[go: up one dir, main page]

WO2017211656A1 - Vehicle supply system comprising an inverter, energy store, electric machine and dc transmission link - Google Patents

Vehicle supply system comprising an inverter, energy store, electric machine and dc transmission link Download PDF

Info

Publication number
WO2017211656A1
WO2017211656A1 PCT/EP2017/063226 EP2017063226W WO2017211656A1 WO 2017211656 A1 WO2017211656 A1 WO 2017211656A1 EP 2017063226 W EP2017063226 W EP 2017063226W WO 2017211656 A1 WO2017211656 A1 WO 2017211656A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
connection
phase
electrical system
bridges
Prior art date
Application number
PCT/EP2017/063226
Other languages
German (de)
French (fr)
Inventor
Franz Pfeilschifter
Martin Brüll
Matthias Töns
Philip Brockerhoff
Edmund Schirmer
Hans-Peter Feustel
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2017211656A1 publication Critical patent/WO2017211656A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Electric vehicles with an electric drive i. Electric vehicles and hybrid vehicles, include an electrical energy storage for supplying the electric drive. Electric vehicles and plug-in hybrids are equipped with a connection that can be used to transfer energy from a stationary electrical supply network (local or public) to recharge the energy storage device. Optionally, the vehicles are also equipped to feed electrical energy back to the utility grid.
  • At least one rail of a direct-current transmission connection (for example a plug-in plug connection or also a vehicle-side device for inductive energy transmission) is connected to at least one phase current connection of the inverter.
  • the at least one rail is directly connected to at least one input power connection, or is connected via an electrical machine (the electric drive of the vehicle), which is provided with phase-current connections. is bound, with at least one input power connection ver ⁇ connected.
  • the connection between direct current transmission connection and (at least one) phase current connection can thus be provided directly or indirectly via the electrical machine.
  • step-up or step-down converter which adapts the voltage at the DC transmission connection to the voltage at the energy store.
  • the already existing power electronics in the form of the inverter which in particular provides the phase currents for the electrical machine, is also used here for controlling the power (in particular of the current and / or the voltage), which is transmitted via the DC transmission connection.
  • the inverter further comprises a plurality of individual bridges (in short: bridges), in particular full bridges. For each phase of the inverter, a full bridge may be provided.
  • bridges in short: bridges
  • the (single) bridges form a multi-phase bridge circuit of the
  • the bridge circuit essentially represents the inverter in terms of circuit technology.
  • the bridges each refer to only one phase.
  • the bridges are connected in parallel and thus connected together at the input power connections.
  • the switching elements form a shunt branch; in the case of a BnC bridge circuit, the shunt branch (in particular a single shunt branch) corresponds to the (single) bridge. In particular, no further switching elements are provided in the inverter or in the bridge (in the case of the BnC bridge circuit).
  • a first Intermediate terminal via a first switching element to be connected to one of the two input power terminals, and be connected via a second switching element to the other input power terminal.
  • a phase connection is connected via a third and a fourth switching elements to one of the input current connections (in particular to the negative input connection).
  • the third and the fourth switching element form a second transverse branch of the
  • the third and the fourth switching element are connected via a second intermediate connection.
  • the first intermediate terminal is connected via a coil to the second interim ⁇ specific connection.
  • the first transverse branch therefore comprises a first intermediate connection and the second transverse branch comprises a second intermediate connection.
  • H-bridge circuit which is formed by the (single) bridges, correspond to the first and the second transverse branch of the (single-H) bridge. In the case of H-bridge circuits, these are connected between the electrical energy store and the phase current terminals.
  • An operation of the inverter for converting between the DC voltage of the energy storage and the phase voltages of the phase terminals is enabled. This also allows the conversion between the DC voltage at the DC transmission port and the DC voltage of the energy storage.
  • the electrical energy storage can be connected directly to the input power terminals of the inverter.
  • a direct connection includes in particular further voltage or current converting components between energy storage and
  • the electrical energy store can also be connected indirectly via a DC-DC converter to the input power terminals of the inverter.
  • the energy storage is connected directly to the DC-DC converter.
  • a direct connection may include electromechanical connection components, circuit breakers, a contactor, a fuse, a filter or the like.
  • a direct connection excludes further voltage or current-transforming components between the energy store and the inverter (or its input current connections).
  • An indirect connection includes in particular further voltage or current-converting components between the energy store and the inverter (or its input current connections).
  • the DC-DC converter is in particular a synchronous converter.
  • the DC ⁇ converter may have a first terminal side of which is connected to the inverter. Two (controllable by means of control signals), serial switching elements can be connected to the first connection side. The serial switching elements can connect the two potential connections of the first connection side.
  • a second connection side may be connected to a connection point via a Induk ⁇ tivity, are connected via the switching elements with each other (in series). Pa ⁇ rallel to the second terminal side can be connected to a capacitor.
  • control unit the
  • the control unit is driving with the
  • Inverters connected.
  • the inverter In an inverter mode of the control unit, the inverter is driven to generate from the DC voltage of the energy storage phase voltages applied to the phase terminals.
  • the control unit controls the inverter to generate a charging voltage at the energy store from the phase voltages at the phase terminals.
  • the control unit controls the Wech ⁇ selrichter, from the voltage applied to the direct current transmission terminal to generate a charging voltage across the energy storage.
  • the control unit controls the inverter to generate from the voltage that is applied to the energy storage of the vehicle electrical system, a regenerative voltage at the DC transmission port.
  • the charging voltage at Energy storage can be specified by a battery management system of the energy storage or by a recuperation as a target value. Instead of a charging voltage, a charging current or a charging power can be specified as a setpoint.
  • the phase voltages may be specified by a (higher level) motor controller of the electric machine, either directly as a voltage setpoint or as a power or torque request. Instead of phase voltages, phase currents can also serve as control.
  • the regenerative voltage can be detected by a receiving device of the vehicle electrical system as a setpoint. The receiving device may be configured to setpoint values of a stationary
  • the DC-to-DC converter is driven by the control unit to transmit power in the direction in which the inverter also transmits power (i.e., away from the energy store).
  • the vehicle electrical system described here is equipped with an inverter, an electrical energy store, an electric machine and a DC transmission connection.
  • the inverter (and, if applicable, the DC-DC converter) includes semiconductor circuit breakers.
  • the electrical energy store is in particular an accumulator, for example a lithium-based accumulator.
  • the electrical energy store may be a traction accumulator.
  • the energy store may have a nominal voltage of 40-60 V, in particular of 48 V, and may in particular have a nominal voltage of more than 100
  • the energy store can thus be a high-voltage accumulator.
  • the electric machine is in ⁇ particular a three-phase machine.
  • the electric machine is multi-phase, in particular 3- or 6-phase.
  • the Machine may be a separately-excited or permanently excited elekt ⁇ innovative machine. It can be provided that the electrical machine has a star point; other configurations see a triangle configuration of the electrical Machine in front.
  • the positive rail can be connected via the neutral point to the phase current connections (of the inverter).
  • the DC transmission port may include a plug-in inlet, ie, an electromechanical connector that can be mounted in the skin of a vehicle.
  • the DC transmission port is configured to be connected to a charging plug (or, more generally, connector).
  • the inverter has a positive input power connection and a negative input power connection.
  • the term input power connection results from the inverter mode in which the inverter receives power from the energy storage. In this mode, the inverter receives power through the input power connector, so in this mode, this connector serves as input to the inverter. In charge mode, the same terminals serve to deliver power to the energy store, i. as the output of the inverter.
  • the input power connections are connected to the energy storage. It may be connected in parallel to the energy storage or parallel to the input terminals of the inverter, a DC link capacitor.
  • the inverter has at least two phase current connections, which are connected to the electric machine.
  • the inverter phase current terminals in a number which corresponds to the number of phases of the electrical machine.
  • Each of the phase current connections can be connected to a separate phase of the electrical machine.
  • the inverter has three (or six) phase current terminals each connected to one of three (or six) phases of the electric machine.
  • the inverter may comprise at least two H-bridges according to one embodiment.
  • the H-bridges are in each case between the input current connections and the phase senstroman untiln connected.
  • the H-bridges may be connected in series between the input power connections and the phase current connections.
  • the H-bridges may be connected in parallel with each other (at least with regard to the input current connections).
  • the H-bridges are preferably individually connected to individual phases of the electrical machine.
  • Each H-bridge comprises two transverse branches. A first of these shunt arms connects the two input power connections. A second of these shunt branches connects an input power connection (in particular the negative) and a phase current connection.
  • Each transverse branch comprises two switching elements, which are connected to one another via a connection point. The two connecting points of each H-bridge (ie, the Verbin ⁇ ground point of the one arm and the connection point of the other arm of the same H-bridge) are connected via an inductance with ⁇ today.
  • the switching elements in particular semiconductor switches, each
  • Transverse branches are connected to each other at connection points.
  • the two connection points of each H-bridge are connected to each other by means of an inductance.
  • the inductance is designed in particular as a discrete component, for example as a coil with a core.
  • the inverter may comprise H-bridges, each having two shunt arms. These connect the positive input power connection to the negative input power connection using two serial solid state switches.
  • the semiconductor switches or switching elements of the inverter are preferably transistors, in particular field-effect or bipolar transistors, for example MOSFETs or IGBTs.
  • Each phase current connection may be connected via a capacitor to an input power connection (in particular to the negative input power connection).
  • an input power connection in particular to the negative input power connection.
  • the DC transmission port may include a positive rail connected to at least one of the phase current ports. Through this connection, power can be fed into the electrical energy storage via the inverter. In other words, the DC transmission port may be connected to at least one of the phase power connections.
  • the connection between the DC transmission port and (at least one) phase current port i.e., the connection between the DC transmission port and the inverter
  • Phase current connection may have a filter and / or safety ⁇ elements such as a fuse and / or a circuit breaker.
  • the DC transfer port may include a negative potential contact and a positive potential contact.
  • the positive track can correspond to the positive contact.
  • the negative rail can correspond to the negative contact.
  • the voltage at the DC transmission connection is the potential difference between these potentials or contacts.
  • the positive rail of the DC transmission terminal may be connected to at least one of the phase current terminals, preferably in a direct manner.
  • the positive rail of the DC transmission connection can also be connected via the electric machine (EM) to at least one of the phase ⁇ current terminals (PS1, PS2, PS3), ie in an indirect manner. Therefore, a connection that does not include an electrical machine or windings of an electric machine is referred to as "directly connected.” Therefore, a connection that does not have a circuit is referred to as "directly connected"
  • Has voltage or current conversion As a "directly connected" may be referred to a connection having a filter and / or security elements such as a fuse and / or a circuit breaker Connection can be referred to, which includes an electrical machine or a winding of an electrical machine (approximately in series).
  • the bridges may each comprise a single shunt branch with two serial switching elements.
  • the bridges can together form a multi-phase full-wave bridge circuit. This is the case in particular for a BnC bridge circuit, for example in the case of a B6C bridge circuit.
  • the bridges may each comprise two transverse branches. These can each be equipped with two serial switching elements. This is the case especially for H (single) bridges.
  • the bridges can together form a polyphase H-bridge circuit.
  • the input power connections can be connected to one of the two shunt arms.
  • the phase current connections can be connected; In particular, at each one of the other of the two transverse branches of each bridge to be connected to a phase current connection ⁇ .
  • the shunt branches can each have a connection point via which the serial switching elements are connected to one another.
  • the connection points of the two shunt branches can be connected to one another via an inductance (in particular a coil as a discrete component).
  • the vehicle electrical system can have an AC transmission connection. This can be connected via a first switch device with the electric machine.
  • the AC transmission terminal may be multi-phase, for example, three-phase.
  • the first switching device may comprise disconnecting switches between winding ends of the electric machine. These are in particular arranged to form or to separate, in particular partially separate, a star or triangular configuration of the electric machine.
  • the first switch device may further comprise disconnect switches. These are provided, for example, between the ac transmission port and the coil ends of the electric machine. While the breaker disconnects connections between windings of the electric machine and thereby the circuit configuration of the
  • the circuit breaker is used to disconnect the electrical machine, in particular from a transmission port.
  • the breaker (s) separate 1, 2, n-1 or n connections between the coil ends, where n is the number of connections necessary to form the configuration.
  • n is the number of connections necessary to form the configuration.
  • the transmission in the charging and regenerative event therefore takes place via an asymmetrically configured electrical machine.
  • the on ⁇ disconnector and in particular the control unit that controls this is set up to realize this by controlling the on ⁇ disconnect switch.
  • the first switch device may be configured to controllably form or partially split a star or triangle configuration of the electric machine.
  • the first switch device is arranged to complete the configuration.
  • the first switching device is further configured to split the configuration only partially.
  • a first set of windings is interconnected, while a second set of windings, which forms no intersection with the first, is not interconnected.
  • the separation switches are set up to realize this. Furthermore, the
  • Disconnect switch of the first switching device may be configured to separate only a part of the windings.
  • the control unit is adapted to control the first switch device according to ⁇ .
  • the first switch device is configured to form a (symmetric) configuration in the electric machine, and to configure the configuration of the electric machine asymmetrically, that is, to design such that at least one winding forms the DC transmission port to connect to the inverter, while at least one other winding does not connect the DC transmission port to the inverter. This ensures that the flows in the electric machine do not cancel out in the sum when power is transmitted via the electric machine and the electric machine is used to implement a filter.
  • the vehicle electrical system may further comprise a second switch device. This can be provided between the DC transmission connection and the electric machine or connected in a controlled manner.
  • the second switch device may include one or more disconnect switches.
  • Such a circuit breaker is connected downstream of a potential rail (in particular the negative) of the DC transmission connection.
  • Another potential rail (in particular the positive) of the DC transmission connection can via the first
  • Switching device to be connected to the electric machine (permanently or uncontrollably), in particular directly or without disconnector.
  • the vehicle electrical system may include a second switch device, in particular the above ⁇ be required.
  • the second switch device is connected between the DC transmission port and the electric machine.
  • the second switch device may comprise a plurality of circuit breakers according to another possibility.
  • the circuit breaker can connect a potential rail (especially the positive) of the DC transmission port (directly) to the electric machine.
  • Another of the circuit breaker can connect a further potential rail (in particular the negative) of the DC transmission connection with an input current terminal of the inverter, in particular ⁇ special in a direct manner.
  • the positive rail can be connected directly to one of the phase current connections.
  • the DC transmission port may have a negative rail as mentioned. This can be connected to another of the phase current connections be.
  • the phase current connections can be connected to the electric machine via a (multi-phase) disconnecting switch.
  • the positive rail and the negative rail of the DC transmission connection can therefore be connected to different phase connections or different phases of the electrical machine.
  • a disconnecting switch may be provided which disconnects the phase terminals from the electric machine or its windings.
  • a disconnecting switch may be provided between phase windings of the electric machine (in connections between the phase windings themselves). Such a disconnecting switch may be configured to at least partially cancel a star connection (or triangular connection).
  • Disconnector may be provided as a switch, which separates at least one of the connected to the DC transmission terminal phase windings of other phase windings.
  • the switch may also be provided to disconnect all phase windings from a neutral point of the electric machine.
  • the control unit may be configured to control the first and / or the second switching device, in particular the disconnecting switches and / or the disconnecting switches.
  • the control unit can in particular be set up to keep the ripping ⁇ switch in charge or in regenerative mode when opened.
  • the control unit can also be set up to keep the separation switch in the inverter or in the recuperation mode in the closed state.
  • the control unit can also be set up in a fault case, to split the inverter in all bridges (and / or open the circuit breaker), such as when a charging fault or a regenerative fault occurs and the charging or recovery is interrupted.
  • the positive rail is connected directly or via a switch with a plurality or preferably all the phase current connections.
  • the DC transmission port is direct or via a Switch connected to the phase current terminals, preferably with all.
  • the DC transmission port has a negative rail connected to the negative input power port of the inverter. If a switch is used, then this is preferably multi-phase.
  • the switch has a switch element or a phase for each connection between a phase connection and the positive rail (in the case of a multiphase switch).
  • the control unit is arranged to keep the switch in an open state in Wech ⁇ selrichtermodus or optionally in the recuperation mode.
  • the control unit is further configured to hold the switch in a closed state in the charging mode or possibly in the regenerative mode.
  • the positive rail can also be connected to the phase connections of the inverter via the electrical machine or via its phase windings.
  • the positive rail may be indirectly connected to the electric machine with the Pha ⁇ senstroman untiln.
  • the phase windings are connected in series between the positive rail and the inverter.
  • DC transmission connection may be connected to the negative input power connection of the inverter.
  • the bridges may have switching elements to which free-wheeling diodes are connected in parallel.
  • the freewheeling diodes have a forward direction, which points to the positive input connection.
  • the electrical energy store can be connected indirectly via a DC-DC converter to the input current terminals of the inverter.
  • the vehicle electrical system may have a control unit. This is drivingly connected to at least the DC-DC converter and the inverter.
  • the control unit is preferably set up to operate the inverter as a boost converter in a charging mode. Furthermore, the control unit may be configured to operate the DC-DC converter as a step-down converter.
  • the term “positive rail” may preferably be replaced by “positive contact” in all variants described here, and the term “negative rail” may be replaced by “negative contact”.
  • the vehicle electrical system is in particular the electrical system of a
  • Plug-in hybrid motor vehicle or an electric motor vehicle are Plug-in hybrid motor vehicle or an electric motor vehicle.
  • FIGS. 1-3 serve for a more detailed explanation of the vehicle electrical system described here and show (among others) exemplary vehicle wiring systems.
  • FIGS 1, 2 and 3 each show a vehicle electrical system with an energy storage ES or 10, 110 and an electric machine EM or EM which are connected to each other via an inverter WR1-3.
  • a DC transmission port (in the figures with a
  • DC Charger connected outside the vehicle electrical system
  • DC + has a positive rail DC + and a negative rail DC-.
  • the energy store ES is connected to the latter via a positive input current connection EA1 and a negative input current connection EA2 of the inverter WR.
  • the inverter WR comprises three bridges B1-B3 and HB1-HB3.
  • a potential or a contact of the DC transmission connection, in particular the positive rail DC + is connected via the electric machine EM or EM ', in particular via their windings in series with the inverter WR1-3.
  • FIGS. 1 and 2 show full bridges B1-B3, which Also referred to as two-pulse bridges, since each of the two half-waves of a solid wave is transmitted via one of the two switches of the respective bridge.
  • Figure 3 shows an H-bridge circuit with individual H-bridges connected between the input current terminals EA1,2 and the phase current terminals PS1-3.
  • EA1,2 the input current terminals
  • PS1-3 the phase current terminals
  • FIG. 1 shows an inverter WR1 which, like the inverter WR2 of FIG. 2, is shown as a multi-phase full-wave bridge circuit.
  • the inverters WR1 and WR2 are B6C bridge circuits.
  • the switches H1-H3 are high side switching elements (i.e., connected to the positive input power terminal), and the switches L1-L3 are lowside switching elements (i.e., connected to the negative input power terminal).
  • Each individual bridge Bl-3 has in each case one high-side switching element and one respective lowside switching element, which are connected in series.
  • Freewheeling diodes D are connected in parallel with each of the switches.
  • the switching elements are in particular MOSFETs or IGBTs.
  • the inverter WR1 is connected directly to the DC transmission connection DC +, DC- via the electric machine EM.
  • the vehicle electrical system FB extends from the
  • the dashed line marks an interface to a stationary charging station DC Charger.
  • the inverter WR2 is indirectly connected via the electric machine EM via a DC-DC converter DCDC to the DC-DC connection DC +, DC-.
  • a voltage adaptation is possible, in particular overlapping voltage bands of the electric machine EM or of the inverter WR2 on the one hand and the energy store 110 on the other hand.
  • the energy storage 110 has a circuit breaker in addition to memory cells.
  • the DC-DC converter DCDC has two serial switches ZI, Z2, at the point of their connection a series inductance L connects, which connects the serial switches ZI, Z2 with a DC link capacitor K of the DC-DC converter DCDC.
  • the intermediate circuit capacitor ⁇ K is further connected to the negative solutionsstroman- circuit EA2; the positive input current terminal EA1 is connected via the switch ZI and the inductor with the interim ⁇ intermediate circuit capacitor K.
  • Energy storage 110 is located.
  • the electric machine ⁇ ⁇ of Figure 2 comprises a Wick ⁇ ment system with three phases L1-L3 and with septabgriff in each of the windings, which j ede winding is divided into two.
  • the division into two is not necessarily a division into equally long winding sections, but is directed in particular to the requirements that are placed on a filter EMC.
  • the filter EMC with the capacitors Cx and Cy is connected to the intermediate taps and to the end of the winding which is opposite to the inverter WR2 or to its phase terminals PS1-3. Since the capacitors Cx and Cy interact with the windings of the electric machine, the windings or portions thereof may functionally form part of the filter EMC.
  • the filter EMC is further connected to a neutral conductor N and a protective conductor SL.
  • the capacitors Cx, Cy of Figure 2 and thus the filter EMC are (due to series switches) from the electric machine EM ⁇ separable.
  • a first switching device SB1 connects the electric machine ⁇ ⁇ or their phases L1-L3 with a
  • the first switching device SB1 comprises two switching elements or on ⁇ separation switch, which connect the phases under control, in particular to form a star point or (preferably incomplete) to dissolve.
  • the switching device may, in particular, have only one disconnecting switch which connects two windings in a controlled manner.
  • the remaining coil (s) is or are preferably permanently connected or via a direct Ver ⁇ bond with the other windings.
  • the disconnect switches or the disconnect switch are connected in such a way that when the switch or switches are open an incomplete (star or triangle) configuration results, or the configuration is completely dissolved (by disconnecting all coil ends), the disconnectors ensuring that not all windings are traversed by a direct current.
  • a control unit may be drivingly connected to the first switching device SB1 in order to realize the aforementioned in the charging and / or regenerative mode, and to connect all the windings in a motor or generator mode (for example to produce a symmetrical or complete configuration).
  • the control device controls the first switching device SB1 to transmit direct current through different windings or winding subgroups.
  • the control device is designed for such a control. As a result, the waste heat is generated more uniformly in the electric machine.
  • the first switching device SB1 further comprises per phase a circuit breaker, wherein the circuit breaker between the electric machine ⁇ ⁇ and the AC terminal AC are connected.
  • a second switching device SB2 connects the direct current transfer connection DC +, DC- with the electric machine EM or with the negative input current connection EA2 of the inverter WR2.
  • the positive rail DC + of the DC transmission connection DC +, DC- is transmitted to the inverter WR2 via the electrical machine (windings connected in series).
  • the second switching device is shown with one switching element per rail (DC + and DC-).
  • a rail of the DC transmission connection in particular the positive one
  • connection path M1 This possibility of connecting the DC transmission connection via the second switching device SB2 is represented by the connection path M1. It is he ⁇ clear that for the purpose of separating the direct current transmission connection, for example in the event of a fault, the
  • Switching element TE (or the relevant disconnector) of the second switching device SB2 or the downstream
  • Switching element of the first switching device eg.
  • Switching element of the phase L2, as shown in Figure 2) must be opened. Since one of the two switching elements of the first and the second switching device for separation is thus not required, for instance the switching element TE of the second switching device SB2 can be omitted and replaced by a direct connection.
  • Figure 2 is used to explain the redundancy of these switches, so that Figure 2 illustrates all the elements required to understand the redundancy. However, not all elements shown in FIG. 2 are required to implement the approach described here.
  • switching element TE can be replaced by a direct connection and the relevant switching element (or the relevant disconnecting switch) of the first switching device, which is connected to the DC transmission connection, can be designed in particular as a DC disconnecting switch.
  • a second possibility is to connect the direct current transmission connection of the second switching device directly (ie not via the first switching device) to the electrical machine ⁇ ⁇ .
  • a rail of the DC connection ⁇ in particular the positive rail DC +, directly (and not via the switching device SB1) with a phase of electrical machine ⁇ ⁇ connected.
  • the disconnecting switch can be replaced by a direct connection if there is a control unit CT, which is set up in the event of a fault to hold or open the switching elements of the inverter WR2 in the open state. This applies in particular to all the switching elements of the inverter or the bridge circuit BnC.
  • This opportunity is provided by the connection path M2 is ⁇ .
  • the function of the (obsolete) disconnector TE is realized by the switching elements of the inverter.
  • the error case concerns a fault that causes the termination of the energy transfer between the charging station
  • connection paths M1 and M2 are alternatives to each other. Both of these possibilities make it possible to protect only one of the two DC potential rails (in FIG. 2, the rail marked DC) via a circuit breaker of the second switching device.
  • the first possibility provides that the other DC busbar (in FIG. 2 the busbar marked DC +) via a
  • Circuit breaker of the first switching device is protected, while the second possibility provides that the other DC busbar is protected by means of the switching elements of the inverter WR2, which are controlled by the control unit CT.
  • contactor means to provide the relevant potential rail (controlled) separable.
  • the control unit CT is set up to open the relevant isolating switch of the first switching device SB1 in the event of a fault.
  • the dashed line is the interface between the vehicle electrical system and infrastructure Inf again.
  • the interface is realized by an electromechanical interface, which forms a first connector STE1 on the part of the vehicle electrical system FB and a complementary connector STE2 on the part of the infrastructure Inf.
  • the first connector is in particular part of a Pluin-Inlets.
  • the second connector is stationary, especially at the end a charging cable of a charging station.
  • the current sources Inf ⁇ rapatented SQ for alternating current and there are three phases L1-L3 is formed, as well as a neutral conductor and a protective conductor SL.
  • the current sources SQ are about power sources of a public or local AC power supply network. These have correspondences on the vehicle side, which have the same names because of the better overview.
  • the DC charging station DC charger can have its own electrical energy source, in particular a
  • DC voltage source such as a voltage source of an energy ⁇ gieer Wegungsstrom that may belong to a local or a public power grid.
  • Both the inverter and possibly the DC-DC converter are preferably designed to be bidirectional, in particular in order to be able to deliver energy to the infrastructure.
  • the (single) H-bridge HB1 has a positive input PEl and a negative input NEl.
  • the H-bridge HB2 has a positive input PE2 and a negative input NE2.
  • the H-bridge HB3 has a positive input PE3 and a negative input NE3.
  • the positive inputs PE1-3 are interconnected and further connected to the positive input terminal EA1 of the inverter WR.
  • the negative inputs NE1-3 are interconnected and further connected to the negative input terminal EA2 of the inverter WR.
  • Each H-bridge HB1-3 has two shunt branches, each having two series-connected half ⁇ conductor switch HS.
  • a first of the transverse branches of each H-bridge (shown on the left) connects the negative input and the positive input of the respective H-bridge HB1-3.
  • Each H-bridge has a negative output NA1-3 and a positive output NA3.
  • a second of the shunt branches connects the outputs PA1, NA1; PA2, NA2 or PA3, NA3.
  • Each shunt branch has two semiconductor switches HS and corresponding switching elements, which are connected in series via a connection point.
  • the connection points of the two shunt branches are connected to each other by means of a bridge branch BZ1-3.
  • the bridge branch BZ1-3 which connects the connection points of the two shunt branches in each H-bridge HB1-3, has a series-connected inductance Ll-3.
  • the inductance Ll-3 in each of the H-bridges HB1-3 connects the connection points of the semiconductor switches HS of the two shunt branches.
  • Each phase connection is connected via a capacitor C21-23 to the negative input current connection EA2 or to the negative inputs NE1-3 of the H-bridges HB1-3.
  • the positive outputs PA1-PA3 of the H-bridges HB1-HB3 correspond to phase current connections of the inverter WR.
  • the dc power transfer connection and, if necessary, the ac transmission port are located at this interface, and the vehicle electrical system described here is shown on the left of the dotted line, to the right of which is the infrastructure in the form of a charger or charger.
  • the positive potential of the direct current transmission terminal is indirectly fed via the elec- generic machine or its star point S in several or all of the phase terminals PS1-3 of the inverter INV3, and the negative potential is a negative input ⁇ power supply of the inverter fed.
  • the positive rail DC + (corresponding to a positive contact and the positive potential, respectively) of the DC transmission terminal is connected to the positive output PA1 of a first H-bridge HB1.
  • the negative rail DC + (corresponding to a negative contact and the negative potential, respectively) of the DC transmission terminal is connected to the positive output PA2 of another H-bridge HB2.
  • the positive DC transmission connection DC + is connected to one side of the phase windings of the electric machine EM, while the opposite one Set sides of the phase windings of the electric machine EM are each connected to the phase current terminals PS1-3.
  • the positive with the DC transmission terminal DC + ⁇ ver-bound side of the phase windings of the electric motor EM are interconnected and form the star point S of the electric motor EM.
  • the negative direct current transfer connection DC- is connected to the negative input connection of the inverter WR.
  • the negative DC transmission connection DC- is in particular connected to the negative inputs of the H-bridges HB1-3.
  • Figures 1 and 3 are shown without AC transmission connection.
  • the vehicle shown there ⁇ Bordnetze may comprise an AC transmission terminal which is one or more phases and is connected to one or more (or even all) Phase current terminals of the inverter WR.
  • FIG. 2 shows a control unit CT of the inverter or of a possibly present DC voltage converter or of disconnectors or disconnectors.
  • the control unit CT controls in particular the first and the second switching device or the bridges Bl-3 and possibly the DC-DC converter DCDC, as indicated by the double arrows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The described vehicle supply system (FB) comprises an inverter (WR), an electric energy store (ES), an electric machine (EM) and a DC transmission link (DC+, DC-). The inverter (WR) is connected to the energy store (ES) via input current terminals (EA1, 2). At least two phase current terminals (PS1, PS2, PS3) of the inverter are connected to the electric machine (EM). The inverter (WR) includes at least two bridges (B1-B3; HB1-3). The two input current terminals (EA1, EA2) are connected to the at least two phase current terminals (PS1, PS2, PS3) via the bridges (B1-B3; HB1-3). The DC transmission link (DC+, DC-) has a positive busbar (DC+) that is connected to the phase current terminals (PS1, PS2, PS3) via the electric machine (EM).

Description

Beschreibung description
Fahrzeugbordnetz mit Wechselrichter, Energiespeicher, Vehicle electrical system with inverter, energy storage,
elektrischer Maschine und Gleichstrom-Übertragungsanschluss electric machine and DC transmission connection
Kraftfahrzeuge mit einem elektrischen Antrieb, d.h. Elektro- fahrzeuge und Hybridfahrzeuge, umfassen einen elektrischen Energiespeicher zur Versorgung des elektrischen Antriebs. Elektrofahrzeuge und Plug-In-Hybride sind mit einem Anschluss ausgestattet, mittels dem sich Energie von einem stationären elektrischen Versorgungsnetz (lokal oder öffentlich) zum Aufladen des Energiespeichers an diesen übertragen lässt. Gegebenenfalls sind die Fahrzeuge auch ausgestattet, elektrische Energie an das Versorgungsnetz zurückzuspeisen . Motor vehicles with an electric drive, i. Electric vehicles and hybrid vehicles, include an electrical energy storage for supplying the electric drive. Electric vehicles and plug-in hybrids are equipped with a connection that can be used to transfer energy from a stationary electrical supply network (local or public) to recharge the energy storage device. Optionally, the vehicles are also equipped to feed electrical energy back to the utility grid.
Zur Übertragung elektrischer Energie zwischen Versorgungsnetz und Fahrzeug sind leistungselektronische Komponenten erfor¬ derlich, insbesondere zur Steuerung der Energieübertragung. Es ist eine Aufgabe der Erfindung, eine Möglichkeit aufzuzeigen, mit der sich der Aufwand an derartigen Komponenten reduzieren lässt . For transmitting electric power between the mains and vehicle power electronic components are erfor ¬ sary, in particular for controlling the transfer of energy. It is an object of the invention to provide a way by which the cost of such components can be reduced.
Diese Aufgabe wird gelöst durch den Gegenstand der unabhängigen Ansprüche. Weitere Vorteile, Merkmale, Ausführungsformen und Eigenschaften ergeben sich mit den abhängigen Ansprüchen sowie aus dieser Beschreibung und den Figuren. This object is solved by the subject matter of the independent claims. Further advantages, features, embodiments and features will become apparent from the dependent claims and from this description and the figures.
Es ist vorgesehen, dass zur Übertragung eines Gleichstroms an oder vom Fahrzeugbordnetz (eines eingangs beschriebenen It is envisaged that for transmitting a direct current to or from the vehicle electrical system (one described above
Kraftfahrzeugs) Komponenten eines Wechselrichters verwendet werden. Hierzu wird ist zumindest eine Schiene eines Gleich- strom-Übertragungsanschluss (etwa ein Plug-In-Steckanschluss oder auch eine fahrzeugseitige Vorrichtung zur induktiven Energieübertragung) an zumindest ein Phasenstromanschluss des Wechselrichters angeschlossen. Die zumindest eine Schiene ist direkt mit zumindest einem Eingangsstromanschluss verbunden, oder ist über eine elektrische Maschine (des elektrischen Antriebs des Fahrzeugs) , die mit Phasenstromanschlüssen ver- bunden ist, mit zumindest einem Eingangsstromanschluss ver¬ bunden. Die Verbindung zwischen Gleich- strom-Übertragungsanschluss und (mindestens einem) Phasen- stromanschluss kann somit direkt oder indirekt über die elektrische Maschine vorgesehen sein. Motor vehicle) components of an inverter can be used. For this purpose, at least one rail of a direct-current transmission connection (for example a plug-in plug connection or also a vehicle-side device for inductive energy transmission) is connected to at least one phase current connection of the inverter. The at least one rail is directly connected to at least one input power connection, or is connected via an electrical machine (the electric drive of the vehicle), which is provided with phase-current connections. is bound, with at least one input power connection ver ¬ connected. The connection between direct current transmission connection and (at least one) phase current connection can thus be provided directly or indirectly via the electrical machine.
Dadurch ist kein zusätzlicher Hoch- bzw. Tiefsetzsteller erforderlich, der die Spannung am Gleich- strom-Übertragungsanschluss an die Spannung am Energiespeicher anpasst. Die bereits vorhandene Leistungselektronik in Form des Wechselrichters, der insbesondere die Phasenströme für die elektrische Maschine bereitstellt, wird hierbei auch zur Steuerung der Leistung (insbesondere des Stroms und/oder der Spannung) verwendet, die über den Gleichstrom-Übertragungs- anschluss übertragen wird. As a result, no additional step-up or step-down converter is required, which adapts the voltage at the DC transmission connection to the voltage at the energy store. The already existing power electronics in the form of the inverter, which in particular provides the phase currents for the electrical machine, is also used here for controlling the power (in particular of the current and / or the voltage), which is transmitted via the DC transmission connection.
Der Wechselrichter umfasst ferner mehrere Einzelbrücken (kurz: Brücken), insbesondere Vollbrücken. Für jede Phase des Wechselrichters kann eine Vollbrücke vorgesehen sein. Die (Ein- zel-) brücken bilden eine mehrphasige Brückenschaltung desThe inverter further comprises a plurality of individual bridges (in short: bridges), in particular full bridges. For each phase of the inverter, a full bridge may be provided. The (single) bridges form a multi-phase bridge circuit of the
Wechselrichters. Die Brückenschaltung stellt im Wesentlichen in schaltungstechnischer Sicht den Wechselrichter dar. Inverter. The bridge circuit essentially represents the inverter in terms of circuit technology.
Die Brücken können beispielsweise zusammen eine mehrphasige BnC-Brückenschaltung bilden, wobei n = 2 * Phasenanzahl ist, oder können jeweils als mehrphasige H-Brückenschaltung vorgesehen sein. Die Brücken beziehen sich jeweils auf nur eine Phase. Die Brücken sind parallel geschaltet und auf diese Weise zusammen an den Eingangsstromanschlüssen angeschlossen. Im Falle einer BnC-Brücke kann in jeder Brücke der Phasenanschluss dieserFor example, the bridges may together form a multiphase BnC bridge circuit, where n = 2 * number of phases, or may each be provided as a multi-phase H bridge circuit. The bridges each refer to only one phase. The bridges are connected in parallel and thus connected together at the input power connections. In the case of a BnC bridge, in each bridge, the phase connection of this
Brücke über ein Schaltelement mit einem der beiden Eingangs¬ stromanschlüsse verbunden sein, und über ein weiteres Bridge via a switching element to be connected to one of the two input ¬ power terminals, and another
Schaltelement mit dem anderen Eingangsstromanschluss verbunden sein. Die Schaltelemente bilden einen Querzweig; im Falle einer BnC-Brückenschaltung entspricht der Querzweig (insbesondere ein einzelner Querzweig) der (Einzel- ) Brücke . Es sind insbesondere keine weiteren Schaltelemente in dem Inverter bzw. in der Brücke (im Falle der BnC-Brückenschaltung) vorgesehen. Im Falle einer H-Brückenschaltung kann in jeder (Einzel-H- ) Brücke ein erster Zwischenanschluss über ein erstes Schaltelement mit einem der beiden Eingangsstromanschlüsse verbunden sein, und über ein zweites Schaltelement mit dem anderen Eingangsstromanschluss verbunden sein. Hierbei ist bei jeder (Einzel-H- ) Brücke ein Phasenanschluss über ein drittes und ein viertes Schaltelemente mit einem der Eingangsstromanschlüsse (insbesondere mit dem negativen Eingangsstromanschluss) verbunden. Das dritte und das vierte Schaltelement bilden einen zweiten Querzweig der Switching element to be connected to the other input power connection. The switching elements form a shunt branch; in the case of a BnC bridge circuit, the shunt branch (in particular a single shunt branch) corresponds to the (single) bridge. In particular, no further switching elements are provided in the inverter or in the bridge (in the case of the BnC bridge circuit). In the case of an H-bridge circuit, in each (single-H) bridge, a first Intermediate terminal via a first switching element to be connected to one of the two input power terminals, and be connected via a second switching element to the other input power terminal. In this case, in each (single H) bridge, a phase connection is connected via a third and a fourth switching elements to one of the input current connections (in particular to the negative input connection). The third and the fourth switching element form a second transverse branch of the
(Einzel-H- ) Brücke . Das dritte und das vierte Schaltelement sind über einen zweiten Zwischenanschluss verbunden. Der erste Zwischenanschluss ist über eine Spule mit dem zweiten Zwi¬ schenanschluss verbunden. Der erste Querzweig umfasst daher einen ersten Zwischenanschluss und der zweite Querzweig umfasst einen zweiten Zwischenanschluss. Im Falle einer (Single H) bridge. The third and the fourth switching element are connected via a second intermediate connection. The first intermediate terminal is connected via a coil to the second interim ¬ specific connection. The first transverse branch therefore comprises a first intermediate connection and the second transverse branch comprises a second intermediate connection. In case of a
H-Brückenschaltung, die von den (Einzel- ) Brücken gebildet wird, entsprechen der erste und der zweite Querzweig der (Einzel-H- ) Brücke . Im Falle von H-Brückenschaltungen sind diese zwischen dem elektrischen Energiespeicher und den Phasen- stromanschlüssen geschaltet. H-bridge circuit, which is formed by the (single) bridges, correspond to the first and the second transverse branch of the (single-H) bridge. In the case of H-bridge circuits, these are connected between the electrical energy store and the phase current terminals.
Es wird ein Betrieb des Wechselrichters zur Wandlung zwischen der Gleichspannung des Energiespeichers und den Phasenspannungen der Phasenanschlüsse (d.h. der elektrischen Maschine) ermöglicht. Dies ermöglicht ferner die Wandlung zwischen der Gleichspannung am Gleichstrom-Übertragungsanschluss und der Gleichspannung des Energiespeichers . An operation of the inverter for converting between the DC voltage of the energy storage and the phase voltages of the phase terminals (i.e., the electric machine) is enabled. This also allows the conversion between the DC voltage at the DC transmission port and the DC voltage of the energy storage.
Der elektrische Energiespeicher kann direkt an den Eingangsstromanschlüssen des Wechselrichters angeschlossen sein. Ein direkter Anschluss schließt insbesondere weitere spannungs- oder stromwandelnde Komponenten zwischen Energiespeicher und The electrical energy storage can be connected directly to the input power terminals of the inverter. A direct connection includes in particular further voltage or current converting components between energy storage and
Wechselrichter (bzw. dessen Eingangsstromanschlüsse) aus. Der elektrische Energiespeicher kann ferner indirekt über einen Gleichspannungswandler an den Eingangsstromanschlüssen des Wechselrichters angeschlossen sein. Der Energiespeicher ist direkt an den Gleichspannungswandler angeschlossen. Der Inverter (or its input power connections). The electrical energy store can also be connected indirectly via a DC-DC converter to the input power terminals of the inverter. The energy storage is connected directly to the DC-DC converter. Of the
Gleichspannungswandler ist direkt an den Eingangsstromanschlüssen angeschlossen. Ein direkter Anschluss kann elektromechanische Anschlusskomponenten, Trennschalter, einen Schütz, eine Sicherung, einen Filter oder ähnliches beinhalten. Ein direkter Anschluss schließt insbesondere weitere spannungs- oder stromwandelnde Komponenten zwischen Energiespeicher und Wechselrichter (bzw. dessen Eingangsstromanschlüsse) aus. Ein indirekter Anschluss schließt insbesondere weitere spannungs- oder stromwandelnde Komponenten zwischen Energiespeicher und Wechselrichter (bzw. dessen Eingangsstromanschlüsse) ein. Der Gleichspannungswandler ist insbesondere ein Synchronwandler. Der Gleichspannungs¬ wandler kann eine erste Anschlussseite aufweisen, die an den Wechselrichter angeschlossen ist. An die erste Anschlussseite können zwei (mittels Steuersignalen) steuerbare, serielle Schaltelemente angeschlossen sein. Die seriellen Schaltelemente können die beiden Potentialanschlüsse der ersten Anschlussseite verbinden. Eine zweite Anschlussseite kann über eine Induk¬ tivität an einen Verbindungspunkt angeschlossen sein, über den die Schaltelemente miteinander (seriell) verbunden sind. Pa¬ rallel zu der zweiten Anschlussseite kann ein Kondensator angeschlossen sein. DC-DC converter is connected directly to the input power connections. A direct connection may include electromechanical connection components, circuit breakers, a contactor, a fuse, a filter or the like. In particular, a direct connection excludes further voltage or current-transforming components between the energy store and the inverter (or its input current connections). An indirect connection includes in particular further voltage or current-converting components between the energy store and the inverter (or its input current connections). The DC-DC converter is in particular a synchronous converter. The DC ¬ converter may have a first terminal side of which is connected to the inverter. Two (controllable by means of control signals), serial switching elements can be connected to the first connection side. The serial switching elements can connect the two potential connections of the first connection side. A second connection side may be connected to a connection point via a Induk ¬ tivity, are connected via the switching elements with each other (in series). Pa ¬ rallel to the second terminal side can be connected to a capacitor.
Es kann eine Steuerungseinheit vorgesehen sein, die den It may be provided a control unit, the
Wechselrichter und gegebenenfalls den Gleichspannungswandler ansteuert. Die Steuerungseinheit ist ansteuernd mit dem Inverter and possibly the DC-DC converter drives. The control unit is driving with the
Wechselrichter verbunden. In einem Wechselrichtungsmodus der Steuerungseinheit wird der Wechselrichter angesteuert, aus der Gleichspannung des Energiespeichers Phasenspannungen zu erzeugen, die an den Phasenanschlüssen anliegen. In einem (optionalen) Rekuperationsmodus steuert die Steuerungseinheit den Wechselrichter an, aus den Phasenspannungen an den Phasenanschlüssen eine Ladespannung an dem Energiespeicher zu erzeugen. In einem Lademodus steuert die Steuerungseinheit den Wech¬ selrichter an, aus der Spannung, die an dem Gleich- strom-Übertragungsanschluss anliegt, eine Ladespannung an dem Energiespeicher zu erzeugen. In einem (optionalen) Rückspeisemodus steuert die Steuerungseinheit den Wechselrichter an, aus der Spannung, die an dem Energiespeicher des Fahrzeugbordnetzes anliegt, eine Rückspeisespannung an dem Gleich- strom-Übertragungsanschluss zu erzeugen. Die Ladespannung am Energiespeicher kann von einem Batteriemanagementsystem des Energiespeichers oder von einer Rekuperationssteuerung als ein Sollwert vorgegeben werden. Anstatt einer Ladespannung kann auch ein Ladestrom oder eine Ladeleistung als Sollwert vorgegeben werden. Die Phasenspannungen können von einer (übergeordneten) Motorsteuerung der elektrischen Maschine vorgeben werden, entweder direkt als Spannungssollwert oder als Leistungs- oder Drehmomentanforderung. Anstatt von Phasenspannungen können auch Phasenströme wie erwähnt zur Steuerung dienen. Die Rückspei- sespannung kann von einer Empfangseinrichtung des Fahrzeugbordnetzes als Sollwert erfasst werden. Die Empfangseinrichtung kann eingerichtet sein, Sollwerte von einer stationären Inverters connected. In an inverter mode of the control unit, the inverter is driven to generate from the DC voltage of the energy storage phase voltages applied to the phase terminals. In an (optional) recuperation mode, the control unit controls the inverter to generate a charging voltage at the energy store from the phase voltages at the phase terminals. In a charging mode, the control unit controls the Wech ¬ selrichter, from the voltage applied to the direct current transmission terminal to generate a charging voltage across the energy storage. In an (optional) regenerative mode, the control unit controls the inverter to generate from the voltage that is applied to the energy storage of the vehicle electrical system, a regenerative voltage at the DC transmission port. The charging voltage at Energy storage can be specified by a battery management system of the energy storage or by a recuperation as a target value. Instead of a charging voltage, a charging current or a charging power can be specified as a setpoint. The phase voltages may be specified by a (higher level) motor controller of the electric machine, either directly as a voltage setpoint or as a power or torque request. Instead of phase voltages, phase currents can also serve as control. The regenerative voltage can be detected by a receiving device of the vehicle electrical system as a setpoint. The receiving device may be configured to setpoint values of a stationary
Steuerung zu empfangen. Anstatt einer Rückspeisespannung kann auch ein Rückspeisestrom oder eine Rückspeiseleistung vorgegeben werden. Der Gleichspannungswandler wird von der Steuerungseinheit (kurz: Steuerung) angesteuert, Leistung in die Richtung zu übertragen, in die auch der Wechselrichter Leistung überträgt (d.h. von dem Energiespeicher weg zu diesem hin) . Das hier beschriebene Fahrzeugbordnetz ist wie erwähnt mit einem Wechselrichter, einem elektrischen Energiespeicher, einer elektrischen Maschine und einem Gleichstrom-Übertragungsan- schluss ausgestattet. Der Wechselrichter (und falls vorhanden auch der Gleichspannungswandler) umfasst Halblei- ter-Leistungsschalter . Der elektrische Energiespeicher ist insbesondere ein Akkumulator, beispielsweise ein Lithi- um-basierter Akkumulator. Der elektrische Energiespeicher kann ein Traktionsakkumulator sein. Der Energiespeicher kann eine Nennspannung von 40 - 60 V aufweisen, insbesondere von 48 V, und kann insbesondere eine Nennspannung von mehr als 100 Receive control. Instead of a regenerative voltage, a regenerative current or a regenerative power can also be specified. The DC-to-DC converter is driven by the control unit to transmit power in the direction in which the inverter also transmits power (i.e., away from the energy store). As mentioned, the vehicle electrical system described here is equipped with an inverter, an electrical energy store, an electric machine and a DC transmission connection. The inverter (and, if applicable, the DC-DC converter) includes semiconductor circuit breakers. The electrical energy store is in particular an accumulator, for example a lithium-based accumulator. The electrical energy store may be a traction accumulator. The energy store may have a nominal voltage of 40-60 V, in particular of 48 V, and may in particular have a nominal voltage of more than 100
Volt, insbesondere von mindestens 200 oder 300 V, beispielsweise von 350 - 420 V, aufweisen. Der Energiespeicher kann somit ein Hochvolt-Akkumulator sein. Die elektrische Maschine ist ins¬ besondere eine Drehstrommaschine. Die elektrische Maschine ist mehrphasig, insbesondere 3- oder 6-phasig. Die elektrischeVolts, in particular of at least 200 or 300 V, for example from 350 to 420 V. The energy store can thus be a high-voltage accumulator. The electric machine is in ¬ particular a three-phase machine. The electric machine is multi-phase, in particular 3- or 6-phase. The electric
Maschine kann eine fremderregte oder permanenterregte elekt¬ rische Maschine sein. Es kann vorgesehen sein, dass die elektrische Maschine einen Sternpunkt aufweist; andere Kon¬ figurationen sehen eine Dreieckkonfiguration der elektrischen Maschine vor. Die positive Schiene kann über den Sternpunkt mit den Phasenstromanschlüssen (des Wechselrichters) verbunden sein . Der Gleichstrom-Übertragungsanschluss kann ein Plugin-Inlet umfassen, d.h. ein elektromechanisches Steckverbindungselement , das sich in der Außenhaut eines Fahrzeugs montieren lässt. Der Gleichstrom-Übertragungsanschluss ist eingerichtet, mit einem Ladestecker (bzw. allgemeiner: Verbindungsstecker) verbunden zu werden. Machine may be a separately-excited or permanently excited elekt ¬ innovative machine. It can be provided that the electrical machine has a star point; other configurations see a triangle configuration of the electrical Machine in front. The positive rail can be connected via the neutral point to the phase current connections (of the inverter). The DC transmission port may include a plug-in inlet, ie, an electromechanical connector that can be mounted in the skin of a vehicle. The DC transmission port is configured to be connected to a charging plug (or, more generally, connector).
Der Wechselrichter weist einen positiven Eingangsstromanschluss und einen negativen Eingangsstromanschluss auf. Der Begriff Eingangsstromanschluss ergibt sich aus dem Wechselrichtermodus , in dem der Wechselrichter Leistung von dem Energiespeicher erhält. In diesem Modus erhält der Wechselrichter Leistung über den Eingangsstromanschluss, so dass in diesem Modus dieser Anschluss als Eingang des Wechselrichters dient. Im Lademodus dienen die gleichen Anschlüsse zur Abgabe von Leistung an den Energiespeicher, d.h. als Ausgang des Wechselrichters. The inverter has a positive input power connection and a negative input power connection. The term input power connection results from the inverter mode in which the inverter receives power from the energy storage. In this mode, the inverter receives power through the input power connector, so in this mode, this connector serves as input to the inverter. In charge mode, the same terminals serve to deliver power to the energy store, i. as the output of the inverter.
Die Eingangsstromanschlüsse sind mit dem Energiespeicher verbunden. Es kann ein Zwischenkreiskondensator parallel zu dem Energiespeicher bzw. parallel zu den Eingangsanschlüssen des Wechselrichters geschaltet sein. The input power connections are connected to the energy storage. It may be connected in parallel to the energy storage or parallel to the input terminals of the inverter, a DC link capacitor.
Der Wechselrichter weist mindestens zwei Phasenstromanschlüsse auf, die mit der elektrischen Maschine verbunden sind. Ins¬ besondere weist der Wechselrichter Phasenstromanschlüsse in einer Anzahl auf, die der Phasenzahl der elektrischen Maschine entspricht. Es kann jeder der Phasenstromanschlüsse mit einer eigenen Phase der elektrischen Maschine verbunden sein. Beispielsweise hat der Wechselrichter drei (oder sechs) Phasenstromanschlüsse, die jeweils an eine von drei (oder sechs) Phasen der elektrischen Maschine angeschlossen sind. The inverter has at least two phase current connections, which are connected to the electric machine. Ins ¬ particular, the inverter phase current terminals in a number which corresponds to the number of phases of the electrical machine. Each of the phase current connections can be connected to a separate phase of the electrical machine. For example, the inverter has three (or six) phase current terminals each connected to one of three (or six) phases of the electric machine.
Der Wechselrichter kann gemäß einer Ausführungsform mindestens zwei H-Brücken aufweisen. Die H-Brücken sind in diesem Fall jeweils zwischen den Eingangsstromanschlüssen und den Pha- senstromanschlüssen angeschlossen. Die H-Brücken können in Reihe zwischen den Eingangsstromanschlüssen und den Phasenstroman- schlüssen angeschlossen sein. Die H-Brücken können parallel zueinander angeschlossen sein (zumindest hinsichtlich der Eingangsstromanschlüsse) . Die H-Brücken sind vorzugsweise individuell mit einzelnen Phasen der elektrischen Maschine verbunden . The inverter may comprise at least two H-bridges according to one embodiment. In this case, the H-bridges are in each case between the input current connections and the phase senstromanschlüssen connected. The H-bridges may be connected in series between the input power connections and the phase current connections. The H-bridges may be connected in parallel with each other (at least with regard to the input current connections). The H-bridges are preferably individually connected to individual phases of the electrical machine.
Jede H-Brücke umfasst zwei Querzweige. Ein erster dieser Querzweige verbindet die beiden Eingangsstromanschlüsse. Ein zweiter dieser Querzweige verbindet einen Eingangsstroman- schluss (insbesondere den negativen) und einen Phasenstromanschluss. Jeder Querzweige umfasst zwei Schaltelemente, die über einen Verbindungspunkt miteinander verbunden sind. Die beiden Verbindungspunkte jeder H-Brücke (d.h. der Verbin¬ dungspunkt des einen Arms und der Verbindungspunkt des anderen Arms der gleichen H-Brücke) sind über eine Induktivität mit¬ einander verbunden. Die Schaltelemente, insbesondere Halbleiterschalter, jedesEach H-bridge comprises two transverse branches. A first of these shunt arms connects the two input power connections. A second of these shunt branches connects an input power connection (in particular the negative) and a phase current connection. Each transverse branch comprises two switching elements, which are connected to one another via a connection point. The two connecting points of each H-bridge (ie, the Verbin ¬ ground point of the one arm and the connection point of the other arm of the same H-bridge) are connected via an inductance with ¬ today. The switching elements, in particular semiconductor switches, each
Querzweigs sind an Verbindungspunkten miteinander verbunden. Die beiden Verbindungspunkte jeder H-Brücke sind mittels einer Induktivität miteinander verbunden. Die Induktivität ist insbesondere als diskretes Bauelement ausgestaltet, bei- spielsweise als Spule mit Kern. Transverse branches are connected to each other at connection points. The two connection points of each H-bridge are connected to each other by means of an inductance. The inductance is designed in particular as a discrete component, for example as a coil with a core.
Wie erwähnt kann der Wechselrichter H-Brücken umfassen, die jeweils zwei Querzweige aufweisen. Diese verbinden den positiven Eingangsstromanschluss mit dem negativen Eingangsstromanschluss mittels zweier serieller Halbleiterschalter verbinden. As mentioned, the inverter may comprise H-bridges, each having two shunt arms. These connect the positive input power connection to the negative input power connection using two serial solid state switches.
Die Halbleiterschalter bzw. Schaltelemente des Wechselrichters sind vorzugsweise Transistoren, insbesondere Feldeffekt- oder Bipolar-Transistoren, beispielsweise MOSFETs oder IGBTs. The semiconductor switches or switching elements of the inverter are preferably transistors, in particular field-effect or bipolar transistors, for example MOSFETs or IGBTs.
Jeder Phasenstromanschluss kann über einen Kondensator mit einem Eingangsstromanschluss (insbesondere mit dem den negativen Eingangsstromanschluss) verbunden sein. Mit anderen Worten kann an jede (Einzel- ) Brücke ein Kondensator parallel angeschlossen sein . Each phase current connection may be connected via a capacitor to an input power connection (in particular to the negative input power connection). In other words, can to each (single) bridge a capacitor connected in parallel.
Der Gleichstrom-Übertragungsanschluss kann eine positive Schiene aufweisen, die mit mindestens einem der Phasenstrom- anschlüsse verbunden ist. Über diese Verbindung kann Leistung über den Wechselrichter in den elektrischen Energiespeicher eingespeist werden. Mit anderen Worten kann der Gleich- strom-Übertragungsanschluss mit mindestens einem der Phasen- Stromanschlüsse verbunden sein. Insbesondere umfasst die Verbindung zwischen Gleichstrom-Übertragungsanschluss und (mindestens einem) Phasenstromanschluss (d.h. die Verbindung zwischen Gleichstrom-Übertragungsanschluss und Wechselrichter) keinen Spannungs- oder Stromwandler. Die Verbindung zwischen Gleichstrom-Übertragungsanschluss und (mindestens einem)The DC transmission port may include a positive rail connected to at least one of the phase current ports. Through this connection, power can be fed into the electrical energy storage via the inverter. In other words, the DC transmission port may be connected to at least one of the phase power connections. In particular, the connection between the DC transmission port and (at least one) phase current port (i.e., the connection between the DC transmission port and the inverter) does not include a voltage or current transformer. The connection between DC transmission port and (at least one)
Phasenstromanschluss kann einen Filter und/oder Sicherheit¬ selemente wie eine Sicherung und/oder ein Trennschalter aufweisen. Der Gleichstrom-Übertragungsanschluss kann einen Kontakt für ein negatives Potential und einen Kontakt für ein positives Potential aufweisen. Die positive Schiene kann dem positiven Kontakt entsprechen. Die negative Schiene kann dem negativen Kontakt entsprechen. Die Spannung am Gleich- strom-Übertragungsanschluss ist die Potentialdifferenz zwischen diesen Potentialen bzw. Kontakten. Phase current connection may have a filter and / or safety ¬ elements such as a fuse and / or a circuit breaker. The DC transfer port may include a negative potential contact and a positive potential contact. The positive track can correspond to the positive contact. The negative rail can correspond to the negative contact. The voltage at the DC transmission connection is the potential difference between these potentials or contacts.
Die positive Schiene des Gleichstrom-Übertragungsanschluss kann mit mindestens einem der Phasenstromanschlüsse verbunden sein, vorzugsweise in direkter Weise. Die positive Schiene des Gleichstrom-Übertragungsanschluss kann ferner über die elektrische Maschine (EM) mit mindestens einem der Phasen¬ stromanschlüsse (PS1, PS2, PS3) verbunden sein, d.h. in indirekter Weise. Als „direkt verbunden" wird daher eine Verbindung bezeichnet, die keine elektrische Maschine bzw. keine Wicklungen einer elektrischen Maschine umfasst. Als „direkt verbunden" wird daher eine Verbindung bezeichnet, die keine Schaltung zurThe positive rail of the DC transmission terminal may be connected to at least one of the phase current terminals, preferably in a direct manner. The positive rail of the DC transmission connection can also be connected via the electric machine (EM) to at least one of the phase ¬ current terminals (PS1, PS2, PS3), ie in an indirect manner. Therefore, a connection that does not include an electrical machine or windings of an electric machine is referred to as "directly connected." Therefore, a connection that does not have a circuit is referred to as "directly connected"
Spannungs- oder Stromwandlung aufweist. Als „direkt verbunden" kann eine Verbindung bezeichnet werden, die einen Filter oder und/oder Sicherheitselemente wie eine Sicherung und/oder ein Trennschalter aufweist. Als „indirekt verbunden" kann eine Verbindung bezeichnet werden, die eine elektrische Maschine bzw. eine Wicklungen einer elektrischen Maschine umfasst (etwa in Reihenschaltung) . Die Brücken können jeweils einen einzelnen Querzweig mit zwei seriellen Schaltelementen umfassen. Die Brücken können zusammen eine mehrphasige Vollwellen-Brückenschaltung ausbilden. Dies ist insbesondere bei einer BnC-Brückenschaltung der Fall, beispielsweise bei einer B6C-Brückenschaltung . Has voltage or current conversion. As a "directly connected" may be referred to a connection having a filter and / or security elements such as a fuse and / or a circuit breaker Connection can be referred to, which includes an electrical machine or a winding of an electrical machine (approximately in series). The bridges may each comprise a single shunt branch with two serial switching elements. The bridges can together form a multi-phase full-wave bridge circuit. This is the case in particular for a BnC bridge circuit, for example in the case of a B6C bridge circuit.
Ferner können die Brücken jeweils zwei Querzweige umfassen. Diese können jeweils mit zwei seriellen Schaltelementen ausgestattet sein. Die ist insbesondere bei H- (Einzel- ) Brücken der Fall. Die Brücken können zusammen eine mehrphasige H-Brückenschaltung ausbilden . Furthermore, the bridges may each comprise two transverse branches. These can each be equipped with two serial switching elements. This is the case especially for H (single) bridges. The bridges can together form a polyphase H-bridge circuit.
Bei jeder Brücke können die Eingangsstromanschlüsse an einer der beiden Querzweige angeschlossen sein. An dem anderen der beiden Querzweige können die Phasenstromanschlüsse angeschlossen sein; insbesondere ist an jedem einzelnen der anderen der beiden Querzweige jeder Brücke an einen Phasenstromanschluss ange¬ schlossen sein. Die Querzweige können jeweils einen Verbindungspunkt aufweisen, über den die seriellen Schaltelemente miteinander verbunden sind. Bei jeder Brücke können die Verbindungspunkte der beiden Querzweige über eine Induktivität (insbesondere ein Spule als diskretes Bauelement) miteinander verbunden sein. For each bridge, the input power connections can be connected to one of the two shunt arms. At the other of the two shunt branches, the phase current connections can be connected; In particular, at each one of the other of the two transverse branches of each bridge to be connected to a phase current connection ¬ . The shunt branches can each have a connection point via which the serial switching elements are connected to one another. In each bridge, the connection points of the two shunt branches can be connected to one another via an inductance (in particular a coil as a discrete component).
Das Fahrzeugbordnetz kann einen Wechselstrom-Übertragungs- anschluss aufweisen. Dieser kann über eine erste Schalter- Vorrichtung mit der elektrischen Maschine verbunden sein. Der Wechselstrom-Übertragungsanschluss kann mehrphasig sein, beispielsweise dreiphasig. The vehicle electrical system can have an AC transmission connection. This can be connected via a first switch device with the electric machine. The AC transmission terminal may be multi-phase, for example, three-phase.
Die erste Schaltervorrichtung kann Auftrennschalter zwischen Wicklungsenden der elektrischen Maschine aufweisen. Diese sind insbesondere eingerichtet sind, gesteuert eine Stern- oder Dreieckskonfiguration der elektrischen Maschine zu bilden oder aufzutrennen, insbesondere teilweise aufzutrennen. Die erste Schaltervorrichtung kann ferner Trennschalter aufweisen. Diese sind beispielsweise zwischen dem Wechsel- strom-Übertragungsanschluss und den Wicklungsenden der elektrischen Maschine vorgesehen. Während der Auftrennschalter Verbindungen zwischen Wicklungen der elektrischen Maschine auftrennt und dadurch die Schaltungskonfiguration der The first switching device may comprise disconnecting switches between winding ends of the electric machine. These are in particular arranged to form or to separate, in particular partially separate, a star or triangular configuration of the electric machine. The first switch device may further comprise disconnect switches. These are provided, for example, between the ac transmission port and the coil ends of the electric machine. While the breaker disconnects connections between windings of the electric machine and thereby the circuit configuration of the
elektrischen Maschine gesteuert ändert, dient der Trennschalter zum Abtrennen der elektrischen Maschine, insbesondere von einem Übertragungsanschluss . Der bzw. die Auftrennschalter trennen 1, 2, n-1 oder n Verbindungen zwischen den Wicklungsenden auf, wobei n die Anzahl der Verbindungen ist, die zur Bildung der Konfiguration notwendig sind. Etwa bei einem dreiphasigen System wird insbesondere eine der Wicklungen abgetrennt, während vorzugsweise zumindest zwei Wicklungen verbunden bleiben. Die Übertragung im Lade- und Rückspeisefall erfolgt daher über eine asymmetrisch konfigurierte elektrische Maschine. Der Auf¬ trennschalter und insbesondere die Steuereinheit, die diesen ansteuert, ist eingerichtet, dies durch Ansteuerung der Auf¬ trennschalter zu realisieren. Die erste Schaltervorrichtung kann eingerichtet sein, gesteuert eine Stern- oder Dreieckskonfiguration der elektrischen Maschine zu bilden oder teilweise aufzutrennen. Die erste Schaltervorrichtung ist eingerichtet, die Konfiguration vollständig zu bilden. Die erste Schaltervorrichtung ist ferner eingerichtet, die Konfiguration nur teilweise aufzutrennen. Bei einer teilweisen Auftrennung ist eine erste Menge von Wicklungen untereinander verbunden, während eine zweite Menge von Wicklungen, die mit der ersten keine Schnittmenge bildet, nicht untereinander verbunden ist. Insbesondere die Auftrennschalter sind eingerichtet, dies zu realisieren. Ferner können diecontrolled electrical machine, the circuit breaker is used to disconnect the electrical machine, in particular from a transmission port. The breaker (s) separate 1, 2, n-1 or n connections between the coil ends, where n is the number of connections necessary to form the configuration. For example, in a three-phase system, in particular one of the windings is disconnected, while preferably at least two windings remain connected. The transmission in the charging and regenerative event therefore takes place via an asymmetrically configured electrical machine. The on ¬ disconnector and in particular the control unit that controls this is set up to realize this by controlling the on ¬ disconnect switch. The first switch device may be configured to controllably form or partially split a star or triangle configuration of the electric machine. The first switch device is arranged to complete the configuration. The first switching device is further configured to split the configuration only partially. In a partial separation, a first set of windings is interconnected, while a second set of windings, which forms no intersection with the first, is not interconnected. In particular, the separation switches are set up to realize this. Furthermore, the
Trennschalter der ersten Schaltvorrichtung eingerichtet sein, nur einen Teil der Wicklungen abzutrennen. Die Steuereinheit ist eingerichtet, die erste Schaltervorrichtung entsprechend an¬ zusteuern. Mit anderen Worten ist die erste Schaltervorrichtung eingerichtet, eine (symmetrische) Konfiguration in der elektrischen Maschine auszubilden, und (ein einem anderen Zustand bzw. Modus) die Konfiguration der elektrischen Maschine asymmetrisch auszugestalten, d.h. so auszugestalten, dass zumindest eine Wicklung den Gleichstrom-Übertragungsanschluss mit dem Wechselrichter zu verbinden, während zumindest eine weitere Wicklung den Gleichstrom-Übertragungsanschluss nicht mit dem Wechselrichter verbindet. Dadurch wird erreicht, dass sich die Flüsse in der elektrischen Maschine nicht in der Summe aufheben, wenn Leistung über die elektrische Maschine übertragen wird und die elektrische Maschine zur Realisierung eines Filters verwendet wird. Disconnect switch of the first switching device may be configured to separate only a part of the windings. The control unit is adapted to control the first switch device according to ¬. In other words, the first switch device is configured to form a (symmetric) configuration in the electric machine, and to configure the configuration of the electric machine asymmetrically, that is, to design such that at least one winding forms the DC transmission port to connect to the inverter, while at least one other winding does not connect the DC transmission port to the inverter. This ensures that the flows in the electric machine do not cancel out in the sum when power is transmitted via the electric machine and the electric machine is used to implement a filter.
Das Fahrzeugbordnetz kann ferner eine zweite Schaltervorrichtung aufweisen. Diese kann zwischen dem Gleichstrom-Übertragungsan- schluss und der elektrischen Maschine vorgesehen sein bzw. diese gesteuert verbinden. Die zweite Schaltervorrichtung kann einen oder mehrere Trennschalter aufweisen. Ein derartiger Trennschalter ist einer Potentialschiene (insbesondere die negative) des Gleichstrom-Übertragungsanschlusses nachgeschaltet. Eine weitere Potentialschiene (insbesondere die positive) des Gleichstrom-Übertragungsanschlusses kann über die erste The vehicle electrical system may further comprise a second switch device. This can be provided between the DC transmission connection and the electric machine or connected in a controlled manner. The second switch device may include one or more disconnect switches. Such a circuit breaker is connected downstream of a potential rail (in particular the negative) of the DC transmission connection. Another potential rail (in particular the positive) of the DC transmission connection can via the first
Schaltervorrichtung mit der elektrischen Maschine (dauerhaft bzw. unsteuerbar) verbunden sein, insbesondere direkt bzw. ohne Trennschalter. Switching device to be connected to the electric machine (permanently or uncontrollably), in particular directly or without disconnector.
Wie erwähnt kann das Fahrzeugbordnetz eine zweite Schaltervorrichtung aufweisen, insbesondere die vorangehend be¬ schriebene. Die zweite Schaltervorrichtung ist zwischen dem Gleichstrom-Übertragungsanschluss und der elektrischen Maschine angeschlossen ist. Die zweite Schaltervorrichtung kann gemäß einer weiteren Möglichkeit mehrere Trennschalter aufweisen. Der Trennschalter kann eine Potentialschiene (insbesondere die positive) des Gleichstrom-Übertragungsanschlusses (direkt) mit der elektrischen Maschine verbinden. Ein weiterer der Trennschalter kann eine weitere Potentialschiene (insbesondere die negative) des Gleichstrom-Übertragungsanschlusses mit einem Eingangsstromanschluss des Wechselrichters verbinden, insbe¬ sondere in direkter Weise. As mentioned, the vehicle electrical system may include a second switch device, in particular the above ¬ be required. The second switch device is connected between the DC transmission port and the electric machine. The second switch device may comprise a plurality of circuit breakers according to another possibility. The circuit breaker can connect a potential rail (especially the positive) of the DC transmission port (directly) to the electric machine. Another of the circuit breaker can connect a further potential rail (in particular the negative) of the DC transmission connection with an input current terminal of the inverter, in particular ¬ special in a direct manner.
Die positive Schiene kann direkt mit einem der Phasenstrom- anschlüsse verbunden sein. Der Gleichstrom-Übertragungsan- schluss kann wie erwähnt eine negative Schiene aufweisen. Diese kann mit einem weiteren der Phasenstromanschlüsse verbunden sein. Insbesondere können die Phasenstromanschlüsse über einen (mehrphasigen) Trennschalter mit der elektrischen Maschine verbunden sein. Die positive Schiene und die negative Schiene des Gleichstrom-Übertragungsanschlusses können daher mit ver- schiedenen Phasenanschlüssen bzw. verschiedenen Phasen der elektrischen Maschine verbunden sein. Um einen Stromfluss durch die elektrische Maschine während des Lademodus λ zu vermeiden, kann ein Trennschalter vorgesehen sein, der die Phasenanschlüsse von der elektrischen Maschine bzw. deren Wicklungen trennt. The positive rail can be connected directly to one of the phase current connections. The DC transmission port may have a negative rail as mentioned. This can be connected to another of the phase current connections be. In particular, the phase current connections can be connected to the electric machine via a (multi-phase) disconnecting switch. The positive rail and the negative rail of the DC transmission connection can therefore be connected to different phase connections or different phases of the electrical machine. In order to avoid a current flow through the electrical machine during the charging mode λ , a disconnecting switch may be provided which disconnects the phase terminals from the electric machine or its windings.
Ferner kann ein Auftrennschalter zwischen Phasenwicklungen der elektrischen Maschine (in Verbindungen zwischen den Phasenwicklungen selbst) vorgesehen sein. Ein derartiger Auftrennschalter kann eingerichtet sein, eine Sternverschaltung (oder Dreiecksverschaltung) zumindest teilweise aufzuheben. DerFurther, a disconnecting switch may be provided between phase windings of the electric machine (in connections between the phase windings themselves). Such a disconnecting switch may be configured to at least partially cancel a star connection (or triangular connection). Of the
Trennschalter kann als Schalter vorgesehen sein, der zumindest eine der mit dem Gleichstrom-Übertragungsanschluss verbundenen Phasenwicklungen von anderen Phasenwicklungen abtrennt. Der Schalter kann ferner vorgesehen sein, alle Phasenwicklungen von einem Sternpunkt der elektrischen Maschine abzutrennen. Disconnector may be provided as a switch, which separates at least one of the connected to the DC transmission terminal phase windings of other phase windings. The switch may also be provided to disconnect all phase windings from a neutral point of the electric machine.
Die Steuerungseinheit kann eingerichtet sein, die erste und/oder die zweite Schaltervorrichtung anzusteuern, insbesondere die Trennschalter und/oder die Auftrennschalter . Die Steuerungs- einheit kann insbesondere eingerichtet sein, den Auftrenn¬ schalter im Lade- oder im Rückspeisemodus im geöffneten Zustand zu halten. Die Steuerungseinheit kann ferner eingerichtet sein, den Auftrennschalter im Wechselrichter- oder im Rekuperati- onsmodus im geschlossenen Zustand zu halten. Die Steuerungs- einheit kann ferner in einem Störungsfall eingerichtet sein, den Wechselrichter in allen Brücken aufzutrennen (und/oder die Trennschalter zu öffnen) , etwa wenn eine Ladestörung oder eine Rückspeisestörung auftritt und das Laden oder das Rückspeisen unterbrochen werden soll. The control unit may be configured to control the first and / or the second switching device, in particular the disconnecting switches and / or the disconnecting switches. The control unit can in particular be set up to keep the ripping ¬ switch in charge or in regenerative mode when opened. The control unit can also be set up to keep the separation switch in the inverter or in the recuperation mode in the closed state. The control unit can also be set up in a fault case, to split the inverter in all bridges (and / or open the circuit breaker), such as when a charging fault or a regenerative fault occurs and the charging or recovery is interrupted.
Weiterhin ist es möglich, dass die positive Schiene direkt oder über einen Schalter mit mehreren oder vorzugsweise allen Phasenstromanschlüssen verbunden ist. Mit anderen Worten ist der Gleichstrom-Übertragungsanschluss direkt oder über einen Schalter mit den Phasenstromanschlüssen verbunden, vorzugsweise mit allen. Dadurch können im Lademodus bzw. im Rückspeisemodus mehrere oder alle Brücken verwendet werden. Der Gleichstrom- Übertragungsanschluss weist eine negative Schiene auf, die mit dem negativen Eingangsstromanschluss des Wechselrichters verbunden ist. Falls ein Schalter verwendet wird, dann ist dieser vorzugsweise mehrphasig. Der Schalter weist für jede Verbindung zwischen einem Phasenanschluss und der positiven Schiene ein Schalterelement bzw. eine Phase auf (bei einem mehrphasigen Schalter) . Die Steuerungseinheit ist eingerichtet, im Wech¬ selrichtermodus oder ggf. im Rekuperationsmodus den Schalter in einem geöffneten Zustand zu halten. Die Steuerungseinheit ist ferner eingerichtet, im Lademodus oder ggf. im Rückspeisemodus den Schalter in einem geschlossenen Zustand zu halten. Furthermore, it is possible that the positive rail is connected directly or via a switch with a plurality or preferably all the phase current connections. In other words, the DC transmission port is direct or via a Switch connected to the phase current terminals, preferably with all. As a result, several or all bridges can be used in the charging mode or in the regenerative mode. The DC transmission port has a negative rail connected to the negative input power port of the inverter. If a switch is used, then this is preferably multi-phase. The switch has a switch element or a phase for each connection between a phase connection and the positive rail (in the case of a multiphase switch). The control unit is arranged to keep the switch in an open state in Wech ¬ selrichtermodus or optionally in the recuperation mode. The control unit is further configured to hold the switch in a closed state in the charging mode or possibly in the regenerative mode.
Anstatt, wie vorangehend beschrieben, die positive Schiene mit den Phasenanschlüssen des Wechselrichters zu verbinden, kann die positive Schiene auch über die elektrische Maschine bzw. über deren Phasenwicklungen an die Phasenanschlüsse des Wechsel- richters anschlössen sein. Mit anderen Worten kann die positive Schiene indirekt über die elektrische Maschine mit den Pha¬ senstromanschlüssen verbunden sein. Hierbei sind die Phasenwicklungen in Reihe zwischen der positiven Schiene und dem Wechselrichter angeschlossen. Die negative Schiene des Instead of connecting the positive rail to the phase connections of the inverter, as described above, the positive rail can also be connected to the phase connections of the inverter via the electrical machine or via its phase windings. In other words, the positive rail may be indirectly connected to the electric machine with the Pha ¬ senstromanschlüssen. Here, the phase windings are connected in series between the positive rail and the inverter. The negative rail of the
Gleichstrom-Übertragungsanschlusses kann mit dem negativen Eingangsstromanschluss des Wechselrichters verbunden sein. DC transmission connection may be connected to the negative input power connection of the inverter.
Die Brücken können Schaltelemente aufweisen, an die jeweils Freilaufdioden parallel angeschlossen sind. Die Freilaufdioden weisen eine Durchlassrichtung auf, die zum positiven Ein- gangsanschluss weist. The bridges may have switching elements to which free-wheeling diodes are connected in parallel. The freewheeling diodes have a forward direction, which points to the positive input connection.
Der elektrische Energiespeicher kann indirekt über einen Gleichstromwandler an den Eingangsstromanschlüssen des Wech- selrichters angeschlossen sein. Das Fahrzeugbordnetz kann eine Steuerungseinheit aufweisen. Diese ist ansteuernd mit zumindest dem Gleichstromwandler und dem Wechselrichter verbunden ist . Die Steuerungseinheit ist vorzugsweise eingerichtet ist, in einem Lademodus den Wechselrichter als Hochsetzsteller zu betreiben. Ferner kann die Steuerungseinheit eingerichtet sein, den Gleichstromwandler als Tiefsetzsteller zu betreiben. The electrical energy store can be connected indirectly via a DC-DC converter to the input current terminals of the inverter. The vehicle electrical system may have a control unit. This is drivingly connected to at least the DC-DC converter and the inverter. The control unit is preferably set up to operate the inverter as a boost converter in a charging mode. Furthermore, the control unit may be configured to operate the DC-DC converter as a step-down converter.
Wie erwähnt kann (bezogen auf den Gleichstrom-Übertragungs- anschluss) vorzugsweise bei allen hier beschriebenen Varianten der Begriff „positive Schiene" durch„positiven Kontakt" ersetzt werden und der Begriff „negative Schiene" kann durch „negativen Kontakt" ersetzt werden. Das Fahrzeugbordnetz ist insbesondere das Bordnetz einesAs mentioned, with respect to the DC transmission connection, the term "positive rail" may preferably be replaced by "positive contact" in all variants described here, and the term "negative rail" may be replaced by "negative contact". The vehicle electrical system is in particular the electrical system of a
Plug-in-Hybridkraftfahrzeugs oder eines Elektrokraftfahrzeugs . Plug-in hybrid motor vehicle or an electric motor vehicle.
Die Figuren 1-3 dienen zur näheren Erläuterung des hier beschriebenen Bordnetzes und zeigen (unter anderem) beispielhafte Fahrzeugbordnetze. FIGS. 1-3 serve for a more detailed explanation of the vehicle electrical system described here and show (among others) exemplary vehicle wiring systems.
Die Figuren 1, 2 und 3 zeigen jeweils ein Fahrzeugbordnetz mit einem Energiespeicher ES bzw. 10, 110 und einer elektrischen Maschine EM bzw. EM die über einen Wechselrichter WR1-3 miteinander verbunden sind. Ein Gleich- strom-Übertragungsanschluss (in den Figuren mit einem Figures 1, 2 and 3 each show a vehicle electrical system with an energy storage ES or 10, 110 and an electric machine EM or EM which are connected to each other via an inverter WR1-3. A DC transmission port (in the figures with a
„DC-Charger" außerhalb des Fahrzeugbordnetzes verbunden) weist eine positive Schiene DC+ und eine negative Schiene DC- auf. "DC Charger" connected outside the vehicle electrical system) has a positive rail DC + and a negative rail DC-.
In den Figuren 1, 2 und 3 ist der Energiespeicher ES über einen positiven Eingangsstromanschluss EA1 und einen negativen Eingangsstromanschluss EA2 des Wechselrichters WR an diesen angeschlossen. Parallel zu den Eingangsstromanschlüssen EA1 , EA2 ist ein Zwischenkreiskondensator 12, 112, Cl angeschlossen. Der Wechselrichters WR umfasst drei Brücken B1-B3 bzw. HB1 - HB3. Ein Potential bzw. ein Kontakt des Gleichstrom-Übertragungsanschlusses, insbesondere die positive Schiene DC+ ist über die elektrische Maschine EM bzw. EM', insbesondere über deren Wicklungen in Reihe mit dem Wechselrichter WR1-3 verbunden. In FIGS. 1, 2 and 3, the energy store ES is connected to the latter via a positive input current connection EA1 and a negative input current connection EA2 of the inverter WR. Parallel to the input current terminals EA1, EA2, an intermediate circuit capacitor 12, 112, Cl is connected. The inverter WR comprises three bridges B1-B3 and HB1-HB3. A potential or a contact of the DC transmission connection, in particular the positive rail DC + is connected via the electric machine EM or EM ', in particular via their windings in series with the inverter WR1-3.
Nachdem Gemeinsamkeiten der Figuren 1-3 erwähnt wurden, wird in Weiteren auf hauptsächliche Unterschiede der Figuren 1-3 eingegangen: Die Figuren 1 und 2 zeigen Vollbrücken B1-B3, die auch als Zweipulsbrücken bezeichnet werden, da jede der beiden Halbwellen einer Vollwelle über einen der beiden Schalter der jeweiligen Brücke übertragen wird. Die Figur 3 zeigt eine H-Brückenschaltung mit einzelnen H-Brücken, die zwischen den Eingangsstromanschlüssen EA1,2 und den Phasenstromanschlüssen PS1-3 geschaltet sind. In der Figur 2 wird die Having mentioned similarities of FIGS. 1-3, further main differences of FIGS. 1-3 will be discussed: FIGS. 1 and 2 show full bridges B1-B3, which Also referred to as two-pulse bridges, since each of the two half-waves of a solid wave is transmitted via one of the two switches of the respective bridge. Figure 3 shows an H-bridge circuit with individual H-bridges connected between the input current terminals EA1,2 and the phase current terminals PS1-3. In FIG. 2, the
B6C-Brückenschaltung, die sich aus den einzelnen Brücken Bl-3 ergibt, als BnC bezeichnet, wobei n ein Platzhalter für die Anzahl der Schaltelemente (hier: 3 * 2 = 6) ist.  B6C bridge circuit, which results from the individual bridges Bl-3, designated as BnC, where n is a placeholder for the number of switching elements (here: 3 * 2 = 6).
In der Figur 1 ist ein Wechselrichter WRl dargestellt, der wie der Wechselrichter WR2 der Figur 2 als mehrphasige Vollwel- lenbrückenschaltung dargestellt ist. Die Wechselrichter WRl und WR2 sind B6C-Brückenschaltungen . In der Figur 1 sind die Schalter H1-H3 Highside-Schalteelemente (d.h. mit dem positiven Ein- gangsstromanschluss verbunden) , und die Schalter L1-L3 sind Lowside-Schalteelemente (d.h. mit dem negativen Eingangs- stromanschluss verbunden) . Jede einzelne Brücke Bl-3 weist jeweils einen Highside-Schalteelemente und jeweils einen Lowside-Schalteelemente auf, die seriell verbunden sind. FIG. 1 shows an inverter WR1 which, like the inverter WR2 of FIG. 2, is shown as a multi-phase full-wave bridge circuit. The inverters WR1 and WR2 are B6C bridge circuits. In Figure 1, the switches H1-H3 are high side switching elements (i.e., connected to the positive input power terminal), and the switches L1-L3 are lowside switching elements (i.e., connected to the negative input power terminal). Each individual bridge Bl-3 has in each case one high-side switching element and one respective lowside switching element, which are connected in series.
Freilaufdioden D sind parallel mit jedem der Schalter verbunden. Die Schalteelemente sind insbesondere MOSFETs oder IGBTs. In der Figur 1 ist der Wechselrichter WRl über die elektrische Maschine EM direkt mit dem Gleichstrom-Übertragungsanschluss DC+, DC- verbunden. Das Fahrzeugbordnetz FB erstreckt sich von dem Freewheeling diodes D are connected in parallel with each of the switches. The switching elements are in particular MOSFETs or IGBTs. In FIG. 1, the inverter WR1 is connected directly to the DC transmission connection DC +, DC- via the electric machine EM. The vehicle electrical system FB extends from the
Energiespeicher 10 bis zu dem Gleichstrom-Übertragungsanschluss DC+, DC- . Die gestrichelte Linie markiert eine Schnittstelle zu einer stationären Ladestation DC-Charger. Im Gegensatz zur Figur 1 ist in der Figur 2 der Wechselrichter WR2 über die elektrische Maschine EM indirekt über einen Gleichspannungswandler DCDC mit dem Gleich- strom-Übertragungsanschluss DC+, DC- verbunden. Dadurch ist eine Spannungsanpassung möglich, insbesondere überlappende Span- nungsbänder der elektrischen Maschine EM bzw. des Wechselrichters WR2 einerseits und dem Energiespeicher 110 andererseits. Der Energiespeicher 110 weist neben Speicherzellen einen Trennschalter auf. Der Gleichspannungswandler DCDC weist zwei serielle Schalter ZI, Z2 auf, an deren Verknüpfungspunkt sich eine serielle Induktivität L anschließt, welche die seriellen Schalter ZI, Z2 mit einem Zwischenkreiskondensator K des Gleichspannungswandlers DCDC verbindet. Der Zwischenkreis¬ kondensator K ist ferner mit dem negativen Eingangsstroman- schluss EA2 verbunden; der positive Eingangsstromanschluss EA1 ist über den Schalter ZI und die Induktivität mit dem Zwi¬ schenkreiskondensator K verbunden. Insbesondere wird durch den zwischengeschalteten Gleichspannungswandler DCDC eine Spannung an den Gleichspannungsanschluss DC+, DC- möglich (etwa ca. 400 V), die unter der Betriebsspannung (etwa ca. 800 V) des Energy storage 10 up to the DC transmission connection DC +, DC-. The dashed line marks an interface to a stationary charging station DC Charger. In contrast to FIG. 1, in FIG. 2 the inverter WR2 is indirectly connected via the electric machine EM via a DC-DC converter DCDC to the DC-DC connection DC +, DC-. As a result, a voltage adaptation is possible, in particular overlapping voltage bands of the electric machine EM or of the inverter WR2 on the one hand and the energy store 110 on the other hand. The energy storage 110 has a circuit breaker in addition to memory cells. The DC-DC converter DCDC has two serial switches ZI, Z2, at the point of their connection a series inductance L connects, which connects the serial switches ZI, Z2 with a DC link capacitor K of the DC-DC converter DCDC. The intermediate circuit capacitor ¬ K is further connected to the negative Eingangsstroman- circuit EA2; the positive input current terminal EA1 is connected via the switch ZI and the inductor with the interim ¬ intermediate circuit capacitor K. In particular, by the intermediate DC-DC converter DCDC a voltage to the DC voltage terminal DC +, DC- possible (about 400 V), below the operating voltage (about 800 V) of the
Energiespeichers 110 liegt. Energy storage 110 is located.
Die elektrische Maschine ΕΜλ der Figur 2 umfasst ein Wick¬ lungssystem mit drei Phasen L1-L3 und mit Zwischenabgriff in j eder der Wicklungen, wodurch j ede Wicklung zweigeteilt wird . Die Zweiteilung ist nicht notwendigerweise eine Aufteilung in gleich lange Wicklungsabschnitte, sondern richtet sich insbesondere nach den Erfordernissen, die einem Filter EMC gestellt werden. Der Filter EMC mit den Kondensatoren Cx und Cy ist an die Zwischenabgriffe und an dasjenige Wicklungsende angeschlossen, welches entgegengesetzt zum Wechselrichter WR2 bzw. zu dessen Phasenanschlüssen PS1-3 ist. Da die Kondensatoren Cx und Cy mit den Wicklungen der elektrischen Maschine interagieren, können die Wicklungen bzw. Abschnitte hiervon in funktioneller Sicht einen Teil des Filters EMC darstellen. Der Filter EMC ist ferner mit einem Nullleiter N und einem Schutzleiter SL verbunden. Die Kondensatoren Cx, Cy der Figur 2 und somit der Filter EMC sind (aufgrund von Reihenschaltern) von der elektrischen Maschine EM λ abtrennbar. Eine erste Schaltvorrichtung SB1 verbindet die elektrische Maschine ΕΜλ bzw. deren Phasen L1-L3 mit einemThe electric machine ΕΜ λ of Figure 2 comprises a Wick ¬ ment system with three phases L1-L3 and with Zwischenabgriff in each of the windings, which j ede winding is divided into two. The division into two is not necessarily a division into equally long winding sections, but is directed in particular to the requirements that are placed on a filter EMC. The filter EMC with the capacitors Cx and Cy is connected to the intermediate taps and to the end of the winding which is opposite to the inverter WR2 or to its phase terminals PS1-3. Since the capacitors Cx and Cy interact with the windings of the electric machine, the windings or portions thereof may functionally form part of the filter EMC. The filter EMC is further connected to a neutral conductor N and a protective conductor SL. The capacitors Cx, Cy of Figure 2 and thus the filter EMC are (due to series switches) from the electric machine EM λ separable. A first switching device SB1 connects the electric machine ΕΜ λ or their phases L1-L3 with a
Wechselstromanschluss AC des Fahrzeugbordnetzes FB. Die erste Schaltvorrichtung SB1 umfasst zwei Schaltelemente bzw. Auf¬ trennschalter, die die Phasen untereinander gesteuert verbinden, insbesondere um einen Sternpunkt zu bilden oder (vorzugsweise unvollständig) aufzulösen. Die Schaltvorrichtung kann insbesondere nur einen Auftrennschalter aufweisen, der zwei Wicklungen gesteuert verbindet. Die verbleibende Wicklung (en) ist bzw. sind vorzugsweise permanent bzw. über eine direkte Ver¬ bindung mit den anderen Wicklungen verbunden. Mit anderen Worten sind die Auftrennschalter bzw. ist der Auftrennschalter derart angeschlossen, dass bei offenem Schalter bzw. offenen Schaltern sich eine unvollständige (Stern- oder Dreiecks ) konfiguration ergibt, oder die Konfiguration vollständig aufgelöst wird (durch trennen aller Wicklungsenden voneinander) , wobei die Trennschalter gewährleisten, dass nicht alle Wicklungen von einem Gleichstrom durchflössen werden. Eine Steuereinheit kann mit der ersten Schaltvorrichtung SBl ansteuernd verbunden sein, um im Lade- und/oder Rückspeisemodus das vorangehend erwähnte zu realisieren, und um in einem Motor- oder Generatormodus alle Wicklungen miteinander zu verbinden (etwa zur Herstellung einer symmetrischen bzw. vollständigen Konfiguration) . Ferner kann im Lade- und/oder Rückspeisemodus vorgesehen sein, dass die Steuereinrichtung die erste Schaltvorrichtung SBl ansteuert, Gleichstrom durch unterschiedliche Wicklungen bzw. Wicklungsuntergruppen zu übertragen. Die Steuereinrichtung ist zu einer derartigen Ansteuerung ausgestaltet. Dadurch wird in der elektrischen Maschine die Abwärme gleichmäßiger erzeugt. Die erste Schaltvorrichtung SBl umfasst ferner pro Phase einen Trennschalter, wobei die Trennschalter zwischen der elektrischen Maschine ΕΜλ und dem Wechselstromanschluss AC angeschlossen sind . Eine zweite Schaltvorrichtung SB2 verbindet den Gleich- strom-Übertragungsanschluss DC+, DC- mit der elektrischen Maschine EM bzw. mit dem negativen Eingangsstromanschluss EA2 des Wechselrichters WR2. Die positive Schiene DC+ des Gleich- strom-Übertragungsanschluss DC+, DC- wird über die elektrische Maschine (Wicklungen in Serie geschaltet) an den Wechselrichter WR2 übertragen. Die zweite Schaltvorrichtung ist mit einem Schaltelement pro Schiene (DC+ und DC-) dargestellt. AC connection AC of the vehicle electrical system FB. The first switching device SB1 comprises two switching elements or on ¬ separation switch, which connect the phases under control, in particular to form a star point or (preferably incomplete) to dissolve. The switching device may, in particular, have only one disconnecting switch which connects two windings in a controlled manner. The remaining coil (s) is or are preferably permanently connected or via a direct Ver ¬ bond with the other windings. In other words the disconnect switches or the disconnect switch are connected in such a way that when the switch or switches are open an incomplete (star or triangle) configuration results, or the configuration is completely dissolved (by disconnecting all coil ends), the disconnectors ensuring that not all windings are traversed by a direct current. A control unit may be drivingly connected to the first switching device SB1 in order to realize the aforementioned in the charging and / or regenerative mode, and to connect all the windings in a motor or generator mode (for example to produce a symmetrical or complete configuration). , Furthermore, it can be provided in the charging and / or regenerative mode that the control device controls the first switching device SB1 to transmit direct current through different windings or winding subgroups. The control device is designed for such a control. As a result, the waste heat is generated more uniformly in the electric machine. The first switching device SB1 further comprises per phase a circuit breaker, wherein the circuit breaker between the electric machine ΕΜ λ and the AC terminal AC are connected. A second switching device SB2 connects the direct current transfer connection DC +, DC- with the electric machine EM or with the negative input current connection EA2 of the inverter WR2. The positive rail DC + of the DC transmission connection DC +, DC- is transmitted to the inverter WR2 via the electrical machine (windings connected in series). The second switching device is shown with one switching element per rail (DC + and DC-).
Gemäß einer ersten Möglichkeit ist eine Schiene des Gleich- strom-Übertragungsanschlusses , insbesondere die positiveAccording to a first possibility, a rail of the DC transmission connection, in particular the positive one
Schiene DC+, über die zweite Schaltvorrichtung SB2 mit einer Phase des Wechselstromanschlusses AC verbunden und ist somit über die zweite Schaltvorrichtung SB2 und über die erste Schalt¬ vorrichtung SBl mit der elektrischen Maschine ΕΜλ verbunden. Diese Möglichkeit der Verbindung des Gleichstrom-Übertragungsanschlusses über die zweite Schaltvorrichtung SB2 ist mit dem Verbindungspfad Ml dargestellt. Es ist er¬ sichtlich, dass zum Zwecke der Abtrennung des Gleich- strom-Übertragungsanschlusses , etwa im Fehlerfall, das Rail DC +, via the second switching device SB2 connected to a phase of the AC terminal AC and is thus connected via the second switching device SB2 and the first switching ¬ device SBL with the electric machine ΕΜ λ . This possibility of connecting the DC transmission connection via the second switching device SB2 is represented by the connection path M1. It is he ¬ clear that for the purpose of separating the direct current transmission connection, for example in the event of a fault, the
Schaltelement TE (bzw. der betreffende Trennschalter) der zweiten Schaltvorrichtung SB2 oder das nachgeschaltete  Switching element TE (or the relevant disconnector) of the second switching device SB2 or the downstream
Schaltelement der ersten Schaltvorrichtung (bspw. das Switching element of the first switching device (eg
Schaltelement der Phase L2, wie in Figur 2 dargestellt) geöffnet werden muss. Da somit eine der beiden Schaltelemente der ersten und der zweiten Schaltvorrichtung zur Abtrennung nicht erforderlich ist, kann etwa das Schaltelement TE der zweiten Schaltvorrichtung SB2 weggelassen werden und durch eine direkte Verbindung ersetzt werden. Figur 2 dient zur näheren Erläuterung der Redundanz dieser Schalter, so dass Figur 2 alle zum Verständnis der Redundanz erforderlichen Elemente darstellt. Zur Umsetzung der hier erläuterten Herangehensweise sind jedoch nicht alle in Figur 2 dargestellten Elemente erforderlich. Wie erwähnt, kann Schaltelement TE durch eine direkte Verbindung ersetzt werden und das betreffende Schaltelement (bzw. der betreffende Trennschalter) der ersten Schaltvorrichtung, die mit dem Gleichstrom-Übertragungsanschluss verbunden ist, kann insbesondere als Gleichstrom-Trennschalter ausgebildet sein. Es verbleibt ein Schaltelement bzw. ein Trennschalter, der den Gleichstrom-Übertragungsanschluss (bzw. die Schiene DC-) mit dem Wechselrichter WR verbindet. Verbindung zwischen Gleich- strom-Übertragungsanschluss und elektrischer Maschine ΕΜλ kommt ohne Schaltelement bzw. Trennschalter in der zweiten Schaltvorrichtung aus, lediglich ein Trennschalter in der ersten Schaltvorrichtung liegt zwischen Gleich- strom-Übertragungsanschluss und elektrischer Maschine ΕΜλ vor. Switching element of the phase L2, as shown in Figure 2) must be opened. Since one of the two switching elements of the first and the second switching device for separation is thus not required, for instance the switching element TE of the second switching device SB2 can be omitted and replaced by a direct connection. Figure 2 is used to explain the redundancy of these switches, so that Figure 2 illustrates all the elements required to understand the redundancy. However, not all elements shown in FIG. 2 are required to implement the approach described here. As mentioned, switching element TE can be replaced by a direct connection and the relevant switching element (or the relevant disconnecting switch) of the first switching device, which is connected to the DC transmission connection, can be designed in particular as a DC disconnecting switch. There remains a switching element or a disconnect switch, which connects the DC transmission port (or the rail DC-) with the inverter WR. Connection between direct-current transmission connection and electric machine ΕΜ λ does not occur without switching element or disconnecting switch in the second switching device, only one disconnecting switch in the first switching device is present between direct-current transmission connection and electrical machine ΕΜ λ .
Eine zweite Möglichkeit ist es, den Gleich- strom-Übertragungsanschluss der zweiten Schaltvorrichtung direkt (d.h. nicht über die erste Schaltvorrichtung) mit der elektrischen Maschine ΕΜλ zu verbinden. Mit anderen Worten ist gemäß der zweiten Möglichkeit eine Schiene des Gleichstrom¬ anschlusses, insbesondere die positive Schiene DC+, direkt (und nicht über die Schaltvorrichtung SB1) mit einer Phase der elektrischen Maschine ΕΜλ verbunden. Auch in diesem Fall kann der Trennschalter durch eine direkt Verbindung ersetzt werden, wenn eine Steuereinheit CT vorliegt, die eingerichtet ist, im Fehlerfall die Schaltelemente des Wechselrichters WR2 in offenem Zustand zu halten bzw. zu öffnen. Dies gilt insbesondere für alle Schaltelemente des Wechselrichters bzw. der Brückenschaltung BnC . Diese Möglichkeit ist durch den Verbindungspfad M2 dar¬ gestellt. Dadurch wird die Funktion des (obsoleten) Trennschalters TE von den Schaltelementen des Wechselrichters re- alisiert. Der Fehlerfall betrifft insbesondere einen Fehler, der den Abbruch der Energieübertragung zwischen Ladestation A second possibility is to connect the direct current transmission connection of the second switching device directly (ie not via the first switching device) to the electrical machine ΕΜ λ . In other words, according to the second possibility, a rail of the DC connection ¬ , in particular the positive rail DC +, directly (and not via the switching device SB1) with a phase of electrical machine ΕΜ λ connected. In this case too, the disconnecting switch can be replaced by a direct connection if there is a control unit CT, which is set up in the event of a fault to hold or open the switching elements of the inverter WR2 in the open state. This applies in particular to all the switching elements of the inverter or the bridge circuit BnC. This opportunity is provided by the connection path M2 is ¬. As a result, the function of the (obsolete) disconnector TE is realized by the switching elements of the inverter. In particular, the error case concerns a fault that causes the termination of the energy transfer between the charging station
DC-Charger und Energiespeicher 110 erforderlich macht, etwa eine Überlastung des Energiespeichers oder ein Fehler in der Ladestation. Die Verbindungspfade Ml und M2 sind zueinander Alternativen. Beide genannten Möglichkeiten erlauben es, nur eine von beiden Gleichstrom-Potentialschienen (in Figur 2 die mit DC- gekennzeichnete Schiene) über einen Trennschalter der zweiten Schaltvorrichtung zu schützen. Die erste Möglichkeit sieht vor, dass die andere Gleichstrom-Potentialschiene (in Figur 2 die mit DC+ gekennzeichnete Schiene) über einen DC charger and energy storage 110 requires, such as an overload of the energy storage or a fault in the charging station. The connection paths M1 and M2 are alternatives to each other. Both of these possibilities make it possible to protect only one of the two DC potential rails (in FIG. 2, the rail marked DC) via a circuit breaker of the second switching device. The first possibility provides that the other DC busbar (in FIG. 2 the busbar marked DC +) via a
Trennschalter der ersten Schaltvorrichtung geschützt wird, während die zweite Möglichkeit vorsieht, dass die andere Gleichstrom-Potentialschiene mittels der Schaltelemente des Wechselrichters WR2 geschützt wird, die von der Steuereinheit CT angesteuert werden. Schützen bedeutet in diesem Fall, die betreffende Potentialschiene (gesteuert) abtrennbar vorzusehen . Es sei bemerkt, dass insbesondere in der ersten Möglichkeit die Steuereinheit CT eingerichtet ist, den betreffenden Trenn¬ schalter der ersten Schaltvorrichtung SB1 im Fehlerfall zu öffnen. Circuit breaker of the first switching device is protected, while the second possibility provides that the other DC busbar is protected by means of the switching elements of the inverter WR2, which are controlled by the control unit CT. In this case, contactor means to provide the relevant potential rail (controlled) separable. It should be noted that, in particular in the first possibility, the control unit CT is set up to open the relevant isolating switch of the first switching device SB1 in the event of a fault.
Auch in Figur 2 gibt die gestrichelte Linie die Schnittstelle zwischen Fahrzeugbordnetz und Infrastruktur Inf wieder. Die Schnittstelle wird realisiert durch eine elektromechanische Schnittstelle, die seitens des Fahrzeugbordnetzes FB einen ersten Steckverbinder STE1 und seitens der Infrastruktur Inf einen hierzu komplementären Steckverbinder STE2 bildet. Der erste Steckverbinder ist insbesondere Teil eines Pluin-Inlets . Der zweite Steckverbinder ist stationär, insbesondere am Ende eines Ladekabels einer Ladestation. Es sind seitens der Inf¬ rastruktur Stromquellen SQ für Wechselstrom vorgesehen und es werden drei Phasen L1-L3 ausgebildet, sowie ein Neutralleiter und ein Schutzleiter SL. Die Stromquellen SQ sind etwa Stromquellen eines öffentlichen oderlokalen Wechselstromversorgungsnetzes. Diese haben Entsprechungen auf der Fahrzeugseite, die mit der besseren Übersicht wegen die gleichen Bezeichnungen aufweisen. Die Gleichstromladestation DC-Charger kann eine eigene elektrische Energiequelle aufweisen, insbesondere eine Also in Figure 2, the dashed line is the interface between the vehicle electrical system and infrastructure Inf again. The interface is realized by an electromechanical interface, which forms a first connector STE1 on the part of the vehicle electrical system FB and a complementary connector STE2 on the part of the infrastructure Inf. The first connector is in particular part of a Pluin-Inlets. The second connector is stationary, especially at the end a charging cable of a charging station. There are provided by the current sources Inf ¬ rastruktur SQ for alternating current and there are three phases L1-L3 is formed, as well as a neutral conductor and a protective conductor SL. The current sources SQ are about power sources of a public or local AC power supply network. These have correspondences on the vehicle side, which have the same names because of the better overview. The DC charging station DC charger can have its own electrical energy source, in particular a
Gleichspannungsquelle, etwa eine Spannungsquelle einer Ener¬ gieerzeugungsanlage, die einem lokalen oder einem öffentlichen Stromversorgungsnetz angehören kann. Sowohl der Wechselrichter als auch ggf. der Gleichspannungswandler sind vorzugsweise bidirektional ausgebildet, insbesondere um auch Energie an die Infrastruktur abgeben zu können. DC voltage source, such as a voltage source of an energy ¬ gieerzeugungsanlage that may belong to a local or a public power grid. Both the inverter and possibly the DC-DC converter are preferably designed to be bidirectional, in particular in order to be able to deliver energy to the infrastructure.
In der Figur 3 ist ein Wechselrichter WR3 mit einer In the figure 3 is an inverter WR3 with a
H-Brückenschaltung dargestellt. Die (Einzel- ) H-Brücke HB1 weist einen positiven Eingang PEl und einen negativen Eingang NEl auf. Die H-Brücke HB2 weist einen positiven Eingang PE2 und einen negativen Eingang NE2 auf. Die H-Brücke HB3 weist einen positiven Eingang PE3 und einen negativen Eingang NE3 auf. Die positiven Eingänge PE1-3 sind untereinander verbunden und ferner mit dem positiven Eingangsanschluss EA1 des Wechselrichters WR ver- bunden. Die negativen Eingänge NE1-3 sind untereinander verbunden und ferner mit dem negativen Eingangsanschluss EA2 des Wechselrichters WR verbunden. Jede H-Brücke HB1-3 weist zwei Querzweige auf, die jeweils zwei seriell geschaltete Halb¬ leiterschalter HS aufweisen. Ein erster der Querzweige jeder H-Brücke (links dargestellt) verbindet jeweils den negativen Eingang und den positiven Eingang der jeweiligen H-Brücke HB1-3. Jede H-Brücke weist einen negativen Ausgang NA1-3 und einen positiven Ausgang NA3 auf. In jeder H-Brücke verbindet ein zweiter der Querzweige die Ausgänge PA1, NA1 ; PA2, NA2 bzw. PA3, NA3. Jeder Querzweig weist zwei Halbleiterschalter HS bzw. entsprechende Schaltelemente auf, die in Reihe über einen Verbindungspunkt miteinander verbunden sind. Für jede H-Brücke HB1-3 gilt, dass die Verbindungspunkte der beiden Querzweige mittels eines Brückenzweigs BZ1-3 miteinander verbunden sind. Der Brückenzweigs BZ1-3, welcher in jeder H-Brücke HB1-3 die Verbindungspunkte der beiden Querzweige verbindet, weist eine in Reihe angeschlossene Induktivität Ll-3 auf. Mit anderen Worten verbindet die Induktivität Ll-3 in jedem der H-Brücken HB1-3 die Verbindungspunkte der Halbleiterschalter HS der beiden Querzweige. Jeder Phasenanschluss ist über einen Kondensator C21-23 mit dem negativen Eingangsstromanschluss EA2 bzw. mit den negativen Eingängen NE1-3 der H-Brücken HB1-3 verbunden. Die positiven Ausgänge PA1-PA3 der H-Brücken HB1-HB3 entsprechen Phasenstromanschlüssen des Wechselrichters WR. Aus diesem Grund die positiven Ausgänge PA1-PA3 der H-Brücken HB1-3 und die Phasenstromanschlüsse PS1-3 des Wechselrichters WR als Äqui¬ valent zueinander betrachtet werden. Mit gestrichelter Linie ist die Schnittstelle zwischen Fahrzeugbordnetz und stationären Einrichtungen (DC-Ladegerät „DC-Charger" und AC-LadegerätH bridge circuit shown. The (single) H-bridge HB1 has a positive input PEl and a negative input NEl. The H-bridge HB2 has a positive input PE2 and a negative input NE2. The H-bridge HB3 has a positive input PE3 and a negative input NE3. The positive inputs PE1-3 are interconnected and further connected to the positive input terminal EA1 of the inverter WR. The negative inputs NE1-3 are interconnected and further connected to the negative input terminal EA2 of the inverter WR. Each H-bridge HB1-3 has two shunt branches, each having two series-connected half ¬ conductor switch HS. A first of the transverse branches of each H-bridge (shown on the left) connects the negative input and the positive input of the respective H-bridge HB1-3. Each H-bridge has a negative output NA1-3 and a positive output NA3. In each H-bridge, a second of the shunt branches connects the outputs PA1, NA1; PA2, NA2 or PA3, NA3. Each shunt branch has two semiconductor switches HS and corresponding switching elements, which are connected in series via a connection point. For each H-bridge HB1-3, the connection points of the two shunt branches are connected to each other by means of a bridge branch BZ1-3. The bridge branch BZ1-3, which connects the connection points of the two shunt branches in each H-bridge HB1-3, has a series-connected inductance Ll-3. In other words, the inductance Ll-3 in each of the H-bridges HB1-3 connects the connection points of the semiconductor switches HS of the two shunt branches. Each phase connection is connected via a capacitor C21-23 to the negative input current connection EA2 or to the negative inputs NE1-3 of the H-bridges HB1-3. The positive outputs PA1-PA3 of the H-bridges HB1-HB3 correspond to phase current connections of the inverter WR. For this reason, the positive outputs PA1-PA3 of the H-bridges HB1-3 and the phase current terminals of the inverter WR PS1-3 are considered to be equi valent ¬ each other. Dashed line is the interface between vehicle electrical system and stationary facilities (DC charger "DC Charger" and AC charger
„AC-Charger" ) dargestellt. An dieser Schnittstelle befinden sich der Gleichstrom-Übertragungsanschluss und ggf. der Wechsel- strom-Übertragungsanschluss . Links der gestrichelten Linie ist das hier beschriebene Fahrzeugbordnetz dargestellt, rechts hiervon befindet sich die Infrastruktur in Form eines Ladegeräts bzw. einer Gleichspannungs-Ladestation „DC-Charger" . The dc power transfer connection and, if necessary, the ac transmission port are located at this interface, and the vehicle electrical system described here is shown on the left of the dotted line, to the right of which is the infrastructure in the form of a charger or charger. a DC charging station "DC Charger".
In der Schaltung der Figur 3 wird das positive Potential des Gleichstrom-Übertragungsanschlusses indirekt über die elekt- rische Maschine bzw. deren Sternpunkt S in mehrere bzw. alle Phasenanschlüsse PS1-3 des Wechselrichters WR3 eingespeist, und das negative Potential wird über einen negativen Eingangs¬ stromanschluss des Wechselrichters eingespeist. Die positive Schiene DC+ (entsprechend einem positiven Kontakt bzw. dem positiven Potential) des Gleichstrom-Übertragungsanschlusses ist mit dem positiven Ausgang PA1 einer ersten H-Brücke HB1 verbunden. Ferner ist die negative Schiene DC+ (entsprechend einem negativen Kontakt bzw. dem negativen Potential) des Gleichstrom-Übertragungsanschlusses mit dem positiven Ausgang PA2 einer weiteren H-Brücke HB2 verbunden. In the circuit of Figure 3, the positive potential of the direct current transmission terminal is indirectly fed via the elec- generic machine or its star point S in several or all of the phase terminals PS1-3 of the inverter INV3, and the negative potential is a negative input ¬ power supply of the inverter fed. The positive rail DC + (corresponding to a positive contact and the positive potential, respectively) of the DC transmission terminal is connected to the positive output PA1 of a first H-bridge HB1. Further, the negative rail DC + (corresponding to a negative contact and the negative potential, respectively) of the DC transmission terminal is connected to the positive output PA2 of another H-bridge HB2.
In der Figur 3 ist der positive Gleichstrom-Übertragungs- anschluss DC+ mit einer Seite der Phasenwicklungen der elektrischen Maschine EM verbunden, während die entgegenge- setzten Seiten der Phasenwicklungen der elektrischen Maschine EM jeweils mit den Phasenstromanschlüssen PS1-3 verbunden sind. Die mit dem positive Gleichstrom-Übertragungsanschluss DC+ ver¬ bundenen Seite der Phasenwicklungen der elektrischen Maschine EM sind untereinander verbunden und bilden den Sternpunkt S der elektrischen Maschine EM. Der negative Gleich- strom-Übertragungsanschluss DC- ist mit dem negativen Ein- gangsanschluss des Wechselrichters WR verbunden. Der negative Gleichstrom-Übertragungsanschluss DC- ist insbesondere mit den negativen Eingängen der H-Brücken HB1-3 verbunden. In FIG. 3, the positive DC transmission connection DC + is connected to one side of the phase windings of the electric machine EM, while the opposite one Set sides of the phase windings of the electric machine EM are each connected to the phase current terminals PS1-3. The positive with the DC transmission terminal DC + ¬ ver-bound side of the phase windings of the electric motor EM are interconnected and form the star point S of the electric motor EM. The negative direct current transfer connection DC- is connected to the negative input connection of the inverter WR. The negative DC transmission connection DC- is in particular connected to the negative inputs of the H-bridges HB1-3.
Die Figuren 1 und 3 sind ohne Wechselstrom-Übertragungsanschluss dargestellt. Jedoch können die dort dargestellten Fahrzeug¬ bordnetze einen Wechselstrom-Übertragungsanschluss aufweisen, der ein- oder mehrphasig ist und mit einer oder mehreren (oder auch allen) Phasenstromanschlüssen des Wechselrichters WR verbunden ist. Figures 1 and 3 are shown without AC transmission connection. However, the vehicle shown there ¬ Bordnetze may comprise an AC transmission terminal which is one or more phases and is connected to one or more (or even all) Phase current terminals of the inverter WR.
Zur besseren Übersicht zeigt nur die Figur 2 einer Steuereinheit CT des Wechselrichters bzw. eines ggf. vorhandenen Gleich¬ spannungswandlers bzw. von Trenn- oder Auftrennschaltern . Die Steuereinheit CT steuert insbesondere die erste und die zweite Schaltvorrichtung bzw. die Brücken Bl-3 und gegebenenfalls den Gleichspannungswandler DCDC an, wie durch die Doppelpfeile angedeutet ist. For a better overview, only the FIG. 2 shows a control unit CT of the inverter or of a possibly present DC voltage converter or of disconnectors or disconnectors. The control unit CT controls in particular the first and the second switching device or the bridges Bl-3 and possibly the DC-DC converter DCDC, as indicated by the double arrows.

Claims

Patentansprüche Patent claims
1. Fahrzeugbordnetz (FB) mit einem Wechselrichter (WR1-3) , einem elektrischen Energiespeicher (10, 110, ES), einer elektrischen Maschine (EM, ΕΜλ) und einem Gleich- strom-Übertragungsanschluss (DC+, DC-) , wobei der Wech¬ selrichter (WR) einen positiven Eingangsstromanschluss (EA1) und einen negativen Eingangsstromanschluss (EA2) aufweist, die mit dem Energiespeicher (ES) verbunden sind; der Wechselrichter (WR) mindestens zwei Phasenstroman- schlüsse (PSl, PS2, PS3) aufweist, die mit der elektrischen Maschine (EM, ΕΜλ) verbunden sind; und 1. Vehicle electrical system (FB) with an inverter (WR1-3), an electrical energy storage (10, 110, ES), an electrical machine (EM, ΕΜ λ ) and a direct current transmission connection (DC+, DC-), where the inverter (WR) has a positive input power connection (EA1) and a negative input power connection (EA2), which are connected to the energy storage (ES); the inverter (WR) has at least two phase power connections (PSl, PS2, PS3) which are connected to the electrical machine (EM, ΕΜ λ ); and
der Wechselrichter (WR) mindestens zwei Brücken (B1-B3; HB1-3) aufweist, wobei die beiden Eingangsstromanschlüssen (EA1, EA2) über die Brücken (B1-B3; HBl-3)mit den mindestens zwei Phasenstromanschlüssen (PSl, PS2, PS3) verbunden ist, wobei der Gleichstrom-Übertragungsanschluss (DC+, DC-) eine positive Schiene (DC+) aufweist, die über die elektrische Maschine (EM) mit den Phasenstromanschlüssen (PSl, PS2, PS3) verbunden ist. the inverter (WR) has at least two bridges (B1-B3; HB1-3), the two input current connections (EA1, EA2) being connected via the bridges (B1-B3; HBl-3) to the at least two phase current connections (PSl, PS2, PS3) is connected, the direct current transmission connection (DC+, DC-) having a positive rail (DC+) which is connected to the phase power connections (PS1, PS2, PS3) via the electrical machine (EM).
2. Fahrzeugbordnetz (FB) nach Anspruch 1, wobei der elektrische Energiespeicher (10, 110) direkt an den Eingangsstromanschlüssen (EA1, EA2) des Wechselrichters (WR1, WR2) oder indirekt über einen Gleichspannungswandler (DCDC) an den2. Vehicle electrical system (FB) according to claim 1, wherein the electrical energy storage (10, 110) is connected directly to the input power connections (EA1, EA2) of the inverter (WR1, WR2) or indirectly via a DC-DC converter (DCDC).
Eingangsstromanschlüssen (EA1, EA2) des Wechselrichters (WR1, WR2) angeschlossen ist. input power connections (EA1, EA2) of the inverter (WR1, WR2).
3. Fahrzeugbordnetz (FB) nach Anspruch 1 oder 2, wobei die Brücken (B1-B3) jeweils einen einzelnen Querzweig mit zwei seriellen Schaltelementen (Hl, LI; H2, L2; H3, L3) umfassen und die Brücken eine mehrphasige Vollwellen-Brückenschal¬ tung bilden. 3. Vehicle electrical system (FB) according to claim 1 or 2, wherein the bridges (B1-B3) each comprise a single cross branch with two serial switching elements (Hl, LI; H2, L2; H3, L3) and the bridges have a multi-phase full-wave bridge circuit ¬ formation.
4. Fahrzeugbordnetz (FB) nach Anspruch 1 oder 2, wobei die Brücken (B1-B3) jeweils zwei Querzweige umfassen, die j eweils mit zwei seriellen Schaltelementen (HS) ausgestattet sind, und wobei die Brücken eine mehrphasige 4. Vehicle electrical system (FB) according to claim 1 or 2, wherein the bridges (B1-B3) each comprise two cross branches, each of which is equipped with two serial switching elements (HS), and wherein the bridges have a multi-phase
H-Brückenschaltung bilden. Fahrzeugbordnetz (FB) nach Anspruch 4 , wobei bei j eder Brücke (HB1-HB3) die Eingangsstromanschlüsse (EA1, EA2) an einer der beiden Querzweige angeschlossen sind und an dem anderen der beiden Querzweige die Phasenstromanschlüsse (PS1, PS2, PS3) angeschlossen sind, wobei die Querzweige jeweils einen Verbindungspunkt aufweisen, über den die seriellen Form H-bridge circuit. Vehicle electrical system (FB) according to claim 4, wherein for each bridge (HB1-HB3) the input current connections (EA1, EA2) are connected to one of the two cross branches and the phase current connections (PS1, PS2, PS3) are connected to the other of the two cross branches , whereby the cross branches each have a connection point via which the serial ones
Schaltelementen (HS) miteinander verbunden sind und wobei bei jeder Brücke (HB1-HB3) die Verbindungspunkte der beiden Querzweige über eine Induktivität (L1-L3) miteinander verbunden sind. Switching elements (HS) are connected to one another and with each bridge (HB1-HB3) the connection points of the two cross branches are connected to one another via an inductor (L1-L3).
Fahrzeugbordnetz (FB) nach einem der vorangehenden Ansprüche, das ferner einen Wechsel- strom-Übertragungsanschluss (AC) aufweist, der über eine erste Schaltervorrichtung (SBl) mit der elektrischem Maschine (ΕΜλ) verbunden ist, wobei die erste Schaltervorrichtung (SBl) Auftrennschalter zwischen Wicklungsenden der elektrischen Maschine (ΕΜλ) aufweist, die eingerichtet sind, gesteuert eine Stern- oder Dreieckskonfiguration der elektrischen Maschine (ΕΜλ) zu bilden oder aufzutrennen, und die erste Schaltervorrichtung (SBl) Trennschalter aufweist, die zwischen dem Wechselstrom-Übertragungsanschluss (AC) und den Wicklungsenden der elektrischen Maschine (ΕΜλ). Vehicle electrical system (FB) according to one of the preceding claims, which further has an alternating current transmission connection (AC) which is connected to the electrical machine (ΕΜ λ ) via a first switch device (SBl), wherein the first switch device (SBl) is an isolating switch between winding ends of the electrical machine (ΕΜ λ ), which are set up to form or separate a star or delta configuration of the electrical machine (ΕΜ λ ), and the first switch device (SB1) has disconnectors which are connected between the AC transmission connection ( AC) and the winding ends of the electrical machine (ΕΜ λ ).
Fahrzeugbordnetz (FB) nach Anspruch 6, wobei die erste Schaltervorrichtung (SBl) eingerichtet ist, gesteuert eine Stern- oder Dreieckskonfiguration der elektrischen Maschine (ΕΜλ) zu bilden oder teilweise aufzutrennen. Vehicle electrical system (FB) according to claim 6, wherein the first switch device (SBl) is set up to form or partially separate a star or delta configuration of the electrical machine (ΕΜ λ ) in a controlled manner.
Fahrzeugbordnetz (FB) nach einem der vorangehenden Ansprüche, das ferner eine zweite Schaltervorrichtung (SB2) aufweist, die zwischen dem Gleich- strom-Übertragungsanschluss (DC+, DC-) und der elektrischen Maschine angeschlossen ist, und die mindestens einen Trennschalter aufweist, wobei Vehicle electrical system (FB) according to one of the preceding claims, further comprising a second switch device (SB2) which is connected between the direct current transmission connection (DC+, DC-) and the electric machine, and which has at least one circuit breaker, wherein
die zweite Schaltervorrichtung (SB2) einen Trennschalter aufweist, der einer Potentialschiene (DC-) des Gleich¬ strom-Übertragungsanschlusses (DC+, DC-) nachgeschaltet ist, wobei eine weitere Potentialschiene (DC+) des Gleichstrom-Übertragungsanschlusses (DC+, DC-) über die erste Schaltervorrichtung (SB1) mit der elektrischen Maschine verbunden ist. the second switch device (SB2) has a circuit breaker which is connected downstream of a potential rail (DC-) of the direct current transmission connection (DC+, DC-), with a further potential rail (DC+) of the DC transmission connection (DC+, DC-) is connected to the electrical machine via the first switch device (SB1).
Fahrzeugbordnetz (FB) nach einem der Ansprüche 1 - 6, das ferner eine zweite Schaltervorrichtung (SB2) aufweist, die zwischen dem Gleichstrom-Übertragungsanschluss (DC+, DC-) und der elektrischen Maschine angeschlossen ist, und die mindestens einen Trennschalter aufweist, wobei Vehicle electrical system (FB) according to one of claims 1 - 6, further comprising a second switch device (SB2) which is connected between the direct current transmission connection (DC+, DC-) and the electric machine, and which has at least one circuit breaker, wherein
die zweite Schaltervorrichtung (SB2) mehrere the second switch device (SB2) has several
Trennschalter aufweist, wobei einer der Trennschalter (TR) eine Potentialschiene (DC+) des Gleich¬ strom-Übertragungsanschlusses (DC+, DC-) direkt mit der elektrischen Maschine verbindet und ein weiterer der Trennschalter eine weitere Potentialschiene (DC-) des Gleichstrom-Übertragungsanschlusses (DC+, DC-) mit einem Eingangsstromanschluss (EA2) des Wech¬ selrichters (WR) verbindet, oder Has circuit breaker, wherein one of the circuit breakers (TR) connects a potential rail (DC+) of the direct current transmission connection (DC+, DC-) directly to the electrical machine and another of the circuit breakers connects a further potential rail (DC-) of the direct current transmission connection ( DC+, DC-) connects to an input power connection (EA2) of the inverter (WR), or
die zweite Schaltervorrichtung (SB2) einen Trennschalter aufweist, der eine Potentialschiene (DC-) des Gleichstrom-Übertragungsanschlusses (DC+, DC-) mit einem Eingangsstromanschluss (EA2) des Wechsel¬ richters (WR) verbindet und das Fahrzeugbordnetz (FB) eine Steuereinheit (CT) aufweist, die eingerichtet ist, in einem Fehlerfall die Schaltelemente des Wechselrichters in einem offenen Zustand vorzusehen. the second switch device (SB2) has a circuit breaker which connects a potential rail (DC-) of the direct current transmission connection (DC+, DC-) with an input power connection (EA2) of the inverter (WR) and the vehicle on-board electrical system (FB) has a control unit ( CT), which is set up to provide the switching elements of the inverter in an open state in the event of a fault.
Fahrzeugbordnetz (FB) nach einem der vorangehenden Ansprüche, wobei die Brücken Schaltelemente aufweisen, an die jeweils Freilaufdioden parallel angeschlossen sind. Vehicle electrical system (FB) according to one of the preceding claims, wherein the bridges have switching elements to which freewheeling diodes are each connected in parallel.
Fahrzeugbordnetz (FB) nach einem der vorangehenden Ansprüche, wobei der elektrische Energiespeicher (10, 110) indirekt über einen Gleichspannungswandler (DCDC) an den Eingangsstromanschlüssen (EA1, EA2) des Wechselrichters (WR1, WR2) angeschlossen ist und das Fahrzeugbordnetz (FB) eine Steuerung (CT) aufweist, die ansteuernd zumindest mit dem Gleichspannungswandler (DCDC) und dem Wechselrichter (WR1, WR2) verbunden ist und die eingerichtet ist, in einem Lademodus den Wechselrichter (WRl, WR2) als Hochsetzstelle und den Gleichspannungswandler (DCDC) als Tiefsetzsteller z betreiben . Vehicle electrical system (FB) according to one of the preceding claims, wherein the electrical energy storage (10, 110) is connected indirectly via a DC-DC converter (DCDC) to the input power connections (EA1, EA2) of the inverter (WR1, WR2) and the vehicle electrical system (FB). Control (CT) which is connected in a driving manner at least to the direct voltage converter (DCDC) and the inverter (WR1, WR2) and which is set up in one In charging mode, operate the inverter (WRl, WR2) as a step-up converter and the DC-DC converter (DCDC) as a step-down converter.
PCT/EP2017/063226 2016-06-06 2017-05-31 Vehicle supply system comprising an inverter, energy store, electric machine and dc transmission link WO2017211656A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016209905.1 2016-06-06
DE102016209905.1A DE102016209905A1 (en) 2016-06-06 2016-06-06 Vehicle electrical system with inverter, energy storage, electric machine and DC transmission connection

Publications (1)

Publication Number Publication Date
WO2017211656A1 true WO2017211656A1 (en) 2017-12-14

Family

ID=57537236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/063226 WO2017211656A1 (en) 2016-06-06 2017-05-31 Vehicle supply system comprising an inverter, energy store, electric machine and dc transmission link

Country Status (2)

Country Link
DE (1) DE102016209905A1 (en)
WO (1) WO2017211656A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018217309A1 (en) * 2018-10-10 2020-04-16 Continental Automotive Gmbh Multi-phase inverter and related high voltage topology
CN114701375A (en) * 2021-11-12 2022-07-05 上海汽车集团股份有限公司 Electric automobile charging system and electric automobile
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213061B4 (en) 2016-07-18 2017-04-27 Continental Automotive Gmbh Vehicle electrical system and procedure
DE102016213070B4 (en) 2016-07-18 2017-05-11 Continental Automotive Gmbh Vehicle electrical system and procedure
DE102016224569B4 (en) * 2016-12-09 2025-05-08 Schaeffler Technologies AG & Co. KG Power control device for an electrical machine and method for disconnecting an electrical machine from an electrical energy storage device
DE102017206423A1 (en) 2017-04-13 2018-10-18 Bayerische Motoren Werke Aktiengesellschaft Charge switching arrangement for a vehicle, and method for a charging circuit arrangement
DE102017206497B4 (en) 2017-04-18 2022-02-03 Audi Ag Charging device and method for charging an electrical energy store of a vehicle, and motor vehicle
GB2561588B (en) 2017-04-19 2020-01-08 Sevcon Ltd DC-DC converter
DE102017221365A1 (en) * 2017-11-29 2019-05-29 Continental Automotive Gmbh Vehicle electrical system with inverter, energy storage, electric machine and AC transmission connection
DE102018000488A1 (en) * 2018-01-22 2018-07-12 Daimler Ag Electric drive system for a vehicle and method of operation thereof
DE102018203192A1 (en) * 2018-03-02 2019-09-05 Schmidhauser Ag Loading system
DE102018120236A1 (en) * 2018-08-20 2020-02-20 Thyssenkrupp Ag Charging device with controllable intermediate circuit center voltage and drive system with such a charging device
DE102018124789A1 (en) * 2018-10-08 2020-04-09 Thyssenkrupp Ag Fast charging device and electric drive system with such a quick charging device
DE102018124787A1 (en) 2018-10-08 2020-04-09 Thyssenkrupp Ag Charging device and electric drive system with such a charging device
CN112224042B (en) 2019-06-30 2022-04-15 比亚迪股份有限公司 Energy conversion device and vehicle
CN110988576A (en) * 2019-12-30 2020-04-10 深圳市昭恒新能源技术有限公司 Aging device of direct current charging module
EP3896812A1 (en) * 2020-04-17 2021-10-20 Siemens Aktiengesellschaft Drive system for electric multilane drives with energy exchange between the lanes
DE102021214699A1 (en) 2021-12-20 2023-06-22 Zf Friedrichshafen Ag motor vehicle
DE102022212070A1 (en) * 2022-11-15 2024-05-16 Zf Friedrichshafen Ag Charging device for an energy storage device of a motor vehicle, method for charging an energy storage device and motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2197084A1 (en) * 2007-09-13 2010-06-16 Toyota Jidosha Kabushiki Kaisha Charge controller of vehicle and the vehicle
DE102008063465A1 (en) * 2008-12-17 2010-06-24 Siemens Aktiengesellschaft Operating arrangement for an electrically operated vehicle
WO2010108623A1 (en) * 2009-03-27 2010-09-30 Sew-Eurodrive Gmbh & Co. Kg Drive system, method for operating the drive system and use
DE102011118823A1 (en) * 2011-11-18 2013-05-23 Volkswagen Aktiengesellschaft Apparatus and method for charging a traction battery of an electric or hybrid vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2197084A1 (en) * 2007-09-13 2010-06-16 Toyota Jidosha Kabushiki Kaisha Charge controller of vehicle and the vehicle
DE102008063465A1 (en) * 2008-12-17 2010-06-24 Siemens Aktiengesellschaft Operating arrangement for an electrically operated vehicle
WO2010108623A1 (en) * 2009-03-27 2010-09-30 Sew-Eurodrive Gmbh & Co. Kg Drive system, method for operating the drive system and use
DE102011118823A1 (en) * 2011-11-18 2013-05-23 Volkswagen Aktiengesellschaft Apparatus and method for charging a traction battery of an electric or hybrid vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
DE102018217309A1 (en) * 2018-10-10 2020-04-16 Continental Automotive Gmbh Multi-phase inverter and related high voltage topology
WO2020074531A1 (en) 2018-10-10 2020-04-16 Vitesco Technologies GmbH Multi-phase inverter for multiple sources in a vehicle and related high voltage topology
US11932115B2 (en) 2018-10-10 2024-03-19 Vitesco Technologies GmbH Multi-phase inverter and related high voltage topology
CN114701375A (en) * 2021-11-12 2022-07-05 上海汽车集团股份有限公司 Electric automobile charging system and electric automobile
CN114701375B (en) * 2021-11-12 2023-07-07 上海汽车集团股份有限公司 Electric automobile charging system and electric automobile

Also Published As

Publication number Publication date
DE102016209905A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2017211656A1 (en) Vehicle supply system comprising an inverter, energy store, electric machine and dc transmission link
EP3463966B1 (en) Vehicle power network with converter, energy storage, electrical machine and ac-transfer connection
EP3463968B1 (en) Vehicle supply system comprising an inverter, energy store, electric machine and dc transmission link
EP3481664B1 (en) Vehicle power network, charging system, charging station and method for transfer of electrical energy
EP3286033B1 (en) Power circuit for power supply in an electrically driven vehicle and stationary energy supply system
DE102009033185B4 (en) Charging system and charging method for charging a battery of a vehicle and vehicle with such a charging system
WO2019030125A1 (en) Storage-battery charging device for a motor vehicle, method for operating an on-board storage-battery charging device, high-voltage vehicle electrical system and use of a storage-battery charging device
WO2019105943A1 (en) On-board vehicle power system having an inverter, energy store, electric machine and ac transmission connection
EP2764614B1 (en) Modular multilevel dc/ac converter comprising a series connection of dc/ac inverter sub-modules for the generation of polyphase output voltages
DE102017116107B3 (en) Topology for a vehicle, method for loading a vehicle
DE102022002607B3 (en) Vehicle with an electrical circuit arrangement and two electrical drive units and method for its operation
DE102022207229B3 (en) Symmetry-optimized converter device for charging a vehicle battery
DE102010039640A1 (en) Traction Inverter
DE102014014838B4 (en) Redundant energy supply system for an on-board network of a motor vehicle and a method for operating a redundant energy supply system
DE102013011104A1 (en) Electrical power distribution device for an electrically driven vehicle and method for operating the power distribution device
DE102013017419A1 (en) Charging circuit for on-board-supercharger of vehicle e.g. motor vehicle e.g. passenger car, has short-circuited power supply line connected with lines of external power supply over switch, which provides short circuit of power supply line
DE102017201350B4 (en) Method for transmitting electrical energy between a vehicle-side energy storage and a connection station and vehicle electrical system
DE102017200904A1 (en) Power control device for an electrical machine and method for separating an electric machine from an electrical energy storage
WO2022084141A1 (en) Charging circuit having a direct-current terminal and an alternating-current terminal, and vehicle electrical system having a charging circuit
DE102023135871B3 (en) Electrical machine unit, vehicle and method for operating an electrical machine unit
DE102024002035B3 (en) Electric drive system and charging method
DE202017007188U1 (en) Vehicle electrical system with inverter, energy storage, electrical machine and AC transmission connection
DE102024000328B3 (en) Electric drive system and charging method
DE102023202262A1 (en) Converter device with multiple charging modes for charging a vehicle drive battery
DE102023113978A1 (en) Power converter, electrical machine unit, vehicle and method for operating a power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17728144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17728144

Country of ref document: EP

Kind code of ref document: A1