WO2017221749A1 - High early strength agent for cements, high early strength cement using same, and method for producing high early strength concrete - Google Patents
High early strength agent for cements, high early strength cement using same, and method for producing high early strength concrete Download PDFInfo
- Publication number
- WO2017221749A1 WO2017221749A1 PCT/JP2017/021525 JP2017021525W WO2017221749A1 WO 2017221749 A1 WO2017221749 A1 WO 2017221749A1 JP 2017021525 W JP2017021525 W JP 2017021525W WO 2017221749 A1 WO2017221749 A1 WO 2017221749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cement
- early
- concrete
- strength
- early strength
- Prior art date
Links
- 239000004568 cement Substances 0.000 title claims abstract description 97
- 239000004567 concrete Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 64
- 150000003839 salts Chemical class 0.000 claims abstract description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 34
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 20
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 17
- 238000005728 strengthening Methods 0.000 claims description 43
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 31
- 235000011187 glycerol Nutrition 0.000 claims description 15
- -1 alcohol amine Chemical class 0.000 claims description 11
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 7
- 238000005507 spraying Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 abstract description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 5
- 238000011161 development Methods 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 16
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 10
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 8
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 8
- 159000000007 calcium salts Chemical class 0.000 description 8
- 235000019253 formic acid Nutrition 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 230000007774 longterm Effects 0.000 description 8
- 229910002651 NO3 Inorganic materials 0.000 description 7
- 239000003638 chemical reducing agent Substances 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 6
- 239000000920 calcium hydroxide Substances 0.000 description 6
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 6
- 150000001735 carboxylic acids Chemical class 0.000 description 6
- 239000000460 chlorine Substances 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000004280 Sodium formate Substances 0.000 description 5
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 5
- 235000019254 sodium formate Nutrition 0.000 description 5
- 239000004317 sodium nitrate Substances 0.000 description 5
- 235000010344 sodium nitrate Nutrition 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000009415 formwork Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CBOCVOKPQGJKKJ-UHFFFAOYSA-L Calcium formate Chemical compound [Ca+2].[O-]C=O.[O-]C=O CBOCVOKPQGJKKJ-UHFFFAOYSA-L 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 239000004281 calcium formate Substances 0.000 description 3
- 235000019255 calcium formate Nutrition 0.000 description 3
- 229940044172 calcium formate Drugs 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 3
- 229940043276 diisopropanolamine Drugs 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000001540 sodium lactate Substances 0.000 description 2
- 235000011088 sodium lactate Nutrition 0.000 description 2
- 229940005581 sodium lactate Drugs 0.000 description 2
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 2
- 229940039790 sodium oxalate Drugs 0.000 description 2
- WTWSHHITWMVLBX-DKWTVANSSA-M sodium;(2s)-2-aminobutanedioate;hydron Chemical compound [Na+].[O-]C(=O)[C@@H](N)CC(O)=O WTWSHHITWMVLBX-DKWTVANSSA-M 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- IWSZDQRGNFLMJS-UHFFFAOYSA-N 2-(dibutylamino)ethanol Chemical compound CCCCN(CCO)CCCC IWSZDQRGNFLMJS-UHFFFAOYSA-N 0.000 description 1
- DRQFBCMQBWNTNV-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanol;trifluoroborane Chemical compound FB(F)F.OCCN(CCO)CCO DRQFBCMQBWNTNV-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- ZFTFAPZRGNKQPU-UHFFFAOYSA-N dicarbonic acid Chemical class OC(=O)OC(O)=O ZFTFAPZRGNKQPU-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 150000002169 ethanolamines Chemical class 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 150000003628 tricarboxylic acids Chemical class 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/04—Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28C—PREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28C7/00—Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
- B28C7/04—Supplying or proportioning the ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators or shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators or shrinkage compensating agents
- C04B22/08—Acids or salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/02—Alcohols; Phenols; Ethers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/04—Carboxylic acids; Salts, anhydrides or esters thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/12—Nitrogen containing compounds organic derivatives of hydrazine
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/02—Portland cement
Definitions
- the present invention mainly relates to a cement composition used in civil engineering / architecture, a cement hardened body using the same, and a method for producing the same.
- Concrete products are manufactured by pouring a mixture of cement, aggregate, water, and admixture into a formwork, curing it properly, and then demolding.
- early-strength cement to prepare a concrete having a low water-cement ratio in combination with a water reducing agent, and to perform steam curing.
- Known admixtures for increasing strength include those mainly composed of quicklime, gypsum, and alkali metal sulfates, and those using a specific compound such as glycerin and an alkali metal sulfate in combination (Patent Document 1). ⁇ 4).
- Patent Documents 5 to 7 there are reports of using nitrates and carboxylic acids as curing accelerators, but there are few reports that mention combining these plural curing accelerating components.
- hardening accelerators containing chlorine such as sodium chloride and calcium chloride are also known, but use is not preferred because it causes salt damage that is a deterioration factor of concrete.
- Non-patent Document 1 an aqueous solution containing nitrate promotes the elution of calcium hydroxide in the cement hardened body. Therefore, when nitrate is used as a hardening accelerator, the production of calcium hydroxide, which is a hydrated product of cement, does not proceed sufficiently, and strength development may be inhibited for a long time. Therefore, it is preferable that the calcium concentration of the aqueous solution containing nitrate is not less than a certain value so that the amount of calcium hydroxide produced is not impaired. However, if the concentration is too high, the calcium salt becomes liquid. It precipitates inside and the storage stability of the liquid is impaired.
- the present invention dissolves nitric acid and its salt, carboxylic acid and its salt in water to a specific blending range, without impairing the storage stability of the liquid.
- the present inventors have found that an early-strengthening agent that does not inhibit the development of strength over the long term can be developed, and obtained the knowledge to solve the above-mentioned problems, thereby completing the present invention.
- An early-strength cement comprising 0.1 to 10 parts by mass of the cement early-strengthening agent of (1) or (2) with respect to 100 parts by mass of cement.
- a method for producing early-strength concrete characterized in that the cement early-strengthening agent according to (1) or (2) is added later to the ready-mixed concrete of an agitator vehicle.
- a method for producing concrete characterized in that the cement early strengthening agent of (1) or (2) is applied or sprayed on the concrete surface before curing at 100 to 600 g / m 2 .
- the early strengthening agent for cement according to the embodiment of the present invention is excellent in initial strength development and fluidity and superior in storage stability as compared with conventional materials.
- concrete as used in this specification is a general term for cement paste, mortar, and cement concrete.
- the hardened cement body is a generic term for concrete secondary products and concrete structures manufactured from cement paste, mortar, or concrete, or further combined with reinforcing bars.
- the nitric acid and its salt used in the embodiment of the present invention may be either an anhydride or a hydrate.
- nitrates include alkali metal, alkaline earth metal, and aluminum salts. Two or more of these may be used in combination.
- nitric acid, sodium nitrate, magnesium nitrate, potassium nitrate, calcium nitrate, and aluminum nitrate are preferable, and sodium nitrate and calcium nitrate are more preferable in terms of excellent strength development. More preferably, calcium nitrate and sodium nitrate are used in combination.
- the amount of nitric acid and its salt is preferably in the range of 30% to 60%, more preferably in the range of 40% to 50% in terms of anhydride. If the amount of nitric acid and its salt is less than 30%, excellent strength development may not be obtained, and if it exceeds 60%, the slump may be lowered or the long-term strength may be lowered.
- the carboxylic acid and its salt used in the embodiment of the present invention are a general term for an organic compound having a carboxyl group and a salt thereof.
- Such carboxylic acids include monocarboxylic acids such as formic acid, acetic acid, and propionic acid, and dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, and phthalic acid.
- Tricarboxylic acids such as trimellitic acid and tricarbarylic acid, oxymonocarboxylic acids such as hydroxybutyric acid, lactic acid and salicylic acid, oxydicarboxylic acids of malic acid, aminocarboxylic acids such as aspartic acid and glutamic acid, ethylenediaminetetraacetic acid (EDTA) And aminopolycarboxylic acids such as trans-1,2-diaminocyclohexanetetraacetic acid (CyDTA).
- the carboxylate include a salt of an alkali metal, an alkaline earth metal or the like and any of the above carboxylic acids. A combination of two or more of these can be used.
- carboxylic acids and salts thereof formic acid, sodium formate, calcium formate, sodium acetate, sodium oxalate, sodium lactate, and sodium aspartate are preferable, and particularly formic acid, sodium formate, and More preferred is calcium formate. More preferably, formic acid and sodium formate can be used in combination.
- the amount of carboxylic acid and its salt is preferably in the range of 0.1% to 10%, and more preferably in the range of 2% to 7%. If the amount of carboxylic acid and its salt is less than 0.1%, excellent strength development may not be obtained, and if it exceeds 10%, long-term strength may be lowered.
- the amount of calcium (Ca) element contained in the cement early strengthening agent according to the embodiment of the present invention is preferably in the range of 5% to 20%, and more preferably in the range of 8% to 15%. If the amount of elemental calcium is less than 5%, the long-term strength development may be impaired, and if it exceeds 20%, the storage stability of the liquid may be impaired.
- a calcium salt may be used as a raw material.
- the calcium salt of nitric acid or carboxylic acid described above may be used, or a calcium salt different from those may be used. You can use both or both.
- Such calcium salt is not particularly limited as long as it is a water-soluble salt, or even if it is a low water-soluble salt, nitric acid or a salt thereof, carboxylic acid or a salt thereof contained in the early strengthening agent according to the embodiment of the present invention. It will not specifically limit if it reacts with a salt and melt
- Examples of such another calcium salt include calcium hydroxide.
- the method for obtaining the amount of calcium element is not particularly limited as long as it is a general quantitative analysis method, and can be calculated using, for example, an atomic absorption photometer.
- water is an essential component, and nitric acid or a salt thereof and a carboxylic acid or a salt thereof, or nitric acid or a salt thereof and a carboxylic acid or a salt thereof is added with another calcium salt.
- the balance added is water.
- the amount of water is preferably 25 to 60%, more preferably 30 to 55%. If the amount of water is less than 25%, the material may be separated, and if it exceeds 60%, the early strength may be insufficient.
- the early cement for cement according to an embodiment of the present invention may contain an alcohol amine.
- Alcoholamine is used for the purpose of improving the initial strength of the cement composition.
- the alcohol amine is not particularly limited, and can be used if it can be dissolved in the early strengthening agent.
- An alcohol amine is an organic compound having a structure of> N—R—OH in the structural formula.
- R is an atomic group usually called an alkyl group or an aryl group, and R has a branched structure such as a linear alkylene group such as a methylene group, an ethylene group or an n-propylene group, or an isopropylene group.
- Examples include an alkylene group and an aryl group having an aromatic ring such as a phenyl group and a benzyl group.
- R may be bonded to the nitrogen atom at two or more positions, and a part or all of R may have a cyclic structure.
- R may be bonded to a plurality of hydroxyl groups.
- R may have an element other than carbon and an element other than hydrogen, such as sulfur, fluorine, chlorine, oxygen, etc., in part of the alkyl group.
- a plurality of hydroxyl groups may be bonded to R.
- alcohol amines include ethanolamine, diethanolamine, diisopropanolamine, triethanolamine, N-methyldiethanolamine, N, N-dimethylethanolamine, N, N-dibutylethanolamine, N- (2-aminoethyl) ethanolamine, Examples thereof include boron trifluoride triethanolamine and derivatives thereof. One or more of these can be used.
- the amount of alcohol amine contained in the cement early strengthening agent is preferably 1 to 15%, more preferably 5 to 10%. If the amount of alcohol amine is less than 1%, the initial strength improvement may be small, and if it exceeds 15%, the fluidity may be lowered.
- the early strengthening agent for cement may contain glycerin.
- Glycerin is used for the purpose of improving the initial strength of the cement composition.
- Glycerin used in the present invention is a compound represented by the chemical formula C 3 H 8 O 3 , chemical name 1,2,3-propanetriol or glycerol.
- the amount of glycerin contained in the cement early strengthening agent is preferably 1 to 10%, more preferably 3 to 7%. If the amount of glycerin is less than 1%, the improvement in early strength may be small, and if it exceeds 10%, the long-term strength may be reduced.
- the chlorine content is preferably 0.1% or less. This is a characteristic required from the viewpoint of suppressing salt damage, which is a deterioration factor of concrete. In order to reduce the chlorine content to 0.1% or less, it is sufficient to refrain from using a chlorine-containing material in the early strengthening agent production.
- water is generally most likely to contain chlorine, but its content is rarely a problem unless seawater or the like is used.
- the early-strength cement can be manufactured by blending the early-strength agent according to the embodiment of the present invention into the cement.
- the amount of early strength agent used in this case is preferably 0.05 to 12 parts, more preferably 0.1 to 10 parts, still more preferably 0.5 to 10 parts, relative to 100 parts of cement, 0.7 ⁇ 7 parts are more preferred, and 1 to 5 parts is most preferred. If the amount of the early strengthening agent is less than 0.5 part, the strength development may not be improved, and if it exceeds 10 parts, the slump may be lowered or the long-term strength development may be lowered.
- the early strengthening agent for cement according to the embodiment of the present invention can increase crack resistance by being sprayed on the concrete surface before hardening.
- the amount to be sprayed onto the concrete surface is not particularly limited but is preferably 50 ⁇ 800g / m 2, more preferably 100 ⁇ 600g / m 2, more preferably 200 ⁇ 500g / m 2. Outside the range, the crack reduction effect may not be sufficient.
- cement examples include various commercially available Portland cements such as normal, early strength, medium heat, and ultra early strength, and various mixed cements in which fly ash, blast furnace slag, etc. are mixed with these various Portland cements. It is also possible to use them by micronizing them.
- the concrete used in the embodiment of the present invention contains cement and aggregate.
- the aggregate those having low water absorption and high aggregate strength are preferable.
- river sand, mountain sand, lime sand, quartz sand and the like can be used, and as the coarse aggregate, river gravel, mountain gravel, lime gravel and the like can be used.
- the amount of water used for concrete is preferably 30% or more, more preferably 33 to 55%, from the viewpoint of strength development. If the amount of water is less than 30%, cement concrete may not be sufficiently mixed.
- the nitric acid and its salt and the carboxylic acid and its salt used in the embodiment of the present invention are materials that each function as an early strengthening agent. However, compared with the case where these materials are used individually, when these materials and water are prepared as an early strengthening agent mixed with an appropriate mixing ratio, the individual components show a synergistic effect and are excellent. The present inventors have found that a remarkable effect of exhibiting excellent fluidity and excellent strength development can be obtained. Although the mechanism of the effect expression of the cement early strengthening agent according to the embodiment of the present invention is not desired to be bound by a specific theory, nitrate ions and carboxylate ions supplied from raw materials are synergistically. It is thought that the elution of the cement component is promoted and the hydration reaction is promoted.
- the promoting effect is high as compared with the case where solid nitrate or carboxylate is used as it is.
- liquids are easier to mix in cement than solids, and endothermic reactions occur when nitrates dissolve in water. It is thought that it is suppressed.
- the early strengthening agent according to the embodiment of the present invention is excellent in versatility, particularly for cast-in-place concrete that is difficult to manage. For example, when concrete is transported to the site with an agitator car and the early strength agent is added to the concrete immediately before being put on site, the early strength agent can be appropriately produced because the concrete and the early strength agent are mixed without segregation. .
- the concentration of the elemental calcium is in a certain range, it does not promote the elution of calcium hydroxide caused by cement hydration and has an effect on long-term strength development. Is also effective.
- the concrete slump was measured using the early strengthening agent having the composition shown in Table 1 or Table 2 under the above environment.
- the cement early strengthening agent was weighed and added to 13.2 kg / m 3 corresponding to 3 parts with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Tables 1 and 2.
- Nitric acid and its salt [A] Concentrated nitric acid, [B] Sodium nitrate, [C] Magnesium nitrate, [D] Potassium nitrate, [E] Calcium nitrate, [F] Aluminum nitrate, all commercially available carboxylic acids and their salts: [A] Formic acid, [b] Sodium formate, [c] Calcium formate, [d] Sodium acetate, [e] Sodium oxalate, [f] Sodium lactate, [g] Sodium aspartate Salt: Calcium hydroxide water: Industrial water Cement: Ordinary Portland cement, commercial product, Blaine value 3,200 cm 2 / g, specific gravity 3.15 Fine aggregate: Himekawa, Niigata, Japan, 5 mm below, density 2.62 g / cm 3 Coarse aggregate: From Himekawa, Niigata, Japan, 25 mm below, density 2.64 g / cm 3 Water reducing agent: Naphthalen
- the concentration of nitric acid and its salt is 30 to 60%, and the concentration of carboxylic acid and its salt is 0.1 to 10%. It is understood that the impact is small. It is also understood that if the concentration of calcium element is 5 to 20%, long-term strength development is not hindered and liquid storage properties are excellent.
- calcium nitrate is particularly desirable, and it is found that the combined use of calcium nitrate and sodium nitrate is more preferable.
- formic acid is particularly desirable among carboxylic acids and salts thereof, and it is more preferable to use formic acid and sodium formate in combination.
- the initial strength is improved, so that the curing period necessary for expressing the strength necessary for demolding can be shortened, leading to improvement in the productivity of concrete. I understand.
- Example 2 For the composition having a calcium nitrate content of 45%, a formic acid content of 5%, and a calcium element concentration of 11% (corresponding to Experiment No. 1-9 in Experimental Example 1), the types and concentrations shown in Table 3 Thus, various amine early strengthening agents for cement were prepared by adding alcoholamine or glycerin to water and stirring for 4 hours. Moreover, the prepared early strengthening agent for cement was added to the concrete and evaluated.
- the concrete slump was measured using the early cement strengthening agent having the composition shown in Table 3 under the following environment.
- the cement early strengthening agent was measured and added in an amount of 13.2 kg / m 3 corresponding to 3 parts to 100 parts of cement together with water. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 3.
- Alcoholamine or glycerin [ ⁇ ] monoethanolamine, [ ⁇ ] diethanolamine, [ ⁇ ] triethanolamine, [ ⁇ ] diisopropanolamine, [ ⁇ ] glycerin, and other materials are the same as those in “Experimental Example 1”.
- Table 3 shows that when ethanolamine or glycerin is contained, the initial strength is improved. It can be seen that diethanolamine is preferable among ethanolamines. It can also be seen that the ethanolamine concentration is preferably in the range of 1 to 15% and the glycerin concentration is in the range of 1 to 10% in terms of fluidity and strength development.
- Example 3 The basic water composition of the unit water is 145 kg / m 3 , the unit cement is 440 kg / m 3 , the water reducing agent is 2.5 kg / m 3 , s / a is 39.4%, and the air is 4.5%.
- the concrete slump was measured by using several of the cement early strengtheners prepared in “Example 1” at an addition rate shown in Table 4 in an environment of 20 ° C. The addition rate of the cement early strengthening agent was measured as a part with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 4.
- the cement early strengthening agent according to the embodiment of the present invention is excellent in improving the initial strength even when the addition rate of the cement early strengthening agent is varied.
- the addition ratio of the early cement strength additive is particularly preferably 0.1 to 10 parts with respect to 100 parts of cement because it suppresses slump fluctuation and is excellent in strength development. .
- Example 4 Mix concrete with a unit water volume of 145 kg / m 3 , a unit cement amount of 440 kg / m 3 , a water reducing agent of 2.5 kg / m 3 , s / a of 39.4% and an air volume of 4.5%, and mix 30
- the cement early strengthening agent prepared in “Experimental Example 1” was added afterwards, the concrete was mixed again, and the slump of the concrete was measured.
- the cement early strengthener was measured and added after weighing 13.2 kg / m 3 corresponding to 3 parts with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 5.
- the early strengthening agent according to the embodiment of the present invention exhibits the same level of slump and strength development regardless of the timing of addition of the early strengthening agent. This is an excellent performance particularly when the premixed concrete is transported to the site and the early strengthening agent is added later to the agitator vehicle or the like.
- Example 5 Concrete with unit water volume 145 kg / m 3 , unit cement quantity 440 kg / m 3 , water reducing agent 2.5 kg / m 3 , s / a 39.4%, air quantity 4.5%, 20cm in height A concrete plate having a length of 2 m and a width of 2 m was placed. After placing, finishing the concrete surface, 200 g / m 3 of 1-9 early strength agent for cement was sprayed. Thereafter, the concrete surface was observed at the age of 28 days. Crack resistance was evaluated. The results are shown in Table 6. The meanings of the symbols are as follows. -No cracks + 1-2 cracks ++ 3-5 cracks +++ 6 or more cracks
- the early strength agent for cement according to the embodiment of the present invention is excellent in initial strength development, fluidity and storage stability as compared with conventional materials, it is suitable for civil engineering and construction fields using concrete. is there.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
Abstract
Provided are: a high early strength agent for cements, which exhibits excellent initial strength developability and excellent fluidity, while having excellent storage stability; a high early strength cement which uses this high early strength agent for cements; and a method for producing a high early strength cement concrete. This high early strength agent for cements contains 30-60% by mass of nitric acid or a salt thereof, 0.1-10% by mass of a carboxylic acid or a salt thereof, and water; and the elemental calcium concentration in the high early strength agent is 5-20% by mass.
Description
本発明は、主に、土木・建築において使用されるセメント組成物、それを用いたセメント硬化体、及びその製造方法に関する。
The present invention mainly relates to a cement composition used in civil engineering / architecture, a cement hardened body using the same, and a method for producing the same.
コンクリート製品は、セメント、骨材、水、および混和材を練り混ぜたものを、型枠に流し込み、適切に養生を行った後、脱型して製造される。ここで、材齢初期に高い強度を発現することは、生産性、つまり型枠の回転率を向上させる点で重要である。型枠の回転率を向上させることは、高価な型枠の必要数を少なくすることにつながる。初期強度を高めるための方法としては、早強セメントを使用すること、減水剤を併用して水セメント比の低いコンクリートを調合すること、蒸気養生を行うこと、などが知られている。
Concrete products are manufactured by pouring a mixture of cement, aggregate, water, and admixture into a formwork, curing it properly, and then demolding. Here, it is important to develop a high strength at the early stage of age in terms of improving the productivity, that is, the rotation rate of the formwork. Improving the rotation rate of the formwork leads to a reduction in the required number of expensive formwork. As a method for increasing the initial strength, it is known to use early-strength cement, to prepare a concrete having a low water-cement ratio in combination with a water reducing agent, and to perform steam curing.
近年では、蒸気使用に伴うエネルギーコストが高騰しており、蒸気養生時間を短縮できる方法、さらには蒸気養生を行わなくてもよい方法が切望されている。また、より高い生産性の要求からも、養生工程の更なる短縮が望まれることがあり、例えば、コンクリート製品の製造において養生時間16時間で高い強度を発現することが必要な場合がある。通常、養生工程には、蒸気などでの加熱作業工程など複雑な工程が組み込まれているが、そうした工程を変更して初期強度を向上させようとしても実用的な手法とはなりにくい。そこで、工程変更を伴わずに簡単に初期強度の高いコンクリート製品が得られる方法が、製造コスト等の点から、市場では切望されている。
In recent years, energy costs associated with the use of steam have soared, and a method that can shorten the steam curing time, and a method that does not require steam curing are eagerly desired. Further, there is a case where further shortening of the curing process is desired due to a demand for higher productivity. For example, it may be necessary to develop high strength in a curing time of 16 hours in the manufacture of concrete products. Usually, the curing process incorporates a complicated process such as a heating process using steam or the like, but even if it is attempted to improve the initial strength by changing such a process, it is difficult to be a practical method. Therefore, a method for easily obtaining a concrete product with high initial strength without changing the process is desired in the market from the viewpoint of manufacturing cost and the like.
強度を高める混和材としては、生石灰、せっこう、アルカリ金属の硫酸塩などを主体としたものや、グリセリン等の特定化合物とアルカリ金属硫酸塩を併用したものなどが知られている(特許文献1~4)。そのほかにも、硝酸塩、カルボン酸を硬化促進剤として使用するものも報告されているが、これら複数の硬化促進成分を組み合わせることに言及した報告は少ない(特許文献5~7)。また、塩化ナトリウムや塩化カルシウムなどの塩素を含有する硬化促進剤も知られているが、コンクリートの劣化要因である塩害をまねくことから、使用が好ましくない。
Known admixtures for increasing strength include those mainly composed of quicklime, gypsum, and alkali metal sulfates, and those using a specific compound such as glycerin and an alkali metal sulfate in combination (Patent Document 1). ~ 4). In addition, there are reports of using nitrates and carboxylic acids as curing accelerators, but there are few reports that mention combining these plural curing accelerating components (Patent Documents 5 to 7). In addition, hardening accelerators containing chlorine such as sodium chloride and calcium chloride are also known, but use is not preferred because it causes salt damage that is a deterioration factor of concrete.
また、硝酸塩を含む水溶液は、セメント硬化体中の水酸化カルシウムの溶出を促すことが報告されている(非特許文献1)。そのため、硝酸塩を硬化促進剤として使用した場合、セメントの水和生成物である水酸化カルシウムの生成が十分に進まず、長期的に強度発現が阻害される場合があった。そのため、硝酸塩を含む水溶液のカルシウムの濃度を一定量以上の値にすることで、水酸化カルシウムの生成量を損なわれないようにすることが好ましいが、あまり濃度が高くなると、カルシウムの塩が液中に析出し、液の貯蔵性が損なわれる。
Further, it has been reported that an aqueous solution containing nitrate promotes the elution of calcium hydroxide in the cement hardened body (Non-patent Document 1). Therefore, when nitrate is used as a hardening accelerator, the production of calcium hydroxide, which is a hydrated product of cement, does not proceed sufficiently, and strength development may be inhibited for a long time. Therefore, it is preferable that the calcium concentration of the aqueous solution containing nitrate is not less than a certain value so that the amount of calcium hydroxide produced is not impaired. However, if the concentration is too high, the calcium salt becomes liquid. It precipitates inside and the storage stability of the liquid is impaired.
硝酸塩、カルボン酸を含有した硬化促進剤は既に報告されているが、ここで言う硬化促進剤は固体として使用しているものであったり(特許文献8)、その濃度について検討したものではない(特許文献9)。
Although the hardening accelerator containing nitrate and carboxylic acid has already been reported, the hardening accelerator said here is what is used as a solid (patent document 8), It is not what examined the density | concentration ( Patent Document 9).
本発明は、前記課題や要求を種々検討した結果、硝酸およびその塩、カルボン酸およびその塩を、水に溶解させ、特定の配合範囲にすることで、液の貯蔵性を損なうことなく、また、長期的にも強度発現を阻害することのない早強剤を開発できることを見出し、前述の課題を解決する知見を得て本発明を完成するに至った。
As a result of various investigations on the above-mentioned problems and requirements, the present invention dissolves nitric acid and its salt, carboxylic acid and its salt in water to a specific blending range, without impairing the storage stability of the liquid, The present inventors have found that an early-strengthening agent that does not inhibit the development of strength over the long term can be developed, and obtained the knowledge to solve the above-mentioned problems, thereby completing the present invention.
すなわち、本発明の実施形態では以下を提供できる。
That is, the following can be provided in the embodiment of the present invention.
(1)硝酸またはその塩を30質量%以上60質量%以下と、
カルボン酸またはその塩を0.1質量%以上10質量%以下と、
水と
を含むセメント用早強剤であって、
かつ、前記セメント用早強剤中のカルシウム元素の濃度が5質量%以上20質量%以下の範囲であることを特徴とする、セメント用早強剤。 (1) 30% by mass or more and 60% by mass or less of nitric acid or a salt thereof,
0.1% by mass or more and 10% by mass or less of carboxylic acid or a salt thereof,
An early cement strength agent containing water,
And the concentration of the calcium element in the said early strength agent for cements is the range of 5 mass% or more and 20 mass% or less, The early strength agent for cement characterized by the above-mentioned.
カルボン酸またはその塩を0.1質量%以上10質量%以下と、
水と
を含むセメント用早強剤であって、
かつ、前記セメント用早強剤中のカルシウム元素の濃度が5質量%以上20質量%以下の範囲であることを特徴とする、セメント用早強剤。 (1) 30% by mass or more and 60% by mass or less of nitric acid or a salt thereof,
0.1% by mass or more and 10% by mass or less of carboxylic acid or a salt thereof,
An early cement strength agent containing water,
And the concentration of the calcium element in the said early strength agent for cements is the range of 5 mass% or more and 20 mass% or less, The early strength agent for cement characterized by the above-mentioned.
(2)さらに、アルコールアミン、またはグリセリンを含有する(1)のセメント用早強剤。
(2) The early strengthening agent for cement according to (1), further comprising alcoholamine or glycerin.
(3)(1)または(2)のセメント用早強剤を、セメント100質量部に対し、0.1~10質量部配合する早強性セメント。
(3) An early-strength cement comprising 0.1 to 10 parts by mass of the cement early-strengthening agent of (1) or (2) with respect to 100 parts by mass of cement.
(4)(1)または(2)のセメント用早強剤をアジテータ車の生コンクリートに後添加することを特徴とする早強性コンクリートの製造方法。
(4) A method for producing early-strength concrete, characterized in that the cement early-strengthening agent according to (1) or (2) is added later to the ready-mixed concrete of an agitator vehicle.
(5)(1)または(2)のセメント用早強剤を、硬化前のコンクリート表面に100~600g/m2塗布または散布することを特徴とするコンクリートの製造方法。
(5) A method for producing concrete, characterized in that the cement early strengthening agent of (1) or (2) is applied or sprayed on the concrete surface before curing at 100 to 600 g / m 2 .
本発明の実施形態に係るセメント用早強剤は、従来の材料に比べ、初期強度発現性、流動性に優れ、貯蔵安定性の面でも優れる。
The early strengthening agent for cement according to the embodiment of the present invention is excellent in initial strength development and fluidity and superior in storage stability as compared with conventional materials.
以下、本発明を詳細に説明する。本明細書における部や%は特に規定しない限り質量基準である。なお、本明細書でいうコンクリートとは、セメントペースト、モルタル、およびセメントコンクリートの総称である。また本明細書においてセメント硬化体とは、セメントペースト、モルタル、又はコンクリートから製造した、あるいは、さらに、鉄筋等と複合化したコンクリート二次製品やコンクリート構造物を総称するものである。
Hereinafter, the present invention will be described in detail. Unless otherwise specified, parts and% in this specification are based on mass. In addition, concrete as used in this specification is a general term for cement paste, mortar, and cement concrete. In the present specification, the hardened cement body is a generic term for concrete secondary products and concrete structures manufactured from cement paste, mortar, or concrete, or further combined with reinforcing bars.
本明細書においては数値範囲(例えば記号チルダ「~」で表わされているものなど)は、別段の断わりがない限りはその上限値および下限値を含むものとする。
In this specification, numerical ranges (for example, those represented by the symbol tilde “˜”) include their upper and lower limits unless otherwise specified.
本発明の実施形態で使用する硝酸およびその塩は、無水物、水和物のいずれでもよい。硝酸塩としては、アルカリ金属やアルカリ土類金属、アルミニウムの塩が挙げられる。これらを2種以上組み合わせて使用してもよい。これらの中では、強度発現性に優れるという点で、硝酸、硝酸ナトリウム、硝酸マグネシウム、硝酸カリウム、硝酸カルシウム、および硝酸アルミニウムが好ましく、とりわけ硝酸ナトリウム、および硝酸カルシウムがより好ましい。硝酸カルシウムと硝酸ナトリウムを併用するとさらに好ましい。
The nitric acid and its salt used in the embodiment of the present invention may be either an anhydride or a hydrate. Examples of nitrates include alkali metal, alkaline earth metal, and aluminum salts. Two or more of these may be used in combination. Among these, nitric acid, sodium nitrate, magnesium nitrate, potassium nitrate, calcium nitrate, and aluminum nitrate are preferable, and sodium nitrate and calcium nitrate are more preferable in terms of excellent strength development. More preferably, calcium nitrate and sodium nitrate are used in combination.
本発明の実施形態に係るセメント用早強剤において、硝酸およびその塩の量は、無水物換算で30%以上60%以下の範囲が好ましく、40%以上50%以下の範囲がより好ましい。硝酸およびその塩の量が30%未満では優れた強度発現性が得られない場合があり、また60%超ではスランプが低下したり、長期強度が低下したりする場合がある。
In the early strengthening agent for cement according to the embodiment of the present invention, the amount of nitric acid and its salt is preferably in the range of 30% to 60%, more preferably in the range of 40% to 50% in terms of anhydride. If the amount of nitric acid and its salt is less than 30%, excellent strength development may not be obtained, and if it exceeds 60%, the slump may be lowered or the long-term strength may be lowered.
本発明の実施形態で使用するカルボン酸およびその塩とは、カルボキシル基を有する有機化合物およびその塩の総称である。そうしたカルボン酸としては、ギ酸、酢酸、及びプロピオン酸等のモノカルボン酸類、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フマル酸、及びフタル酸等のジカルボン酸類、トリメリト酸やトリカルバリリル酸等のトリカルボン酸類、ヒドロキシ酪酸、乳酸、及びサリチル酸等のオキシモノカルボン酸類、リンゴ酸のオキシジカルボン酸類、アスパラギン酸やグルタミン酸等のアミノカルボン酸類、エチレンジアミン四酢酸(EDTA)やトランス-1,2-ジアミノシクロヘキサン四酢酸(CyDTA)等のアミノポリカルボン酸が挙げられる。カルボン酸塩としては、アルカリ金属やアルカリ土類金属等と上記のカルボン酸のいずれかとの塩が挙げられる。これらの2種以上を組み合わせて使用可能である。カルボン酸およびその塩の中では、強度発現性に優れるという点で、ギ酸、ギ酸ナトリウム、ギ酸カルシウム、酢酸ナトリウム、シュウ酸ナトリウム、乳酸ナトリウム、およびアスパラギン酸ナトリウムが好ましく、とりわけギ酸、ギ酸ナトリウム、およびギ酸カルシウムがより好ましい。さらに好ましくはギ酸とギ酸ナトリウムを併用できる。
The carboxylic acid and its salt used in the embodiment of the present invention are a general term for an organic compound having a carboxyl group and a salt thereof. Such carboxylic acids include monocarboxylic acids such as formic acid, acetic acid, and propionic acid, and dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, and phthalic acid. , Tricarboxylic acids such as trimellitic acid and tricarbarylic acid, oxymonocarboxylic acids such as hydroxybutyric acid, lactic acid and salicylic acid, oxydicarboxylic acids of malic acid, aminocarboxylic acids such as aspartic acid and glutamic acid, ethylenediaminetetraacetic acid (EDTA) And aminopolycarboxylic acids such as trans-1,2-diaminocyclohexanetetraacetic acid (CyDTA). Examples of the carboxylate include a salt of an alkali metal, an alkaline earth metal or the like and any of the above carboxylic acids. A combination of two or more of these can be used. Among carboxylic acids and salts thereof, formic acid, sodium formate, calcium formate, sodium acetate, sodium oxalate, sodium lactate, and sodium aspartate are preferable, and particularly formic acid, sodium formate, and More preferred is calcium formate. More preferably, formic acid and sodium formate can be used in combination.
本発明の実施形態に係るセメント用早強剤において、カルボン酸およびその塩の量は、0.1%以上10%以下の範囲が好ましく、2%以上7%以下の範囲がより好ましい。カルボン酸およびその塩の量が0.1%未満では優れた強度発現性が得られない場合があり、また10%超では長期強度の低下をまねく場合がある。
In the early strengthening agent for cement according to the embodiment of the present invention, the amount of carboxylic acid and its salt is preferably in the range of 0.1% to 10%, and more preferably in the range of 2% to 7%. If the amount of carboxylic acid and its salt is less than 0.1%, excellent strength development may not be obtained, and if it exceeds 10%, long-term strength may be lowered.
本発明の実施形態に係るセメント用早強剤中に含まれるカルシウム(Ca)元素の量は、5%以上20%以下の範囲が好ましく、8%以上15%以下の範囲がより好ましい。カルシウム元素の量が5%未満では長期的な強度発現性が損なわれる場合があり、また20%超では液の貯蔵安定性が損なわれる場合がある。早強剤にカルシウム元素を含ませるには、原材料としてカルシウム塩を使用すればよく、例えば上記した硝酸またはカルボン酸のカルシウム塩を用いることもできるし、それらとは別のカルシウム塩を使ってもよいし、あるいはその両方を使ってもよい。そうしたカルシウム塩は、水溶性の塩であれば特に限定されず、あるいは水溶性の低い塩であっても、本発明の実施形態に係る早強剤に含まれる硝酸あるいはその塩、カルボン酸あるいはその塩と反応し、溶解するものであれば特に限定されない。そうした別のカルシウム塩としては例えば、水酸化カルシウムが挙げられる。
The amount of calcium (Ca) element contained in the cement early strengthening agent according to the embodiment of the present invention is preferably in the range of 5% to 20%, and more preferably in the range of 8% to 15%. If the amount of elemental calcium is less than 5%, the long-term strength development may be impaired, and if it exceeds 20%, the storage stability of the liquid may be impaired. In order to include calcium element in the early strengthening agent, a calcium salt may be used as a raw material. For example, the calcium salt of nitric acid or carboxylic acid described above may be used, or a calcium salt different from those may be used. You can use both or both. Such calcium salt is not particularly limited as long as it is a water-soluble salt, or even if it is a low water-soluble salt, nitric acid or a salt thereof, carboxylic acid or a salt thereof contained in the early strengthening agent according to the embodiment of the present invention. It will not specifically limit if it reacts with a salt and melt | dissolves. Examples of such another calcium salt include calcium hydroxide.
カルシウム元素の量の求め方は、一般的な定量分析方法であれば特に限定されず、たとえば原子吸光光度計などを用いて算出できる。
The method for obtaining the amount of calcium element is not particularly limited as long as it is a general quantitative analysis method, and can be calculated using, for example, an atomic absorption photometer.
本発明の実施形態に係るセメント用早強剤において、水は必須成分であり、硝酸またはその塩とカルボン酸またはその塩、あるいは、硝酸またはその塩とカルボン酸またはその塩に別のカルシウム塩を加えた残部が水である。
In the cement early strengthening agent according to the embodiment of the present invention, water is an essential component, and nitric acid or a salt thereof and a carboxylic acid or a salt thereof, or nitric acid or a salt thereof and a carboxylic acid or a salt thereof is added with another calcium salt. The balance added is water.
本発明の実施形態に係るセメント用早強剤において、水の量は、25~60%が好ましく、30~55%がより好ましい。水の量が25%未満では材料分離する場合があり、60%を超えると早強性が不十分になる場合がある。
In the early cement strengthening agent according to the embodiment of the present invention, the amount of water is preferably 25 to 60%, more preferably 30 to 55%. If the amount of water is less than 25%, the material may be separated, and if it exceeds 60%, the early strength may be insufficient.
本発明の実施形態に係るセメント用早強剤には、アルコールアミンを含有してもよい。アルコールアミンは、セメント組成物の初期強度を向上させる目的で使用する。アルコールアミンは、特に限定されないが、早強剤に溶解可能であれば使用できる。アルコールアミンとは、構造式において>N-R-OH構造を有する有機化合物である。ここで、Rは通常アルキル基又はアリール基と呼ばれる原子団であり、Rとしては例えばメチレン基、エチレン基、n-プロピレン基等の直鎖型のアルキレン基、イソプロピレン基等の枝分かれ構造を有するアルキレン基、並びに、フェニル基及びベンジル基等の芳香族環を有するアリール基等が挙げられる。Rは窒素原子と2箇所以上で結合していてもよく、Rの一部又は全部が環状構造であってもよい。Rは複数の水酸基と結合していてもよい。Rは、アルキル基の一部に炭素以外の元素及び水素以外の元素、例えば、イオウ、フッ素、塩素、及び酸素等を有しているものであってもよい。Rには複数の水酸基が結合していてもよい。
The early cement for cement according to an embodiment of the present invention may contain an alcohol amine. Alcoholamine is used for the purpose of improving the initial strength of the cement composition. The alcohol amine is not particularly limited, and can be used if it can be dissolved in the early strengthening agent. An alcohol amine is an organic compound having a structure of> N—R—OH in the structural formula. Here, R is an atomic group usually called an alkyl group or an aryl group, and R has a branched structure such as a linear alkylene group such as a methylene group, an ethylene group or an n-propylene group, or an isopropylene group. Examples include an alkylene group and an aryl group having an aromatic ring such as a phenyl group and a benzyl group. R may be bonded to the nitrogen atom at two or more positions, and a part or all of R may have a cyclic structure. R may be bonded to a plurality of hydroxyl groups. R may have an element other than carbon and an element other than hydrogen, such as sulfur, fluorine, chlorine, oxygen, etc., in part of the alkyl group. A plurality of hydroxyl groups may be bonded to R.
アルコールアミンとしては、エタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジブチルエタノールアミン、N-(2-アミノエチル)エタノールアミン、三フッ化ホウ素トリエタノールアミン、及びこれらの誘導体等が挙げられる。これらの1種又は2種以上が使用可能である。
Examples of alcohol amines include ethanolamine, diethanolamine, diisopropanolamine, triethanolamine, N-methyldiethanolamine, N, N-dimethylethanolamine, N, N-dibutylethanolamine, N- (2-aminoethyl) ethanolamine, Examples thereof include boron trifluoride triethanolamine and derivatives thereof. One or more of these can be used.
アルコールアミンの中では、流動性の向上に優れる点で、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、およびジイソプロパノールアミンが好ましく、とりわけジエタノールアミンがより好ましい。セメント用早強剤中に含まれるアルコールアミンの量は、1~15%が好ましく、5~10%がより好ましい。アルコールアミンの量が1%未満では初期強度の向上が小さい場合があり、また15%を超えると流動性を低下させる場合がある。
Among alcohol amines, monoethanolamine, diethanolamine, triethanolamine, and diisopropanolamine are preferable, and diethanolamine is particularly preferable because of excellent fluidity. The amount of alcohol amine contained in the cement early strengthening agent is preferably 1 to 15%, more preferably 5 to 10%. If the amount of alcohol amine is less than 1%, the initial strength improvement may be small, and if it exceeds 15%, the fluidity may be lowered.
本発明の実施形態に係るセメント用早強剤には、グリセリンを含有してもよい。グリセリンは、セメント組成物の初期強度を向上させる目的で使用する。本発明で使用するグリセリンとは、化学式でC3H8O3、化学名1,2,3-プロパントリオールまたはグリセロールで表される化合物である。セメント用早強剤中に含まれるグリセリンの量は、1~10%が好ましく、3~7%がより好ましい。グリセリンの量が1%未満では早強性の向上が小さい場合があり、また10%を超えると長期強度を低下させる場合がある。
The early strengthening agent for cement according to the embodiment of the present invention may contain glycerin. Glycerin is used for the purpose of improving the initial strength of the cement composition. Glycerin used in the present invention is a compound represented by the chemical formula C 3 H 8 O 3 , chemical name 1,2,3-propanetriol or glycerol. The amount of glycerin contained in the cement early strengthening agent is preferably 1 to 10%, more preferably 3 to 7%. If the amount of glycerin is less than 1%, the improvement in early strength may be small, and if it exceeds 10%, the long-term strength may be reduced.
本発明の実施形態に係るセメント用早強剤においては、塩素の含有量が0.1%以下であることが好ましい。これは、コンクリートの劣化要因である塩害の抑制の観点から求められる特徴である。塩素の含有量を0.1%以下にするためには、早強剤製造に際し塩素を含有する材料の使用を控えればよい。上記した原材料の中では、一般に水が最も塩素を含有している可能性が高いが、海水などを使用しない限りその含有量が問題になることは少ない。
In the early strengthening agent for cement according to the embodiment of the present invention, the chlorine content is preferably 0.1% or less. This is a characteristic required from the viewpoint of suppressing salt damage, which is a deterioration factor of concrete. In order to reduce the chlorine content to 0.1% or less, it is sufficient to refrain from using a chlorine-containing material in the early strengthening agent production. Among the above-mentioned raw materials, water is generally most likely to contain chlorine, but its content is rarely a problem unless seawater or the like is used.
本発明の実施形態に係る早強剤をセメントに配合することで、早強性セメントを製造できる。この場合の早強剤の使用量は、セメント100部に対して、0.05~12部が好ましく、0.1~10部がまた好ましく、0.5~10部がまた好ましく、0.7~7部がより好ましく、1~5部が最も好ましい。早強剤の量が0.5部未満では強度発現性の向上に優れない場合があり、10部を超えるとスランプが低下したり、長期強度発現性が低下したりする場合がある。
The early-strength cement can be manufactured by blending the early-strength agent according to the embodiment of the present invention into the cement. The amount of early strength agent used in this case is preferably 0.05 to 12 parts, more preferably 0.1 to 10 parts, still more preferably 0.5 to 10 parts, relative to 100 parts of cement, 0.7 ~ 7 parts are more preferred, and 1 to 5 parts is most preferred. If the amount of the early strengthening agent is less than 0.5 part, the strength development may not be improved, and if it exceeds 10 parts, the slump may be lowered or the long-term strength development may be lowered.
また、本発明の実施形態に係るセメント用早強剤は、硬化前のコンクリート表面に散布することによってひび割れ抵抗性を高めることが可能となる。コンクリート表面に散布する量は特に限定されるものではないが、50~800g/m2が好ましく、100~600g/m2がより好ましく、200~500g/m2がさらに好ましい。前記範囲外ではひび割れ低減効果が十分でない場合がある。
Moreover, the early strengthening agent for cement according to the embodiment of the present invention can increase crack resistance by being sprayed on the concrete surface before hardening. The amount to be sprayed onto the concrete surface is not particularly limited but is preferably 50 ~ 800g / m 2, more preferably 100 ~ 600g / m 2, more preferably 200 ~ 500g / m 2. Outside the range, the crack reduction effect may not be sufficient.
ここで言うセメントとしては、通常市販されている普通、早強、中庸熱、及び超早強などの各種ポルトランドセメントや、これら各種ポルトランドセメントにフライアッシュや高炉スラグなどを混合した各種混合セメントなどが挙げられ、これらを微粉末化して使用することも可能である。
Examples of the cement here include various commercially available Portland cements such as normal, early strength, medium heat, and ultra early strength, and various mixed cements in which fly ash, blast furnace slag, etc. are mixed with these various Portland cements. It is also possible to use them by micronizing them.
本発明の実施形態で使用するコンクリートはセメントと骨材とを含有するものである。ここで骨材としては、吸水率が低く、骨材強度が高いものが好ましい。
The concrete used in the embodiment of the present invention contains cement and aggregate. Here, as the aggregate, those having low water absorption and high aggregate strength are preferable.
細骨材としては、川砂、山砂、石灰砂、及び珪砂などが使用可能であり、粗骨材としては、川砂利、山砂利、及び石灰砂利などが使用可能である。
As the fine aggregate, river sand, mountain sand, lime sand, quartz sand and the like can be used, and as the coarse aggregate, river gravel, mountain gravel, lime gravel and the like can be used.
コンクリートに使用する水の量は、強度発現性の面から30%以上が好ましく、33~55%がより好ましい。水の量が30%未満ではセメントコンクリートを十分に混合できない場合がある。
The amount of water used for concrete is preferably 30% or more, more preferably 33 to 55%, from the viewpoint of strength development. If the amount of water is less than 30%, cement concrete may not be sufficiently mixed.
本発明の実施形態で使用する硝酸およびその塩、ならびにカルボン酸およびその塩は、それぞれが早強剤として機能する材料ではある。しかしながら、これらの材料を個々に使用した場合に比べ、これらの材料と水を適切な配合率を以って配合した早強剤として調製した場合には、個々の成分が相乗効果を示し、優れた流動性、優れた強度発現性を示すという顕著な効果が得られることを本発明者は見出した。本発明の実施形態に係るセメント用早強剤の効果発現の機構は、特定の理論に拘束されることを望むものではないが、原材料から供給される硝酸イオンとカルボン酸イオンが、相乗的にセメント成分の溶出を促進し、水和反応を促進していると考えられる。
The nitric acid and its salt and the carboxylic acid and its salt used in the embodiment of the present invention are materials that each function as an early strengthening agent. However, compared with the case where these materials are used individually, when these materials and water are prepared as an early strengthening agent mixed with an appropriate mixing ratio, the individual components show a synergistic effect and are excellent. The present inventors have found that a remarkable effect of exhibiting excellent fluidity and excellent strength development can be obtained. Although the mechanism of the effect expression of the cement early strengthening agent according to the embodiment of the present invention is not desired to be bound by a specific theory, nitrate ions and carboxylate ions supplied from raw materials are synergistically. It is thought that the elution of the cement component is promoted and the hydration reaction is promoted.
また、本発明の実施形態では水を溶媒として使用する液体の形態であるため、固体である硝酸塩やカルボン酸塩をそのまま使用した場合と比べ、促進効果が高い。これについては、液体の方が固体よりもセメント中に混ざりやすくなることや、硝酸塩が水に溶解した場合に吸熱反応が起きるため、固体のままコンクリートに添加すると、コンクリートの温度が下がり、反応が抑制されてしまうことが理由として考えられる。
Further, in the embodiment of the present invention, since it is in the form of a liquid using water as a solvent, the promoting effect is high as compared with the case where solid nitrate or carboxylate is used as it is. In this regard, liquids are easier to mix in cement than solids, and endothermic reactions occur when nitrates dissolve in water. It is thought that it is suppressed.
このため本発明の実施形態に係る早強剤は、特に管理が困難である現場打ちコンクリートなどに対しても汎用性に優れる。たとえばアジテータ車で現場までコンクリートを運び、現場で打込む直前に該早強剤をコンクリートに後添加することで、コンクリートと早強剤が偏析なく混ざり合うので、早強性コンクリートを適切に製造できる。
For this reason, the early strengthening agent according to the embodiment of the present invention is excellent in versatility, particularly for cast-in-place concrete that is difficult to manage. For example, when concrete is transported to the site with an agitator car and the early strength agent is added to the concrete immediately before being put on site, the early strength agent can be appropriately produced because the concrete and the early strength agent are mixed without segregation. .
また本発明の実施形態に係る早強剤ではカルシウム元素の濃度が一定の範囲であるので、セメントの水和によって生じる水酸化カルシウムの溶出を促すことがなく、長期的な強度発現性に及ぼす影響が小さいという効果も呈する。
Further, in the early strengthening agent according to the embodiment of the present invention, since the concentration of the elemental calcium is in a certain range, it does not promote the elution of calcium hydroxide caused by cement hydration and has an effect on long-term strength development. Is also effective.
以下、実施例に基づき本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail based on examples.
「実験例1」
表1、2に示す種類・配合になるように、硝酸およびその塩、カルボン酸およびその塩、ならびに必要に応じてカルシウム塩を水に添加し、4時間攪拌することで種々の液体形態のセメント用早強剤を調製した。このように調製した早強剤をコンクリートに添加し、評価した。 "Experiment 1"
Cement of various liquid forms by adding nitric acid and its salt, carboxylic acid and its salt, and calcium salt as needed to water and stirring for 4 hours so that it becomes the kind and composition shown in Tables 1 and 2. A quick strength agent was prepared. The early strength agent thus prepared was added to the concrete and evaluated.
表1、2に示す種類・配合になるように、硝酸およびその塩、カルボン酸およびその塩、ならびに必要に応じてカルシウム塩を水に添加し、4時間攪拌することで種々の液体形態のセメント用早強剤を調製した。このように調製した早強剤をコンクリートに添加し、評価した。 "Experiment 1"
Cement of various liquid forms by adding nitric acid and its salt, carboxylic acid and its salt, and calcium salt as needed to water and stirring for 4 hours so that it becomes the kind and composition shown in Tables 1 and 2. A quick strength agent was prepared. The early strength agent thus prepared was added to the concrete and evaluated.
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%をコンクリートの基本配合とし、20℃の環境下で表1または表2に示す配合の早強剤を使用して、コンクリートのスランプを測定した。セメント用早強剤はセメント100部に対して、3部に相当する13.2 kg/m3を計量し、添加した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強度を測定した。結果を表1、2に示す。
Unit water volume 145 kg / m 3 , unit cement quantity 440 kg / m 3 , water reducing agent 2.5 kg / m 3 , s / a 39.4%, air quantity 4.5% as the basic composition of concrete, 20 ° C The concrete slump was measured using the early strengthening agent having the composition shown in Table 1 or Table 2 under the above environment. The cement early strengthening agent was weighed and added to 13.2 kg / m 3 corresponding to 3 parts with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Tables 1 and 2.
なお、セメント用早強剤を添加しない配合の場合、ならびに硝酸塩とカルボン酸塩を固体状態のまま単体で使用した場合もしくは併用した場合についても別途検討を行った。
It should be noted that separate investigations were conducted for the case where the cement was not added and the case where the nitrate and carboxylate were used alone or in combination in the solid state.
<使用材料>
硝酸およびその塩:[A]濃硝酸、[B]硝酸ナトリウム、[C]硝酸マグネシウム、[D]硝酸カリウム、[E]硝酸カルシウム、[F]硝酸アルミニウム、いずれも市販品
カルボン酸およびその塩:[a]ギ酸、[b]ギ酸ナトリウム、[c]ギ酸カルシウム、[d]酢酸ナトリウム、[e]シュウ酸ナトリウム、[f]乳酸ナトリウム、[g]アスパラギン酸ナトリウム、いずれも市販品
カルシウム濃度調整用の塩:水酸化カルシウム
水:工業用水
セメント:普通ポルトランドセメント、市販品、ブレーン値3,200 cm2/g、比重3.15
細骨材:日本国新潟県姫川産、5 mm下、密度2.62 g/cm3
粗骨材:日本国新潟県姫川産、25 mm下、密度2.64 g/cm3
減水剤:ナフタレンスルホン酸、商品名「マイテイ150」、花王社製 <Materials used>
Nitric acid and its salt: [A] Concentrated nitric acid, [B] Sodium nitrate, [C] Magnesium nitrate, [D] Potassium nitrate, [E] Calcium nitrate, [F] Aluminum nitrate, all commercially available carboxylic acids and their salts: [A] Formic acid, [b] Sodium formate, [c] Calcium formate, [d] Sodium acetate, [e] Sodium oxalate, [f] Sodium lactate, [g] Sodium aspartate Salt: Calcium hydroxide water: Industrial water Cement: Ordinary Portland cement, commercial product, Blaine value 3,200 cm 2 / g, specific gravity 3.15
Fine aggregate: Himekawa, Niigata, Japan, 5 mm below, density 2.62 g / cm 3
Coarse aggregate: From Himekawa, Niigata, Japan, 25 mm below, density 2.64 g / cm 3
Water reducing agent: Naphthalenesulfonic acid, trade name “Mighty 150”, manufactured by Kao Corporation
硝酸およびその塩:[A]濃硝酸、[B]硝酸ナトリウム、[C]硝酸マグネシウム、[D]硝酸カリウム、[E]硝酸カルシウム、[F]硝酸アルミニウム、いずれも市販品
カルボン酸およびその塩:[a]ギ酸、[b]ギ酸ナトリウム、[c]ギ酸カルシウム、[d]酢酸ナトリウム、[e]シュウ酸ナトリウム、[f]乳酸ナトリウム、[g]アスパラギン酸ナトリウム、いずれも市販品
カルシウム濃度調整用の塩:水酸化カルシウム
水:工業用水
セメント:普通ポルトランドセメント、市販品、ブレーン値3,200 cm2/g、比重3.15
細骨材:日本国新潟県姫川産、5 mm下、密度2.62 g/cm3
粗骨材:日本国新潟県姫川産、25 mm下、密度2.64 g/cm3
減水剤:ナフタレンスルホン酸、商品名「マイテイ150」、花王社製 <Materials used>
Nitric acid and its salt: [A] Concentrated nitric acid, [B] Sodium nitrate, [C] Magnesium nitrate, [D] Potassium nitrate, [E] Calcium nitrate, [F] Aluminum nitrate, all commercially available carboxylic acids and their salts: [A] Formic acid, [b] Sodium formate, [c] Calcium formate, [d] Sodium acetate, [e] Sodium oxalate, [f] Sodium lactate, [g] Sodium aspartate Salt: Calcium hydroxide water: Industrial water Cement: Ordinary Portland cement, commercial product, Blaine value 3,200 cm 2 / g, specific gravity 3.15
Fine aggregate: Himekawa, Niigata, Japan, 5 mm below, density 2.62 g / cm 3
Coarse aggregate: From Himekawa, Niigata, Japan, 25 mm below, density 2.64 g / cm 3
Water reducing agent: Naphthalenesulfonic acid, trade name “Mighty 150”, manufactured by Kao Corporation
<測定方法>
スランプ:JIS A 1101に準拠
圧縮強度:JIS A 1108に準拠
コンクリートは、材齢24時間までは20℃で封緘養生し、以降は20℃水中で養生。カルシウム元素の濃度は、原子吸光光度計により算出。 <Measurement method>
Slump: Conforms to JIS A 1101. Compressive strength: Conforms to JIS A 1108. Concrete is sealed and cured at 20 ° C. until 24 hours of age, and then cured in 20 ° C. water. The concentration of calcium element is calculated with an atomic absorption photometer.
スランプ:JIS A 1101に準拠
圧縮強度:JIS A 1108に準拠
コンクリートは、材齢24時間までは20℃で封緘養生し、以降は20℃水中で養生。カルシウム元素の濃度は、原子吸光光度計により算出。 <Measurement method>
Slump: Conforms to JIS A 1101. Compressive strength: Conforms to JIS A 1108. Concrete is sealed and cured at 20 ° C. until 24 hours of age, and then cured in 20 ° C. water. The concentration of calcium element is calculated with an atomic absorption photometer.
表1、2より、硝酸およびその塩の濃度が30~60%、カルボン酸およびその塩の濃度が0.1~10%であることで、初期強度の向上に優れ、スランプや長期強度への影響も小さいことが理解される。また、カルシウム元素の濃度が5~20%であれば、長期的な強度発現性を阻害することがなく、かつ、液の貯蔵性にも優れることも理解される。硝酸およびその塩の中では、硝酸カルシウムが特に望ましく、硝酸カルシウムと硝酸ナトリウムを併用するとさらに好ましいことがわかる。またカルボン酸およびその塩の中では、ギ酸が特に望ましく、ギ酸とギ酸ナトリウムを併用するとさらに好ましいこともわかる。
According to Tables 1 and 2, the concentration of nitric acid and its salt is 30 to 60%, and the concentration of carboxylic acid and its salt is 0.1 to 10%. It is understood that the impact is small. It is also understood that if the concentration of calcium element is 5 to 20%, long-term strength development is not hindered and liquid storage properties are excellent. Among nitric acid and its salts, calcium nitrate is particularly desirable, and it is found that the combined use of calcium nitrate and sodium nitrate is more preferable. It can also be seen that formic acid is particularly desirable among carboxylic acids and salts thereof, and it is more preferable to use formic acid and sodium formate in combination.
本発明の実施形態に係るセメント用早強剤を使用すると、初期強度が向上するため、脱型に必要な強度を発現するために必要な養生期間が短縮でき、コンクリートの生産性向上につながることがわかる。
When the early strength agent for cement according to the embodiment of the present invention is used, the initial strength is improved, so that the curing period necessary for expressing the strength necessary for demolding can be shortened, leading to improvement in the productivity of concrete. I understand.
「実験例2」
硝酸カルシウム含量が45%、ギ酸含量が5%であり、かつカルシウム元素濃度が11%である構成(実験例1の実験No.1-9に対応)に対し、さらに表3に示す種類・濃度になるように、アルコールアミン、またはグリセリンを水に添加し、4時間攪拌することで種々のセメント用早強剤を調製した。また、調製したセメント用早強剤をコンクリートに添加し、評価した。 "Experimental example 2"
For the composition having a calcium nitrate content of 45%, a formic acid content of 5%, and a calcium element concentration of 11% (corresponding to Experiment No. 1-9 in Experimental Example 1), the types and concentrations shown in Table 3 Thus, various amine early strengthening agents for cement were prepared by adding alcoholamine or glycerin to water and stirring for 4 hours. Moreover, the prepared early strengthening agent for cement was added to the concrete and evaluated.
硝酸カルシウム含量が45%、ギ酸含量が5%であり、かつカルシウム元素濃度が11%である構成(実験例1の実験No.1-9に対応)に対し、さらに表3に示す種類・濃度になるように、アルコールアミン、またはグリセリンを水に添加し、4時間攪拌することで種々のセメント用早強剤を調製した。また、調製したセメント用早強剤をコンクリートに添加し、評価した。 "Experimental example 2"
For the composition having a calcium nitrate content of 45%, a formic acid content of 5%, and a calcium element concentration of 11% (corresponding to Experiment No. 1-9 in Experimental Example 1), the types and concentrations shown in Table 3 Thus, various amine early strengthening agents for cement were prepared by adding alcoholamine or glycerin to water and stirring for 4 hours. Moreover, the prepared early strengthening agent for cement was added to the concrete and evaluated.
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%をコンクリートの基本配合とし、20℃の環境下で表3に示す配合のセメント用早強剤を使用して、コンクリートのスランプを測定した。セメント用早強剤はセメント100部に対して、3部に相当する13.2 kg/m3を、水と併せて計量し、添加した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強度を測定した。結果を表3に示す。
Unit water volume 145 kg / m 3 , unit cement quantity 440 kg / m 3 , water reducing agent 2.5 kg / m 3 , s / a 39.4%, air quantity 4.5% as the basic composition of concrete, 20 ° C The concrete slump was measured using the early cement strengthening agent having the composition shown in Table 3 under the following environment. The cement early strengthening agent was measured and added in an amount of 13.2 kg / m 3 corresponding to 3 parts to 100 parts of cement together with water. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 3.
<使用材料>
アルコールアミン、またはグリセリン:[α]モノエタノールアミン、[β]ジエタノールアミン、[γ]トリエタノールアミン、[Δ]ジイソプロパノールアミン、[ε]グリセリン、他の材料は「実験例1」と同じ。 <Materials used>
Alcoholamine or glycerin: [α] monoethanolamine, [β] diethanolamine, [γ] triethanolamine, [Δ] diisopropanolamine, [ε] glycerin, and other materials are the same as those in “Experimental Example 1”.
アルコールアミン、またはグリセリン:[α]モノエタノールアミン、[β]ジエタノールアミン、[γ]トリエタノールアミン、[Δ]ジイソプロパノールアミン、[ε]グリセリン、他の材料は「実験例1」と同じ。 <Materials used>
Alcoholamine or glycerin: [α] monoethanolamine, [β] diethanolamine, [γ] triethanolamine, [Δ] diisopropanolamine, [ε] glycerin, and other materials are the same as those in “Experimental Example 1”.
表3より、エタノールアミン、またはグリセリンを含有させた場合は、初期強度の向上に優れることがわかる。エタノールアミンの中では、ジエタノールアミンが好ましいことがわかる。またエタノールアミンの濃度は1~15%、グリセリンの濃度は1~10%の範囲であることが、流動性や強度発現性の点で好ましいこともわかる。
Table 3 shows that when ethanolamine or glycerin is contained, the initial strength is improved. It can be seen that diethanolamine is preferable among ethanolamines. It can also be seen that the ethanolamine concentration is preferably in the range of 1 to 15% and the glycerin concentration is in the range of 1 to 10% in terms of fluidity and strength development.
「実験例3」
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%をコンクリートの基本配合とし、「実験例1」で調製したセメント用早強剤のうちの数種を表4に示す添加率で20℃の環境下で使用して、コンクリートのスランプを測定した。セメント用早強剤の添加率は、セメント100部に対する部として計量した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強度を測定した。結果を表4に示す。 "Experiment 3"
The basic water composition of the unit water is 145 kg / m 3 , the unit cement is 440 kg / m 3 , the water reducing agent is 2.5 kg / m 3 , s / a is 39.4%, and the air is 4.5%. The concrete slump was measured by using several of the cement early strengtheners prepared in “Example 1” at an addition rate shown in Table 4 in an environment of 20 ° C. The addition rate of the cement early strengthening agent was measured as a part with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 4.
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%をコンクリートの基本配合とし、「実験例1」で調製したセメント用早強剤のうちの数種を表4に示す添加率で20℃の環境下で使用して、コンクリートのスランプを測定した。セメント用早強剤の添加率は、セメント100部に対する部として計量した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強度を測定した。結果を表4に示す。 "Experiment 3"
The basic water composition of the unit water is 145 kg / m 3 , the unit cement is 440 kg / m 3 , the water reducing agent is 2.5 kg / m 3 , s / a is 39.4%, and the air is 4.5%. The concrete slump was measured by using several of the cement early strengtheners prepared in “Example 1” at an addition rate shown in Table 4 in an environment of 20 ° C. The addition rate of the cement early strengthening agent was measured as a part with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 4.
なお、セメント用早強剤を添加しない配合、および硝酸およびその塩、カルボン酸およびその塩、をそれぞれ単独で使用した場合についても別途検討を行った。
In addition, it examined separately also about the combination which does not add the early cement for cement, and the case where nitric acid and its salt, and carboxylic acid and its salt were each used independently.
<使用材料>
「実験例1」で用いた材料と同じ。 <Materials used>
The same material as used in “Experiment 1”.
「実験例1」で用いた材料と同じ。 <Materials used>
The same material as used in “Experiment 1”.
表4より、本発明の実施形態に係るセメント用早強剤は、セメント用早強剤の添加率を変動させた場合でも、初期強度の向上に優れることがわかる。また、セメント用早強剤の添加率は、セメント100部に対し、0.1部~10部であることが、スランプの変動を抑え、強度発現性に優れることから特に好ましいことが理解される。
From Table 4, it can be seen that the cement early strengthening agent according to the embodiment of the present invention is excellent in improving the initial strength even when the addition rate of the cement early strengthening agent is varied. In addition, it is understood that the addition ratio of the early cement strength additive is particularly preferably 0.1 to 10 parts with respect to 100 parts of cement because it suppresses slump fluctuation and is excellent in strength development. .
「実験例4」
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%のコンクリートを練混ぜ、練混ぜ30分後に「実験例1」で調製したセメント用早強剤を後添加して、コンクリートを再度混合し、コンクリートのスランプを測定した。セメント用早強剤はセメント100部に対して、3部に相当する13.2 kg/m3を計量し、後添加した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強度を測定した。結果を表5に示す。 "Experimental example 4"
Mix concrete with a unit water volume of 145 kg / m 3 , a unit cement amount of 440 kg / m 3 , a water reducing agent of 2.5 kg / m 3 , s / a of 39.4% and an air volume of 4.5%, and mix 30 After a minute, the cement early strengthening agent prepared in “Experimental Example 1” was added afterwards, the concrete was mixed again, and the slump of the concrete was measured. The cement early strengthener was measured and added after weighing 13.2 kg / m 3 corresponding to 3 parts with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 5.
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%のコンクリートを練混ぜ、練混ぜ30分後に「実験例1」で調製したセメント用早強剤を後添加して、コンクリートを再度混合し、コンクリートのスランプを測定した。セメント用早強剤はセメント100部に対して、3部に相当する13.2 kg/m3を計量し、後添加した。その後、型枠にコンクリートを充填し、20℃で保持し、8時間後に脱型し、圧縮強度を測定した。結果を表5に示す。 "Experimental example 4"
Mix concrete with a unit water volume of 145 kg / m 3 , a unit cement amount of 440 kg / m 3 , a water reducing agent of 2.5 kg / m 3 , s / a of 39.4% and an air volume of 4.5%, and mix 30 After a minute, the cement early strengthening agent prepared in “Experimental Example 1” was added afterwards, the concrete was mixed again, and the slump of the concrete was measured. The cement early strengthener was measured and added after weighing 13.2 kg / m 3 corresponding to 3 parts with respect to 100 parts of cement. Thereafter, the mold was filled with concrete, held at 20 ° C., demolded after 8 hours, and the compressive strength was measured. The results are shown in Table 5.
なお、セメント用早強剤を添加しない配合、および硝酸およびその塩、カルボン酸およびその塩、をそれぞれ単独で使用した場合についても別途検討を行った。
In addition, it examined separately also about the combination which does not add the early cement for cement, and the case where nitric acid and its salt, and carboxylic acid and its salt were each used independently.
<使用材料>
「実験例1」で用いた材料と同じ。 <Materials used>
The same material as used in “Experiment 1”.
「実験例1」で用いた材料と同じ。 <Materials used>
The same material as used in “Experiment 1”.
表5より、本発明の実施形態に係る早強剤は、早強剤の添加のタイミングに依らず、同程度のスランプや強度発現性を示すことがわかる。これは、特にあらかじめ練混ぜたコンクリートを現場に運び、現場でアジテータ車などに早強剤を後添加する場合に優れる性能である。
From Table 5, it can be seen that the early strengthening agent according to the embodiment of the present invention exhibits the same level of slump and strength development regardless of the timing of addition of the early strengthening agent. This is an excellent performance particularly when the premixed concrete is transported to the site and the early strengthening agent is added later to the agitator vehicle or the like.
「実験例5」
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%のコンクリートを練混ぜ、高さ20cm、縦2m、横2mのコンクリート板を打設した。打設後、コンクリート表面を仕上げた後、実験No.1-9のセメント用早強剤を200g/m3噴霧した。その後、材齢28日の時点で、コンクリート表面を観察した。ひび割れ抵抗性を評価した。結果を表6に示す。記号の意味は以下のとおりである。
- ひび割れが見られないもの
+ ひび割れ本数が1~2本
++ ひび割れが3~5本
+++ ひび割れが6本以上 “Experimental Example 5”
Concrete with unit water volume 145 kg / m 3 , unit cement quantity 440 kg / m 3 , water reducing agent 2.5 kg / m 3 , s / a 39.4%, air quantity 4.5%, 20cm in height A concrete plate having a length of 2 m and a width of 2 m was placed. After placing, finishing the concrete surface, 200 g / m 3 of 1-9 early strength agent for cement was sprayed. Thereafter, the concrete surface was observed at the age of 28 days. Crack resistance was evaluated. The results are shown in Table 6. The meanings of the symbols are as follows.
-No cracks
+ 1-2 cracks
++ 3-5 cracks
+++ 6 or more cracks
単位水量145 kg/m3、単位セメント量440 kg/m3、減水剤2.5 kg/m3、s/a 39.4%、空気量4.5%のコンクリートを練混ぜ、高さ20cm、縦2m、横2mのコンクリート板を打設した。打設後、コンクリート表面を仕上げた後、実験No.1-9のセメント用早強剤を200g/m3噴霧した。その後、材齢28日の時点で、コンクリート表面を観察した。ひび割れ抵抗性を評価した。結果を表6に示す。記号の意味は以下のとおりである。
- ひび割れが見られないもの
+ ひび割れ本数が1~2本
++ ひび割れが3~5本
+++ ひび割れが6本以上 “Experimental Example 5”
Concrete with unit water volume 145 kg / m 3 , unit cement quantity 440 kg / m 3 , water reducing agent 2.5 kg / m 3 , s / a 39.4%, air quantity 4.5%, 20cm in height A concrete plate having a length of 2 m and a width of 2 m was placed. After placing, finishing the concrete surface, 200 g / m 3 of 1-9 early strength agent for cement was sprayed. Thereafter, the concrete surface was observed at the age of 28 days. Crack resistance was evaluated. The results are shown in Table 6. The meanings of the symbols are as follows.
-No cracks
+ 1-2 cracks
++ 3-5 cracks
+++ 6 or more cracks
<使用材料>
「実験例1」で用いた材料と同じ。 <Materials used>
The same material as used in “Experiment 1”.
「実験例1」で用いた材料と同じ。 <Materials used>
The same material as used in “Experiment 1”.
表6より、本発明の実施形態に係るセメント用早強剤をコンクリート表面に噴霧することによって、コンクリート表面に生じるひび割れの発生を顕著に抑制できることが分かる。
From Table 6, it can be seen that the occurrence of cracks generated on the concrete surface can be remarkably suppressed by spraying the cement early strengthening agent according to the embodiment of the present invention onto the concrete surface.
本発明の実施形態に係るセメント用早強剤は、従来の材料に比べ、初期強度発現性、流動性に優れ、貯蔵安定性の面でも優れるので、コンクリートを使用する土木、建築分野に好適である。
Since the early strength agent for cement according to the embodiment of the present invention is excellent in initial strength development, fluidity and storage stability as compared with conventional materials, it is suitable for civil engineering and construction fields using concrete. is there.
Claims (5)
- 硝酸またはその塩を30質量%以上60質量%以下と、
カルボン酸またはその塩を0.1質量%以上10質量%以下と、
水と
を含むセメント用早強剤であって、
かつ、前記セメント用早強剤中のカルシウム元素の濃度が5質量%以上20質量%以下である
ことを特徴とする、セメント用早強剤。 Nitric acid or a salt thereof in an amount of 30% by mass to 60% by mass;
0.1% by mass or more and 10% by mass or less of carboxylic acid or a salt thereof,
An early cement strength agent containing water,
And the concentration agent of the calcium element in the said early strength agent for cement is 5 mass% or more and 20 mass% or less, The early strength agent for cement characterized by the above-mentioned. - さらに、アルコールアミン、またはグリセリンを含有することを特徴とする請求項1記載のセメント用早強剤。 Furthermore, alcohol amine or glycerin is contained, The early strengthening agent for cement of Claim 1 characterized by the above-mentioned.
- 請求項1または2記載のセメント用早強剤をセメント100質量部に対し、0.1~10質量部配合することを特徴とする早強性セメント。 3. An early-strength cement comprising 0.1 to 10 parts by mass of the early cement for cement according to claim 1 or 2 per 100 parts by mass of cement.
- 請求項1または2記載のセメント用早強剤をアジテータ車の生コンクリートに後添加することを特徴とする早強性コンクリートの製造方法。 A method for producing early-strength concrete, comprising adding the cement early-strengthening agent according to claim 1 or 2 to the ready-mixed concrete of an agitator vehicle.
- 請求項1または2記載のセメント用早強剤を、硬化前のコンクリート表面に100~600g/m2塗布または散布することを特徴とするコンクリートの製造方法。 A method for producing concrete, comprising applying or spraying 100 to 600 g / m 2 of the cement early strengthening agent according to claim 1 or 2 on a concrete surface before hardening.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780039259.9A CN109415259B (en) | 2016-06-24 | 2017-06-09 | Early strength agent for cement, early strength cement using the same, and method for producing early strength concrete |
MYPI2018002663A MY188614A (en) | 2016-06-24 | 2017-06-09 | High early strength agent for cements, high early strength cement using the same, and method for producing high early strength concrete |
SG11201810885PA SG11201810885PA (en) | 2016-06-24 | 2017-06-09 | High early strength agent for cements, high early strength cement using same, and method for producing high early strength concrete |
JP2018523875A JP6826115B2 (en) | 2016-06-24 | 2017-06-09 | Fast-strength agent for cement, fast-strength cement using it, and method for manufacturing fast-strength concrete |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-125698 | 2016-06-24 | ||
JP2016125698 | 2016-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017221749A1 true WO2017221749A1 (en) | 2017-12-28 |
Family
ID=60783327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/021525 WO2017221749A1 (en) | 2016-06-24 | 2017-06-09 | High early strength agent for cements, high early strength cement using same, and method for producing high early strength concrete |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6826115B2 (en) |
CN (1) | CN109415259B (en) |
MY (1) | MY188614A (en) |
SG (1) | SG11201810885PA (en) |
WO (1) | WO2017221749A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111788163A (en) * | 2018-03-05 | 2020-10-16 | 雅苒国际集团 | Setting and hardening accelerators for cement, mortar or concrete compositions optionally containing auxiliary cementitious materials and use of the accelerators |
CN113511862A (en) * | 2021-06-23 | 2021-10-19 | 嘉兴学院 | Non-autoclaved concrete and preparation method thereof |
JP2022523525A (en) * | 2019-02-27 | 2022-04-25 | ビーエーエスエフ ソシエタス・ヨーロピア | Glyoxylic acid or a mixture containing a condensation product or addition product thereof |
CN115477491A (en) * | 2022-09-26 | 2022-12-16 | 中海石油(中国)有限公司 | Chemical-mechanical method-based superfine early strength agent for low-temperature well cementation and cement slurry |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112010581B (en) * | 2020-07-21 | 2021-11-12 | 武汉理工大学 | A kind of calcium silicate hydrate nanocrystalline core suspension and preparation method thereof |
CN113060962B (en) * | 2021-03-18 | 2022-03-18 | 西南石油大学 | Oil well cement corrosion-resistant early strength agent suitable for salt-gypsum layer well cementation and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815052A (en) * | 1981-07-15 | 1983-01-28 | タケイ工業株式会社 | Mortar concrete admixing agent for enhancing watertightness and having rust preventive effect |
JP2003277111A (en) * | 2002-03-22 | 2003-10-02 | Denki Kagaku Kogyo Kk | Hardening accelerator and cement composition |
JP2006169078A (en) * | 2004-12-20 | 2006-06-29 | Taiheiyo Material Kk | Water reducing agent for cement and hydraulic composition |
JP2010150108A (en) * | 2008-12-26 | 2010-07-08 | Taiheiyo Cement Corp | Quick hardening cement |
-
2017
- 2017-06-09 JP JP2018523875A patent/JP6826115B2/en active Active
- 2017-06-09 SG SG11201810885PA patent/SG11201810885PA/en unknown
- 2017-06-09 MY MYPI2018002663A patent/MY188614A/en unknown
- 2017-06-09 WO PCT/JP2017/021525 patent/WO2017221749A1/en active Application Filing
- 2017-06-09 CN CN201780039259.9A patent/CN109415259B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5815052A (en) * | 1981-07-15 | 1983-01-28 | タケイ工業株式会社 | Mortar concrete admixing agent for enhancing watertightness and having rust preventive effect |
JP2003277111A (en) * | 2002-03-22 | 2003-10-02 | Denki Kagaku Kogyo Kk | Hardening accelerator and cement composition |
JP2006169078A (en) * | 2004-12-20 | 2006-06-29 | Taiheiyo Material Kk | Water reducing agent for cement and hydraulic composition |
JP2010150108A (en) * | 2008-12-26 | 2010-07-08 | Taiheiyo Cement Corp | Quick hardening cement |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111788163A (en) * | 2018-03-05 | 2020-10-16 | 雅苒国际集团 | Setting and hardening accelerators for cement, mortar or concrete compositions optionally containing auxiliary cementitious materials and use of the accelerators |
JP2021517102A (en) * | 2018-03-05 | 2021-07-15 | ヤラ インターナショナル エーエスエーYara International Asa | Condensation hardening accelerators for cement, mortar or concrete compositions, and the use of these accelerators, optionally containing additional cement-based materials. |
CN111788163B (en) * | 2018-03-05 | 2023-03-24 | 雅苒国际集团 | Setting and hardening accelerator for cement, mortar or concrete compositions optionally containing supplementary cementitious materials and use of the accelerator |
JP7590182B2 (en) | 2018-03-05 | 2024-11-26 | ヤラ インターナショナル エーエスエー | Setting and hardening accelerator for cement, mortar or concrete compositions, optionally including additional cementitious materials, and use of said accelerator |
JP2022523525A (en) * | 2019-02-27 | 2022-04-25 | ビーエーエスエフ ソシエタス・ヨーロピア | Glyoxylic acid or a mixture containing a condensation product or addition product thereof |
JP7520863B2 (en) | 2019-02-27 | 2024-07-23 | ビーエーエスエフ ソシエタス・ヨーロピア | Mixtures containing glyoxylic acid or its condensation or addition products |
CN113511862A (en) * | 2021-06-23 | 2021-10-19 | 嘉兴学院 | Non-autoclaved concrete and preparation method thereof |
CN115477491A (en) * | 2022-09-26 | 2022-12-16 | 中海石油(中国)有限公司 | Chemical-mechanical method-based superfine early strength agent for low-temperature well cementation and cement slurry |
CN115477491B (en) * | 2022-09-26 | 2023-12-01 | 中海石油(中国)有限公司 | Superfine early strength agent and cement slurry for low-temperature well cementation based on chemical-mechanical method |
Also Published As
Publication number | Publication date |
---|---|
CN109415259A (en) | 2019-03-01 |
SG11201810885PA (en) | 2019-01-30 |
JPWO2017221749A1 (en) | 2019-04-18 |
MY188614A (en) | 2021-12-22 |
CN109415259B (en) | 2022-01-11 |
JP6826115B2 (en) | 2021-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6826115B2 (en) | Fast-strength agent for cement, fast-strength cement using it, and method for manufacturing fast-strength concrete | |
RU2617852C9 (en) | Process for producing hardening accelerators for mineral binder compositions | |
JPH10324550A (en) | Additive for cement-based material and cement-based material | |
JP7038052B2 (en) | Liquid fast-strengthening agent for cement concrete | |
CN108191293B (en) | A kind of concrete low temperature curing agent | |
US10793479B2 (en) | Accelerator for hydraulic composition | |
JP2005306633A (en) | Method of producing cement hardened material and segment using the same | |
JP6876489B2 (en) | Fast-hardening concrete and its manufacturing method | |
JP7546371B2 (en) | Concrete and how to make it | |
JP2013252999A (en) | Hydraulic composition | |
JP5743650B2 (en) | Method for producing slag curing composition | |
JP5965256B2 (en) | Hydraulic composition | |
JP2017178739A (en) | Method for manufacturing rapid hardening concrete | |
JP7628475B2 (en) | Method for producing cement composition | |
KR100725030B1 (en) | Concrete Liquid Admixture and Concrete Composition for Initial Strength | |
CN110240433B (en) | Composite cement admixture, composite cement-based material and preparation method thereof | |
JP2019172522A (en) | Cement composition and manufacturing method therefor | |
JP4904576B2 (en) | Method for producing fast-curing concrete | |
HK1261791A1 (en) | High early strength agent for cements, high early strength cement using same, and method for producing high early strength concrete | |
EP4276084A1 (en) | Hydraulic binder compositions comprising steel making slag, a co-binder and an alkali mineral salt | |
WO2017214108A1 (en) | Strength enhancing admixtures for hydraulic cements | |
JP2018111636A (en) | Cement additive and cement composition | |
JP2018076190A (en) | Cement composition and production method thereof | |
JP7509060B2 (en) | Method for producing cement composition and method for producing solidification material | |
RU2464246C1 (en) | Concrete and mortar modifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018523875 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815218 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17815218 Country of ref document: EP Kind code of ref document: A1 |