WO2017212807A1 - 無線通信装置 - Google Patents
無線通信装置 Download PDFInfo
- Publication number
- WO2017212807A1 WO2017212807A1 PCT/JP2017/016138 JP2017016138W WO2017212807A1 WO 2017212807 A1 WO2017212807 A1 WO 2017212807A1 JP 2017016138 W JP2017016138 W JP 2017016138W WO 2017212807 A1 WO2017212807 A1 WO 2017212807A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- transmission period
- period information
- wireless communication
- frame transmission
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/04—Scheduled access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
Definitions
- the present disclosure relates to a wireless communication device.
- wireless LAN Local Area Network
- IEEE Institute of Electrical and Electronics Engineers 802.11
- wireless communication devices products for wireless LAN (hereinafter also referred to as wireless communication devices) are increasing.
- the radio communication resources that can be used for communication are limited. Therefore, it is desired to improve the efficiency of communication between wireless communication devices.
- An example of a technology for improving communication efficiency is a so-called virtual carrier sense technology.
- a transmitting apparatus that desires data transmission transmits an RTS frame to a receiving apparatus that is a destination of data transmission, and the receiving apparatus transmits a CTS frame to the transmitting apparatus when data transmission is permitted.
- wireless communication devices other than the destination of the RTS frame or the CTS frame set the NAV and stop data transmission during the NAV period. Thereby, it is considered that a communication collision is avoided, and as a result, communication can be made efficient.
- IEEE Std 802.11-2007 IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
- MAC Medium Access Control
- PHY Physical Layer
- the NAV is set over the entire usable frequency band. Therefore, when communication based on RTS / CTS is performed using only a part of the frequency bands, the other frequency bands are vacant during the NAV period. In other words, the other frequency band is not effectively utilized.
- this disclosure proposes a mechanism that can improve the use efficiency of frequency resources in wireless communication.
- the first frame in which the second frame transmission period information corresponding to the frequency is stored in the second area that is subsequent to the first area in which the first frame transmission period information is stored.
- a wireless communication apparatus including a processing unit for generating and a transmission unit for transmitting the first frame.
- the first frame transmission period information corresponding to the frequency is stored in the second area that is subsequent to the first area in which the first frame transmission period information is stored.
- a wireless communication apparatus includes a receiving unit that receives a frame and a transmitting unit that waits for transmission of a frame at a frequency based on the first frame transmission period information.
- FIG. 2 is a block diagram illustrating an example of a schematic functional configuration of a wireless communication device according to an embodiment of the present disclosure.
- FIG. FIG. 3 is a diagram illustrating a configuration example of an advanced frame communicated by a wireless communication apparatus according to an embodiment of the present disclosure.
- 14 is a flowchart conceptually illustrating an example of processing of a transmission device according to an embodiment of the present disclosure.
- 5 is a flowchart conceptually illustrating an example of processing of a reception device according to an embodiment of the present disclosure.
- 6 is a frame sequence illustrating an operation example of a transmission device and a reception device according to an embodiment of the present disclosure.
- FIG. 10 is a frame sequence illustrating an operation example of a transmission device and a reception device according to first and second modifications of an embodiment of the present disclosure. It is a figure showing an example of composition of an advanced frame concerning the 2nd modification of one embodiment of this indication. It is a block diagram which shows an example of a schematic structure of a smart phone. It is a block diagram which shows an example of a schematic structure of a car navigation apparatus. It is a block diagram which shows an example of a schematic structure of a wireless access point.
- a plurality of elements having substantially the same function may be distinguished by attaching different numbers after the same reference numerals.
- a plurality of elements having substantially the same function are distinguished as necessary, such as STA 10A and STA 10B.
- STA 10A and STA 10B when there is no need to distinguish between elements having substantially the same function, only the same reference numerals are given.
- STA 10A and STA 10B when it is not necessary to distinguish between the STA 10A and the STA 10B, they are simply referred to as the STA 10.
- FIG. 1 is a diagram for explaining the hidden terminal problem.
- FIG. 2 is a diagram illustrating an example of virtual carrier sense using RTS and CTS.
- the STA 10A desiring data transmission transmits the RTS frame to the STA 10B that is the destination of data transmission.
- the STA 10B that has received the RTS frame transmits a CTS frame to the STA 10A when allowing the STA 10A to transmit data.
- the STA 10C other than the STA 10A and the STA 10B that are the destinations of the RTS frame or the CTS frame, based on the frame transmission period information stored in the received RTS frame or the CTS frame.
- Set the NAV the STA 10C stops frame transmission. Therefore, the communication between the STAs 10A and 10C is not hindered by the collision of frames due to the STA 10C.
- STA 10A and STA 10B communicate data frames after communicating CTS frames.
- an ACK (Acknowledgement) frame is communicated, and the data transmission is completed.
- the STA 10C releases the NAV because the NAV period elapses when the communication related to the data transmission between the STA 10A and the STA 10B ends. Thereby, the STA 10C can access the transmission path.
- the present disclosure proposes a mechanism capable of improving the use efficiency of frequency resources in wireless communication and a wireless communication apparatus for realizing the mechanism.
- a wireless communication device that transmits a first frame (hereinafter also referred to as an advanced frame) having a second area in which second frame transmission period information to be described later is stored is also referred to as a transmission apparatus 100, and an advanced frame is referred to as a transmission apparatus 100.
- the wireless communication device that receives the signal is also referred to as a receiving device 200.
- the transmission device 100 may operate as the reception device 200, and the reception device 200 may operate as the transmission device 100.
- a conventional frame that does not have the second area is also referred to as a legacy frame.
- a legacy frame for example, there is a frame defined in one of wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad.
- FIG. 3 is a block diagram illustrating an example of a schematic functional configuration of a wireless communication device according to an embodiment of the present disclosure.
- the transmission device 100 includes a data processing unit 110, a wireless communication unit 120, a control unit 130, and a storage unit 140, as shown in FIG.
- the data processing unit 110 performs processing for data transmission / reception as part of the processing unit. Specifically, the data processing unit 110 generates a frame based on data from an upper communication layer, and provides the generated frame to the wireless communication unit 120. For example, the data processing unit 110 generates a frame (or packet) from data, and processes such as adding a MAC header and adding an error detection code for media access control (MAC) to the generated frame I do. Further, the data processing unit 110 extracts data from the received frame and provides the extracted data to a communication upper layer. For example, the data processing unit 110 acquires data by performing analysis of a MAC header, detection and correction of a code error, reorder processing, and the like for a received frame.
- MAC media access control
- the wireless communication unit 120 performs signal processing such as modulation / demodulation and transmission / reception of signals via an antenna as a part of the transmission unit and the reception unit. Specifically, the radio communication unit 120 generates a symbol stream by performing encoding, interleaving, and modulation on a frame provided from the data processing unit 110 according to a coding and modulation scheme set by the control unit 130, and the like. . Next, the wireless communication unit 120 converts the signal related to the obtained symbol stream into an analog signal, amplifies, filters, and frequency upconverts. And the wireless communication part 120 transmits the processed signal via an antenna.
- the radio communication unit 120 obtains a symbol stream by performing processing reverse to the signal transmission, for example, frequency down-conversion and digital signal conversion, on the signal obtained via the antenna. Then, the wireless communication unit 120 acquires a frame by performing demodulation and decoding on the obtained symbol stream, and provides the acquired frame to the data processing unit 110 or the control unit 130.
- the control unit 130 controls the communication of the transmission device 100 as a whole as a processing unit, a transmission unit, and a reception unit. Specifically, the control unit 130 performs processing such as information exchange between functions, communication parameter setting, and frame (packet) scheduling in the data processing unit 110.
- the storage unit 140 stores information used for processing of the data processing unit 110 or the control unit 130. Specifically, the storage unit 140 stores information stored in the frame, information acquired from the frame, information on communication parameters, and the like.
- the transmission device 100 and the reception device 200 may perform wired communication.
- the transmission device 100 and the reception device 200 may include a wired communication unit that is connected to the Internet and communicates with an external device via the Internet.
- the transmission device 100 has an advanced frame transmission function.
- the transmission device 100 transmits an advanced frame in which two types of frame transmission period information are stored.
- the transmitting apparatus 100 includes a first area in which the first frame transmission period information is stored, and a second area in which the second frame transmission period information is stored after the first area.
- An advanced frame having the following area is transmitted.
- the second frame transmission period information is frame transmission period information corresponding to the frequency.
- the control unit 130 determines a communication period and a communication frequency based on the size of data to be communicated. Next, the control unit 130 generates first frame transmission period information from the determined communication period, and generates second frame transmission period information from the determined communication period and communication frequency.
- FIG. 4 is a diagram illustrating a configuration example of an advanced frame communicated by the wireless communication device according to an embodiment of the present disclosure.
- the advanced frame has a first area and a second area that is a successor of the first area.
- the first area is a frame header
- the second area is a frame body.
- the advanced frame has fields such as PHY (Physical Layer) Header, Legacy Compatible Portion, Advanced Portion, and Frame Body.
- Legacy Compatible Portion is a field as the first area, and may be, for example, MAC Header.
- Advanced Portion is a field as the second area.
- the first frame transmission period information is stored.
- the NAV Duration (hereinafter also referred to as the first NAV Duration) is stored in the MAC Header.
- the first NAV Duration may be stored in the MAC Header Duration field as in the conventional IEEE 802.11 frame format.
- the frequency corresponding to the second frame transmission period information is a frequency band (hereinafter also referred to as a frequency channel or channel), and the channel corresponding to the second frame transmission period information is the first frame transmission period information. Is a part of the channel (hereinafter also referred to as a sub-channel).
- a plurality of NAV Durations (hereinafter also referred to as second NAV Durations) are stored in the Advanced Portion, and each of the second NAV Durations is stored in the MAC Header.
- the corresponding subchannel may be identified from the storage order or storage location of the second NAV Duration. Further, the corresponding subchannel may be identified from information indicating the subchannel corresponding to the second NAV Duration, and in this case, the information indicating the subchannel is separately stored in the Advanced Portion.
- the second frame transmission period information may be substantially the same information as the first frame transmission period information.
- the second frame transmission period information is information indicating the frame transmission period, and indicates the same value as the value indicated by the first frame transmission period information.
- the first NAV Duration and the second NAV Duration of the subchannel 1 have the same value.
- the second NAV Duration may be 0, and the second NAV Duration itself may not be stored in the advanced frame.
- the advanced frame may be an RTS frame.
- the control unit 130 stores second frame transmission period information instead of a conventional RTS frame having no second area (hereinafter also referred to as a legacy RTS frame).
- the data processing unit 110 generates an RTS frame (hereinafter also referred to as an advanced RTS frame).
- the advanced RTS frame may not have the Frame Body shown in FIG.
- Information identifying the legacy RTS frame and the advanced RTS frame may be stored in the advanced RTS frame.
- the frame type information for identifying the advanced RTS frame is stored in the Frame Control field in the MAC header.
- the receiving apparatus 200 has an advanced frame reception function, a NAV setting function, and an advanced frame transmission function.
- the receiving device 200 receives the advanced frame transmitted from the transmitting device 100.
- the data processing unit 210 acquires second frame transmission period information from the advanced frame received by the wireless communication unit 220.
- the data processing unit 210 acquires frame type information from the MAC header of the advanced frame received by the wireless communication unit 220, and determines whether the acquired frame type information indicates an advanced frame.
- the data processing unit 210 acquires the second NAV Duration from the Advanced Portion that is a successor of the MAC Header after the MAC Header reception process.
- the data processing unit 210 acquires the first NAV Duration from the MAC header in the MAC header reception process.
- the receiving device 200 controls frame transmission standby (that is, NAV) based on the second frame transmission period information stored in the advanced frame. Specifically, the control unit 230 sets the NAV for each frequency based on the second frame transmission period information acquired by the data processing unit 210. For example, the control unit 230 sets each of the second NAV durations as a NAV period for each of the subchannels corresponding to the second NAV Duration acquired by the data processing unit 210.
- the receiving apparatus 200 transmits an advanced frame (hereinafter also referred to as a response advanced frame) as a response to the advanced frame received from the transmitting apparatus 100.
- the control unit 230 responds that the second frame transmission period information corresponding to the frequency is stored in a fourth area subsequent to the third area in which the first frame transmission period information is stored. Controls transmission of advanced frames.
- the third area corresponds to the first area
- the fourth area corresponds to the second area.
- the control unit 230 determines whether to permit communication to the transmitting device 100 that is the transmission source of the advanced RTS frame. When it is determined that communication is permitted, the control unit 230 stores a CTS frame (hereinafter referred to as an advanced CTS frame) in which the second frame transmission period information is stored from the first and second NAV durations acquired from the advanced RTS frame. The third and fourth NAV durations are calculated by subtracting the transmission period and the SIFS (Short Inter Frame Space) period.
- SIFS Short Inter Frame Space
- control unit 230 stores the advanced CTS frame in which the calculated third and fourth NAV durations are stored in the MAC header as the third region and the advanced portion as the fourth region in the data processing unit 210, respectively. Generate. Then, the wireless communication unit 220 transmits the generated advanced CTS frame.
- FIG. 5 is a flowchart conceptually illustrating an example of processing of the transmission device according to an embodiment of the present disclosure.
- the transmission device 100 determines whether a data transmission request has occurred (step S301). Specifically, the control unit 130 determines whether a data transmission request is notified from the upper communication layer.
- the transmitting apparatus 100 acquires data (step S302). Specifically, the control unit 130 causes the data processing unit 110 to acquire data provided together with the data transmission request from the transmission buffer.
- the transmission device 100 generates first frame transmission period information (step S303). Specifically, the control unit 130 determines the first NAV Duration for data transmission based on the acquired data size and the like.
- the transmission device 100 determines whether to transmit data using only some of the available frequencies (step S304). Specifically, the control unit 130 determines whether to transmit data using only some of the subchannels among the channels that can be used for data transmission based on the data size and the like. In other words, it is determined whether to allow the receiving apparatus 200 to perform frequency division multiplex communication.
- the transmission device 100 When it is determined that data is transmitted using all the available frequencies (step S304 / NO), the transmission device 100 generates a legacy RTS frame in which the first frame transmission period information is stored. Specifically, when it is determined that data is transmitted using the entire available channel, the control unit 130 stores the legacy RTS frame in which the first NAV Duration is stored and the second NAV Duration is not stored. The data processing unit 110 generates the data.
- the transmission device 100 transmits the second frame transmission period corresponding to the transmission frequency.
- Information is generated (step S306).
- the control unit 130 determines second NAV Durations corresponding to the subchannels of the available channels. Specifically, the control unit 130 determines the second NAV Duration corresponding to the subchannel used for data transmission to the same value as the first NAV Duration, and sets the second NAV Duration corresponding to the subchannel not used for data transmission. 2 NAV Duration is set to 0.
- the transmission device 100 generates an advanced RTS frame in which the first and second frame transmission period information is stored (step S307).
- the control unit 130 causes the data processing unit 110 to generate an advanced RTS frame in which the generated second NAV duration is stored.
- the transmission device 100 transmits the generated RTS frame (step S308).
- the wireless communication unit 120 transmits the generated legacy RTS frame or advanced RTS frame.
- the transmitting apparatus 100 determines whether a CTS frame has been received (step S309). Specifically, the control unit 130 determines whether a legacy CTS frame or an advanced CTS frame addressed to the transmission device 100 as a response to the legacy RTS frame or the advanced RTS frame is received.
- the transmission device 100 transmits a data frame (step S310). Specifically, when a legacy RTS frame or an advanced CTS frame addressed to the transmission apparatus 100 is received, the control unit 130 causes the data processing unit 110 to generate a data frame in which the acquired data is stored. Then, the wireless communication unit 120 transmits the generated data frame.
- FIG. 6 is a flowchart conceptually illustrating an example of processing of the reception device according to an embodiment of the present disclosure.
- the receiving apparatus 200 determines whether an RTS frame addressed to another wireless communication apparatus other than the receiving apparatus 200 has been received (step S401). Specifically, the data processing unit 210 acquires destination information from the RTS frame received by the wireless communication unit 220, and determines whether the acquired destination information indicates a wireless communication device other than the receiving device 200. .
- the receiving device 200 determines whether the received RTS frame is a legacy RTS frame (step S402). Specifically, the data processing unit 210 acquires frame type information from the received RTS frame, and determines whether the acquired frame type information indicates a legacy RTS frame.
- the receiving apparatus 200 acquires first frame transmission period information from the legacy RTS frame (step S403). Specifically, when the frame type information indicates a legacy RTS frame, the data processing unit 210 acquires the first NAV Duration from the MAC header of the legacy RTS frame.
- the receiving apparatus 200 sets NAV for all available frequencies (step S404). Specifically, the control unit 230 sets the acquired first NAV Duration for the entire channel that can be used as the NAV period.
- the receiving apparatus 200 acquires the second frame transmission period information from the advanced RTS frame (step S405). Specifically, when the frame type information indicates an advanced RTS frame, the data processing unit 210 acquires the first NAV Duration from the MAC header of the advanced RTS frame, and obtains at least one second NAV Duration from the Advanced Portion. get.
- the receiving apparatus 200 sets the NAV for the frequency corresponding to the acquired second frame transmission period information (step S406). Specifically, the control unit 230 sets the second NAV Duration as the NAV period for each of the subchannels corresponding to the acquired second NAV Duration.
- the receiving device 200 determines whether communication is permitted to the transmission source of the RTS frame (step S407). Specifically, the control unit 230 determines whether to allow communication to the transmission device 100 that has transmitted the RTS frame.
- the receiving apparatus 200 is stored in the received legacy RTS frame.
- the first frame transmission period information is updated (step S409). Specifically, the control unit 230 subtracts the transmission period and SIFS of the legacy CTS frame from the first NAV Duration acquired from the legacy RTS frame.
- the receiving apparatus 200 generates a legacy CTS frame in which the updated first frame transmission period information is stored (step S410). Specifically, the control unit 230 causes the data processing unit 210 to generate a legacy CTS frame in which the transmission period of the legacy CTS frame and the first NAV Duration from which SIFS has been subtracted are stored in the MAC header.
- the receiving apparatus 200 receives the first and second frame transmission periods stored in the received advanced RTS frame. Information is updated (step S411). Specifically, the control unit 230 subtracts the transmission period and SIFS of the advanced CTS frame from the first and second NAV durations acquired from the advanced RTS frame, respectively.
- the receiving apparatus 200 generates an advanced CTS frame in which the updated first and second frame transmission period information is stored (step S412). Specifically, the control unit 230 stores the advanced CTS frame in which the transmission period of the advanced CTS frame and the first and second NAV durations from which the SIFS is subtracted are stored in the MAC header and the advanced portion, respectively, in the data processing unit 110. Generate.
- the receiving device 200 transmits the generated CTS frame (step S413).
- the radio communication unit 220 transmits the generated legacy CTS frame or advanced CTS frame.
- FIG. 7 is a frame sequence illustrating an operation example of the transmission device 100 and the reception device 200 according to an embodiment of the present disclosure.
- the transmission device 100 sets first and second frame transmission period information, and transmits an advanced RTS frame in which the set information is stored. For example, the transmitting apparatus 100 sets “x” as the first NAV Duration, “x” as the second NAV Duration corresponding to the subchannel 1, and “0” as the second NAV Duration corresponding to the subchannel 2. Set each. Then, the transmission device 100 transmits the advanced RTS frame in which the set first NAV duration and each second NAV duration are stored, with the reception device 200A as a data transmission destination as a destination.
- the receiving apparatus 200A When receiving the advanced RTS frame, the receiving apparatus 200A as the data transmission destination transmits the advanced CTS frame in which the updated first and second frame transmission period information is stored. For example, the receiving apparatus 200A updates the first NAV Duration acquired from the received Advanced RTS frame and the second NAV Duration corresponding to the subchannel 1 from “x” to “y”. The second NAV Duration corresponding to the subchannel 2 remains “0”. Then, the receiving apparatus 200A transmits the advanced CTS frame storing the updated first NAV duration and the second NAV duration to the transmitting apparatus 100 that is the transmission source of the advanced RTS frame.
- the receiving device 200B that is not the data transmission destination receives the NAV for each part of the available frequencies based on the second frame transmission period information stored in the advanced RTS frame.
- the receiving apparatus 200B acquires a plurality of second NAV durations from the advanced RTS frame, and the value of the acquired second NAV durations is “x” which is not “0”.
- the subchannel 1 corresponding to the duration a NAV having “x” as the NAV period is set.
- the second NAV Duration since the second NAV Duration is “0”, the NAV is not set.
- the conventional receiving device 20 that is not the data transmission destination (hereinafter also referred to as the legacy receiving device 20) sets the NAV for the entire available frequency based on the first frame transmission period information stored in the advanced RTS frame.
- the legacy receiving apparatus 20 can receive the MAC header of the advanced RTS frame, but cannot receive the advanced portion subsequent to the MAC header because the format is different from the legacy RTS frame. Therefore, the legacy receiving apparatus 20 acquires only the first NAV Duration from the MAC header, and sets the entire channel that can use the NAV with the acquired first NAV Duration “x” as the NAV period.
- the transmission device 100 that has received the advanced CTS frame transmits the PPDU using the frequency corresponding to the set second frame transmission period information.
- transmitting apparatus 100 transmits PPDU 1 such as a data frame using only subchannel 1.
- PPDU 1 such as a data frame using only subchannel 1.
- the subchannel 1 since the NAV is set in the receiving apparatus 200B and the legacy receiving apparatus 20, no communication collision occurs in the subchannel 1.
- the receiving apparatus 200B that has received the advanced RTS frame transmits the PPDU using a frequency that is not used for PPDU communication.
- the receiving apparatus 200B transmits a PPDU 2 such as a data frame addressed to the receiving apparatus 200A using the channel 2 for which NAV is not set. Since the subchannel 2 is an empty channel that is not used by the transmission apparatus 100, a communication collision does not occur in the subchannel 2.
- NAV is set for frequencies based on.
- the transmission device 100 includes the second region corresponding to the frequency in the second region subsequent to the first region in which the first frame transmission period information is stored.
- a first frame in which frame transmission period information is stored is generated, and the first frame is transmitted.
- the receiving apparatus 200 receives the first frame and waits for transmission of a frame at a frequency based on the first frame transmission period information stored in the first frame.
- the NAV is set for the entire available frequency. For this reason, when communication is performed using only a part of the frequencies, other wireless communication other than the wireless communication device that performs communication is available even though other frequencies other than the frequency used for communication are available. The device could not use that other frequency.
- the receiving device 200 other than the transmitting device 100 can use a frequency that is not used in communication. Therefore, it is possible to improve the utilization efficiency of frequency resources in wireless communication while avoiding communication collision.
- a plurality of pieces of the second frame transmission period information are stored in the first frame, and frequencies corresponding to the plurality of second frame transmission period information are different from each other. Then, receiving apparatus 200 waits for frame transmission at each frequency based on the second frame transmission period information. Therefore, the second frame transmission period information can be set for three or more frequencies. Therefore, NAV settings can be controlled in finer frequency units, making it easy to use up frequency resources even when the frame sizes are diverse, and further improving the efficiency of frequency resource utilization. It becomes.
- the second frame transmission period information includes the same information as the first frame transmission period information.
- the receiving apparatus 200 uses the specific frequency. There is a possibility that the received communication will be started before the legacy receiver 20. As a result, the transmission opportunity of the legacy receiver 20 may be reduced.
- the second NAV duration and the first NAV duration to the same value, there is a difference between the NAV set in the legacy receiver 20 and the NAV set in the receiver 200. It can be prevented from occurring. Therefore, it is possible to suppress the transmission opportunity of the legacy receiving device 20 from being reduced by the transmission of the receiving device 200.
- the frequency corresponding to the second frame transmission period information includes a frequency band, and the frequency band corresponding to the second frame transmission period information is one of the frequency bands for the first frame transmission period information.
- a channel through which a frame can be transmitted is generally defined by a communication standard. Therefore, by providing a subchannel capable of setting the NAV within the channel range defined by the communication standard, it is possible to improve the use efficiency of frequency resources in communication according to the communication standard.
- the second frame transmission period information includes information indicating the frame transmission period. Then, receiving apparatus 200 waits for frame transmission at each of the frequencies corresponding to the second frame transmission period information indicating the frame transmission period. For this reason, the receiving apparatus 200 can set the NAV only with the information notified using the advanced frame. Therefore, the processing or configuration of the receiving device 200 can be simplified, and the processing load or manufacturing cost can be suppressed.
- the first area includes a frame header
- the second area includes a frame body.
- the first frame includes an RTS frame. For this reason, NAV control by RTS / CTS is performed for each frequency, so that it is possible to improve the utilization efficiency of frequency resources while solving the hidden terminal problem.
- the receiving apparatus 200 transmits a second frame corresponding to a frequency in a fourth area that is a successor to the third area in which the first frame transmission period information is stored.
- a second frame in which the period information is stored is transmitted. For this reason, it is possible to suppress the occurrence of inconsistency between the NAV set by the first frame and the NAV set by the second frame. Therefore, it is possible to suppress the transmission opportunity of the receiving device 200 that receives the second frame from being reduced compared to the receiving device 200 that receives the first frame. Thereby, it becomes possible to ensure fairness of the transmission opportunity.
- the plurality of second frame transmission period information stored in the advanced frame may be different from each other. Further, the second frame transmission period information may be different from the first frame transmission period information. Specifically, at least two of the plurality of second NAV durations stored in the advanced frame are different from each other. Furthermore, with reference to FIG. 8, the 2nd frame transmission period information which concerns on this modification is demonstrated.
- FIG. 8 is a frame sequence illustrating an operation example of the transmission device 100 and the reception device 200 according to the first and second modifications of the embodiment of the present disclosure. In addition, description is abbreviate
- the transmission device 100 transmits an advanced RTS frame in which the set first and second frame transmission period information is stored. For example, the transmitting apparatus 100 sets “x” as the first NAV Duration, “x” as the second NAV Duration corresponding to the subchannel 1, and “0” as the second NAV Duration corresponding to the subchannel 2. Are set to “z” as the second NAV Duration corresponding to the subchannel 3, respectively. Since “0” means that the NAV period is not set, it can be said that substantially different “x” and “z” are set for the subchannels 1 and 3. “X” is the same as the first NAV Duration, but “z” is smaller than “x” (ie, x> z) unlike the first NAV Duration. Then, the transmitting apparatus 100 transmits an advanced RTS frame in which the set first NAV duration and each second NAV duration are stored.
- the receiving apparatus 200 When the advanced RTS frame is received, the receiving apparatus 200 that is not the data transmission destination sets the NAV for each subchannel based on the second frame transmission period information stored in the advanced RTS frame. For example, the receiving apparatus 200 acquires a plurality of second NAV durations from the advanced RTS frame, and corresponds to the second NAV duration whose value is “x” among the plurality of second NAV durations acquired. For the subchannel 1, NAV with “x” as the NAV period is set. Also, the receiving apparatus 200 sets a NAV with “z” as the NAV period for the subchannel 3 corresponding to the second NAV Duration whose value is “z”. On the other hand, for the subchannel 2, since the second NAV Duration is “0”, the NAV is not set.
- the legacy receiver 20 that is not the data transmission destination sets the NAV for the entire available frequency based on the first frame transmission period information stored in the advanced RTS frame.
- the advanced CTS frame or the legacy CTS frame is transmitted after the communication of the advanced RTS frame, but illustration and description thereof are omitted here.
- the transmission apparatus 100 that has received the advanced CTS frame transmits the PPDU using each of the frequencies corresponding to the plurality of second frame transmission period information. For example, the transmission device 100 transmits the PPDU 3 using the subchannel 1. In addition, transmitting apparatus 100 transmits PPDU 4 using subchannel 3. Since the NAV for the period x is set for the subchannel 1 and the NAV for the period z is set in the receiving apparatus 200 for the subchannel 3, no communication collision occurs in both the subchannels 1 and 3.
- the receiving apparatus 200 that has received the advanced RTS frame transmits the PPDU using a frequency and a period that are not used for communication of the PPDU. For example, the receiving apparatus 200 transmits the PPDU 5 using the subchannel 2 for which NAV is not set. In addition, the receiving device 200 transmits the PPDU 6 using the subchannel 3 that is free after the elapse of the period z. Since the subchannel 2 is an empty channel that is not used for the period x and the subchannel 3 is an empty channel that is not used for the period z, no communication collision occurs in both the subchannels 2 and 3.
- the plurality of second frame transmission period information stored in the advanced frame are different from each other.
- the size of data (frame) transmitted for each frequency may be different.
- the NAV having the same period is uniformly set for each frequency, the NAV may be set for a period in which communication is not actually performed.
- the second frame transmission period information includes information different from the first frame transmission period information.
- the size of data (frame) transmitted for each frequency may be different.
- the second NAV Duration is fixed to the first NAV Duration, there is a possibility that the NAV is set even during a period in which communication is not actually performed. Therefore, by making it possible to set a second NAV Duration different from the first NAV Duration, it is possible to further improve the use efficiency of the frequency resource.
- the second NAV Duration is preferably set to a value smaller than the first NAV Duration. This is because if the second NAV Duration is set to a value larger than the first NAV Duration, the transmission opportunity of the receiving device 200 may be reduced as compared with the legacy receiving device 20.
- the second frame transmission period information may be information in a format other than the information indicating the frame transmission period. Specifically, the second frame transmission period information may be information from which the frame transmission period is derived. In addition, receiving apparatus 200 waits for transmission of a frame for each of the frequencies corresponding to the second frame transmission period information from which the frame transmission period is derived. For example, the second frame transmission period information is flag information corresponding to each of a part of frequencies that can be used for communication. Furthermore, with reference to FIG. 9, the advanced frame which concerns on this modification is demonstrated in detail.
- FIG. 9 is a diagram illustrating a configuration example of an advanced frame according to the second modification example of the embodiment of the present disclosure.
- the advanced frame has flag information corresponding to each of the sub-channels for channels that can be used for communication.
- bit information corresponding to each of the second NAV Duration and the subchannel is stored in the advanced frame.
- Advanced Portion of the advanced frame has fields such as NAV Duration for sub-channels and Sub-channel Bitmap as shown in FIG.
- NAV Duration for sub-channels is a field in which the second NAV Duration is stored
- Sub-channel Bitmap stores bitmap information indicating a subchannel in which NAV is set (hereinafter also referred to as a subchannel bitmap). Field.
- control unit 230 of the receiving apparatus 200 refers to the subchannel bitmap acquired from the received advanced frame and selects the subchannel for setting the NAV.
- the subchannel is grasped by associating the order or location of the bit information with the subchannel. Then, the control unit 230 sets the second NAV Duration acquired from the received advanced frame as the NAV period for the selected subchannel.
- the control unit 230 sets the first NAV Duration as the NAV period for the selected subchannel.
- the flag information corresponding to the subchannel is bit information.
- the flag information may be information having three or more types of values. For example, flag “0” is associated with no NAV setting, flag “1” is associated with the second NAV duration, and flag “2” is associated with the first NAV duration.
- a plurality of second NAV durations may be prepared, and in that case, different flags may be prepared for each of the plurality of second NAV durations.
- the second frame transmission period information includes information from which the frame transmission period is derived, and the reception device 200 performs the second frame transmission from which the frame transmission period is derived. It waits for transmission of a frame for each frequency corresponding to the period information.
- the information from which the value is derived generally has a smaller amount of information than the information indicating the value itself. Therefore, the amount of communication can be reduced compared to the case where information indicating the frame transmission period is stored in the advanced frame. Therefore, it is possible to further improve the utilization efficiency of radio communication resources.
- the wireless communication device 100 (which may be the wireless communication device 200) includes a smartphone, a tablet PC (Personal Computer), a notebook PC, a mobile terminal such as a portable game terminal or a digital camera, a television receiver, and a printer. It may be realized as a fixed terminal such as a digital scanner or a network storage, or an in-vehicle terminal such as a car navigation device.
- the wireless communication device 100 is a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication, such as a smart meter, a vending machine, a remote monitoring device, or a POS (Point Of Sale) terminal. It may be realized as. Further, the wireless communication device 100 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
- MTC Machine Type Communication
- M2M Machine To Machine
- the wireless communication device 100 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
- the wireless communication device 100 may be realized as a wireless LAN access point (also referred to as a wireless base station) having a router function or not having a router function. Further, the wireless communication device 100 may be realized as a mobile wireless LAN router. Further, the wireless communication device 100 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these devices.
- a wireless LAN access point also referred to as a wireless base station
- the wireless communication device 100 may be realized as a mobile wireless LAN router.
- the wireless communication device 100 may be a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these devices.
- FIG. 10 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
- the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 913, an antenna switch 914, an antenna 915, A bus 917, a battery 918, and an auxiliary controller 919 are provided.
- the processor 901 may be, for example, a CPU (Central Processing Unit) or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
- the memory 902 includes a RAM (Random Access Memory) and a ROM (Read Only Memory), and stores programs and data executed by the processor 901.
- the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
- the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
- the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
- the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
- the microphone 908 converts sound input to the smartphone 900 into an audio signal.
- the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
- the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
- the speaker 911 converts an audio signal output from the smartphone 900 into audio.
- the wireless communication interface 913 supports one or more wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and performs wireless communication.
- the wireless communication interface 913 can communicate with other devices via a wireless LAN access point in the infrastructure mode.
- the wireless communication interface 913 can directly communicate with other devices in an ad hoc mode or a direct communication mode such as Wi-Fi Direct (registered trademark).
- Wi-Fi Direct unlike the ad hoc mode, one of two terminals operates as an access point, but communication is performed directly between the terminals.
- the wireless communication interface 913 can typically include a baseband processor, an RF (Radio Frequency) circuit, a power amplifier, and the like.
- the wireless communication interface 913 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
- the wireless communication interface 913 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a cellular communication method in addition to the wireless LAN method.
- the antenna switch 914 switches the connection destination of the antenna 915 among a plurality of circuits (for example, circuits for different wireless communication schemes) included in the wireless communication interface 913.
- the antenna 915 includes a single antenna element or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the radio communication interface 913.
- the smartphone 900 is not limited to the example in FIG. 10, and may include a plurality of antennas (for example, an antenna for a wireless LAN and an antenna for a proximity wireless communication method). In that case, the antenna switch 914 may be omitted from the configuration of the smartphone 900.
- the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 913, and auxiliary controller 919 to each other.
- the battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 10 through a power supply line partially illustrated by a broken line in the drawing.
- the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
- the data processing unit 110, the wireless communication unit 120, and the control unit 130 described with reference to FIG. 3 may be implemented in the wireless communication interface 913.
- at least a part of these functions may be implemented in the processor 901 or the auxiliary controller 919.
- the control unit 130 stores the advanced frame in which the second frame transmission period information corresponding to the frequency is stored in the second area subsequent to the first area in which the first frame transmission period information is stored. Communication is performed via the processing unit 110 and the wireless communication unit 120. Thereby, other communication terminals can use the subchannel which is not used for communication of the smart phone 900. Therefore, it is possible to improve the utilization efficiency of frequency resources in wireless communication.
- the smartphone 900 may operate as a wireless access point (software AP) when the processor 901 executes the access point function at the application level. Further, the wireless communication interface 913 may have a wireless access point function.
- FIG. 11 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
- the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
- An interface 933, an antenna switch 934, an antenna 935, and a battery 938 are provided.
- the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
- the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
- the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
- the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
- the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
- the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
- the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
- the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
- the speaker 931 outputs the navigation function or the audio of the content to be played back.
- the wireless communication interface 933 supports one or more wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and executes wireless communication.
- the wireless communication interface 933 can communicate with other devices via a wireless LAN access point in the infrastructure mode.
- the wireless communication interface 933 can directly communicate with other devices in an ad hoc mode or a direct communication mode such as Wi-Fi Direct.
- the wireless communication interface 933 may typically include a baseband processor, an RF circuit, a power amplifier, and the like.
- the wireless communication interface 933 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
- the wireless communication interface 933 may support other types of wireless communication systems such as a short-range wireless communication system, a proximity wireless communication system, or a cellular communication system.
- the antenna switch 934 switches the connection destination of the antenna 935 among a plurality of circuits included in the wireless communication interface 933.
- the antenna 935 includes a single antenna element or a plurality of antenna elements, and is used for transmission and reception of a radio signal by the radio communication interface 933.
- the car navigation apparatus 920 is not limited to the example of FIG. 11 and may include a plurality of antennas. In that case, the antenna switch 934 may be omitted from the configuration of the car navigation device 920.
- the battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 11 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
- the data processing unit 110, the wireless communication unit 120, and the control unit 130 described with reference to FIG. 3 may be implemented in the wireless communication interface 933. Further, at least a part of these functions may be implemented in the processor 921.
- the control unit 130 stores the advanced frame in which the second frame transmission period information corresponding to the frequency is stored in the second area subsequent to the first area in which the first frame transmission period information is stored. Communication is performed via the processing unit 110 and the wireless communication unit 120. Accordingly, other communication terminals can use subchannels that are not used for communication of the car navigation device 920. Therefore, it is possible to improve the use efficiency of frequency resources in the wireless communication space where the car navigation device 920 is installed.
- the wireless communication interface 933 may operate as an access point described above and provide a wireless connection to a terminal of a user who gets on the vehicle.
- the control unit 130 receives the advanced CTS frame in which the first frame transmission period information and the second frame transmission period information corresponding to the frequency are stored. Send.
- the transmission opportunity of the receiving apparatus 200 which received the CTS frame increases compared with the case where a legacy CTS frame is transmitted. Therefore, it is possible to improve the utilization efficiency of frequency resources.
- the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942.
- vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
- FIG. 12 is a block diagram illustrating an example of a schematic configuration of a wireless access point 950 to which the technology according to the present disclosure can be applied.
- the wireless access point 950 includes a controller 951, a memory 952, an input device 954, a display device 955, a network interface 957, a wireless communication interface 963, an antenna switch 964, and an antenna 965.
- the controller 951 may be a CPU or a DSP (Digital Signal Processor), for example, and various functions (for example, access restriction, routing, encryption, firewall) of the IP (Internet Protocol) layer and higher layers of the wireless access point 950 And log management).
- the memory 952 includes a RAM and a ROM, and stores programs executed by the controller 951 and various control data (for example, a terminal list, a routing table, an encryption key, security settings, and a log).
- the input device 954 includes, for example, a button or a switch and receives an operation from the user.
- the display device 955 includes an LED lamp and the like, and displays the operation status of the wireless access point 950.
- the network interface 957 is a wired communication interface for connecting the wireless access point 950 to the wired communication network 958.
- the network interface 957 may have a plurality of connection terminals.
- the wired communication network 958 may be a LAN such as Ethernet (registered trademark), or may be a WAN (Wide Area Network).
- the wireless communication interface 963 supports one or more of wireless LAN standards such as IEEE 802.11a, 11b, 11g, 11n, 11ac, and 11ad, and provides a wireless connection as an access point to nearby terminals.
- the wireless communication interface 963 may typically include a baseband processor, an RF circuit, a power amplifier, and the like.
- the wireless communication interface 963 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
- the antenna switch 964 switches the connection destination of the antenna 965 among a plurality of circuits included in the wireless communication interface 963.
- the antenna 965 includes a single antenna element or a plurality of antenna elements, and is used for transmission and reception of a radio signal by the radio communication interface 963.
- the data processing unit 110, the wireless communication unit 120, and the control unit 130 described with reference to FIG. 3 may be implemented in the wireless communication interface 963.
- at least a part of these functions may be implemented in the controller 951.
- the control unit 130 stores the first frame transmission period information and the second frame transmission period information corresponding to the frequency as a response to the advanced RTS frame transmitted from the terminal connected to the wireless access point 950.
- the advanced CTS frame to be transmitted is transmitted. Thereby, the transmission opportunity of the terminal which received the CTS frame increases compared with the case where a legacy CTS frame is transmitted. Therefore, it is possible to improve the utilization efficiency of frequency resources.
- a NAV is set for each frequency, so that a receiving device 200 other than the transmitting device 100 can use a frequency that is not used in communication. Therefore, it is possible to improve the utilization efficiency of frequency resources in wireless communication while avoiding communication collision.
- both the first and second frame transmission period information are stored in the advanced frame, but the present technology is not limited to this example.
- an advanced frame in which the first frame transmission period information is not stored may be selectively communicated.
- the advanced frame may be another type of frame.
- a management frame such as a beacon or a data frame may be an advanced frame.
- the subchannel may be variable.
- the number or width of subchannels is variable, and information indicating these or information from which they are derived may be stored in the advanced frame.
- the receiving apparatus 200 starts communication after a random time elapses from the time when transmission is possible, for example, so that the start time of communication using the vacant subchannels is distributed among the receiving apparatuses 200.
- the receiving apparatus 200 may start communication when the vacant subchannel is a subchannel assigned to each receiving apparatus 200 in advance. As a result, it is possible to suppress the possibility of communication collision occurring in communication using an empty subchannel.
- the transmission device 100 and the reception device 200 may be applied to a network system such as M2M (Machine to Machine) or IoT (Internet of Things).
- M2M Machine to Machine
- IoT Internet of Things
- a processing unit that generates a first frame in which second frame transmission period information corresponding to a frequency is stored in a second area that is subsequent to the first area in which the first frame transmission period information is stored;
- a wireless communication device comprising: (2) A plurality of the second frame transmission period information is stored in the first frame, The frequencies corresponding to the plurality of second frame transmission period information are different from each other, The wireless communication device according to (1). (3) The plurality of second frame transmission period information are different from each other. The wireless communication device according to (2).
- the second frame transmission period information includes the same information as the first frame transmission period information.
- the second frame transmission period information includes information different from the first frame transmission period information.
- the frequency corresponding to the second frame transmission period information includes a frequency band, The frequency band corresponding to the second frame transmission period information includes a part of the frequency band for the first frame transmission period information.
- the second frame transmission period information includes information indicating a frame transmission period.
- the second frame transmission period information includes information from which a frame transmission period is derived.
- the first region includes a frame header;
- the second region includes a frame body, The wireless communication device according to any one of (1) to (8).
- the first frame includes an RTS (Request To Send) frame, The wireless communication device according to any one of (1) to (9).
- a receiving unit that receives a first frame in which second frame transmission period information corresponding to a frequency is stored in a second area that is subsequent to the first area in which the first frame transmission period information is stored; A transmission unit waiting for transmission of a frame at a frequency based on the first frame transmission period information; A wireless communication device comprising: (12) A plurality of the second frame transmission period information is stored in the first frame, The frequencies corresponding to the plurality of second frame transmission period information are different from each other, The transmission unit waits for transmission of a frame at each of the frequencies based on the second frame transmission period information; The wireless communication device according to (11). (13) The plurality of second frame transmission period information are different from each other. The wireless communication device according to (12).
- the second frame transmission period information includes the same information as the first frame transmission period information.
- the second frame transmission period information includes information different from the first frame transmission period information.
- the frequency corresponding to the second frame transmission period information includes a frequency band, The frequency band corresponding to the second frame transmission period information includes a part of the frequency band for the first frame transmission period information.
- the second frame transmission period information includes information indicating a frame transmission period, The transmission unit waits for transmission of a frame at each of the frequencies corresponding to the second frame transmission period information indicating a frame transmission period;
- the second frame transmission period information includes information from which a frame transmission period is derived, The transmission unit waits for transmission of a frame for each of the frequencies corresponding to the second frame transmission period information from which a frame transmission period is derived;
- the wireless communication device according to any one of (11) to (17).
- the first region includes a frame header;
- the second region includes a frame body,
- the transmitter transmits second frame transmission period information corresponding to a frequency in a fourth area that is subsequent to the third area in which the first frame transmission period information is stored. Transmits a second frame in which is stored, The wireless communication device according to any one of (11) to (19).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
1.はじめに
2.本開示の一実施形態
2.1.装置の構成
2.2.装置の機能
2.3.装置の処理
2.4.動作例
2.5.本開示の一実施形態のまとめ
2.6.変形例
3.応用例
4.むすび
まず、本開示の一実施形態に係る無線通信装置に関連する技術について説明する。当該技術としては、上述したような仮想キャリアセンスがある。まず、図1を参照して、仮想キャリアセンスが利用されない場合の技術的課題、いわゆる隠れ端末問題について説明する。図1は、隠れ端末問題を説明するための図である。
次に、本開示の一実施形態に係る無線通信装置について説明する。以下、後述する第2のフレーム送信期間情報が格納される第2の領域を有する第1のフレーム(以下、アドバンストフレームとも称する。)を送信する無線通信装置を送信装置100とも称し、アドバンストフレームを受信する無線通信装置を受信装置200とも称する。なお、送信装置100が受信装置200として動作してもよく、受信装置200が送信装置100として動作してもよい。また、上記第2の領域を有さない従来のフレームをレガシフレームとも称する。レガシフレームとしては、例えばIEEE802.11a、11b、11g、11n、11acおよび11adなどの無線LAN標準のうちのいずれかに規定されるフレームがある。
まず、図3を参照して、本開示の一実施形態に係る送信装置100および受信装置200の機能構成について説明する。なお、送信装置100および受信装置200の機能構成は実質的に同一であるため、送信装置100についてのみ説明する。図3は、本開示の一実施形態に係る無線通信装置の概略的な機能構成の例を示すブロック図である。
次に、送信装置100および受信装置200の機能について説明する。ここでは、送信装置100および受信装置200はRTS/CTSを用いた仮想キャリアセンス機能を有し、RTSフレームおよびCTSフレームがアドバンストフレームとして送信される例について説明する。なお、仮想キャリアセンスの基本機能については上述した機能と実質的に同一であるため説明を省略する。
まず、送信装置100の機能について説明する。送信装置100は、アドバンストフレーム送信機能を有する。
送信装置100は、2種類のフレーム送信期間情報が格納されるアドバンストフレームを送信する。具体的には、送信装置100は、第1のフレーム送信期間情報が格納される第1の領域と、当該第1の領域の後続であって第2のフレーム送信期間情報が格納される第2の領域と、を有するアドバンストフレームを送信する。当該第2のフレーム送信期間情報は、周波数に対応するフレーム送信期間情報である。例えば、制御部130は、通信されるデータのサイズなどに基づいて通信期間および通信周波数を決定する。次に、制御部130は、決定された通信期間から第1のフレーム送信期間情報を生成し、決定された通信期間および通信周波数から第2のフレーム送信期間情報を生成する。次に、制御部130は、生成された第1のフレーム送信期間情報および第2のフレーム送信期間情報がそれぞれ第1の領域および第2の領域に格納されたアドバンストフレームをデータ処理部110に生成させる。そして、無線通信部120は、生成されたアドバンストフレームを送信する。さらに、図4を参照して、アドバンストフレームについて詳細に説明する。図4は、本開示の一実施形態に係る無線通信装置により通信されるアドバンストフレームの構成例を示す図である。
まず、受信装置200の機能について説明する。受信装置200は、アドバンストフレーム受信機能、NAV設定機能およびアドバンストフレーム送信機能を有する。
受信装置200は、送信装置100から送信されるアドバンストフレームを受信する。具体的には、データ処理部210は、無線通信部220により受信されるアドバンストフレームから第2のフレーム送信期間情報を取得する。例えば、データ処理部210は、無線通信部220により受信されたアドバンストフレームのMAC Headerからフレームタイプ情報を取得し、取得されたフレームタイプ情報がアドバンストフレームを示すかを判定する。フレームタイプ情報がアドバンストフレームを示す場合、データ処理部210は、MAC Headerの受信処理後、MAC Headerの後続であるAdvanced Portionから第2のNAV Durationを取得する。なお、フレームタイプ情報がレガシフレームを示す場合、データ処理部210は、MAC Headerの受信処理においてMAC Headerから第1のNAV Durationを取得する。
受信装置200は、アドバンストフレームに格納される第2のフレーム送信期間情報に基づいてフレームの送信待機(すなわちNAV)を制御する。具体的には、制御部230は、データ処理部210により取得された第2のフレーム送信期間情報に基づく周波数の各々についてNAVを設定する。例えば、制御部230は、データ処理部210により取得された第2のNAV Durationに対応するサブチャネルの各々について、第2のNAV Durationの各々をそれぞれNAV期間として設定する。
受信装置200は、送信装置100から受信されるアドバンストフレームへの応答としてのアドバンストフレーム(以下、応答アドバンストフレームとも称する。)を送信する。具体的には、制御部230は、第1のフレーム送信期間情報が格納される第3の領域の後続である第4の領域に周波数に対応する第2のフレーム送信期間情報が格納される応答アドバンストフレームの送信を制御する。なお、第3の領域は第1の領域に相当し、第4の領域は第2の領域に相当する。
次に、送信装置100および受信装置200の処理について説明する。
まず、図5を参照して、送信装置100の処理について説明する。図5は、本開示の一実施形態に係る送信装置の処理の例を概念的に示すフローチャートである。
まず、図6を参照して、受信装置200の処理について説明する。図6は、本開示の一実施形態に係る受信装置の処理の例を概念的に示すフローチャートである。
以上、送信装置100および受信装置200の処理について説明した。次に、図7を参照して、送信装置100および受信装置200の動作例を説明する。図7は、本開示の一実施形態に係る送信装置100および受信装置200の動作例を示すフレームシーケンスである。
このように、本開示の一実施形態によれば、送信装置100は、第1のフレーム送信期間情報が格納される第1の領域の後続である第2の領域に周波数に対応する第2のフレーム送信期間情報が格納される第1のフレームを生成し、当該第1のフレームを送信する。また、受信装置200は、上記第1のフレームを受信し、第1のフレームに格納される第1のフレーム送信期間情報に基づく周波数においてフレームの送信を待機する。
以上、本開示の一実施形態について説明した。なお、本開示の一実施形態は、上述の例に限定されない。以下に、本実施形態の第1および第2の変形例について説明する。
本開示の一実施形態の第1の変形例として、アドバンストフレームに格納される複数の第2のフレーム送信期間情報は、互いに異なってもよい。また、第2のフレーム送信期間情報は、第1のフレーム送信期間情報と異なってもよい。具体的には、アドバンストフレームに格納される複数の第2のNAV Durationのうちの少なくとも2つは互いに異なる。さらに、図8を参照して、本変形例に係る第2のフレーム送信期間情報について説明する。図8は、本開示の一実施形態の第1および第2の変形例に係る送信装置100および受信装置200の動作例を示すフレームシーケンスである。なお、図7を参照して説明した内容と実質的に同一である内容については説明を省略する。
本開示の一実施形態の第2の変形例として、第2のフレーム送信期間情報は、フレーム送信期間を示す情報以外の他の形式の情報であってもよい。具体的には、第2のフレーム送信期間情報は、フレーム送信期間が導出される情報であってよい。また、受信装置200は、当該フレーム送信期間が導出される第2のフレーム送信期間情報に対応する周波数の各々についてフレームの送信を待機する。例えば、第2のフレーム送信期間情報は、通信に利用可能な周波数の一部の各々に対応するフラグ情報である。さらに、図9を参照して、本変形例に係るアドバンストフレームについて詳細に説明する。図9は、本開示の一実施形態の第2の変形例に係るアドバンストフレームの構成例を示す図である。
本開示に係る技術は、様々な製品へ応用可能である。例えば、無線通信装置100(無線通信装置200であってもよい。)は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末若しくはデジタルカメラなどのモバイル端末、テレビジョン受像機、プリンタ、デジタルスキャナ若しくはネットワークストレージなどの固定端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、無線通信装置100は、スマートメータ、自動販売機、遠隔監視装置又はPOS(Point Of Sale)端末などの、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、無線通信装置100は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。
図10は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース913、アンテナスイッチ914、アンテナ915、バス917、バッテリー918及び補助コントローラ919を備える。
図11は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、アンテナスイッチ934、アンテナ935及びバッテリー938を備える。
図12は、本開示に係る技術が適用され得る無線アクセスポイント950の概略的な構成の一例を示すブロック図である。無線アクセスポイント950は、コントローラ951、メモリ952、入力デバイス954、表示デバイス955、ネットワークインタフェース957、無線通信インタフェース963、アンテナスイッチ964及びアンテナ965を備える。
以上、本開示の一実施形態によれば、周波数毎にNAVが設定されることにより、通信で使用されない周波数を送信装置100以外の受信装置200が利用することができる。従って、通信衝突を回避させながら、無線通信における周波数リソースの利用効率を向上させることが可能となる。
(1)
第1のフレーム送信期間情報が格納される第1の領域の後続である第2の領域に周波数に対応する第2のフレーム送信期間情報が格納される第1のフレームを生成する処理部と、
前記第1のフレームを送信する送信部と、
を備える無線通信装置。
(2)
前記第2のフレーム送信期間情報は、前記第1のフレームに複数格納され、
複数の前記第2のフレーム送信期間情報が対応する周波数は、互いに異なる、
前記(1)に記載の無線通信装置。
(3)
複数の前記第2のフレーム送信期間情報は、互いに異なる、
前記(2)に記載の無線通信装置。
(4)
前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と同一の情報を含む、
前記(2)または(3)に記載の無線通信装置。
(5)
前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と異なる情報を含む、
前記(2)~(4)のいずれか1項に記載の無線通信装置。
(6)
前記第2のフレーム送信期間情報に対応する周波数は、周波数帯域を含み、
前記第2のフレーム送信期間情報に対応する周波数帯域は、前記第1のフレーム送信期間情報についての周波数帯域の一部を含む、
前記(2)~(5)のいずれか1項に記載の無線通信装置。
(7)
前記第2のフレーム送信期間情報は、フレーム送信期間を示す情報を含む、
前記(1)~(6)のいずれか1項に記載の無線通信装置。
(8)
前記第2のフレーム送信期間情報は、フレーム送信期間が導出される情報を含む、
前記(1)~(7)のいずれか1項に記載の無線通信装置。
(9)
前記第1の領域は、フレームヘッダを含み、
前記第2の領域は、フレームボディを含む、
前記(1)~(8)のいずれか1項に記載の無線通信装置。
(10)
前記第1のフレームは、RTS(Request To Send)フレームを含む、
前記(1)~(9)のいずれか1項に記載の無線通信装置。
(11)
第1のフレーム送信期間情報が格納される第1の領域の後続である第2の領域に周波数に対応する第2のフレーム送信期間情報が格納される第1のフレームを受信する受信部と、
前記第1のフレーム送信期間情報に基づく周波数においてフレームの送信を待機する送信部と、
を備える無線通信装置。
(12)
前記第2のフレーム送信期間情報は、前記第1のフレームに複数格納され、
複数の前記第2のフレーム送信期間情報が対応する周波数は、互いに異なり、
前記送信部は、前記第2のフレーム送信期間情報に基づく周波数の各々においてフレームの送信を待機する、
前記(11)に記載の無線通信装置。
(13)
複数の前記第2のフレーム送信期間情報は、互いに異なる、
前記(12)に記載の無線通信装置。
(14)
前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と同一の情報を含む、
前記(12)または(13)に記載の無線通信装置。
(15)
前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と異なる情報を含む、
前記(12)~(14)のいずれか1項に記載の無線通信装置。
(16)
前記第2のフレーム送信期間情報に対応する周波数は、周波数帯域を含み、
前記第2のフレーム送信期間情報に対応する周波数帯域は、前記第1のフレーム送信期間情報についての周波数帯域の一部を含む、
前記(12)~(15)のいずれか1項に記載の無線通信装置。
(17)
前記第2のフレーム送信期間情報は、フレーム送信期間を示す情報を含み、
前記送信部は、フレーム送信期間を示す前記第2のフレーム送信期間情報に対応する周波数の各々においてフレームの送信を待機する、
前記(11)~(16)のいずれか1項に記載の無線通信装置。
(18)
前記第2のフレーム送信期間情報は、フレーム送信期間が導出される情報を含み、
前記送信部は、フレーム送信期間が導出される前記第2のフレーム送信期間情報に対応する周波数の各々についてフレームの送信を待機する、
前記(11)~(17)のいずれか1項に記載の無線通信装置。
(19)
前記第1の領域は、フレームヘッダを含み、
前記第2の領域は、フレームボディを含む、
前記(11)~(18)のいずれか1項に記載の無線通信装置。
(20)
前記送信部は、前記第1のフレームへの応答として、第1のフレーム送信期間情報が格納される第3の領域の後続である第4の領域に周波数に対応する第2のフレーム送信期間情報が格納される第2のフレームを送信する、
前記(11)~(19)のいずれか1項に記載の無線通信装置。
200 受信装置
110、210 データ処理部
120、220 無線通信部
130、230 制御部
140、240 記憶部
Claims (20)
- 第1のフレーム送信期間情報が格納される第1の領域の後続である第2の領域に周波数に対応する第2のフレーム送信期間情報が格納される第1のフレームを生成する処理部と、
前記第1のフレームを送信する送信部と、
を備える無線通信装置。 - 前記第2のフレーム送信期間情報は、前記第1のフレームに複数格納され、
複数の前記第2のフレーム送信期間情報が対応する周波数は、互いに異なる、
請求項1に記載の無線通信装置。 - 複数の前記第2のフレーム送信期間情報は、互いに異なる、
請求項2に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と同一の情報を含む、
請求項2に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と異なる情報を含む、
請求項2に記載の無線通信装置。 - 前記第2のフレーム送信期間情報に対応する周波数は、周波数帯域を含み、
前記第2のフレーム送信期間情報に対応する周波数帯域は、前記第1のフレーム送信期間情報についての周波数帯域の一部を含む、
請求項2に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、フレーム送信期間を示す情報を含む、
請求項1に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、フレーム送信期間が導出される情報を含む、
請求項1に記載の無線通信装置。 - 前記第1の領域は、フレームヘッダを含み、
前記第2の領域は、フレームボディを含む、
請求項1に記載の無線通信装置。 - 前記第1のフレームは、RTS(Request To Send)フレームを含む、
請求項1に記載の無線通信装置。 - 第1のフレーム送信期間情報が格納される第1の領域の後続である第2の領域に周波数に対応する第2のフレーム送信期間情報が格納される第1のフレームを受信する受信部と、
前記第1のフレーム送信期間情報に基づく周波数においてフレームの送信を待機する送信部と、
を備える無線通信装置。 - 前記第2のフレーム送信期間情報は、前記第1のフレームに複数格納され、
複数の前記第2のフレーム送信期間情報が対応する周波数は、互いに異なり、
前記送信部は、前記第2のフレーム送信期間情報に基づく周波数の各々においてフレームの送信を待機する、
請求項11に記載の無線通信装置。 - 複数の前記第2のフレーム送信期間情報は、互いに異なる、
請求項12に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と同一の情報を含む、
請求項12に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、前記第1のフレーム送信期間情報と異なる情報を含む、
請求項12に記載の無線通信装置。 - 前記第2のフレーム送信期間情報に対応する周波数は、周波数帯域を含み、
前記第2のフレーム送信期間情報に対応する周波数帯域は、前記第1のフレーム送信期間情報についての周波数帯域の一部を含む、
請求項12に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、フレーム送信期間を示す情報を含み、
前記送信部は、フレーム送信期間を示す前記第2のフレーム送信期間情報に対応する周波数の各々においてフレームの送信を待機する、
請求項11に記載の無線通信装置。 - 前記第2のフレーム送信期間情報は、フレーム送信期間が導出される情報を含み、
前記送信部は、フレーム送信期間が導出される前記第2のフレーム送信期間情報に対応する周波数の各々についてフレームの送信を待機する、
請求項11に記載の無線通信装置。 - 前記第1の領域は、フレームヘッダを含み、
前記第2の領域は、フレームボディを含む、
請求項11に記載の無線通信装置。 - 前記送信部は、前記第1のフレームへの応答として、第1のフレーム送信期間情報が格納される第3の領域の後続である第4の領域に周波数に対応する第2のフレーム送信期間情報が格納される第2のフレームを送信する、
請求項11に記載の無線通信装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018522368A JP6954278B2 (ja) | 2016-06-10 | 2017-04-24 | 無線通信装置 |
CN201780033196.6A CN109196942A (zh) | 2016-06-10 | 2017-04-24 | 无线通信设备 |
EP17809989.1A EP3471494A4 (en) | 2016-06-10 | 2017-04-24 | WIRELESS COMMUNICATION DEVICE |
KR1020187034539A KR102333399B1 (ko) | 2016-06-10 | 2017-04-24 | 무선 통신 장치 |
US16/099,197 US11083016B2 (en) | 2016-06-10 | 2017-04-24 | Wireless communication device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-116122 | 2016-06-10 | ||
JP2016116122 | 2016-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017212807A1 true WO2017212807A1 (ja) | 2017-12-14 |
Family
ID=60577734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/016138 WO2017212807A1 (ja) | 2016-06-10 | 2017-04-24 | 無線通信装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11083016B2 (ja) |
EP (1) | EP3471494A4 (ja) |
JP (2) | JP6954278B2 (ja) |
KR (1) | KR102333399B1 (ja) |
CN (1) | CN109196942A (ja) |
WO (1) | WO2017212807A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023510894A (ja) * | 2020-02-28 | 2023-03-15 | 中興通訊股▲ふん▼有限公司 | データ伝送方法、装置および記憶媒体 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11838951B2 (en) * | 2018-09-17 | 2023-12-05 | Lg Electronics Inc. | Technique for controlling plurality of wireless communication links |
US11290577B2 (en) * | 2020-03-11 | 2022-03-29 | Semiconductor Components Industries, Llc | Wireless data transmission |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014014094A1 (ja) * | 2012-07-19 | 2014-01-23 | 日本電信電話株式会社 | 無線通信システム及び無線通信方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100477613C (zh) * | 2004-11-25 | 2009-04-08 | 都科摩(北京)通信技术研究中心有限公司 | 基于网络分配矢量表的分布式无线接入方法和设备 |
WO2011099791A2 (en) | 2010-02-10 | 2011-08-18 | Lg Electronics Inc. | Channel access method and apparatus in wireless local area network system |
KR101760073B1 (ko) * | 2010-02-10 | 2017-07-20 | 마벨 월드 트레이드 리미티드 | 무선 통신들을 위한 송신 보호 |
US9025544B2 (en) * | 2010-02-10 | 2015-05-05 | Lg Electronics Inc. | Channel access method and apparatus in wireless local area network system |
FI20115163A0 (fi) | 2011-02-21 | 2011-02-21 | Nokia Corp | Tietoliikenne langattomien verkkojen välillä |
KR20150089003A (ko) * | 2012-10-16 | 2015-08-04 | 엘지전자 주식회사 | 무선랜 시스템에서 신호 전송 방법 및 장치 |
WO2015096065A1 (zh) * | 2013-12-25 | 2015-07-02 | 华为技术有限公司 | 信息发送方法及装置 |
WO2015137591A1 (ko) * | 2014-03-10 | 2015-09-17 | 엘지전자 주식회사 | 무선랜에서 재전송 방법 및 장치 |
KR102297358B1 (ko) | 2014-07-16 | 2021-09-01 | 뉴라컴 인코포레이티드 | 송신 방법 |
US9942920B2 (en) * | 2015-07-01 | 2018-04-10 | Intel IP Corporation | Trigger frame response with network allocation vector |
JP2019041136A (ja) * | 2016-01-08 | 2019-03-14 | シャープ株式会社 | 無線通信装置および端末装置 |
-
2017
- 2017-04-24 JP JP2018522368A patent/JP6954278B2/ja active Active
- 2017-04-24 EP EP17809989.1A patent/EP3471494A4/en not_active Withdrawn
- 2017-04-24 CN CN201780033196.6A patent/CN109196942A/zh not_active Withdrawn
- 2017-04-24 US US16/099,197 patent/US11083016B2/en active Active
- 2017-04-24 WO PCT/JP2017/016138 patent/WO2017212807A1/ja unknown
- 2017-04-24 KR KR1020187034539A patent/KR102333399B1/ko active Active
-
2021
- 2021-09-30 JP JP2021160779A patent/JP2022000985A/ja not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014014094A1 (ja) * | 2012-07-19 | 2014-01-23 | 日本電信電話株式会社 | 無線通信システム及び無線通信方法 |
Non-Patent Citations (3)
Title |
---|
MASATOSHI FUKUSHIMA: "Kodo Simulation Tajigen Ido Tsushinmo", JOURNAL OF THE JAPAN SOCIETY FOR SIMULATION TECHNOLOGY, vol. 29, no. 2, June 2010 (2010-06-01), XP009511032 * |
See also references of EP3471494A4 * |
YUKI KUBO: "Interference avoidance based on channel switching for large scale wireless sensor networks", IEICE TECHNICAL REPORT, vol. 111, no. 263, October 2011 (2011-10-01), XP 009510530 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023510894A (ja) * | 2020-02-28 | 2023-03-15 | 中興通訊股▲ふん▼有限公司 | データ伝送方法、装置および記憶媒体 |
JP7379719B2 (ja) | 2020-02-28 | 2023-11-14 | 中興通訊股▲ふん▼有限公司 | データ伝送方法、装置および記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
US11083016B2 (en) | 2021-08-03 |
JP6954278B2 (ja) | 2021-10-27 |
KR102333399B1 (ko) | 2021-12-01 |
JP2022000985A (ja) | 2022-01-04 |
EP3471494A4 (en) | 2019-05-08 |
KR20190016950A (ko) | 2019-02-19 |
CN109196942A (zh) | 2019-01-11 |
JPWO2017212807A1 (ja) | 2019-04-04 |
EP3471494A1 (en) | 2019-04-17 |
US20200314905A1 (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022000985A (ja) | 情報処理装置、情報処理方法、および、プログラム | |
US12207295B2 (en) | Communication apparatus and communication method | |
JP7632577B2 (ja) | 通信装置 | |
JPWO2018070096A1 (ja) | 通信装置、通信制御方法およびプログラム | |
JP6583280B2 (ja) | 通信装置および通信方法 | |
US10743349B2 (en) | Wireless communication device and wireless communication method | |
US20200322983A1 (en) | Communication apparatus, communication method, and program | |
WO2019102724A1 (ja) | 通信装置、プログラム及び通信方法 | |
US20200037290A1 (en) | Communication apparatus, communication method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018522368 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187034539 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17809989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017809989 Country of ref document: EP Effective date: 20190110 |