[go: up one dir, main page]

WO2017219708A1 - 一种功率分析方法和装置 - Google Patents

一种功率分析方法和装置 Download PDF

Info

Publication number
WO2017219708A1
WO2017219708A1 PCT/CN2017/076395 CN2017076395W WO2017219708A1 WO 2017219708 A1 WO2017219708 A1 WO 2017219708A1 CN 2017076395 W CN2017076395 W CN 2017076395W WO 2017219708 A1 WO2017219708 A1 WO 2017219708A1
Authority
WO
WIPO (PCT)
Prior art keywords
power parameter
sampling
sinusoidal
parameter calculation
module
Prior art date
Application number
PCT/CN2017/076395
Other languages
English (en)
French (fr)
Inventor
周立功
Original Assignee
广州致远电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620632774.0U external-priority patent/CN205786837U/zh
Priority claimed from CN201610471859.XA external-priority patent/CN107525965B/zh
Application filed by 广州致远电子股份有限公司 filed Critical 广州致远电子股份有限公司
Priority to EP17814447.3A priority Critical patent/EP3477313A4/en
Publication of WO2017219708A1 publication Critical patent/WO2017219708A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/001Measuring real or reactive component; Measuring apparent energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • G01R21/1331Measuring real or reactive component, measuring apparent energy

Definitions

  • non-linear loads such as motor speed control drives, rectifier equipment, and electric arc furnaces are widely used in industrial and commercial applications. These loads can cause distortion or imbalance of voltage and current.
  • the traditional measuring instruments are mostly based on 50/60Hz sine wave design. It has been proved that there is a large error in the case of waveform distortion, which cannot correctly reflect the user's power consumption.
  • the power is analyzed based on the classical power theory, specifically: using a pure analog circuit for processing or using an analog-to-digital conversion circuit to obtain discrete values, and then using the processor to calculate the effective value and active power of the voltage and current. Then, the apparent power and the power factor are calculated according to the effective value, and then the reactive power is obtained from the triangular relationship of the apparent power, the active power and the reactive power.
  • the classical power theory is based on a sinusoidal single-frequency signal and a balanced system, and the power parameters cannot be accurately measured under non-sinusoidal imbalance conditions.
  • the present invention provides a power analysis method and apparatus for achieving accurate measurement of power parameters under non-sinusoidal imbalance conditions.
  • the present invention provides the following technical solutions:
  • a power analysis method comprising:
  • the conventional power parameter is calculated for the first channel data, the conventional power parameter calculation result is obtained, and the second channel data is subjected to fundamental decomposition to obtain a fundamental component;
  • the calculation of the power parameters under non-sinusoidal unbalance conditions is calculated according to IEEE std 1459, the calculation standard for power parameters under non-sinusoidal unbalanced conditions established by the Institute of Electrical and Electronics Engineers.
  • the method further includes:
  • the conventional power parameter calculation result and/or the non-sinusoidal imbalance power parameter calculation result are displayed.
  • the second-path data is subjected to fundamental decomposition to obtain a fundamental component, including:
  • a Fourier transform is performed on the second channel data to obtain a fundamental component.
  • the second-path data is fundamentally decomposed to obtain a fundamental component, including:
  • a Fourier transform is performed on the second channel data to obtain a fundamental component.
  • the second-path data is fundamentally decomposed to obtain a fundamental component, including:
  • Wavelet transform is performed on the second channel data to obtain a fundamental component.
  • a power analysis device includes: a sampling module, a conventional power parameter calculation module, a fundamental decomposition module, and a non-sinusoidal unbalanced power parameter calculation module;
  • An output end of the sampling module is respectively connected to an input end of the conventional power parameter calculation module and an input end of the fundamental wave decomposition module, and is configured to perform wideband sampling on a voltage signal and/or a current signal, and divide the obtained
  • the voltage sampling data and/or the current sampling data are two-way data, wherein the first path data is sent to the conventional power parameter calculation module, and the second path data is sent to the fundamental wave decomposition module;
  • the input end of the conventional power parameter calculation module is connected to the output end of the sampling module, and the output end is connected to the first input end of the non-sinusoidal unbalanced power parameter calculation module, and is configured to perform data on the first path Calculating a conventional power parameter, obtaining a conventional power parameter calculation result, and transmitting the conventional power parameter calculation result to the non-sinusoidal unbalanced power parameter calculation module;
  • An input end of the fundamental wave decomposition module is connected to an output end of the sampling module, and an output end is connected to a second input end of the non-sinusoidal unbalanced power parameter calculation module, and is configured to perform base on the second path data Wave decomposition, obtaining a fundamental component, and transmitting the fundamental component to the non-sinusoidal unbalanced power parameter calculation module;
  • a first input end of the non-sinusoidal unbalanced power parameter calculation module is connected to an output end of the conventional power parameter calculation module, and a second input end is connected to an output end of the fundamental wave decomposition module for Calculating the power parameters under non-sinusoidal imbalance conditions by calculating the wave component and the conventional power parameter calculation result, and obtaining a non-sinusoidal unbalanced power parameter calculation result;
  • the calculation of the power parameters under non-sinusoidal unbalance conditions is calculated according to IEEE std 1459, the calculation standard for power parameters under non-sinusoidal unbalanced conditions established by the Institute of Electrical and Electronics Engineers.
  • the method further includes: a display module;
  • the display module is connected to an output end of the conventional power parameter calculation module and an output end of the non-sinusoidal unbalanced power parameter calculation module, for displaying the conventional power parameter calculation result and/or the non-sinusoidal imbalance Power parameter calculation results.
  • the fundamental decomposition module is configured to perform Fourier transform on the second channel data when the sampling module samples the wide frequency band of the voltage signal and/or the current signal to obtain the fundamental component.
  • the fundamental wave decomposition module is configured to perform Fourier transform on the second channel data to obtain a fundamental component when the sampling module samples the wide frequency band of the voltage signal and/or the current signal as asynchronous sampling. ;
  • the fundamental wave decomposition module is configured to perform wavelet transform on the second channel data when the sampling module samples the wide frequency band of the voltage signal and/or the current signal into asynchronous sampling to obtain a fundamental wave component.
  • the present invention provides a power analysis method and apparatus, the method comprising: performing broadband signal sampling on a voltage signal and/or a current signal to obtain voltage sampling data and/or current sampling data; Dividing the voltage sampling data and/or the current sampling data into two channels for data transmission; during the transmission process, performing normal power parameter calculation on the first channel data, obtaining a conventional power parameter calculation result, and performing the second channel data
  • the fundamental wave is decomposed to obtain a fundamental component; the calculation of the power parameter under the condition of non-sinusoidal imbalance is performed according to the calculation result of the conventional power parameter and the fundamental component, and the calculation result of the non-sinusoidal unbalanced power parameter is obtained. It can be seen that the present invention enables accurate measurement of power parameters under non-sinusoidal imbalance conditions.
  • Embodiment 1 is a flowchart of a power analysis method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a power analysis method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a power analysis apparatus according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a power analysis apparatus according to Embodiment 4 of the present invention.
  • Embodiments of the present invention disclose a power analysis method and apparatus for achieving accurate measurement of power parameters under non-sinusoidal imbalance conditions.
  • Embodiment 1 of the present invention provides a power analysis method, such as the embodiment of the present invention shown in FIG. A flow chart of a power analysis method disclosed, the method comprising:
  • S101 performing broadband sampling on the voltage signal and/or the current signal to obtain voltage sampling data and/or current sampling data;
  • the wide-band sampling of the voltage signal and/or the current signal enables sampling of a wide-band non-sinusoidal signal having a fundamental frequency of 0.1 Hz to 5 kHz;
  • voltage sampling data is obtained, and the voltage sampling data is divided into two channels of data, and the first channel data and the second channel data are voltage sampling data;
  • current sampling data is obtained, and the current sampling data is divided into two channels of data, and the first channel data and the second channel data are current sampling data;
  • the road data includes: voltage sampling data and current sampling data.
  • S104 Perform calculation of a power parameter under a condition of non-sinusoidal imbalance according to the calculation result of the conventional power parameter and the fundamental component, and obtain a calculation result of a non-sinusoidal unbalanced power parameter;
  • the calculation of the power parameters under non-sinusoidal unbalance conditions is calculated according to IEEE std 1459, the calculation standard for power parameters under non-sinusoidal unbalanced conditions established by the Institute of Electrical and Electronics Engineers.
  • calculation of conventional power parameters includes, but is not limited to, calculation of voltage rms, current rms, active power, apparent power, reactive power, and power factors;
  • the calculation of power parameters under non-sinusoidal imbalance conditions includes, but is not limited to, fundamental voltage, fundamental current, non-fundamental voltage, non-fundamental current, equivalent apparent power, non-active power, fundamental equivalent Power, non-fundamental equivalent apparent power, basic sinusoidal apparent power, unbalanced apparent power, positive sequence power factor, unbalance degree, harmonic apparent power, voltage distortion power, current distortion Variable power, fundamental positive sequence active power, fundamental positive sequence reactive power, fundamental negative sequence active power, fundamental negative sequence reactive power, fundamental zero sequence active power, fundamental zero sequence reactive power, harmonic
  • the calculation of active power, harmonic distortion power, and harmonic pollution can also include other calculations of power parameters.
  • the power analysis method provided by the embodiment of the present invention supports measurement of power parameters in single-phase two-wire, single-phase three-wire, three-phase three-wire, three-phase four-wire multiple wiring modes.
  • the pair is second.
  • the fundamental data is decomposed by the fundamental data to obtain a fundamental component, including: Fourier transforming the second data to obtain a fundamental component.
  • the second-path data is fundamentally decomposed to obtain a fundamental component, including:
  • the data is subjected to Fourier transform to obtain a fundamental component.
  • the second-path data is fundamentally decomposed to obtain a fundamental component, including:
  • the data is wavelet transformed to obtain a fundamental component.
  • the embodiment of the present invention obtains voltage sampling data and/or current sampling data by performing broadband sampling on a voltage signal and/or a current signal; dividing the voltage
  • the sampling data and/or the current sampling data are transmitted for two channels of data; during the transmission process, the conventional power parameter is calculated for the first channel data, the conventional power parameter calculation result is obtained, and the second channel data is subjected to fundamental decomposition.
  • the embodiment of the invention can accurately measure the power parameter under the condition of non-sinusoidal imbalance, and the measurement result can truly reflect the condition of the power system.
  • the voltage signal and/or the current signal are subjected to wide-band sampling in the embodiment of the present invention, and the calculation of the power parameter in the non-sinusoidal unbalance condition is calculated according to the IEEE std 1459 standard, it can be seen that the embodiment of the present invention It not only supports the calculation of the power parameters of the power frequency signals with the fundamental frequency of 50 Hz and 60 Hz, but also the calculation of the power parameters of the wide-band non-sinusoidal signals with the fundamental frequency of 0.1 Hz to 5 kHz.
  • the embodiment of the present invention can implement the fundamental decomposition by combining the synchronous sampling and the Fourier transform, or by combining the asynchronous sampling and the Fourier transform or by combining the asynchronous sampling and the wavelet transform.
  • the fundamental decomposition further ensures that the power parameters can be measured under non-sinusoidal unbalance conditions using the fundamental component and the conventional power parameter calculation results.
  • a power analysis method according to the first embodiment of the present invention is a power analysis method according to Embodiment 2 of the present invention. Based on S101 to S104 shown in FIG. also includes:
  • S105 Display the conventional power parameter calculation result and/or the non-sinusoidal imbalance power parameter calculation result.
  • the conventional power parameter calculation result may be separately displayed according to requirements, or the non-sinusoidal unbalanced power parameter calculation result may be separately displayed, and the conventional power parameter calculation result and the non- Sinusoidal unbalanced power parameter calculation results.
  • the embodiment of the present invention obtains voltage sampling data and/or current sampling data by performing broadband sampling on a voltage signal and/or a current signal; and dividing the voltage sampling data. And/or the current sampling data is transmitted for two channels of data; during the transmission process, the conventional power parameter is calculated for the first channel data, the conventional power parameter calculation result is obtained, and the second wave data is fundamentally decomposed to obtain the fundamental component. According to the calculation results of the conventional power parameters and the fundamental component, the power parameters are calculated under non-sinusoidal unbalance conditions, and the calculation results of the non-sinusoidal unbalanced power parameters are obtained.
  • the embodiment of the invention can accurately measure the power parameter under the condition of non-sinusoidal imbalance, and the measurement result truly reflects the condition of the power system.
  • the voltage signal and/or the current signal are widely sampled in the embodiment of the present invention, and the calculation of the power parameter in the non-sinusoidal unbalance condition is calculated according to the IEEE std 1459 standard, it can be seen that the embodiment of the present invention is not only The power parameter calculation of the power frequency signal with the fundamental frequency of 50 Hz and 60 Hz is supported, and the calculation of the power parameter of the wide-band non-sinusoidal signal with the fundamental frequency of 0.1 Hz to 5 kHz is also supported.
  • the calculation result of the rate parameter can separately display the calculation result of the conventional power parameter or the calculation result of the non-sinusoidal unbalanced power parameter, and can also realize the comparison display of the conventional power parameter calculation result and the non-sinusoidal unbalanced power parameter calculation result.
  • a third embodiment of the present invention provides a power analysis apparatus.
  • a power analysis apparatus according to Embodiment 3 of the present invention includes:
  • a sampling module 101 a conventional power parameter calculation module 102, a fundamental decomposition module 103, and a non-sinusoidal unbalanced power parameter calculation module 104;
  • An output end of the sampling module 101 is respectively connected to an input end of the conventional power parameter calculation module 102 and an input end of the fundamental wave decomposition module 103 for performing wide-band signal sampling on a voltage signal and/or a current signal. And dividing the obtained voltage sampling data and/or current sampling data into two channels of data, wherein the first channel data is sent to the conventional power parameter calculation module 102, and the second channel data is sent to the fundamental wave decomposition module 103;
  • the wide-band sampling of the voltage signal and/or the current signal enables sampling of a wide-band non-sinusoidal signal having a fundamental frequency of 0.1 Hz to 5 kHz;
  • sampling module only performs wideband sampling on the voltage signal, voltage sampling data is obtained, and the voltage sampling data is divided into two channels of data, wherein the first channel data and the second channel data are both Sampling data for voltage;
  • the sampling module When the sampling module only performs wideband sampling on the current signal, the current sampling data is obtained, and the current sampling data is divided into two channels of data, wherein the first channel data and the second channel data are current sampling data;
  • the sampling module simultaneously performs wide-band sampling on the voltage signal and the current signal, the voltage sampling data and the current sampling data are obtained, and the voltage sampling data and the current sampling data are divided into two paths of data, wherein the first path Both the data and the second data include: voltage sampling data and current sampling data.
  • the input end of the conventional power parameter calculation module 102 is connected to the output end of the sampling module 101, and the output end is connected to the first input end of the non-sinusoidal unbalanced power parameter calculation module 104, for the first
  • the road data is subjected to conventional power parameter calculation to obtain a conventional power parameter calculation result, and the conventional power parameter calculation result is sent to the non-sinusoidal unbalanced power Parameter calculation module 104;
  • An input end of the fundamental decomposition module 103 is connected to an output end of the sampling module 101, and an output end is connected to a second input end of the non-sinusoidal unbalanced power parameter calculation module 104, for the second path
  • the data is subjected to fundamental decomposition, the fundamental component is obtained, and the fundamental component is sent to the non-sinusoidal unbalanced power parameter calculation module 104;
  • the first input end of the non-sinusoidal unbalanced power parameter calculation module 104 is connected to the output end of the conventional power parameter calculation module 102, and the second input end is connected to the output end of the fundamental wave decomposition module 103 for Calculating a power parameter under a non-sinusoidal imbalance condition by calculating the fundamental wave component and the conventional power parameter calculation result, and obtaining a non-sinusoidal unbalanced power parameter calculation result;
  • the calculation of the power parameters under non-sinusoidal unbalance conditions is calculated according to IEEE std 1459, the calculation standard for power parameters under non-sinusoidal unbalanced conditions established by the Institute of Electrical and Electronics Engineers.
  • calculation of the conventional power parameters includes, but is not limited to, calculation of voltage RMS, current RMS, active power, apparent power, reactive power, and power factor;
  • the calculation of power parameters under non-sinusoidal imbalance conditions includes, but is not limited to, fundamental voltage, fundamental current, non-fundamental voltage, non-fundamental current, equivalent apparent power, non-active power, fundamental equivalent Power, non-fundamental equivalent apparent power, basic sinusoidal apparent power, unbalanced apparent power, positive sequence power factor, unbalance degree, harmonic apparent power, voltage distortion power, current distortion power, fundamental wave Order active power, fundamental positive sequence reactive power, fundamental negative sequence active power, fundamental negative sequence reactive power, fundamental zero sequence active power, fundamental zero sequence reactive power, harmonic active power, harmonic distortion
  • the calculation of power and harmonic pollution levels may also include other calculations of power parameters.
  • the power analysis method provided by the embodiment of the present invention supports measurement of power parameters in single-phase two-wire, single-phase three-wire, three-phase three-wire, three-phase four-wire multiple wiring modes.
  • the fundamental decomposition module 103 is configured to sample the broadband signal of the voltage signal and/or the current signal when the sampling module 101 is different for the sampling mode. For simultaneous sampling, the second channel data is Fourier transformed to obtain the fundamental component.
  • the fundamental decomposition module 103 is configured to: when the sampling module 101 is facing a voltage signal When the broadband sampling of the number and/or current signal is asynchronous sampling, performing Fourier transform on the second channel data to obtain a fundamental component;
  • the fundamental wave decomposition module 103 is configured to perform wavelet transform on the second channel data to obtain a fundamental component when the sampling module 101 samples the broadband signal of the voltage signal and/or the current signal as asynchronous sampling. .
  • a power analysis apparatus includes: an output end of a sampling module is respectively connected to an input end of a conventional power parameter calculation module and an input end of a fundamental wave decomposition module, and is configured to perform voltage signal and/or current signal.
  • Broadband sampling and dividing the obtained voltage sampling data and/or current sampling data into two channels of data, wherein the first channel data is sent to a conventional power parameter calculation module, and the second channel data is sent to a fundamental wave decomposition module; a conventional power parameter
  • the input end of the calculation module is connected to the output end of the sampling module, and the output end is connected to the first input end of the non-sinusoidal unbalanced power parameter calculation module, and is used for performing conventional power parameter calculation on the first path data, and obtaining a conventional power parameter calculation result.
  • the input end of the fundamental wave decomposition module is connected to the output end of the sampling module, and the output end and the second input end of the non-sinusoidal unbalanced power parameter calculation module Connected, used to perform fundamental decomposition on the second data to obtain the fundamental component, and The wave component is sent to the non-sinusoidal unbalanced power parameter calculation module; the first input end of the non-sinusoidal unbalanced power parameter calculation module is connected to the output end of the conventional power parameter calculation module, and the second input end is connected to the output end of the fundamental wave decomposition module It is used to calculate the power parameters under non-sinusoidal unbalance conditions according to the calculation results of the fundamental component and the conventional power parameters, and obtain the calculation result of the non-sinusoidal unbalanced power parameters.
  • the embodiment of the invention can accurately measure the power parameter under the condition of non-sinusoidal imbalance, and the measurement result can truly reflect the condition of the power system.
  • the voltage signal and/or the current signal are widely sampled in the embodiment of the present invention, and the calculation of the power parameter in the non-sinusoidal unbalance condition is calculated according to the IEEE std 1459 standard, it can be seen that the embodiment of the present invention is not only The power parameter calculation of the power frequency signal with the fundamental frequency of 50 Hz and 60 Hz is supported, and the calculation of the power parameter of the wide-band non-sinusoidal signal with the fundamental frequency of 0.1 Hz to 5 kHz is also supported.
  • the embodiment of the present invention can implement the fundamental decomposition by combining the synchronous sampling and the Fourier transform, or by combining the asynchronous sampling and the Fourier transform or by combining the asynchronous sampling and the wavelet transform.
  • Fundamental decomposition further ensuring the ability to utilize The calculation of the fundamental parameters and the conventional power parameters achieve the measurement of the power parameters under non-sinusoidal imbalance conditions.
  • a power analysis device according to the fourth embodiment of the present invention, as shown in FIG. 4, is further included in the power analysis device shown in FIG. : display module 105;
  • the display module 105 is connected to an output end of the conventional power parameter calculation module 102 and an output end of the non-sinusoidal unbalanced power parameter calculation module 104 for displaying the conventional power parameter calculation result and/or the non- Sinusoidal unbalanced power parameter calculation results.
  • the display module comprises: a liquid crystal display.
  • the display module comprises: a multi-screen display.
  • the conventional power parameter calculation result may be separately displayed according to requirements, or the non-sinusoidal unbalanced power parameter calculation result may be separately displayed, and the conventional power parameter calculation result and the non- Sinusoidal unbalanced power parameter calculation results.
  • the power analysis device disclosed in the embodiment of the invention can accurately measure the power parameter under the condition of non-sinusoidal imbalance, and the measurement result truly reflects the condition of the power system.
  • the method further includes: a display module; the display module is connected to an output end of the conventional power parameter calculation module and an output end of the non-sinusoidal unbalanced power parameter calculation module, and is configured to display a conventional power parameter calculation result and/or a non-sinusoidal unbalanced power
  • a display module is connected to an output end of the conventional power parameter calculation module and an output end of the non-sinusoidal unbalanced power parameter calculation module, and is configured to display a conventional power parameter calculation result and/or a non-sinusoidal unbalanced power
  • the display of the conventional power parameter calculation result or the calculation result of the non-sinusoidal unbalanced power parameter is realized, and the comparison display of the conventional power parameter calculation result or the non-sinusoidal unbalanced power parameter calculation result can also be realized.
  • each embodiment in the specification is described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the same similar parts between the embodiments are referred to each other. can.
  • the description is relatively simple, and the relevant parts can be referred to the method part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种功率分析方法和装置,功率分析方法包括:对电压信号和/或电流信号进行宽频带采样,得到电压采样数据和/或电流采样数据(S101);划分电压采样数据和/或电流采样数据为两路数据进行传输(S102);在传输过程中,对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,对第二路数据进行基波分解,得到基波分量(S103);根据常规功率参数计算结果和基波分量进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果(S104),以实现在非正弦不平衡条件下对功率参数进行精确测量的目的。

Description

一种功率分析方法和装置 技术领域
本申请要求于2016年6月22日提交中国专利局、申请号为201610471859.X、发明名称为“一种功率分析方法和装置”的国内申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2016年6月22日提交中国专利局、申请号为201620632774.0、发明名称为“一种功率分析装置”的国内申请的优先权,其全部内容通过引用结合在本申请中。
背景技术
随着电子设备的不断发展,电机调速驱动器、整流设备、电弧炉等非线性负载大量使用于工业和商业上。这些负载会导致电压、电流的畸变或者不平衡。而传统的计量仪表大都是基于50/60Hz正弦波设计的,已经被证明在波形畸变情况下存在较大的误差,不能正确反映用户的用电情况。
在现有技术中,基于经典的功率理论对功率进行分析,具体为:使用纯模拟电路进行处理或使用模数转换电路得到离散值后,再使用处理器计算电压和电流的有效值和有功功率,进而根据有效值计算视在功率和功率因数,再由视在功率、有功功率和无功功率三者在数值上的三角形关系得出无功功率。但是,经典的功率理论是基于正弦单频信号和平衡系统的,在非正弦不平衡条件下无法对功率参数进行精确的测量。
因此,如何在非正弦不平衡条件下对功率参数进行精确的测量,是本领域技术人员亟待解决的问题。
发明内容
为解决上述技术问题,本发明提供一种功率分析方法和装置,以实现在非正弦不平衡条件下功率参数精确测量的目的。
为实现上述目的,本发明提供如下技术方案:
一种功率分析方法,包括:
对电压信号和/或电流信号进行宽频带采样,得到电压采样数据和/或电流采样数据;
划分所述电压采样数据和/或所述电流采样数据为两路数据进行传输;
在传输过程中,对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,对第二路数据进行基波分解,得到基波分量;
根据所述常规功率参数计算结果和所述基波分量进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果;
其中,非正弦不平衡条件下功率参数的计算依据电气与电子工程师协会制定的非正弦不平衡条件下功率参数的计算标准IEEE std 1459进行计算。
优选的,还包括:
显示所述常规功率参数计算结果和/或非正弦不平衡功率参数计算结果。
优选的,当所述对电压信号和/或电流信号进行宽频带采样为同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:
对第二路数据进行傅里叶变换,得到基波分量。
优选的,当所述对电压信号和/或电流信号进行宽频带采样为非同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:
对第二路数据进行傅里叶变换,得到基波分量。
优选的,当所述对电压信号和/或电流信号进行宽频带采样为非同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:
对第二路数据进行小波变换,得到基波分量。
一种功率分析装置,包括:采样模块、常规功率参数计算模块、基波分解模块和非正弦不平衡功率参数计算模块;
所述采样模块的输出端分别和所述常规功率参数计算模块的输入端和所述基波分解模块的输入端相连,用于对电压信号和/或电流信号进行宽频带采样,并划分得到的电压采样数据和/或电流采样数据为两路数据,其中,第一路数据发送给所述常规功率参数计算模块,第二路数据发送给所述基波分解模块;
所述常规功率参数计算模块的输入端和所述采样模块的输出端相连,输出端与所述非正弦不平衡功率参数计算模块的第一输入端相连,用于对所述第一路数据进行常规功率参数计算,得到常规功率参数计算结果,并将所述常规功率参数计算结果发送给所述非正弦不平衡功率参数计算模块;
所述基波分解模块的输入端和所述采样模块的输出端相连,输出端和所述非正弦不平衡功率参数计算模块的第二输入端相连,用于对所述第二路数据进行基波分解,得到基波分量,并将所述基波分量发送给所述非正弦不平衡功率参数计算模块;
所述非正弦不平衡功率参数计算模块的第一输入端和所述常规功率参数计算模块的输出端相连,第二输入端和所述基波分解模块的输出端相连,用于根据所述基波分量和所述常规功率参数计算结果进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果;
其中,非正弦不平衡条件下功率参数的计算依据电气与电子工程师协会制定的非正弦不平衡条件下功率参数的计算标准IEEE std 1459进行计算。
优选的,还包括:显示模块;
所述显示模块与所述常规功率参数计算模块的输出端及所述非正弦不平衡功率参数计算模块的输出端相连,用于显示所述常规功率参数计算结果和/或所述非正弦不平衡功率参数计算结果。
优选的,所述基波分解模块,用于当所述采样模块对电压信号和/或电流信号的宽频带采样为同步采样时,对第二路数据进行傅里叶变换,得到基波分量。
优选的,所述基波分解模块,用于当所述采样模块对电压信号和/或电流信号的宽频带采样为非同步采样时,对第二路数据进行傅里叶变换,得到基波分量;
优选的,所述基波分解模块,用于当所述采样模块对电压信号和/或电流信号的宽频带采样为非同步采样时,对第二路数据进行小波变换,得到基波分量。
从上述技术方案可以看出,本发明提供的一种功率分析方法和装置,所述方法包括:对电压信号和/或电流信号进行宽频带信号采样,得到电压采样数据和/或电流采样数据;划分所述电压采样数据和/或所述电流采样数据为两路数据进行传输;在传输过程中,对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,对第二路数据进行基波分解,得到基波分量;根据所述常规功率参数计算结果和所述基波分量进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果。由此可见,本发明能够实现在非正弦不平衡条件下对功率参数进行精确的测量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例一提供的一种功率分析方法的流程图;
图2为本发明实施例二提供的一种功率分析方法的流程图;
图3为本发明实施例三提供的一种功率分析装置的结构示意图;
图4为本发明实施例四提供的一种功率分析装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种功率分析方法和装置,以实现在非正弦不平衡条件下对功率参数进行精确测量的目的。
实施例一
本发明实施例一提供一种功率分析方法,如附图1所示的本发明实施例 一公开的一种功率分析方法的流程图,所述方法,包括:
S101:对电压信号和/或电流信号进行宽频带采样,得到电压采样数据和/或电流采样数据;
其中,需要进行说明的是,对电压信号和/或电流信号进行宽频带采样,能够实现对基波频率为0.1Hz到5kHz的宽频带的非正弦信号进行采样;
S102:划分所述电压采样数据和/或所述电流采样数据为两路数据进行传输;
需要进行说明的是,当只对电压信号进行宽频带采样时,得到电压采样数据,将所述电压采样数据划分成两路数据,第一路数据和第二路数据均为电压采样数据;
当只对电流信号进行宽频带采样时,得到电流采样数据,将所述电流采样数据划分成两路数据,第一路数据和第二路数据均为电流采样数据;
当同时对电压信号和电流信号进行宽频带采样时,得到电压采样数据和电流采样数据,将所述电压采样数据和所述电流采样数据划分成两路数据,其中,第一路数据和第二路数据均包括:电压采样数据和电流采样数据。
S103:在传输过程中,对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,对第二路数据进行基波分解,得到基波分量;
S104:根据所述常规功率参数计算结果和所述基波分量进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果;
其中,非正弦不平衡条件下功率参数的计算依据电气与电子工程师协会制定的非正弦不平衡条件下功率参数的计算标准IEEE std 1459进行计算。
还需要进行说明的是,常规功率参数的计算包括但不限于电压有效值、电流有效值、有功功率、视在功率、无功功率和功率因素的计算;
同样的,非正弦不平衡条件下功率参数的计算包括但不限于基波电压、基波电流、非基波电压、非基波电流、等效视在功率、非有功功率、基波等效视在功率、非基波等效视在功率、基本正弦视在功率、不平衡视在功率、正序功率因数、不平衡程度、谐波视在功率、电压畸变功率、电流畸 变功率、基波正序有功功率、基波正序无功功率、基波负序有功功率、基波负序无功功率、基波零序有功功率、基波零序无功功率、谐波有功功率、谐波畸变功率、谐波污染程度的计算,还可以包括其他在功率参数的计算。
还需要进一步说明的是,本发明实施例提供的一种功率分析方法支持单相双线、单相三线、三相三线、三相四线多种接线方式下功率参数的测量。
基于上述本发明实施例一公开的功率分析方法,针对采样方式的不同,优选的,当所述对电压信号和/或电流信号进行宽频带采样为同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:对第二路数据进行傅里叶变换,得到基波分量。
优选的,当所述对电压信号和/或电流信号进行宽频带采样为非同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:对第二路数据进行傅里叶变换,得到基波分量。
优选的,当所述对电压信号和/或电流信号进行宽频带采样为非同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:对第二路数据进行小波变换,得到基波分量。
由上述本发明实施例公开的一种功率分析方法可以得出,本发明实施例通过对电压信号和/或电流信号进行宽频带采样,得到电压采样数据和/或电流采样数据;划分所述电压采样数据和/或所述电流采样数据为两路数据进行传输;在传输过程中,对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,对第二路数据进行基波分解,得到基波分量;根据所述常规功率参数计算结果和所述基波分量进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果。由此可见,本发明实施例能够实现在非正弦不平衡条件下对功率参数进行精确的测量,测量结果能够真实反映电力系统的状况。此外,由于本发明实施例中对电压信号和/或电流信号进行宽频带采样,且非正弦不平衡条件下功率参数的计算是依据IEEE std 1459标准进行计算的,由此可见,本发明实施例不仅支持基波频率为50Hz和60Hz的工频信号的功率参数计算,还支持基波频率为0.1Hz到5kHz的宽频带的非正弦信号的功率参数的计算。
进一步的,本发明实施例能够通过同步采样和傅里叶变换结合的方式实现基波分解,也可以通过非同步采样和傅里叶变换结合的方式或者通过非同步采样和小波变换结合的方式实现基波分解,进一步保证了能够利用基波分量和常规功率参数计算结果实现非正弦不平衡条件下功率参数的测量。
实施例二
基于上述本发明实施例一提供的一种功率分析方法,如附图2所示为本发明实施例二提供的一种功率分析方法,在图1所示出的S101至S104的基础上,进一步还包括:
S105:显示所述常规功率参数计算结果和/或非正弦不平衡功率参数计算结果。
需要进行说明的是,可以根据需要单独显示所述常规功率参数计算结果,也可以单独显示所述非正弦不平衡功率参数计算结果,还可以同时对比显示所述常规功率参数计算结果和所述非正弦不平衡功率参数计算结果。
由上述本发明实施例公开的一种功率分析方法可以得出,本发明实施例通过对电压信号和/或电流信号进行宽频带采样,得到电压采样数据和/或电流采样数据;划分电压采样数据和/或电流采样数据为两路数据进行传输;在传输过程中,对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,对第二路数据进行基波分解,得到基波分量;根据常规功率参数计算结果和基波分量进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果。由此可见,本发明实施例能够实现在非正弦不平衡条件下对功率参数进行精确的测量,测量结果真实反映电力系统的状况。此外,由于本发明实施例中对电压信号和/或电流信号进行宽频采样,且非正弦不平衡条件下功率参数的计算是依据IEEE std 1459标准进行计算的,由此可见,本发明实施例不仅支持基波频率为50Hz和60Hz的工频信号的功率参数计算,还支持基波频率为0.1Hz到5kHz的宽频带的非正弦信号的功率参数的计算。
进一步的,通过显示所述常规功率参数计算结果和/或非正弦不平衡功 率参数计算结果,能够实现单独显示常规功率参数计算结果或非正弦不平衡功率参数计算结果,同时还能够实现对比显示常规功率参数计算结果和非正弦不平衡功率参数计算结果。
实施例三
本发明实施例三提供了一种功率分析装置,如附图3所示的是本发明实施例三提供的一种功率分析装置,包括:
采样模块101、常规功率参数计算模块102、基波分解模块103和非正弦不平衡功率参数计算模块104;
所述采样模块101的输出端分别和所述常规功率参数计算模块102的输入端和所述基波分解模块103的输入端相连,用于对电压信号和/或电流信号进行宽频带信号采样,并划分得到的电压采样数据和/或电流采样数据为两路数据,其中,第一路数据发送给所述常规功率参数计算模块102,第二路数据发送给所述基波分解模块103;
其中,需要进行说明的是,对电压信号和/或电流信号进行宽频带采样,能够实现对基波频率为0.1Hz到5kHz的宽频带的非正弦信号进行采样;
需要进行说明的是,当所述采样模块只对电压信号进行宽频带采样时,得到电压采样数据,将所述电压采样数据划分成两路数据,其中,第一路数据和第二路数据均为电压采样数据;
当所述采样模块只对电流信号进行宽频带采样时,得到电流采样数据,将所述电流采样数据划分成两路数据,其中,第一路数据和第二路数据均为电流采样数据;
当所述采样模块同时对电压信号和电流信号进行宽频带采样时,得到电压采样数据和电流采样数据,将所述电压采样数据和所述电流采样数据划分成两路数据,其中,第一路数据和第二路数据均包括:电压采样数据和电流采样数据。
所述常规功率参数计算模块102的输入端和所述采样模块101的输出端相连,输出端与所述非正弦不平衡功率参数计算模块104的第一输入端相连,用于对所述第一路数据进行常规功率参数计算,得到常规功率参数计算结果,并将所述常规功率参数计算结果发送给所述非正弦不平衡功率 参数计算模块104;
所述基波分解模块103的输入端和所述采样模块101的输出端相连,输出端和所述非正弦不平衡功率参数计算模块104的第二输入端相连,用于对所述第二路数据进行基波分解,得到基波分量,并将所述基波分量发送给所述非正弦不平衡功率参数计算模块104;
所述非正弦不平衡功率参数计算模块104的第一输入端和所述常规功率参数计算模块102的输出端相连,第二输入端和所述基波分解模块103的输出端相连,用于根据所述基波分量和所述常规功率参数计算结果进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果;
其中,非正弦不平衡条件下功率参数的计算依据电气与电子工程师协会制定的非正弦不平衡条件下功率参数的计算标准IEEE std 1459进行计算。
需要进行说明的是,常规功率参数的计算包括但不限于电压有效值、电流有效值、有功功率、视在功率、无功功率和功率因素的计算;
同样的,非正弦不平衡条件下功率参数的计算包括但不限于基波电压、基波电流、非基波电压、非基波电流、等效视在功率、非有功功率、基波等效视在功率、非基波等效视在功率、基本正弦视在功率、不平衡视在功率、正序功率因数、不平衡程度、谐波视在功率、电压畸变功率、电流畸变功率、基波正序有功功率、基波正序无功功率、基波负序有功功率、基波负序无功功率、基波零序有功功率、基波零序无功功率、谐波有功功率、谐波畸变功率、谐波污染程度的计算,还可以包括其他在功率参数的计算。
还需要进一步说明的是,本发明实施例提供的一种功率分析方法支持单相双线、单相三线、三相三线、三相四线多种接线方式下功率参数的测量。
基于上述本发明实施例三公开的功率分析装置,针对采样方式的不同,优选的,所述基波分解模块103,用于当所述采样模块101对电压信号和/或电流信号的宽频带采样为同步采样时,对第二路数据进行傅里叶变换,得到基波分量。
优选的,所述基波分解模块103,用于当所述采样模块101对电压信 号和/或电流信号的宽频带采样为非同步采样时,对第二路数据进行傅里叶变换,得到基波分量;
优选的,所述基波分解模块103,用于当所述采样模块101对电压信号和/或电流信号的宽频带采样为非同步采样时,对第二路数据进行小波变换,得到基波分量。
本发明实施例公开的一种功率分析装置,包括:采样模块的输出端分别和常规功率参数计算模块的输入端和基波分解模块的输入端相连,用于对电压信号和/或电流信号进行宽频带采样,并划分得到的电压采样数据和/或电流采样数据为两路数据,其中,第一路数据发送给常规功率参数计算模块,第二路数据发送给基波分解模块;常规功率参数计算模块的输入端和采样模块的输出端相连,输出端与非正弦不平衡功率参数计算模块的第一输入端相连,用于对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,并将常规功率参数计算结果发送给非正弦不平衡功率参数计算模块;基波分解模块的输入端和采样模块的输出端相连,输出端和非正弦不平衡功率参数计算模块的第二输入端相连,用于对第二路数据进行基波分解,得到基波分量,并将基波分量发送给非正弦不平衡功率参数计算模块;非正弦不平衡功率参数计算模块的第一输入端和常规功率参数计算模块的输出端相连,第二输入端和基波分解模块的输出端相连,用于根据基波分量和常规功率参数计算结果进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果。由此可见,本发明实施例能够实现在非正弦不平衡条件下对功率参数进行精确的测量,测量结果能够真实反映电力系统的状况。此外,由于本发明实施例中对电压信号和/或电流信号进行宽频采样,且非正弦不平衡条件下功率参数的计算是依据IEEE std 1459标准进行计算的,由此可见,本发明实施例不仅支持基波频率为50Hz和60Hz的工频信号的功率参数计算,还支持基波频率为0.1Hz到5kHz的宽频带的非正弦信号的功率参数的计算。
进一步的,本发明实施例能够通过同步采样和傅里叶变换结合的方式实现基波分解,也可以通过非同步采样和傅里叶变换结合的方式或者通过非同步采样和小波变换结合的方式实现基波分解,进一步保证了能够利用 基波分量和常规功率参数计算结果实现非正弦不平衡条件下功率参数的测量。
实施例四
基于上述本发明实施例三提供的一种功率分析装置,如附图4所示的本发明实施例四提供的一种功率分析装置,在图3所示的功率分析装置的基础上,还包括:显示模块105;
所述显示模块105与所述常规功率参数计算模块102的输出端及所述非正弦不平衡功率参数计算模块104的输出端相连,用于显示所述常规功率参数计算结果和/或所述非正弦不平衡功率参数计算结果。
优选的,所述显示模块,包括:液晶显示器。
优选的,所述显示模块,包括:多屏幕显示器。
需要进行说明的是,可以根据需要单独显示所述常规功率参数计算结果,也可以单独显示所述非正弦不平衡功率参数计算结果,还可以同时对比显示所述常规功率参数计算结果和所述非正弦不平衡功率参数计算结果。
本发明实施例公开的一种功率分析装置,能够实现在非正弦不平衡条件下对功率参数进行精确的测量,测量结果真实反映电力系统的状况。
进一步的,还包括:显示模块;显示模块与常规功率参数计算模块的输出端及非正弦不平衡功率参数计算模块的输出端相连,用于显示常规功率参数计算结果和/或非正弦不平衡功率参数计算结果;由此可见,实现了常规功率参数计算结果或非正弦不平衡功率参数计算结果的显示,还能够实现常规功率参数计算结果或非正弦不平衡功率参数计算结果的对比显示。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅 用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还包括为这些过程、方法、物品或者设备所固有的要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种功率分析方法,其特征在于,包括:
    对电压信号和/或电流信号进行宽频带采样,得到电压采样数据和/或电流采样数据;
    划分所述电压采样数据和/或所述电流采样数据为两路数据进行传输;
    在传输过程中,对第一路数据进行常规功率参数计算,得到常规功率参数计算结果,对第二路数据进行基波分解,得到基波分量;
    根据所述常规功率参数计算结果和所述基波分量进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果;
    其中,非正弦不平衡条件下功率参数的计算依据电气与电子工程师协会制定的非正弦不平衡条件下功率参数的计算标准IEEE std 1459进行计算。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    显示所述常规功率参数计算结果和/或非正弦不平衡功率参数计算结果。
  3. 根据权利要求1所述的方法,其特征在于,当所述对电压信号和/或电流信号进行宽频带采样为同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:
    对第二路数据进行傅里叶变换,得到基波分量。
  4. 根据权利要求1所述的方法,其特征在于,当所述对电压信号和/或电流信号进行宽频带采样为非同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:
    对第二路数据进行傅里叶变换,得到基波分量。
  5. 根据权利要求1所述的方法,其特征在于,当所述对电压信号和/或电流信号进行宽频带采样为非同步采样时,相应的,所述对第二路数据进行基波分解,得到基波分量,包括:
    对第二路数据进行小波变换,得到基波分量。
  6. 一种功率分析装置,其特征在于,包括:采样模块、常规功率参数 计算模块、基波分解模块和非正弦不平衡功率参数计算模块;
    所述采样模块的输出端分别和所述常规功率参数计算模块的输入端和所述基波分解模块的输入端相连,用于对电压信号和/或电流信号进行宽频带采样,并划分得到的电压采样数据和/或电流采样数据为两路数据,其中,第一路数据发送给所述常规功率参数计算模块,第二路数据发送给所述基波分解模块;
    所述常规功率参数计算模块的输入端和所述采样模块的输出端相连,输出端与所述非正弦不平衡功率参数计算模块的第一输入端相连,用于对所述第一路数据进行常规功率参数计算,得到常规功率参数计算结果,并将所述常规功率参数计算结果发送给所述非正弦不平衡功率参数计算模块;
    所述基波分解模块的输入端和所述采样模块的输出端相连,输出端和所述非正弦不平衡功率参数计算模块的第二输入端相连,用于对所述第二路数据进行基波分解,得到基波分量,并将所述基波分量发送给所述非正弦不平衡功率参数计算模块;
    所述非正弦不平衡功率参数计算模块的第一输入端和所述常规功率参数计算模块的输出端相连,第二输入端和所述基波分解模块的输出端相连,用于根据所述基波分量和所述常规功率参数计算结果进行非正弦不平衡条件下功率参数的计算,得到非正弦不平衡功率参数计算结果;
    其中,非正弦不平衡条件下功率参数的计算依据电气与电子工程师协会制定的非正弦不平衡条件下功率参数的计算标准IEEE std 1459进行计算。
  7. 根据权利要求6所述的装置,其特征在于,还包括:显示模块;
    所述显示模块与所述常规功率参数计算模块的输出端及所述非正弦不平衡功率参数计算模块的输出端相连,用于显示所述常规功率参数计算结果和/或所述非正弦不平衡功率参数计算结果。
  8. 根据权利要求6所述的装置,其特征在于,所述基波分解模块,用于当所述采样模块对电压信号和/或电流信号的宽频带采样为同步采样时,对第二路数据进行傅里叶变换,得到基波分量。
  9. 根据权利要求6所述的装置,其特征在于,所述基波分解模块,用于当所述采样模块对电压信号和/或电流信号的宽频带采样为非同步采样时,对第二路数据进行傅里叶变换,得到基波分量。
  10. 根据权利要求6所述的装置,其特征在于,所述基波分解模块,用于当所述采样模块对电压信号和/或电流信号的宽频带采样为非同步采样时,对第二路数据进行小波变换,得到基波分量。
PCT/CN2017/076395 2016-06-22 2017-03-13 一种功率分析方法和装置 WO2017219708A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17814447.3A EP3477313A4 (en) 2016-06-22 2017-03-13 POWER ANALYSIS METHOD AND DEVICE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610471859.X 2016-06-22
CN201620632774.0U CN205786837U (zh) 2016-06-22 2016-06-22 一种功率分析装置
CN201620632774.0 2016-06-22
CN201610471859.XA CN107525965B (zh) 2016-06-22 2016-06-22 一种功率分析方法和装置

Publications (1)

Publication Number Publication Date
WO2017219708A1 true WO2017219708A1 (zh) 2017-12-28

Family

ID=60783808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076395 WO2017219708A1 (zh) 2016-06-22 2017-03-13 一种功率分析方法和装置

Country Status (2)

Country Link
EP (1) EP3477313A4 (zh)
WO (1) WO2017219708A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110879311A (zh) * 2019-12-02 2020-03-13 北京四方继保自动化股份有限公司 一种计算电网功率的方法
CN111766431A (zh) * 2020-06-11 2020-10-13 积成电子股份有限公司 一种免二次校准的交流电压、电流复用采集方法及系统
CN114814367A (zh) * 2022-03-31 2022-07-29 福建星云电子股份有限公司 一种基于fft的锂电池交流内阻及功率因素测试方法
CN117881036A (zh) * 2023-12-29 2024-04-12 广东柏科电源有限公司 一种驱动电源的控制方法
CN118275772A (zh) * 2023-12-01 2024-07-02 浙江正泰仪器仪表有限责任公司 三相四线电能表的等效视在功率实现方法、装置及设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072187A (en) * 1990-06-29 1991-12-10 Digital Equipment Corporation Method and apparatus for determining the total harmonic distortion and power factor of a non-linear load circuit
CN101055299A (zh) * 2007-01-31 2007-10-17 湖南大学 一种冲击性负荷电能计量方法
CN101762743A (zh) * 2009-12-31 2010-06-30 上海宝钢安大电能质量有限公司 基于正序分量计量的三相电量测量方法
CN101788604A (zh) * 2010-01-19 2010-07-28 河北省电力研究院 一种基于频域分析和序分量分析的电功率及电量测量方法
CN102331535A (zh) * 2011-06-09 2012-01-25 郝玉山 交流电物理量测量和数据采集装置和方法
CN203149053U (zh) * 2013-03-12 2013-08-21 三峡电力职业学院 基于sopc电能质量监控系统
CN103454530A (zh) * 2013-09-03 2013-12-18 苏州太谷电力股份有限公司 电能质量监测装置及其监测方法
CN205786837U (zh) * 2016-06-22 2016-12-07 广州致远电子股份有限公司 一种功率分析装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5072187A (en) * 1990-06-29 1991-12-10 Digital Equipment Corporation Method and apparatus for determining the total harmonic distortion and power factor of a non-linear load circuit
CN101055299A (zh) * 2007-01-31 2007-10-17 湖南大学 一种冲击性负荷电能计量方法
CN101762743A (zh) * 2009-12-31 2010-06-30 上海宝钢安大电能质量有限公司 基于正序分量计量的三相电量测量方法
CN101788604A (zh) * 2010-01-19 2010-07-28 河北省电力研究院 一种基于频域分析和序分量分析的电功率及电量测量方法
CN102331535A (zh) * 2011-06-09 2012-01-25 郝玉山 交流电物理量测量和数据采集装置和方法
CN203149053U (zh) * 2013-03-12 2013-08-21 三峡电力职业学院 基于sopc电能质量监控系统
CN103454530A (zh) * 2013-09-03 2013-12-18 苏州太谷电力股份有限公司 电能质量监测装置及其监测方法
CN205786837U (zh) * 2016-06-22 2016-12-07 广州致远电子股份有限公司 一种功率分析装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3477313A4 *
YANG, XUESONG ET AL.: "Study on IEEE Std 1459-2010 Power Theory And Its Application", MASTER THESIS, 15 April 2016 (2016-04-15), pages 1 - 84, XP009515627, ISSN: 1674-0246 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110879311A (zh) * 2019-12-02 2020-03-13 北京四方继保自动化股份有限公司 一种计算电网功率的方法
CN111766431A (zh) * 2020-06-11 2020-10-13 积成电子股份有限公司 一种免二次校准的交流电压、电流复用采集方法及系统
CN111766431B (zh) * 2020-06-11 2023-03-21 积成电子股份有限公司 一种免二次校准的交流电压、电流复用采集方法及系统
CN114814367A (zh) * 2022-03-31 2022-07-29 福建星云电子股份有限公司 一种基于fft的锂电池交流内阻及功率因素测试方法
CN118275772A (zh) * 2023-12-01 2024-07-02 浙江正泰仪器仪表有限责任公司 三相四线电能表的等效视在功率实现方法、装置及设备
CN117881036A (zh) * 2023-12-29 2024-04-12 广东柏科电源有限公司 一种驱动电源的控制方法

Also Published As

Publication number Publication date
EP3477313A4 (en) 2020-02-26
EP3477313A1 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
WO2017219708A1 (zh) 一种功率分析方法和装置
Chang et al. Measuring power system harmonics and interharmonics by an improved fast Fourier transform-based algorithm
CN106226723B (zh) 一种面向复杂非线性负载环境的电能计量模拟分析系统及方法
CN102004186B (zh) 一种消除频谱泄漏的高准确度正弦信号测量方法
CN105319447B (zh) 一种介质损耗角正切值测试方法及测试仪
CN203287435U (zh) 一种基于stm32f107vct6的微电网谐波与间谐波检测装置
CN102508026B (zh) 一种电能质量谐波分析仪的谐波分析方法
JP5940389B2 (ja) 交流抵抗測定装置および交流抵抗測定方法
Yang et al. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT
CN104865438A (zh) 一种氧化锌避雷器阻性电流基波测量方法
CN108492658B (zh) 便携式电能表接线仿真仪
CN112763969B (zh) 一种进行现场谐波电能计量误差检测的装置和方法
CN103576032B (zh) 一种电力设备的在线检测装置及方法
CN107525965B (zh) 一种功率分析方法和装置
CN104090168A (zh) 一种变压器直流电阻和变比测试装置
Meyer et al. A multichannel frequency response analyser for impedance spectroscopy on power sources
CN205786837U (zh) 一种功率分析装置
CN103969507B (zh) 一种电能质量谐波分析方法
JP5394945B2 (ja) 同期検定装置
JP4175704B2 (ja) 回路素子の測定装置
CN204129150U (zh) 一种电力设备的在线检测装置
CN103983852A (zh) 电能质量谐波分析仪的谐波分析方法
JP2015014469A (ja) 抵抗測定装置および抵抗測定方法
CN104198813B (zh) 一种正交相关法测量超声换能器阻抗角的装置及方法
CN209559974U (zh) 一种频谱分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017814447

Country of ref document: EP

Effective date: 20190122