between the pretreatment separator 71 and the second heat exchanger 50 and is disposed at the rear end of the water removal unit 72.
- the first gas B1 from which water is removed by passing through the water removal unit 72 is compressed to a higher pressure while passing through the second compressor 73. That is, the high pressure fluid (B) is generated by passing through the first compressor (10) described above, and passed through the pretreatment separator (71) to separate gas phase components (first gas), and the separated first gas (B1).
- the second compressor 73 may be formed to increase the fluid pressure by using a rotary blade that rotates in the pressure chamber, or may be formed of a reciprocating compressor using a cylinder.
- this also does not need to be limited to understand the formation method of the compressor as an example, it is possible to apply a variety of compressors by selectively and complex use of various structures within the limit of the fluid compression.
- the second compressor 73 compresses the first gas B1 from which the liquid component is separated from the high pressure fluid B, so that the driving energy consumption is small and the capacity is relatively small.
- the first gas B1 passing through the second compressor 73 passes through the fourth heat exchanger 74 and is preferentially cooled.
- the fourth heat exchanger 74 is installed between the second compressor 73 and the second heat exchanger 50 and includes the first gas B1 together with the second heat exchanger 50 and the third heat exchanger 60 in the rear stage. To form a multi-stage cooling structure. Through this, the temperature of the first gas B1 compressed at high pressure can be easily cooled to a more suitable temperature.
- the fourth heat exchanger 74 may also include a flow path structure connected to allow heat exchange, and the fourth heat exchanger 74 may have a structure in which the flow path through which the first gas B1 flows and the flow path through which the coolant flows contact each other to allow heat exchange. .
- Clear water, distilled water, or the like may be used as the cooling water.
- sea water may be used as the cooling water.
- various types of cooling water may be provided to the fourth heat exchanger 74 to cool the first gas B1.
- the high pressure state of the first gas B1 is provided to the second heat exchanger 50 from the pretreatment unit 70 configured as described above.
- the first gas B1 is cooled and decompressed through the above-described process, and is rapidly depressurized under high pressure to be provided to the gas-liquid separator 40 at a sufficiently low temperature.
- a lower temperature of the second gas C1 and the second liquid C2 may be generated, and as described above, the second gas C1 and the second liquid C2 may be transferred to the second heat exchanger 50 and After passing through the third heat exchanger 60, it may be supplied to the combustion engine D or stored in the storage tank 100, and may be used as needed.
- first liquid (B2) may also be stored in the storage tank 100 together with the second liquid (C2) or stored separately and used as necessary.
- the available energy of the volatile organic compound may be recovered more effectively, thereby increasing energy efficiency and minimizing the emission of the volatile organic compound.
- FIG. 4 is a configuration diagram of a volatile organic compound recovery apparatus according to a fourth embodiment of the present invention.
- the volatile organic compound recovery apparatus 1-3 is a conduit through which the first gas B1 flows between the second compressor 73 and the gas-liquid separator 40. It is connected to the branch pipe 111 and branch pipes 111 branched from the high-pressure tank 110 for storing the first gas (B1).
- the high pressure tank 110 may be configured to introduce and store the first gas B1 compressed in a multi-stage state under a high pressure state through the branch pipe 111 and discharge and use it as necessary.
- the branch pipe 111 may be formed to adjust the pressure of the first gas B1 introduced into the high pressure tank 110 by installing a control valve 120. Branch pipe 111 may be branched in the conduit connecting the fourth heat exchanger 74 and the second heat exchanger 50 as shown.
- the first gas B1 stored in the high pressure tank 110 may be provided to the combustion engine D, for example.
- a supply pipe (not shown) connecting the high pressure tank 110 and the combustion engine D is formed, and a valve capable of reducing pressure is added to the front of the combustion engine D of the supply pipe so that the first gas ( The pressure of B1) can be adjusted and provided to the combustion engine (D).
- the combustion engine (D) is formed of a gas turbine or the like through this configuration to respond to the load fluctuations of the turbine and quickly provide the first gas (B1) stored in the high-pressure tank 110 to the combustion engine (D). can do.
- the high-pressure tank 110 may be configured to recover available energy and more effectively utilize the same.
- FIG. 5 is a configuration diagram of a volatile organic compound recovery apparatus according to a fifth embodiment of the present invention.
- the volatile organic compound recovery apparatus 1-4 is installed between the first heat exchanger 20 and the second heat exchanger 50, and has a LNG (Liquefied natural gas).
- the evaporator 130 may include a flow path structure interconnected to allow heat exchange.
- the evaporator 130 may flow through the first gas B1 into one flow path and introduce LNG (E1) into the other flow path. It can heat-exchange with (B1).
- the cryogenic LNG E1 is vaporized by heat exchange with the first gas B1, converted into NG E2, and provided to the consumer F.
- a pipeline connected between the evaporator 130 and the high pressure fluid B may be introduced into the evaporator 130 and heat exchanged with the LNG E1 to convert NG (E2).
- the cryogenic LNG (E1) is used as a refrigerant.
- the consumer F does not need to additionally install a vaporizer or the like for vaporizing the LNG E1, which is efficient in terms of device configuration.
- the LNG E1 may be provided to the evaporator 130 by a pump 140 connected between the evaporator 130 and the LNG storage tank E, and the NG E2 vaporized in the evaporator 130 may be a consumer F. Can be supplied and used.
- the consumer F includes an internal combustion engine capable of using NG (E2) as a fuel, a boiler, a turbine, and the like, and controls the pump 140 and adjusts the NG (E2) supply amount in response to these load variations.
- NG NG
- the volatile organic compound recovery apparatus 1-4 can be easily applied to a facility equipped with the LNG storage tank E.
- FIG. 6 is a block diagram of a volatile organic compound recovery apparatus according to a sixth embodiment of the present invention.
- the water removal unit 72 is disposed in front of the pretreatment separator 71. That is, the water removal unit 72 is disposed between the first heat exchanger 20 and the pretreatment separator 71 so that the water contained in the high pressure fluid B introduced into the pretreatment separator 71 is pretreated separator 71. It can be pretreated before entering the furnace. Therefore, it is not necessary to form the pretreatment separator 71 as the three-phase separator as described above, and pretreatment with a gas-liquid separator in which the high pressure fluid B is introduced into the first gas B1 and the first liquid B2. Separator 71 can be configured. Through this, it is possible to minimize the generation of unnecessary additives and to improve the device configuration, and it is possible to recover the available energy of the volatile organic compound and minimize the emission more efficiently through the process as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Provided is a volatile organic compound recovery apparatus designed to suppress the emission of a volatile organic compound into the atmosphere and maximally utilize available energy. The recovery apparatus comprises: a first compressor for compressing an oil vapor supplied from a crude oil storage tank; a first heat exchanger for cooling a high-pressure fluid passed through the first compressor; an expansion valve for decompressing the high-pressure fluid passed through the first heat exchanger or a first gas separated from the high-pressure fluid through a pre-treatment unit; and a gas-liquid separator for separating the high-pressure fluid passed through the expansion valve, or the first gas into a second gas and a second liquid and supplying the second gas to a combustion engine and the second liquid to a storage tank.
Description
본 발명은 휘발성유기화합물을 회수하는 장치에 관한 것으로서, 더욱 상세하게는, 원유저장탱크 등에서 발생하는 휘발성유기화합물의 대기 배출을 억제하고 가용 에너지를 최대한 활용할 수 있도록 설계된 휘발성유기화합물 회수장치에 관한 것이다.The present invention relates to a device for recovering volatile organic compounds, and more particularly, to a device for recovering volatile organic compounds designed to suppress the emission of volatile organic compounds generated in a crude oil storage tank and to make the best use of available energy. .
휘발성유기화합물(VOC: Volatile organic compound)은 끓는점이 낮아 쉽게 증발하는 유기화합물로 생성 원인에 따라서 다양한 종류의 성분을 포함한다. 휘발성유기화합물은 독성을 갖거나 악취를 낼 수 있으며 가연성의 성분을 포함할 수 있다. 휘발성유기화합물이 대기 중에 배출되면 대기를 오염시키므로 이를 처리하기 위한 기술이 필요하다.Volatile organic compounds (VOCs) are organic compounds that evaporate easily due to their low boiling point, and contain various kinds of ingredients depending on their origin. Volatile organic compounds may be toxic or odorous and may contain flammable components. When volatile organic compounds are released into the atmosphere, they pollute the air, and therefore, a technique for treating them is required.
원유와 같은 화석연료 역시 휘발성유기화합물의 생성 원인이 된다. 이러한 원유를 대량 수송하는 원유 운반선 등에서 휘발성유기화합물이 과량 발생하여 문제가 되고 있다. 휘발성유기화합물은 원유 등 액체화물을 선적하거나 하역하는 동안 특히 많이 발생하며 원유를 수송하는 동안에도 탱크 내부에서 생성되어 압력을 증가시킬 수 있다. 따라서, 이러한 휘발성유기화합물의 보다 효과적인 처리가 요구된다.Fossil fuels such as crude oil also contribute to the formation of volatile organic compounds. Excessive generation of volatile organic compounds in crude oil carriers and the like for transporting such crude oil is a problem. Volatile organic compounds occur especially during the loading or unloading of liquid cargo such as crude oil, and may be generated inside the tank during the transportation of crude oil to increase the pressure. Therefore, more effective treatment of such volatile organic compounds is required.
그러나 종래의 경우, 이를 단순 배출하거나, 별도의 냉매로 액화시켜 저장하는 처리방식에 한정되었으며, 액체화물의 저장압력을 조절하여 배출량을 저감하기도 하였으나 효과적이지 못하였다. 특히, 휘발성유기화합물을 액화하는 경우 효율이 높지 못하여 에너지가 낭비되었고, 액화되지 않은 나머지는 대기 중으로 방출되어 오염을 초래하기도 하였다. 또한, 휘발성유기화합물의 가용 에너지가 있을 수 있음에도 불구하고 배출량을 줄이거나 보다 안전하게 배출하는 처리방식에 초점이 맞추어져 있어 에너지 효율 면에서 매우 부적절한 것이 사실이었다.However, in the conventional case, it was limited to a treatment method of simply discharging it or liquefying and storing it as a separate refrigerant, and controlling the storage pressure of the liquid cargo to reduce the discharge, but it was not effective. In particular, when liquefied volatile organic compounds were not high efficiency, energy was wasted, and the rest of the liquefied organic compounds were released into the atmosphere, causing pollution. In addition, although there may be available energy of volatile organic compounds, it is true that energy consumption is very inadequate due to the focus on treatment methods that reduce emissions or emit more safely.
본 발명이 이루고자 하는 기술적 과제는 이러한 문제점을 해결하기 위한 것으로서, 원유저장탱크 등에서 발생하는 휘발성유기화합물의 대기 배출을 억제하고 가용 에너지를 최대한 활용할 수 있도록 설계된 휘발성유기화합물 회수장치를 제공하는 것이다.The technical problem to be achieved by the present invention is to solve the above problems, to provide a volatile organic compound recovery apparatus designed to suppress the air emissions of volatile organic compounds generated in the crude oil storage tank and to make the best use of the available energy.
본 발명의 기술적 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The technical problem of the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명에 의한 휘발성유기화합물 회수장치는, 원유저장탱크로부터 공급되는 유증기를 압축하는 제1압축기, 상기 제1압축기를 통과한 고압유체를 냉각시키는 제1열교환기, 상기 제1열교환기를 통과한 상기 고압유체 또는, 전처리유닛을 통해 상기 고압유체에서 분리된 제1기체를 감압하는 팽창밸브, 상기 팽창밸브를 통과한 상기 고압유체, 또는 상기 제1기체를 제2기체와 제2액체로 분리하여 상기 제2기체는 연소기관으로 공급하고, 상기 제2액체는 저장탱크로 공급하는 기액분리기를 포함한다.The volatile organic compound recovery device according to the present invention includes a first compressor for compressing oil vapor supplied from a crude oil storage tank, a first heat exchanger for cooling a high pressure fluid passed through the first compressor, and the first heat exchanger. An expansion valve for depressurizing the first gas separated from the high pressure fluid through a high pressure fluid or a pretreatment unit, the high pressure fluid passing through the expansion valve, or the first gas is separated into a second gas and a second liquid. The second gas is supplied to the combustion engine, the second liquid includes a gas-liquid separator to supply to the storage tank.
상기 제1열교환기와 상기 팽창밸브 사이에 설치되어 상기 기액분리기로부터 분리된 상기 제2기체와, 상기 고압유체 또는 상기 제1기체를 열교환시키는 제2열교환기를 더 포함할 수 있다.The apparatus may further include a second heat exchanger installed between the first heat exchanger and the expansion valve to heat exchange the second gas separated from the gas-liquid separator, and the high pressure fluid or the first gas.
상기 제2열교환기와 상기 팽창밸브 사이에 설치되어 상기 기액분리기로부터 분리된 상기 제2액체와, 상기 고압유체 또는 상기 제1기체를 열교환시키는 제3열교환기를 더 포함할 수 있다.And a third heat exchanger installed between the second heat exchanger and the expansion valve to heat-exchange the second liquid separated from the gas-liquid separator and the high pressure fluid or the first gas.
상기 전처리유닛은, 상기 제1열교환기와 상기 제2열교환기 사이에 설치되어, 상기 고압유체에서 상기 제1기체를 분리하여 상기 제2열교환기로 제공하는 전처리분리기를 더 포함할 수 있다.The pretreatment unit may further include a pretreatment separator installed between the first heat exchanger and the second heat exchanger to separate the first gas from the high pressure fluid and to provide the second heat exchanger.
상기 전처리유닛은, 상기 제1열교환기와 상기 전처리분리기의 사이, 또는 상기 전처리분리기와 상기 제2열교환기 사이에 설치되는 수분제거유닛을 더 포함할 수 있다.The pretreatment unit may further include a water removal unit installed between the first heat exchanger and the pretreatment separator, or between the pretreatment separator and the second heat exchanger.
상기 전처리유닛은, 상기 전처리분리기와 상기 제2열교환기 사이에 설치되어 상기 제1기체를 가압하는 제2압축기를 더 포함할 수 있다.The pretreatment unit may further include a second compressor installed between the pretreatment separator and the second heat exchanger to pressurize the first gas.
상기 제2압축기와 상기 제2열교환기 사이에 설치되어 상기 제1기체를 냉각시키는 제4열교환기를 더 포함할 수 있다.The apparatus may further include a fourth heat exchanger installed between the second compressor and the second heat exchanger to cool the first gas.
상기 제2압축기와 상기 기액분리기 사이의 상기 제1기체가 유동하는 관로에서 분기된 분기관, 및 상기 분기관에 연결되어 상기 제1기체를 저장하는 고압탱크를 더 포함할 수 있다.The apparatus may further include a branch pipe branched from a conduit through which the first gas flows between the second compressor and the gas-liquid separator, and a high pressure tank connected to the branch pipe to store the first gas.
상기 분기관에 형성되어 상기 고압탱크로 유입되는 상기 제1기체의 압력을 조절하는 감압밸브를 더 포함할 수 있다.It may further include a pressure reducing valve formed in the branch pipe to control the pressure of the first gas flowing into the high pressure tank.
상기 제1열교환기와 상기 제2열교환기 사이에 설치되어 LNG(Liquefied natural gas)와, 상기 고압유체 또는 상기 제1기체를 열교환시켜 상기 LNG를 NG(Natural gas)로 변환하는 증발기를 더 포함할 수 있다.It may further include an evaporator installed between the first heat exchanger and the second heat exchanger to convert the LNG into NG (Natural gas) by heat-exchanging the LNG (Liquefied natural gas), the high pressure fluid or the first gas. have.
상기 전처리분리기는 상기 제1기체와, 물과, 상기 물보다 비중이 작은 성분으로 이루어진 제1액체로 분리하는 3상분리기일 수 있다.The pretreatment separator may be a three-phase separator that separates the first gas, water, and a first liquid comprising a component having a specific gravity smaller than that of the water.
상기 원유저장탱크와 상기 제1압축기 사이에 설치되어 상기 유증기에 포함된 고체상 이물질과 액체상 이물질을 제거하는 여과유닛을 더 포함할 수 있다.It may further include a filtration unit installed between the crude oil storage tank and the first compressor to remove the solid foreign matter and liquid foreign matter contained in the oil vapor.
본 발명에 의하면, 원유저장탱크 등에서 발생하는 휘발성유기화합물을 일련의 연속된 처리과정으로 처리하여 대기 배출을 최소화할 수 있다. 또한, 처리과정 중 다양한 방식으로 다단계에 걸쳐 에너지를 회수할 수 있는바, 휘발성유기화합물이 가진 가용 에너지를 획득하여 에너지 효율을 크게 개선하고 선박이나 설비 또는 그 밖의 각종 장치의 운용 효율을 크게 증가시킬 수 있다.According to the present invention, the volatile organic compounds generated in the crude oil storage tank and the like can be treated by a series of continuous treatment processes to minimize the emission of air. In addition, it is possible to recover energy at various stages in various ways during the treatment process, so that the available energy of volatile organic compounds can be obtained to greatly improve energy efficiency and greatly increase the operational efficiency of ships, facilities or other various devices. Can be.
도 1은 본 발명의 제1실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.1 is a block diagram of a volatile organic compound recovery apparatus according to a first embodiment of the present invention.
도 2는 본 발명의 제2실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.2 is a block diagram of a volatile organic compound recovery apparatus according to a second embodiment of the present invention.
도 3은 본 발명의 제3실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.3 is a block diagram of a volatile organic compound recovery apparatus according to a third embodiment of the present invention.
도 4는 본 발명의 제4실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.4 is a configuration diagram of a volatile organic compound recovery apparatus according to a fourth embodiment of the present invention.
도 5는 본 발명의 제5실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.5 is a configuration diagram of a volatile organic compound recovery apparatus according to a fifth embodiment of the present invention.
도 6은 본 발명의 제6실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.6 is a block diagram of a volatile organic compound recovery apparatus according to a sixth embodiment of the present invention.
본 발명의 이점 및 특징 그리고 그것들을 달성하기 위한 방법들은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 단지 청구항에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조부호는 동일 구성요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the present embodiments make the disclosure of the present invention complete and the general knowledge in the technical field to which the present invention belongs. It is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the claims. Like reference numerals refer to like elements throughout.
이하, 도 1 내지 도 6을 참조하여 본 발명의 제1제6실시예에 대해서 상세히 설명한다. 명세서에 첨부된 각 도면에서 구성요소들의 사이를 연결하는 실선 화살표는 유체의 '흐름' 및 유체가 유동하는 '관로'를 함께 나타낸다. 따라서 별도의 부호를 표기하여 설명하지 않더라도 각 실선 화살표를 따라서 관로가 형성된 것으로 이해할 수 있다. 또한, 본 명세서 상에서 '제2기체' 및 '제2액체'는 '기액분리기'가 기상 및 액상으로 분리하여 생성한 유체로 정의한다.Hereinafter, a sixth embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6. In each of the figures attached to the specification, the solid arrows connecting the components indicate the 'flow' of the fluid and the 'pipe' through which the fluid flows. Therefore, even if not described with a separate sign it can be understood that the conduit is formed along each solid arrow. In addition, in the present specification, 'second gas' and 'second liquid' are defined as fluids generated by separation of a 'gas liquid separator' into a gas phase and a liquid phase.
먼저, 도 1을 참조하여 본 발명의 제1실시예에 의한 휘발성유기화합물 회수장치에 대해 상세히 설명한다.First, the volatile organic compound recovery apparatus according to the first embodiment of the present invention will be described in detail with reference to FIG. 1.
도 1은 본 발명의 제1실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.1 is a block diagram of a volatile organic compound recovery apparatus according to a first embodiment of the present invention.
본 발명의 휘발성유기화합물 회수장치(1)는 원유저장탱크(A)에서 발생한 유증기(원유로부터 생성된 휘발성유기화합물과 탱크 내부에 충전되어 있어 불활성 가스 등을 포함하는 것일 수 있다)를 연속된 일련의 처리 단계를 통해 연속적으로 처리한다. 처리 단계는 가압과정, 감압과정, 및 이를 통한 유체의 온도조절과정, 상변화과정 및 서로 다른 상을 갖는 유체의 분리과정, 서로 다른 유체간 열교환을 통한 유체의 온도조절과정 등이 포함된다. 휘발성유기화합물 회수장치(1)는 이러한 처리과정을 수행하기 위해 서로 유기적으로 연결된 복수의 구성요소들로 이루어진다. 이러한 구성요소들의 동작에 의한 일련의 처리과정을 통해 휘발성유기화합물을 회수하여 배출량을 최소화시킬 수 있으며, 또한 휘발성유기화합물의 가용에너지를 최대한 회수하여 에너지 효율을 크게 향상시킬 수 있다.The volatile organic compound recovery device 1 of the present invention is a continuous series of organic vapors generated in the crude oil storage tank A (which may include volatile organic compounds generated from crude oil and inert gas, etc., filled in the tank). Processing is continuously carried out through the processing step. Treatment steps include pressurization, depressurization, and temperature control of the fluid, phase change, and separation of fluids with different phases, temperature control of fluid through heat exchange between different fluids, and the like. The volatile organic compound recovery apparatus 1 is composed of a plurality of components organically connected to each other to perform such a process. Through a series of processes by the operation of these components it is possible to minimize the emissions by recovering volatile organic compounds, and also to improve the energy efficiency by recovering the available energy of the volatile organic compounds as much as possible.
도 1을 참조하면, 본 발명의 제1실시예에 의한 휘발성유기화합물 회수장치(1)는 다음과 같이 구성된다. 휘발성유기화합물 회수장치(1)는 원유저장탱크(A)로부터 공급되는 유증기를 압축하는 제1압축기(10), 제1압축기(10)를 통과한 고압유체(B)를 냉각시키는 제1열교환기(20), 제1열교환기(20)를 통과한 고압유체(B), 또는 전처리유닛을 통해 고압유체(B)에서 분리된 제1기체를 감압하는 팽창밸브(30), 팽창밸브(30)를 통과한 고압유체(B), 또는 상기 제1기체를 제2기체(C1)와 제2액체(C2)로 분리하여 제2기체(C1)는 연소기관(D)으로 공급하고, 제2액체(C2)는 저장탱크(100)로 공급하는 기액분리기(40)를 포함한다. 이러한 구성을 통해 기액분리기(40)에서 제2기체(C1)와 제2액체(C2)를 생성하여 연소기관(D)에 제공하거나 저장탱크(100)에 저장하였다가 용이하게 사용하는 것이 가능하다.1, the volatile organic compound recovery apparatus 1 according to the first embodiment of the present invention is configured as follows. The volatile organic compound recovery device (1) is a first heat exchanger for cooling the high pressure fluid (B) passed through the first compressor (10) and the first compressor (10) for compressing the oil vapor supplied from the crude oil storage tank (A). (20), an expansion valve (30) and an expansion valve (30) for depressurizing the first gas separated from the high pressure fluid (B) through the high pressure fluid (B) passing through the first heat exchanger (20) or the pretreatment unit; The high pressure fluid B, or the first gas passed through the gas, is separated into a second gas C1 and a second liquid C2, and the second gas C1 is supplied to the combustion engine D, and the second liquid is supplied. C2 includes a gas-liquid separator 40 for supplying the storage tank 100. Through this configuration, the gas-liquid separator 40 may generate the second gas C1 and the second liquid C2 and provide the same to the combustion engine D or store the same in the storage tank 100. .
휘발성유기화합물 회수장치(1)는 제1압축기(10)를 통과한 고압유체(B)에서 제1기체를 분리하여 회수과정에 참여시키는 전처리유닛을 구비하거나, 또는 전처리 유닛을 구비하지 않고 형성될 수 있다. 본 발명의 제1실시예, 및 후술하는 제2실시예에서는 전처리유닛이 구비되지 않은 경우를 기준으로 설명을 진행한다. 이러한 경우 제1압축기(10)를 통과한 고압유체(B)로부터 직접 가용에너지가 회수되며 제1 기체는 생성되지 않아 에너지 회수과정에 참여되지 않는다. 이하, 도 1을 참조하여 본 발명의 제1실시예에 의한 휘발성유기화합물 회수장치(1)의 각 구성요소와 작용에 대해 보다 상세히 설명한다.The volatile organic compound recovery device 1 may include a pretreatment unit that separates the first gas from the high pressure fluid B that has passed through the first compressor 10 and participates in the recovery process, or may be formed without the pretreatment unit. Can be. In the first embodiment of the present invention, and the second embodiment to be described later, description will be made based on the case where the pretreatment unit is not provided. In this case, the available energy is directly recovered from the high pressure fluid B that has passed through the first compressor 10, and the first gas is not generated and thus does not participate in the energy recovery process. Hereinafter, with reference to Figure 1 will be described in more detail with respect to each component and operation of the volatile organic compound recovery apparatus 1 according to the first embodiment of the present invention.
제1압축기(10)는 원유저장탱크(A)로부터 공급되는 유증기를 가압하여 압축시킨다. 원유저장탱크(A)에는 원유(Crude oil)가 저장되며 유증기는 원유에서 생성된 휘발성유기화합물(Volatile organic compound)과 일부 다른 물질(탱크 내 주입되었던 불활성 가스 등)을 포함할 수 있다. 제1압축기(10)는 이러한 유증기를 가압하여 고압유체(B)로 전환시킨다. 제1압축기(10)는 예를 들어, 가압실에서 회전하는 회전날개를 이용하여 유체의 압력을 증가시키도록 형성된 것일 수 있고, 실린더를 이용한 왕복동식 압축기로 형성될 수도 있다. 그러나, 이는 하나의 예로써 압축기의 형성방식을 이와 같이 한정하여 이해할 필요는 없다. 유체 압축이 가능한 한도 내에서 여러 가지 다양한 구조를 선택적, 복합적으로 활용하여 다양한 형태의 압축기를 적용할 수 있다. 제1압축기(10)에서 압축된 고압유체(B)는 제1열교환기(20)로 공급된다.The first compressor 10 pressurizes and compresses the oil vapor supplied from the crude oil storage tank (A). Crude oil is stored in the crude oil storage tank (A) and the oil vapor may include volatile organic compounds generated from the crude oil and some other substances (such as inert gas injected into the tank). The first compressor 10 converts the high pressure fluid B by pressurizing the oil vapor. For example, the first compressor 10 may be formed to increase the pressure of the fluid using a rotary blade that rotates in the pressure chamber, or may be formed of a reciprocating compressor using a cylinder. However, this does not need to be understood as such an example of the formation method of the compressor. Various types of compressors can be applied by selectively and complexly utilizing various structures within the limit of fluid compression. The high pressure fluid B compressed by the first compressor 10 is supplied to the first heat exchanger 20.
제1압축기(10) 전단에는 여과유닛(90)이 배치된다. 여과유닛(90)은 원유저장탱크(A)와 제1압축기(10) 사이에 설치되어 유증기에 포함된 고체상 이물질과 액체상 이물질을 제거할 수 있다. 유증기에 함유된 불필요한 이물질을 여과유닛(90)으로 제거하고 휘발성유기화합물을 포함하는 보다 순수한 기체를 제1압축기(10)로 공급하여 압축률과 에너지 회수능력을 향상시킬 수 있다. 여과유닛(90)은 스크러버, 원심분리기 등을 포함하여 형성될 수 있으며 이러한 여과유닛(90)을 이용하여 유증기에서 수트(soot)나 액적(liquid droplet)등의 이물질을 제거하고 제1압축기(10)로 공급할 수 있다.The filtration unit 90 is disposed in front of the first compressor 10. The filtration unit 90 may be installed between the crude oil storage tank A and the first compressor 10 to remove solid foreign matter and liquid foreign matter contained in the oil vapor. Unnecessary foreign substances contained in the oil vapor can be removed by the filtration unit 90 and a pure gas containing volatile organic compounds can be supplied to the first compressor 10 to improve the compression ratio and the energy recovery capability. The filtration unit 90 may include a scrubber, a centrifuge, and the like. The filtration unit 90 may be used to remove foreign substances such as soot, liquid droplets, etc. from the oil vapor by using the filtration unit 90. ) Can be supplied.
원유저장탱크(A)는 원유수송선 등 선박에 설치된 것일 수 있으나 이로써 한정될 필요는 없다. 원유저장탱크(A)는 원유 정제시설이나, 운송시설, 저장시설, 그 밖에 원유를 저장하거나 입출할 수 있는 다양한 형태의 시설물을 모두 포함한다. 원유저장탱크(A)에는 휘발성유기화합물을 생성하는 원유가 저장되며 본 발명의 휘발성유기화합물 회수장치(1)로 원유에서 생성된 휘발성유기화합물과 이에 포함된 가용에너지를 효과적으로 회수할 수 있다. 원유저장탱크(A)는 원유 등 휘발성유기화합물의 발생원인이 되는 물질을 저장하기 위한 시설이므로, 별도로 설명되지 않더라도 본 발명의 휘발성유기화합물 회수장치(1)의 적용대상이 이러한 원유저장탱크(A)로 한정될 것은 아니다. 즉, 본 명세서 상에서 원유저장탱크(A)를 예시하여 설명하지만 본 발명은 휘발성유기화합물이 생성되는 여러 가지 다른 시설에도 적용될 수 있는 바, 본 발명의 기술사상을 원유 등의 저장시설에 대한 것으로 한정하여 해석할 필요는 없다.Crude oil storage tank (A) may be installed on a vessel such as a crude oil transport ship, but need not be limited thereto. Crude oil storage tanks (A) include all refineries, transportation facilities, storage facilities, and other types of facilities for storing or importing crude oil. In the crude oil storage tank (A) is stored crude oil to generate volatile organic compounds, and the volatile organic compound recovery device (1) of the present invention can effectively recover the volatile organic compounds generated from crude oil and the available energy contained therein. Crude oil storage tank (A) is a facility for storing the substances that cause the generation of volatile organic compounds such as crude oil, and even if not described separately, the object of application of the volatile organic compound recovery device (1) of the present invention is such a crude oil storage tank (A) It is not limited to. That is, the crude oil storage tank (A) is described herein by way of example, but the present invention can be applied to various other facilities in which volatile organic compounds are produced, and the technical concept of the present invention is limited to storage facilities such as crude oil. Need not be interpreted.
제1열교환기(20)는 제1압축기(10)를 통과한 고압유체(B)를 냉각시킨다. 제1압축기(10)를 통과하며 온도가 상승된 고압유체(B)는 제1열교환기(20)를 통과하며 냉각된다. 제1열교환기(20)는 하나 이상의 열교환 가능하도록 접속된 유로를 포함하며 고압유체(B)가 유동하는 유로와 냉각수가 유동하는 유로가 열교환이 가능하도록 접촉된 구조로 형성될 수 있다. 제1열교환기(20)로 공급되는 냉각수는 청수(clear water), 증류수 등이 될 수 있으며, 선박 등의 시설에 본 발명이 적용된 경우 해수(sea water)를 냉각수로 사용할 수도 있다. 상황에 따라서 여러 가지 다양한 종류의 냉각수와 열교환시켜 고압유체(B)를 냉각할 수 있다.The first heat exchanger 20 cools the high pressure fluid B that has passed through the first compressor 10. The high pressure fluid B having a temperature rise and passing through the first compressor 10 is cooled while passing through the first heat exchanger 20. The first heat exchanger 20 may include one or more flow paths connected to each other to allow heat exchange. The first heat exchanger 20 may have a structure in which a flow path through which the high pressure fluid B flows and a flow path through which the coolant flows contact each other to allow heat exchange. The cooling water supplied to the first heat exchanger 20 may be clear water, distilled water, or the like. When the present invention is applied to a facility such as a ship, sea water may be used as the cooling water. Depending on the situation, it is possible to cool the high pressure fluid (B) by heat exchange with various different types of cooling water.
제1열교환기(20)를 통과한 고압유체(B)는 팽창밸브(30)를 통과하며 감압된다. 즉, 제1압축기(10)에서 가압된 고압유체(B)를 팽창밸브(30)로 팽창시켜 감압하고 온도를 급격히 낮출 수 있다. 이를 통해 후단의 기액분리기(40)에서 용이하게 작동 가능한 온도까지 유체의 온도를 낮추어 공급할 수 있다. 팽창밸브(30)는 예를 들어, 가압유체를 노즐로 통과시켜 감압하고 냉각시키는 줄-톰슨 효과(Joule-Thomson effect)를 이용한 것일 수 있다. 팽창밸브(30)의 감압률은 기액분리기(40)의 작동 온도와 압력을 고려하여 적절히 설정되거나 조정될 수 있다.The high pressure fluid B, which has passed through the first heat exchanger 20, passes through the expansion valve 30 and is decompressed. That is, the high pressure fluid B pressurized by the first compressor 10 may be expanded by the expansion valve 30 to reduce the pressure and rapidly lower the temperature. Through this it can be supplied by lowering the temperature of the fluid to a temperature that can be easily operated in the gas-liquid separator 40 of the rear end. The expansion valve 30 may be, for example, using a Joule-Thomson effect to depressurize and cool the pressurized fluid through the nozzle. The decompression rate of the expansion valve 30 may be appropriately set or adjusted in consideration of the operating temperature and the pressure of the gas-liquid separator 40.
기액분리기(40)는 팽창밸브(30)를 통과한 고압유체(B)(즉, 압축되어 고압상태로 팽창밸브에 제공된 유체로 위에서 설명한 바와 같이 팽창밸브를 통과하면서 감압되는 유체)를 제2기체(C1)와 제2액체(C2)로 분리한다. 분리된 제2기체(C1)는 연소기관(D)으로 공급되며, 제2액체(C2)는 저장탱크(100)로 공급된다. 제2기체(C1) 및 제2액체(C2)는 전술한 휘발성유기화합물을 포함하는 유증기가 기상 및 액상으로 분리되어 수집된 것으로 가연성 성분을 포함하고 있어 연소기관(D)의 연료로 직접 사용되거나 가스 상태로 전환된 후 연료로 사용될 수 있다. 기액분리기(40)는 제2기체(C1)와 제2액체(C2)를 밀도차에 의해 분리하도록 형성될 수 있으며 상부로는 제2기체(C1)를 배출하고 하부로는 제2액체(C2)를 배출하는 용기나 드럼의 형태로 형성될 수 있다.The gas-liquid separator 40 is a second gas through a high pressure fluid (B) (that is, a fluid that is compressed and supplied to the expansion valve at a high pressure state and depressurized while passing through the expansion valve as described above) through the expansion valve (30). Separated into (C1) and the second liquid (C2). The separated second gas C1 is supplied to the combustion engine D, and the second liquid C2 is supplied to the storage tank 100. The second gas (C1) and the second liquid (C2) are collected by separating the vapor of the above-mentioned volatile organic compounds into gaseous and liquid phases and contain flammable components, which are directly used as fuel of the combustion engine (D), or It can be converted into gaseous state and used as fuel. Gas-liquid separator 40 may be formed to separate the second gas (C1) and the second liquid (C2) by the difference in density, and discharge the second gas (C1) in the upper portion and the second liquid (C2) in the lower portion ) May be formed in the form of a container or drum for discharging.
이와 같이, 팽창밸브(30)에서 감압 및 냉각되어 기액분리기(40)로 제공된 유체는 기상 및 액상으로 분리되어 바로 연료로 사용되거나, 연료로 사용 가능한 상태로 저장될 수 있다. 또한, 연료로 사용되거나 저장되기 이전에 고압유체(B)와 열교환하여 온도를 낮추는 데도 사용될 수 있다(후술하는 제2제6실시예참조). 즉, 팽창밸브(30)의 냉각과정과 기액분리기(40)의 상분리 과정에 의해 생성된 기상 및 액상 성분(제2기체 및 제2액체)이 연료로 제공되어 가용 에너지가 하나 이상의 경로를 통해 효과적으로 회수된다. 제2기체(C1)는 제2열교환기(50)에서 고압유체(B)를 냉각한 후 연소기관(D)으로 제공되어 소비되며, 제2액체(C2)는 제2열교환기(50)에서 냉각된 고압유체(B)를 제3열교환기(60)에서 재냉각한 후 저장탱크(100)에 저장된다. 이와 같은 방식으로 휘발성유기화합물이 포함된 유체를 단계적으로 처리하여 가용에너지를 회수하고 배출량도 크게 감소시킬 수 있다.As such, the fluid provided under the reduced pressure and cooling in the expansion valve 30 to the gas-liquid separator 40 may be separated into a gaseous phase and a liquid phase and used immediately as a fuel or may be stored as a fuel. It may also be used to lower the temperature by heat exchange with the high pressure fluid B before it is used or stored as fuel (see second embodiment 6, described below). That is, the gaseous and liquid components (second gas and second liquid) generated by the cooling process of the expansion valve 30 and the phase separation process of the gas-liquid separator 40 are provided as fuel, so that the available energy is effectively supplied through one or more paths. It is recovered. The second gas C1 is supplied to the combustion engine D after cooling the high pressure fluid B in the second heat exchanger 50 and is consumed. The second liquid C2 is consumed in the second heat exchanger 50. The cooled high pressure fluid B is recooled in the third heat exchanger 60 and then stored in the storage tank 100. In this way, the fluid containing the volatile organic compounds can be treated in a stepwise manner to recover available energy and greatly reduce the amount of emissions.
제2기체(C1)를 유입하여 소비하는 연소기관(D)은 가스터빈(Gas turbine)이나 가스버너(Gas burner) 등을 포함할 수 있다. 연소기관(D)이 가스터빈과 같이 회전동력을 생성하는 기관인 경우 가스터빈의 회전축에 발전기를 결합하여 전력을 생산할 수 있으며, 가스터빈 후단에 폐열을 회수하여 증기를 생성하고 이를 이용하여 발전하는 등 에너지를 생산하는 HRSG(Heat recovery steam generator) 등을 결합하여 에너지 회수율을 크게 증가시킬 수 있다. 또한, 가스터빈이나 가스버너 등을 모두 구비하고 이를 선택적으로 연결하여 가스터빈에 결합된 발전기를 구동하거나 가스버너에서 생성된 열에너지를 활용할 수 있으며, 저장탱크(100)에 저장된 제2액체(C2)를 히터(80)로 통과시켜 가스상태로 변환한 후 연소기관(D)에 제공하거나, 저장탱크(100)에서 기상으로 증발하는 일부를 히터(80)를 통과시키지 않고 연소기관(D)에 직접 제공하여 연소기관(D)의 운전상황이나 부하변동에 대응할 수도 있다. 회수된 가용에너지를 이와 같이 다양하게 활용하여 에너지 효율을 크게 향상시킬 수 있다.The combustion engine D inflowing and consuming the second gas C1 may include a gas turbine, a gas burner, or the like. If the combustion engine (D) is an engine that generates rotational power, such as a gas turbine, the generator can be combined with the rotary shaft of the gas turbine to produce electric power.The waste heat is recovered at the rear of the gas turbine to generate steam and generate power using the engine. Combined with a heat recovery steam generator (HRSG) that produces energy, energy recovery can be greatly increased. In addition, a gas turbine or gas burner may be provided and selectively connected to drive a generator coupled to the gas turbine or to utilize thermal energy generated by the gas burner, and the second liquid C2 stored in the storage tank 100. Is converted into a gas state by passing through the heater 80 and provided to the combustion engine (D), or directly to the combustion engine (D) without passing through the heater (80) a part of the evaporation in the gaseous phase from the storage tank (100). It may be provided to cope with the operating situation or load variation of the combustion engine (D). By using the recovered available energy in such a variety, it is possible to greatly improve the energy efficiency.
이하, 도 2를 참조하여 본 발명의 제2실시예에 의한 휘발성유기화합물 회수장치에 대해 상세히 설명한다. 설명이 간결하고 명확하도록, 전술한 실시예와 차이나는 부분에 대해 중점적으로 설명하며 별도로 언급되지 않는 구성요소에 대한 설명은 전술한 설명으로 대신한다.Hereinafter, a volatile organic compound recovery apparatus according to a second embodiment of the present invention will be described in detail with reference to FIG. 2. For the sake of brevity and clarity, the description focuses on the parts that differ from the above-described embodiments, and the descriptions of the components that are not mentioned separately are replaced by the above description.
도 2를 참조하면, 본 발명의 제2실시예에 의한 휘발성유기화합물 회수장치(1-1)는 다음과 같이 구성된다. 휘발성유기화합물 회수장치(1-1)는 원유저장탱크(A)로부터 공급되는 유증기를 압축하는 제1압축기(10), 제1압축기(10)를 통과한 고압유체(B)를 냉각시키는 제1열교환기(20), 제1열교환기(20)를 통과한 고압유체(B), 또는 전처리유닛을 통해 고압유체(B)에서 분리된 제1기체를 감압하는 팽창밸브(30), 팽창밸브(30)를 통과한 고압유체(B), 또는 상기 제1기체를 제2기체(C1)와 제2액체(C2)로 분리하여 제2기체(C1)는 연소기관(D)으로 공급하고, 제2액체(C2)는 저장탱크(100)로 공급하는 기액분리기(40), 제1열교환기(20)와 팽창밸브(30) 사이에 설치되어 기액분리기(40)로부터 분리된 제2기체(C1)와, 고압유체(B) 또는 상기 제1기체를 열교환시키는 제2열교환기(50), 및 제2열교환기(50)와 팽창밸브(30) 사이에 설치되어 기액분리기(40)로부터 분리된 제2액체(C2)와, 고압유체(B) 또는 상기 제1기체를 열교환시키는 제3열교환기(60)를 포함한다.2, the volatile organic compound recovery apparatus 1-1 according to the second embodiment of the present invention is constructed as follows. The volatile organic compound recovery device 1-1 is a first compressor 10 for compressing oil vapor supplied from a crude oil storage tank A, and a first compressor for cooling the high pressure fluid B passed through the first compressor 10. Expansion valve 30 for reducing the pressure of the first gas separated from the high pressure fluid B through the heat exchanger 20, the first heat exchanger 20, or the pretreatment unit 30, an expansion valve ( The high pressure fluid B passed through 30 or the first gas is separated into a second gas C1 and a second liquid C2, and the second gas C1 is supplied to the combustion engine D. 2 liquid (C2) is installed between the gas-liquid separator 40, the first heat exchanger 20 and the expansion valve 30 to supply to the storage tank 100, the second gas (C1) separated from the gas-liquid separator (40) ), A second heat exchanger 50 for exchanging the high pressure fluid B or the first gas, and the second heat exchanger 50 and the expansion valve 30 are separated from the gas-liquid separator 40. Second liquid (C2), high pressure fluid (B) or the 1 comprises a third heat exchanger 60 to heat the gas.
본 발명의 제2실시예에 의한 휘발성유기화합물 회수장치(1-1)는 전술한 제1열교환기(20)와 팽창밸브(30) 사이에 제2열교환기(50) 및 제3열교환기(60)가 설치되어 유체를 단계적으로 냉각시킨다. 제2열교환기(50) 및 제3열교환기(60)는 각각 기액분리기(40)에서 분리된 제2기체(C1) 및 제2액체(C2)를 냉매로 활용하여 팽창밸브(30)로 주입되는 유체의 냉각효율을 크게 향상시킬 수 있다. 제2열교환기(50) 및 제3열교환기(60) 외의 나머지 구성은 전술한 구성과 실질적으로 동일하므로 이에 대한 설명은 전술한 설명으로 대신하고 제2열교환기(50) 및 제3열교환기(60)의 구성과 이를 포함하는 회수장치의 작용효과 등에 대해서 상세히 설명한다.The volatile organic compound recovery apparatus 1-1 according to the second embodiment of the present invention includes a second heat exchanger 50 and a third heat exchanger between the first heat exchanger 20 and the expansion valve 30. 60) is installed to cool the fluid in stages. The second heat exchanger 50 and the third heat exchanger 60 are respectively injected into the expansion valve 30 by utilizing the second gas C1 and the second liquid C2 separated from the gas-liquid separator 40 as refrigerant. It is possible to greatly improve the cooling efficiency of the fluid. Since the rest of the configuration other than the second heat exchanger 50 and the third heat exchanger 60 is substantially the same as the above-described configuration, the description thereof is replaced with the above description, and the second heat exchanger 50 and the third heat exchanger ( 60) will be described in detail the operation and effect of the recovery device including the same.
제2열교환기(50)와 제3열교환기(60)는 도시된 바와 같이 팽창밸브(30)를 향해 고압유체(B)가 유동하는 유동경로 상에 설치된다. 제2열교환기(50)는 제1열교환기(20)와 팽창밸브(30)의 사이에 설치되며 기액분리기(40)로부터 분리된 제2기체(C1)를 유입하여 고압유체(B)와 열교환시킨다. 또한, 제3열교환기(60)는 제2열교환기(50)와 팽창밸브(30)의 사이에 설치되며 기액분리기(40)로부터 분리된 제2액체(C2)를 유입하여 고압유체(B)와 열교환시킨다. 제2열교환기(50) 및 제3열교환기(60) 역시 하나 이상의 열교환 가능하도록 접속된 유로를 포함할 수 있고, 각각 고압유체(B)가 유동하는 유로와, 제2기체(C1) 또는 제2액체(C2)가 유동하는 유로가 열교환 가능하도록 접촉된 구조로 형성될 수 있다.The second heat exchanger 50 and the third heat exchanger 60 are installed on a flow path through which the high pressure fluid B flows toward the expansion valve 30 as shown. The second heat exchanger (50) is installed between the first heat exchanger (20) and the expansion valve (30), and introduces a second gas (C1) separated from the gas-liquid separator (40) to exchange heat with the high pressure fluid (B). Let's do it. In addition, the third heat exchanger (60) is installed between the second heat exchanger (50) and the expansion valve (30) and introduces a second liquid (C2) separated from the gas-liquid separator (40) to supply the high pressure fluid (B). Heat exchange with. The second heat exchanger 50 and the third heat exchanger 60 may also include one or more flow paths connected to each other to enable heat exchange, and each of the flow paths through which the high pressure fluid B flows, and the second gas C1 or the first heat exchanger, respectively. The flow path in which the two liquids C2 flow may be formed in a structure in which the two liquids C2 are in contact with each other to allow heat exchange.
이와 같이, 팽창밸브(30)에서 감압 및 냉각되어 기액분리기(40)로 제공된 유체는 기상 및 액상으로 분리되어 바로 연료로 사용되거나, 연료로 사용 가능한 상태로 저장될 수 있다. 또한, 연료로 사용되거나 저장되기 이전에 고압유체(B)와 열교환하여 온도를 낮추는 데도 사용될 수 있다. 즉, 팽창밸브(30)의 냉각과정과 기액분리기(40)의 상분리 과정에 의해 생성된 기상 및 액상 성분(제2기체 및 제2액체)이 팽창밸브(30) 전단에서 고압유체(B)와 단계적으로 열교환하여 고압유체(B)의 냉각 효율이 크게 향상되며, 이후 연료로 제공되어 가용 에너지가 다양한 경로를 통해 효과적으로 회수된다. 제2기체(C1)는 제2열교환기(50)에서 고압유체(B)를 냉각한 후 연소기관(D)으로 제공되어 소비되며, 제2액체(C2)는 제2열교환기(50)에서 냉각된 고압유체(B)를 제3열교환기(60)에서 재냉각한 후 저장탱크(100)에 저장된다. 이와 같은 방식으로 휘발성유기화합물이 포함된 유체를 단계적으로 처리하여 가용에너지를 회수하고 배출량도 크게 감소시킬 수 있다.As such, the fluid provided under the reduced pressure and cooling in the expansion valve 30 to the gas-liquid separator 40 may be separated into a gaseous phase and a liquid phase and used immediately as a fuel or may be stored as a fuel. It may also be used to lower the temperature by heat exchange with the high pressure fluid (B) before it is used or stored as fuel. That is, the gaseous and liquid components (second gas and second liquid) generated by the cooling process of the expansion valve 30 and the phase separation process of the gas-liquid separator 40 are separated from the high pressure fluid B at the front end of the expansion valve 30. By heat exchange in stages, the cooling efficiency of the high pressure fluid (B) is greatly improved, and then provided as a fuel, the available energy is effectively recovered through various paths. The second gas C1 is supplied to the combustion engine D after cooling the high pressure fluid B in the second heat exchanger 50 and is consumed. The second liquid C2 is consumed in the second heat exchanger 50. The cooled high pressure fluid B is recooled in the third heat exchanger 60 and then stored in the storage tank 100. In this way, the fluid containing the volatile organic compounds can be treated in a stepwise manner to recover available energy and greatly reduce the amount of emissions.
이하, 도 3을 참조하여 본 발명의 제3실시예에 의한 휘발성유기화합물 회수장치에 대해 상세히 설명한다. 설명이 간결하고 명확하도록, 전술한 실시예와 차이나는 부분에 대해 중점적으로 설명하며 별도로 언급되지 않는 구성요소에 대한 설명은 전술한 설명으로 대신한다.Hereinafter, a volatile organic compound recovery apparatus according to a third embodiment of the present invention will be described in detail with reference to FIG. 3. For the sake of brevity and clarity, the description focuses on the parts that differ from the above-described embodiments, and the descriptions of the components that are not mentioned separately are replaced by the above description.
도 3은 본 발명의 제3실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.3 is a block diagram of a volatile organic compound recovery apparatus according to a third embodiment of the present invention.
도 3을 참조하면, 본 발명의 제3실시예에 의한 휘발성유기화합물 회수장치(1-2)는 제1압축기(10)를 통과한 고압유체(B)에서 제1기체를 분리하여 회수과정에 참여시키는 전처리유닛(70)을 포함한다. 이러한 경우 제1압축기(10)를 통과한 고압유체(B)는 전처리유닛(70)에서 제1기체(B1)와 제1액체(B2)로 분리된다. 제1기체(B1)는 압력변화, 열변화, 상변화 등의 과정을 거쳐 제2기체(C1)와 제2액체(C2)로 수집되고, 제1액체(B2)는 저장탱크(100)에 저장된다. 전처리유닛(70)을 구비함으로써 후단의 유체 처리용량이 감소되어 각 처리과정의 에너지가 감소되며 가용에너지 회수량도 증가될 수 있다. 이하, 도 3을 참조하여 본 발명의 제3실시예에 의한 휘발성유기화합물 회수장치(1-2)의 각 구성요소와 작용에 대해 보다 상세히 설명한다.Referring to FIG. 3, the volatile organic compound recovery apparatus 1-2 according to the third embodiment of the present invention separates the first gas from the high pressure fluid B that has passed through the first compressor 10 in the recovery process. And a preprocessing unit 70 for engaging. In this case, the high pressure fluid B passing through the first compressor 10 is separated into the first gas B1 and the first liquid B2 in the pretreatment unit 70. The first gas B1 is collected into the second gas C1 and the second liquid C2 through pressure change, heat change, phase change, and the like, and the first liquid B2 is stored in the storage tank 100. Stored. By providing the pretreatment unit 70, the fluid handling capacity at the rear end is reduced, so that the energy of each treatment process is reduced and the available energy recovery can be increased. Hereinafter, with reference to FIG. 3, the components and actions of the volatile organic compound recovery apparatus 1-2 according to the third embodiment of the present invention will be described in detail.
전처리유닛(70)은 도시된 바와 같이 제1열교환기(20)와 제2열교환기(50)의 사이에 배치된다. 전처리유닛(70)은 제1열교환기(20)를 통과한 고압유체(B)를 제1기체(B1)와 제1액체(B2)로 분리하고 제1기체(B1)를 제2열교환기(50) 측으로 제공한다. 전처리유닛(70)은 전처리분리기(71)를 포함하며, 전처리분리기(71)는 제1열교환기(20)와 제2열교환기(50) 사이에 설치되어 고압유체(B)에서 제1기체(B1)를 분리하고 제2열교환기(50)로 제공한다. 전처리분리기(71)에서 분리된 제1기체(B1)는 추가적인 처리과정을 거쳐 팽창밸브(30)로 공급되고 팽창밸브(30)를 통과하며 감압되어 온도가 크게 낮아진다. 감압 및 냉각된 제1기체(B1)는 기액분리기(40)로 유입되어 제2기체(C1)와 제2액체(C2)로 다시 분리되고, 전술한 바와 같은 과정을 통해 제2열교환기(50) 및 제3열교환기(60)로 제공되어 제1기체(B1)와 열교환한다.The pretreatment unit 70 is disposed between the first heat exchanger 20 and the second heat exchanger 50 as shown. The pretreatment unit 70 separates the high pressure fluid B, which has passed through the first heat exchanger 20, into the first gas B1 and the first liquid B2, and separates the first gas B1 from the second heat exchanger. 50) to the side. The pretreatment unit 70 includes a pretreatment separator 71, and the pretreatment separator 71 is installed between the first heat exchanger 20 and the second heat exchanger 50 so that the first gas (B) B1) is separated and provided to the second heat exchanger (50). The first gas B1 separated from the pretreatment separator 71 is supplied to the expansion valve 30 through additional processing, passes through the expansion valve 30, and is decompressed to thereby greatly reduce the temperature. The reduced pressure and cooled first gas B1 flows into the gas-liquid separator 40 and is separated into the second gas C1 and the second liquid C2, and the second heat exchanger 50 is processed as described above. ) And a third heat exchanger 60 to exchange heat with the first gas B1.
전처리유닛(70) 후단의 제1기체(B1)는 제2열교환기(50), 제3열교환기(60), 팽창밸브(30), 및 기액분리기(40) 등을 통과하며, 전술한 고압유체(B)가 제2열교환기(50), 제3열교환기(60), 팽창밸브(30), 및 기액분리기(40) 등을 통과하며 수행한 과정과 실질적으로 동일한 과정을 수행한다. 따라서 이에 대한 구체적인 설명은 전술한 설명으로 대신한다. 즉, 전처리유닛(70)으로부터 제2열교환기(50)로 공급된 제1기체(B1)는 제2열교환기(50)에 제공된 제2기체(C1)와 열교환하여 냉각되고, 제2열교환기(50)로부터 다시 제3열교환기(60)로 공급되어 제3열교환기(60)에 제공된 제2액체(C2)와 열교환하여 재차 냉각된다. 이와 같이 단계적으로 냉각된 제1기체(B1)는 팽창밸브(30)를 통과하면서 감압되어 급격히 온도가 낮아지고 기액분리기(40)에서 제2기체(C1)와 제2액체(C2)로 분리된다. 전술한 바와 같이, 제2기체(C1) 및 제2액체(C2)는 제2열교환기(50) 및 제3열교환기(60)를 경유한 후 연소기관(D)에서 소비되거나 저장탱크(100)에 저장되었다가 필요에 따라 사용된다.The first gas B1 at the rear end of the pretreatment unit 70 passes through the second heat exchanger 50, the third heat exchanger 60, the expansion valve 30, the gas-liquid separator 40, and the like. The fluid B performs substantially the same process as the process performed while passing through the second heat exchanger 50, the third heat exchanger 60, the expansion valve 30, and the gas-liquid separator 40. Therefore, the detailed description thereof will be replaced with the above description. That is, the first gas B1 supplied from the pretreatment unit 70 to the second heat exchanger 50 is cooled by heat exchange with the second gas C1 provided to the second heat exchanger 50, and the second heat exchanger 50. It is supplied from the 50 to the third heat exchanger 60 again and heat-exchanged with the second liquid C2 provided to the third heat exchanger 60 to cool again. The first gas B1 cooled in this manner is rapidly depressurized while passing through the expansion valve 30, and is rapidly reduced in temperature, and is separated from the gas-liquid separator 40 into the second gas C1 and the second liquid C2. . As described above, the second gas C1 and the second liquid C2 are consumed in the combustion engine D after passing through the second heat exchanger 50 and the third heat exchanger 60 or the storage tank 100. ) And used as needed.
즉, 본 발명의 제3실시예에 의한 휘발성유기화합물 회수장치(1-2)는 전처리유닛(70)을 통해 고압유체(B)로부터 제1기체(B1)를 분리하여 전술한 에너지 회수과정에 참여시킨다. 제1기체(B1)는 전처리분리기(71)를 이용해 고압유체(B)로부터 물 및 액상성분을 분리한 것으로 후단 처리과정에 기상성분인 제1기체(B1)를 제공함으로써 유체 처리용량을 줄이고 처리과정에서 소모되는 에너지를 절감할 수 있다. 또한, 전처리유닛(70)은 전처리분리기(71) 후단에서 제1기체(B1)를 추가적으로 가압하는 제2압축기(73) 등을 포함하여 제1기체(B1)를 보다 고압으로 압축하고, 팽창밸브(30)의 감압효과를 극대화하여, 제1기체(B1)를 충분히 낮은 온도로 냉각하여 기액분리기(40)에 제공할 수 있다. 이를 통해 제2열교환기(50) 및 제3열교환기(60)의 냉각효율도 향상시킬 수 있다. 이하, 전처리유닛(70)의 구성에 대해서 보다 상세히 설명한다.That is, the volatile organic compound recovery apparatus 1-2 according to the third embodiment of the present invention separates the first gas B1 from the high pressure fluid B through the pretreatment unit 70 in the above-described energy recovery process. Involve The first gas B1 separates water and liquid components from the high pressure fluid B by using the pretreatment separator 71. The first gas B1 reduces the fluid treatment capacity by providing the first gas B1, which is a gaseous component, in the post-treatment process. The energy consumed in the process can be saved. In addition, the pretreatment unit 70 compresses the first gas B1 to a higher pressure, including a second compressor 73 for additionally pressurizing the first gas B1 at the rear end of the pretreatment separator 71, and expands the expansion valve. Maximizing the depressurization effect of (30), it is possible to cool the first gas (B1) to a sufficiently low temperature to provide to the gas-liquid separator (40). Through this, the cooling efficiency of the second heat exchanger 50 and the third heat exchanger 60 may also be improved. Hereinafter, the configuration of the pretreatment unit 70 will be described in more detail.
전처리유닛(70)은 전술한 전처리분리기(71), 수분제거유닛(72), 제2압축기(73), 및 제4열교환기(74)를 포함한다. 전처리분리기(71)는 도시된 바와 같이 제1열교환기(20)와 제2열교환기(50) 사이에 설치되며, 제1열교환기(20)를 통과한 고압유체(B)를 유입하여 제1기체(B1), 물(B3), 및 제1액체(B2)로 분리한다. 전처리분리기(71)는 고압유체(B)를 유입하여 기상성분인 제1기체(B1)와, 물(B3)과, 물(B3)보다 비중이 작은 성분으로 이루어진 제1액체(B2)로 분리하는 3상분리기로 형성된다. 분리된 제1기체(B1)는 수분제거유닛(72), 제2압축기(73), 제4열교환기(74)를 경유하는 추가적인 처리과정을 거쳐 전술한 바와 같이 제2열교환기(50) 측으로 제공된다. 제1액체(B2)는 도시된 바와 같이 저장탱크(100)에 저장되었다가 제2액체(C2)와 함께 필요에 따라 사용된다. 제1액체(B2)와 제2액체(C2)는 저장탱크(100)에 함께 저장되거나 저장공간을 분리하여 저장할 수 있다. 물(B3)은 오폐수 저장 탱크, 예를 들어 원유수송선 등의 슬롭탱크(slop tank)에 저장할 수 있다. The pretreatment unit 70 includes a pretreatment separator 71, a water removal unit 72, a second compressor 73, and a fourth heat exchanger 74. The pretreatment separator 71 is installed between the first heat exchanger 20 and the second heat exchanger 50 as shown in the drawing, and introduces a high pressure fluid B that has passed through the first heat exchanger 20 so as to enter the first heat exchanger. It separates into gas B1, water B3, and the 1st liquid B2. The pretreatment separator (71) is introduced into the high pressure fluid (B) and separated into a first gas (B1) as a gaseous component, water (B3), and a first liquid (B2) composed of a component having a specific gravity smaller than that of water (B3). It is formed as a three-phase separator. The separated first gas B1 passes through the water removal unit 72, the second compressor 73, and the fourth heat exchanger 74 to the second heat exchanger 50 as described above. Is provided. The first liquid B2 is stored in the storage tank 100 as shown and used together with the second liquid C2 as necessary. The first liquid B2 and the second liquid C2 may be stored together in the storage tank 100 or may be stored separately from the storage space. Water B3 may be stored in a waste water storage tank, for example a slop tank of a crude oil transport ship.
수분제거유닛(72)은 전처리분리기(71)와 제2열교환기(50) 사이에 설치되어 제1기체(B1)의 수분을 제거한다. 이를 통해 제1기체(B1)가 보다 순수한 기상성분으로 전환되어 추가적인 압축이 용이한 상태로 전환된다. 제2압축기(73)는 전처리분리기(71)와 제2열교환기(50) 사이에 설치되며 수분제거유닛(72)의 후단에 배치된다. 수분제거유닛(72)을 통과하여 수분이 제거된 제1기체(B1)는 제2압축기(73)를 통과하면서 보다 고압상태로 압축된다. 즉, 전술한 제1압축기(10)로 통과시켜 고압유체(B)를 생성하고, 이를 전처리분리기(71)로 통과시켜 기상성분(제1기체)을 분리하며, 분리된 제1기체(B1)를 제2압축기(73)로 다시 가압하여 다단 압축된 고압상태의 제1기체(B1)를 팽창밸브(30)에 공급할 수 있다. 제2압축기(73) 역시 예를 들어, 가압실에서 회전하는 회전날개를 이용하여 유체 압력을 증가시키도록 형성된 것일 수 있고, 실린더를 이용한 왕복동식 압축기로 형성될 수도 있다. 그러나, 이 역시 하나의 예로써 압축기의 형성방식을 이와 같이 한정하여 이해할 필요는 없으며, 유체 압축이 가능한 한도 내에서 여러 가지 다양한 구조를 선택적, 복합적으로 활용하여 다양한 형태의 압축기를 적용할 수 있다. 제2압축기(73)는 고압유체(B)로부터 액상성분이 분리된 제1기체(B1)를 압축하므로 구동 에너지 소모가 적고 용량도 상대적으로 작은 것을 설치하여 사용할 수 있다.The water removal unit 72 is installed between the pretreatment separator 71 and the second heat exchanger 50 to remove the water of the first gas B1. As a result, the first gas B1 is converted into a more pure gaseous phase component and thus is converted into a state where additional compression is easily performed. The second compressor 73 is installed between the pretreatment separator 71 and the second heat exchanger 50 and is disposed at the rear end of the water removal unit 72. The first gas B1 from which water is removed by passing through the water removal unit 72 is compressed to a higher pressure while passing through the second compressor 73. That is, the high pressure fluid (B) is generated by passing through the first compressor (10) described above, and passed through the pretreatment separator (71) to separate gas phase components (first gas), and the separated first gas (B1). Press again to the second compressor (73) to supply the first gas (B1) of the multi-stage compressed high pressure state to the expansion valve (30). For example, the second compressor 73 may be formed to increase the fluid pressure by using a rotary blade that rotates in the pressure chamber, or may be formed of a reciprocating compressor using a cylinder. However, this also does not need to be limited to understand the formation method of the compressor as an example, it is possible to apply a variety of compressors by selectively and complex use of various structures within the limit of the fluid compression. The second compressor 73 compresses the first gas B1 from which the liquid component is separated from the high pressure fluid B, so that the driving energy consumption is small and the capacity is relatively small.
제2압축기(73)를 통과한 제1기체(B1)는 제4열교환기(74)를 통과하며 우선적으로 냉각된다. 제4열교환기(74)는 제2압축기(73)와 제2열교환기(50) 사이에 설치되며 후단의 제2열교환기(50) 및 제3열교환기(60)와 함께 제1기체(B1)를 냉각하는 다단 냉각구조를 형성한다. 이를 통해 고압으로 압축된 제1기체(B1)의 온도를 보다 적정한 온도로 용이하게 냉각시킬 수 있다. 제4열교환기(74) 역시 열교환이 가능하도록 접속된 유로구조를 포함할 수 있고 제1기체(B1)가 유동하는 유로와 냉각수가 유동하는 유로가 열교환이 가능하도록 접촉된 구조로 형성될 수 있다. 냉각수로는 청수(clear water), 증류수 등이 사용될 수 있으며, 선박 등의 시설에 본 발명이 적용된 경우에는 해수(sea water)를 냉각수로 사용할 수도 있다. 상황에 따라서 여러 가지 다양한 종류의 냉각수를 제4열교환기(74)에 제공하여 제1기체(B1)를 냉각시킬 수 있다.The first gas B1 passing through the second compressor 73 passes through the fourth heat exchanger 74 and is preferentially cooled. The fourth heat exchanger 74 is installed between the second compressor 73 and the second heat exchanger 50 and includes the first gas B1 together with the second heat exchanger 50 and the third heat exchanger 60 in the rear stage. To form a multi-stage cooling structure. Through this, the temperature of the first gas B1 compressed at high pressure can be easily cooled to a more suitable temperature. The fourth heat exchanger 74 may also include a flow path structure connected to allow heat exchange, and the fourth heat exchanger 74 may have a structure in which the flow path through which the first gas B1 flows and the flow path through which the coolant flows contact each other to allow heat exchange. . Clear water, distilled water, or the like may be used as the cooling water. When the present invention is applied to a facility such as a ship, sea water may be used as the cooling water. According to circumstances, various types of cooling water may be provided to the fourth heat exchanger 74 to cool the first gas B1.
이상과 같이 구성된 전처리유닛(70)으로부터 고압상태의 제1기체(B1)가 제2열교환기(50) 측으로 제공된다. 제1기체(B1)는 전술한 과정을 통해 냉각되고 감압되며 고압상태에서 급격히 감압되어 충분히 낮은 온도로 기액분리기(40)에 제공된다. 이를 통해 보다 저온의 제2기체(C1) 및 제2액체(C2)를 생성할 수 있고, 전술한 바와 같이 제2기체(C1) 및 제2액체(C2)를 제2열교환기(50) 및 제3열교환기(60)를 경유한 후 연소기관(D)에 공급하거나 저장탱크(100)에 저장하였다가 필요에 따라 사용할 수 있다. 또한, 제1액체(B2) 역시 저장탱크(100)에 제2액체(C2)와 함께 저장하거나 또는 구분하여 저장하였다가 필요에 따라 사용할 수 있다. 이와 같이 휘발성유기화합물의 가용에너지를 보다 효과적으로 회수하여 에너지효율을 높이고 휘발성유기화합물의 배출량도 최소화할 수 있다.The high pressure state of the first gas B1 is provided to the second heat exchanger 50 from the pretreatment unit 70 configured as described above. The first gas B1 is cooled and decompressed through the above-described process, and is rapidly depressurized under high pressure to be provided to the gas-liquid separator 40 at a sufficiently low temperature. As a result, a lower temperature of the second gas C1 and the second liquid C2 may be generated, and as described above, the second gas C1 and the second liquid C2 may be transferred to the second heat exchanger 50 and After passing through the third heat exchanger 60, it may be supplied to the combustion engine D or stored in the storage tank 100, and may be used as needed. In addition, the first liquid (B2) may also be stored in the storage tank 100 together with the second liquid (C2) or stored separately and used as necessary. As such, the available energy of the volatile organic compound may be recovered more effectively, thereby increasing energy efficiency and minimizing the emission of the volatile organic compound.
이하, 도 4를 참조하여 본 발명의 제4실시예에 의한 휘발성유기화합물 회수장치에 대해 상세히 설명한다. 설명이 간결하고 명확하도록, 전술한 실시예와 차이나는 부분에 대해 중점적으로 설명하며 별도로 언급되지 않는 구성요소에 대한 설명은 전술한 설명으로 대신한다.Hereinafter, a volatile organic compound recovery apparatus according to a fourth embodiment of the present invention will be described in detail with reference to FIG. 4. For the sake of brevity and clarity, the description focuses on the parts that differ from the above-described embodiments, and the descriptions of the components that are not mentioned separately are replaced by the above description.
도 4는 본 발명의 제4실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.4 is a configuration diagram of a volatile organic compound recovery apparatus according to a fourth embodiment of the present invention.
도 4를 참조하면, 본 발명의 제4실시예에 의한 휘발성유기화합물 회수장치(1-3)는 제2압축기(73)와 기액분리기(40) 사이의 제1기체(B1)가 유동하는 관로에서 분기된 분기관(111) 및 분기관(111)에 연결되어 제1기체(B1)를 저장하는 고압탱크(110)를 포함한다. 고압탱크(110)는 분기관(111)을 통해 고압상태로 다단 압축된 제1기체(B1)를 유입하여 저장하며 필요에 따라 배출하여 사용하도록 구성될 수 있다. 분기관(111)에는 조절밸브(120)를 설치하여 고압탱크(110)로 유입되는 제1기체(B1)의 압력을 조절하도록 형성될 수 있다. 분기관(111)은 도시된 바와 같이 제4열교환기(74)와 제2열교환기(50)를 연결하는 관로에서 분기될 수 있다.Referring to FIG. 4, the volatile organic compound recovery apparatus 1-3 according to the fourth embodiment of the present invention is a conduit through which the first gas B1 flows between the second compressor 73 and the gas-liquid separator 40. It is connected to the branch pipe 111 and branch pipes 111 branched from the high-pressure tank 110 for storing the first gas (B1). The high pressure tank 110 may be configured to introduce and store the first gas B1 compressed in a multi-stage state under a high pressure state through the branch pipe 111 and discharge and use it as necessary. The branch pipe 111 may be formed to adjust the pressure of the first gas B1 introduced into the high pressure tank 110 by installing a control valve 120. Branch pipe 111 may be branched in the conduit connecting the fourth heat exchanger 74 and the second heat exchanger 50 as shown.
고압탱크(110)에 저장된 제1기체(B1)는 예를 들어, 연소기관(D)으로 제공 가능하다. 도시되지 않았지만, 고압탱크(110)와 연소기관(D) 사이를 연결하는 공급관로(미도시)를 형성하고 이러한 공급관로의 연소기관(D) 전단에 감압이 가능한 밸브를 추가하여 제1기체(B1)의 압력을 조절하여 연소기관(D)에 제공할 수 있다. 특히, 연소기관(D)이 가스 터빈 등으로 형성되는 경우 이와 같은 구성을 통해 터빈의 부하 변동에 대응하고 고압탱크(110)에 저장된 제1기체(B1)를 연소기관(D)으로 신속하게 제공할 수 있다. 고압탱크(110) 내 제1기체(B1)가 응축되어 액상성분이 발생하는 경우 이를 저장탱크(100)로 배출하기 위한 관로(미도시)를 추가적으로 구성하는 것도 가능하다. 이와 같이 고압탱크(110)가 포함된 구성을 통해서 가용에너지를 회수하고 이를 보다 효과적으로 활용할 수 있다.The first gas B1 stored in the high pressure tank 110 may be provided to the combustion engine D, for example. Although not shown in the drawing, a supply pipe (not shown) connecting the high pressure tank 110 and the combustion engine D is formed, and a valve capable of reducing pressure is added to the front of the combustion engine D of the supply pipe so that the first gas ( The pressure of B1) can be adjusted and provided to the combustion engine (D). In particular, when the combustion engine (D) is formed of a gas turbine or the like through this configuration to respond to the load fluctuations of the turbine and quickly provide the first gas (B1) stored in the high-pressure tank 110 to the combustion engine (D). can do. When the first gas B1 in the high pressure tank 110 is condensed to generate a liquid component, it is also possible to additionally configure a conduit (not shown) for discharging it to the storage tank 100. As such, the high-pressure tank 110 may be configured to recover available energy and more effectively utilize the same.
이하, 도 5를 참조하여 본 발명의 제5실시예에 의한 휘발성유기화합물 회수장치에 대해 상세히 설명한다. 설명이 간결하고 명확하도록, 전술한 실시예와 차이나는 부분에 대해 중점적으로 설명하며 별도로 언급되지 않는 구성요소에 대한 설명은 전술한 설명으로 대신한다.Hereinafter, a volatile organic compound recovery apparatus according to a fifth embodiment of the present invention will be described in detail with reference to FIG. 5. For the sake of brevity and clarity, the description focuses on the parts that differ from the above-described embodiments, and the descriptions of the components that are not mentioned separately are replaced by the above description.
도 5는 본 발명의 제5실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.5 is a configuration diagram of a volatile organic compound recovery apparatus according to a fifth embodiment of the present invention.
도 5를 참조하면, 본 발명의 제5실시예에 의한 휘발성유기화합물 회수장치(1-4)는 제1열교환기(20)와 제2열교환기(50) 사이에 설치되어 LNG(Liquefied natural gas)와, 고압유체(B) 또는 제1기체(B1)를 열교환시켜 LNG를 NG(Natural gas)로 변환하는 증발기(130)를 포함한다. 증발기(130)는 열교환이 가능하도록 상호 접속된 유로구조를 포함할 수 있으며 일 측의 유로로 제1기체(B1)를 유입하여 통과시키고 타 측의 유로로 LNG(E1)를 유입하여 제1기체(B1)와 열교환시킬 수 있다. 극저온의 LNG(E1)는 제1기체(B1)와 열교환하여 기화되고 NG(E2)로 변환되어 소비처(F)에 제공된다. 도면 상에는 LNG(E1)를 제1기체(B1)와 열교환시켜 NG(E2)로 변환하는 증발기(130)의 구성이 도시되었지만, 전처리유닛(70)이 구비되지 않은 경우, 제1열교환기(20)와 증발기(130) 사이에 관로를 연결하여 고압유체(B)를 증발기(130)로 유입하고 LNG(E1)와 열교환시켜 NG(E2)로 변환하도록 구성할 수 있다.Referring to FIG. 5, the volatile organic compound recovery apparatus 1-4 according to the fifth embodiment of the present invention is installed between the first heat exchanger 20 and the second heat exchanger 50, and has a LNG (Liquefied natural gas). ) And an evaporator 130 for converting LNG into natural gas (NG) by heat-exchanging the high pressure fluid (B) or the first gas (B1). The evaporator 130 may include a flow path structure interconnected to allow heat exchange. The evaporator 130 may flow through the first gas B1 into one flow path and introduce LNG (E1) into the other flow path. It can heat-exchange with (B1). The cryogenic LNG E1 is vaporized by heat exchange with the first gas B1, converted into NG E2, and provided to the consumer F. Although the configuration of the evaporator 130 for converting LNG (E1) into a first gas (B1) and converting it into NG (E2) is illustrated in the drawing, when the pretreatment unit 70 is not provided, the first heat exchanger 20 is shown. ) And a pipeline connected between the evaporator 130 and the high pressure fluid B may be introduced into the evaporator 130 and heat exchanged with the LNG E1 to convert NG (E2).
즉, LNG저장탱크(E) 등을 구비하여 LNG(E1)를 기화시켜 연료 등으로 사용하는 선박이나 시설에 휘발성유기화합물 회수장치(1-4)가 적용된 경우 극저온의 LNG(E1)를 냉매로 활용하여 냉각효율을 크게 증가시킬 수 있다. 동시에 소비처(F)에서도 LNG(E1)를 기화하기 위한 기화기 등을 추가로 설치할 필요가 없어 장치 구성면에서도 효율적이 된다. LNG(E1)는 증발기(130)와 LNG저장탱크(E) 사이에 연결된 펌프(140)등에 의해 증발기(130)로 제공될 수 있고, 증발기(130)에서 기화된 NG(E2)는 소비처(F)에 공급되어 사용될 수 있다. 소비처(F)는 NG(E2)를 연료로 사용 가능한 내연기관이나, 보일러, 터빈 등을 포함하며 이들의 부하 변동에 대응하여 펌프(140)를 제어하고 NG(E2) 공급량을 조절할 수 있다. 이와 같이 LNG저장탱크(E) 등이 구비된 시설에도 휘발성유기화합물 회수장치(1-4)를 용이하게 적용할 수 있다.That is, when a volatile organic compound recovery device (1-4) is applied to a vessel or facility equipped with an LNG storage tank (E) to vaporize LNG (E1) and use it as fuel, the cryogenic LNG (E1) is used as a refrigerant. Can greatly increase the cooling efficiency. At the same time, the consumer F does not need to additionally install a vaporizer or the like for vaporizing the LNG E1, which is efficient in terms of device configuration. The LNG E1 may be provided to the evaporator 130 by a pump 140 connected between the evaporator 130 and the LNG storage tank E, and the NG E2 vaporized in the evaporator 130 may be a consumer F. Can be supplied and used. The consumer F includes an internal combustion engine capable of using NG (E2) as a fuel, a boiler, a turbine, and the like, and controls the pump 140 and adjusts the NG (E2) supply amount in response to these load variations. In this manner, the volatile organic compound recovery apparatus 1-4 can be easily applied to a facility equipped with the LNG storage tank E.
이하, 도 6을 참조하여 본 발명의 제6실시예에 의한 휘발성유기화합물 회수장치에 대해 상세히 설명한다. 설명이 간결하고 명확하도록, 전술한 실시예와 차이나는 부분에 대해 중점적으로 설명하며 별도로 언급되지 않는 구성요소에 대한 설명은 전술한 설명으로 대신한다.Hereinafter, a volatile organic compound recovery apparatus according to a sixth embodiment of the present invention will be described in detail with reference to FIG. 6. For the sake of brevity and clarity, the description focuses on the parts that differ from the above-described embodiments, and the descriptions of the components that are not mentioned separately are replaced by the above description.
도 6은 본 발명의 제6실시예에 의한 휘발성유기화합물 회수장치의 구성도이다.6 is a block diagram of a volatile organic compound recovery apparatus according to a sixth embodiment of the present invention.
도 6을 참조하면, 본 발명의 제6실시예에 의한 휘발성유기화합물 회수장치(1-5)는 수분제거유닛(72)이 전처리분리기(71)의 전단에 배치된다. 즉, 제1열교환기(20)와 전처리분리기(71)의 사이에 수분제거유닛(72)이 배치되어 전처리분리기(71)로 유입되는 고압유체(B)에 함유된 수분을 전처리분리기(71)로 유입되기 전에 선처리할 수 있다. 따라서, 전처리분리기(71)를 전술한 바와 같은 3상분리기로 형성할 필요가 없으며, 고압유체(B)를 유입하여 제1기체(B1) 및 제1액체(B2)로 분리하는 기액분리장치로 전처리분리기(71)를 구성할 수 있다. 이를 통해 불필요한 부가물의 생성을 최소화하고 장치구성을 효율화할 수 있으며 전술한 바와 같은 과정을 통해 보다 효율적으로 휘발성유기화합물의 가용에너지를 회수하고 배출량을 최소화하는 것이 가능하다.6, in the volatile organic compound recovery apparatus 1-5 according to the sixth embodiment of the present invention, the water removal unit 72 is disposed in front of the pretreatment separator 71. That is, the water removal unit 72 is disposed between the first heat exchanger 20 and the pretreatment separator 71 so that the water contained in the high pressure fluid B introduced into the pretreatment separator 71 is pretreated separator 71. It can be pretreated before entering the furnace. Therefore, it is not necessary to form the pretreatment separator 71 as the three-phase separator as described above, and pretreatment with a gas-liquid separator in which the high pressure fluid B is introduced into the first gas B1 and the first liquid B2. Separator 71 can be configured. Through this, it is possible to minimize the generation of unnecessary additives and to improve the device configuration, and it is possible to recover the available energy of the volatile organic compound and minimize the emission more efficiently through the process as described above.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains can realize that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. I can understand. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
Claims (12)
- 원유저장탱크로부터 공급되는 유증기를 압축하는 제1압축기;A first compressor for compressing oil vapor supplied from a crude oil storage tank;상기 제1압축기를 통과한 고압유체를 냉각시키는 제1열교환기;A first heat exchanger for cooling the high pressure fluid passing through the first compressor;상기 제1열교환기를 통과한 상기 고압유체, 또는 전처리유닛을 통해 상기 고압유체에서 분리된 제1기체를 감압하는 팽창밸브; 및An expansion valve for depressurizing the first gas separated from the high pressure fluid through the high pressure fluid passing through the first heat exchanger or the pretreatment unit; And상기 팽창밸브를 통과한 상기 고압유체, 또는 상기 제1기체를 제2기체와 제2액체로 분리하여 상기 제2기체는 연소기관으로 공급하고, 상기 제2액체는 저장탱크로 공급하는 기액분리기를 포함하는 휘발성유기화합물 회수장치.The gas-liquid separator which separates the high pressure fluid or the first gas passed through the expansion valve into a second gas and a second liquid, supplies the second gas to the combustion engine, and supplies the second liquid to the storage tank. Volatile organic compound recovery apparatus comprising.
- 제1항에 있어서, 상기 제1열교환기와 상기 팽창밸브 사이에 설치되어 상기 기액분리기로부터 분리된 상기 제2기체와, 상기 고압유체 또는 상기 제1기체를 열교환시키는 제2열교환기를 더 포함하는 휘발성유기화합물 회수장치.The volatile organic acid of claim 1, further comprising a second heat exchanger disposed between the first heat exchanger and the expansion valve to heat-exchange the second gas separated from the gas-liquid separator, and the high pressure fluid or the first gas. Compound Recovery Device.
- 제2항에 있어서, 상기 제2열교환기와 상기 팽창밸브 사이에 설치되어 상기 기액분리기로부터 분리된 상기 제2액체와, 상기 고압유체 또는 상기 제1기체를 열교환시키는 제3열교환기를 더 포함하는 휘발성유기화합물 회수장치.The volatile organic acid of claim 2, further comprising a third heat exchanger disposed between the second heat exchanger and the expansion valve to heat-exchange the second liquid separated from the gas-liquid separator, and the high pressure fluid or the first gas. Compound Recovery Device.
- 제3항에 있어서, 상기 전처리유닛은, The method of claim 3, wherein the pretreatment unit,상기 제1열교환기와 상기 제2열교환기 사이에 설치되어, 상기 고압유체에서 상기 제1기체를 분리하여 상기 제2열교환기로 제공하는 전처리분리기를 더 포함하는 휘발성유기화합물 회수장치.And a pretreatment separator installed between the first heat exchanger and the second heat exchanger and separating the first gas from the high pressure fluid and providing the second heat exchanger to the second heat exchanger.
- 제4항에 있어서, 상기 전처리유닛은,The method of claim 4, wherein the pretreatment unit,상기 제1열교환기와 상기 전처리분리기의 사이, 또는 상기 전처리분리기와 Between the first heat exchanger and the pretreatment separator, or between the pretreatment separator상기 제2열교환기 사이에 설치되는 수분제거유닛을 더 포함하는 휘발성유기화합물 회수장치.Volatile organic compound recovery device further comprising a water removal unit installed between the second heat exchanger.
- 제4항에 있어서, 상기 전처리유닛은,The method of claim 4, wherein the pretreatment unit,상기 전처리분리기와 상기 제2열교환기 사이에 설치되어 상기 제1기체를 가압하는 제2압축기를 더 포함하는 휘발성유기화합물 회수장치.And a second compressor installed between the pretreatment separator and the second heat exchanger to pressurize the first gas.
- 제6항에 있어서, 상기 제2압축기와 상기 제2열교환기 사이에 설치되어 상기 제1기체를 냉각시키는 제4열교환기를 더 포함하는 휘발성유기화합물 회수장치.7. The volatile organic compound recovery apparatus according to claim 6, further comprising a fourth heat exchanger installed between the second compressor and the second heat exchanger to cool the first gas.
- 제6항에 있어서, 상기 제2압축기와 상기 기액분리기 사이의 상기 제1기체가 유동하는 관로에서 분기된 분기관, 및 상기 분기관에 연결되어 상기 제1기체를 저장하는 고압탱크를 더 포함하는 휘발성유기화합물 회수장치.The gas supply system of claim 6, further comprising a branch pipe branched from a conduit through which the first gas flows between the second compressor and the gas-liquid separator, and a high pressure tank connected to the branch pipe to store the first gas. Volatile Organic Compound Recovery System.
- 제8항에 있어서, 상기 분기관에 형성되어 상기 고압탱크로 유입되는 상기 제1기체의 압력을 조절하는 조절밸브를 더 포함하는 휘발성유기화합물 회수장치.The volatile organic compound recovery apparatus of claim 8, further comprising a control valve formed in the branch pipe and configured to control the pressure of the first gas flowing into the high pressure tank.
- 제3항에 있어서, 상기 제1열교환기와 상기 제2열교환기 사이에 설치되어 LNG(Liquefied natural gas)와, 상기 고압유체 또는 상기 제1기체를 열교환시켜 상기 LNG를 NG(Natural gas)로 변환하는 증발기를 더 포함하는 휘발성유기화합물 회수장치.According to claim 3, Between the first heat exchanger and the second heat exchanger is installed between the LNG (Liquefied natural gas) and the high pressure fluid or the first gas to exchange the LNG to NG (Natural gas) Volatile organic compound recovery apparatus further comprising an evaporator.
- 제4항에 있어서, 상기 전처리분리기는 상기 제1기체와, 물과, 상기 물보다 비중이 작은 성분으로 이루어진 제1액체로 분리하는 3상분리기인 휘발성유기화합물 회수장치.The volatile organic compound recovery apparatus according to claim 4, wherein the pretreatment separator is a three-phase separator which separates the first gas, water, and a first liquid comprising a component having a specific gravity smaller than that of the water.
- 제1항에 있어서, 상기 원유저장탱크와 상기 제1압축기 사이에 설치되어 상기 유증기에 포함된 고체상 이물질과 액체상 이물질을 제거하는 여과유닛을 더 포함하는 휘발성유기화합물 회수장치.The volatile organic compound recovery apparatus of claim 1, further comprising a filtration unit disposed between the crude oil storage tank and the first compressor to remove solid foreign matter and liquid foreign matter contained in the oil vapor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20181643A NO20181643A1 (en) | 2016-06-22 | 2018-12-18 | Volatile organic compound recovery apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160078203A KR101741834B1 (en) | 2016-06-22 | 2016-06-22 | Apparatus for recovering VOC |
KR10-2016-0078203 | 2016-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017222239A1 true WO2017222239A1 (en) | 2017-12-28 |
Family
ID=59053160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/006267 WO2017222239A1 (en) | 2016-06-22 | 2017-06-15 | Volatile organic compound recovery apparatus |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101741834B1 (en) |
NO (1) | NO20181643A1 (en) |
WO (1) | WO2017222239A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108891801A (en) * | 2018-07-13 | 2018-11-27 | 佛山市三水区精联自动化设备有限公司 | A kind of oil storage tank air pressure holding meanss |
CN112469624A (en) * | 2018-01-25 | 2021-03-09 | 韩国造船海洋株式会社 | Volatile organic compound processing system and ship |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20171222A1 (en) * | 2017-07-21 | 2019-01-22 | Waertsilae Gas Solutions Norway As | Low emission SVOC fueled oil tanker |
CN109916109A (en) * | 2019-01-28 | 2019-06-21 | 珠海格力电器股份有限公司 | Heat pump system and air conditioner |
CN116624774A (en) * | 2022-02-10 | 2023-08-22 | 中国石化工程建设有限公司 | A VOCs treatment system |
CN117516065B (en) * | 2024-01-08 | 2024-05-03 | 连云港市拓普科技发展有限公司 | Low-pressure air-cooled combined VOCs gas collecting and processing device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100613430B1 (en) * | 2005-07-27 | 2006-08-17 | 삼성중공업 주식회사 | Evaporative Gas Treatment Method and Apparatus |
KR101039401B1 (en) * | 2010-07-07 | 2011-06-07 | (주)덕산코트랜 | Vapor recovery system |
KR101271759B1 (en) * | 2011-05-19 | 2013-06-05 | 삼성중공업 주식회사 | Apparatus for reducing emission of VOC for oil tanker |
KR101311013B1 (en) * | 2011-10-11 | 2013-09-24 | 이경우 | Vopor recovery unit for ship |
JP2013252503A (en) * | 2012-06-08 | 2013-12-19 | Ihi Corp | Apparatus and method for recovering volatile organic compound |
-
2016
- 2016-06-22 KR KR1020160078203A patent/KR101741834B1/en active Active
-
2017
- 2017-06-15 WO PCT/KR2017/006267 patent/WO2017222239A1/en active Application Filing
-
2018
- 2018-12-18 NO NO20181643A patent/NO20181643A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100613430B1 (en) * | 2005-07-27 | 2006-08-17 | 삼성중공업 주식회사 | Evaporative Gas Treatment Method and Apparatus |
KR101039401B1 (en) * | 2010-07-07 | 2011-06-07 | (주)덕산코트랜 | Vapor recovery system |
KR101271759B1 (en) * | 2011-05-19 | 2013-06-05 | 삼성중공업 주식회사 | Apparatus for reducing emission of VOC for oil tanker |
KR101311013B1 (en) * | 2011-10-11 | 2013-09-24 | 이경우 | Vopor recovery unit for ship |
JP2013252503A (en) * | 2012-06-08 | 2013-12-19 | Ihi Corp | Apparatus and method for recovering volatile organic compound |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112469624A (en) * | 2018-01-25 | 2021-03-09 | 韩国造船海洋株式会社 | Volatile organic compound processing system and ship |
CN112469624B (en) * | 2018-01-25 | 2023-11-03 | 韩国造船海洋株式会社 | VOC treatment systems and ships |
CN108891801A (en) * | 2018-07-13 | 2018-11-27 | 佛山市三水区精联自动化设备有限公司 | A kind of oil storage tank air pressure holding meanss |
Also Published As
Publication number | Publication date |
---|---|
KR101741834B1 (en) | 2017-05-30 |
NO20181643A1 (en) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017222239A1 (en) | Volatile organic compound recovery apparatus | |
US11505328B2 (en) | Electrical power generation on a vehicle | |
JP6629431B2 (en) | Conversion of waste heat of gas processing plant to electric power based on organic Rankine cycle | |
JP6104926B2 (en) | Power generation system and corresponding method | |
JP5460040B2 (en) | Combined cycle power plant for exhaust gas recirculation and CO2 separation and method of operating such combined cycle power plant | |
US20130312386A1 (en) | Combined cycle power plant with co2 capture plant | |
JP6755669B2 (en) | Systems and methods for heating the make-up working fluid of a steam system with engine fluid waste heat | |
KR20160055830A (en) | Device for recovering vapours from a cryogenic tank | |
US20180149353A1 (en) | Turbine system and method | |
US9284856B2 (en) | Gas turbine combined cycle power plant with distillation unit to distill a light oil fraction | |
WO2014165188A1 (en) | Combined heat and power technology for natural gas liquefaction plants | |
US11255223B2 (en) | Mechanical/electrical power generation system | |
US7032390B2 (en) | Method for recovery of VOC gas and an apparatus for recovery of VOC gas | |
EP3602668B1 (en) | Electrical power generation on a vehicle | |
KR101824482B1 (en) | Fuel collection and supply system for ship | |
KR20180000288A (en) | Apparatus for recovering VOC | |
KR102436048B1 (en) | Gas treatment system and ship having the same | |
KR20230165342A (en) | Steam circulation method, system and apparatus for efficiently reducing carbon footprint in plant systems | |
RU2615042C1 (en) | Device for removing carbon dioxide | |
US20240151180A1 (en) | Optimized co-generating system and recovery method for power, water and nitrogen | |
WO2025126996A1 (en) | Carbon dioxide liquefaction device | |
KR20240143102A (en) | Vessel | |
KR20170124274A (en) | Complex power generating system and ship having the same | |
EP3379631A1 (en) | Electrical power generation and cooling system | |
KR20160048294A (en) | Apparatus for supplying low-pressure fuel gas in ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815652 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT 25.04.19) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17815652 Country of ref document: EP Kind code of ref document: A1 |