WO2017199991A1 - 環状dnaの増幅方法 - Google Patents
環状dnaの増幅方法 Download PDFInfo
- Publication number
- WO2017199991A1 WO2017199991A1 PCT/JP2017/018472 JP2017018472W WO2017199991A1 WO 2017199991 A1 WO2017199991 A1 WO 2017199991A1 JP 2017018472 W JP2017018472 W JP 2017018472W WO 2017199991 A1 WO2017199991 A1 WO 2017199991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dna
- enzyme
- reaction
- group
- activity
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 119
- 125000004122 cyclic group Chemical group 0.000 title abstract description 9
- 102000004190 Enzymes Human genes 0.000 claims abstract description 323
- 108090000790 Enzymes Proteins 0.000 claims abstract description 323
- 238000006243 chemical reaction Methods 0.000 claims abstract description 314
- 239000000243 solution Substances 0.000 claims abstract description 147
- 230000010076 replication Effects 0.000 claims abstract description 73
- 229910001413 alkali metal ion Inorganic materials 0.000 claims abstract description 37
- 239000012634 fragment Substances 0.000 claims abstract description 34
- 230000004544 DNA amplification Effects 0.000 claims abstract description 32
- 239000011541 reaction mixture Substances 0.000 claims abstract description 26
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910001425 magnesium ion Inorganic materials 0.000 claims abstract description 24
- 239000007853 buffer solution Substances 0.000 claims abstract description 21
- 210000000349 chromosome Anatomy 0.000 claims abstract description 15
- 108020004638 Circular DNA Proteins 0.000 claims description 282
- 230000000694 effects Effects 0.000 claims description 153
- 108060002716 Exonuclease Proteins 0.000 claims description 91
- 102000013165 exonuclease Human genes 0.000 claims description 91
- 239000000203 mixture Substances 0.000 claims description 84
- 108020004414 DNA Proteins 0.000 claims description 60
- 102000053602 DNA Human genes 0.000 claims description 51
- 108090000623 proteins and genes Proteins 0.000 claims description 51
- 108060004795 Methyltransferase Proteins 0.000 claims description 45
- 108020004682 Single-Stranded DNA Proteins 0.000 claims description 41
- 102000004169 proteins and genes Human genes 0.000 claims description 41
- 238000001179 sorption measurement Methods 0.000 claims description 34
- 239000003112 inhibitor Substances 0.000 claims description 33
- 108010054814 DNA Gyrase Proteins 0.000 claims description 31
- 238000000926 separation method Methods 0.000 claims description 24
- 230000000977 initiatory effect Effects 0.000 claims description 20
- 102000039446 nucleic acids Human genes 0.000 claims description 20
- 108020004707 nucleic acids Proteins 0.000 claims description 20
- 150000007523 nucleic acids Chemical class 0.000 claims description 20
- 102000016559 DNA Primase Human genes 0.000 claims description 18
- 108010092681 DNA Primase Proteins 0.000 claims description 18
- 108010014594 Heterogeneous Nuclear Ribonucleoprotein A1 Proteins 0.000 claims description 18
- 238000011534 incubation Methods 0.000 claims description 18
- 230000008439 repair process Effects 0.000 claims description 18
- 230000000087 stabilizing effect Effects 0.000 claims description 18
- 102000012410 DNA Ligases Human genes 0.000 claims description 16
- 108010061982 DNA Ligases Proteins 0.000 claims description 16
- 102000004594 DNA Polymerase I Human genes 0.000 claims description 15
- 108010017826 DNA Polymerase I Proteins 0.000 claims description 15
- 108010071146 DNA Polymerase III Proteins 0.000 claims description 13
- 102000007528 DNA Polymerase III Human genes 0.000 claims description 13
- 108010012737 RecQ Helicases Proteins 0.000 claims description 13
- 102000019196 RecQ Helicases Human genes 0.000 claims description 13
- 108090000323 DNA Topoisomerases Proteins 0.000 claims description 11
- 102000003915 DNA Topoisomerases Human genes 0.000 claims description 11
- 102000003844 DNA helicases Human genes 0.000 claims description 10
- 108090000133 DNA helicases Proteins 0.000 claims description 10
- 108010041052 DNA Topoisomerase IV Proteins 0.000 claims description 9
- 108010013829 alpha subunit DNA polymerase III Proteins 0.000 claims description 8
- 150000003863 ammonium salts Chemical class 0.000 claims description 8
- 230000027455 binding Effects 0.000 claims description 7
- 239000007762 w/o emulsion Substances 0.000 claims description 6
- 238000007865 diluting Methods 0.000 claims description 5
- 238000007867 post-reaction treatment Methods 0.000 claims description 4
- 108010006296 DnaB Helicases Proteins 0.000 claims description 3
- 101000839041 Enterobacteria phage T4 DNA helicase assembly protein Proteins 0.000 claims description 3
- 238000012197 amplification kit Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 abstract description 4
- 210000004671 cell-free system Anatomy 0.000 abstract description 3
- 230000002759 chromosomal effect Effects 0.000 abstract 1
- 229940088598 enzyme Drugs 0.000 description 268
- 238000003199 nucleic acid amplification method Methods 0.000 description 155
- 230000003321 amplification Effects 0.000 description 153
- 241000588724 Escherichia coli Species 0.000 description 106
- 239000000047 product Substances 0.000 description 63
- 235000018102 proteins Nutrition 0.000 description 34
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 22
- 239000006227 byproduct Substances 0.000 description 20
- 239000011535 reaction buffer Substances 0.000 description 20
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 19
- PGAVKCOVUIYSFO-XVFCMESISA-N UTP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O[C@H]1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-XVFCMESISA-N 0.000 description 19
- 229950010342 uridine triphosphate Drugs 0.000 description 19
- PGAVKCOVUIYSFO-UHFFFAOYSA-N uridine-triphosphate Natural products OC1C(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)OC1N1C(=O)NC(=O)C=C1 PGAVKCOVUIYSFO-UHFFFAOYSA-N 0.000 description 19
- PCDQPRRSZKQHHS-XVFCMESISA-N CTP Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 PCDQPRRSZKQHHS-XVFCMESISA-N 0.000 description 18
- 239000007795 chemical reaction product Substances 0.000 description 17
- 239000002585 base Substances 0.000 description 16
- 238000000246 agarose gel electrophoresis Methods 0.000 description 15
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 14
- 229940098773 bovine serum albumin Drugs 0.000 description 14
- 229930027917 kanamycin Natural products 0.000 description 14
- 229960000318 kanamycin Drugs 0.000 description 14
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 14
- 229930182823 kanamycin A Natural products 0.000 description 14
- 238000001514 detection method Methods 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 12
- 238000001502 gel electrophoresis Methods 0.000 description 12
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 101150066555 lacZ gene Proteins 0.000 description 11
- 108020004566 Transfer RNA Proteins 0.000 description 10
- 238000004440 column chromatography Methods 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 238000011533 pre-incubation Methods 0.000 description 9
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 238000001042 affinity chromatography Methods 0.000 description 8
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229920000936 Agarose Polymers 0.000 description 7
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 7
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 235000011130 ammonium sulphate Nutrition 0.000 description 7
- 238000001962 electrophoresis Methods 0.000 description 7
- 238000002523 gelfiltration Methods 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 6
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 229950006238 nadide Drugs 0.000 description 6
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 6
- 238000003752 polymerase chain reaction Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 5
- 102000003960 Ligases Human genes 0.000 description 5
- 108090000364 Ligases Proteins 0.000 description 5
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 5
- FBKZHCDISZZXDK-UHFFFAOYSA-N bathocuproine disulfonic acid Chemical compound C=12C=CC3=C(C=4C=CC(=CC=4)S(O)(=O)=O)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=C(S(O)(=O)=O)C=C1 FBKZHCDISZZXDK-UHFFFAOYSA-N 0.000 description 5
- WDRWZVWLVBXVOI-QTNFYWBSSA-L dipotassium;(2s)-2-aminopentanedioate Chemical compound [K+].[K+].[O-]C(=O)[C@@H](N)CCC([O-])=O WDRWZVWLVBXVOI-QTNFYWBSSA-L 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 235000013919 monopotassium glutamate Nutrition 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- 239000005695 Ammonium acetate Substances 0.000 description 4
- 102000004420 Creatine Kinase Human genes 0.000 description 4
- 108010042126 Creatine kinase Proteins 0.000 description 4
- 230000004543 DNA replication Effects 0.000 description 4
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 4
- 101710116602 DNA-Binding protein G5P Proteins 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- DRBBFCLWYRJSJZ-UHFFFAOYSA-N N-phosphocreatine Chemical compound OC(=O)CN(C)C(=N)NP(O)(O)=O DRBBFCLWYRJSJZ-UHFFFAOYSA-N 0.000 description 4
- 101710162453 Replication factor A Proteins 0.000 description 4
- 101710176758 Replication protein A 70 kDa DNA-binding subunit Proteins 0.000 description 4
- 101710176276 SSB protein Proteins 0.000 description 4
- 101710126859 Single-stranded DNA-binding protein Proteins 0.000 description 4
- ISWQCIVKKSOKNN-UHFFFAOYSA-L Tiron Chemical compound [Na+].[Na+].OC1=CC(S([O-])(=O)=O)=CC(S([O-])(=O)=O)=C1O ISWQCIVKKSOKNN-UHFFFAOYSA-L 0.000 description 4
- 229940043376 ammonium acetate Drugs 0.000 description 4
- 235000019257 ammonium acetate Nutrition 0.000 description 4
- 239000005547 deoxyribonucleotide Substances 0.000 description 4
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 4
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 4
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 235000011056 potassium acetate Nutrition 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000007018 DNA scission Effects 0.000 description 3
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000000710 homodimer Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- 108010046914 Exodeoxyribonuclease V Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 102000003792 Metallothionein Human genes 0.000 description 2
- 108090000157 Metallothionein Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 239000008049 TAE buffer Substances 0.000 description 2
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- RGWHQCVHVJXOKC-SHYZEUOFSA-N dCTP Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO[P@](O)(=O)O[P@](O)(=O)OP(O)(O)=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-N 0.000 description 2
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 2
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 2
- 230000005782 double-strand break Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 239000000833 heterodimer Substances 0.000 description 2
- 101150059304 hup gene Proteins 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229960001639 penicillamine Drugs 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- SMBXWJIRCAXTNE-UHFFFAOYSA-N 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]azaniumyl]acetate hydrochloride Chemical compound Cl.OCC(CO)(CO)NCC(O)=O SMBXWJIRCAXTNE-UHFFFAOYSA-N 0.000 description 1
- WAPPRYMYMNVAFR-UHFFFAOYSA-N 2-sulfanylethanol Chemical compound OCCS.OCCS WAPPRYMYMNVAFR-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 1
- 102000002281 Adenylate kinase Human genes 0.000 description 1
- 108020000543 Adenylate kinase Proteins 0.000 description 1
- 101100400594 Azotobacter chroococcum mcd 1 hupL gene Proteins 0.000 description 1
- 101100508000 Azotobacter chroococcum mcd 1 hypB gene Proteins 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 101100011678 Bacteroides fragilis (strain YCH46) eno gene Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- PCDQPRRSZKQHHS-CCXZUQQUSA-N Cytarabine Triphosphate Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 PCDQPRRSZKQHHS-CCXZUQQUSA-N 0.000 description 1
- 230000005778 DNA damage Effects 0.000 description 1
- 231100000277 DNA damage Toxicity 0.000 description 1
- 101710135281 DNA polymerase III PolC-type Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 101900063352 Escherichia coli DNA ligase Proteins 0.000 description 1
- 108010007577 Exodeoxyribonuclease I Proteins 0.000 description 1
- 102100029075 Exonuclease 1 Human genes 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 101100070607 Haemophilus ducreyi (strain 35000HP / ATCC 700724) hgbA gene Proteins 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 101710082933 Single-strand DNA-binding protein Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- YKZPPPNXRZHVGX-PXYKVGKMSA-L dipotassium;(2s)-2-aminobutanedioate;hydron;hydrate Chemical compound [H+].[H+].O.[K+].[K+].[O-]C(=O)[C@@H](N)CC([O-])=O.[O-]C(=O)[C@@H](N)CC([O-])=O YKZPPPNXRZHVGX-PXYKVGKMSA-L 0.000 description 1
- PXEDJBXQKAGXNJ-QTNFYWBSSA-L disodium L-glutamate Chemical compound [Na+].[Na+].[O-]C(=O)[C@@H](N)CCC([O-])=O PXEDJBXQKAGXNJ-QTNFYWBSSA-L 0.000 description 1
- 101150020338 dnaA gene Proteins 0.000 description 1
- 101150104165 dnaN gene Proteins 0.000 description 1
- 230000001909 effect on DNA Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 101150027692 exoI gene Proteins 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 108010055863 gene b exonuclease Proteins 0.000 description 1
- 235000003869 genetically modified organism Nutrition 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 101150043071 hupA gene Proteins 0.000 description 1
- 101150098043 hupB gene Proteins 0.000 description 1
- 101150081485 hypA gene Proteins 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000033607 mismatch repair Effects 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- LCCNCVORNKJIRZ-UHFFFAOYSA-N parathion Chemical compound CCOP(=S)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 LCCNCVORNKJIRZ-UHFFFAOYSA-N 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 1
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229960004109 potassium acetate Drugs 0.000 description 1
- 229940068988 potassium aspartate Drugs 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229960002816 potassium chloride Drugs 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940073490 sodium glutamate Drugs 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- WTWSHHITWMVLBX-DKWTVANSSA-M sodium;(2s)-2-aminobutanedioate;hydron Chemical compound [Na+].[O-]C(=O)[C@@H](N)CC(O)=O WTWSHHITWMVLBX-DKWTVANSSA-M 0.000 description 1
- ZEDAGFBWUVYFQU-UHFFFAOYSA-M sodium;3-morpholin-4-ylpropane-1-sulfonate;hydrate Chemical compound [OH-].[Na+].OS(=O)(=O)CCCN1CCOCC1 ZEDAGFBWUVYFQU-UHFFFAOYSA-M 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6853—Nucleic acid amplification reactions using modified primers or templates
- C12Q1/6855—Ligating adaptors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/26—Preparation of nitrogen-containing carbohydrates
- C12P19/28—N-glycosides
- C12P19/30—Nucleotides
- C12P19/34—Polynucleotides, e.g. nucleic acids, oligoribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/10—Nucleotidyl transfering
- C12Q2521/101—DNA polymerase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/10—Nucleotidyl transfering
- C12Q2521/119—RNA polymerase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/30—Phosphoric diester hydrolysing, i.e. nuclease
- C12Q2521/319—Exonuclease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/30—Phosphoric diester hydrolysing, i.e. nuclease
- C12Q2521/327—RNAse, e.g. RNAseH
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/50—Other enzymatic activities
- C12Q2521/501—Ligase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/50—Other enzymatic activities
- C12Q2521/513—Winding/unwinding enzyme, e.g. helicase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/50—Other enzymatic activities
- C12Q2521/519—Topoisomerase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2522/00—Reaction characterised by the use of non-enzymatic proteins
- C12Q2522/10—Nucleic acid binding proteins
- C12Q2522/101—Single or double stranded nucleic acid binding proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/30—Oligonucleotides characterised by their secondary structure
- C12Q2525/307—Circular oligonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2527/00—Reactions demanding special reaction conditions
- C12Q2527/101—Temperature
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2527/00—Reactions demanding special reaction conditions
- C12Q2527/125—Specific component of sample, medium or buffer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2531/00—Reactions of nucleic acids characterised by
- C12Q2531/10—Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/159—Microreactors, e.g. emulsion PCR or sequencing, droplet PCR, microcapsules, i.e. non-liquid containers with a range of different permeability's for different reaction components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/04—Phosphoric diester hydrolases (3.1.4)
- C12Y301/04001—Phosphodiesterase I (3.1.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y306/00—Hydrolases acting on acid anhydrides (3.6)
- C12Y306/04—Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; involved in cellular and subcellular movement (3.6.4)
- C12Y306/04012—DNA helicase (3.6.4.12)
Definitions
- the present invention relates to a method for amplifying circular DNA. More specifically, the present invention relates to a method capable of exponentially amplifying circular DNA in a cell-free system.
- the DNA cloning technology that has become the foundation of biotechnology development is a method of amplifying circular DNA prepared by cutting and pasting DNA fragments as a plasmid in cells such as E. coli.
- a circular DNA is amplified using a DNA cloning technique using cells, complicated procedures such as cell culture and extraction / purification of amplification products are required.
- PCR polymerase chain reaction
- in vitro DNA amplification by PCR cannot amplify circular DNA as it is.
- examples of in vitro amplification methods for circular DNA include rolling circle amplification method (RCA) (Non-patent Document 1, Patent Document 1, Patent Document 2, and Patent Document 3).
- RCA rolling circle amplification method
- a direct amplification product by the rolling circle amplification method is a linear DNA, and in order to circulate the obtained amplification product, a further circularization step such as incubation with a recombinant enzyme is required.
- Non-Patent Documents 2 to 5 A method has also been reported in which a mini-chromosome (oriC circular DNA) of E. coli is replicated and then separated to obtain a monomeric circular replication product.
- the replication efficiency as a circular DNA molecule is only about 15-40% of the added template DNA, and the amplification amount should not double.
- the size of the circular DNA used as a template in these documents is less than 10 kbp.
- the amplification product is linear DNA, and the size of the DNA that can be amplified was only a few kbp. Furthermore, when trying to produce a circular amplification product using the E. coli minichromosome replication system, there is a problem that the template circular DNA is not amplified even twice.
- An object of the present invention is to provide a method capable of simply and exponentially amplifying circular DNA, particularly long-chain circular DNA, in a cell-free system.
- a circular DNA having a replication initiation sequence as follows: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; By reacting the reaction mixture produced by mixing with the reaction solution containing, the cycle of “replication initiation (DNA double-strand cleavage), extension (replication fork progression), and separation of replicated sister DNA (Decatenation)” It has been repeatedly found that circular DNA can be amplified exponentially.
- a first group of enzymes that catalyze the replication of circular DNA A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane
- the present invention includes the following aspects of the invention.
- a method for amplifying circular DNA comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
- the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity; and (2) a step of keeping the reaction mixture formed in step (1) under isothermal conditions. ; Said method.
- a method for amplifying circular DNA comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
- the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity; and (2) the reaction mixture formed in step (1) is incubated at 30 ° C. or higher. And incubating under a temperature cycle that repeats incubation at 27 ° C. or lower; Said method.
- a replication initiation sequence oil of chromos
- reaction solution further contains a nonspecific adsorption inhibitor for proteins and / or a nonspecific adsorption inhibitor for nucleic acids.
- reaction solution further contains linear DNA-specific exonuclease and / or RecG type helicase.
- the first group of enzymes is an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or group of enzymes having DNA gyrase activity, a single-strand binding protein (SSB) )), A combination of an enzyme having DnaB type helicase activity, an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, an enzyme having DNA clamp activity, and an enzyme or enzyme group having DNA polymerase III * activity Including A second group of enzymes comprises a combination of an enzyme having DNA polymerase I activity and an enzyme having DNA ligase activity; A third group of enzymes comprises an enzyme having topoisomerase III activity and / or an enzyme having topoisomerase IV activity; The method according to [1] or [2] above.
- SSB single-strand binding protein
- One or more nucleoid proteins are IHF or HU
- the enzyme or group of enzymes having DNA gyrase activity is a complex consisting of GyrA and GyrB
- the enzyme having DnaB type helicase activity is DnaB helicase
- An enzyme having DNA helicase loader activity is a DnaC helicase loader
- the enzyme having DNA primase activity is DnaG primase
- the enzyme having DNA clamp activity is DnaN clamp
- the enzyme or enzyme group having DNA polymerase III * activity is an enzyme or enzyme group comprising any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE.
- reaction solution further contains RecG helicase and / or single-stranded DNA-specific exonuclease.
- reaction solution further contains a linear DNA-specific exonuclease and / or a single-stranded DNA-specific exonuclease.
- Step (1) is (1-1) or less: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Pre-incubating a reaction solution comprising: (1-2) The method according to [1] or [2] above, comprising the step of: forming a reaction mixture of the reaction solution and circular DNA as a template.
- step (2) is performed in a water-in-oil emulsion.
- step (2) a step of performing post-reaction treatment, wherein the post-reaction treatment includes (I) A treatment of re-incubating after diluting 5 times or more with a reaction solution not containing the first to third enzyme groups; (Ii) treatment with linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease; and / or (iii) treatment with gap repair enzyme; The method according to [1] or [2] above.
- a composition for amplifying circular DNA A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Said composition.
- composition according to [17] above further comprising a non-specific adsorption inhibitor for proteins and / or a non-specific adsorption inhibitor for nucleic acids.
- composition according to [17] above further comprising a linear DNA-specific exonuclease and / or a RecG type helicase.
- composition according to [17] further comprising RecG type helicase and / or single-stranded DNA-specific exonuclease.
- composition according to [21] The composition according to [17], further comprising a linear DNA-specific exonuclease and / or a single-stranded DNA-specific exonuclease.
- composition according to [17] further comprising a DNA stabilizing factor.
- a kit for amplifying circular DNA A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source;
- the kit comprising a combination of:
- kit according to [23] above further comprising a combination with a nonspecific adsorption inhibitor for proteins and / or a nonspecific adsorption inhibitor for nucleic acids.
- a first group of enzymes that catalyze the replication of circular DNA A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Including a step of forming a reaction mixture of a reaction solution containing and a circular DNA serving as a template,
- the circular DNA includes a replication initiation sequence (origin of chromosome (oriC)) that can bind to an enzyme having DnaA activity, and a method for amplifying circular DNA exponentially by repeating a replication cycle.
- a replication initiation sequence oil of chromosome (oriC)
- a method for amplifying circular DNA comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
- the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity; and (2) the reaction mixture formed in step (1) is kept at a predetermined temperature range.
- a replication initiation sequence oil of chromosome (oriC)
- a circular DNA amplification kit A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; A combination of And instructions including instructions for carrying out a method for exponentially amplifying circular DNA by repeating a replication cycle in a reaction mixture of the reaction mixture containing the above combination and circular DNA as a template, Said kit.
- reaction solution further contains an alkali metal ion source of 100 mM or more.
- the present invention provides a method capable of simply and exponentially amplifying circular DNA, particularly long-chain circular DNA, without using E. coli cells or plasmid vectors.
- no primer is required to amplify the circular DNA, and it is possible to amplify a long circular DNA exceeding 200 kb.
- circular DNA can be amplified even from only one molecule of template circular DNA.
- the amplification product obtained by the present invention is a copy with the same circular structure as the original template. Further, when a plurality of DNA fragments are ligated and then added to the reaction system as they are, it is possible to specifically amplify and prepare only the DNA circularized by the ligation.
- FIG. 1 shows a model of a replication cycle according to the present invention.
- FIG. 2 shows the structure of DNA circularized by in vitro ligation using the GibsonibAssembly method.
- FIG. 3 shows the results of agarose electrophoresis of the amplification products for each reaction time when 9.6 kb circular DNA was used as a template, and detection by SYBR Green.
- FIG. 4 shows the results of agarose electrophoresis of the amplified products using 200 kb and 80 kb long circular DNAs as templates and detection by SYBR Green.
- FIG. 4a shows the results of amplification products for each reaction time when 200 kb long-chain DNA (15 pM, 20 ng) was used as a template.
- FIG. 4b shows the results of amplification products after 3 hours of reaction when long circular DNAs of 80 kb (15 pM, 8 ng) and 200 kb (5 pM, 6.7 ng) were used as templates.
- FIG. 5 shows the result of agarose electrophoresis and detection by SYBR Green when the DNA circularized by in vitro ligation using Gibson Assembly method was used as a template.
- FIG. 6 shows the results of an amplification experiment using a trace amount (single molecule level) of a 9.6 kb circular DNA as a template.
- FIG. 6a shows the result of agarose electrophoresis of the amplified product using 9.6 kb circular DNA as a template and detection by SYBR Green.
- FIG. 5 shows the result of agarose electrophoresis and detection by SYBR Green when the DNA circularized by in vitro ligation using Gibson Assembly method was used as a template.
- FIG. 6 shows the results of an amplification experiment using a trace
- FIG. 6b is a graph showing the results of quantifying the DNA amount of the amplified product by the PicoGreen method or the E. coli transformation method and showing the degree of amplification.
- FIG. 7 is a graph showing the number of amplified circular DNA molecules with respect to the amplification time when a 9.6 kb circular DNA was used as a template.
- FIG. 8 shows the results of an amplification test of a single circular DNA clone from the mixture.
- FIG. 8a is a schematic diagram for dilution of a mixture of circular DNAs.
- FIG. 8b shows the result of agarose electrophoresis of the amplified product when the circular DNA mixture was diluted and amplified, and detected by SYBR Green.
- FIG. 9 is a diagram showing the results of passage amplification test of circular DNA.
- FIG. 9a is a schematic diagram of the experimental procedure.
- FIG. 9b shows the results when the sub-amplification in which the DNA product after the amplification reaction is diluted in a dilute reaction solution and the amplification is induced again is repeated 10 times. Amplification products were detected by agarose electrophoresis and SYBR Green.
- FIG. 10 shows the results of agarose electrophoresis and detection by SYBR Green when RecG and linear DNA-specific exonuclease were added using 80 kb circular DNA as a template.
- FIG. 11 is a graph showing the results of condition A of Example 7.
- FIG. 12 is a graph showing the results of condition B of Example 7.
- FIG. 13 is a graph showing the results of condition C in Example 7 (examination of GTP, CTP and UTP amounts) and a photograph of gel electrophoresis.
- FIG. 14 is a graph showing the results of condition D (examination of IHF amount) in Example 7.
- FIG. 15 is a graph showing the results of condition E (examination of Topo IV amount) in Example 7.
- FIG. 16 is a graph showing the results of Condition F of Example 7 (examination of the amount of DNA gyrase).
- FIG. 17 is a graph showing the results of Condition G of Example 7 (examination of the amount of DNA polymerase III *).
- FIG. 18 is a graph showing the results of Condition H of Example 7 (examination of the amount of alkali metal ion source).
- FIG. 14 is a graph showing the results of condition D (examination of IHF amount) in Example 7.
- FIG. 15 is a graph showing the results of condition E (examination of Topo IV amount) in Example 7.
- FIG. 19 is a graph showing the results of Condition I of Example 7 (examination of the amount of nonspecific adsorption inhibitor for protein and / or nonspecific adsorption inhibitor for nucleic acid).
- FIG. 20 is a graph showing the results of Condition J of Example 7 (examination of the amount of enzyme having DnaA activity).
- FIG. 21 is a graph showing the results of condition K in Example 7 (examination of the amount of enzyme having DNA ligase activity).
- FIG. 22 is a graph showing the results of Condition L (examination of SSB amount) in Example 7 and a photograph of gel electrophoresis.
- FIG. 23 is a graph showing the results of Condition M of Example 7 (examination of the amount of enzyme having DNA polymerase I activity).
- FIG. 24 is a graph showing the results of condition N in Example 7 (examination of the amount of enzyme having DnaB type helicase activity and enzyme having DNA helicase loader activity).
- FIG. 25 is a graph showing the results of Condition O of Example 7 (examination of the amount of enzyme having RNase H activity).
- FIG. 26 is a graph showing the results of condition P of Example 7.
- FIG. 27 is a gel electrophoresis photograph and graph showing the results of Condition Q of Example 7 (examination of the composition and amount of enzymes of the third enzyme group).
- FIG. 28 is a graph showing the results of condition R in Example 7.
- FIG. 29 is a graph showing the results of condition S of Example 7.
- FIG. 30 is a photograph of gel electrophoresis showing the results of studying the effect of adding an alkali metal ion source.
- FIG. 31 is a gel electrophoresis photograph showing the results of examining the efficiency of the amplification reaction by preincubation.
- FIG. 32 is a gel electrophoresis photograph showing the results of detection of amplification products when RecG and RecJ were added.
- FIG. 33 is a gel electrophoresis photograph showing the results of detection of amplification products when RecBCD and exo I were added.
- FIG. 34 is a gel electrophoresis photograph showing the results of detection of amplification products after treatment with RecBCD and exo I after amplification reaction.
- FIG. 31 is a gel electrophoresis photograph showing the results of examining the efficiency of the amplification reaction by preincubation.
- FIG. 32 is a gel electrophoresis photograph showing the results of detection of amplification products when RecG and RecJ were added.
- FIG. 33 is
- FIG. 35 is a gel electrophoresis photograph showing the result of detecting the amplification product when treated with a gap repair enzyme after the amplification reaction.
- FIG. 36 is a gel electrophoresis photograph showing the results of examining the efficiency of the amplification reaction when a long-chain circular DNA stabilizing factor was used.
- FIG. 37 is a gel electrophoresis photograph showing the results of examining the circular DNA amplification reaction in a water-in-oil emulsion.
- FIG. 38 is a gel electrophoresis photograph showing the results of detection of amplification products in a circular DNA amplification reaction involving a temperature cycle.
- the circular DNA used as a template is preferably a double strand.
- the circular DNA used as a template is not particularly limited as long as it contains a replication initiation sequence (origin of chromosome (oriC)) that can bind to an enzyme having DnaA activity, and is a natural circular DNA such as a circular chromosome of a microorganism. Examples include circular DNA obtained by ligating another circular DNA fragment to a natural circular DNA that has been cleaved by enzymatic treatment, and the like, and circular DNA that has been artificially synthesized.
- a replication initiation sequence oil of chromosome (oriC)
- replication origin sequences oil of chromosome (oriC)
- oriC oil of chromosome
- replication initiation sequences are known in bacteria such as Escherichia coli and Bacillus subtilis. Replication initiation sequences can be obtained from public databases such as NCBI (http://www.ncbi.nlm.nih.gov/). In addition, a replication initiation sequence can be obtained by cloning a DNA fragment that can bind to an enzyme having DnaA activity and analyzing the base sequence.
- the circular DNA used as a template in the present invention may be a circular DNA originally containing a replication start sequence, or may be a product obtained by introducing a replication start sequence into a circular DNA that originally does not contain a replication start sequence.
- the circular DNA used as a template in the present invention may contain a drug resistance marker gene sequence such as kanamycin, ampicillin or tetracycline depending on the purpose.
- the circular DNA used as a template in the present invention may be purified, or may be in the form of a suspension of a cell extract containing the circular DNA.
- One kind of circular DNA may be used as a template.
- a mixture of plural kinds of circular DNA such as a DNA library may be used as a template in one test tube.
- the length of the circular DNA used as a template in the present invention is not limited. For example, it is 1 kb (1000 bases) or more, 5 kb (5000 bases) or more, 8 kb (8,000 bases) or more, 10 kb (10,000 bases). Length) or more, 50 (kb (50,000 base length) or more, 100 kb (100,000 base length) or more, 200 kb (200,000 base length) or more, 500 kb (500,000 base length) or more, 1000 kb (1,000,000 base length) or more, or The length can be 2000 kb (2,000,000 bases) or more.
- First enzyme group means an enzyme group that catalyzes the replication of circular DNA.
- the first enzyme group that catalyzes the replication of circular DNA for example, the enzyme group described in Kaguni JM & Kornberg A. Cell. 1984, 38: 183-90 can be used.
- the first enzyme group includes the following: an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or enzyme group having DNA gyrase activity, a single-stranded DNA binding protein (single-strand) binding protein (SSB)), an enzyme having DnaB type helicase activity, an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, an enzyme having DNA clamp activity, and an enzyme or group of enzymes having DNA polymerase III * activity , One or more enzymes or enzyme groups selected from the group consisting of, or any combination of the enzymes or enzyme groups.
- the enzyme having DnaA activity is not particularly limited in its biological origin as long as it has an initiator activity similar to that of DnaA, which is an E. coli initiator protein.
- DnaA derived from E. coli is preferably used. be able to.
- coli may be contained as a monomer in the reaction solution in the range of 1 nM to 10 ⁇ M, preferably 1 nM to 5 ⁇ M, 1 nM to 3 ⁇ M, 1 nM to 1.5 ⁇ M, 1 nM to 1.0 ⁇ M, It may be contained in the range of 1 nM to 500 nM, 50 nM to 200 nM, 50 nM to 150 nM, but is not limited thereto.
- Nucleoid protein refers to a protein contained in a nucleoid.
- the one or more nucleoid proteins used in the present invention are not particularly limited in their biological origin as long as they are enzymes having the same activity as that of E. coli nucleoid proteins.
- IHF derived from E. coli A complex of IhfA and / or IhfB (heterodimer or homodimer) or HU derived from E. coli, that is, a complex of hupA and hupB can be preferably used.
- E. coli-derived HU may be contained in the reaction solution in the range of 1 nM to 50 nM, preferably 5 nM to 50 nM, 5 nM to 25 nM, but is not limited thereto.
- the enzyme or group of enzymes having DNA gyrase activity is not particularly limited as long as it is an enzyme having the same activity as that of E. coli DNA gyrase.
- it comprises GyrA and GyrB derived from E. coli.
- a composite can be suitably used.
- the complex consisting of GyrA and GyrB derived from E. coli may be included in the reaction solution in the range of 20 nM to 500 nM as a heterotetramer, preferably 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 50 nM to 200 nM. , But may be included in the range of 100 nM to 200 nM, but is not limited thereto.
- the single-strand DNA binding protein is not particularly limited in terms of its biological origin, as long as it has an activity similar to that of a single-stranded DNA-binding protein of Escherichia coli.
- SSB derived from E. coli can be preferably used.
- coli may be contained in the reaction solution in the range of 20 nM to 1000 nM as a homotetramer, preferably 20 nM to 500 nM, 20 nM to 300 nM, 20 nM to 200 nM, 50 nM to 500 nM, 50 nM to 400 nM, It may be included in the range of 50 nM to 300 nM, 50 nM to 200 nM, 50 nM to 150 nM, 100 nM to 500 nM, 100 nM to 400 nM, but is not limited thereto.
- the enzyme having the DnaB type helicase activity is not particularly limited as long as it has the same activity as that of DnaB of Escherichia coli.
- DnaB derived from Escherichia coli can be preferably used.
- DnaB derived from Escherichia coli may be included in the reaction solution in the range of 5 nM to 200 nM as a homohexamer, preferably 5 nM to 100 nM, 5 nM to 50 nM, or 5 nM to 30 nM.
- the present invention is not limited to this.
- the enzyme having DNA helicase loader activity is not particularly limited as long as it has the same activity as that of DnaC of Escherichia coli.
- DnaC derived from Escherichia coli can be preferably used.
- DnaC derived from E. coli may be contained in the reaction solution as a homohexamer in the range of 5 nM to 200 nM, preferably in the range of 5 nM to 100 nM, 5 nM to 50 nM, or 5 nM to 30 nM.
- the present invention is not limited to this.
- the enzyme having DNA primase activity is not particularly limited as long as it has the same activity as that of DnaG of Escherichia coli.
- DnaG derived from Escherichia coli can be preferably used.
- DnaG derived from E. coli may be contained in the reaction solution in the range of 20 nM to 1000 nM, preferably 20 nM to 800 nM, 50 nM to 800 nM, 100 nM to 800 nM, 200 nM to 800 nM, 250 nM to 800 nM, 250 nM. It may be contained in the range of ⁇ 500 nM and 300 nM to 500 nM, but is not limited thereto.
- the enzyme having the DNA clamp activity is not particularly limited as long as it has the same activity as that of DnaN of Escherichia coli.
- DnaN derived from Escherichia coli can be preferably used.
- DnaN derived from E. coli may be contained in the reaction solution in the range of 10 nM to 1000 nM as a homodimer, preferably 10 nM to 800 nM, 10 nM to 500 nM, 20 nM to 500 nM, 20 nM to 200 nM, 30 nM to 200 nM, 30 nM. Although it may be contained in the range of ⁇ 100 nM, it is not limited to this.
- the enzyme or enzyme group having DNA polymerase III * activity is not particularly limited in its biological origin as long as it is an enzyme or enzyme group having the same activity as the DNA polymerase III * complex of E. coli.
- Enzymes comprising any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE derived from preferably enzymes comprising a complex of DnaX, HolA, HolB, and DnaE derived from E. coli, more preferably
- An enzyme group containing a complex of E. coli-derived DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE can be preferably used.
- coli may be included in the reaction solution in the range of 2 nM to 50 nM as a heteromultimer, preferably 2 nM to 40 nM, 2 nM to 30 nM, 2 nM to 20 nM, 5 nM to 40 nM, 5 nM. It may be included in the range of ⁇ 30 nM, 5 nM to 20 nM, but is not limited thereto.
- the second enzyme group means an enzyme group that synthesizes two sister circular DNAs that form catenane by catalyzing the Okazaki fragment ligation reaction.
- the two sister circular DNAs forming catenane are those in which two circular DNAs synthesized by DNA replication reaction are connected.
- the second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane include, for example, enzymes having DNA polymerase I activity, enzymes having DNA ligase activity, and RNaseH activity.
- enzymes having DNA polymerase I activity enzymes having DNA ligase activity
- RNaseH activity enzymes having RNaseH activity.
- One or more enzymes selected from the group consisting of enzymes or combinations of the enzymes can be exemplified.
- the enzyme having DNA polymerase I activity is not particularly limited as long as it has the same activity as that of E. coli DNA polymerase I.
- E. coli-derived DNA polymerase I is preferably used.
- E. coli-derived DNA polymerase I may be contained in the reaction solution as a monomer in the range of 10 nM to 200 nM, preferably 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM, 40 nM to 150 nM, 40 nM to 100 nM, although it may be included in the range of 40 nM to 80 nM, it is not limited to this.
- the enzyme having DNA ligase activity is not particularly limited as long as it has the same activity as that of Escherichia coli DNA ligase.
- E. coli-derived DNA ligase or T4 phage DNA ligase is preferable.
- the DNA ligase derived from E. coli may be contained as a monomer in the reaction solution in the range of 10 nM to 200 nM, preferably in the range of 15 nM to 200 nM, 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM, 20 nM to 80 nM. However, it is not limited to this.
- the enzyme having RNaseH activity is not particularly limited in its biological origin as long as it has an activity of degrading RNA strands of RNA: DNA hybrids.
- RNaseH derived from E. coli can be preferably used.
- RNaseH derived from E. coli may be contained in the reaction solution as a monomer in the range of 0.2 nM to 200 nM, preferably 0.2 nM to 200 nM, 0.2 nM to 100 nM, 0.2 nM to 50 nM, 1 nM to It may be included in the range of 200 nM, 1 nM to 100 nM, 1 nM to 50 nM, 10 nM to 50 nM, but is not limited thereto.
- the third enzyme group means an enzyme group that catalyzes a separation reaction of two sister circular DNAs.
- the enzyme group described in Peng H & Marians KJ. PNAS. 1993, 90: 8571-8575 can be used.
- the third enzyme group one or more enzymes selected from the group consisting of: an enzyme having topoisomerase IV activity, an enzyme having topoisomerase III activity, and an enzyme having RecQ type helicase activity, or A combination of the enzymes can be exemplified.
- the enzyme having topoisomerase III activity is not particularly limited in its biological origin as long as it has the same activity as that of E. coli topoisomerase III.
- E. coli-derived topoisomerase III can be preferably used.
- Topoisomerase III derived from E. coli may be contained as a monomer in the reaction solution in the range of 20 nM to 500 nM, preferably in the range of 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 20 nM to 100 nM, 30 to 80 nM. However, it is not limited to this.
- the enzyme having RecQ type helicase activity is not particularly limited as long as it has an activity similar to that of RecQ of Escherichia coli, but for example, RecQ derived from Escherichia coli can be preferably used.
- RecQ derived from E. coli may be contained in the reaction solution as a monomer in the range of 20 nM to 500 nM, preferably in the range of 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 20 nM to 100 nM, 30 to 80 nM. Although it may be included, it is not limited to this.
- the enzyme having topoisomerase IV activity is not particularly limited in its biological origin as long as it has the same activity as E. coli topoisomerase IV.
- E. coli-derived topoisomerase IV which is a complex of ParC and ParE, is used. Can be suitably used.
- coli may be included in the reaction solution in the range of 0.1 nM to 50 nMM as a heterotetramer, preferably 0.1 nM to 40 nM, 0.1 nM to 30 nM, 0.1 nM to 20 nM, It may be included in the range of 1 nM to 40 nM, 1 nM to 30 nM, 1 nM to 20 nM, 1 nM to 10 nM, 1 nM to 5 nM, but is not limited thereto.
- first, second and third enzyme groups commercially available products may be used, or those extracted from microorganisms and purified as necessary may be used. Extraction and purification of the enzyme from the microorganism can be appropriately performed using techniques available to those skilled in the art.
- the concentration range corresponding to the enzyme activity unit with respect to the concentration range specified for the enzyme derived from E. coli. Can be used.
- the reaction solution containing the cell-free protein expression system of the enzyme may be mixed with the circular DNA as a template as it is to form a reaction mixture for the amplification of the circular DNA.
- the cell-free protein expression system is a cell-free translation system that uses total RNA (total RNA), mRNA, or in vitro transcripts containing RNA that is complementary to the base sequence of the gene encoding the enzyme as template RNA.
- it may be a cell-free transcription / translation system using as a template DNA a gene encoding each enzyme or an expression vector containing a gene encoding each enzyme.
- the present invention is a circular DNA amplification method comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
- the circular DNA includes the replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity.
- the method of the present invention may further comprise a step of preincubating the reaction solution before the step (1).
- the method of the present invention is a circular DNA amplification method comprising the following steps: (1-1) The following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; And (1-2) a step of forming a reaction mixture of the reaction solution and a circular DNA as a template, wherein the circular DNA is capable of binding to an enzyme having DnaA activity.
- the method may include: The preincubation is performed, for example, in the range of 0 to 40 ° C., 10 to 40 ° C., 15 to 37 ° C., or 16 to 30 ° C., for 5 to 60 minutes, 5 to 45 minutes, 5 to 30 minutes, 15 to 60 minutes, You may carry out by heat-retaining for 15 to 45 minutes and 15 to 30 minutes.
- the pre-incubation may vary slightly during the pre-incubation as long as the temperature of the reaction solution is kept within the above temperature range.
- the present invention repeats the replication cycle as shown in FIG. 1 to exponentially amplify circular DNA.
- the circular DNA described above is used as a template, which is at least 10 times, 50 times, 100 times, 200 times, 500 times, 1000 times, 2000 times, 3000 times, 4000 times, 5000 times, or 10000 times. Can be amplified.
- the circular DNA to be mixed with the reaction solution is as described in the above item ⁇ Circular DNA>.
- the amount of template DNA used per reaction is not particularly limited. For example, 10 ng / ⁇ l or less, 5 ng / ⁇ l or less, 1 ng / ⁇ l or less, 0.8 ng / ⁇ l or less, 0.5 ng / ⁇ l or less, It may be present in the reaction solution at a concentration of 3 ng / ⁇ l or less.
- one molecule of circular DNA per reaction can be present as a template and used for amplification.
- the buffer solution contained in the reaction solution is not particularly limited as long as it is a buffer solution suitable for use at pH 7 to 9, preferably pH 8.
- Tris-HCl, Tris-OAc, Hepes-KOH, phosphate buffer, MOPS-NaOH, Tricine-HCl and the like can be mentioned.
- a preferred buffer is Tris-HCl or Tris-OAc.
- the concentration of the buffer can be appropriately selected by those skilled in the art and is not particularly limited. In the case of Tris-HCl or Tris-OAc, for example, concentrations of 10 mM to 100 mM, 10 mM to 50 mM, and 20 mM can be selected.
- ATP means adenosine triphosphate.
- concentration of ATP contained in the reaction solution at the start of the reaction may be, for example, in the range of 0.1 mM to 3 mM, preferably 0.1 mM to 2 mM, 0.1 mM to 1.5 mM, 0.5 mM to 1.5 mM. Range.
- GTP, CTP, and UTP mean guanosine triphosphate, cytidine triphosphate, and uridine triphosphate, respectively.
- concentrations of GTP, CTP and UTP contained in the reaction solution at the start of the reaction may be independently in the range of, for example, 0.1 mM to 3.0 mM, preferably 0.5 mM to 3.0 mM. It may be in the range of 5 mM to 2.0 mM.
- DNTP is a general term for deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP), and deoxythymidine triphosphate (dTTP).
- concentration of dNTP contained in the reaction solution at the start of the reaction may be, for example, in the range of 0.01 to 1 mM, preferably in the range of 0.05 mM to 1 mM, 0.1 mM to 1 mM.
- the magnesium ion source is a substance that provides magnesium ions (Mg 2+ ) in the reaction solution. Examples include Mg (OAc) 2 , MgCl 2 , and MgSO 4 . A preferred magnesium ion source is Mg (OAc) 2 .
- the concentration of the magnesium ion source contained in the reaction solution at the start of the reaction may be, for example, a concentration that provides magnesium ions in the reaction solution in the range of 5 to 50 mM.
- the alkali metal ion source is a substance that provides alkali metal ions in the reaction solution.
- the alkali metal ion include sodium ion (Na + ) and potassium ion (K + ).
- alkali metal ion sources include potassium glutamate, potassium aspartate, potassium chloride, potassium acetate, sodium glutamate, sodium aspartate, sodium chloride, and sodium acetate.
- a preferred alkali metal ion source is potassium glutamate or potassium acetate.
- the concentration of the alkali metal ion source contained in the reaction solution at the start of the reaction may be a concentration that gives alkali metal ions to the reaction solution in a range of 100 mM or more, preferably 100 mM to 300 mM, but is not limited thereto. In balance with the prior application, 150 mM may be removed from the concentration of the alkali metal ion source.
- the reaction solution used in the method of the present invention may further contain a nonspecific adsorption inhibitor for proteins or a nonspecific adsorption inhibitor for nucleic acids.
- the reaction solution may further contain a nonspecific adsorption inhibitor for proteins and a nonspecific adsorption inhibitor for nucleic acids.
- the reaction efficiency is improved by the presence of the non-specific adsorption inhibitor for proteins and / or the non-specific adsorption inhibitor for nucleic acids in the reaction solution.
- Protein non-specific adsorption inhibitors and / or nucleic acid non-specific adsorption inhibitors react by inhibiting non-specific adsorption of proteins and / or proteins and circular DNA, and adhesion of proteins and circular DNA to the container surface. Efficiency is expected to improve.
- the protein non-specific adsorption inhibitor is a protein unrelated to the amplification reaction in the method of the present invention.
- examples of such proteins include bovine serum albumin (BSA), lysozyme, gelatin, heparin, and casein.
- BSA bovine serum albumin
- the protein non-specific adsorption inhibitor is in the reaction solution in the range of 0.02 to 2.0 mg / ml, preferably 0.1 to 2.0 mg / ml, 0.2 to 2.0 mg / ml, 0.5 to Although it may be contained in the range of 2.0 mg / ml, it is not limited to this.
- the nucleic acid non-specific adsorption inhibitor is a nucleic acid molecule or a nucleic acid-like factor unrelated to the amplification reaction in the method of the present invention.
- nucleic acid molecules or nucleic acid analogs include tRNA (transfer RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), glycogen, heparin, oligo DNA, poly (IC) (polyinosine-polycytidine), poly (dI-dC) (polydeoxyinosine-polydeoxycytidine), poly (A) (polyadenine), and poly (dA) (polydeoxyadenine).
- the nonspecific adsorption inhibitor of nucleic acid may be contained in the reaction solution in the range of 1 to 500 ng / ⁇ l, preferably 10 to 500 ng / ⁇ l, 10 to 200 ng / ⁇ l, 10 to 100 ng / ⁇ l, It is not limited to this.
- 50 ng / ⁇ l may be removed from the concentration of tRNA.
- the reaction solution used in the method of the present invention may further contain a DNA stabilizing factor. It is considered that the presence of a DNA stabilizing factor in the reaction solution can suppress DNA cleavage and protect the template DNA and the amplification product.
- the addition of a DNA stabilizing factor leads to an improvement in the yield of the target product.
- the addition of a DNA stabilizing factor is beneficial because the template DNA and the amplification product are easily degraded.
- the DNA stabilizing factor is not particularly limited.
- DMSO dimethyl sulfoxide
- BSA bovine serum albumin
- EGTA glycol ether diamine tetraacetic acid
- BDA bathocuproine disulfonate
- Penicillamine Tyrone
- Tiron 1,2-dihydroxybenzene-3,5-sulfonate
- DTPA diethylerenetriaminepentaace
- DTPA, Tiron, BDA, Dps protein, and BSA are particularly preferable because they also have an effect of improving the efficiency of circular DNA amplification.
- DTPA or Tiron may be contained in the reaction solution in the range of 0.01 mM to 0.3 mM, preferably 0.05 to 0.15 mM, but is not limited thereto.
- BDA may be contained in the reaction solution in a range of 0.01 to 0.5 mM, preferably 0.05 to 0.3 mM, but is not limited thereto.
- the Dps protein may be contained in the reaction solution in the range of 0.3 to 3.0 ⁇ M, preferably 0.3 to 1.5 ⁇ M, but is not limited thereto.
- BSA is in the range of 0.02 to 2.0 mg / ml, preferably 0.1 to 2.0 mg / ml, 0.2 to 2.0 mg / ml, 0.5 to 2.0 mg / ml in the reaction solution. Although it may be included in the range, it is not limited to this.
- the reaction solution used in the method of the present invention may further contain linear DNA-specific exonuclease or RecG type helicase.
- the reaction solution may further contain linear DNA-specific exonuclease and RecG type helicase.
- the presence of linear DNA-specific exonuclease and / or RecG type helicase in the reaction solution reduces the amount of linear DNA generated by double-strand breaks during the amplification reaction, and the desired supercoil product Has the effect of improving the yield.
- the reaction solution used in the method of the present invention may further contain RecG type helicase or single-stranded DNA-specific exonuclease.
- the reaction solution may further contain RecG type helicase and single-stranded DNA-specific exonuclease.
- the presence of RecG-type helicase and / or single-stranded DNA-specific exonuclease in the reaction solution reduces the amount of small secondary amplification products generated during the amplification reaction and There is an effect of improving the yield.
- the reaction solution used in the method of the present invention may further contain a linear DNA-specific exonuclease or a single-stranded DNA-specific exonuclease.
- the reaction solution may further contain a linear DNA-specific exonuclease and a single-stranded DNA-specific exonuclease.
- the presence of linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease in the reaction solution reduces the amount of linear DNA generated by double-strand breaks during the amplification reaction, It has the effect of improving the yield of the desired supercoil product.
- a linear DNA-specific exonuclease is an enzyme that sequentially hydrolyzes from the 5 ′ end or 3 ′ end of linear DNA.
- the linear DNA-specific exonuclease is not particularly limited in its type or biological origin as long as it has an activity of sequentially hydrolyzing from the 5 ′ end or 3 ′ end of the linear DNA.
- RecBCD RecBCD
- ⁇ exonuclease, exonuclease III, exonuclease VIII, T5 exonuclease, T7 exonuclease, and Plasmid-Safe TM ATP-Dependent DNase (epicentre) can be used.
- a preferred linear DNA-specific exonuclease is RecBCD.
- the linear DNA exonuclease is 0.001 to 1.0 U / ⁇ L, preferably 0.005 U to 1.0 U / ⁇ L, 0.01 to 1.0 U / ⁇ l, 0.05 to 1.0 U in the reaction solution. / ⁇ L, or in the range of 0.1 to 1.0 U / ⁇ l, but is not limited thereto.
- Enzyme activity unit (U) for linear DNA exonuclease is a unit in which the amount of enzyme required for acid-solubilizing 1 nmol deoxyribonucleotide of linear DNA in a reaction at 37 ° C. for 30 minutes is 1 U It is.
- RecG type helicase is an enzyme that is considered to be a helicase that eliminates a secondary DNA structure formed by collision of replication forks at the end of the extension reaction.
- the RecG type helicase is not particularly limited in its biological origin as long as it has the same activity as that of RecG derived from Escherichia coli.
- RecG derived from Escherichia coli can be preferably used.
- RecG derived from E. coli may be contained in the reaction solution as a monomer in the range of 100 nM to 800 nM, preferably in the range of 100 nM to 500 nM, 100 nM to 400 nM, 100 nM to 300 nM, but is not limited thereto.
- RecG type helicase can be used in a concentration range corresponding to the concentration range specified for the above-mentioned RecG derived from Escherichia coli as an enzyme activity unit.
- Single-stranded DNA-specific exonuclease is an enzyme that sequentially hydrolyzes nucleotides at the 5 'end or 3' end of single-stranded DNA.
- a single-stranded DNA-specific exonuclease is not particularly limited by its type or biological origin, as long as it has an activity of sequentially hydrolyzing 5′-terminal or 3′-terminal nucleotides of single-stranded DNA. Absent. For example, exonuclease I (exo I), RecJ, exonuclease T, etc. can be used.
- a preferred single-stranded DNA specific exonuclease is exo I.
- the single-stranded DNA-specific exonuclease is within the range of 0.1 to 1.0 U / ⁇ l, preferably 0.15 to 1.0 U / ⁇ l, 0.2 to 1.0 U / ⁇ L, or 0. Although it may be contained in the range of 2 to 0.5 U / ⁇ L, it is not limited thereto.
- the enzyme activity unit (U) for exo I is a unit in which the amount of enzyme required for acid-solubilizing 10 nmol deoxyribonucleotides of single-stranded DNA in a reaction at 37 ° C. for 30 minutes is 1 U.
- the enzyme activity unit (U) for RecJ is a unit in which the amount of enzyme required for acid-solubilizing 0.05 nmol of deoxyribonucleotides in single-stranded DNA in a reaction at 37 ° C. for 30 minutes is 1 U.
- the reaction solution used in the method of the present invention may further contain an ammonium salt.
- ammonium salts include ammonium sulfate, ammonium chloride, and ammonium acetate. Particularly preferred ammonium salts are ammonium sulfate or ammonium acetate.
- the ammonium salt may be contained in the reaction solution in the range of 0.1 mM to 100 mM, preferably in the range of 0.1 mM to 50 mM, 1 mM to 50 mM, 1 mM to 20 mM, but is not limited thereto.
- E. coli-derived DNA ligase when E. coli-derived DNA ligase is used as an enzyme having DNA ligase activity, its cofactor NAD (nicotinamide adenine dinucleotide) is included in the reaction solution.
- NAD may be contained in the reaction solution in the range of 0.01 mM to 1.0 mM, preferably in the range of 0.1 mM to 1.0 mM, 0.1 mM to 0.5 mM, but is not limited thereto.
- the reaction solution used in the method of the present invention may further contain a reducing agent.
- a reducing agent examples include DTT, ⁇ -mercaptoethanol (2-mercaptoethanol), tris (2-carboxyethyl) phosphine (TCEP) and glutathione.
- a preferred reducing agent is DTT.
- the reducing agent may be contained in the reaction solution at a concentration of 1.0 mM to 15.0 mM, preferably at a concentration of 2.0 mM to 10.0 mM, 4.0 mM to 8.0 mM.
- the reaction solution used in the method of the present invention may also contain an enzyme and a substrate for regenerating ATP.
- the ATP regeneration system enzyme and substrate combination include creatine kinase and creatine phosphate, and pyruvate kinase and phosphoenolpyruvate.
- An example of an ATP regeneration system enzyme is myokinase.
- a preferred ATP regeneration system enzyme and substrate combination is creatine kinase and creatine phosphate.
- the first, second and third enzyme groups contained in the reaction solution are as described in the above item ⁇ First, second and third enzyme groups>.
- the first enzyme group used in the method of the present invention comprises an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or enzyme group having DNA gyrase activity, a single-stranded DNA binding protein ( single-strand binding protein (SSB)), enzyme with DnaB type helicase activity, enzyme with DNA helicase loader activity, enzyme with DNA primase activity, enzyme with DNA clamp activity, and enzyme with DNA polymerase III * activity Or a combination of enzyme groups may be included.
- the one or more nucleoid proteins may be IHF or HU
- the enzyme or enzyme group having DNA gyrase activity may be a complex consisting of GyrA and GyrB and has DnaB type helicase activity.
- the enzyme may be a DnaB helicase, the enzyme having a DNA helicase loader activity may be a DnaC helicase loader, the enzyme having a DNA primase activity may be a DnaG primase, and an enzyme having a DNA clamp activity may be a DnaN clamp
- the enzyme or enzyme group having DNA polymerase III * activity may be an enzyme or enzyme group including any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE.
- the second enzyme group used in the method of the present invention may include a combination of an enzyme having DNA polymerase I activity and an enzyme having DNA ligase activity.
- the second group of enzymes may include a combination of an enzyme having DNA polymerase I activity, an enzyme having DNA ligase activity, and an enzyme having RNaseH activity.
- the third group of enzymes used in the method of the present invention may include an enzyme having topoisomerase III activity and / or an enzyme having topoisomerase IV activity.
- the third group of enzymes may include a combination of an enzyme having topoisomerase III activity and an enzyme having RecQ type helicase activity.
- the third group of enzymes may be a combination of an enzyme having topoisomerase III activity, an enzyme having RecQ type helicase activity, and an enzyme having topoisomerase IV activity.
- the method of the present invention may further include a step of keeping the reaction mixture in a predetermined temperature range as the step (2).
- the predetermined temperature range is not particularly limited as long as the DNA replication reaction can proceed.
- the optimal temperature of DNA polymerase is 20 ° C. to 80 ° C., 25 ° C. to 50 ° C., or 25 ° C. to 25 ° C. It can be in the range of 40 ° C. Incubation within a predetermined temperature range allows temperature changes or temperature fluctuations within the predetermined temperature range during the reaction.
- the step (2) may be a step of keeping the reaction mixture warm under isothermal conditions.
- the isothermal condition is not particularly limited as long as the DNA replication reaction can proceed.
- the isothermal condition may be a constant temperature within the range of 20 ° C. to 80 ° C. which is the optimum temperature for DNA polymerase.
- the temperature may be a constant temperature within a range of 25 ° C. to 50 ° C., may be a constant temperature within a range of 25 ° C. to 40 ° C., and may be about 30 ° C.
- the terms “keep warm under isothermal conditions” and “react isothermally” mean a temperature of ⁇ 7 ° C., ⁇ 5 ° C., ⁇ 3 ° C., or ⁇ 1 ° C. with respect to the temperature set during the reaction. Means keeping within range.
- the incubation time can be appropriately set according to the amount of amplification product of the target circular DNA, and can be, for example, 1 to 24 hours.
- the method of the present invention may further include, as step (2), a step of incubating the reaction mixture under a temperature cycle in which incubation at 30 ° C. or higher and incubation at 27 ° C. or lower is repeated.
- Incubation at 30 ° C. or higher is not particularly limited as long as it can initiate replication of circular DNA containing oriC, for example, 30 to 80 ° C., 30 to 50 ° C., 30 to 40 ° C., and 37 ° C. It's okay.
- Incubation at 30 ° C. or higher is not particularly limited, and may be 10 seconds to 10 minutes per cycle.
- or lower is not particularly limited as long as replication initiation is suppressed and DNA elongation reaction proceeds, and may be, for example, 10 to 27 ° C., 16 to 25 ° C., or 24 ° C.
- Incubation at 27 ° C. or lower is not particularly limited, but is preferably set according to the length of the circular DNA to be amplified. For example, it may be 1 to 10 seconds per 1000 bases per cycle.
- the number of temperature cycles is not particularly limited, but may be 10 to 50 cycles, 20 to 40 cycles, 25 to 35 cycles, or 30 cycles.
- step (2) may be performed in a water-in-oil emulsion.
- the water-in-oil emulsion can be prepared by adding and mixing mineral oil and a surfactant to the reaction mixture formed in step (1).
- the type and amount of mineral oil and surfactant can be appropriately selected by those skilled in the art.
- the method of the present invention may further include a step of re-incubating after the step (2) after diluting 5 times or more with a reaction solution not containing the first to third enzyme groups. While the start of new replication is suppressed by dilution of the enzyme group, replication elongation, catenane formation, and separation reaction in progress proceed continuously due to the effect of residual enzyme. In addition, by-products generated by nicking during the reaction can be repaired by the effect of residual ligase in this process. Therefore, the transition from the amplification intermediate or by-product to the final product is specifically guided, and an improvement in the yield of the target circular DNA having the supercoil structure can be expected.
- the method of the present invention may further include a step of treating with a linear DNA-specific exonuclease and / or a single-stranded DNA-specific exonuclease after the step (2).
- a linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease By treating with linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease, linear DNA, which is a byproduct generated during the amplification reaction, can be decomposed and removed.
- the type and amount used of the linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease may be as described above.
- the treatment with the linear DNA-specific exonuclease and / or the single-stranded DNA-specific exonuclease may be performed at 25 ° C. to 40 ° C. for 30 minutes to 3 hours, for example.
- the method of the present invention may further include a step of treating with a gap repair enzyme after step (2).
- a gap repair enzyme is a gap in which double-stranded DNA lacks one or more consecutive nucleotides, or a nick in which a phosphodiester bond between adjacent nucleotides is broken in double-stranded DNA. It is a group of enzymes that are repaired to form complete double-stranded supercoiled DNA.
- the gap repair enzyme is not particularly limited in its type or biological origin as long as it is an enzyme group that can repair gaps or nicks in double-stranded DNA.
- a combination of exonuclease III, DNA polymerase I, DNA ligase, enzyme or group of enzymes having DNA gyrase activity can be used.
- the enzyme having exonuclease III activity may be used at a concentration of 5 to 100 mU / ⁇ L, but is not limited thereto.
- the enzyme activity unit (U) for exonuclease III is a unit in which the amount of enzyme required for acid-solubilizing 1 nmol deoxyribonucleotide of double-stranded DNA in a reaction at 37 ° C.
- the enzyme or enzyme group having DNA polymerase I, DNA ligase, or DNA gyrase activity may be used at a concentration determined in the first or second enzyme group, but is not limited thereto.
- the treatment with the gap repair enzyme may be performed, for example, at 25 to 40 ° C. for 5 to 120 minutes, preferably 10 to 60 minutes.
- the method of the present invention may include a step of purifying a circular DNA amplification product after step (2) according to the purpose.
- the purification of the circular DNA can be appropriately performed using techniques available to those skilled in the art.
- the circular DNA amplified using the method of the present invention can be used as it is after the reaction mixture as it is or after being appropriately purified for subsequent purposes such as transformation.
- the present invention is a composition for amplifying circular DNA, A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Also comprising said composition.
- composition of the present invention further comprises a protein non-specific adsorption inhibitor, a nucleic acid non-specific adsorption inhibitor, a linear DNA-specific exonuclease, a RecG-type helicase, a single-stranded DNA-specific exonuclease, an ammonium salt, It may contain one or more components selected from NAD, a reducing agent, a DNA stabilizing factor, and a combination of an ATP regeneration system enzyme and a substrate.
- the present invention also relates to a circular DNA amplification kit, A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; The kit also includes a combination of:
- the kit of the present invention may include all of the above-described components in one kit, and a part of the above-described components may be used as long as it is a kit for the purpose of use in the method of the present invention. It may not be included.
- the practitioner can add the components necessary for amplification to the kit and perform the amplification method of the present invention.
- the kit of the present invention further comprises a nonspecific adsorption inhibitor for proteins, a nonspecific adsorption inhibitor for nucleic acids, a linear DNA-specific exonuclease, a RecG type helicase, a single-stranded DNA-specific exonuclease, an ammonium salt, an NAD, And an additional component comprising one or more components selected from a reducing agent, a DNA stabilizing factor, and a combination of an ATP regeneration system enzyme and substrate.
- the kit of the present invention further includes one or more components selected from a linear DNA-specific exonuclease, a single-stranded DNA-specific exonuclease, and a gap repair enzyme for processing after the amplification reaction. Additional components may be included. The additional components may be included as one kit in the kit of the present invention, or may be provided as a separate kit intended for use with the kit of the present invention.
- the items of ⁇ circular DNA>, ⁇ first, second, and third enzyme groups> and ⁇ circular DNA amplification method> As described above.
- the kit of the present invention may include a package in which the mixture of the above components is packaged into one, but a kit in which the above components are mixed individually or in groups of several types is separately packaged. It may be included.
- the kit of the present invention may also contain instructions describing instructions for carrying out the circular DNA amplification method of the present invention.
- the matters described in the items of ⁇ circular DNA>, ⁇ first, second, and third enzyme groups> and ⁇ circular DNA amplification method> may be described as explanations.
- Example 1 Amplification of circular DNA ⁇ Materials and methods>
- the template DNA was added to the reaction solution having the composition shown in Table 1, mixed on ice, and then incubated for 1 hour, 2 hours, or 3 hours in an incubator at 30 ° C.
- the total volume per reaction was 10 microliters.
- the reaction product was subjected to agarose gel electrophoresis (0.5% 1 ⁇ TAE, 150 V, 100 minutes, 14 ° C.), and then DNA was detected using SYBR Green (Takara Bio Inc.).
- SSB is E. coli-derived SSB
- IHF is E. coli-derived IhfA and IhfB complex
- DnaG is E. coli-derived DnaG
- DnaN is E. coli-derived DnaN
- PolIII * is E. coli-derived DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ And DNA polymerase III * complex which is a complex consisting of HolE
- DnaB is E. coli-derived DnaB
- DnaC is E. coli-derived DnaC
- DnaA is E. coli-derived RNaseH
- Ligase is E.
- coli-derived DNA ligase PolI is E. coli-derived DNA polymerase I
- GyrA represents E. coli-derived GyrA
- GyrB represents E. coli-derived GyrB
- Topo IV represents a complex of E. coli-derived ParC and ParE
- Topo III represents E. coli-derived topoisomerase III
- RecQ represents E. coli-derived RecQ.
- SSB was purified from an E. coli expression strain of SSB and purified by a process including ammonium sulfate precipitation and ion exchange column chromatography.
- IHF was purified and prepared from an IhfA and IhfB E. coli co-expression strain in a process including ammonium sulfate precipitation and affinity column chromatography.
- DnaG was prepared by purifying from an Escherichia coli expression strain of DnaG in steps including ammonium sulfate precipitation, anion exchange column chromatography, and gel filtration column chromatography.
- DnaN was prepared by purifying from an Escherichia coli expression strain of DnaN through a process including ammonium sulfate precipitation and anion exchange column chromatography.
- Pol III * was purified and prepared from E. coli co-expressing strains of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
- DnaB and DnaC were purified and prepared from E. coli co-expressing strains of DnaB and DnaC in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
- DnaA was prepared from a DnaA Escherichia coli-expressing strain by purification in a process including ammonium sulfate precipitation, dialysis precipitation, and gel filtration column chromatography.
- GyrA and GyrB were purified and prepared from a mixture of an E. coli expression strain of GyrA and an E. coli expression strain of GyrB in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
- Topo IV was purified and prepared from a mixture of an Escherichia coli expression strain of ParC and an Escherichia coli expression strain of ParE in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
- Topo III was purified and prepared from an E. coli expression strain of Topo III in a process including ammonium sulfate precipitation and affinity column chromatography.
- RecQ was prepared by purifying from an Escherichia coli expression strain of RecQ in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
- Template DNA includes 9.6 kb circular DNA (circular DNA with replication initiation sequence oriC, kanamycin resistance (Km)), 80 kb long circular DNA (circular DNA with replication initiation sequence oriC, kanamycin resistance (Km)) 200 kb long-chain circular DNA (circular DNA having the replication initiation sequence oriC, kanamycin resistance (Km)), or DNA circularized by in vitro ligation was used.
- 9.6 kb circular DNA and 80 kb kb and 200 kb long chain circular DNA were prepared by an E. coli intracellular recombination reaction. Specifically, using Escherichia coli expressing a recombinant protein group of ⁇ phage, a circular loop of a desired length including an kanamycin resistance cassette and a region containing oriC in the Escherichia coli chromosome by an intracellular recombination reaction. DNA was prepared.
- Fig. 2 shows a method for preparing circularized DNA by in vitro connection.
- a PCR fragment (2.3 kb) having a replication initiation sequence oriC and kanamycin resistance (Km) having a dnaA gene and a dnaN gene sequence (hereinafter referred to as a dnaA-dnaN fragment) (2.6 kb) )
- the two PCR fragments are linked via a 20-base homologous sequence (referred to as H1, H2) added to both ends to form a circular structure.
- H1, H2 20-base homologous sequence
- reaction solution (1 microliter of the 10-fold diluted solution) is added directly to the 10 microliter amplification reaction system (composition shown in Table 1) as template DNA, and the reaction is performed at 30 ° C. for 1 hour. Reacted.
- the Escherichia coli DH5 ⁇ strain was transformed, cultured on a kanamycin-containing agar medium, and the number of colonies was counted.
- a reaction solution having a heat retention time of 0 hours was used as a control.
- the method of the present invention was able to amplify a 9.6-kb kb circular DNA as a circular DNA approximately 6,000 times.
- FIG. 4 shows the results of detection of amplification products by SYBR Green when 80 kb and 200 kb long circular DNAs were used as templates.
- a supercoiled circular DNA amplification product (indicated by a black frame or an arrow) could be confirmed.
- an amplification product can be obtained satisfactorily even when a large circular DNA of 80 kb or 200 kb is used as a template.
- the Escherichia coli DH5 ⁇ strain was transformed, cultured in a kanamycin-containing agar medium, and the number of colonies was counted.
- a sample in which no amplification reaction was performed was used.
- Example 2 Amplification of circular DNA from a small number of template molecules Using the 9.6 kb circular DNA described in Example 1, an amplification reaction was carried out in the same manner as in Example 1.
- Example 3 Amplification of a single circular DNA clone from the mixture From the mixture of 9.6 kb circular DNA and 12.0 kb circular DNA described in Example 1 (circular DNA having the replication origin oriC, kanamycin resistance (Km)) A single circular DNA clone was amplified.
- an intracellular recombination reaction includes a cassette consisting of an oriC and kanamycin resistance gene and a partial region of the E. coli chromosome. Length circular DNA was prepared.
- Example 1 To 10 ⁇ l of the amplification reaction solution (Example 1, Table 1), the mixture of the above-mentioned two kinds of circular DNA was added to the reaction solution diluted to 15 molecules or 1.5 molecules, and the mixture was added at 30 ° C. for 6 hours. An amplification reaction was carried out by keeping warm. The reaction product was subjected to 0.5% agarose gel electrophoresis and stained with SybrGreen (Takara Bio Inc.) to detect amplified DNA (FIG. 8).
- Example 4 Passage Amplification lacZ circular DNA was used to test for circular amplification of circular DNA.
- the lacZ circular DNA (9.0 kb) is a double-stranded DNA fragment (1.0 kb) containing oriC, a double-stranded DNA fragment (4.6 kb) containing the kanamycin resistance gene (Km), and a lacZ ( ⁇ -galactosidase) gene. It was prepared by ligating a double-stranded DNA fragment (3.4 kb). An amplification reaction was carried out by adding 1,000 lacZ circular DNA to 10 ⁇ l of the amplification reaction solution (Example 1, Table 1) and incubating at 30 ° C. for 3 hours.
- the amplification reaction product at the previous passage number was diluted 10 5 times, and 1 ⁇ l of this was added to a new amplification reaction solution and reacted in the same manner to obtain the next passage amplification. This passage amplification was repeated up to 10 times.
- the amplification product for each passage was subjected to 0.5% agarose gel electrophoresis, stained with SybrGreen (Takara Bio Inc.), and detected (FIG. 9).
- a part of the amplified product was transformed into Escherichia coli, and the degree of DNA amplification was quantified from the number of colonies resistant to kanamycin. From this value, the number of generations of exponential amplification was calculated and indicated as the total number of generations.
- the method of the present invention is a method capable of amplifying circular DNA like cell passage proliferation.
- Example 5 Rate of occurrence of replication error in the amplification reaction Since the circular DNA of the template in Example 4 contains the lacZ gene, when E. coli transformed with this circular gene is cultured on an X-gal plate, the lacZ gene Colonies that normally expressed lacZ + are blue because X-gal can be degraded, and colonies in which the lacZ gene has failed to function normally due to mutagenesis due to replication errors (lacZ ⁇ ) cannot degrade X-gal. Presents a white color. That is, the replication error in the amplified circular DNA can be determined by the color of E. coli transformed with this circular gene on the X-gal plate.
- the amplification reaction product of each passage sample was directly transformed into E. coli and cultured on an X-gal plate to determine the lacZ - appearance rate. From this lacZ - appearance rate and the total number of generations obtained in Example 4, the error rate per replication cycle generation was calculated according to the Barnes method (Barnes WM Gene. 1992, 112, 29-35). The results are shown in Table 4 below.
- Example 6 Addition of exonuclease and RecG
- An 80 kb circular DNA was prepared as shown in Example 1.
- RecG was used as a RecG type helicase.
- RecG was prepared by purification from an Escherichia coli-expressing strain of RecG by a process including ammonium sulfate precipitation and affinity column chromatography.
- the reaction composition shown in Table 1 of Example 1 is as follows: 80 kb circular DNA is 0.8 pg / ⁇ l or 8 pg / ⁇ l, RecG is 0 nM, 100 nM, 300 nM, or 1000 nM, and linear DNA-specific exonuclease is 0 U.
- Amplification reaction was carried out by incubating the amplification reaction solution (10 ⁇ l) added so as to be / ⁇ l or 0.2 U / ⁇ l at 30 ° C. for 24 hours.
- the reaction product was subjected to 0.5% agarose gel electrophoresis (1 ⁇ TAE buffer, 150 V, 100 minutes) and stained with SybrGreen (Takara Bio Inc.) to detect amplified DNA.
- Example 7 Examination of various conditions The results of examination of conditions for each component of the reaction solution are shown.
- a circular DNA of 8.0 kb was used as a circular DNA as a method template.
- An 8.0 kb circular DNA was prepared by inserting an oriC fragment into an M13mp18 plasmid vector.
- 8.0 kb circular DNA was added to the amplification reaction solution shown in Table 5 to a final concentration of 8.0 ng / ⁇ l or 0.8 ng / ⁇ l and reacted at 30 ° C. for 2 hours.
- the reaction product was subjected to 0.5% agarose gel electrophoresis (1 ⁇ TAE buffer, 150 V, 100 minutes) and stained with SybrGreen (Takara Bio Inc.) to detect amplified DNA.
- Condition B We examined whether the number of replication cycles could be improved by reducing the amount of template DNA at the start of the reaction.
- the amount of template DNA at the start of the reaction was examined at 8 ng / ⁇ l and 0.8 ng / ⁇ l.
- Condition K The amount of enzyme having DNA ligase activity in the reaction composition was examined. Regarding the ligase concentration at the start of the reaction, 0 nM, 2 nM, 5 nM, 10 nM, 20 nM, and 50 nM were examined. The results are shown in FIG.
- Condition L The amount of single-stranded DNA binding protein (SSB) in the reaction composition was examined. Regarding the concentration of SSB at the start of the reaction, 0 nM, 10 nM, 20 nM, 50 nM, 100 nM, 200 nM, and 500 nM were examined. The results are shown in FIG.
- Condition N The amount of enzyme having DnaB type helicase activity and enzyme having DNA helicase loader activity in the reaction composition was examined. Regarding the concentration of the DnaB-DnaC complex at the start of the reaction, 0 nM, 5 nM, 10 nM, 20 nM, and 40 nM were examined. The results are shown in FIG.
- Condition O The amount of enzyme having RNaseH activity in the reaction composition was examined. Regarding the concentration of RNaseH at the start of the reaction, 1 nM, 3 nM, and 10 nM were examined. The results are shown in FIG.
- Condition P the amplification reaction was examined with the amount of template DNA at the start of the reaction being 8 ng / ⁇ l, 0.8 ng / ⁇ l, and 0.27 ng / ⁇ l. The results are shown in FIG. Under the condition P, amplification was efficiently performed even when the amount of template DNA was 0.8 ng / ⁇ l. Furthermore, amplification was also efficient when the amount of template DNA was reduced to 0.27 ng / ⁇ l. As the amount of DNA synthesis, it was confirmed that amplification was more than 100 times.
- Condition Q The composition and amount of the enzyme of the third enzyme group in the reaction composition were examined. Topo IV, Topo III, and RecQ were used as the third enzyme group. The concentrations examined for each enzyme are as shown in FIG. The results are shown in FIG.
- Condition R the amount of DNA gyrase was examined. Regarding the concentration of the GyrA-GyrB complex at the start of the reaction, 0 nM, 10 nM, 25 nM, 50 nM, and 150 nM were examined. The results are shown in FIG.
- Condition S As condition S, amplification of circular DNA was examined by changing the concentrations of tRNA, NAD, ammonium sulfate (AS), IHF, SSB, and TopoIV. The concentrations examined for each component are as shown in FIG. The results are shown in FIG.
- Example 8 Improvement of buffer composition
- the conditions of the reaction buffer composition shown in Table 1 were further examined. Specifically, the amplification reaction was carried out in the same manner as in Example 1, except that 0.5 pM of the 200 kb circular DNA described in Example 1 was used and the composition of the reaction buffer was changed.
- DTT dithiothreitol
- Results are shown in FIG.
- a long circular DNA is amplified from a low concentration of 0.5 ⁇ m or less, a by-product of a low molecule is amplified, and the production of supercoil which is the target amplification product cannot be confirmed.
- an alkali metal ion source such as potassium glutamate or potassium acetate in the reaction buffer, amplification of the supercoil, which is the target product, can be confirmed well even when amplifying long circular DNA from a low concentration of 0.5 ⁇ p. did it.
- reaction buffer having the following composition was used.
- Example 9 Amplification efficiency improvement by preincubation of reaction solution The effect of performing preincubation before the amplification reaction was examined.
- the 200-kb kb circular DNA described in Example 1 was used as the template DNA.
- a reaction solution containing a reaction buffer having the composition shown in Table 6 and an enzyme group having the composition shown in Table 1 was prepared on ice. Preincubation was performed at 0 ° C, 16 ° C, or 30 ° C for 0, 5, 15 or 30 minutes, respectively. Thereafter, template DNA was added to the reaction solution to a final concentration of 0.05 ⁇ M, and the mixture was incubated for 3 hours in an incubator at 30 ° C. After the reaction, the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
- Example 10 RecG and RecJ Additional Amplification Reaction Solution was further examined for the effect of carrying out an amplification reaction by further adding RecG type helicase and single-stranded DNA-specific exonuclease.
- the 200 kb circular DNA described in Example 1 was used as the template DNA.
- RecG was used as a RecG type helicase.
- RecG used was adjusted in the same manner as in Example 6.
- RecJ was used as a single-stranded DNA-specific exonuclease. RecJ was obtained from NEB.
- amplification reaction was carried out by incubating the amplification reaction solution (10 ⁇ l) added to 5 U / ⁇ l at 30 ° C. for 3 hours or 25 hours. After the reaction, the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
- Results are shown in FIG.
- RecG and RecJ purification of small amplification products of small molecules was reduced, and an improvement in the yield of the circular DNA amplification product of the desired supercoiled structure was observed.
- the addition of RecG-type helicase and single-stranded DNA-specific exonuclease in the amplification reaction is a means to solve the problem that small by-products are amplified, especially when amplifying long-chain circular DNA from a low concentration. It is valid.
- Example 11 The effect of conducting an amplification reaction by further adding a linear DNA-specific exonuclease and a single-stranded DNA-specific exonuclease to the RecBCD and exo I additional amplification reaction solution was examined.
- the 200 kb circular DNA described in Example 1 was used as the template DNA.
- RecBCD was used as a linear DNA-specific exonuclease.
- RecBCD was obtained from NEB.
- Exo I was used as a single-stranded DNA-specific exonuclease.
- exo I was obtained from NEB.
- reaction solution containing the reaction buffer having the composition shown in Table 6 and the enzyme group having the composition shown in Table 1, 0.5 ⁇ pM (67 pg / ⁇ l) of 200 ⁇ kb circular DNA and 0, 1.5, 5.0, 15.
- An amplification reaction was carried out by incubating an amplification reaction solution (10 ⁇ l) added with 0 or 50.0 mU / ⁇ l and exo I at 200 mU / ⁇ l for 20 hours at 30 ° C. After the reaction, the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
- Results are shown in FIG.
- the addition of RecBCD and exo-I reduced the production of linear DNA, which is a by-product due to DNA cleavage, and improved production of the circular DNA amplification product of the desired supercoiled structure was observed.
- the addition of linear DNA-specific exonuclease and single-strand specific exonuclease in the amplification reaction says that linear DNA by-products are amplified, especially when amplifying long circular DNA from a low concentration. It is effective as a means to solve the problem.
- Example 12 Post-reaction treatment-Increase of final product by re-incubation with dilution and removal of linear DNA with RecBCD and exoI during re-incubation Is it possible to remove by-products by performing dilution re-incubation after amplification reaction? We examined whether or not. Furthermore, it was examined whether or not by-products could be removed by treatment with linear DNA-specific exonuclease and / or single-strand-specific exonuclease after the amplification reaction. The 200 kb circular DNA described in Example 1 was used as the template DNA. RecBCD was used as a linear DNA-specific exonuclease, and exo I was used as a single-stranded DNA-specific exonuclease. RecBCD and exo I were obtained as in Example 10.
- the reaction solution after the amplification reaction was diluted to 1/5 with a reaction buffer having a composition excluding creatine kinase and bovine serum albumin from Table 6, and (i) re-incubated for 1 hour at 30 ° C.
- RecBCD was 200 mU. / Iii was added and re-incubated at 30 ° C. for 1 hour, or
- RecBCD was added at 200 mU / ⁇ l and exo ⁇ I was added at 200 mU / ⁇ l and re-incubated at 30 ° C. for 1 hour.
- the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 together with the product before dilution re-incubation to detect DNA.
- Results are shown in FIG.
- the circular DNA of the desired supercoil structure could be detected only by diluting and re-incubating the reaction solution after the amplification reaction. Furthermore, in the presence of linear DNA-specific exonuclease and / or single-strand-specific exonuclease, linear DNA as a by-product could be removed.
- Dilution re-incubation treatment is effective as a means of increasing the production of supercoiled DNA, which is the final product, by promoting replication extension and separation reaction of the amplification intermediate in the product. Furthermore, treatment with linear DNA-specific exonuclease and single-strand-specific exonuclease during re-incubation occurs as a by-product, particularly when amplifying long-chain circular DNA from a low concentration This is an effective means for removing linear DNA.
- Example 13 Post-reaction treatment—Can a cyclic DNA with the desired supercoil structure be detected by treating with a gap repair (GR) enzyme after a single-gap repair amplification reaction with a gap repair (GR) enzyme? We examined whether or not.
- GR gap repair
- the amplification reaction was carried out by incubating for 20 hours.
- As the 15 kb circular DNA used as the template DNA a 15 kb kb region on the E. coli genome and an oriC fragment (0.4 kb) were ligated and cloned using E. coli, and then purified.
- the product after the amplification reaction is dialyzed against 20 ⁇ l of 10 ⁇ m Tris-HCl (pH 8.0) for 2 hours, 0.5 ⁇ l of which is added to 5 ⁇ l of a reaction buffer containing GR enzyme, and 20 minutes or 60 minutes at 30 ° C. Incubated.
- a reaction buffer having the composition shown in Table 6 was used.
- a gap repair reaction was performed using PhiX174 RFII (NEB), which is DNA containing nicks.
- NEB PhiX174 RFII
- the nick is repaired and the circular DNA having a supercoiled structure can be detected.
- the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
- Example 14 Stabilizing factor for long-chain circular DNA and efficiency of amplification reaction using the same (1) Examination of long-chain DNA stabilizing factor From Table 6, creatine kinase and bovine serum albumin were excluded from long-chain circular DNA When incubated at 37 ° C. in the reaction buffer having the composition, it was observed that DNA damage was induced and the circular DNA having a supercoiled structure was reduced. Reagents that contribute to the stabilization of long circular DNA were investigated.
- Example 15 Amplification reaction of long-chain circular DNA using emulsion The amplification reaction of circular DNA in a water-in-oil emulsion was investigated. The 200 kb circular DNA described in Example 1 was used as the template DNA.
- An amplification reaction solution (5 ⁇ l) was prepared by adding 200 ⁇ kb circular DNA to a reaction solution containing the reaction buffer having the composition shown in Table 6 and the enzyme group having the composition shown in Table 1 to 0.5 ⁇ pM (67 pg / ⁇ l). .
- 100 ⁇ l of mineral oil containing surfactants (2% ABIL EM90 and 0.05% Triton-X100) was added and mixed by vortexing for 60 seconds. This mixture was incubated at 30 ° C. for 3 hours or 18 hours to carry out an amplification reaction (emulsion).
- amplification reaction was carried out by keeping the above amplification reaction solution as it was at 30 ° C. for 3 hours or 18 hours (bulk).
- the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
- Example 16 Amplification efficiency by temperature cycle
- the lower the molecular weight the faster the replication is completed. Therefore, if low molecular circular DNA is produced as a byproduct, the byproduct Amplifies quickly.
- this phenomenon dominates amplification of by-products, and the problem is that amplification of the long-chain DNA, which is the target product, is not observed.
- it is necessary to suppress excessive amplification of low molecular weight DNA.
- the inventors focused on the point that a temperature of 30 ° C. or higher is optimal for initiating replication of circular DNA containing oriC, while the extension / separation reaction proceeds even at lower temperatures.
- a reaction solution containing the reaction buffer having the composition shown in Table 6 and the enzyme group having the composition shown in Table 1 was preincubated at 30 ° C. for 30 minutes in accordance with Example 8, and then 200 ⁇ kb circular DNA (Example 1) was 0.5 ⁇ pM (Example 1).
- Amplification reaction solution (10 ⁇ l) added so as to be 67 pg / ⁇ l) was prepared.
- the amplification reaction solution was subjected to a temperature cycle of 37 ° C., 5 minutes ⁇ 16 ° C. or 24 ° C., 30 minutes for 30 cycles (2-Step cycle).
- the amplification reaction solution was kept at 30 ° C. for 21 hours.
- the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Plant Pathology (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液と混合して生成した反応混合物を反応させることにより、「複製の開始(DNA2重鎖開裂)・伸長(複製フォーク進行)・複製された姉妹DNAの分離(Decatenation)」のサイクルが繰り返し、指数的に環状DNAを増幅することができることを見出した。
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を等温条件下で保温する工程;
を含む、前記方法。
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を、30℃以上でのインキュベーションおよび27℃以下でのインキュベーションを繰り返す温度サイクル下で、インキュベートする工程;
を含む、前記方法。
第二の酵素群が、DNAポリメラーゼI活性を有する酵素およびDNAリガーゼ活性を有する酵素の組み合わせを含み、
第三の酵素群が、トポイソメラーゼIII活性を有する酵素および/またはトポイソメラーゼIV活性を有する酵素を含む、
上記[1]または[2]に記載の方法。
1種以上の核様体タンパク質がIHFまたはHUであり、
DNAジャイレース活性を有する酵素または酵素群が、GyrAおよびGyrBからなる複合体であり、
DnaB型ヘリカーゼ活性を有する酵素がDnaBヘリカーゼであり、
DNAヘリカーゼローダー活性を有する酵素がDnaCヘリカーゼローダーであり、
DNAプライマーゼ活性を有する酵素がDnaGプライマーゼであり、
DNAクランプ活性を有する酵素がDnaNクランプであり、
DNAポリメラーゼIII*活性を有する酵素または酵素群が、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEのいずれかを含む酵素または酵素群である、
上記[6]に記載の方法。
(1-1)以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液をプレインキュベーションする工程;
(1-2)当該反応液と鋳型となる環状DNAとの反応混合物を形成する工程;および
を含む、上記[1]または[2]に記載の方法。
(3)反応後処理を行う工程;を含み、ここで、当該反応後処理は、
(i)第一から第三の酵素群を含まない反応液で五倍以上に希釈した後、再保温する処理;
(ii)直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼによる処理;および/または
(iii)ギャップリペア酵素による処理;である、
上記[1]または[2]に記載の方法。
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む、前記組成物。
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
の組み合わせを含む、前記キット。
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液と、鋳型となる環状DNAとの反応混合物を形成する工程を含み、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む、複製サイクルを繰り返し、指数的に環状DNAを増幅する方法。
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を所定の温度範囲で保温する工程;
を含む、前記方法。
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
の組み合わせ、
ならびに、上記の組み合わせを含む反応液と鋳型となる環状DNAとの反応混合物において複製サイクルを繰り返すことで環状DNAを指数的に増幅する方法を実施するための指示が記載された説明書を含む、
前記キット。
鋳型として用いる環状DNAは、2重鎖であることが好ましい。鋳型として用いる環状DNAは、DnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含むものであれば、特に制限はされず、微生物の環状染色体等の天然の環状DNA、天然の環状DNAを酵素処理等によって切断したもの等に別のDNA断片を連結し、それを環状化した環状DNA、すべて人工的に合成した環状DNA等を例示することができる。DnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))(以下、単に「複製開始配列」ということがある)としては、たとえば大腸菌、枯草菌等の細菌に存在する公知の複製開始配列を、NCBI(http://www.ncbi.nlm.nih.gov/)等の公的なデータベースから入手することができる。また、DnaA活性を有する酵素と結合可能なDNA断片をクローニングし、その塩基配列を解析することによって、複製開始配列を得ることもできる。
1.第一の酵素群
本明細書において第一の酵素群とは、環状DNAの複製を触媒する酵素群を意味する。
本明細書において第二の酵素群とは、岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する酵素群を意味する。
本明細書において第三の酵素群とは、2つの姉妹環状DNAの分離反応を触媒する酵素群を意味する。
本発明は、環状DNAの増幅方法であって、以下の工程:
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、を含み、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む、前記方法に関する。
(1-1)以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液をプレインキュベーションする工程;および
(1-2)当該反応液と鋳型となる環状DNAとの反応混合物を形成する工程、ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;
を含む、前記方法であってよい。プレインキュベーションは、例えば、0~40℃、10~40℃、15~37℃、または16~30℃の範囲で、5~60分間、5~45分間、5~30分間、15~60分間、15~45分間、15~30分間の間、保温することにより行ってもよい。プレインキュベーションは、反応液の温度が上記の温度範囲内に保たれればプレインキュベーション中に若干変動してもよい。
本発明は、環状DNAの増幅用組成物であって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む、前記組成物にも関する。
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
の組み合わせを含む、前記キットにも関する。
<材料と方法>
表1に示す組成の反応液に鋳型DNAを添加して氷上で混合した後、30℃のインキュベータで1時間、2時間、または3時間保温した。1反応あたりの総容量は10マイクロリットルとなるようにした。30℃における反応後、反応産物をアガロースゲル電気泳動(0.5% 1×TAE、150 V、100分間、14℃)したのち、SYBR Green(タカラバイオ株式会社)を用いてDNAを検出した。
SYBR Greenによる増幅産物の検出結果を図3に示す。
SYBR Greenによる増幅産物の検出結果を図4に示す。
SYBR Greenによる増幅産物の検出結果を図5に示す。
実施例1に記載の9.6 kbの環状DNAを用い、実施例1と同様に増幅反応を行った。
増幅反応液(実施例1、表1)10μlに、9.6 kbの環状DNAを環状分子として1~1000分子含まれるように加え、30℃で3時間保温することにより増幅反応を行った。反応物について、0.5%アガロースゲル電気泳動を行い、SybrGreen(タカラバイオ株式会社)で染色し、増幅DNAを検出した(図6a)。また、増幅産物の総DNA量を、PicoGreen検出キット(ThermoFisher社)により定量した(図6b:PicoGreen法)。環状DNA分子としての増幅量を、増幅産物を直接、大腸菌に形質転換し、カナマイシン耐性コロニー数を求めることにより定量した(図6b:形質転換法)。定量結果から、初期DNA量に対する増幅度合いを求め(増幅)、グラフに示した。
増幅反応液(実施例1、表1)80μlに、上記の環状DNAを加え、30℃で保温することにより増幅反応を行った。環状DNAは反応液1μlあたり105分子となるよう加えた。経時的にサンプリングし、サンプルを直接、大腸菌に形質転換し、カナマイシン耐性コロニー数を求めることにより増幅された環状DNA分子数を定量した(図7)。
実施例1に記載の9.6 kbの環状DNA及び12.0 kbの環状DNA(複製開始配列oriCを持つ環状DNA、カナマイシン耐性(Km))の混合物から単一な環状DNAクローンの増幅を行った。
lacZ環状DNAを用いて、環状DNAの継代増幅について試験した。
実施例4における鋳型の環状DNAにはlacZ遺伝子が含まれているため、この環状遺伝子で形質転換した大腸菌をX-galプレート上で培養すると、lacZ遺伝子が正常に発現したコロニー(lacZ+)はX-galを分解できるため青色を呈し、複製エラーによる変異導入でlacZ遺伝子が正常に機能しなくなったコロニー(lacZ-)はX-galを分解できないため白色を呈する。すなわち、この環状遺伝子で形質転換した大腸菌がX-galプレート上で呈する色によって、増幅した環状DNAにおける複製エラーを判定できる。
実施例1に記載の80 kbの環状DNAを用い、増幅反応液にRecG型ヘリカーゼおよび直鎖状DNA特異的エキソヌクレアーゼをさらに添加して増幅反応を行う場合の効果を検討した。
80 kbの環状DNAは、実施例1に示したとおりに調製した。
RecG型ヘリカーゼとして、RecGを用いた。RecGは、RecGの大腸菌発発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。
反応液の各成分について条件検討を行った結果を示す。
鋳型となる環状DNAとして、8.0 kbの環状DNAを用いた。8.0 kbの環状DNAは、M13mp18プラスミドベクターにoriC断片を挿入して作成した。
(1)条件A
第一、第二及び第三の酵素群を加えて反応させることで、数ラウンドの複製サイクルの繰り返しが導かれることを見出した。しかしながら、複製サイクルを経るごとに反応の基質タンパク質が不足してくるため、複製サイクルは4ラウンドまでで停滞することが判明した(図11)。
反応開始の鋳型DNA量を減らすことで複製サイクル数を向上させることができるかどうかについて検討した。反応開始時の鋳型DNA量について、8ng/μlおよび0.8ng/μlで検討した。
反応組成におけるGTP、CTPおよびUTPの量を検討した。反応開始時のGTP、CTPおよびUTPの濃度について、0.2mM、0.5mM、1.0mMおよび2.0mMを検討した。
結果を図13に示す。
反応組成におけるIHFの量を検討した。反応開始時のIHFの濃度について、0nM、10nM、20nM、40nM、100nM、および200nMを検討した。
結果を図14に示す。
反応組成におけるTopo IVの量を検討した。反応開始時のTopo IVの濃度について、0nM、1nM、2nM、5nM、10nM、および20nMを検討した。
結果を図15に示す。
反応組成におけるDNAジャイレースの量を検討した。反応開始時のGyrA-GyrB複合体の濃度について、0nM、10nM、25nM、50nM、100nM、および200nMを検討した。
結果を図16に示す。
反応組成におけるDNAポリメラーゼIII*の量を検討した。反応開始時のPol III*の濃度について、0nM、1nM、2nM、5nM、および10nMを検討した。
結果を図17に示す。
反応組成におけるアルカリ金属イオン源の量を検討した。反応開始時のグルタミン酸カリウムの濃度について、50mMおよび150mMを検討した。
結果を図18に示す。
反応組成におけるタンパク質の非特異吸着抑制剤および/または核酸の非特異吸着抑制剤の量を検討した。反応組成にtRNAを含まず0.1mg/ml BSAを含む条件、20ng/μl tRNAおよび0.1mg/ml BSAを含む条件、tRNAを含まずBSAを0.5mg/ml含む条件、を検討した。
結果を図19に示す。
反応組成におけるDnaA活性を有する酵素の量を検討した。反応開始時のDnaAの濃度について、0nM、5nM、10nM、20nM、40nM、100nM、および200nMを検討した。
結果を図20に示す。
反応組成におけるDNAリガーゼ活性を有する酵素の量を検討した。反応開始時のリガーゼの濃度について、0nM、2nM、5nM、10nM、20nM、および50nMを検討した。
結果を図21に示す。
反応組成における一本鎖DNA結合タンパク質(SSB)の量を検討した。反応開始時のSSBの濃度について、0nM、10nM、20nM、50nM、100nM、200nM、および500nMを検討した。
結果を図22に示す。
反応組成におけるDNAポリメラーゼI活性を有する酵素の量を検討した。反応開始時のPol Iの濃度について、0nM、2nM、5nM、10nM、20nM、および50nMを検討した。
結果を図23に示す。
反応組成におけるDnaB型ヘリカーゼ活性を有する酵素およびDNAヘリカーゼローダー活性を有する酵素の量を検討した。反応開始時のDnaB-DnaC複合体の濃度について、0nM、5nM、10nM、20nM、および40nMを検討した。
結果を図24に示す。
反応組成におけるRNaseH活性を有する酵素の量を検討した。反応開始時のRNaseHの濃度について、1nM、3nM、および10nMを検討した。
結果を図25に示す。
条件Pについて、反応開始時の鋳型DNA量を、8ng/μl、0.8ng/μl、および0.27ng/μlとして増幅反応を検討した。
結果を図26に示す。条件Pでは、鋳型DNAの量が0.8ng/μlの場合も効率よく増幅できた。さらに、鋳型DNAの量を0.27ng/μlに減らした場合も効率よく増幅できた。DNA合成量としては、100倍を超えて増幅していることが確認できた。
反応組成における、第三の酵素群の酵素の組成および量について検討した。第三の酵素群としてTopo IV、Topo III、およびRecQを用いた。各酵素について検討した濃度は図27に示すとおりである。
結果を図27に示す。
条件Rについて、DNAジャイレースの量を検討した。反応開始時のGyrA-GyrB複合体の濃度について、0nM、10nM、25nM、50nM、および150nMを検討した。
結果を図28に示す。
条件Sとして、tRNA、NAD、硫酸アンモニウム(AS)、IHF、SSB、TopoIVの濃度を変更して環状DNAの増幅を検討した。各成分について検討した濃度は図29に示すとおりである。
結果を図29に示す。
表1に示す反応バッファーの組成について、さらに条件検討を行った。
具体的には、実施例1に記載の200kb環状DNAを0.5 pM用い、反応バッファーの組成に変更を加えた他は、実施例1と同様に増幅反応を行った。
DTTについて、実施例1では8 mMの濃度としていたところ、4 mMに変更して増幅反応を行った。その結果、DTTの量を半減させても環状DNAの増幅反応が進行したことを確認した。
表1の反応バッファーの組成について、DTTを4 mMに変更するとともに、アルカリ金属イオン源を含まない反応バッファー、および、アルカリ金属イオン源としてグルタミン酸カリウムの代わりに150 mM 酢酸カリウムを含む反応バッファーを用いて、環状DNAの増幅反応を行った。
表6のバッファーの組成について、20 mM Tris-HCL (pH 8.0)を20 mM Tris-OAc (pH 8.0)に変更して環状DNAの増幅反応を行った。その結果、20 mM Tris-OAc (pH 8.0)を用いた場合も、20 mM Tris-HCL (pH 8.0)を用いた場合と同様の増幅産物が観察された。
表6のバッファー組成について、4 mM DTTを、4 mM 2-メルカプトエタノール(2-Me)または4 mM トリス(2-カルボキシエチル)ホスフィン(TCEP)に変更して環状DNAの増幅反応を行った。その結果、2-MeおよびTCEPのいずれを用いた場合も、DTTを用いた場合と同様の増幅産物が観察された。
表6のバッファー組成について、10 mM 硫酸アンモニウムを、10 mM 酢酸アンモニウムに変更して環状DNAの増幅反応を行った。その結果、酢酸アンモニウムを用いた場合も、硫酸アンモニウムを用いた場合と同様の増幅産物が観察された。
増幅反応前にプレインキュベーションを行う場合の効果を検討した。
増幅反応液にRecG型ヘリカーゼおよび一本鎖DNA特異的エキソヌクレアーゼをさらに添加して増幅反応を行う場合の効果を検討した。
鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
RecG型ヘリカーゼとして、RecGを用いた。RecGは実施例6と同様に調整したものを用いた。
一本鎖DNA特異的エキソヌクレアーゼとしてRecJを用いた。RecJはNEB社より入手した。
増幅反応液に直鎖状DNA特異的エキソヌクレアーゼおよび一本鎖DNA特異的エキソヌクレアーゼをさらに添加して増幅反応を行う場合の効果を検討した。
鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
直鎖状DNA特異的エキソヌクレアーゼとしてRecBCDを用いた。RecBCDはNEB社より入手した。
一本鎖DNA特異的エキソヌクレアーゼとしてexo Iを用いた。exo Iは、NEB社より入手した。
増幅反応後に希釈再保温処理を行うことにより、副生成物の除去が可能か否かを検討した。さらに、増幅反応後に直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖特異的エキソヌクレアーゼで処理することにより、副生成物の除去が可能か否かを検討した。
鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
直鎖状DNA特異的エキソヌクレアーゼとしてRecBCD、一本鎖DNA特異的エキソヌクレアーゼとしてexo Iを用いた。RecBCDおよびexo Iは実施例10と同様に入手した。
増幅反応後に、ギャップリペア(GR)酵素で処理することにより、目的のスーパーコイル構造の環状DNAの検出が可能か否かを検討した。
反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
(1)長鎖DNAの安定化因子の検討
長鎖環状DNAを表6からクレアチンキナーゼとウシ血清アルブミンを除いた組成の反応バッファーにて、37℃でインキュベートすると、DNA損傷が誘導され、スーパーコイル構造の環状DNAが減少する様子が観察された。長鎖環状DNAの安定化に寄与する試薬について検討した。
表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液に、200 kb環状DNAを0.5 pM(67pg/μl)、DTPAもしくはTironを0.05、0.1または0.3mM、BDAを0.1、0.3または1mM、Dpsを0.3、1または3μMとなるように加えた増幅反応液(10μl)を30℃で20時間保温することにより増幅反応を行った。増幅後の反応液を、実施例11と同様に、30℃で1時間、希釈再保温した後、反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
油中水滴型エマルジョン内での環状DNAの増幅反応を検討した。
鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
環状DNAの増幅反応においては、低分子であるほど複製が早く完了するので、副生成物として低分子の環状DNAが生じてしまうと、副生成物の方が早く増幅してしまう。長鎖DNAの増幅にあたっては、この現象により副生成物の増幅が優位になり、目的産物である長鎖DNAの増幅が見られなくなることが問題であった。長鎖DNAを効率よく増幅するためには、低分子DNAの過剰増幅を抑制する必要がある。
Claims (29)
- 環状DNAの増幅方法であって、以下の工程:
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を等温条件下で保温する工程;
を含む、前記方法。 - 環状DNAの増幅方法であって、以下の工程:
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を、30℃以上でのインキュベーションおよび27℃以下でのインキュベーションを繰り返す温度サイクル下で、インキュベートする工程;
を含む、前記方法。 - 反応液が、さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤を含む、請求項1または2に記載の方法。
- 反応液が、さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼを含む、請求項1または2に記載の方法。
- 反応液が、さらにアンモニウム塩を含む、請求項1または2に記載の方法。
- 第一の酵素群が、DnaA活性を有する酵素、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素または酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DnaB型ヘリカーゼ活性を有する酵素、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、およびDNAポリメラーゼIII*活性を有する酵素または酵素群、の組み合わせを含み、
第二の酵素群が、DNAポリメラーゼI活性を有する酵素およびDNAリガーゼ活性を有する酵素の組み合わせを含み、
第三の酵素群が、トポイソメラーゼIII活性を有する酵素および/またはトポイソメラーゼIV活性を有する酵素を含む、
請求項1または2に記載の方法。 - 第二の酵素群がさらに、RNaseH活性を有する酵素を含む、請求項6に記載の方法。
- 第三の酵素群がさらに、RecQ型ヘリカーゼ活性を有する酵素を含む、請求項6に記載の方法。
- 第一の酵素群において、
1種以上の核様体タンパク質がIHFまたはHUであり、
DNAジャイレース活性を有する酵素または酵素群が、GyrAおよびGyrBからなる複合体であり、
DnaB型ヘリカーゼ活性を有する酵素がDnaBヘリカーゼであり、
DNAヘリカーゼローダー活性を有する酵素がDnaCヘリカーゼローダーであり、
DNAプライマーゼ活性を有する酵素がDnaGプライマーゼであり、
DNAクランプ活性を有する酵素がDnaNクランプであり、
DNAポリメラーゼIII*活性を有する酵素または酵素群が、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEのいずれかを含む酵素または酵素群である、
請求項6に記載の方法。 - 工程(2)における等温条件が、25℃~50℃の範囲に含まれる一定の温度である、請求項1に記載の方法。
- 反応液が、さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項1または2に記載の方法。
- 反応液が、さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項1または2に記載の方法。
- 反応液が、さらにDNAの安定化因子を含む、請求項1または2に記載の方法。
- 工程(1)が
(1-1)以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液をプレインキュベーションする工程;
(1-2)当該反応液と鋳型となる環状DNAとの反応混合物を形成する工程;および
を含む、請求項1または2に記載の方法。 - 工程(2)を、油中水滴型エマルジョン内で行う、請求項1または2に記載の方法。
- 工程(2)に続いてさらに、
(3)反応後処理を行う工程;を含み、ここで、当該反応後処理は、
(i)第一から第三の酵素群を含まない反応液で五倍以上に希釈した後、再保温する処理;
(ii)直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼによる処理;および/または
(iii)ギャップリペア酵素による処理;である、
請求項1または2に記載の方法。 - 環状DNAの増幅用組成物であって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む、前記組成物。 - さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤を含む、請求項17に記載の組成物。
- さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼを含む、請求項17に記載の組成物。
- さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項17に記載の組成物。
- さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項17に記載の組成物。
- さらにDNAの安定化因子を含む、請求項17に記載の組成物。
- 環状DNAの増幅用キットであって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
の組み合わせを含む、前記キット。 - さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤との組み合わせを含む、請求項23に記載のキット。
- さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼとの組み合わせを含む、請求項23に記載のキット。
- さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項23に記載のキット。
- さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項23に記載のキット。
- さらにDNAの安定化因子を含む、請求項23に記載のキット。
- さらにギャップリペア酵素を含む、請求項23に記載のキット。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018518326A JP6764193B2 (ja) | 2016-05-17 | 2017-05-17 | 環状dnaの増幅方法 |
RU2018144299A RU2748736C2 (ru) | 2016-05-17 | 2017-05-17 | Способ амплификации кольцевой днк |
KR1020187036088A KR102378346B1 (ko) | 2016-05-17 | 2017-05-17 | 환상 dna의 증폭 방법 |
EP17799415.9A EP3460058B1 (en) | 2016-05-17 | 2017-05-17 | Method for amplifying cyclic dna |
CA3024546A CA3024546A1 (en) | 2016-05-17 | 2017-05-17 | Method of amplifying circular dna |
US16/302,485 US12157915B2 (en) | 2016-05-17 | 2017-05-17 | Method of amplifying circular DNA |
CN202211102191.3A CN115537454A (zh) | 2016-05-17 | 2017-05-17 | 环状dna的扩增方法 |
SG11201810209VA SG11201810209VA (en) | 2016-05-17 | 2017-05-17 | Method of amplifying circular dna |
CN201780034209.1A CN109415718B (zh) | 2016-05-17 | 2017-05-17 | 环状dna的扩增方法 |
AU2017265723A AU2017265723B2 (en) | 2016-05-17 | 2017-05-17 | Method of amplifying circular dna |
IL263027A IL263027A (en) | 2016-05-17 | 2018-11-15 | A method for amplifying circular DNA |
US18/920,931 US20250043341A1 (en) | 2016-05-17 | 2024-10-20 | Method of Amplifying Circular DNA |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016099157 | 2016-05-17 | ||
JP2016-099157 | 2016-05-17 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/302,485 A-371-Of-International US12157915B2 (en) | 2016-05-17 | 2017-05-17 | Method of amplifying circular DNA |
US18/920,931 Division US20250043341A1 (en) | 2016-05-17 | 2024-10-20 | Method of Amplifying Circular DNA |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017199991A1 true WO2017199991A1 (ja) | 2017-11-23 |
Family
ID=60325215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018472 WO2017199991A1 (ja) | 2016-05-17 | 2017-05-17 | 環状dnaの増幅方法 |
Country Status (11)
Country | Link |
---|---|
US (2) | US12157915B2 (ja) |
EP (1) | EP3460058B1 (ja) |
JP (1) | JP6764193B2 (ja) |
KR (1) | KR102378346B1 (ja) |
CN (2) | CN109415718B (ja) |
AU (1) | AU2017265723B2 (ja) |
CA (1) | CA3024546A1 (ja) |
IL (1) | IL263027A (ja) |
RU (1) | RU2748736C2 (ja) |
SG (1) | SG11201810209VA (ja) |
WO (1) | WO2017199991A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018159669A1 (ja) * | 2017-02-28 | 2018-09-07 | 国立研究開発法人 科学技術振興機構 | 環状dnaの複製または増幅方法 |
WO2020027110A1 (ja) | 2018-07-30 | 2020-02-06 | オリシロジェノミクス株式会社 | 無細胞系でdnaを編集する方法 |
WO2022018881A1 (en) * | 2020-07-21 | 2022-01-27 | The University Of Tokyo | Method and kit for determining neuromuscular disease in subject |
WO2023191034A1 (ja) * | 2022-03-31 | 2023-10-05 | モデルナ・エンザイマティクス株式会社 | 配列エラーの減少した二本鎖dnaの製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6262877B2 (ja) | 2014-11-18 | 2018-01-24 | 国立研究開発法人科学技術振興機構 | 環状dnaの増幅方法 |
CN114231524B (zh) * | 2020-09-09 | 2023-12-26 | 深圳华大生命科学研究院 | 一种体外制备环状dna的方法 |
WO2024170684A1 (en) | 2023-02-15 | 2024-08-22 | Sanofi | Screening codon-optimized nucleotide sequences |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005229950A (ja) | 2004-02-23 | 2005-09-02 | National Food Research Institute | 環状dnaの増幅方法 |
JP2008161182A (ja) | 2006-10-24 | 2008-07-17 | Qiagen Gmbh | 環状ゲノムのローリングサークル増幅 |
JP2012501173A (ja) | 2008-09-02 | 2012-01-19 | ゼネラル・エレクトリック・カンパニイ | Dnaミニサークルおよびその使用 |
WO2016080424A1 (ja) * | 2014-11-18 | 2016-05-26 | 国立研究開発法人 科学技術振興機構 | 環状dnaの増幅方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5677170A (en) | 1994-03-02 | 1997-10-14 | The Johns Hopkins University | In vitro transposition of artificial transposons |
US6355450B1 (en) | 1995-04-21 | 2002-03-12 | Human Genome Sciences, Inc. | Computer readable genomic sequence of Haemophilus influenzae Rd, fragments thereof, and uses thereof |
CA2366791A1 (en) | 1999-04-06 | 2000-10-12 | Kamal K. Midha | Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second cns stimulant |
IL147125A0 (en) | 1999-06-18 | 2002-08-14 | Aventis Pharma Inc | Novel vectors for improving cloning and expressions in low copy number plasmids |
EP1759008A4 (en) | 2004-04-26 | 2008-08-06 | Replidyne Inc | SYSTEMS AND METHODS FOR BACTERIAL REPLICATION |
EP2867366B1 (en) * | 2012-06-29 | 2018-05-16 | General Electric Company | Method for isothermal dna amplification starting from an rna template in a single reaction mixture |
EP3591051A4 (en) | 2017-02-28 | 2021-01-06 | Oriciro Genomics, Inc. | CIRCULAR DNA REPLICATION OR AMPLIFICATION PROCESS |
-
2017
- 2017-05-17 EP EP17799415.9A patent/EP3460058B1/en active Active
- 2017-05-17 CN CN201780034209.1A patent/CN109415718B/zh active Active
- 2017-05-17 US US16/302,485 patent/US12157915B2/en active Active
- 2017-05-17 KR KR1020187036088A patent/KR102378346B1/ko active Active
- 2017-05-17 CA CA3024546A patent/CA3024546A1/en active Pending
- 2017-05-17 WO PCT/JP2017/018472 patent/WO2017199991A1/ja unknown
- 2017-05-17 SG SG11201810209VA patent/SG11201810209VA/en unknown
- 2017-05-17 JP JP2018518326A patent/JP6764193B2/ja active Active
- 2017-05-17 AU AU2017265723A patent/AU2017265723B2/en not_active Ceased
- 2017-05-17 RU RU2018144299A patent/RU2748736C2/ru active
- 2017-05-17 CN CN202211102191.3A patent/CN115537454A/zh active Pending
-
2018
- 2018-11-15 IL IL263027A patent/IL263027A/en unknown
-
2024
- 2024-10-20 US US18/920,931 patent/US20250043341A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005229950A (ja) | 2004-02-23 | 2005-09-02 | National Food Research Institute | 環状dnaの増幅方法 |
JP2008161182A (ja) | 2006-10-24 | 2008-07-17 | Qiagen Gmbh | 環状ゲノムのローリングサークル増幅 |
JP2012501173A (ja) | 2008-09-02 | 2012-01-19 | ゼネラル・エレクトリック・カンパニイ | Dnaミニサークルおよびその使用 |
WO2016080424A1 (ja) * | 2014-11-18 | 2016-05-26 | 国立研究開発法人 科学技術振興機構 | 環状dnaの増幅方法 |
Non-Patent Citations (15)
Title |
---|
BARNES WM, GENE, vol. 112, 1992, pages 29 - 35 |
FAKRUDDIN M ET AL., J PHARM BIOALLIED SCI., vol. 5, 2013, pages 245 - 252 |
FUNNELL B ET AL., J BIOL CHEM., vol. 261, 1986, pages 5616 - 5624 |
FUNNELL, BARBARA E. ET AL.: "Compelete Enzymatic Replication of Plasmids Containing the Origin of the Escherichia coli Chromosome", J. BIOL. CHEM., vol. 261, no. 12, 1986, pages 5616 - 5624, XP055558721 * |
HIASA H ET AL., J BIOL CHEM., vol. 269, 1994, pages 2093 - 2099 |
HIASA H; MARIANS KJ., J BIOL CHEM., vol. 269, 1994, pages 26959 - 26968 |
HIASA H; MARIANS KJ., J BIOL CHEM., vol. 269, 1994, pages 32655 - 32659 |
HIASA, H. ET AL.: "Decatenating activity of Escherichia coli DNA gyrase and topoisomerases I and III during oriC and pBR322 DNA replication in vitro", J. BIOL. CHEM., vol. 269, no. 3, 1994, pages 2093 - 2099, XP002779097 * |
HIASA, H. ET AL.: "Primase couples leading- and lagging-strand DNA synthesis from oriC", J. BIOL. CHEM., vol. 269, no. 8, 1994, pages 6058 - 6063, XP055558714 * |
HIASA, H. ET AL.: "Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during Theta-type DNA replication", J. BIOL. CHEM., vol. 269, no. 51, 1994, pages 32655 - 32659, XP002779098 * |
HIASA, H. ET AL.: "Topoisomerase IV can support oriC DNA replication in vitro", J. BIOL. CHEM., vol. 269, no. 23, 1994, pages 16371 - 16375, XP055539849 * |
KAGUNI JM; KORNBERG A, CELL, vol. 38, 1984, pages 183 - 90 |
KAGUNI, J. M. ET AL.: "Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes", CELL, vol. 38, August 1984 (1984-08-01), pages 183 - 190, XP023877840 * |
PENG H; MARIANS KJ., PNAS, vol. 90, 1993, pages 8571 - 8575 |
PENG H; MARIANS KJ., PNAS., vol. 90, 1993, pages 8571 - 8575 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018159669A1 (ja) * | 2017-02-28 | 2018-09-07 | 国立研究開発法人 科学技術振興機構 | 環状dnaの複製または増幅方法 |
JPWO2018159669A1 (ja) * | 2017-02-28 | 2020-01-30 | オリシロジェノミクス株式会社 | 環状dnaの複製または増幅方法 |
WO2020027110A1 (ja) | 2018-07-30 | 2020-02-06 | オリシロジェノミクス株式会社 | 無細胞系でdnaを編集する方法 |
KR20210020132A (ko) | 2018-07-30 | 2021-02-23 | 오리시로 제노믹스 가부시키가이샤 | 무세포계에서 dna를 편집하는 방법 |
JPWO2020027110A1 (ja) * | 2018-07-30 | 2021-08-10 | オリシロジェノミクス株式会社 | 無細胞系でdnaを編集する方法 |
JP7025552B2 (ja) | 2018-07-30 | 2022-02-24 | オリシロジェノミクス株式会社 | 無細胞系でdnaを編集する方法 |
RU2766717C1 (ru) * | 2018-07-30 | 2022-03-15 | Орикиро Дженомикс, Инк. | Способ редактирования днк в бесклеточной системе |
AU2019315179B2 (en) * | 2018-07-30 | 2023-02-02 | OriCiro Genomics, Inc. | Method for editing dna in cell-free system |
KR102520700B1 (ko) * | 2018-07-30 | 2023-04-10 | 오리시로 제노믹스 가부시키가이샤 | 무세포계에서 dna를 편집하는 방법 |
WO2022018881A1 (en) * | 2020-07-21 | 2022-01-27 | The University Of Tokyo | Method and kit for determining neuromuscular disease in subject |
WO2023191034A1 (ja) * | 2022-03-31 | 2023-10-05 | モデルナ・エンザイマティクス株式会社 | 配列エラーの減少した二本鎖dnaの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
RU2018144299A (ru) | 2020-06-17 |
JP6764193B2 (ja) | 2020-09-30 |
US20190276883A1 (en) | 2019-09-12 |
EP3460058A4 (en) | 2020-01-15 |
EP3460058A1 (en) | 2019-03-27 |
AU2017265723B2 (en) | 2023-04-13 |
IL263027A (en) | 2018-12-31 |
CN109415718A (zh) | 2019-03-01 |
KR20190017793A (ko) | 2019-02-20 |
CA3024546A1 (en) | 2017-11-23 |
RU2748736C2 (ru) | 2021-05-31 |
CN109415718B (zh) | 2022-09-27 |
US20250043341A1 (en) | 2025-02-06 |
EP3460058B1 (en) | 2024-03-06 |
AU2017265723A1 (en) | 2018-12-20 |
JPWO2017199991A1 (ja) | 2019-03-22 |
US12157915B2 (en) | 2024-12-03 |
CN115537454A (zh) | 2022-12-30 |
SG11201810209VA (en) | 2018-12-28 |
KR102378346B1 (ko) | 2022-03-25 |
RU2018144299A3 (ja) | 2020-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017199991A1 (ja) | 環状dnaの増幅方法 | |
JP6960684B2 (ja) | 環状dnaの複製または増幅方法 | |
JP7025552B2 (ja) | 無細胞系でdnaを編集する方法 | |
JP6262877B2 (ja) | 環状dnaの増幅方法 | |
JP6701450B2 (ja) | Dnaの産生方法及びdna断片連結用キット | |
CN106460040A (zh) | 在低盐条件下的等温扩增 | |
WO2025018068A1 (ja) | 環状dnaの製造方法 | |
WO2023191034A1 (ja) | 配列エラーの減少した二本鎖dnaの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 3024546 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2018518326 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799415 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187036088 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017265723 Country of ref document: AU Date of ref document: 20170517 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017799415 Country of ref document: EP Effective date: 20181217 |