[go: up one dir, main page]

WO2017201723A1 - 微生物检测系统 - Google Patents

微生物检测系统 Download PDF

Info

Publication number
WO2017201723A1
WO2017201723A1 PCT/CN2016/083579 CN2016083579W WO2017201723A1 WO 2017201723 A1 WO2017201723 A1 WO 2017201723A1 CN 2016083579 W CN2016083579 W CN 2016083579W WO 2017201723 A1 WO2017201723 A1 WO 2017201723A1
Authority
WO
WIPO (PCT)
Prior art keywords
detected
detection system
slides
microbial detection
module
Prior art date
Application number
PCT/CN2016/083579
Other languages
English (en)
French (fr)
Inventor
卓金星
王志猛
王锦燕
Original Assignee
卓金星
王志猛
王锦燕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卓金星, 王志猛, 王锦燕 filed Critical 卓金星
Priority to PCT/CN2016/083579 priority Critical patent/WO2017201723A1/zh
Priority to US16/304,849 priority patent/US10782282B2/en
Priority to DE112016006784.4T priority patent/DE112016006784B4/de
Priority to CN201680084936.4A priority patent/CN109154554A/zh
Publication of WO2017201723A1 publication Critical patent/WO2017201723A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48735Investigating suspensions of cells, e.g. measuring microbe concentration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0118Apparatus with remote processing
    • G01N2021/0125Apparatus with remote processing with stored program or instructions
    • G01N2021/0131Apparatus with remote processing with stored program or instructions being externally stored
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0181Memory or computer-assisted visual determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0187Mechanical sequence of operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0193Arrangements or apparatus for facilitating the optical investigation the sample being taken from a stream or flow to the measurement cell

Definitions

  • the invention relates to detection systems, and more particularly to a microbial detection system.
  • Press generally want to detect the amount of microorganisms contained in a test substance (such as food, water source or bacterial culture solution), first take a small part of the sample to be collected and place it in a microscopic device. Detection, so that the amount of microorganisms of the analyte to be detected can be observed by the microscopic device.
  • a test substance such as food, water source or bacterial culture solution
  • the closure device when the test is to be performed, the closure device must be opened to take out a small portion of the object to be tested.
  • the detection object is used for the detection of the sample, and the removal process is likely to cause the external microorganisms and dirt to inadvertently enter the closure device to contaminate the object to be detected located in the closure device when the closure device is opened.
  • the collected samples are detected by the outside world, it is difficult to ensure that the collected samples are not polluted by the outside and affect the accuracy of the test results, and there is a drawback that needs to be improved.
  • the present invention provides a microorganism detecting system.
  • the microbial detection system of the present invention is provided in a closed device to be detected, characterized in that it comprises:
  • a fluid to be detected in the device to be tested is circulated to the flow channel;
  • a detecting module disposed in the flow channel, comprising a two-slide, a micro-module and at least one telescopic mechanism, wherein the two slides are disposed on opposite sides of the flow channel, and at least one of the slides is permeable to light,
  • the microscopic module is disposed on a side of the permeable light plate away from the other of the slides, each of the extensions a contracting mechanism is coupled to the slide and the flow channel;
  • the fluid to be detected in the slit of the two slides can be observed through the microscopic module.
  • the microbiological detection system further includes at least one brake member disposed on at least one of the slides to brake the two slides to move toward each other, and each of the brake members is selectively The telescopic telescopic element; the microbial detection system further comprising at least one light-emitting element, each of the light-emitting elements being disposed on a side of the slide away from the other slide.
  • the microbiological detection system further includes a pressurizing device disposed in the flow channel for transporting the fluid to be detected from the end of the device to be detected via the flow channel to the two slides The fluid to be detected is transported back into the device to be detected via the other end of the flow channel.
  • a pressurizing device disposed in the flow channel for transporting the fluid to be detected from the end of the device to be detected via the flow channel to the two slides The fluid to be detected is transported back into the device to be detected via the other end of the flow channel.
  • a part of the flow channel is a square pipe, and the two slides are respectively disposed on opposite sides of the square pipe, and the at least one telescopic mechanism is connected to at least one side of the slide and the square pipe.
  • the square tube is provided with at least two sides of the two slides that are permeable to light.
  • each of the telescopic mechanisms is a bellows body, and each of the bellows tubes is connected to one side of the slide and the square tube.
  • the micro-module comprises a high-magnification lens set, and the device to be detected is a closed trough or a closed pipe.
  • the microbiological detection system further comprises an image capturing device, wherein the image capturing device is disposed in the microscopic module for capturing and recording a projection of the two slides into the micromodule Capture images.
  • the microbiological detection system further includes a display unit electrically connected to the image capturing device to transmit the captured image to the display unit for playing.
  • the microbial detection system further includes a cloud database, and the cloud database is connected to the image capturing device, and the captured image captured by the image capturing device is transmitted to the cloud database.
  • the microbial detection system further includes a piston device disposed at an end of the flow path opposite to the device to be detected, the detection module being located between the piston device and the device to be detected, the piston device for The fluid to be detected is transported from the inside of the device to be detected to the detection module via the flow channel, and the fluid to be detected is transported back into the device to be detected.
  • the microbial detection system provided by the invention can detect the object to be detected more accurately and can effectively prevent the closed device to be detected and the object to be detected from being contaminated by the outside.
  • Figure 1 is a perspective view of a first preferred embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a first preferred embodiment of the present invention.
  • 3 and 4 are schematic views showing the operation of the first preferred embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another aspect of operation of the first preferred embodiment of the present invention.
  • Figure 6 is a schematic view showing the operation of a second preferred embodiment of the present invention.
  • FIG. 7 and 8 are schematic views showing the structure of a third preferred embodiment of the present invention.
  • Figure 9 is a schematic view showing the operation of a fourth preferred embodiment of the present invention.
  • Figure 10 is a schematic view showing the operation of the fifth preferred embodiment of the present invention.
  • 9,9A device to be tested
  • 71 a snake belly tube
  • the microorganism detecting system of the present invention is provided in a closed device 9 to be inspected, and the microbial detecting system includes a first channel 1 and a detecting module 8. .
  • the device to be tested 9 is a closed tank 91 (such as a skillet or a bacterial culture tank).
  • a fluid to be detected in the device to be detected 9 is circulated to the flow channel 1.
  • the detecting module 8 is disposed on the flow channel 1 and includes a two-slide 2, a micro-module 3 and at least one telescopic mechanism 7.
  • the two slides 2 are disposed on opposite sides of the flow channel 1, at least one of the slides 2 is permeable to light, the micro-module 3 is disposed on a side of the permeable light-permeable slide 2 away from the other of the slides 2, and has sufficient light source to observe, and each of the telescopic mechanisms 7 is connected to the slide 2 with the runner 1.
  • the fluid to be detected in the slit of the two slides 2 can be observed through the micromodule 3, preferably the micromodule 3 includes a high magnification.
  • the mirror group 31 is such that the microscopic module 3 can effectively observe microorganisms. Therefore, the fluid to be detected of the device to be detected 9 can be accurately detected by the microbial detection system, and the device to be detected can be effectively prevented.
  • the fluid to be detected inside is connected to the outside and is contaminated by the outside.
  • the flow channel 1 is a square pipe 11
  • the two slides 2 are respectively disposed on opposite sides of the square pipe 11
  • the telescopic mechanism 7 is connected to the slide 2 and the square pipe.
  • the microbial detection system includes a telescopic mechanism 7 disposed on a slide 2 away from the micro-module 3, preferably the square conduit 11 is provided.
  • the two sides of the two slides 2 are at least permeable to light, and have more sufficient light source for detection.
  • the telescopic mechanism 7 is a bellows body 71, and the bellows body 71 is connected to one side of the slide 2 and the square pipe 11, so that the slide can be smoothly moved. 2, and the square pipe 11 can be effectively closed to prevent the fluid to be detected from flowing out to the outside.
  • the microbial detection system may further comprise at least one brake member 4, the at least one brake member 4 being disposed at least on the slide 2 to brake the two slides 2 to move closer to each other, in particular,
  • the detecting module 8 includes a braking member 4 disposed on a slide 2 away from the micro-module 3, and the braking member 4 is selectively telescopically expandable and contractible.
  • the brake member may not be provided, and the two slides may be manually moved.
  • the microbial detection system can further comprise a pressurizing device 51, wherein the pressurizing device 51 is arranged in the flow channel 1 for the fluid to be detected to pass through the flow channel 1 from the device to be detected 9 One end is delivered between the two slides 2, and the fluid to be detected is transported back to the device to be detected 9 via the other end of the flow channel 1, which is a pump in the embodiment, and the pressurization
  • the device 51 delivers the fluid to be detected to the two slides 2 in a positive pressure manner. In other embodiments, it can of course also be transported in a negative pressure manner.
  • the pressurizing device 51 can be placed in the device to be detected 9
  • the detecting fluid flows smoothly between the flow channel 1 and the two slides 2 for detection by the detecting module 8, and the pressurizing device 51 can also transport the fluid to be detected through the other end of the flow channel 1.
  • the detection of the to-be-detected flow system detected by the detection module 8 is obtained from the detection device 9 in real time to improve the accuracy of the detection.
  • the microbial detection system may further comprise at least one light-emitting element 52 (in this embodiment, an LED light, in other embodiments, other types of light-emitting elements), each of the light-emitting elements 52 being disposed in the same
  • the slide 2 is away from the other side of the slide 2 to There is sufficient light for observation.
  • the light-emitting element 52 is disposed on a side of the slide 2 adjacent to the micro-module 3, and in other embodiments, A light-emitting element 52 is provided on one side of the slide 2.
  • the microbial detection system further includes an image capturing device 61, and the image capturing device 61 is disposed in the microscopic module 3.
  • the image capturing device 61 is a CCD (photosensitive coupling element) image sensor, which is used for capturing and recording a captured image of the microscope module 3 in the slit of the two slides 2 .
  • CMOS Complementary Oxide Metallic Semiconductor
  • the microbial detection system further includes a display unit 62 and a cloud database 63.
  • the display unit 62 is electrically connected to the image capturing device 61 to transmit the captured image to the display.
  • the unit 62 performs the playback;
  • the cloud database 63 is connected to the image capturing device 61, and the captured image captured by the image capturing device 61 is transmitted to the cloud database 63, so that the user does not need to go to the microscope in person.
  • the module performs observation and detection, and observes the intercepted image played by the display unit 62 or connects to the cloud database 63 by using a device (such as a mobile phone or a computer) to view the captured image, and the condition of the fluid to be detected is known.
  • the microbial detection system may include only one of the display unit 62 and the cloud database 63 according to actual use requirements. The rest of the structure is the same as that of the first embodiment described above, and therefore will not be described again.
  • the microorganism detecting system does not include a pressurizing device and further includes a piston device 53, which is provided in FIG. 7 and FIG.
  • the flow channel 1A is opposite the end of the device to be detected 9, the detection module 8 is located between the piston device 53 and the device to be detected 9, the piston device 53 for supplying the fluid to be detected from the device to be detected via the flow
  • the channel 1A is sent to the detection module 8 , and the piston device 53 can additionally supply the fluid to be detected back to the device to be detected 9 , so that the detection of the detected module 8 can be ensured in the third embodiment.
  • the flow system is obtained in real time from the device to be detected 9 to improve the accuracy of the detection.
  • the rest of the structure is the same as that of the first embodiment described above, and therefore will not be described again.
  • the microorganism detecting system can also be applied to a closed pipe (such as a liquid conveying pipe) 92 as compared with the first embodiment.
  • the detecting device 9A, the pressing device 51 can smoothly flow the fluid to be detected located in the device to be detected 9A to the flow channel 1 and the detecting module 8 for detection by the detecting module 8 And the fluid to be detected is transported back to the device to be detected 9A via the other end of the flow path 1.
  • the rest of the structure is the same as that of the first embodiment described above, and therefore will not be described again. It can be understood that, as shown in FIG.
  • the microorganism detecting system according to the fifth embodiment of the present invention may further include the pressing device instead of the pressing device, and the piston device 53 is similarly provided.
  • the fluid to be detected can be transported from the inside of the device to be detected 9A to the detection module 8 via the flow channel 1A, and the fluid to be detected can be transported back into the device to be detected 9A.
  • the micro-detection system of the present invention does not need to open the device to be detected to communicate with the outside and extract a portion of the fluid to be detected, and the microbial detection system can accurately detect the fluid to be detected of the device to be detected, and can be effective.
  • the fluid to be detected in the device to be detected is prevented from being connected to the outside and is contaminated by the outside.
  • the user does not need to go to the detection module and the device to be detected for observation and detection.
  • the observed fluid can be detected by observing the captured image played by the display unit or by using a device connected to the cloud database for viewing.
  • the status of the real-time monitoring can be achieved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

一种微生物检测系统,该微生物检测系统供设于一封闭式的待检测装置(9,9A),其包括一流道(1,1A)及一检测模块(8)。该待检测装置(9,9A)内的一待检测流体供流通于该流道(1,1A)。该检测模块(8)设于该流道(1,1A),包括二玻片(2)、一显微模块(3)及至少一伸缩机构(7),各该伸缩机构(7)连接于一该玻片(2)与该流道(1,1A)。其中,当该二玻片(2)相互靠近贴合时,通过该显微模块(3)即可观察到该二玻片(2)的缝隙内的该待检测流体。

Description

微生物检测系统 技术领域
本发明与检测系统有关,特别是有关于一种微生物检测系统。
背景技术
按,一般欲自一待检测物(如食物、水源或细菌培养液)检测出其所含的微生物量时,会先自待检测物取一小部分为采集样本并放置于一显微装置进行检测,如此即可借由显微装置观察出待检测物的微生物量。
然而,如待检测物装设于一与外界隔绝的封闭装置(如细菌培养槽或是食物杀菌槽)内时,当欲进行检测时,即必须将封闭装置打开,才能取出一小部分的待检测物为采集样本进行检测,而如此取出过程则容易导致当封闭装置打开时,外界的微生物及脏污会不慎进入封闭装置内而污染到位于封闭装置内的待检测物。另外,由于采集样本系于外界进行检测,如此难保采集样本不会被外界污染而影响到检测结果的准确性,存在亟待改善的缺弊。
因此,有必要提供一种新颖且具有进步性的微生物检测系统,以解决上述的问题。
技术问题
现有技术中的待检测物微生物量检测时,外界的微生物及脏污会不慎进入封闭装置内而污染到位于封闭装置内的待检测物。
技术解决方案
为解决上述技术问题,本发明提供一种微生物检测系统。
本发明的微生物检测系统,供设于一封闭式的待检测装置,其特征在于,包括:
一流道,该待检测装置内的一待检测流体供流通于该流道;
一检测模块,设于该流道,包括二玻片、一显微模块及至少一伸缩机构,该二玻片设于该流道的相对二侧,至少一该玻片为可透光,该显微模块设于可透光的该玻片远离另一该玻片的一侧,各该伸 缩机构连接于一该玻片与该流道;
其中,当该二玻片相互靠近贴合时,通过该显微模块即可观察到该二玻片的缝隙内的该待检测流体。
优选地,所述微生物检测系统还包括至少一制动件,该至少一制动件至少设于一该玻片,以制动该二玻片相互靠近移动,各该制动件为可选择性地伸缩的伸缩元件;所述微生物检测系统还包括至少一发光元件,各该发光元件设于一该玻片远离另一该玻片的一侧。
优选地,所述微生物检测系统还包括一加压装置,该加压装置设于该流道以供将该待检测流体自该待检测装置内经由该流道的一端输送至该二玻片之间,该待检测流体并经由该流道的另一端输送回该待检测装置内。
优选地,部分该流道为一方形管路,该二玻片分别设于该方形管路的相对二侧,该至少一伸缩机构连接于至少一该玻片与该方形管路的一侧,该方形管路设有该二玻片的二侧至少为可透光。
优选地,各该伸缩机构为一蛇腹管体,各该蛇腹管体连接于一该玻片与该方形管路的一侧。
优选地,该显微模块包括一高倍率镜组,该待检测装置为一封闭式槽桶或一封闭式管道。
优选地,所述微生物检测系统还包括一影像撷取装置,该影像撷取装置设于该显微模块,以供撷取及录制该二玻片的隙缝内所投影到该显微模块的一撷取影像。
优选地,所述微生物检测系统还包括一显示单元,该显示单元电性连接于该影像撷取装置,以将该撷取影像传送至该显示单元播放。
优选地,所述微生物检测系统还包括一云端数据库,该云端数据库通讯连接该影像撷取装置,该影像撷取装置所撷取的该撷取影像传输至该云端数据库。
优选地,所述微生物检测系统还包括一活塞装置,该活塞装置设于该流道相对该待检测装置的一端,该检测模块位于该活塞装置与该待检测装置之间,该活塞装置供将该待检测流体自该待检测装置内经由该流道输送至该检测模块,另供将该待检测流体输送回该待检测装置内。
有益效果
本发明提供的微生物检测系统,可更准确地检测待检测物并且可有效防止封闭式的待检测装置及待检测物被外界所污染。
附图说明
图1为本发明第一较佳实施例的立体图。
图2为本发明第一较佳实施例的结构示意图。
图3及图4为本发明第一较佳实施例的操作示意图。
图5为本发明第一较佳实施例的另一态样操作示意图。
图6为本发明第二较佳实施例的操作示意图。
图7及图8为本发明第三较佳实施例的结构示意图。
图9为本发明第四较佳实施例的操作示意图。
图10为本发明第五较佳实施例的操作示意图。
附图标记说明:
1,1A:流道;
2:玻片;
3:显微模块;
4:制动件;
7:伸缩机构;
8:检测模块;
9,9A:待检测装置;
11:方形管路;
31:高倍率镜组;
51:加压装置;
52:发光元件;
53:活塞装置;
61:影像撷取装置;
62:显示单元;
63:云端数据库;
71:蛇腹管体;
91:槽桶;
92:管道。
本发明的实施方式
以下仅以实施例说明本发明可能之实施态样,然并非用以限制本发明所欲保护之范畴,合先叙明。
请参考图1至4,其显示本发明的第一较佳实施例,本发明的微生物检测系统供设于一封闭式的待检测装置9,该微生物检测系统包括一流道1及一检测模块8。该待检测装置9为一封闭式槽桶91(如煮锅或细菌培养槽)。
该待检测装置9内的一待检测流体供流通于该流道1。
该检测模块8设于该流道1,包括二玻片2、一显微模块3及至少一伸缩机构7,该二玻片2设于该流道1的相对二侧,至少一该玻片2为可透光,该显微模块3设于可透光的该玻片2远离另一该玻片2的一侧,以具有足够的光源观察,各该伸缩机构7连接于一该玻片2与该流道1。
其中,当该二玻片2相互靠近贴合时,通过该显微模块3即可观察到该二玻片2的缝隙内的该待检测流体,较佳地该显微模块3包括一高倍率镜组31,以使该显微模块3可有效观察到微生物。因此,无需进行将该待检测装置9打开连通外界及取出部分该待检测流体,该微生物检测系统即可准确地检测出该待检测装置9的待检测流体,并且可有效防止该待检测装置9内的待检测流体连通外界而遭到外界的污染。
于本实施例中部分该流道1为一方形管路11,该二玻片2分别设于该方形管路11的相对二侧,该伸缩机构7连接于该玻片2与该方形管路11的一侧,于本实施例中该微生物检测系统包括一该伸缩机构7,该伸缩机构7设于远离该显微模块3的一该玻片2,该较佳地该方形管路11设有该二玻片2的二侧至少为可透光,以具有更足够的光源进行检测。值得一提的是,于本实施例中该伸缩机构7为一蛇腹管体71,该蛇腹管体71连接于该玻片2与该方形管路11的一侧,可顺利地移动该玻片2,且可有效封闭该方形管路11以防止该待检测流体流出至外界。
较佳地,该微生物检测系统可另包括至少一制动件4,该至少一制动件4至少设于一该玻片2,以制动该二玻片2相互靠近移动,具体而言,于本实施例中该检测模块8包括一该制动件4,该制动件4设于远离该显微模块3的一该玻片2,该制动件4为可选择性地伸缩之伸缩元件,以将远离该显微模块3的一该玻片2朝邻近该显微模块3的另一该玻片2移动或远离,于其它实施例中可将该二玻片2皆设有一该制动件4(如图5所示)亦无不可。当然,于其它实施例亦可不设有制动件,而以手动移动该二玻片亦可。
值得一提的是,该微生物检测系统可另包括一加压装置51,该加压装置51设于该流道1以供将该待检测流体自该待检测装置9内经由该流道1的一端输送至该二玻片2之间,该待检测流体并经由该流道1的另一端输送回该待检测装置9内,于本实施例中该加压装置51为泵,且该加压装置51以正压方式将该待检测流体输送至该二玻片2之间,于其它实施例中当然亦可用负压方式输送,该加压装置51可使位于该待检测装置9内的待检测流体顺利地流至该流道1及该二玻片2之间以供该检测模块8进行检测,另外由于该加压装置51亦可将该待检测流体经由该流道1的另一端输送回该待检测装置9内,因此可确保该检测模块8所检测到的该待检测流体系实时自该待检测装置9内所取得,以提升检测的准确性。
较佳地,该微生物检测系统可另包括至少一发光元件52(于本实施例中为LED灯,于其它实施例中亦可为其它种类的发光元件),各该发光元件52设于一该玻片2远离另一该玻片2的一侧,以具 有足够的光线进行观察,于本实施例中为一该发光元件52,该发光元件52设于邻近该显微模块3的该玻片2的一侧,于其它实施例中亦可于该二玻片2的一侧皆设有一该发光元件52。
如图6所示,相较于上述第一实施例,于本发明的第二实施例中,微生物检测系统另包括一影像撷取装置61,该影像撷取装置61设于该显微模块3,以供撷取及录制该二玻片2的隙缝内所投影到该显微模块3的一撷取影像,于本实施例中该影像撷取装置61为CCD(感光耦合元件)影像传感器,于其它实施例中亦为CMOS(互补性氧化金属半导体)影像传感器亦无不可。
进一步的说,于本实施例中该微生物检测系统另包括一显示单元62及一云端数据库63,该显示单元62电性连接于该影像撷取装置61,以将该撷取影像传送至该显示单元62进行播放;该云端数据库63系通讯连接该影像撷取装置61,该影像撷取装置61所撷取之该撷取影像系传输至该云端数据库63,因此使用者无需亲自前往该显微模块进行观察检测,通过观察该显示单元62所播放的该截取影像或是使用一装置(如手机或计算机)连上该云端数据库63观看该截取影像,即可得知该待检测流体的状况,故可有效增加检设的便利性且可进行实时监控。于其它实施例中微生物检测系统亦可依照实际使用需求而仅包括该显示单元62及该云端数据库63其中之一即可,其余结构与上述第一实施例相同,故不再多加叙述。
如图7及图8所示,相较于上述第一实施例,于本发明的第三实施例中,微生物检测系统不包括加压装置而另包括一活塞装置53,该活塞装置53设于流道1A相对该待检测装置9的一端,该检测模块8位于该活塞装置53与该待检测装置9之间,该活塞装置53供将该待检测流体自该待检测装置9内经由该流道1A输送至该检测模块8,该活塞装置53可另供将该待检测流体输送回该待检测装置9内,因此于第三实施例同样可确保该检测模块8所检测到的该待检测流体系自该待检测装置9内所实时取得,以提升检测的准确性,其余结构与上述第一实施例相同,故不再多加叙述。
要说明的是,如图9所示,相较于上述第一实施例,于本发明第四实施例中,微生物检测系统亦可应用于为一封闭式管道(如液体输送管道)92的待检测装置9A,该加压装置51同样地可使位于该待检测装置9A内的待检测流体顺利地流至该流道1及该检测模块8以供该检测模块8进行检测, 以及将该待检测流体经由该流道1的另一端输送回该待检测装置9A内,其余结构与上述第一实施例相同,故不再多加叙述。可理解的是,如图10所示,相较于上述第四实施例,本发明第五实施例的微生物检测系统亦可不包括加压装置而另包括该活塞装置53,该活塞装置53同样地可供将该待检测流体自该待检测装置9A内经由该流道1A输送至该检测模块8,另供将该待检测流体输送回该待检测装置9A内,其余结构与上述第四实施例相同,故不再多加叙述。
综上,本发明微的生物检测系统无需进行将该待检测装置打开连通外界及取出部分该待检测流体,该微生物检测系统即可准确地检测出该待检测装置的待检测流体,并且可有效防止该待检测装置内的待检测流体连通外界而遭到外界的污染。
并且,使用者无需亲自前往该检测模块及该待检测装置进行观察检测,通过观察该显示单元所播放的该截取影像或是使用一装置连上该云端数据库观看,即可得知该待检测流体的状况,故可达到实时监控的效果。

Claims (10)

  1. 一种微生物检测系统,供设于一封闭式的待检测装置,其特征在于,包括:
    一流道,该待检测装置内的一待检测流体供流通于该流道;
    一检测模块,设于该流道,包括二玻片、一显微模块及至少一伸缩机构,该二玻片设于该流道的相对二侧,至少一该玻片为可透光,该显微模块设于可透光的该玻片远离另一该玻片的一侧,各该伸缩机构连接于一该玻片与该流道;
    其中,当该二玻片相互靠近贴合时,通过该显微模块即可观察到该二玻片的缝隙内的该待检测流体。
  2. 如权利要求1所述的微生物检测系统,其特征在于,所述微生物检测系统还包括至少一制动件,该至少一制动件至少设于一该玻片,以制动该二玻片相互靠近移动,各该制动件为可选择性地伸缩的伸缩元件;所述微生物检测系统还包括至少一发光元件,各该发光元件设于一该玻片远离另一该玻片的一侧。
  3. 如权利要求1所述的微生物检测系统,其特征在于,所述微生物检测系统还包括一加压装置,该加压装置设于该流道以供将该待检测流体自该待检测装置内经由该流道的一端输送至该二玻片之间,该待检测流体并经由该流道的另一端输送回该待检测装置内。
  4. 如权利要求1所述的微生物检测系统,其特征在于,部分该流道为一方形管路,该二玻片分别设于该方形管路的相对二侧,该至少一伸缩机构连接于至少一该玻片与该方形管路的一侧,该方形管路设有该二玻片的二侧至少为可透光。
  5. 如权利要求4所述的微生物检测系统,其特征在于,各该伸缩机构为一蛇腹管体,各该蛇腹管体连接于一该玻片与该方形管路的一侧。
  6. 如权利要求1所述的微生物检测系统,其特征在于,该显微模块包括一高倍率镜组,该待检测装置为一封闭式槽桶或一封闭式管道。
  7. 如权利要求6所述的微生物检测系统,其特征在于,所述微生物检测系统还包括一影像撷取装置,该影像撷取装置设于该显微模块,以供撷取及录制该二玻片的隙缝内所投影到该显微模块的一撷取影像。
  8. 如权利要求7所述的微生物检测系统,其特征在于,所述微生物检测系统还包括一显示单元,该显示单元电性连接于该影像撷取装置,以将该撷取影像传送至该显示单元播放。
  9. 如权利要求7所述的微生物检测系统,其特征在于,所述微生物检测系统还包括一云端数据库,该云端数据库通讯连接该影像撷取装置,该影像撷取装置所撷取的该撷取影像传输至该云端数据库。
  10. 如权利要求1所述的微生物检测系统,其特征在于,所述微生物检测系统还包括一活塞装置,该活塞装置设于该流道相对该待检测装置的一端,该检测模块位于该活塞装置与该待检测装置之间,该活塞装置供将该待检测流体自该待检测装置内经由该流道输送至该检测模块,另供将该待检测流体输送回该待检测装置内。
PCT/CN2016/083579 2016-05-27 2016-05-27 微生物检测系统 WO2017201723A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/083579 WO2017201723A1 (zh) 2016-05-27 2016-05-27 微生物检测系统
US16/304,849 US10782282B2 (en) 2016-05-27 2016-05-27 Microorganism detection system
DE112016006784.4T DE112016006784B4 (de) 2016-05-27 2016-05-27 Detektionssystem für Mikroorganismen
CN201680084936.4A CN109154554A (zh) 2016-05-27 2016-05-27 微生物检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/083579 WO2017201723A1 (zh) 2016-05-27 2016-05-27 微生物检测系统

Publications (1)

Publication Number Publication Date
WO2017201723A1 true WO2017201723A1 (zh) 2017-11-30

Family

ID=60411005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083579 WO2017201723A1 (zh) 2016-05-27 2016-05-27 微生物检测系统

Country Status (4)

Country Link
US (1) US10782282B2 (zh)
CN (1) CN109154554A (zh)
DE (1) DE112016006784B4 (zh)
WO (1) WO2017201723A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111358970B (zh) * 2020-04-30 2024-09-24 常州驰恩机械制造有限公司 有机微生物强化生长后的分解回收和检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680276A (zh) * 2011-03-15 2012-09-19 艾博生物医药(杭州)有限公司 检测装置
GB2521885A (en) * 2014-01-05 2015-07-08 Georgios Gerardos An immunoassay detection device
JP2015169549A (ja) * 2014-03-07 2015-09-28 国立大学法人 東京大学 試料台及び走査型プローブ顕微鏡
CN204855390U (zh) * 2015-07-02 2015-12-09 济南大学 一种微生物快速显微检测装置
EP2980588A1 (en) * 2014-07-31 2016-02-03 Betelgeux, S. L. Method and apparatus for detection of microorganisms
CN105612001A (zh) * 2013-10-22 2016-05-25 艾博生物医药(杭州)有限公司 一种液体样本中被分析物质的检测装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637469A (en) * 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
GB9803704D0 (en) * 1998-02-24 1998-04-15 Univ Manchester Waveguide structure
US7122152B2 (en) * 1999-05-10 2006-10-17 University Of Florida Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids
US7267797B1 (en) * 2000-11-14 2007-09-11 Cornell Research Foundation, Inc. Nanofabricated photon tunneling based sensor
JP4180902B2 (ja) * 2002-12-16 2008-11-12 小川 明生 顕微鏡に載置した培養容器内の被観察物を長時間生かすことができる恒温・恒湿装置
US7268868B2 (en) * 2004-10-29 2007-09-11 Palo Alto Research Center Incorporated Anti-resonant waveguide sensors
WO2007056490A2 (en) * 2005-11-08 2007-05-18 Incom, Inc. Fiber optic interrogated microslide, microslide kits and uses thereof
US8142660B2 (en) * 2006-10-19 2012-03-27 Hirata Corporation Filtrate monitoring device, and filtrate monitoring system
US8821799B2 (en) * 2007-01-26 2014-09-02 Palo Alto Research Center Incorporated Method and system implementing spatially modulated excitation or emission for particle characterization with enhanced sensitivity
EP2160590A4 (en) * 2007-05-18 2012-11-21 Univ Vanderbilt IMPROVED INTERFEROMETRICAL REPORTING SYSTEM AND METHOD
WO2009039466A1 (en) * 2007-09-20 2009-03-26 Vanderbilt University Free solution measurement of molecular interactions by backscattering interferometry
US8629981B2 (en) * 2008-02-01 2014-01-14 Palo Alto Research Center Incorporated Analyzers with time variation based on color-coded spatial modulation
CN101294953B (zh) * 2008-06-05 2012-11-14 中国农业大学 一种运动细胞实时跟踪系统及实时跟踪方法
TW201017149A (en) 2008-08-06 2010-05-01 Invitrox Inc Use of focused light scattering techniques in biological applications
CA2791428A1 (en) * 2010-03-04 2011-09-09 Unisensor A/S Flexible sample container
WO2012043726A1 (ja) * 2010-09-30 2012-04-05 株式会社フジクラ 基体、及び基体の製造方法
CN203376256U (zh) * 2013-04-18 2014-01-01 上海科源电子科技有限公司 用于生物反应器的在线细胞显微观察仪
US9278870B2 (en) * 2014-01-21 2016-03-08 Panasonic Corporation Ultraviolet irradiation apparatus and ultraviolet irradiation method
US10005999B2 (en) * 2015-03-18 2018-06-26 Battelle Memorial Institute Method and apparatus for measuring biofilm thickness and topology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680276A (zh) * 2011-03-15 2012-09-19 艾博生物医药(杭州)有限公司 检测装置
CN105612001A (zh) * 2013-10-22 2016-05-25 艾博生物医药(杭州)有限公司 一种液体样本中被分析物质的检测装置
GB2521885A (en) * 2014-01-05 2015-07-08 Georgios Gerardos An immunoassay detection device
JP2015169549A (ja) * 2014-03-07 2015-09-28 国立大学法人 東京大学 試料台及び走査型プローブ顕微鏡
EP2980588A1 (en) * 2014-07-31 2016-02-03 Betelgeux, S. L. Method and apparatus for detection of microorganisms
CN204855390U (zh) * 2015-07-02 2015-12-09 济南大学 一种微生物快速显微检测装置

Also Published As

Publication number Publication date
CN109154554A (zh) 2019-01-04
US20190212321A1 (en) 2019-07-11
DE112016006784B4 (de) 2022-07-28
US10782282B2 (en) 2020-09-22
DE112016006784T5 (de) 2019-02-14

Similar Documents

Publication Publication Date Title
CN105188933B (zh) 用于分析细胞运动性的设备
US20150177147A1 (en) Biological Fluid Analysis System and Method
CN113396352B (zh) 液浸式显微镜物镜组件及相关系统和方法
BR112015020255A2 (pt) célula de fluxo, fluido envoltório e sistemas de foco automático e métodos para análise de partículas em amostras de urina
EP1686368A3 (en) Animal cell confluence detection method and apparatus
WO2015077805A1 (de) Vorrichtung zum prüfen von leitungen
KR101845315B1 (ko) 휴대가 가능한 진단장치
JP5013410B2 (ja) 微粒子測定方法及び装置
CN105954194B (zh) 一种基于光锥的便携式光流控显微成像装置及系统
WO2017201723A1 (zh) 微生物检测系统
SE530500C2 (sv) Anordning och förfarande för provtagning av mjölk
CN208255038U (zh) 一种水下浮游生物自动成像装置
CN210690420U (zh) 一种用于观测微生物行为的片上成像显微系统
TWI592492B (zh) 微生物檢測系統
CN109401952B (zh) 一种卵丘细胞识别与分选装置
CN108318424A (zh) 一种水下浮游生物自动成像装置及成像方法
CN110220905B (zh) 一种用于观测微生物行为的片上成像显微系统
WO2019071385A1 (zh) 发酵系统用监控装置
CN102967701A (zh) 一种尿液分析系统及其分析方法
US20110293151A1 (en) Method and device for quantifying surface particulate contaminants by improved analysis
CN107271440A (zh) 一种寄生虫虫卵的便携式检测装置及方法
CN209821017U (zh) 微粒形体在线检测分析仪
TW201730564A (zh) 試管升降機構及具有此試管升降機構的體液檢測系統
Dai et al. Cell image reconstruction for a lens-free imaging system based on linear array sensor
CN207366452U (zh) 一种寄生虫虫卵的便携式检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902713

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902713

Country of ref document: EP

Kind code of ref document: A1