[go: up one dir, main page]

WO2017215275A1 - 实现业务连续性的通信方法及装置 - Google Patents

实现业务连续性的通信方法及装置 Download PDF

Info

Publication number
WO2017215275A1
WO2017215275A1 PCT/CN2017/073164 CN2017073164W WO2017215275A1 WO 2017215275 A1 WO2017215275 A1 WO 2017215275A1 CN 2017073164 W CN2017073164 W CN 2017073164W WO 2017215275 A1 WO2017215275 A1 WO 2017215275A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
user equipment
access network
communication
remote user
Prior art date
Application number
PCT/CN2017/073164
Other languages
English (en)
French (fr)
Inventor
许辉
吕永
王亚英
陈琳
卢忱
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17812393.1A priority Critical patent/EP3474602A4/en
Priority to US16/309,918 priority patent/US11457393B2/en
Publication of WO2017215275A1 publication Critical patent/WO2017215275A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular to a communication method and apparatus for implementing service continuity.
  • D2D technology can reduce the burden of cellular networks, reduce the battery power consumption of user equipment, increase the data rate, and improve the robustness of the network infrastructure, which satisfies the requirements of the above high data rate services and proximity services.
  • D2D technology is also called Proximity Services (ProSe), and single-link (Sidelink, SL for short).
  • the D2D technology generally includes a D2D discovery technology and a D2D communication technology, wherein the D2D discovery technology refers to a technology for determining/determining whether the first user equipment is adjacent to the second user equipment.
  • D2D user equipment can discover each other by transmitting or receiving discovery signals/information;
  • D2D communication technology refers to a technology in which some or all communication data between D2D user equipments can communicate directly without using a network infrastructure.
  • MTC Machine Type Communication
  • eMTC Machine Type Communication
  • NB-IoT Narrow Band-Internet of Things
  • R13eMTC adds coverage enhancement support and bandwidth limited support on the basis of low cost.
  • the radio frequency capability of the eMTC user equipment User Equipment, UE for short
  • the radio frequency transceiver bandwidth of the NB-IoT device is limited to 180 kHz.
  • the coverage enhancement is usually achieved by multiple repetitions of data transmission between an evolved base station (Evolved Node B, eNB for short) and an eMTC/NB-IoT UE.
  • eNB evolved Node B
  • eMTC/NB-IoT UE eMTC/NB-IoT UE
  • coverage enhancements can result in multiple retransmissions of data packets, thereby quickly consuming the UE's power.
  • wearable devices have similar application requirements such as low cost, limited bandwidth, and low power consumption.
  • the enhanced D2D is mainly used for Wearables and Internet Of Thing (IOT)/Machine Type Communication (MTC) applications.
  • the devices are collectively referred to as remote user devices; the wearable device communicates with the network through a UE-to-network relay, wherein the Wearables UE can communicate through the PC5 or Uu port within the eNB coverage.
  • At least the uplink data is PC5.
  • FIG. 1 is a schematic diagram of a communication architecture using a UE-to-network relay according to an embodiment of the present invention, and a UE-to-network relay communication architecture is used as shown in FIG. 1.
  • the mode (for example, the communication link determination mode at the time of initial selection or reselection) does not currently provide a suitable processing scheme.
  • Embodiments of the present invention provide a communication method and apparatus for implementing service continuity, so as to at least solve the determination method and service continuity of a communication link lacking a remote user equipment in the related art. problem.
  • a communication method for implementing service continuity including: a remote user equipment autonomously selecting or determining a communication path with the access network according to a first indication of an access network; The user equipment communicates with the access network using the communication path.
  • the communication path includes at least one of: communicating with the access network by using a first interface, where the first interface is used by the remote user equipment to directly connect to the access network; Communicating with the access network through a second interface, where the second interface is used by the remote user equipment to connect to the access network by using a relay user equipment.
  • the method further includes: the remote user equipment autonomously selecting or determining, according to the second indication of the access network, A communication technology in which a remote user equipment communicates with the relay user equipment.
  • the communication technology includes at least one of: a 3GPP-based transmission technology; a non-3GPP-based transmission technology.
  • the 3GPP-based transmission technology includes: device-to-device D2D technology; and/or the non-3GPP-based transmission technology includes at least one of the following: Bluetooth bluetooth technology, wireless local area network WLAN/WiFi technology, infrared data Communication IrDA technology, wireless personal area network ZigBee technology, and other wireless communication technologies using unlicensed spectrum.
  • the communication technology that the remote user equipment selects or determines, according to the second indication of the access network, that the remote user equipment communicates with the relay user equipment includes at least one of the following: the remote user equipment The 3GPP technology originally used by the second interface is transferred to a non-3GPP technology for transmission; the remote user equipment transfers the non-3GPP technology originally used by the second interface to 3GPP technology for transmission; the remote user equipment will The 3GPP technology originally used by the second interface is transferred to another 3GPP technology for transmission; the remote user equipment transfers the non-3GPP technology originally used by the second interface to another non-3GPP technology for transmission.
  • the remote user equipment determines, or determines, according to the first indication of the access network, that the communication path with the access network includes at least one of the following: the remote user equipment will pass the foregoing All or part of the service transmitted by the first interface is transferred to the second interface for transmission; the remote user equipment transfers all or part of the service originally transmitted through the second interface to the first interface Transmitting; the remote user equipment transfers all or part of the traffic originally transmitted through the first interface to an interface directly connected to the target base station; the remote user equipment transmits the original interface through the second interface. All or part of the service is transferred to the air interface connected to the target relay user equipment for transmission.
  • the relay user equipment comprises at least one of the following: layer 2 or layer 3 UE-to-network relay relay.
  • the first interface is a Uu interface
  • the second interface is an air interface between the remote user equipment and the relay user equipment.
  • the remote user equipment independently selects a communication path with the access network, where the remote user equipment determines a communication path with the access network according to at least one of the following information: link quality, service quality of service QoS Requirements, power requirements, pre-configured rules, access network indications.
  • the pre-configured rule includes at least one of: a priority of a communication path; a link quality threshold of the communication path; and a resource configuration rule.
  • the pre-configured rules are stored in a universal integrated circuit card UICC or mobile device ME of the remote user equipment or received from the access network via a system broadcast message.
  • the access network indication information is used to indicate at least one of: simultaneously communicating with the access network by using a first interface and a second interface, where the first interface is used for the remote The user equipment is directly connected to the access network, and the second interface is used by the remote user equipment to be connected to the access network by using a relay user equipment; a service type, where the service type includes one of: a QoS of a service, a control plane service, a user plane service, an uplink or downlink service, a priority of the first interface and the second interface, and a second interface Discovery resources and/or communication resources; the second interface employs 3GPP or non-3GPP technologies.
  • the remote user equipment comprises at least one of the following: a user equipment UE, a wearable Wearable terminal, an Internet of Things IOT/machine type device MTC terminal.
  • the access network includes: a base station.
  • the remote user equipment communicates with the access network by using the communication path, including at least one of the following communication types: uplink control plane CP communication; uplink user plane UP communication; downlink control plane CP communication; downlink user Face UP communication.
  • the first indication is a system message or a dedicated instruction for indicating a communication path, where the dedicated instruction includes at least one of the following: layer 1 signaling, layer 2 signaling, and layer 3 signaling.
  • the second indication is a system message or a dedicated instruction for indicating a communication technology, where the dedicated instruction includes at least one of the following: layer 1 signaling, layer 2 signaling, and layer 3 signaling.
  • the first interface and the second interface are co-frequency or inter-frequency; and/or, the second interface adopts an authorized spectrum or an unlicensed spectrum.
  • the remote user equipment is located in or out of coverage of the access network, or the remote user equipment is located in an enhanced coverage area of the access network; Within the coverage of the access network.
  • a communication apparatus for implementing service continuity, located in a remote user equipment, the apparatus comprising: a first determining module, configured to autonomously select or according to a first indication of the access network Determining a communication path with the access network; a communication module configured to communicate with the access network using the communication path.
  • the communication path includes: communicating with the access network by using a second interface, where the second interface is used by the remote user equipment to connect to the access network by using a relay user equipment,
  • the apparatus further includes: a second determining module configured to determine a communication technology for the remote user equipment to communicate with the relay user equipment according to a second indication of the access network.
  • the relay user equipment comprises at least one of the following: layer 2 or layer 3 UE-to-network relay relay.
  • the remote user equipment comprises at least one of the following: a user equipment UE, a wearable Wearable terminal, an Internet of Things IOT/machine type device MTC terminal.
  • the access network includes: a base station.
  • a storage medium is also provided.
  • the storage medium is arranged to store program code for performing the following steps: the remote user device autonomously selects or determines a communication path with the access network based on a first indication of the access network; the remote user device uses the communication path Communicating with the access network.
  • the remote user equipment since the remote user equipment adopts autonomous selection or determines the communication path with the access network according to the indication of the access network, and uses the determined communication path for communication, thereby realizing the determination of the communication path, therefore, the relevant information can be solved.
  • the problem of determining the communication link of the remote user equipment and the continuity of the service is lacking, thereby ensuring the service continuity of the remote user equipment and providing a technical basis for the communication implementation of the wearable device.
  • FIG. 1 is a schematic diagram of a communication architecture using a UE-to-network relay according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a communication method for implementing business continuity according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the architecture of a remote user equipment communicating through a relay user equipment according to a preferred embodiment of the present invention
  • 4a is an exemplary diagram of an implementation scenario 1 in accordance with a preferred embodiment of the present invention.
  • 4b is an exemplary diagram of an implementation scenario 2 in accordance with a preferred embodiment of the present invention.
  • 4c is an illustration of an implementation scenario 3 in accordance with a preferred embodiment of the present invention.
  • 4d is an illustration of an implementation scenario 4 in accordance with a preferred embodiment of the present invention.
  • Figure 5 is a flow chart showing a method according to a preferred embodiment 1 of the present invention.
  • FIG. 6 is a schematic flow chart of a method according to a preferred embodiment 2 of the present invention.
  • Figure 7 is a flow chart showing a method according to a preferred embodiment 3 of the present invention.
  • Figure 8 is a flow chart showing a method according to a preferred embodiment 4 of the present invention.
  • FIG. 9 is a schematic flow chart of a method according to a preferred embodiment 5 of the present invention.
  • FIG. 10 is a schematic structural diagram of a system for implementing business continuity according to a preferred embodiment 6 of the present invention.
  • FIG. 11 is a structural block diagram of a communication apparatus for implementing business continuity according to an embodiment of the present invention.
  • FIG. 12 is a block diagram showing a preferred configuration of a communication apparatus for implementing business continuity according to an embodiment of the present invention.
  • IOT/Machine Type Equipment MTC UE (hereinafter referred to as remote user equipment, ie remote-UE, referred to as r-UE)
  • remote user equipment ie remote-UE
  • R-UE relay user equipment
  • the r-UE/R-UE device movement or network load change may cause the communication link state to change, resulting in r-UE/R - The communication operation of the UE failed.
  • the embodiments of the present invention provide a communication solution for implementing service continuity to solve at least one of the above problems.
  • FIG. 2 is a flowchart of a communication method for implementing service continuity according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 the remote user equipment autonomously selects or determines a communication path with the access network according to the first indication of the access network;
  • Step S204 The remote user equipment communicates with the access network by using the communication path.
  • the remote user equipment since the remote user equipment adopts autonomous selection or determines the communication path with the access network according to the indication of the access network, and uses the determined communication path to communicate, thereby realizing the determination of the communication path, therefore, the related information can be solved.
  • the problem of determining the communication link of the remote user equipment and the continuity of the service is lacking, thereby ensuring the service continuity of the remote user equipment and providing a technical basis for the communication implementation of the wearable device.
  • the first indication is a system message or a dedicated instruction for indicating a communication path, which may include at least one of the following: layer 1 signaling, layer 2 signaling, and layer 3 signaling.
  • the r-UE may include, but is not limited to, at least one of the following: a user equipment UE, a wearable Wearable terminal, an Internet of Things IOT/machine type device MTC terminal.
  • the access network may include, but is not limited to, a base station.
  • the r-UE may be located in or out of coverage of the access network, or the r-UE may be located in an enhanced coverage of the access network; the R-UE may be Located within the coverage of the access network.
  • the communication path may include at least one of the following:
  • the first interface Communicating with the access network by using the first interface, where the first interface is used for the r-UE to be directly connected to the access network, where the first interface may be a Uu interface;
  • Communicating with the access network by using a second interface where the second interface is used by the r-UE to connect to the access network by using a relay user equipment R-UE, where the second interface may be r - Air interface between the UE and the R-UE.
  • the first interface and the second interface may be the same frequency or different frequency; and/or the second interface may adopt a licensed spectrum or an unlicensed spectrum.
  • the R-UE may include at least one of the following: Layer 2 or Layer 3 UE-to-network relay.
  • the r-UE may also select autonomously or determine the r-UE according to a second indication of the access network.
  • the communication technology may include 3GPP based transmission technology, and/or non-3GPP based transmission technology.
  • the second indication is a system message or a dedicated instruction for indicating a communication technology, and may include at least one of the following: layer 1 signaling, layer 2 signaling, and layer 3 signaling.
  • the 3GPP-based transmission technology may include a D2D communication technology (eg, sidelink technology); the non-3GPP-based transmission technology may include at least one of the following: Bluetooth technology, wireless local area network (WLAN)/wireless fidelity (WiFi) technology, Infrared Data Association (IrDA) technology, wireless personal area network (ZigBee) technology, and other wireless communication technologies using unlicensed spectrum.
  • D2D communication technology eg, sidelink technology
  • WiFi wireless local area network
  • WiFi wireless fidelity
  • IrDA Infrared Data Association
  • ZigBee wireless personal area network
  • the scenario that the r-UE autonomously selects or determines the communication technology that the r-UE communicates with the R-UE according to the second indication of the access network may include one or more of the following:
  • the r-UE transfers the 3GPP technology originally used by the second interface to a non-3GPP technology for transmission;
  • the r-UE transfers the non-3GPP technology originally used by the second interface to the 3GPP technology for transmission;
  • the r-UE transfers the 3GPP technology originally used by the second interface to another 3GPP technology for transmission;
  • the r-UE transfers the non-3GPP technology originally used by the second interface to another non-3GPP technology for transmission.
  • the scenario that the r-UE autonomously selects or determines the communication path with the access network according to the first indication of the access network may include one or more of the following:
  • the r-UE transfers all or part of the service originally transmitted through the second interface to the first interface for transmission;
  • the r-UE transfers all or part of the traffic originally transmitted through the first interface to an interface directly connected to the target base station for transmission;
  • the r-UE transfers all or part of the traffic originally transmitted through the second interface to an air interface connected to the target R-UE for transmission.
  • the r-UE may determine a communication path with the access network according to at least one of the following information: link quality, service quality of service (QoS) Requirements, power requirements, pre-configured rules, access network indications.
  • the pre-configured rule may adopt one or more of the following: a priority of the communication path; a link quality threshold of the communication path; and a resource configuration rule.
  • the pre-configured rule may be stored in a UICC (Universal Integrated Circuit Card) or ME (Mobility Equipment) of the r-UE, or Access network reception.
  • UICC Universal Integrated Circuit Card
  • ME Mobility Equipment
  • the access network indication information may be used to indicate at least one of the following:
  • the first interface is used for the r-UE to be directly connected to the access network
  • the second interface is used for the The r-UE is connected to the access network by using a relay user equipment R-UE;
  • a service type communicated on the first interface and the second interface, where the service type includes one of the following: a service QoS, a control plane service, a user plane service, and an uplink or downlink service;
  • the second interface adopts 3GPP or non-3GPP technology; and the like.
  • the r-UE communicates with the access network by using the communication path, and includes at least one of the following communication types: an uplink control plane (Control Plane, referred to as CP) communication; and an uplink user plane ( User Plane, referred to as UP) communication; downlink CP communication; downlink UP communication.
  • CP Control Plane
  • UP uplink user plane
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform various embodiments of the present invention. The method described.
  • FIG. 3 is a schematic structural diagram of r-UE communication through R-UE according to a preferred embodiment of the present invention.
  • a network structure of r-UE communication through R-UE is provided, and the network structure includes r. - UE device, R-UE device and access network device.
  • the r-UE device may include at least one of the following: a user equipment (UE), a Wearables, an IOT/MTC terminal (such as a category M1/category NB-IOT device), and the r-UE appearing in the preferred embodiment, unless otherwise specified. Representing one or more of the above terminal devices, it should be noted that the solution of the preferred embodiment is applicable to various types of UEs.
  • the r-UE according to the indication information sent by the access network device or the autonomously selected communication path (the air interface link between the r-UE and the R-UE or the Uu link between the r-UE and the access network device), further And the r-UE according to the indication information sent by the access network device or the transmission technology adopted by the link between the r-UE and the R-UE, wherein the link between the r-UE and the R-UE may be based on 3GPP.
  • LTE transmission technology D2D communication technology, such as sidelink
  • non-3GPP-based transmission technology such as Bluetooth bluetooth, wireless LAN WLAN, infrared, etc.
  • the R-UE device may comprise at least one of the following: a relay, the R-UE device is responsible for transmitting control plane and/or user plane information between the access network device and the r-UE device, the R-UE being a layer 2 or layer
  • the relay of 3 the R-UE and the r-UE may communicate by using at least one of the following: sidelink, bluetooth, WLAN/WiFi, IrDA (Infrared Data Association, infrared data communication), ZigBee (wireless personal area network) And other wireless communication technologies that use unlicensed spectrum.
  • the access network device includes at least: an eNB.
  • the eNB is mainly responsible for: transmitting information to the r-UE device and/or the R-UE device, and receiving information sent by the r-UE device and/or the R-UE.
  • the preferred embodiment further describes a method for implementing r-UE service continuity by using the foregoing apparatus, which specifically includes: r-UE autonomously selecting or determining a communication path with an access network according to an indication of an access network; and r-UE The communication technology with the R-UE is determined autonomously or according to an indication of the access network.
  • the r-UE is located within the coverage of the access network or outside the coverage. Further, the r-UE is located within the enhanced coverage.
  • the r-UE receives the system message sent by the access network through the Uu interface, and the same Step signal, paging message, etc.; in order to save power consumption, the uplink user plane data of the r-UE can be transmitted through the R-UE.
  • the autonomous selection means that the UE selects the interface 1 or the interface 3 (and the interface 2) in FIG. 3 to communicate with the access network according to the pre-configured rules, wherein the interface 1 in FIG. 3 is the first mentioned above.
  • the interface 3, the interface 3 in FIG. 3, is the second interface mentioned above.
  • the pre-configuration rule is stored in a UICC (Universal Integrated Circuit Card) or ME (Mobility Equipment) of the UE, or the access network eNB transmits the message through the system broadcast message.
  • the communication path may include: interface 1, interface 3, uplink, downlink; the communication includes communication of control plane CP service and/or user plane UP service.
  • the reselection of the communication link when the r-UE and/or R-UE moves or the network load changes may include one of the following scenarios:
  • All or part of the service (including user plane and/or control plane data, uplink and/or downlink) originally transmitted by the r-UE through the interface 1 is transferred to the interface 3 for transmission;
  • All or part of the service (including user plane and/or control plane data, uplink and/or downlink) originally transmitted by the r-UE through the interface 3 is transferred to the interface 1 for transmission; wherein the interface 3 may adopt 3GPP or non-3GPP technology;
  • the following description of the preferred embodiment is mainly directed to the above scenarios 1) and 2); for scenario 3), the existing cell reselection or handover technology may be used to implement service continuity; for scenario 4), if interface 3 uses sidelink transmission, The existing relay selection/reselection implementation may be adopted. If non-3GPP technology is adopted, it is considered to adopt related technologies or enhanced functions.
  • the reselection of the communication technology of the interface 3 between the r-UE and the R-UE may include the following scenarios.
  • Interface 3 was originally transmitted using 3GPP technology (D2D communication technology, such as sidelink), and needs to be transferred to non-3GPP technology for transmission;
  • D2D communication technology such as sidelink
  • Interface 3 is originally transmitted by non-3GPP technology and needs to be transferred to 3GPP technology for transmission;
  • Interface 3 was originally transmitted using non-3GPP technology and needs to be transferred to another non-3GPP technology;
  • Interface 3 was originally transmitted using 3GPP technology (D2D communication technology, such as sidelink), and needs to be transferred to a new interface 3 and transmitted using 3GPP technology or non-3GPP technology.
  • 3GPP technology D2D communication technology, such as sidelink
  • FIG. 4a to d are respectively exemplary diagrams of various implementation scenarios according to a preferred embodiment of the present invention, as shown in FIG. 4, wherein the user plane refers to a user plane data transmission path, and the control plane refers to a control plane data transmission path;
  • the uplink user plane communication of the UE is performed by the R-UE, but the preferred embodiment does not exclude the scenario in which the uplink user plane communication of the r-UE is also performed through the interface 1.
  • the r-UE determines according to one of the following: link quality, service quality of service (QoS) requirements, power consumption requirements, pre-configured rules, and eNB indication information to determine a required communication path.
  • QoS quality of service
  • the pre-configuration rule may include at least one of the following: a priority, a threshold; wherein the priority refers to a priority between the interface 1 and the interface 3, and if the priority of the interface 1 is high, the interface 1 is preferentially selected; the threshold is The link quality of interface 1 and/or interface 3 requires that if the link quality of the current interface is lower than the specified threshold, the UE may select other interfaces or other communication technologies to continue communication. If the UE selects other interfaces or other communication technologies, the UE Notify the access network device. Further, the pre-configuration rule may further include resource configuration.
  • the access network indication may be that the access network device sends information for indicating a communication path and/or a communication technology to the UE by using a system message or dedicated signaling, where the dedicated signaling includes at least one of the following: Layer 1 signaling , Layer 2 signaling, Layer 3 signaling. Further, the access network indication may further include one of the following: the communication between the interface 1 and the interface 3, the service type communicated on the interface 1 and the interface 3, the priority of the interface 1 and the interface 3, and the discovery of the interface 3 And/or communication resources, The interface 3 adopts 3GPP or non-3GPP technologies; wherein the service type may include one of the following: QoS of the service, control plane service, user plane service, uplink or downlink service.
  • the R-UE may be a UE-to-network relay.
  • the interface 1 and the interface 3 may be the same frequency or the different frequency, and the interface 3 adopts the licensed spectrum or the unlicensed spectrum.
  • the communication technology between the r-UE and the R-UE may include one of the following: sidelink, bluetooth, WLAN, IrDA, ZigBee, and other wireless communication technologies employing unlicensed spectrum.
  • Step 1 The r-UE communicates with the access network.
  • the r-UE communicates with the access network eNB through the path in FIG.
  • Step 2 Determine whether to select a new communication path or communication technology, and if yes, go to step 3, otherwise, go to step 4.
  • the determining is performed by the r-UE or the R-UE or the eNB. Specifically, when the r-UE is in an idle state, the r-UE may determine; the R-UE is in a connected state, and the R-UE is in accordance with the The link state of the interface 1 and/or the interface 2 and/or the interface 3 and the eNB indicate that the eNB performs the determination according to the r-UE and/or the R-UE reporting information, the local policy, the radio resource management RRM, and the like.
  • the priority order of the three node judgment results is: eNB, R-UE, r-UE; that is, when there are multiple results at the same time, the eNB is the first, followed by the R-UE, and finally the r-UE. Further, if the r-UE or the R-UE determines the result, the r-UE or the R-UE sends the result indication information to the eNB, and the eNB determines to accept or reject the judgment result of the r-UE or the R-UE; further, the When the r-UE is autonomously selected, the eNB may not be notified.
  • the judgment is performed by one of the following parameters: link quality, service QoS requirement, pre-configuration rule, and access network indication information.
  • link quality is lower than the pre-configured threshold, and/or the current link does not satisfy the QoS required for the service, and/or the reselection link condition indicated by the pre-configured rule is met, and/or the access network indication is heavy Select/switch, you can decide to choose a new link or technology, otherwise you will not choose a new link or technology.
  • the communication path includes one of the following: interface 1, interface 3, uplink UL, and downlink DL; the communication includes one of: a user plane, a control plane; and further, the communication path further includes: r-UE selecting a new one R-UE or select a new cell.
  • the communication technology refers to the communication technology adopted by the interface 3, including one of the following: 3GPP technology, non-3GPP technology.
  • the 3GPP technologies include: D2D communication technologies, such as sidelink communication; non-3GPP technologies include one of the following: bluetooth, WLAN, IrDA, ZigBee, and other wireless communication technologies that employ unlicensed spectrum.
  • Step 3 The r-UE selects a new path and/or technology for communication.
  • the r-UE autonomously or according to an indication of the eNB, selecting a new path and/or technology; when the r-UE is located outside the eNB coverage, or when the r-UE is pre-configured in an autonomous selection mode, the r-UE A new path or technique may be selected, noting that if the r-UE is outside the eNB coverage, the r-UE cannot select interface 1; if the r-UE selects non-3GPP technology, the R-UE is required to support the selected technology, And meet the specified conditions of the selected technology.
  • Step 4 The r-UE continues to communicate on the original path.
  • the r-UE does not need to update the path and/or technology, then continues in the original path, and/or communicates using the original technology.
  • the continuing to communicate on the original path further includes: the r-UE selects a new path, and/or a new technology, but the eNB and/or the R-UE rejects the new selection, then the r-UE continues to adopt the original path .
  • the preferred embodiment mainly describes the following scenario: the r-UE communicates through the interface 1, and transfers to the interface 3 for communication.
  • FIG. 5 is a schematic flowchart of a method according to a preferred embodiment 1 of the present invention. As shown in FIG. 5, the process is specifically as follows:
  • Step S502 The r-UE performs communication through the interface 1.
  • the r-UE communicates through the interface 1 including one of the following: downlink control plane communication and User plane communication, downlink user plane and uplink and downlink control plane communication, uplink and downlink control plane communication; as shown in scenarios 1, 2, and 3 in FIG. 4, that is, uplink user plane communication of the r-UE is performed through the R-UE.
  • the r-UE communicating through the interface 1 does not exclude that the r-UE simultaneously communicates through the interface 3.
  • Step S504 It is determined to switch to the interface 3 for communication.
  • the determination is made by one of the following: r-UE, R-UE, eNB.
  • the transition to the interface 3 includes one of the following: a downlink control plane and/or a downlink user plane communication, a downlink user plane and/or an uplink and downlink control plane communication, and an uplink and downlink control plane communication.
  • the converting further includes: r-UE selection or the original eNB indicating a new eNB (ie, new interface 1).
  • Step S506 The r-UE communicates through the interface 3.
  • the r-UE may communicate through the interface 3 using 3GPP technology or non-3GPP technology.
  • the r-UE needs to select an R-UE before communicating through the interface 3. If the r-UE adopts the 3GPP technology on the interface 3, the r-UE uses the existing UE-to-network relay rule to select, otherwise, The r-UE makes a selection according to a pre-configuration rule or an eNB indication.
  • the resource configuration of the interface 3 may be performed according to an existing rule, or may be pre-configured in a UICC or ME of the r-UE, or the eNB may be configured according to the request of the r-UE.
  • the preferred embodiment is mainly described in the following scenario: the UE communicates through the interface 3 and transfers to the interface 1 for communication.
  • FIG. 6 is a schematic flowchart of a method according to a preferred embodiment 2 of the present invention. As shown in FIG. 6, the process is specifically as follows:
  • Step S602 The r-UE communicates through the interface 3.
  • the r-UE communicates through the interface 3, including one of the following: uplink user plane communication, uplink control plane communication and uplink user plane communication, uplink and downlink user plane communication, uplink and downlink control plane communication, and uplink and downlink user plane communication; Scenes 1, 2, 3, and 4 in 4.
  • the r-UE communicating through the interface 3 does not exclude that the r-UE simultaneously communicates through the interface 1.
  • Step S604 It is determined to switch to the interface 1 for communication.
  • the determination is made by one of the following: r-UE, R-UE, eNB.
  • the transition to the interface 1 includes one of the following: uplink and downlink control plane communication, and downlink user plane communication. Note: The uplink user plane communication considering the r-UE is performed through the interface 3, but it is not excluded that the r-UE can also perform uplink user plane communication through the interface 1.
  • the converting further comprises: r-UE selection or eNB indicating to select a new R-UE (new interface 3).
  • Step S606 The r-UE communicates through the interface 1.
  • the interface 1 communication resource is configured by an eNB, and the eNB configuration may send a request message (via an R-UE) to the eNB through the r-UE, and the eNB sends the response message and includes the wireless communication resource of the interface 1.
  • the preferred embodiment is mainly described in the following scenario:
  • the r-UE communicates on the interface 3 through 3GPP technology and converts to other non-3GPP technical communications.
  • FIG. 7 is a schematic flowchart of a method according to a preferred embodiment 3 of the present invention. As shown in FIG. 7, the process is specifically:
  • Step S702 The r-UE performs communication by using a D2D communication technology.
  • the r-UE communicates through the interface 3, including one of the following: uplink user plane communication, uplink control plane communication and uplink user plane communication, uplink and downlink user plane communication, uplink and downlink control plane communication, and uplink and downlink user plane communication; Scenes 1, 2, 3, and 4 in 4.
  • the r-UE communicating through the interface 3 does not exclude that the r-UE simultaneously communicates through the interface 1.
  • Step S704 Determine to transfer to other non-3GPP technologies for communication.
  • the determination is made by one of the following: r-UE, R-UE, eNB.
  • the non-3GPP technology includes one of the following: Bluetooth, WLAN, IrDA, ZigBee, and other wireless communication technologies that employ unlicensed spectrum.
  • Step S706 The r-UE uses non-3GPP technology for communication.
  • the non-3GPP technology may adopt an unlicensed spectrum bearer. If an unlicensed spectrum is used, the corresponding radio resource is independently selected by the r-UE (according to the corresponding technical rule) or coordinated by the network side network element.
  • the preferred embodiment is mainly described in the following scenario:
  • the r-UE communicates on the interface 3 through the non-3GPP technology to switch to the 3GPP technical communication.
  • FIG. 8 is a schematic flowchart of a method according to a preferred embodiment 4 of the present invention. As shown in FIG. 8, the process is specifically as follows:
  • Step S802 The r-UE communicates by using a non-3GPP technology.
  • the non-3GPP technology includes one of the following: Bluetooth, WLAN, IrDA, ZigBee, and other wireless communication technologies that employ unlicensed spectrum.
  • Step S804 It is determined to transfer to the 3GPP technology for communication.
  • the determination is made by one of the following: r-UE, R-UE, eNB.
  • the 3GPP technology is a D2D communication technology, such as sidelink.
  • Step S806 The r-UE communicates by using 3GPP technology.
  • the radio resource of the 3GPP technology is autonomously selected by the r-UE or configured by the eNB/R-UE, where the r-UE autonomously refers to the pre-configured resource and is stored in the UICC or the ME, or the eNB sends the message through a broadcast message, the r - The UE selects the required communication resource from the pre-configured resource or the broadcast indication resource.
  • the preferred embodiment mainly describes the scenario in which the r-UE communicates on the interface 3 and transfers to the new interface 3 for communication.
  • FIG. 9 is a schematic flowchart of a method according to a preferred embodiment 5 of the present invention. As shown in FIG. 9, the process is specifically:
  • Step S902 The r-UE performs communication through the interface 3.
  • the r-UE communicates through the interface 3, including one of the following: uplink user plane communication, uplink control plane communication and uplink user plane communication, uplink and downlink user plane communication, uplink and downlink control plane communication, and uplink and downlink user plane communication; Scenes 1, 2, 3, and 4 in 4.
  • the r-UE communicates on the interface 3 using 3GPP or non-3GPP technologies.
  • the r-UE communicating through the interface 3 does not exclude that the r-UE simultaneously communicates through the interface 1.
  • Step S904 It is determined to transfer to the new interface 3 for communication.
  • the determination is made by one of the following: r-UE, R-UE, eNB.
  • the transition to the new interface 3 includes one of the following: uplink user plane communication, uplink control plane communication and uplink user plane communication, uplink and downlink user plane communication, uplink and downlink control plane communication, and uplink and downlink user plane communication.
  • Step S906 The r-UE communicates through the new interface 3.
  • the communication resource is independently selected by the UE or configured by the eNB; when the new interface 3 adopts the non-3GPP technology, the communication resource is independently selected by the r-UE or the network side (R-UE and / or eNB) coordination.
  • FIG. 10 is a schematic structural diagram of a system for implementing service continuity according to a preferred embodiment 6 of the present invention.
  • the system includes: wireless access The network device 101, the remote terminal r-UE 102 and the relay R-UE 103; the radio access network device 101 comprises a base station 1011; the remote terminal r-UE 102 comprises a terminal receiving module 1021, a processing module 1022 and a transmitting module 1023;
  • the UE 103 includes a receiving module 1031, a processing module 1032, and a sending module 1033.
  • the remote terminal receiving module 1021 is configured to receive data transmitted by the base station module 1011 and/or the R-UE transmitting module 1033 through the air interface; the processing module 1022 of the remote terminal r-UE 102 is configured to autonomously select a communication path or communication technology or communication resource; The transmitting module 1023 of 102 is configured to transmit data and/or request information to the base station module 1011 or the R-UE receiving module.
  • the base station module 1011 is arranged to receive data and/or request information for the terminal 102 and to transmit data to the terminal r-UE 102 and/or R-UE 103.
  • the preferred embodiment of the present invention mainly describes an application scenario mainly implemented by the foregoing solution.
  • the wearable Wearables device/MTC/NB-IOT device (r-UE) sends data to the eNB through the relay (R-UE), and receives the information sent by the eNB through the Uu interface, and the relay passes through the Uu interface and the eNB.
  • the r-UE receives control signaling through the Uu port
  • the r-UE measures the channel quality of the interface 3 and the Uu interface and reports it to the eNB (directly or through the R-UE);
  • the eNB sends communication link reselection/switching information to the r-UE;
  • r-UE autonomously selects or selects a new R-UE according to the eNB indication
  • the r-UE transmits uplink data through the new R-UE.
  • the preferred embodiment may implement remote UE service continuity, ensuring the service continuity requirement of the remote UE by remote UE autonomous selection or by the eNB indicating the selected communication path or the communication technology between the remote UE and the relay.
  • a communication device for implementing service continuity is also provided, which is located in the remote user equipment r-UE.
  • the device is configured to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the device described in the following embodiments is preferably implemented in software Now, but hardware, or a combination of software and hardware, is also possible and conceived.
  • FIG. 11 is a structural block diagram of a communication apparatus for implementing service continuity according to an embodiment of the present invention. As shown in FIG. 11, the apparatus includes:
  • the first determining module 112 is configured to autonomously select or determine a communication path with the access network according to the first indication of the access network; the communication module 114 is connected to the first determining module 112, and is configured to use the communication path and The access network communicates.
  • FIG. 12 is a block diagram showing a preferred structure of a communication device for implementing service continuity according to an embodiment of the present invention.
  • the communication path includes: communicating with the access network through an interface 3, wherein The interface 3 is used to connect the r-UE to the access network by using the relay user equipment R-UE, and the device may further include:
  • the second determining module 116 is connected to the first determining module 112 and the communication module 114, and is configured to determine a communication technology for the r-UE to communicate with the R-UE according to a second indication of the access network.
  • the R-UE may include at least one of the following: layer 2 or layer 3 UE-to-network relay relay.
  • the r-UE may include at least one of the following: a legacy user equipment UE, a wearable Wearable terminal, an Internet of Things IOT/machine type device MTC terminal.
  • the access network includes: a base station.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • Step S202 the remote user equipment r-UE autonomously selects or determines a communication path with the access network according to the first indication of the access network;
  • Step S204 The r-UE communicates with the access network by using the communication path.
  • the foregoing storage medium may include, but is not limited to: a USB flash drive, only A medium that can store program code, such as a read-only memory (ROM), a random access memory (RAM), a removable hard disk, a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • removable hard disk such as a hard disk, a magnetic disk, or an optical disk.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the communication method and apparatus for implementing service continuity provided by the embodiments of the present invention have the following beneficial effects: the service continuity of the remote user equipment can be guaranteed, and the technical basis for the communication implementation of the wearable device is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种实现业务连续性的通信方法及装置,其中,该方法包括:远程用户设备自主选择或根据接入网的第一指示确定与所述接入网的通信路径;所述远程用户设备使用所述通信路径与所述接入网进行通信。通过本发明,实现了对通信路径的确定,因此,可以解决相关技术中缺少远程用户设备通信链路的确定方式和业务连续性的问题,进而能够保障远程用户设备的业务连续性,并且为可穿戴设备的通信实现提供了技术基础。

Description

实现业务连续性的通信方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种实现业务连续性的通信方法及装置。
背景技术
随着无线多媒体业务的发展,人们对高数据速率和用户体验的需求日益增长,从而对传统蜂窝网络的系统容量和覆盖提出了较高要求。另一方面公共安全、社交网络、近距离数据共享、本地广告等应用场景使得人们对了解附近人或事物并与之通信(Proximity Services,邻近服务)的需求逐渐增加。传统的以基站为中心的蜂窝网络在高数据速率以及邻近服务的支持方面存在明显的局限性,在这种需求背景下,代表未来通信技术发展新方向的D2D(Device-to-Device,设备到设备)技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少用户设备的电池功耗、提高数据速率,并改善网络基础设施的鲁棒性,很好地满足上述高数据速率业务和邻近服务的要求。目前D2D技术又称之为邻近服务(Proximity Services,简称为ProSe),单边链路(Sidelink,简称为SL)。
D2D技术通常包括D2D发现技术和D2D通信技术,其中,D2D发现技术是指用于判断/确定第一用户设备是否邻近第二用户设备的技术。通常,D2D用户设备间可通过发送或接收发现信号/信息来发现对方;D2D通信技术是指D2D用户设备之间部分或全部通信数据可以不通过网络基础设施而直接进行通信的技术。
另一方面,随着万物互联需求的发展,第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)对机器类型通信(Machine Type communication,简称为MTC)进行了标准化,R12和R13的演进的 MTC(Evolved MTC,简称为eMTC)工作基本已经完成,窄带物联网(Narrow Band-Internet of Things,简称为NB-IoT)的标准化工作目前尚在进行。其中R13eMTC在支持低成本的基础上,增加了覆盖增强的支持以及带宽受限的支持。一般来说,eMTC用户设备(User Equipment,简称为UE)的收发射频能力限制在1.4MHz,而NB-IoT设备的射频收发带宽限制在180kHz。演进的基站(Evolved Node B,简称为eNB)和eMTC/NB-IoT UE之间通常通过数据传输的多次重复达到覆盖增强的目的。考虑到eMTC/NB-IoT设备低成本特性,通常希望尽可能延长eMTC/NB-IoT设备的使用寿命,而覆盖增强特定会导致数据包的多次重复传输,从而快速耗费掉UE的电量。除了eMTC以及NB-IoT设备,可穿戴式设备也具备类似的应用需求,如低成本,带宽受限,低功率消耗等。
在3GPP新立项的课题中包括增强的D2D,主要针对可穿戴设备(Wearables)和物联网(Internet Of Thing,简称为IOT)/机器类型通信(Machine Type Communication,简称为MTC)应用,本文中上述设备统称为远程用户设备;可穿戴设备通过UE和接入网之间的中继(UE-to-network relay)实现与网络的通信,其中Wearables UE在eNB覆盖内可以通过PC5或Uu口通信,至少上行数据采用PC5。图1是根据本发明实施例的采用UE-to-network relay的通信架构示意图,采用UE-to-network relay通信架构如图1所示。
在相关技术中,对于上述提到的各种远程用户设备,由于其通信链路的状态可能随设备移动或者网络负载变化发生变化,并导致通信操作失败,然而对于远程用户设备通信链路的确定方式(例如初始选择或者重选时的通信链路确定方式),目前并没有给出合适的处理方案。
针对相关技术中缺少远程用户设备通信链路的确定方式和业务连续性的问题,目前尚未给出相应的技术方案。
发明内容
本发明实施例提供了一种实现业务连续性的通信方法及装置,以至少解决相关技术中缺少远程用户设备通信链路的确定方式和业务连续性的 问题。
根据本发明的一个实施例,提供了一种实现业务连续性的通信方法,包括:远程用户设备自主选择或根据接入网的第一指示确定与所述接入网的通信路径;所述远程用户设备使用所述通信路径与所述接入网进行通信。
可选地,所述通信路径包括以下至少之一:通过第一接口与所述接入网进行通信,其中,所述第一接口用于所述远程用户设备直接与所述接入网相连;通过第二接口与所述接入网进行通信,其中,所述第二接口用于所述远程用户设备通过中继用户设备与所述接入网相连。
可选地,在所述通信路径包括通过第二接口与所述接入网进行通信的情况下,所述方法还包括:所述远程用户设备自主选择或根据接入网的第二指示确定所述远程用户设备与所述中继用户设备进行通信的通信技术。
可选地,所述通信技术包括以下至少之一:基于3GPP的传输技术;基于非3GPP的传输技术。
可选地,所述基于3GPP的传输技术包括:设备到设备D2D技术;和/或,所述基于非3GPP的传输技术包括以下至少之一:蓝牙bluetooth技术,无线局域网WLAN/WiFi技术,红外数据通信IrDA技术,无线个域网ZigBee技术,以及其他采用非授权频谱的无线通信技术。
可选地,所述远程用户设备自主选择或根据接入网的第二指示确定所述远程用户设备与所述中继用户设备进行通信的通信技术包括以下至少之一:所述远程用户设备将所述第二接口原来使用的3GPP技术,转移为非3GPP技术进行传输;所述远程用户设备将所述第二接口原来使用的非3GPP技术,转移为3GPP技术进行传输;所述远程用户设备将所述第二接口原来使用的3GPP技术,转移为另一种3GPP技术进行传输;所述远程用户设备将所述第二接口原来使用的非3GPP技术,转移为另一种非3GPP技术进行传输。
可选地,远程用户设备自主选择或根据接入网的第一指示确定与所述接入网的通信路径包括以下至少之一:所述远程用户设备将原来通过所述 第一接口传输的业务的全部或部分,转移到所述第二接口进行传输;所述远程用户设备将原来通过所述第二接口传输的业务的全部或部分,转移到所述第一接口进行传输;所述远程用户设备将原来通过所述第一接口传输的业务的全部或部分,转移到与目标基站直接相连的接口进行传输;所述远程用户设备将原来通过所述第二接口传输的业务的全部或部分,转移到与目标中继用户设备相连的空口进行传输。
可选地,所述中继用户设备包括以下至少之一:层2或层3的UE-to-network中继relay。
可选地,所述第一接口为Uu接口;和/或,所述第二接口为远程用户设备和中继用户设备之间的空口。
可选地,远程用户设备自主选择与所述接入网的通信路径包括:所述远程用户设备根据以下信息至少之一确定与所述接入网的通信路径:链路质量、业务服务质量QoS需求、功耗需求、预配置的规则、接入网指示信息。
可选地,所述预配置的规则包括以下至少之一:通信路径的优先级;通信路径的链路质量门限;资源配置规则。
可选地,所述预配置的规则存储在所述远程用户设备的通用集成电路卡UICC或移动设备ME中,或者通过系统广播消息从所述接入网接收。
可选地,所述接入网指示信息用于指示以下内容至少之一:同时采用第一接口和第二接口与所述接入网进行通信,其中,所述第一接口用于所述远程用户设备直接与所述接入网相连,所述第二接口用于所述远程用户设备通过中继用户设备与所述接入网相连;所述第一接口和所述第二接口上通信的业务类型,其中所述业务类型包括以下之一:业务的QoS,控制面业务,用户面业务,上行或下行业务;所述第一接口和所述第二接口的优先级;所述第二接口的发现资源和/或通信资源;所述第二接口采用3GPP或非3GPP技术。
可选地,所述远程用户设备包括以下至少之一:用户设备UE、可穿戴Wearable终端、物联网IOT/机器类型设备MTC终端。
可选地,所述接入网包括:基站。
可选地,所述远程用户设备使用所述通信路径与所述接入网进行通信包括以下通信类型至少之一:上行控制面CP通信;上行用户面UP通信;下行控制面CP通信;下行用户面UP通信。
可选地,所述第一指示为用于指示通信路径的系统消息或专用指令,其中,所述专用指令包括以下至少之一:层1信令,层2信令,层3信令。
可选地,所述第二指示为用于指示通信技术的系统消息或专用指令,其中,所述专用指令包括以下至少之一:层1信令,层2信令,层3信令。
可选地,所述第一接口和所述第二接口为同频或异频;和/或,所述第二接口采用授权频谱或非授权频谱。
可选地,所述远程用户设备位于所述接入网的覆盖范围内或覆盖范围外,或所述远程用户设备位于所述接入网增强的覆盖范围内;所述中继用户设备位于所述接入网的覆盖范围内。
根据本发明的另一实施例,提供了一种实现业务连续性的通信装置,位于远程用户设备中,所述装置包括:第一确定模块,设置为自主选择或根据接入网的第一指示确定与所述接入网的通信路径;通信模块,设置为使用所述通信路径与所述接入网进行通信。
可选地,所述通信路径包括:通过第二接口与所述接入网进行通信,其中,所述第二接口用于所述远程用户设备通过中继用户设备与所述接入网相连,则所述装置还包括:第二确定模块,设置为自主选择或根据接入网的第二指示确定所述远程用户设备与所述中继用户设备进行通信的通信技术。
可选地,所述中继用户设备包括以下至少之一:层2或层3的UE-to-network中继relay。
可选地,所述远程用户设备包括以下至少之一:用户设备UE、可穿戴Wearable终端、物联网IOT/机器类型设备MTC终端。
可选地,所述接入网包括:基站。
根据本发明的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:远程用户设备自主选择或根据接入网的第一指示确定与所述接入网的通信路径;所述远程用户设备使用所述通信路径与所述接入网进行通信。
通过本发明,由于远程用户设备采用自主选择或者根据接入网的指示确定与接入网的通信路径,并采用确定的通信路径进行通信,从而实现了对通信路径的确定,因此,可以解决相关技术中缺少远程用户设备通信链路的确定方式和业务连续性的问题,进而能够保障远程用户设备的业务连续性,并且为可穿戴设备的通信实现提供了技术基础。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的采用UE-to-network relay的通信架构示意图;
图2是根据本发明实施例的实现业务连续性的通信方法的流程图;
图3是根据本发明优选实施例的远程用户设备通过中继用户设备通信的架构示意图;
图4a是根据本发明优选实施例的实现场景1的示例图;
图4b是根据本发明优选实施例的实现场景2的示例图;
图4c是根据本发明优选实施例的实现场景3的示例图;
图4d是根据本发明优选实施例的实现场景4的示例图;
图5是根据本发明优选实施例1的方法的流程示意图;
图6是根据本发明优选实施例2的方法的流程示意图;
图7是根据本发明优选实施例3的方法的流程示意图;
图8是根据本发明优选实施例4的方法的流程示意图;
图9是根据本发明优选实施例5的方法的流程示意图;
图10是根据本发明优选实施例6的实现业务连续性的系统结构示意图;
图11是根据本发明实施例的实现业务连续性的通信装置的结构框图;
图12是根据本发明实施例的实现业务连续性的通信装置的优选结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在对相关技术的研究和实践过程中,发明人发现目前存在以下问题:可穿戴Wearables/物联网IOT/机器类型设备MTC的UE(以下称为远程用户设备,即remote-UE,简称r-UE)通过中继用户设备(relay UE,以下简称R-UE)或者直接与网络通信,由于r-UE/R-UE设备移动或者网络负载变化可能造成通信链路状态变化,导致r-UE/R-UE的通信操作失败。
为了保障r-UE的业务连续性,需要解决r-UE通信链路和/或通信技术如何选择的问题。基于上述考虑,本发明实施例提供了一种实现业务连续性的通信方案,以至少解决上述问题至少之一。
方法实施例
在本实施例中提供了一种实现业务连续性的通信方法,图2是根据本发明实施例的实现业务连续性的通信方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,远程用户设备自主选择或根据接入网的第一指示确定与所述接入网的通信路径;
步骤S204,所述远程用户设备使用所述通信路径与所述接入网进行通信。
通过上述步骤,由于远程用户设备采用自主选择或者根据接入网的指示确定与接入网的通信路径,并采用确定的通信路径进行通信,从而实现了对通信路径的确定,因此,可以解决相关技术中缺少远程用户设备通信链路的确定方式和业务连续性的问题,进而能够保障远程用户设备的业务连续性,并且为可穿戴设备的通信实现提供了技术基础。
其中,所述第一指示为用于指示通信路径的系统消息或专用指令,其可以包括以下至少之一:层1信令,层2信令,层3信令。
可选地,所述r-UE可以包括但不限于以下至少之一:用户设备UE、可穿戴Wearable终端、物联网IOT/机器类型设备MTC终端。所述接入网可以包括但不限于:基站。可选地,所述r-UE可位于所述接入网的覆盖范围内或覆盖范围外,或者所述r-UE可位于所述接入网增强的覆盖范围内;所述R-UE可位于所述接入网的覆盖范围内。
作为一种优选实施方式,所述通信路径可以包括以下至少之一:
通过第一接口与所述接入网进行通信,其中,所述第一接口用于所述r-UE直接与所述接入网相连,通常该第一接口可以为Uu接口;
通过第二接口与所述接入网进行通信,其中,所述第二接口用于所述r-UE通过中继用户设备R-UE与所述接入网相连,通常第二接口可以为r-UE和R-UE之间的空口。
可选地,所述第一接口和所述第二接口可以为同频或异频;和/或,所述第二接口可以采用授权频谱或非授权频谱。
其中,所述R-UE可以包括以下至少之一:层2或层3的UE-to-network中继(relay)。
可选地,在所述通信路径包括通过第二接口与所述接入网进行通信的情况下,所述r-UE还可以自主选择或根据接入网的第二指示确定所述r-UE与所述R-UE进行通信的通信技术。例如,所述通信技术可以包括基于3GPP的传输技术,和/或基于非3GPP的传输技术。
其中,所述第二指示为用于指示通信技术的系统消息或专用指令,其可以包括以下至少之一:层1信令,层2信令,层3信令。
其中,所述基于3GPP的传输技术可以包括D2D通信技术(例如sidelink技术);所述基于非3GPP的传输技术可以包括以下至少之一:蓝牙(bluetooth)技术,无线局域网(WLAN)/无线保真(WiFi)技术,红外数据通信(Infrared Data Association,简称为IrDA)技术,无线个域网(ZigBee)技术,以及其他采用非授权频谱的无线通信技术。
可选地,上述r-UE自主选择或根据接入网的第二指示确定所述r-UE与所述R-UE进行通信的通信技术的场景可以包括如下的一种或多种:
所述r-UE将所述第二接口原来使用的3GPP技术,转移为非3GPP技术进行传输;
所述r-UE将所述第二接口原来使用的非3GPP技术,转移为3GPP技术进行传输;
所述r-UE将所述第二接口原来使用的3GPP技术,转移为另一种3GPP技术进行传输;
所述r-UE将所述第二接口原来使用的非3GPP技术,转移为另一种非3GPP技术进行传输。
可选地,上述r-UE自主选择或根据接入网的第一指示确定与所述接入网的通信路径的场景可以包括如下的一种或多种:
所述r-UE将原来通过所述第一接口传输的业务的全部或部分,转移到所述第二接口进行传输;
所述r-UE将原来通过所述第二接口传输的业务的全部或部分,转移到所述第一接口进行传输;
所述r-UE将原来通过所述第一接口传输的业务的全部或部分,转移到与目标基站直接相连的接口进行传输;
所述r-UE将原来通过所述第二接口传输的业务的全部或部分,转移到与目标R-UE相连的空口进行传输。
作为一种优选实施方式,在步骤S202中,r-UE可以根据以下信息的至少之一来确定与所述接入网的通信路径:链路质量、业务服务质量(Quality of service,简称为QoS)需求、功耗需求、预配置的规则、接入网指示信息。其中,所述预配置的规则可以采用如下的一种或多种:通信路径的优先级;通信路径的链路质量门限;资源配置规则。
可选地,所述预配置的规则可以存储在所述r-UE的UICC(Universal Integrated Circuit Card,通用集成电路卡)或ME(Mobility Equipment,移动设备)中,或者通过系统广播消息从所述接入网接收。
可选地,所述接入网指示信息可以用于指示以下内容至少之一:
同时采用第一接口和第二接口与所述接入网进行通信,其中,所述第一接口用于所述r-UE直接与所述接入网相连,所述第二接口用于所述r-UE通过中继用户设备R-UE与所述接入网相连;
所述第一接口和所述第二接口上通信的业务类型,其中所述业务类型包括以下之一:业务的QoS,控制面业务,用户面业务,上行或下行业务;
所述第一接口和所述第二接口的优先级;
所述第二接口的发现资源和/或通信资源;
所述第二接口采用3GPP或非3GPP技术;等等。
作为一种优选实施方式,所述r-UE使用所述通信路径与所述接入网进行通信包括以下通信类型至少之一:上行控制面(Control Plane,简称为CP)通信;上行用户面(User Plane,简称为UP)通信;下行CP通信;下行UP通信。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所 述的方法。
下面结合优选实施例进行说明,以下优选实施例结合了上述实施例及其优选实施方式。
图3是根据本发明优选实施例的r-UE通过R-UE通信的架构示意图,如图3所示,给出了一种r-UE通过R-UE通信的网络结构,该网络结构包括r-UE装置、R-UE装置和接入网装置。r-UE装置可以包括以下至少一种:用户设备(UE)、Wearables、IOT/MTC终端(如category M1/category NB-IOT设备),如无特殊说明,本优选实施例中出现的r-UE代表上述终端装置的一种或几种,需要指出的是:本优选实施例的方案可适用于各种类型的UE。r-UE根据接入网装置发送的指示信息或者自主选择通信路径(r-UE和R-UE之间的空口链路或者r-UE与接入网装置之间的Uu链路),进一步的,所述r-UE根据接入网装置发送的指示信息或者自主选择r-UE和R-UE之间链路采用的传输技术,其中r-UE和R-UE之间链路可采用基于3GPP LTE的传输技术(D2D通信技术,例如sidelink),或者基于非3GPP的传输技术(如蓝牙bluetooth,无线局域网WLAN,红外等)。
R-UE装置可以包括以下至少一种:relay,R-UE装置负责在接入网装置和r-UE装置之间传递控制面和/或用户面信息,所述R-UE为层2或层3的relay,所述R-UE和r-UE之间可以采用以下至少之一进行通信:sidelink,bluetooth,WLAN/WiFi,IrDA(Infrared Data Association,红外数据通信),ZigBee(无线个域网),以及其他采用非授权频谱的无线通信技术。
接入网装置至少包括:eNB。其中eNB主要负责:向r-UE装置和/或R-UE装置发送信息,接收r-UE装置和/或R-UE发送的信息。
本优选实施例还描述了一种利用上述装置实现r-UE业务连续性的方法,具体包括:r-UE自主选择或根据接入网的指示确定与接入网的通信路径;以及r-UE自主选择或根据接入网的指示确定与R-UE之间的通信技术。
所述r-UE位于接入网覆盖范围内或覆盖范围外,进一步,r-UE位于增强的覆盖范围内。所述r-UE通过Uu口接收接入网发送的系统消息,同 步信号,寻呼消息等;为了节省功耗,r-UE的上行用户面数据可通过R-UE进行传输。
所述自主选择是指UE根据预配置的规则选择图3中的接口1或接口3(及接口2)与接入网进行通信,其中,图3中的接口1即为上述提到的第一接口,图3中的接口3即为上述提到的第二接口,为便于理解,下文中以接口1和接口3进行描述。其中,预配置规则存储在UE的UICC(Universal Integrated Circuit Card,通用集成电路卡)或ME(Mobility Equipment,移动设备)中,或者接入网eNB通过系统广播消息发送。
所述通信路径可以包括:接口1,接口3,上行,下行;所述通信包括控制面CP业务和/或用户面UP业务的通信。
当r-UE和/或R-UE移动或者网络负载变化导致通信链路的重新选择可以包括以下场景之一:
1)r-UE原来通过接口1传输的业务(包括用户面和/或控制面数据,上行和/或下行)的全部或部分,转移到接口3进行传输;
2)r-UE原来通过接口3传输的业务(包括用户面和/或控制面数据,上行和/或下行)的全部或部分,转移到接口1进行传输;其中接口3可采用3GPP或非3GPP技术;
3)r-UE原来通过接口1传输的业务(包括用户面和/或控制面数据,上行和/或下行)的全部或部分,转移到新的接口1(连接新的小区,即与目标基站相连的接口,下同)进行传输;
4)r-UE原来通过接口3传输的业务(包括用户面和/或控制面数据,上行和/或下行)的全部或部分,转移到新的接口3(连接新的relay,即与目标R-UE相连的空口,下同)进行传输。
本优选实施例后续描述主要针对的是上述场景1)和2);对于场景3),可以采用已有小区重选或切换技术实现业务连续性;对于场景4),如果接口3采用sidelink传输,则可采用已有relay选择/重选实现,如果采用非3GPP技术,则考虑采用相关技术或者增强功能实现。
r-UE和R-UE之间接口3的通信技术的重新选择可以包括以下场景之 一:
1)接口3原来采用3GPP技术(D2D通信技术,例如sidelink)传输,需要转移到非3GPP技术进行传输;
2)接口3原来采用非3GPP技术传输,需要转移到3GPP技术进行传输;
3)接口3原来采用非3GPP技术传输,需要转移到另一种非3GPP技术;
4)接口3原来采用3GPP技术(D2D通信技术,例如sidelink)传输,需要转移到新的接口3并采用3GPP技术或非3GPP技术进行传输。
需要指出的是:上述场景并不排除接口3中的部分业务采用3GPP技术,部分业务采用非3GPP技术。
图4a至d分别是根据本发明优选实施例的各种实现场景示例图,如图4所示,其中用户面是指用户面数据传输路径,控制面是指控制面数据传输路径;注意其中r-UE的上行用户面通信通过R-UE进行,但是本优选实施例并不排除r-UE的上行用户面通信也通过接口1进行的场景。
所述r-UE根据以下之一:链路质量、业务服务质量(QoS)需求、功耗需求、预配置的规则、eNB指示信息进行判断,以确定所需的通信路径。
其中,所述预配置规则可以包括以下至少之一:优先级,门限;其中优先级是指接口1和接口3之间优先级,如接口1优先级高,则优先选择接口1;门限是指接口1和/或接口3的链路质量要求,如果当前接口的链路质量低于指定门限,则UE可以选择其他接口或其他通信技术继续通信,如果UE选择其他接口或其他通信技术,则UE通知接入网设备。进一步的,所述预配置规则还可以包括资源配置。
所述接入网指示可以是接入网设备通过系统消息或专用信令向UE发送用于指示通信路径和/或通信技术的信息,所述专用信令包括以下至少一种:层1信令,层2信令,层3信令。进一步的,所述接入网指示还可以包括以下之一:同时采用接口1和接口3进行通信,接口1和接口3上通信的业务类型,接口1和接口3的优先级,接口3的发现、和/或通信资源, 接口3采用3GPP或非3GPP技术;其中所述业务类型可包括以下之一:业务的QoS,控制面业务,用户面业务,上行或下行业务。
所述R-UE可以是UE-to-network relay。
所述接口1和接口3可以为同频或异频,接口3采用授权频谱或非授权频谱。
所述r-UE和R-UE之间(接口3)的通信技术可以包括以下之一:sidelink,bluetooth,WLAN,IrDA,ZigBee,以及其他采用非授权频谱的无线通信技术。
基于上述介绍,本优选实施例的具体实现步骤如下:
步骤1:r-UE与接入网进行通信。
所述r-UE通过图3中的路径与接入网eNB进行通信。
步骤2:判断是否选择新的通信路径或通信技术,如果是,则转向步骤3,否则,转向步骤4。
所述判断由r-UE或R-UE或eNB进行,具体的,所述r-UE为空闲态时,r-UE可进行判断;所述R-UE为连接态,所述R-UE根据接口1和/或接口2和/或接口3的链路状态、eNB指示进行判断,所述eNB根据r-UE和/或R-UE上报信息、本地策略、无线资源管理RRM等进行判断。
三种节点判断结果的优先级顺序为:eNB,R-UE,r-UE;即同时存在多种结果时,以eNB为准,其次为R-UE,最后为r-UE。进一步,如果r-UE或R-UE确定结果,所述r-UE或R-UE向eNB发送结果指示信息,eNB确定接受或拒绝r-UE或R-UE的判断结果;进一步的,所述r-UE自主选择时,可不通知eNB。
所述判断通过以下参数之一进行:链路质量,业务QoS需求,预配置规则,接入网指示信息。例如:当前链路质量低于预配门限,和/或当前链路不满足业务所需的QoS,和/或满足预配置规则指示的重选链路条件,和/或接入网指示进行重选/切换,则可以确定选择新的链路或技术,否则不选择新的链路或技术。
所述通信路径包括以下之一:接口1,接口3,上行UL,下行DL;所述通信包括以下之一:用户面,控制面;进一步,所述通信路径还包括:r-UE选择新的R-UE或选择新的小区。
所述通信技术是指接口3采用的通信技术,包括以下之一:3GPP技术,非3GPP技术。其中3GPP技术包括:D2D通信技术,例如sidelink通信;非3GPP技术包括以下之一:bluetooth,WLAN,IrDA,ZigBee,以及其他采用非授权频谱的无线通信技术。
步骤3:r-UE选择新的路径和/或技术进行通信。
所述r-UE自主或根据eNB的指示选择新的路径和/或技术;所述r-UE位于eNB覆盖外时,或所述r-UE预配置采用自主选择方式时,所述r-UE可选择新的路径或技术,注意,如果r-UE位于eNB覆盖外,则所述r-UE不能选择接口1;如果r-UE选择非3GPP技术,则需要R-UE支持所选择的技术,且满足所选技术的规定条件。
步骤4:r-UE继续在原路径进行通信。
所述r-UE不需要更新路径和/或技术,则继续在原路径,和/或采用原技术进行通信。所述继续在原路径进行通信还包括:所述r-UE选择了新的路径,和/或新技术,但是eNB和/或R-UE拒绝新的选择,则所述r-UE继续采用原路径。
下面结合具体情景描述上述实施例。
优选实施例1
本优选实施例主要描述的是如下场景:r-UE通过接口1通信,转移到接口3通信。
本优选实施例提供了一种实现业务连续性的方法,请参考图5,图5是根据本发明优选实施例1的方法的流程示意图,如图5所示,该流程具体为:
步骤S502:r-UE通过接口1进行通信。
所述r-UE通过接口1进行通信包括以下之一:下行控制面通信和下 行用户面通信,下行用户面和上下行控制面通信,上下行控制面通信;如图4中的场景1,2,3所示,即r-UE的上行用户面通信通过R-UE进行。
注意:所述r-UE通过接口1进行通信并不排除:r-UE同时通过接口3进行通信。
步骤S504:确定转换到接口3进行通信。
所述确定由以下之一进行:r-UE,R-UE,eNB。所述转换到接口3包括以下之一:下行控制面和/或下行用户面通信,下行用户面和/或上下行控制面通信,上下行控制面通信。
进一步的,所述转换还包括:r-UE选择或原eNB指示新的eNB(即新的接口1)。
步骤S506:r-UE通过接口3进行通信。
所述r-UE通过接口3可采用3GPP技术或非3GPP技术进行通信。所述r-UE在通过接口3通信之前,还需要选择R-UE,如果r-UE在接口3采用3GPP技术,则r-UE采用现有UE-to-network relay的规则进行选择,否则,r-UE根据预配置规则或eNB指示进行选择。所述接口3的资源配置可以根据现有规则进行,或者预配置在r-UE的UICC或ME中,或者eNB根据r-UE的请求进行配置。
优选实施例2
本优选实施例主要描述的是如下场景:UE通过接口3通信,转移到接口1通信。
图6是根据本发明优选实施例2的方法的流程示意图,如图6所示,该流程具体为:
步骤S602:r-UE通过接口3进行通信。
所述r-UE通过接口3进行通信包括以下之一:上行用户面通信,上行控制面通信和上行用户面通信,上下行用户面通信,上下行控制面通信和上下行用户面通信;如图4中的场景1,2,3,4所示。
注意:所述r-UE通过接口3进行通信并不排除:r-UE同时通过接口1进行通信。
步骤S604:确定转换到接口1进行通信。
所述确定由以下之一进行:r-UE,R-UE,eNB。所述转换到接口1包括以下之一:上下行控制面通信,下行用户面通信。注意:考虑r-UE的上行用户面通信通过接口3进行,但是并不排除r-UE也可通过接口1进行上行用户面通信。
进一步的,所述转换还包括:r-UE选择或eNB指示选择新的R-UE(新的接口3)。
步骤S606:r-UE通过接口1进行通信。
所述接口1通信资源由eNB进行配置,所述eNB配置可通过r-UE向eNB发送请求消息(可通过R-UE),eNB发送响应消息并包括接口1的无线通信资源。
优选实施例3
本优选实施例主要描述的是如下场景:r-UE在接口3通过3GPP技术通信,转换到其他非3GPP技术通信。
图7是根据本发明优选实施例3的方法的流程示意图,如图7所示,该流程具体为:
步骤S702:r-UE采用D2D通信技术进行通信。
所述r-UE通过接口3进行通信包括以下之一:上行用户面通信,上行控制面通信和上行用户面通信,上下行用户面通信,上下行控制面通信和上下行用户面通信;如图4中的场景1,2,3,4所示。
注意:所述r-UE通过接口3进行通信并不排除:r-UE同时通过接口1进行通信。
步骤S704:确定转移到其他非3GPP技术进行通信。
所述确定由以下之一进行:r-UE,R-UE,eNB。所述非3GPP技术包括以下之一:bluetooth,WLAN,IrDA,ZigBee,以及其他采用非授权频谱的无线通信技术。
步骤S706:r-UE采用非3GPP技术进行通信。
所述非3GPP技术可采用非授权频谱承载,如果采用非授权频谱,则相应的无线资源由r-UE自主选择(根据相应的技术规则)或网络侧网元协调。
优选实施例4
本优选实施例主要描述的是如下场景:r-UE在接口3通过非3GPP技术通信,转换到3GPP技术通信。
图8是根据本发明优选实施例4的方法的流程示意图,如图8所示,该流程具体为:
步骤S802:r-UE采用非3GPP技术进行通信。
所述非3GPP技术包括以下之一:bluetooth,WLAN,IrDA,ZigBee,以及其他采用非授权频谱的无线通信技术。
步骤S804:确定转移到3GPP技术进行通信。
所述确定由以下之一进行:r-UE,R-UE,eNB。所述3GPP技术为D2D通信技术,例如sidelink。
步骤S806:r-UE采用3GPP技术通信。
所述3GPP技术的无线资源由r-UE自主选择或eNB/R-UE配置,其中r-UE自主选择是指预配置资源并存储在UICC或ME中,或eNB通过广播消息发送,所述r-UE从预配置资源或广播指示资源中选择所需的通信资源。
优选实施例5
本优选实施例主要描述的是如下场景:r-UE在接口3通信,转移到新的接口3进行通信。
图9是根据本发明优选实施例5的方法的流程示意图,如图9所示,该流程具体为:
步骤S902:r-UE通过接口3进行通信。
所述r-UE通过接口3进行通信包括以下之一:上行用户面通信,上行控制面通信和上行用户面通信,上下行用户面通信,上下行控制面通信和上下行用户面通信;如图4中的场景1,2,3,4所示。
所述r-UE在接口3采用3GPP或非3GPP技术进行通信。
注意:所述r-UE通过接口3进行通信并不排除:r-UE同时通过接口1进行通信。
步骤S904:确定转移到新的接口3进行通信。
所述确定由以下之一进行:r-UE,R-UE,eNB。所述转换到新的接口3包括以下之一:上行用户面通信,上行控制面通信和上行用户面通信,上下行用户面通信,上下行控制面通信和上下行用户面通信。
步骤S906:r-UE通过新的接口3进行通信。
所述新的接口3采用3GPP技术时,通信资源由UE自主选择或eNB进行配置;所述新的接口3采用非3GPP技术时,通信资源由r-UE自主选择或网络侧(R-UE和/或eNB)协调。
优选实施例6
本优选实施例主要描述的是一种实现业务连续性的系统,图10是根据本发明优选实施例6的实现业务连续性的系统结构示意图,如图10所示,本系统包括:无线接入网装置101,远程终端r-UE 102和中继R-UE103;无线接入网装置101包括基站1011;远程终端r-UE102包括终端接收模块1021、处理模块1022和发送模块1023;中继R-UE103包括:接收模块1031、处理模块1032和发送模块1033。
远程终端接收模块1021设置为通过空口接收基站模块1011和/或R-UE发送模块1033发送的数据;远程终端r-UE 102的处理模块1022设置为自主选择通信路径或通信技术或通信资源;终端102的发送模块1023设置为向基站模块1011或R-UE接收模块发送数据和/或请求信息。基站模块1011设置为接收终端102的数据和/或请求信息和向终端r-UE102和/或R-UE103发送数据。
优选实施例7
本优选实施例主要描述的是上述方案主要实现的应用场景。在该应用场景中,可穿戴Wearables设备/MTC/NB-IOT设备(r-UE)通过relay(R-UE)向eNB发送数据,并通过Uu口接收eNB发送的信息,relay通过Uu口与eNB通信:
1)r-UE通过Uu口接收控制信令;
2)r-UE测量接口3和Uu口的信道质量并上报eNB(直接或通过R-UE);
3)eNB向r-UE发送通信链路重选/切换信息;
4)r-UE自主选择或根据eNB指示选择新的R-UE;
5)r-UE通过新的R-UE发送上行数据。
本优选实施例可以实现远程UE业务连续性,通过远程UE自主选择或者eNB指示选择的通信路径或远程UE和中继之间的通信技术,保证远程UE的业务连续性需求。
装置实施例
在本实施例中还提供了一种实现业务连续性的通信装置,位于远程用户设备r-UE中,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实 现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图11是根据本发明实施例的实现业务连续性的通信装置的结构框图,如图11所示,该装置包括:
第一确定模块112,设置为自主选择或根据接入网的第一指示确定与所述接入网的通信路径;通信模块114,与第一确定模块112相连,设置为使用所述通信路径与所述接入网进行通信。
图12是根据本发明实施例的实现业务连续性的通信装置的优选结构框图,如图12所示,可选地,所述通信路径包括:通过接口3与所述接入网进行通信,其中,所述接口3用于所述r-UE通过中继用户设备R-UE与所述接入网相连,则所述装置还可以包括:
第二确定模块116,与第一确定模块112和通信模块114相连,设置为自主选择或根据接入网的第二指示确定所述r-UE与所述R-UE进行通信的通信技术。
可选地,所述R-UE可以包括以下至少之一:层2或层3的UE-to-network中继relay。
可选地,所述r-UE可以包括以下至少之一:传统用户设备UE、可穿戴Wearable终端、物联网IOT/机器类型设备MTC终端。
可选地,所述接入网包括:基站。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
步骤S202,远程用户设备r-UE自主选择或根据接入网的第一指示确定与所述接入网的通信路径;
步骤S204,所述r-UE使用所述通信路径与所述接入网进行通信。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只 读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种实现业务连续性的通信方法及装置具有以下有益效果:能够保障远程用户设备的业务连续性,并且为可穿戴设备的通信实现提供了技术基础。

Claims (25)

  1. 一种实现业务连续性的通信方法,包括:
    远程用户设备自主选择或根据接入网的第一指示确定与所述接入网的通信路径;
    所述远程用户设备使用所述通信路径与所述接入网进行通信。
  2. 根据权利要求1所述的方法,其中,所述通信路径包括以下至少之一:
    通过第一接口与所述接入网进行通信,其中,所述第一接口用于所述远程用户设备直接与所述接入网相连;
    通过第二接口与所述接入网进行通信,其中,所述第二接口用于所述远程用户设备通过中继用户设备与所述接入网相连。
  3. 根据权利要求2所述的方法,其中,在所述通信路径包括通过第二接口与所述接入网进行通信的情况下,所述方法还包括:
    所述远程用户设备自主选择或根据接入网的第二指示确定所述远程用户设备与所述中继用户设备进行通信的通信技术。
  4. 根据权利要求3所述的方法,其中,所述通信技术包括以下至少之一:
    基于3GPP的传输技术;
    基于非3GPP的传输技术。
  5. 根据权利要求4所述的方法,其中,
    所述基于3GPP的传输技术包括:设备到设备D2D技术;和/或,
    所述基于非3GPP的传输技术包括以下至少之一:蓝牙bluetooth技术,无线局域网WLAN/WiFi技术,红外数据通信IrDA技术,无线个域网ZigBee技术,以及其他采用非授权频谱的无线通信技术。
  6. 根据权利要求3所述的方法,其中,所述远程用户设备自主选择或根据接入网的第二指示确定所述远程用户设备与所述中继用户设备进行通信的通信技术包括以下至少之一:
    所述远程用户设备将所述第二接口原来使用的3GPP技术,转移为非3GPP技术进行传输;
    所述远程用户设备将所述第二接口原来使用的非3GPP技术,转移为3GPP技术进行传输;
    所述远程用户设备将所述第二接口原来使用的3GPP技术,转移为另一种3GPP技术进行传输;
    所述远程用户设备将所述第二接口原来使用的非3GPP技术,转移为另一种非3GPP技术进行传输。
  7. 根据权利要求2所述的方法,其中,远程用户设备自主选择或根据接入网的第一指示确定与所述接入网的通信路径包括以下至少之一:
    所述远程用户设备将原来通过所述第一接口传输的业务的全部或部分,转移到所述第二接口进行传输;
    所述远程用户设备将原来通过所述第二接口传输的业务的全部或部分,转移到所述第一接口进行传输;
    所述远程用户设备将原来通过所述第一接口传输的业务的全部或部分,转移到与目标基站直接相连的接口进行传输;
    所述远程用户设备将原来通过所述第二接口传输的业务的全部或部分,转移到与目标中继用户设备相连的空口进行传输。
  8. 根据权利要求2至7中任一项所述的方法,其中,所述中继用户设备包括以下至少之一:
    层2或层3的UE-to-network中继relay。
  9. 根据权利要求2至7中任一项所述的方法,其中,
    所述第一接口为Uu接口;和/或,
    所述第二接口为远程用户设备和中继用户设备之间的空口。
  10. 根据权利要求1至9中任一项所述的方法,其中,远程用户设备自主选择与所述接入网的通信路径包括:
    所述远程用户设备根据以下信息至少之一确定与所述接入网的通信路径:
    链路质量、业务服务质量QoS需求、功耗需求、预配置的规则、接入网指示信息。
  11. 根据权利要求10所述的方法,其中,所述预配置的规则包括以下至少之一:
    通信路径的优先级;通信路径的链路质量门限;资源配置规则。
  12. 根据权利要求10所述的方法,其中,所述预配置的规则存储在所述远程用户设备的通用集成电路卡UICC或移动设备ME中,或者通过系统广播消息从所述接入网接收。
  13. 根据权利要求10所述的方法,其中,所述接入网指示信息用于指示以下内容至少之一:
    同时采用第一接口和第二接口与所述接入网进行通信,其中,所述第一接口用于所述远程用户设备直接与所述接入网相连,所述第二接口用于所述远程用户设备通过中继用户设备与所述接入网相连;
    所述第一接口和所述第二接口上通信的业务类型,其中所述业务类型包括以下之一:业务的QoS,控制面业务,用户面业务,上行或下行业务;
    所述第一接口和所述第二接口的优先级;
    所述第二接口的发现资源和/或通信资源;
    所述第二接口采用3GPP或非3GPP技术。
  14. 根据权利要求1至13中任一项所述的方法,其中,所述远程用户设备包括以下至少之一:
    用户设备UE、可穿戴Wearable终端、物联网IOT/机器类型设备MTC终端。
  15. 根据权利要求1至13中任一项所述的方法,其中,所述接入网包括:基站。
  16. 根据权利要求1至13中任一项所述的方法,其中,所述远程用户设备使用所述通信路径与所述接入网进行通信包括以下通信类型至少之一:
    上行控制面CP通信;
    上行用户面UP通信;
    下行CP通信;
    下行UP通信。
  17. 根据权利要求1至13中任一项所述的方法,其中,所述第一指示为用于指示通信路径的系统消息或专用指令,其中,所述专用指令包括以下至少之一:层1信令,层2信令,层3信令。
  18. 根据权利要求3至6中任一项所述的方法,其中,所述第二指示为用于指示通信技术的系统消息或专用指令,其中,所述专用指令包括以下至少之一:层1信令,层2信令,层3信令。
  19. 根据权利要求2至7、13中任一项所述的方法,其中,
    所述第一接口和所述第二接口为同频或异频;和/或,
    所述第二接口采用授权频谱或非授权频谱。
  20. 根据权利要求1至13中任一项所述的方法,其中,所述远程用户设备位于所述接入网的覆盖范围内或覆盖范围外,或所述远程用户设备位于所述接入网增强的覆盖范围内;所述中继用户设备位于所述接入网的覆盖范围内。
  21. 一种实现业务连续性的通信装置,位于远程用户设备中,所述装置包括:
    第一确定模块,设置为自主选择或根据接入网的第一指示确定与所述接入网的通信路径;
    通信模块,设置为使用所述通信路径与所述接入网进行通信。
  22. 根据权利要求21所述的装置,其中,所述通信路径包括:通过第二接口与所述接入网进行通信,其中,所述第二接口用于所述远程用户设备通过中继用户设备与所述接入网相连,则所述装置还包括:
    第二确定模块,设置为自主选择或根据接入网的第二指示确定所述远程用户设备与所述中继用户设备进行通信的通信技术。
  23. 根据权利要求22所述的装置,其中,所述中继用户设备包括以下至少之一:层2或层3的UE-to-network中继relay。
  24. 根据权利要求21至23中任一项所述的装置,其中,所述远程用户设备包括以下至少之一:用户设备UE、可穿戴Wearable终端、物联网IOT/机器类型设备MTC终端。
  25. 根据权利要求21至23中任一项所述的装置,其中,所述接入网包括:基站。
PCT/CN2017/073164 2016-06-17 2017-02-09 实现业务连续性的通信方法及装置 WO2017215275A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17812393.1A EP3474602A4 (en) 2016-06-17 2017-02-09 COMMUNICATION METHOD AND APPARATUS FOR REALIZING SERVICE CONTINUITY
US16/309,918 US11457393B2 (en) 2016-06-17 2017-02-09 Communication method and apparatus for realizing service continuity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610442547.6A CN107517489A (zh) 2016-06-17 2016-06-17 实现业务连续性的通信方法及装置
CN201610442547.6 2016-06-17

Publications (1)

Publication Number Publication Date
WO2017215275A1 true WO2017215275A1 (zh) 2017-12-21

Family

ID=60662980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073164 WO2017215275A1 (zh) 2016-06-17 2017-02-09 实现业务连续性的通信方法及装置

Country Status (4)

Country Link
US (1) US11457393B2 (zh)
EP (1) EP3474602A4 (zh)
CN (1) CN107517489A (zh)
WO (1) WO2017215275A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719445B (zh) * 2018-04-17 2021-02-21 新加坡商聯發科技(新加坡)私人有限公司 處理進接類型限制資訊方法及其使用者設備

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11019624B2 (en) * 2017-10-11 2021-05-25 Qualcomm Incorporated Licensed band fallback for wireless devices that operate in unlicensed bands
JP7385571B2 (ja) * 2017-12-28 2023-11-22 オッポ広東移動通信有限公司 無線通信の方法、端末装置、及びネットワーク装置
CN110611944A (zh) * 2018-06-15 2019-12-24 海信集团有限公司 一种重选Relay UE的方法和设备
CN110611901A (zh) * 2018-06-15 2019-12-24 海信集团有限公司 一种重选Relay UE的方法和设备
US11388764B2 (en) * 2019-04-30 2022-07-12 Mediatek Singapore Pte. Ltd. Method and apparatus for user equipment-assisted coverage enhancement in mobile communications
CN111818593A (zh) * 2019-07-31 2020-10-23 维沃移动通信有限公司 一种网络切换方法及终端
CN114258156B (zh) * 2020-09-21 2024-04-02 维沃移动通信有限公司 业务数据传输方法及装置、终端和基站
WO2023010235A1 (zh) * 2021-07-31 2023-02-09 华为技术有限公司 电子装置、控制电路和传输控制方法
CN116567766A (zh) * 2022-01-27 2023-08-08 维沃移动通信有限公司 路径偏好确定方法、终端及网络侧设备
CN116996861A (zh) * 2022-04-26 2023-11-03 维沃移动通信有限公司 终端的发现方法、装置、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438297A (zh) * 2011-08-31 2012-05-02 华南理工大学 基于短距离无线传输方式的手机语音通信接入服务装置
CN103402238A (zh) * 2013-07-19 2013-11-20 东南大学 超高速无线局域网下行中继接入控制方法
CN103686859A (zh) * 2012-09-17 2014-03-26 中兴通讯股份有限公司 一种基于多网络联合传输的分流方法、系统及接入网网元
WO2015090348A1 (en) * 2013-12-16 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for data packet transmission

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060159047A1 (en) * 2005-01-18 2006-07-20 Interdigital Technology Corporation Method and system for context transfer across heterogeneous networks
EP2491661A4 (en) * 2009-10-19 2017-08-09 Nokia Solutions and Networks Oy Method and apparatus for provision of paging messages in relay network
WO2013032259A2 (ko) * 2011-08-31 2013-03-07 엘지전자 주식회사 무선 접속 시스템에서 장치 간 직접 통신 중인 장치가 모드변경을 수행하는 방법 및 이를 위한 장치
CN103533598B (zh) * 2012-07-02 2019-01-15 中兴通讯股份有限公司 接入网网络能力的获取处理、获取方法及装置
JP6122144B2 (ja) * 2012-12-20 2017-04-26 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末間直接通信を用いたグループ通信方法及びそのための装置
CN103945431B (zh) * 2013-01-17 2018-04-17 电信科学技术研究院 一种进行网络控制的方法及装置
WO2014163648A1 (en) * 2013-04-05 2014-10-09 Nokia Corporation Method, apparatus and computer program for handling overlapping interworking information
EP2833694A3 (en) * 2013-07-29 2015-04-01 HTC Corporation Method of relay discovery and communication in a wireless communications system
KR102083322B1 (ko) * 2013-08-22 2020-03-03 삼성전자주식회사 이동 통신 시스템에서 고립 사용자 단말기에 대한 디바이스-투-디바이스 통신 기반 서비스 제공 장치 및 방법
CN104812076A (zh) * 2014-01-27 2015-07-29 中兴通讯股份有限公司 设备到设备业务资源配置方法和装置
US9414338B2 (en) 2014-08-07 2016-08-09 Alcatel Lucent Notification of relay capabilities for UE-to-network relay functions
EP3399819B1 (en) * 2016-03-30 2021-08-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for establishing radio resource control connection
EP3399835A4 (en) * 2016-03-30 2019-04-10 Guangdong OPPO Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION PROCEDURE, BASIC STATION AND DEVICE EQUIPMENT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438297A (zh) * 2011-08-31 2012-05-02 华南理工大学 基于短距离无线传输方式的手机语音通信接入服务装置
CN103686859A (zh) * 2012-09-17 2014-03-26 中兴通讯股份有限公司 一种基于多网络联合传输的分流方法、系统及接入网网元
CN103402238A (zh) * 2013-07-19 2013-11-20 东南大学 超高速无线局域网下行中继接入控制方法
WO2015090348A1 (en) * 2013-12-16 2015-06-25 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for data packet transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474602A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719445B (zh) * 2018-04-17 2021-02-21 新加坡商聯發科技(新加坡)私人有限公司 處理進接類型限制資訊方法及其使用者設備

Also Published As

Publication number Publication date
US11457393B2 (en) 2022-09-27
EP3474602A1 (en) 2019-04-24
CN107517489A (zh) 2017-12-26
EP3474602A4 (en) 2019-07-03
US20190150056A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2017215275A1 (zh) 实现业务连续性的通信方法及装置
US10327163B2 (en) User equipment and protocol and methods for device-to-device communication
CN106233774B (zh) 用于集成wlan/3gpp无线电接入技术的无线电资源控制(rrc)协议
WO2018201687A1 (zh) 一种信令传输方法及设备、计算机可读存储介质
US9432818B2 (en) Controlling communication devices
TWI612839B (zh) 使用者設備及其裝置對裝置通訊選擇方法
WO2016184273A1 (zh) 中继选择及发现的方法、装置及系统
US20150133112A1 (en) Method and device for device-to-device communication
US20190335370A1 (en) Methods and system for managing handover procedure in a radio access network
CN105338464A (zh) 无线通信系统中的用户设备侧的电子设备和无线通信方法
EP3017639B1 (en) Adaptive resource allocation for simultaneous operation of cellular and device to device communications
US10681774B2 (en) Electronic device and communication method
MX2015003790A (es) Metodo para radiocomunicaciones d2d.
JP2023533365A (ja) 情報送信方法および装置
WO2019062746A1 (zh) 通信方法、装置和系统
US20240056926A1 (en) Communication method and apparatus for obtaining load information
CN116746085A (zh) 传输数据的方法和装置
CN105101154B (zh) 一种设备到设备授权信息配置方法、装置及网元设备
WO2023024982A1 (zh) 一种通信方法及装置
CN115553039A (zh) 无线通信的装置和方法
US20150257145A1 (en) Configuring wireless service
CN114258070B (zh) Sl和wlan互操作方法、装置及通信设备
WO2022143103A1 (zh) 一种无线通信的方法及其装置
WO2024093832A1 (zh) 一种资源选择方法及装置
WO2023226811A1 (zh) 移动性管理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017812393

Country of ref document: EP

Effective date: 20190117