[go: up one dir, main page]

WO2017199991A1 - 環状dnaの増幅方法 - Google Patents

環状dnaの増幅方法 Download PDF

Info

Publication number
WO2017199991A1
WO2017199991A1 PCT/JP2017/018472 JP2017018472W WO2017199991A1 WO 2017199991 A1 WO2017199991 A1 WO 2017199991A1 JP 2017018472 W JP2017018472 W JP 2017018472W WO 2017199991 A1 WO2017199991 A1 WO 2017199991A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
enzyme
reaction
group
activity
Prior art date
Application number
PCT/JP2017/018472
Other languages
English (en)
French (fr)
Inventor
正幸 末次
寛子 辻本
赳 篠原
Original Assignee
国立研究開発法人 科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/302,485 priority Critical patent/US12157915B2/en
Priority to AU2017265723A priority patent/AU2017265723B2/en
Priority to RU2018144299A priority patent/RU2748736C2/ru
Priority to KR1020187036088A priority patent/KR102378346B1/ko
Priority to EP17799415.9A priority patent/EP3460058B1/en
Priority to CA3024546A priority patent/CA3024546A1/en
Priority to SG11201810209VA priority patent/SG11201810209VA/en
Priority to CN202211102191.3A priority patent/CN115537454A/zh
Priority to JP2018518326A priority patent/JP6764193B2/ja
Priority to CN201780034209.1A priority patent/CN109415718B/zh
Application filed by 国立研究開発法人 科学技術振興機構 filed Critical 国立研究開発法人 科学技術振興機構
Publication of WO2017199991A1 publication Critical patent/WO2017199991A1/ja
Priority to IL263027A priority patent/IL263027A/en
Priority to US18/920,931 priority patent/US20250043341A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • C12Q1/6855Ligating adaptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/10Nucleotidyl transfering
    • C12Q2521/101DNA polymerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/10Nucleotidyl transfering
    • C12Q2521/119RNA polymerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/30Phosphoric diester hydrolysing, i.e. nuclease
    • C12Q2521/319Exonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/30Phosphoric diester hydrolysing, i.e. nuclease
    • C12Q2521/327RNAse, e.g. RNAseH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/50Other enzymatic activities
    • C12Q2521/501Ligase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/50Other enzymatic activities
    • C12Q2521/513Winding/unwinding enzyme, e.g. helicase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/50Other enzymatic activities
    • C12Q2521/519Topoisomerase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2522/00Reaction characterised by the use of non-enzymatic proteins
    • C12Q2522/10Nucleic acid binding proteins
    • C12Q2522/101Single or double stranded nucleic acid binding proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/30Oligonucleotides characterised by their secondary structure
    • C12Q2525/307Circular oligonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/101Temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/125Specific component of sample, medium or buffer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2531/00Reactions of nucleic acids characterised by
    • C12Q2531/10Reactions of nucleic acids characterised by the purpose being amplify/increase the copy number of target nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/159Microreactors, e.g. emulsion PCR or sequencing, droplet PCR, microcapsules, i.e. non-liquid containers with a range of different permeability's for different reaction components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/04Phosphoric diester hydrolases (3.1.4)
    • C12Y301/04001Phosphodiesterase I (3.1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/04Hydrolases acting on acid anhydrides (3.6) acting on acid anhydrides; involved in cellular and subcellular movement (3.6.4)
    • C12Y306/04012DNA helicase (3.6.4.12)

Definitions

  • the present invention relates to a method for amplifying circular DNA. More specifically, the present invention relates to a method capable of exponentially amplifying circular DNA in a cell-free system.
  • the DNA cloning technology that has become the foundation of biotechnology development is a method of amplifying circular DNA prepared by cutting and pasting DNA fragments as a plasmid in cells such as E. coli.
  • a circular DNA is amplified using a DNA cloning technique using cells, complicated procedures such as cell culture and extraction / purification of amplification products are required.
  • PCR polymerase chain reaction
  • in vitro DNA amplification by PCR cannot amplify circular DNA as it is.
  • examples of in vitro amplification methods for circular DNA include rolling circle amplification method (RCA) (Non-patent Document 1, Patent Document 1, Patent Document 2, and Patent Document 3).
  • RCA rolling circle amplification method
  • a direct amplification product by the rolling circle amplification method is a linear DNA, and in order to circulate the obtained amplification product, a further circularization step such as incubation with a recombinant enzyme is required.
  • Non-Patent Documents 2 to 5 A method has also been reported in which a mini-chromosome (oriC circular DNA) of E. coli is replicated and then separated to obtain a monomeric circular replication product.
  • the replication efficiency as a circular DNA molecule is only about 15-40% of the added template DNA, and the amplification amount should not double.
  • the size of the circular DNA used as a template in these documents is less than 10 kbp.
  • the amplification product is linear DNA, and the size of the DNA that can be amplified was only a few kbp. Furthermore, when trying to produce a circular amplification product using the E. coli minichromosome replication system, there is a problem that the template circular DNA is not amplified even twice.
  • An object of the present invention is to provide a method capable of simply and exponentially amplifying circular DNA, particularly long-chain circular DNA, in a cell-free system.
  • a circular DNA having a replication initiation sequence as follows: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; By reacting the reaction mixture produced by mixing with the reaction solution containing, the cycle of “replication initiation (DNA double-strand cleavage), extension (replication fork progression), and separation of replicated sister DNA (Decatenation)” It has been repeatedly found that circular DNA can be amplified exponentially.
  • a first group of enzymes that catalyze the replication of circular DNA A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane
  • the present invention includes the following aspects of the invention.
  • a method for amplifying circular DNA comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
  • the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity; and (2) a step of keeping the reaction mixture formed in step (1) under isothermal conditions. ; Said method.
  • a method for amplifying circular DNA comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
  • the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity; and (2) the reaction mixture formed in step (1) is incubated at 30 ° C. or higher. And incubating under a temperature cycle that repeats incubation at 27 ° C. or lower; Said method.
  • a replication initiation sequence oil of chromos
  • reaction solution further contains a nonspecific adsorption inhibitor for proteins and / or a nonspecific adsorption inhibitor for nucleic acids.
  • reaction solution further contains linear DNA-specific exonuclease and / or RecG type helicase.
  • the first group of enzymes is an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or group of enzymes having DNA gyrase activity, a single-strand binding protein (SSB) )), A combination of an enzyme having DnaB type helicase activity, an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, an enzyme having DNA clamp activity, and an enzyme or enzyme group having DNA polymerase III * activity Including A second group of enzymes comprises a combination of an enzyme having DNA polymerase I activity and an enzyme having DNA ligase activity; A third group of enzymes comprises an enzyme having topoisomerase III activity and / or an enzyme having topoisomerase IV activity; The method according to [1] or [2] above.
  • SSB single-strand binding protein
  • One or more nucleoid proteins are IHF or HU
  • the enzyme or group of enzymes having DNA gyrase activity is a complex consisting of GyrA and GyrB
  • the enzyme having DnaB type helicase activity is DnaB helicase
  • An enzyme having DNA helicase loader activity is a DnaC helicase loader
  • the enzyme having DNA primase activity is DnaG primase
  • the enzyme having DNA clamp activity is DnaN clamp
  • the enzyme or enzyme group having DNA polymerase III * activity is an enzyme or enzyme group comprising any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE.
  • reaction solution further contains RecG helicase and / or single-stranded DNA-specific exonuclease.
  • reaction solution further contains a linear DNA-specific exonuclease and / or a single-stranded DNA-specific exonuclease.
  • Step (1) is (1-1) or less: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Pre-incubating a reaction solution comprising: (1-2) The method according to [1] or [2] above, comprising the step of: forming a reaction mixture of the reaction solution and circular DNA as a template.
  • step (2) is performed in a water-in-oil emulsion.
  • step (2) a step of performing post-reaction treatment, wherein the post-reaction treatment includes (I) A treatment of re-incubating after diluting 5 times or more with a reaction solution not containing the first to third enzyme groups; (Ii) treatment with linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease; and / or (iii) treatment with gap repair enzyme; The method according to [1] or [2] above.
  • a composition for amplifying circular DNA A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Said composition.
  • composition according to [17] above further comprising a non-specific adsorption inhibitor for proteins and / or a non-specific adsorption inhibitor for nucleic acids.
  • composition according to [17] above further comprising a linear DNA-specific exonuclease and / or a RecG type helicase.
  • composition according to [17] further comprising RecG type helicase and / or single-stranded DNA-specific exonuclease.
  • composition according to [21] The composition according to [17], further comprising a linear DNA-specific exonuclease and / or a single-stranded DNA-specific exonuclease.
  • composition according to [17] further comprising a DNA stabilizing factor.
  • a kit for amplifying circular DNA A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source;
  • the kit comprising a combination of:
  • kit according to [23] above further comprising a combination with a nonspecific adsorption inhibitor for proteins and / or a nonspecific adsorption inhibitor for nucleic acids.
  • a first group of enzymes that catalyze the replication of circular DNA A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Including a step of forming a reaction mixture of a reaction solution containing and a circular DNA serving as a template,
  • the circular DNA includes a replication initiation sequence (origin of chromosome (oriC)) that can bind to an enzyme having DnaA activity, and a method for amplifying circular DNA exponentially by repeating a replication cycle.
  • a replication initiation sequence oil of chromosome (oriC)
  • a method for amplifying circular DNA comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
  • the circular DNA contains a replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity; and (2) the reaction mixture formed in step (1) is kept at a predetermined temperature range.
  • a replication initiation sequence oil of chromosome (oriC)
  • a circular DNA amplification kit A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; A combination of And instructions including instructions for carrying out a method for exponentially amplifying circular DNA by repeating a replication cycle in a reaction mixture of the reaction mixture containing the above combination and circular DNA as a template, Said kit.
  • reaction solution further contains an alkali metal ion source of 100 mM or more.
  • the present invention provides a method capable of simply and exponentially amplifying circular DNA, particularly long-chain circular DNA, without using E. coli cells or plasmid vectors.
  • no primer is required to amplify the circular DNA, and it is possible to amplify a long circular DNA exceeding 200 kb.
  • circular DNA can be amplified even from only one molecule of template circular DNA.
  • the amplification product obtained by the present invention is a copy with the same circular structure as the original template. Further, when a plurality of DNA fragments are ligated and then added to the reaction system as they are, it is possible to specifically amplify and prepare only the DNA circularized by the ligation.
  • FIG. 1 shows a model of a replication cycle according to the present invention.
  • FIG. 2 shows the structure of DNA circularized by in vitro ligation using the GibsonibAssembly method.
  • FIG. 3 shows the results of agarose electrophoresis of the amplification products for each reaction time when 9.6 kb circular DNA was used as a template, and detection by SYBR Green.
  • FIG. 4 shows the results of agarose electrophoresis of the amplified products using 200 kb and 80 kb long circular DNAs as templates and detection by SYBR Green.
  • FIG. 4a shows the results of amplification products for each reaction time when 200 kb long-chain DNA (15 pM, 20 ng) was used as a template.
  • FIG. 4b shows the results of amplification products after 3 hours of reaction when long circular DNAs of 80 kb (15 pM, 8 ng) and 200 kb (5 pM, 6.7 ng) were used as templates.
  • FIG. 5 shows the result of agarose electrophoresis and detection by SYBR Green when the DNA circularized by in vitro ligation using Gibson Assembly method was used as a template.
  • FIG. 6 shows the results of an amplification experiment using a trace amount (single molecule level) of a 9.6 kb circular DNA as a template.
  • FIG. 6a shows the result of agarose electrophoresis of the amplified product using 9.6 kb circular DNA as a template and detection by SYBR Green.
  • FIG. 5 shows the result of agarose electrophoresis and detection by SYBR Green when the DNA circularized by in vitro ligation using Gibson Assembly method was used as a template.
  • FIG. 6 shows the results of an amplification experiment using a trace
  • FIG. 6b is a graph showing the results of quantifying the DNA amount of the amplified product by the PicoGreen method or the E. coli transformation method and showing the degree of amplification.
  • FIG. 7 is a graph showing the number of amplified circular DNA molecules with respect to the amplification time when a 9.6 kb circular DNA was used as a template.
  • FIG. 8 shows the results of an amplification test of a single circular DNA clone from the mixture.
  • FIG. 8a is a schematic diagram for dilution of a mixture of circular DNAs.
  • FIG. 8b shows the result of agarose electrophoresis of the amplified product when the circular DNA mixture was diluted and amplified, and detected by SYBR Green.
  • FIG. 9 is a diagram showing the results of passage amplification test of circular DNA.
  • FIG. 9a is a schematic diagram of the experimental procedure.
  • FIG. 9b shows the results when the sub-amplification in which the DNA product after the amplification reaction is diluted in a dilute reaction solution and the amplification is induced again is repeated 10 times. Amplification products were detected by agarose electrophoresis and SYBR Green.
  • FIG. 10 shows the results of agarose electrophoresis and detection by SYBR Green when RecG and linear DNA-specific exonuclease were added using 80 kb circular DNA as a template.
  • FIG. 11 is a graph showing the results of condition A of Example 7.
  • FIG. 12 is a graph showing the results of condition B of Example 7.
  • FIG. 13 is a graph showing the results of condition C in Example 7 (examination of GTP, CTP and UTP amounts) and a photograph of gel electrophoresis.
  • FIG. 14 is a graph showing the results of condition D (examination of IHF amount) in Example 7.
  • FIG. 15 is a graph showing the results of condition E (examination of Topo IV amount) in Example 7.
  • FIG. 16 is a graph showing the results of Condition F of Example 7 (examination of the amount of DNA gyrase).
  • FIG. 17 is a graph showing the results of Condition G of Example 7 (examination of the amount of DNA polymerase III *).
  • FIG. 18 is a graph showing the results of Condition H of Example 7 (examination of the amount of alkali metal ion source).
  • FIG. 14 is a graph showing the results of condition D (examination of IHF amount) in Example 7.
  • FIG. 15 is a graph showing the results of condition E (examination of Topo IV amount) in Example 7.
  • FIG. 19 is a graph showing the results of Condition I of Example 7 (examination of the amount of nonspecific adsorption inhibitor for protein and / or nonspecific adsorption inhibitor for nucleic acid).
  • FIG. 20 is a graph showing the results of Condition J of Example 7 (examination of the amount of enzyme having DnaA activity).
  • FIG. 21 is a graph showing the results of condition K in Example 7 (examination of the amount of enzyme having DNA ligase activity).
  • FIG. 22 is a graph showing the results of Condition L (examination of SSB amount) in Example 7 and a photograph of gel electrophoresis.
  • FIG. 23 is a graph showing the results of Condition M of Example 7 (examination of the amount of enzyme having DNA polymerase I activity).
  • FIG. 24 is a graph showing the results of condition N in Example 7 (examination of the amount of enzyme having DnaB type helicase activity and enzyme having DNA helicase loader activity).
  • FIG. 25 is a graph showing the results of Condition O of Example 7 (examination of the amount of enzyme having RNase H activity).
  • FIG. 26 is a graph showing the results of condition P of Example 7.
  • FIG. 27 is a gel electrophoresis photograph and graph showing the results of Condition Q of Example 7 (examination of the composition and amount of enzymes of the third enzyme group).
  • FIG. 28 is a graph showing the results of condition R in Example 7.
  • FIG. 29 is a graph showing the results of condition S of Example 7.
  • FIG. 30 is a photograph of gel electrophoresis showing the results of studying the effect of adding an alkali metal ion source.
  • FIG. 31 is a gel electrophoresis photograph showing the results of examining the efficiency of the amplification reaction by preincubation.
  • FIG. 32 is a gel electrophoresis photograph showing the results of detection of amplification products when RecG and RecJ were added.
  • FIG. 33 is a gel electrophoresis photograph showing the results of detection of amplification products when RecBCD and exo I were added.
  • FIG. 34 is a gel electrophoresis photograph showing the results of detection of amplification products after treatment with RecBCD and exo I after amplification reaction.
  • FIG. 31 is a gel electrophoresis photograph showing the results of examining the efficiency of the amplification reaction by preincubation.
  • FIG. 32 is a gel electrophoresis photograph showing the results of detection of amplification products when RecG and RecJ were added.
  • FIG. 33 is
  • FIG. 35 is a gel electrophoresis photograph showing the result of detecting the amplification product when treated with a gap repair enzyme after the amplification reaction.
  • FIG. 36 is a gel electrophoresis photograph showing the results of examining the efficiency of the amplification reaction when a long-chain circular DNA stabilizing factor was used.
  • FIG. 37 is a gel electrophoresis photograph showing the results of examining the circular DNA amplification reaction in a water-in-oil emulsion.
  • FIG. 38 is a gel electrophoresis photograph showing the results of detection of amplification products in a circular DNA amplification reaction involving a temperature cycle.
  • the circular DNA used as a template is preferably a double strand.
  • the circular DNA used as a template is not particularly limited as long as it contains a replication initiation sequence (origin of chromosome (oriC)) that can bind to an enzyme having DnaA activity, and is a natural circular DNA such as a circular chromosome of a microorganism. Examples include circular DNA obtained by ligating another circular DNA fragment to a natural circular DNA that has been cleaved by enzymatic treatment, and the like, and circular DNA that has been artificially synthesized.
  • a replication initiation sequence oil of chromosome (oriC)
  • replication origin sequences oil of chromosome (oriC)
  • oriC oil of chromosome
  • replication initiation sequences are known in bacteria such as Escherichia coli and Bacillus subtilis. Replication initiation sequences can be obtained from public databases such as NCBI (http://www.ncbi.nlm.nih.gov/). In addition, a replication initiation sequence can be obtained by cloning a DNA fragment that can bind to an enzyme having DnaA activity and analyzing the base sequence.
  • the circular DNA used as a template in the present invention may be a circular DNA originally containing a replication start sequence, or may be a product obtained by introducing a replication start sequence into a circular DNA that originally does not contain a replication start sequence.
  • the circular DNA used as a template in the present invention may contain a drug resistance marker gene sequence such as kanamycin, ampicillin or tetracycline depending on the purpose.
  • the circular DNA used as a template in the present invention may be purified, or may be in the form of a suspension of a cell extract containing the circular DNA.
  • One kind of circular DNA may be used as a template.
  • a mixture of plural kinds of circular DNA such as a DNA library may be used as a template in one test tube.
  • the length of the circular DNA used as a template in the present invention is not limited. For example, it is 1 kb (1000 bases) or more, 5 kb (5000 bases) or more, 8 kb (8,000 bases) or more, 10 kb (10,000 bases). Length) or more, 50 (kb (50,000 base length) or more, 100 kb (100,000 base length) or more, 200 kb (200,000 base length) or more, 500 kb (500,000 base length) or more, 1000 kb (1,000,000 base length) or more, or The length can be 2000 kb (2,000,000 bases) or more.
  • First enzyme group means an enzyme group that catalyzes the replication of circular DNA.
  • the first enzyme group that catalyzes the replication of circular DNA for example, the enzyme group described in Kaguni JM & Kornberg A. Cell. 1984, 38: 183-90 can be used.
  • the first enzyme group includes the following: an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or enzyme group having DNA gyrase activity, a single-stranded DNA binding protein (single-strand) binding protein (SSB)), an enzyme having DnaB type helicase activity, an enzyme having DNA helicase loader activity, an enzyme having DNA primase activity, an enzyme having DNA clamp activity, and an enzyme or group of enzymes having DNA polymerase III * activity , One or more enzymes or enzyme groups selected from the group consisting of, or any combination of the enzymes or enzyme groups.
  • the enzyme having DnaA activity is not particularly limited in its biological origin as long as it has an initiator activity similar to that of DnaA, which is an E. coli initiator protein.
  • DnaA derived from E. coli is preferably used. be able to.
  • coli may be contained as a monomer in the reaction solution in the range of 1 nM to 10 ⁇ M, preferably 1 nM to 5 ⁇ M, 1 nM to 3 ⁇ M, 1 nM to 1.5 ⁇ M, 1 nM to 1.0 ⁇ M, It may be contained in the range of 1 nM to 500 nM, 50 nM to 200 nM, 50 nM to 150 nM, but is not limited thereto.
  • Nucleoid protein refers to a protein contained in a nucleoid.
  • the one or more nucleoid proteins used in the present invention are not particularly limited in their biological origin as long as they are enzymes having the same activity as that of E. coli nucleoid proteins.
  • IHF derived from E. coli A complex of IhfA and / or IhfB (heterodimer or homodimer) or HU derived from E. coli, that is, a complex of hupA and hupB can be preferably used.
  • E. coli-derived HU may be contained in the reaction solution in the range of 1 nM to 50 nM, preferably 5 nM to 50 nM, 5 nM to 25 nM, but is not limited thereto.
  • the enzyme or group of enzymes having DNA gyrase activity is not particularly limited as long as it is an enzyme having the same activity as that of E. coli DNA gyrase.
  • it comprises GyrA and GyrB derived from E. coli.
  • a composite can be suitably used.
  • the complex consisting of GyrA and GyrB derived from E. coli may be included in the reaction solution in the range of 20 nM to 500 nM as a heterotetramer, preferably 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 50 nM to 200 nM. , But may be included in the range of 100 nM to 200 nM, but is not limited thereto.
  • the single-strand DNA binding protein is not particularly limited in terms of its biological origin, as long as it has an activity similar to that of a single-stranded DNA-binding protein of Escherichia coli.
  • SSB derived from E. coli can be preferably used.
  • coli may be contained in the reaction solution in the range of 20 nM to 1000 nM as a homotetramer, preferably 20 nM to 500 nM, 20 nM to 300 nM, 20 nM to 200 nM, 50 nM to 500 nM, 50 nM to 400 nM, It may be included in the range of 50 nM to 300 nM, 50 nM to 200 nM, 50 nM to 150 nM, 100 nM to 500 nM, 100 nM to 400 nM, but is not limited thereto.
  • the enzyme having the DnaB type helicase activity is not particularly limited as long as it has the same activity as that of DnaB of Escherichia coli.
  • DnaB derived from Escherichia coli can be preferably used.
  • DnaB derived from Escherichia coli may be included in the reaction solution in the range of 5 nM to 200 nM as a homohexamer, preferably 5 nM to 100 nM, 5 nM to 50 nM, or 5 nM to 30 nM.
  • the present invention is not limited to this.
  • the enzyme having DNA helicase loader activity is not particularly limited as long as it has the same activity as that of DnaC of Escherichia coli.
  • DnaC derived from Escherichia coli can be preferably used.
  • DnaC derived from E. coli may be contained in the reaction solution as a homohexamer in the range of 5 nM to 200 nM, preferably in the range of 5 nM to 100 nM, 5 nM to 50 nM, or 5 nM to 30 nM.
  • the present invention is not limited to this.
  • the enzyme having DNA primase activity is not particularly limited as long as it has the same activity as that of DnaG of Escherichia coli.
  • DnaG derived from Escherichia coli can be preferably used.
  • DnaG derived from E. coli may be contained in the reaction solution in the range of 20 nM to 1000 nM, preferably 20 nM to 800 nM, 50 nM to 800 nM, 100 nM to 800 nM, 200 nM to 800 nM, 250 nM to 800 nM, 250 nM. It may be contained in the range of ⁇ 500 nM and 300 nM to 500 nM, but is not limited thereto.
  • the enzyme having the DNA clamp activity is not particularly limited as long as it has the same activity as that of DnaN of Escherichia coli.
  • DnaN derived from Escherichia coli can be preferably used.
  • DnaN derived from E. coli may be contained in the reaction solution in the range of 10 nM to 1000 nM as a homodimer, preferably 10 nM to 800 nM, 10 nM to 500 nM, 20 nM to 500 nM, 20 nM to 200 nM, 30 nM to 200 nM, 30 nM. Although it may be contained in the range of ⁇ 100 nM, it is not limited to this.
  • the enzyme or enzyme group having DNA polymerase III * activity is not particularly limited in its biological origin as long as it is an enzyme or enzyme group having the same activity as the DNA polymerase III * complex of E. coli.
  • Enzymes comprising any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE derived from preferably enzymes comprising a complex of DnaX, HolA, HolB, and DnaE derived from E. coli, more preferably
  • An enzyme group containing a complex of E. coli-derived DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE can be preferably used.
  • coli may be included in the reaction solution in the range of 2 nM to 50 nM as a heteromultimer, preferably 2 nM to 40 nM, 2 nM to 30 nM, 2 nM to 20 nM, 5 nM to 40 nM, 5 nM. It may be included in the range of ⁇ 30 nM, 5 nM to 20 nM, but is not limited thereto.
  • the second enzyme group means an enzyme group that synthesizes two sister circular DNAs that form catenane by catalyzing the Okazaki fragment ligation reaction.
  • the two sister circular DNAs forming catenane are those in which two circular DNAs synthesized by DNA replication reaction are connected.
  • the second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane include, for example, enzymes having DNA polymerase I activity, enzymes having DNA ligase activity, and RNaseH activity.
  • enzymes having DNA polymerase I activity enzymes having DNA ligase activity
  • RNaseH activity enzymes having RNaseH activity.
  • One or more enzymes selected from the group consisting of enzymes or combinations of the enzymes can be exemplified.
  • the enzyme having DNA polymerase I activity is not particularly limited as long as it has the same activity as that of E. coli DNA polymerase I.
  • E. coli-derived DNA polymerase I is preferably used.
  • E. coli-derived DNA polymerase I may be contained in the reaction solution as a monomer in the range of 10 nM to 200 nM, preferably 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM, 40 nM to 150 nM, 40 nM to 100 nM, although it may be included in the range of 40 nM to 80 nM, it is not limited to this.
  • the enzyme having DNA ligase activity is not particularly limited as long as it has the same activity as that of Escherichia coli DNA ligase.
  • E. coli-derived DNA ligase or T4 phage DNA ligase is preferable.
  • the DNA ligase derived from E. coli may be contained as a monomer in the reaction solution in the range of 10 nM to 200 nM, preferably in the range of 15 nM to 200 nM, 20 nM to 200 nM, 20 nM to 150 nM, 20 nM to 100 nM, 20 nM to 80 nM. However, it is not limited to this.
  • the enzyme having RNaseH activity is not particularly limited in its biological origin as long as it has an activity of degrading RNA strands of RNA: DNA hybrids.
  • RNaseH derived from E. coli can be preferably used.
  • RNaseH derived from E. coli may be contained in the reaction solution as a monomer in the range of 0.2 nM to 200 nM, preferably 0.2 nM to 200 nM, 0.2 nM to 100 nM, 0.2 nM to 50 nM, 1 nM to It may be included in the range of 200 nM, 1 nM to 100 nM, 1 nM to 50 nM, 10 nM to 50 nM, but is not limited thereto.
  • the third enzyme group means an enzyme group that catalyzes a separation reaction of two sister circular DNAs.
  • the enzyme group described in Peng H & Marians KJ. PNAS. 1993, 90: 8571-8575 can be used.
  • the third enzyme group one or more enzymes selected from the group consisting of: an enzyme having topoisomerase IV activity, an enzyme having topoisomerase III activity, and an enzyme having RecQ type helicase activity, or A combination of the enzymes can be exemplified.
  • the enzyme having topoisomerase III activity is not particularly limited in its biological origin as long as it has the same activity as that of E. coli topoisomerase III.
  • E. coli-derived topoisomerase III can be preferably used.
  • Topoisomerase III derived from E. coli may be contained as a monomer in the reaction solution in the range of 20 nM to 500 nM, preferably in the range of 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 20 nM to 100 nM, 30 to 80 nM. However, it is not limited to this.
  • the enzyme having RecQ type helicase activity is not particularly limited as long as it has an activity similar to that of RecQ of Escherichia coli, but for example, RecQ derived from Escherichia coli can be preferably used.
  • RecQ derived from E. coli may be contained in the reaction solution as a monomer in the range of 20 nM to 500 nM, preferably in the range of 20 nM to 400 nM, 20 nM to 300 nM, 20 nM to 200 nM, 20 nM to 100 nM, 30 to 80 nM. Although it may be included, it is not limited to this.
  • the enzyme having topoisomerase IV activity is not particularly limited in its biological origin as long as it has the same activity as E. coli topoisomerase IV.
  • E. coli-derived topoisomerase IV which is a complex of ParC and ParE, is used. Can be suitably used.
  • coli may be included in the reaction solution in the range of 0.1 nM to 50 nMM as a heterotetramer, preferably 0.1 nM to 40 nM, 0.1 nM to 30 nM, 0.1 nM to 20 nM, It may be included in the range of 1 nM to 40 nM, 1 nM to 30 nM, 1 nM to 20 nM, 1 nM to 10 nM, 1 nM to 5 nM, but is not limited thereto.
  • first, second and third enzyme groups commercially available products may be used, or those extracted from microorganisms and purified as necessary may be used. Extraction and purification of the enzyme from the microorganism can be appropriately performed using techniques available to those skilled in the art.
  • the concentration range corresponding to the enzyme activity unit with respect to the concentration range specified for the enzyme derived from E. coli. Can be used.
  • the reaction solution containing the cell-free protein expression system of the enzyme may be mixed with the circular DNA as a template as it is to form a reaction mixture for the amplification of the circular DNA.
  • the cell-free protein expression system is a cell-free translation system that uses total RNA (total RNA), mRNA, or in vitro transcripts containing RNA that is complementary to the base sequence of the gene encoding the enzyme as template RNA.
  • it may be a cell-free transcription / translation system using as a template DNA a gene encoding each enzyme or an expression vector containing a gene encoding each enzyme.
  • the present invention is a circular DNA amplification method comprising the following steps: (1) Circular DNA as a template and the following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Forming a reaction mixture with a reaction solution comprising:
  • the circular DNA includes the replication initiation sequence (origin of chromosome (oriC)) capable of binding to an enzyme having DnaA activity.
  • the method of the present invention may further comprise a step of preincubating the reaction solution before the step (1).
  • the method of the present invention is a circular DNA amplification method comprising the following steps: (1-1) The following: A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; And (1-2) a step of forming a reaction mixture of the reaction solution and a circular DNA as a template, wherein the circular DNA is capable of binding to an enzyme having DnaA activity.
  • the method may include: The preincubation is performed, for example, in the range of 0 to 40 ° C., 10 to 40 ° C., 15 to 37 ° C., or 16 to 30 ° C., for 5 to 60 minutes, 5 to 45 minutes, 5 to 30 minutes, 15 to 60 minutes, You may carry out by heat-retaining for 15 to 45 minutes and 15 to 30 minutes.
  • the pre-incubation may vary slightly during the pre-incubation as long as the temperature of the reaction solution is kept within the above temperature range.
  • the present invention repeats the replication cycle as shown in FIG. 1 to exponentially amplify circular DNA.
  • the circular DNA described above is used as a template, which is at least 10 times, 50 times, 100 times, 200 times, 500 times, 1000 times, 2000 times, 3000 times, 4000 times, 5000 times, or 10000 times. Can be amplified.
  • the circular DNA to be mixed with the reaction solution is as described in the above item ⁇ Circular DNA>.
  • the amount of template DNA used per reaction is not particularly limited. For example, 10 ng / ⁇ l or less, 5 ng / ⁇ l or less, 1 ng / ⁇ l or less, 0.8 ng / ⁇ l or less, 0.5 ng / ⁇ l or less, It may be present in the reaction solution at a concentration of 3 ng / ⁇ l or less.
  • one molecule of circular DNA per reaction can be present as a template and used for amplification.
  • the buffer solution contained in the reaction solution is not particularly limited as long as it is a buffer solution suitable for use at pH 7 to 9, preferably pH 8.
  • Tris-HCl, Tris-OAc, Hepes-KOH, phosphate buffer, MOPS-NaOH, Tricine-HCl and the like can be mentioned.
  • a preferred buffer is Tris-HCl or Tris-OAc.
  • the concentration of the buffer can be appropriately selected by those skilled in the art and is not particularly limited. In the case of Tris-HCl or Tris-OAc, for example, concentrations of 10 mM to 100 mM, 10 mM to 50 mM, and 20 mM can be selected.
  • ATP means adenosine triphosphate.
  • concentration of ATP contained in the reaction solution at the start of the reaction may be, for example, in the range of 0.1 mM to 3 mM, preferably 0.1 mM to 2 mM, 0.1 mM to 1.5 mM, 0.5 mM to 1.5 mM. Range.
  • GTP, CTP, and UTP mean guanosine triphosphate, cytidine triphosphate, and uridine triphosphate, respectively.
  • concentrations of GTP, CTP and UTP contained in the reaction solution at the start of the reaction may be independently in the range of, for example, 0.1 mM to 3.0 mM, preferably 0.5 mM to 3.0 mM. It may be in the range of 5 mM to 2.0 mM.
  • DNTP is a general term for deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP), and deoxythymidine triphosphate (dTTP).
  • concentration of dNTP contained in the reaction solution at the start of the reaction may be, for example, in the range of 0.01 to 1 mM, preferably in the range of 0.05 mM to 1 mM, 0.1 mM to 1 mM.
  • the magnesium ion source is a substance that provides magnesium ions (Mg 2+ ) in the reaction solution. Examples include Mg (OAc) 2 , MgCl 2 , and MgSO 4 . A preferred magnesium ion source is Mg (OAc) 2 .
  • the concentration of the magnesium ion source contained in the reaction solution at the start of the reaction may be, for example, a concentration that provides magnesium ions in the reaction solution in the range of 5 to 50 mM.
  • the alkali metal ion source is a substance that provides alkali metal ions in the reaction solution.
  • the alkali metal ion include sodium ion (Na + ) and potassium ion (K + ).
  • alkali metal ion sources include potassium glutamate, potassium aspartate, potassium chloride, potassium acetate, sodium glutamate, sodium aspartate, sodium chloride, and sodium acetate.
  • a preferred alkali metal ion source is potassium glutamate or potassium acetate.
  • the concentration of the alkali metal ion source contained in the reaction solution at the start of the reaction may be a concentration that gives alkali metal ions to the reaction solution in a range of 100 mM or more, preferably 100 mM to 300 mM, but is not limited thereto. In balance with the prior application, 150 mM may be removed from the concentration of the alkali metal ion source.
  • the reaction solution used in the method of the present invention may further contain a nonspecific adsorption inhibitor for proteins or a nonspecific adsorption inhibitor for nucleic acids.
  • the reaction solution may further contain a nonspecific adsorption inhibitor for proteins and a nonspecific adsorption inhibitor for nucleic acids.
  • the reaction efficiency is improved by the presence of the non-specific adsorption inhibitor for proteins and / or the non-specific adsorption inhibitor for nucleic acids in the reaction solution.
  • Protein non-specific adsorption inhibitors and / or nucleic acid non-specific adsorption inhibitors react by inhibiting non-specific adsorption of proteins and / or proteins and circular DNA, and adhesion of proteins and circular DNA to the container surface. Efficiency is expected to improve.
  • the protein non-specific adsorption inhibitor is a protein unrelated to the amplification reaction in the method of the present invention.
  • examples of such proteins include bovine serum albumin (BSA), lysozyme, gelatin, heparin, and casein.
  • BSA bovine serum albumin
  • the protein non-specific adsorption inhibitor is in the reaction solution in the range of 0.02 to 2.0 mg / ml, preferably 0.1 to 2.0 mg / ml, 0.2 to 2.0 mg / ml, 0.5 to Although it may be contained in the range of 2.0 mg / ml, it is not limited to this.
  • the nucleic acid non-specific adsorption inhibitor is a nucleic acid molecule or a nucleic acid-like factor unrelated to the amplification reaction in the method of the present invention.
  • nucleic acid molecules or nucleic acid analogs include tRNA (transfer RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), glycogen, heparin, oligo DNA, poly (IC) (polyinosine-polycytidine), poly (dI-dC) (polydeoxyinosine-polydeoxycytidine), poly (A) (polyadenine), and poly (dA) (polydeoxyadenine).
  • the nonspecific adsorption inhibitor of nucleic acid may be contained in the reaction solution in the range of 1 to 500 ng / ⁇ l, preferably 10 to 500 ng / ⁇ l, 10 to 200 ng / ⁇ l, 10 to 100 ng / ⁇ l, It is not limited to this.
  • 50 ng / ⁇ l may be removed from the concentration of tRNA.
  • the reaction solution used in the method of the present invention may further contain a DNA stabilizing factor. It is considered that the presence of a DNA stabilizing factor in the reaction solution can suppress DNA cleavage and protect the template DNA and the amplification product.
  • the addition of a DNA stabilizing factor leads to an improvement in the yield of the target product.
  • the addition of a DNA stabilizing factor is beneficial because the template DNA and the amplification product are easily degraded.
  • the DNA stabilizing factor is not particularly limited.
  • DMSO dimethyl sulfoxide
  • BSA bovine serum albumin
  • EGTA glycol ether diamine tetraacetic acid
  • BDA bathocuproine disulfonate
  • Penicillamine Tyrone
  • Tiron 1,2-dihydroxybenzene-3,5-sulfonate
  • DTPA diethylerenetriaminepentaace
  • DTPA, Tiron, BDA, Dps protein, and BSA are particularly preferable because they also have an effect of improving the efficiency of circular DNA amplification.
  • DTPA or Tiron may be contained in the reaction solution in the range of 0.01 mM to 0.3 mM, preferably 0.05 to 0.15 mM, but is not limited thereto.
  • BDA may be contained in the reaction solution in a range of 0.01 to 0.5 mM, preferably 0.05 to 0.3 mM, but is not limited thereto.
  • the Dps protein may be contained in the reaction solution in the range of 0.3 to 3.0 ⁇ M, preferably 0.3 to 1.5 ⁇ M, but is not limited thereto.
  • BSA is in the range of 0.02 to 2.0 mg / ml, preferably 0.1 to 2.0 mg / ml, 0.2 to 2.0 mg / ml, 0.5 to 2.0 mg / ml in the reaction solution. Although it may be included in the range, it is not limited to this.
  • the reaction solution used in the method of the present invention may further contain linear DNA-specific exonuclease or RecG type helicase.
  • the reaction solution may further contain linear DNA-specific exonuclease and RecG type helicase.
  • the presence of linear DNA-specific exonuclease and / or RecG type helicase in the reaction solution reduces the amount of linear DNA generated by double-strand breaks during the amplification reaction, and the desired supercoil product Has the effect of improving the yield.
  • the reaction solution used in the method of the present invention may further contain RecG type helicase or single-stranded DNA-specific exonuclease.
  • the reaction solution may further contain RecG type helicase and single-stranded DNA-specific exonuclease.
  • the presence of RecG-type helicase and / or single-stranded DNA-specific exonuclease in the reaction solution reduces the amount of small secondary amplification products generated during the amplification reaction and There is an effect of improving the yield.
  • the reaction solution used in the method of the present invention may further contain a linear DNA-specific exonuclease or a single-stranded DNA-specific exonuclease.
  • the reaction solution may further contain a linear DNA-specific exonuclease and a single-stranded DNA-specific exonuclease.
  • the presence of linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease in the reaction solution reduces the amount of linear DNA generated by double-strand breaks during the amplification reaction, It has the effect of improving the yield of the desired supercoil product.
  • a linear DNA-specific exonuclease is an enzyme that sequentially hydrolyzes from the 5 ′ end or 3 ′ end of linear DNA.
  • the linear DNA-specific exonuclease is not particularly limited in its type or biological origin as long as it has an activity of sequentially hydrolyzing from the 5 ′ end or 3 ′ end of the linear DNA.
  • RecBCD RecBCD
  • ⁇ exonuclease, exonuclease III, exonuclease VIII, T5 exonuclease, T7 exonuclease, and Plasmid-Safe TM ATP-Dependent DNase (epicentre) can be used.
  • a preferred linear DNA-specific exonuclease is RecBCD.
  • the linear DNA exonuclease is 0.001 to 1.0 U / ⁇ L, preferably 0.005 U to 1.0 U / ⁇ L, 0.01 to 1.0 U / ⁇ l, 0.05 to 1.0 U in the reaction solution. / ⁇ L, or in the range of 0.1 to 1.0 U / ⁇ l, but is not limited thereto.
  • Enzyme activity unit (U) for linear DNA exonuclease is a unit in which the amount of enzyme required for acid-solubilizing 1 nmol deoxyribonucleotide of linear DNA in a reaction at 37 ° C. for 30 minutes is 1 U It is.
  • RecG type helicase is an enzyme that is considered to be a helicase that eliminates a secondary DNA structure formed by collision of replication forks at the end of the extension reaction.
  • the RecG type helicase is not particularly limited in its biological origin as long as it has the same activity as that of RecG derived from Escherichia coli.
  • RecG derived from Escherichia coli can be preferably used.
  • RecG derived from E. coli may be contained in the reaction solution as a monomer in the range of 100 nM to 800 nM, preferably in the range of 100 nM to 500 nM, 100 nM to 400 nM, 100 nM to 300 nM, but is not limited thereto.
  • RecG type helicase can be used in a concentration range corresponding to the concentration range specified for the above-mentioned RecG derived from Escherichia coli as an enzyme activity unit.
  • Single-stranded DNA-specific exonuclease is an enzyme that sequentially hydrolyzes nucleotides at the 5 'end or 3' end of single-stranded DNA.
  • a single-stranded DNA-specific exonuclease is not particularly limited by its type or biological origin, as long as it has an activity of sequentially hydrolyzing 5′-terminal or 3′-terminal nucleotides of single-stranded DNA. Absent. For example, exonuclease I (exo I), RecJ, exonuclease T, etc. can be used.
  • a preferred single-stranded DNA specific exonuclease is exo I.
  • the single-stranded DNA-specific exonuclease is within the range of 0.1 to 1.0 U / ⁇ l, preferably 0.15 to 1.0 U / ⁇ l, 0.2 to 1.0 U / ⁇ L, or 0. Although it may be contained in the range of 2 to 0.5 U / ⁇ L, it is not limited thereto.
  • the enzyme activity unit (U) for exo I is a unit in which the amount of enzyme required for acid-solubilizing 10 nmol deoxyribonucleotides of single-stranded DNA in a reaction at 37 ° C. for 30 minutes is 1 U.
  • the enzyme activity unit (U) for RecJ is a unit in which the amount of enzyme required for acid-solubilizing 0.05 nmol of deoxyribonucleotides in single-stranded DNA in a reaction at 37 ° C. for 30 minutes is 1 U.
  • the reaction solution used in the method of the present invention may further contain an ammonium salt.
  • ammonium salts include ammonium sulfate, ammonium chloride, and ammonium acetate. Particularly preferred ammonium salts are ammonium sulfate or ammonium acetate.
  • the ammonium salt may be contained in the reaction solution in the range of 0.1 mM to 100 mM, preferably in the range of 0.1 mM to 50 mM, 1 mM to 50 mM, 1 mM to 20 mM, but is not limited thereto.
  • E. coli-derived DNA ligase when E. coli-derived DNA ligase is used as an enzyme having DNA ligase activity, its cofactor NAD (nicotinamide adenine dinucleotide) is included in the reaction solution.
  • NAD may be contained in the reaction solution in the range of 0.01 mM to 1.0 mM, preferably in the range of 0.1 mM to 1.0 mM, 0.1 mM to 0.5 mM, but is not limited thereto.
  • the reaction solution used in the method of the present invention may further contain a reducing agent.
  • a reducing agent examples include DTT, ⁇ -mercaptoethanol (2-mercaptoethanol), tris (2-carboxyethyl) phosphine (TCEP) and glutathione.
  • a preferred reducing agent is DTT.
  • the reducing agent may be contained in the reaction solution at a concentration of 1.0 mM to 15.0 mM, preferably at a concentration of 2.0 mM to 10.0 mM, 4.0 mM to 8.0 mM.
  • the reaction solution used in the method of the present invention may also contain an enzyme and a substrate for regenerating ATP.
  • the ATP regeneration system enzyme and substrate combination include creatine kinase and creatine phosphate, and pyruvate kinase and phosphoenolpyruvate.
  • An example of an ATP regeneration system enzyme is myokinase.
  • a preferred ATP regeneration system enzyme and substrate combination is creatine kinase and creatine phosphate.
  • the first, second and third enzyme groups contained in the reaction solution are as described in the above item ⁇ First, second and third enzyme groups>.
  • the first enzyme group used in the method of the present invention comprises an enzyme having DnaA activity, one or more nucleoid proteins, an enzyme or enzyme group having DNA gyrase activity, a single-stranded DNA binding protein ( single-strand binding protein (SSB)), enzyme with DnaB type helicase activity, enzyme with DNA helicase loader activity, enzyme with DNA primase activity, enzyme with DNA clamp activity, and enzyme with DNA polymerase III * activity Or a combination of enzyme groups may be included.
  • the one or more nucleoid proteins may be IHF or HU
  • the enzyme or enzyme group having DNA gyrase activity may be a complex consisting of GyrA and GyrB and has DnaB type helicase activity.
  • the enzyme may be a DnaB helicase, the enzyme having a DNA helicase loader activity may be a DnaC helicase loader, the enzyme having a DNA primase activity may be a DnaG primase, and an enzyme having a DNA clamp activity may be a DnaN clamp
  • the enzyme or enzyme group having DNA polymerase III * activity may be an enzyme or enzyme group including any of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE.
  • the second enzyme group used in the method of the present invention may include a combination of an enzyme having DNA polymerase I activity and an enzyme having DNA ligase activity.
  • the second group of enzymes may include a combination of an enzyme having DNA polymerase I activity, an enzyme having DNA ligase activity, and an enzyme having RNaseH activity.
  • the third group of enzymes used in the method of the present invention may include an enzyme having topoisomerase III activity and / or an enzyme having topoisomerase IV activity.
  • the third group of enzymes may include a combination of an enzyme having topoisomerase III activity and an enzyme having RecQ type helicase activity.
  • the third group of enzymes may be a combination of an enzyme having topoisomerase III activity, an enzyme having RecQ type helicase activity, and an enzyme having topoisomerase IV activity.
  • the method of the present invention may further include a step of keeping the reaction mixture in a predetermined temperature range as the step (2).
  • the predetermined temperature range is not particularly limited as long as the DNA replication reaction can proceed.
  • the optimal temperature of DNA polymerase is 20 ° C. to 80 ° C., 25 ° C. to 50 ° C., or 25 ° C. to 25 ° C. It can be in the range of 40 ° C. Incubation within a predetermined temperature range allows temperature changes or temperature fluctuations within the predetermined temperature range during the reaction.
  • the step (2) may be a step of keeping the reaction mixture warm under isothermal conditions.
  • the isothermal condition is not particularly limited as long as the DNA replication reaction can proceed.
  • the isothermal condition may be a constant temperature within the range of 20 ° C. to 80 ° C. which is the optimum temperature for DNA polymerase.
  • the temperature may be a constant temperature within a range of 25 ° C. to 50 ° C., may be a constant temperature within a range of 25 ° C. to 40 ° C., and may be about 30 ° C.
  • the terms “keep warm under isothermal conditions” and “react isothermally” mean a temperature of ⁇ 7 ° C., ⁇ 5 ° C., ⁇ 3 ° C., or ⁇ 1 ° C. with respect to the temperature set during the reaction. Means keeping within range.
  • the incubation time can be appropriately set according to the amount of amplification product of the target circular DNA, and can be, for example, 1 to 24 hours.
  • the method of the present invention may further include, as step (2), a step of incubating the reaction mixture under a temperature cycle in which incubation at 30 ° C. or higher and incubation at 27 ° C. or lower is repeated.
  • Incubation at 30 ° C. or higher is not particularly limited as long as it can initiate replication of circular DNA containing oriC, for example, 30 to 80 ° C., 30 to 50 ° C., 30 to 40 ° C., and 37 ° C. It's okay.
  • Incubation at 30 ° C. or higher is not particularly limited, and may be 10 seconds to 10 minutes per cycle.
  • or lower is not particularly limited as long as replication initiation is suppressed and DNA elongation reaction proceeds, and may be, for example, 10 to 27 ° C., 16 to 25 ° C., or 24 ° C.
  • Incubation at 27 ° C. or lower is not particularly limited, but is preferably set according to the length of the circular DNA to be amplified. For example, it may be 1 to 10 seconds per 1000 bases per cycle.
  • the number of temperature cycles is not particularly limited, but may be 10 to 50 cycles, 20 to 40 cycles, 25 to 35 cycles, or 30 cycles.
  • step (2) may be performed in a water-in-oil emulsion.
  • the water-in-oil emulsion can be prepared by adding and mixing mineral oil and a surfactant to the reaction mixture formed in step (1).
  • the type and amount of mineral oil and surfactant can be appropriately selected by those skilled in the art.
  • the method of the present invention may further include a step of re-incubating after the step (2) after diluting 5 times or more with a reaction solution not containing the first to third enzyme groups. While the start of new replication is suppressed by dilution of the enzyme group, replication elongation, catenane formation, and separation reaction in progress proceed continuously due to the effect of residual enzyme. In addition, by-products generated by nicking during the reaction can be repaired by the effect of residual ligase in this process. Therefore, the transition from the amplification intermediate or by-product to the final product is specifically guided, and an improvement in the yield of the target circular DNA having the supercoil structure can be expected.
  • the method of the present invention may further include a step of treating with a linear DNA-specific exonuclease and / or a single-stranded DNA-specific exonuclease after the step (2).
  • a linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease By treating with linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease, linear DNA, which is a byproduct generated during the amplification reaction, can be decomposed and removed.
  • the type and amount used of the linear DNA-specific exonuclease and / or single-stranded DNA-specific exonuclease may be as described above.
  • the treatment with the linear DNA-specific exonuclease and / or the single-stranded DNA-specific exonuclease may be performed at 25 ° C. to 40 ° C. for 30 minutes to 3 hours, for example.
  • the method of the present invention may further include a step of treating with a gap repair enzyme after step (2).
  • a gap repair enzyme is a gap in which double-stranded DNA lacks one or more consecutive nucleotides, or a nick in which a phosphodiester bond between adjacent nucleotides is broken in double-stranded DNA. It is a group of enzymes that are repaired to form complete double-stranded supercoiled DNA.
  • the gap repair enzyme is not particularly limited in its type or biological origin as long as it is an enzyme group that can repair gaps or nicks in double-stranded DNA.
  • a combination of exonuclease III, DNA polymerase I, DNA ligase, enzyme or group of enzymes having DNA gyrase activity can be used.
  • the enzyme having exonuclease III activity may be used at a concentration of 5 to 100 mU / ⁇ L, but is not limited thereto.
  • the enzyme activity unit (U) for exonuclease III is a unit in which the amount of enzyme required for acid-solubilizing 1 nmol deoxyribonucleotide of double-stranded DNA in a reaction at 37 ° C.
  • the enzyme or enzyme group having DNA polymerase I, DNA ligase, or DNA gyrase activity may be used at a concentration determined in the first or second enzyme group, but is not limited thereto.
  • the treatment with the gap repair enzyme may be performed, for example, at 25 to 40 ° C. for 5 to 120 minutes, preferably 10 to 60 minutes.
  • the method of the present invention may include a step of purifying a circular DNA amplification product after step (2) according to the purpose.
  • the purification of the circular DNA can be appropriately performed using techniques available to those skilled in the art.
  • the circular DNA amplified using the method of the present invention can be used as it is after the reaction mixture as it is or after being appropriately purified for subsequent purposes such as transformation.
  • the present invention is a composition for amplifying circular DNA, A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; Also comprising said composition.
  • composition of the present invention further comprises a protein non-specific adsorption inhibitor, a nucleic acid non-specific adsorption inhibitor, a linear DNA-specific exonuclease, a RecG-type helicase, a single-stranded DNA-specific exonuclease, an ammonium salt, It may contain one or more components selected from NAD, a reducing agent, a DNA stabilizing factor, and a combination of an ATP regeneration system enzyme and a substrate.
  • the present invention also relates to a circular DNA amplification kit, A first group of enzymes that catalyze the replication of circular DNA; A second group of enzymes that catalyze the Okazaki fragment ligation reaction to synthesize two sister circular DNAs that form catenane; A third group of enzymes that catalyze the separation of two sister circular DNAs; Buffer solution; ATP; GTP, CTP and UTP; dNTP; A magnesium ion source; and an alkali metal ion source; The kit also includes a combination of:
  • the kit of the present invention may include all of the above-described components in one kit, and a part of the above-described components may be used as long as it is a kit for the purpose of use in the method of the present invention. It may not be included.
  • the practitioner can add the components necessary for amplification to the kit and perform the amplification method of the present invention.
  • the kit of the present invention further comprises a nonspecific adsorption inhibitor for proteins, a nonspecific adsorption inhibitor for nucleic acids, a linear DNA-specific exonuclease, a RecG type helicase, a single-stranded DNA-specific exonuclease, an ammonium salt, an NAD, And an additional component comprising one or more components selected from a reducing agent, a DNA stabilizing factor, and a combination of an ATP regeneration system enzyme and substrate.
  • the kit of the present invention further includes one or more components selected from a linear DNA-specific exonuclease, a single-stranded DNA-specific exonuclease, and a gap repair enzyme for processing after the amplification reaction. Additional components may be included. The additional components may be included as one kit in the kit of the present invention, or may be provided as a separate kit intended for use with the kit of the present invention.
  • the items of ⁇ circular DNA>, ⁇ first, second, and third enzyme groups> and ⁇ circular DNA amplification method> As described above.
  • the kit of the present invention may include a package in which the mixture of the above components is packaged into one, but a kit in which the above components are mixed individually or in groups of several types is separately packaged. It may be included.
  • the kit of the present invention may also contain instructions describing instructions for carrying out the circular DNA amplification method of the present invention.
  • the matters described in the items of ⁇ circular DNA>, ⁇ first, second, and third enzyme groups> and ⁇ circular DNA amplification method> may be described as explanations.
  • Example 1 Amplification of circular DNA ⁇ Materials and methods>
  • the template DNA was added to the reaction solution having the composition shown in Table 1, mixed on ice, and then incubated for 1 hour, 2 hours, or 3 hours in an incubator at 30 ° C.
  • the total volume per reaction was 10 microliters.
  • the reaction product was subjected to agarose gel electrophoresis (0.5% 1 ⁇ TAE, 150 V, 100 minutes, 14 ° C.), and then DNA was detected using SYBR Green (Takara Bio Inc.).
  • SSB is E. coli-derived SSB
  • IHF is E. coli-derived IhfA and IhfB complex
  • DnaG is E. coli-derived DnaG
  • DnaN is E. coli-derived DnaN
  • PolIII * is E. coli-derived DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ And DNA polymerase III * complex which is a complex consisting of HolE
  • DnaB is E. coli-derived DnaB
  • DnaC is E. coli-derived DnaC
  • DnaA is E. coli-derived RNaseH
  • Ligase is E.
  • coli-derived DNA ligase PolI is E. coli-derived DNA polymerase I
  • GyrA represents E. coli-derived GyrA
  • GyrB represents E. coli-derived GyrB
  • Topo IV represents a complex of E. coli-derived ParC and ParE
  • Topo III represents E. coli-derived topoisomerase III
  • RecQ represents E. coli-derived RecQ.
  • SSB was purified from an E. coli expression strain of SSB and purified by a process including ammonium sulfate precipitation and ion exchange column chromatography.
  • IHF was purified and prepared from an IhfA and IhfB E. coli co-expression strain in a process including ammonium sulfate precipitation and affinity column chromatography.
  • DnaG was prepared by purifying from an Escherichia coli expression strain of DnaG in steps including ammonium sulfate precipitation, anion exchange column chromatography, and gel filtration column chromatography.
  • DnaN was prepared by purifying from an Escherichia coli expression strain of DnaN through a process including ammonium sulfate precipitation and anion exchange column chromatography.
  • Pol III * was purified and prepared from E. coli co-expressing strains of DnaX, HolA, HolB, HolC, HolD, DnaE, DnaQ, and HolE in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • DnaB and DnaC were purified and prepared from E. coli co-expressing strains of DnaB and DnaC in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • DnaA was prepared from a DnaA Escherichia coli-expressing strain by purification in a process including ammonium sulfate precipitation, dialysis precipitation, and gel filtration column chromatography.
  • GyrA and GyrB were purified and prepared from a mixture of an E. coli expression strain of GyrA and an E. coli expression strain of GyrB in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • Topo IV was purified and prepared from a mixture of an Escherichia coli expression strain of ParC and an Escherichia coli expression strain of ParE in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • Topo III was purified and prepared from an E. coli expression strain of Topo III in a process including ammonium sulfate precipitation and affinity column chromatography.
  • RecQ was prepared by purifying from an Escherichia coli expression strain of RecQ in steps including ammonium sulfate precipitation, affinity column chromatography, and gel filtration column chromatography.
  • Template DNA includes 9.6 kb circular DNA (circular DNA with replication initiation sequence oriC, kanamycin resistance (Km)), 80 kb long circular DNA (circular DNA with replication initiation sequence oriC, kanamycin resistance (Km)) 200 kb long-chain circular DNA (circular DNA having the replication initiation sequence oriC, kanamycin resistance (Km)), or DNA circularized by in vitro ligation was used.
  • 9.6 kb circular DNA and 80 kb kb and 200 kb long chain circular DNA were prepared by an E. coli intracellular recombination reaction. Specifically, using Escherichia coli expressing a recombinant protein group of ⁇ phage, a circular loop of a desired length including an kanamycin resistance cassette and a region containing oriC in the Escherichia coli chromosome by an intracellular recombination reaction. DNA was prepared.
  • Fig. 2 shows a method for preparing circularized DNA by in vitro connection.
  • a PCR fragment (2.3 kb) having a replication initiation sequence oriC and kanamycin resistance (Km) having a dnaA gene and a dnaN gene sequence (hereinafter referred to as a dnaA-dnaN fragment) (2.6 kb) )
  • the two PCR fragments are linked via a 20-base homologous sequence (referred to as H1, H2) added to both ends to form a circular structure.
  • H1, H2 20-base homologous sequence
  • reaction solution (1 microliter of the 10-fold diluted solution) is added directly to the 10 microliter amplification reaction system (composition shown in Table 1) as template DNA, and the reaction is performed at 30 ° C. for 1 hour. Reacted.
  • the Escherichia coli DH5 ⁇ strain was transformed, cultured on a kanamycin-containing agar medium, and the number of colonies was counted.
  • a reaction solution having a heat retention time of 0 hours was used as a control.
  • the method of the present invention was able to amplify a 9.6-kb kb circular DNA as a circular DNA approximately 6,000 times.
  • FIG. 4 shows the results of detection of amplification products by SYBR Green when 80 kb and 200 kb long circular DNAs were used as templates.
  • a supercoiled circular DNA amplification product (indicated by a black frame or an arrow) could be confirmed.
  • an amplification product can be obtained satisfactorily even when a large circular DNA of 80 kb or 200 kb is used as a template.
  • the Escherichia coli DH5 ⁇ strain was transformed, cultured in a kanamycin-containing agar medium, and the number of colonies was counted.
  • a sample in which no amplification reaction was performed was used.
  • Example 2 Amplification of circular DNA from a small number of template molecules Using the 9.6 kb circular DNA described in Example 1, an amplification reaction was carried out in the same manner as in Example 1.
  • Example 3 Amplification of a single circular DNA clone from the mixture From the mixture of 9.6 kb circular DNA and 12.0 kb circular DNA described in Example 1 (circular DNA having the replication origin oriC, kanamycin resistance (Km)) A single circular DNA clone was amplified.
  • an intracellular recombination reaction includes a cassette consisting of an oriC and kanamycin resistance gene and a partial region of the E. coli chromosome. Length circular DNA was prepared.
  • Example 1 To 10 ⁇ l of the amplification reaction solution (Example 1, Table 1), the mixture of the above-mentioned two kinds of circular DNA was added to the reaction solution diluted to 15 molecules or 1.5 molecules, and the mixture was added at 30 ° C. for 6 hours. An amplification reaction was carried out by keeping warm. The reaction product was subjected to 0.5% agarose gel electrophoresis and stained with SybrGreen (Takara Bio Inc.) to detect amplified DNA (FIG. 8).
  • Example 4 Passage Amplification lacZ circular DNA was used to test for circular amplification of circular DNA.
  • the lacZ circular DNA (9.0 kb) is a double-stranded DNA fragment (1.0 kb) containing oriC, a double-stranded DNA fragment (4.6 kb) containing the kanamycin resistance gene (Km), and a lacZ ( ⁇ -galactosidase) gene. It was prepared by ligating a double-stranded DNA fragment (3.4 kb). An amplification reaction was carried out by adding 1,000 lacZ circular DNA to 10 ⁇ l of the amplification reaction solution (Example 1, Table 1) and incubating at 30 ° C. for 3 hours.
  • the amplification reaction product at the previous passage number was diluted 10 5 times, and 1 ⁇ l of this was added to a new amplification reaction solution and reacted in the same manner to obtain the next passage amplification. This passage amplification was repeated up to 10 times.
  • the amplification product for each passage was subjected to 0.5% agarose gel electrophoresis, stained with SybrGreen (Takara Bio Inc.), and detected (FIG. 9).
  • a part of the amplified product was transformed into Escherichia coli, and the degree of DNA amplification was quantified from the number of colonies resistant to kanamycin. From this value, the number of generations of exponential amplification was calculated and indicated as the total number of generations.
  • the method of the present invention is a method capable of amplifying circular DNA like cell passage proliferation.
  • Example 5 Rate of occurrence of replication error in the amplification reaction Since the circular DNA of the template in Example 4 contains the lacZ gene, when E. coli transformed with this circular gene is cultured on an X-gal plate, the lacZ gene Colonies that normally expressed lacZ + are blue because X-gal can be degraded, and colonies in which the lacZ gene has failed to function normally due to mutagenesis due to replication errors (lacZ ⁇ ) cannot degrade X-gal. Presents a white color. That is, the replication error in the amplified circular DNA can be determined by the color of E. coli transformed with this circular gene on the X-gal plate.
  • the amplification reaction product of each passage sample was directly transformed into E. coli and cultured on an X-gal plate to determine the lacZ - appearance rate. From this lacZ - appearance rate and the total number of generations obtained in Example 4, the error rate per replication cycle generation was calculated according to the Barnes method (Barnes WM Gene. 1992, 112, 29-35). The results are shown in Table 4 below.
  • Example 6 Addition of exonuclease and RecG
  • An 80 kb circular DNA was prepared as shown in Example 1.
  • RecG was used as a RecG type helicase.
  • RecG was prepared by purification from an Escherichia coli-expressing strain of RecG by a process including ammonium sulfate precipitation and affinity column chromatography.
  • the reaction composition shown in Table 1 of Example 1 is as follows: 80 kb circular DNA is 0.8 pg / ⁇ l or 8 pg / ⁇ l, RecG is 0 nM, 100 nM, 300 nM, or 1000 nM, and linear DNA-specific exonuclease is 0 U.
  • Amplification reaction was carried out by incubating the amplification reaction solution (10 ⁇ l) added so as to be / ⁇ l or 0.2 U / ⁇ l at 30 ° C. for 24 hours.
  • the reaction product was subjected to 0.5% agarose gel electrophoresis (1 ⁇ TAE buffer, 150 V, 100 minutes) and stained with SybrGreen (Takara Bio Inc.) to detect amplified DNA.
  • Example 7 Examination of various conditions The results of examination of conditions for each component of the reaction solution are shown.
  • a circular DNA of 8.0 kb was used as a circular DNA as a method template.
  • An 8.0 kb circular DNA was prepared by inserting an oriC fragment into an M13mp18 plasmid vector.
  • 8.0 kb circular DNA was added to the amplification reaction solution shown in Table 5 to a final concentration of 8.0 ng / ⁇ l or 0.8 ng / ⁇ l and reacted at 30 ° C. for 2 hours.
  • the reaction product was subjected to 0.5% agarose gel electrophoresis (1 ⁇ TAE buffer, 150 V, 100 minutes) and stained with SybrGreen (Takara Bio Inc.) to detect amplified DNA.
  • Condition B We examined whether the number of replication cycles could be improved by reducing the amount of template DNA at the start of the reaction.
  • the amount of template DNA at the start of the reaction was examined at 8 ng / ⁇ l and 0.8 ng / ⁇ l.
  • Condition K The amount of enzyme having DNA ligase activity in the reaction composition was examined. Regarding the ligase concentration at the start of the reaction, 0 nM, 2 nM, 5 nM, 10 nM, 20 nM, and 50 nM were examined. The results are shown in FIG.
  • Condition L The amount of single-stranded DNA binding protein (SSB) in the reaction composition was examined. Regarding the concentration of SSB at the start of the reaction, 0 nM, 10 nM, 20 nM, 50 nM, 100 nM, 200 nM, and 500 nM were examined. The results are shown in FIG.
  • Condition N The amount of enzyme having DnaB type helicase activity and enzyme having DNA helicase loader activity in the reaction composition was examined. Regarding the concentration of the DnaB-DnaC complex at the start of the reaction, 0 nM, 5 nM, 10 nM, 20 nM, and 40 nM were examined. The results are shown in FIG.
  • Condition O The amount of enzyme having RNaseH activity in the reaction composition was examined. Regarding the concentration of RNaseH at the start of the reaction, 1 nM, 3 nM, and 10 nM were examined. The results are shown in FIG.
  • Condition P the amplification reaction was examined with the amount of template DNA at the start of the reaction being 8 ng / ⁇ l, 0.8 ng / ⁇ l, and 0.27 ng / ⁇ l. The results are shown in FIG. Under the condition P, amplification was efficiently performed even when the amount of template DNA was 0.8 ng / ⁇ l. Furthermore, amplification was also efficient when the amount of template DNA was reduced to 0.27 ng / ⁇ l. As the amount of DNA synthesis, it was confirmed that amplification was more than 100 times.
  • Condition Q The composition and amount of the enzyme of the third enzyme group in the reaction composition were examined. Topo IV, Topo III, and RecQ were used as the third enzyme group. The concentrations examined for each enzyme are as shown in FIG. The results are shown in FIG.
  • Condition R the amount of DNA gyrase was examined. Regarding the concentration of the GyrA-GyrB complex at the start of the reaction, 0 nM, 10 nM, 25 nM, 50 nM, and 150 nM were examined. The results are shown in FIG.
  • Condition S As condition S, amplification of circular DNA was examined by changing the concentrations of tRNA, NAD, ammonium sulfate (AS), IHF, SSB, and TopoIV. The concentrations examined for each component are as shown in FIG. The results are shown in FIG.
  • Example 8 Improvement of buffer composition
  • the conditions of the reaction buffer composition shown in Table 1 were further examined. Specifically, the amplification reaction was carried out in the same manner as in Example 1, except that 0.5 pM of the 200 kb circular DNA described in Example 1 was used and the composition of the reaction buffer was changed.
  • DTT dithiothreitol
  • Results are shown in FIG.
  • a long circular DNA is amplified from a low concentration of 0.5 ⁇ m or less, a by-product of a low molecule is amplified, and the production of supercoil which is the target amplification product cannot be confirmed.
  • an alkali metal ion source such as potassium glutamate or potassium acetate in the reaction buffer, amplification of the supercoil, which is the target product, can be confirmed well even when amplifying long circular DNA from a low concentration of 0.5 ⁇ p. did it.
  • reaction buffer having the following composition was used.
  • Example 9 Amplification efficiency improvement by preincubation of reaction solution The effect of performing preincubation before the amplification reaction was examined.
  • the 200-kb kb circular DNA described in Example 1 was used as the template DNA.
  • a reaction solution containing a reaction buffer having the composition shown in Table 6 and an enzyme group having the composition shown in Table 1 was prepared on ice. Preincubation was performed at 0 ° C, 16 ° C, or 30 ° C for 0, 5, 15 or 30 minutes, respectively. Thereafter, template DNA was added to the reaction solution to a final concentration of 0.05 ⁇ M, and the mixture was incubated for 3 hours in an incubator at 30 ° C. After the reaction, the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
  • Example 10 RecG and RecJ Additional Amplification Reaction Solution was further examined for the effect of carrying out an amplification reaction by further adding RecG type helicase and single-stranded DNA-specific exonuclease.
  • the 200 kb circular DNA described in Example 1 was used as the template DNA.
  • RecG was used as a RecG type helicase.
  • RecG used was adjusted in the same manner as in Example 6.
  • RecJ was used as a single-stranded DNA-specific exonuclease. RecJ was obtained from NEB.
  • amplification reaction was carried out by incubating the amplification reaction solution (10 ⁇ l) added to 5 U / ⁇ l at 30 ° C. for 3 hours or 25 hours. After the reaction, the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
  • Results are shown in FIG.
  • RecG and RecJ purification of small amplification products of small molecules was reduced, and an improvement in the yield of the circular DNA amplification product of the desired supercoiled structure was observed.
  • the addition of RecG-type helicase and single-stranded DNA-specific exonuclease in the amplification reaction is a means to solve the problem that small by-products are amplified, especially when amplifying long-chain circular DNA from a low concentration. It is valid.
  • Example 11 The effect of conducting an amplification reaction by further adding a linear DNA-specific exonuclease and a single-stranded DNA-specific exonuclease to the RecBCD and exo I additional amplification reaction solution was examined.
  • the 200 kb circular DNA described in Example 1 was used as the template DNA.
  • RecBCD was used as a linear DNA-specific exonuclease.
  • RecBCD was obtained from NEB.
  • Exo I was used as a single-stranded DNA-specific exonuclease.
  • exo I was obtained from NEB.
  • reaction solution containing the reaction buffer having the composition shown in Table 6 and the enzyme group having the composition shown in Table 1, 0.5 ⁇ pM (67 pg / ⁇ l) of 200 ⁇ kb circular DNA and 0, 1.5, 5.0, 15.
  • An amplification reaction was carried out by incubating an amplification reaction solution (10 ⁇ l) added with 0 or 50.0 mU / ⁇ l and exo I at 200 mU / ⁇ l for 20 hours at 30 ° C. After the reaction, the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
  • Results are shown in FIG.
  • the addition of RecBCD and exo-I reduced the production of linear DNA, which is a by-product due to DNA cleavage, and improved production of the circular DNA amplification product of the desired supercoiled structure was observed.
  • the addition of linear DNA-specific exonuclease and single-strand specific exonuclease in the amplification reaction says that linear DNA by-products are amplified, especially when amplifying long circular DNA from a low concentration. It is effective as a means to solve the problem.
  • Example 12 Post-reaction treatment-Increase of final product by re-incubation with dilution and removal of linear DNA with RecBCD and exoI during re-incubation Is it possible to remove by-products by performing dilution re-incubation after amplification reaction? We examined whether or not. Furthermore, it was examined whether or not by-products could be removed by treatment with linear DNA-specific exonuclease and / or single-strand-specific exonuclease after the amplification reaction. The 200 kb circular DNA described in Example 1 was used as the template DNA. RecBCD was used as a linear DNA-specific exonuclease, and exo I was used as a single-stranded DNA-specific exonuclease. RecBCD and exo I were obtained as in Example 10.
  • the reaction solution after the amplification reaction was diluted to 1/5 with a reaction buffer having a composition excluding creatine kinase and bovine serum albumin from Table 6, and (i) re-incubated for 1 hour at 30 ° C.
  • RecBCD was 200 mU. / Iii was added and re-incubated at 30 ° C. for 1 hour, or
  • RecBCD was added at 200 mU / ⁇ l and exo ⁇ I was added at 200 mU / ⁇ l and re-incubated at 30 ° C. for 1 hour.
  • the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 together with the product before dilution re-incubation to detect DNA.
  • Results are shown in FIG.
  • the circular DNA of the desired supercoil structure could be detected only by diluting and re-incubating the reaction solution after the amplification reaction. Furthermore, in the presence of linear DNA-specific exonuclease and / or single-strand-specific exonuclease, linear DNA as a by-product could be removed.
  • Dilution re-incubation treatment is effective as a means of increasing the production of supercoiled DNA, which is the final product, by promoting replication extension and separation reaction of the amplification intermediate in the product. Furthermore, treatment with linear DNA-specific exonuclease and single-strand-specific exonuclease during re-incubation occurs as a by-product, particularly when amplifying long-chain circular DNA from a low concentration This is an effective means for removing linear DNA.
  • Example 13 Post-reaction treatment—Can a cyclic DNA with the desired supercoil structure be detected by treating with a gap repair (GR) enzyme after a single-gap repair amplification reaction with a gap repair (GR) enzyme? We examined whether or not.
  • GR gap repair
  • the amplification reaction was carried out by incubating for 20 hours.
  • As the 15 kb circular DNA used as the template DNA a 15 kb kb region on the E. coli genome and an oriC fragment (0.4 kb) were ligated and cloned using E. coli, and then purified.
  • the product after the amplification reaction is dialyzed against 20 ⁇ l of 10 ⁇ m Tris-HCl (pH 8.0) for 2 hours, 0.5 ⁇ l of which is added to 5 ⁇ l of a reaction buffer containing GR enzyme, and 20 minutes or 60 minutes at 30 ° C. Incubated.
  • a reaction buffer having the composition shown in Table 6 was used.
  • a gap repair reaction was performed using PhiX174 RFII (NEB), which is DNA containing nicks.
  • NEB PhiX174 RFII
  • the nick is repaired and the circular DNA having a supercoiled structure can be detected.
  • the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
  • Example 14 Stabilizing factor for long-chain circular DNA and efficiency of amplification reaction using the same (1) Examination of long-chain DNA stabilizing factor From Table 6, creatine kinase and bovine serum albumin were excluded from long-chain circular DNA When incubated at 37 ° C. in the reaction buffer having the composition, it was observed that DNA damage was induced and the circular DNA having a supercoiled structure was reduced. Reagents that contribute to the stabilization of long circular DNA were investigated.
  • Example 15 Amplification reaction of long-chain circular DNA using emulsion The amplification reaction of circular DNA in a water-in-oil emulsion was investigated. The 200 kb circular DNA described in Example 1 was used as the template DNA.
  • An amplification reaction solution (5 ⁇ l) was prepared by adding 200 ⁇ kb circular DNA to a reaction solution containing the reaction buffer having the composition shown in Table 6 and the enzyme group having the composition shown in Table 1 to 0.5 ⁇ pM (67 pg / ⁇ l). .
  • 100 ⁇ l of mineral oil containing surfactants (2% ABIL EM90 and 0.05% Triton-X100) was added and mixed by vortexing for 60 seconds. This mixture was incubated at 30 ° C. for 3 hours or 18 hours to carry out an amplification reaction (emulsion).
  • amplification reaction was carried out by keeping the above amplification reaction solution as it was at 30 ° C. for 3 hours or 18 hours (bulk).
  • the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.
  • Example 16 Amplification efficiency by temperature cycle
  • the lower the molecular weight the faster the replication is completed. Therefore, if low molecular circular DNA is produced as a byproduct, the byproduct Amplifies quickly.
  • this phenomenon dominates amplification of by-products, and the problem is that amplification of the long-chain DNA, which is the target product, is not observed.
  • it is necessary to suppress excessive amplification of low molecular weight DNA.
  • the inventors focused on the point that a temperature of 30 ° C. or higher is optimal for initiating replication of circular DNA containing oriC, while the extension / separation reaction proceeds even at lower temperatures.
  • a reaction solution containing the reaction buffer having the composition shown in Table 6 and the enzyme group having the composition shown in Table 1 was preincubated at 30 ° C. for 30 minutes in accordance with Example 8, and then 200 ⁇ kb circular DNA (Example 1) was 0.5 ⁇ pM (Example 1).
  • Amplification reaction solution (10 ⁇ l) added so as to be 67 pg / ⁇ l) was prepared.
  • the amplification reaction solution was subjected to a temperature cycle of 37 ° C., 5 minutes ⁇ 16 ° C. or 24 ° C., 30 minutes for 30 cycles (2-Step cycle).
  • the amplification reaction solution was kept at 30 ° C. for 21 hours.
  • the reaction product was subjected to agarose gel electrophoresis in the same manner as in Example 1 to detect DNA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

無細胞系において、環状DNA、特に長鎖環状DNAを簡便かつ指数的に増幅することのできる方法を提供する。 具体的には、複製開始配列(origin of chromosome(oriC))を有する環状DNAを、以下の酵素群: (1)環状DNAの複製を触媒する第一の酵素群; (2)岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;および (3)2つの姉妹環状DNAの分離反応を触媒する第三の酵素群 ならびに、緩衝液、NTP、dNTP、マグネシウムイオン源、およびアルカリ金属イオン源を含む反応液と混合して生成した反応混合物を反応させることを含む、環状DNAの増幅方法を提供する。

Description

環状DNAの増幅方法
 本発明は、環状DNAの増幅方法に関する。より詳細には、無細胞系において環状DNAを指数的に増幅することのできる方法に関する。
 バイオテクノロジー発展の基盤となったDNAクローニング技術は、DNA断片の切り貼りにより調製した環状DNAを大腸菌等の細胞内でプラスミドとして増幅させる手法である。細胞を用いたDNAクローニング技術を用いて環状DNAを増幅する場合、細胞培養および増幅産物の抽出・精製等の煩雑な手順が必要となる。また、細胞を用いたDNAクローニングを行うためには遺伝子組換え生物を作出する必要があるため、実験できる環境に制限がある。
 試験管内でDNAを増幅する方法としては、ポリメラーゼ連鎖反応(PCR)が一般的に用いられている。しかし、PCRによる試験管内DNA増幅法では、環状DNAをそのまま増幅することはできない。環状DNAの試験管内増幅法としては、ローリングサークル増幅法(RCA)などがある(非特許文献1、特許文献1、特許文献2、特許文献3)。しかし、ローリングサークル増幅法で環状DNAを増幅するためには、標的DNAに特異的なプライマーを都度設計する必要がある。また、ローリングサークル増幅法による直接的な増幅産物は直鎖型DNAであり、得られた増幅産物を環状化するためには、組換え酵素とインキュベーションする等のさらなる環状化工程が必要となる。大腸菌のミニ染色体(oriC環状DNA)を複製したのち、これを分離し、単量体の環状複製産物を得る方法も報告されている(非特許文献2~5)。しかしながら、これらの文献で用いられている反応条件においては、環状DNA分子としての複製効率は、加えた鋳型DNAの15-40%程度にとどまるものであり、増幅量としては倍にも達しないことが実験的に示されている(非特許文献3~6)。さらに、これらの文献において鋳型として使用されている環状DNAのサイズは10 kbp未満にとどまる。
 このように、従来の試験管内DNA増幅法で環状DNAを増幅するためには、プライマーの鋳型DNAへの結合が必要であり、増幅産物は直鎖型DNAであり、また、増幅可能なDNAサイズは数kbpにとどまるものであった。さらに、大腸菌ミニ染色体複製系をもちいて環状の増幅産物を産生しようとした場合には、鋳型環状DNAは倍にすら増幅されないという問題があった。
特開2005-229950 特開2008-161182 特表2012-501173
Fakruddin M et al., J Pharm Bioallied Sci. 2013, 5: 245-252 Peng H & Marians KJ. PNAS. 1993, 90: 8571-8575 Hiasa H & Marians KJ. J Biol Chem. 1994, 269: 32655-32659 Funnell B et al., J Biol Chem. 1986, 261: 5616-5624 Hiasa H et al., J Biol Chem. 1994, 269: 2093-2099 Hiasa H & Marians KJ. J Biol Chem. 1994, 269: 26959-26968
 本発明は、無細胞系において、環状DNA、特に長鎖環状DNAを簡便かつ指数的に増幅することのできる方法を提供することを目的とする。
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、複製開始配列(origin of chromosome(oriC))を有する環状DNAを、以下:
 環状DNAの複製を触媒する第一の酵素群;
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群; 
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
 緩衝液;
 ATP;
 GTP、CTPおよびUTP;
 dNTP;
 マグネシウムイオン源;および
 アルカリ金属イオン源;
を含む反応液と混合して生成した反応混合物を反応させることにより、「複製の開始(DNA2重鎖開裂)・伸長(複製フォーク進行)・複製された姉妹DNAの分離(Decatenation)」のサイクルが繰り返し、指数的に環状DNAを増幅することができることを見出した。
 すなわち、これに限定されるものではないが、本発明は以下の態様の発明を包含する。
 [1] 環状DNAの増幅方法であって、以下の工程:
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を等温条件下で保温する工程;
を含む、前記方法。
 [2] 環状DNAの増幅方法であって、以下の工程:
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を、30℃以上でのインキュベーションおよび27℃以下でのインキュベーションを繰り返す温度サイクル下で、インキュベートする工程;
を含む、前記方法。
 [3] 反応液が、さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤を含む、上記[1]または[2]に記載の方法。
 [4] 反応液が、さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼを含む、上記[1]または[2]に記載の方法。
 [5] 反応液が、さらにアンモニウム塩を含む、上記[1]または[2]に記載の方法。
 [6] 第一の酵素群が、DnaA活性を有する酵素、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素または酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DnaB型ヘリカーゼ活性を有する酵素、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、およびDNAポリメラーゼIII*活性を有する酵素または酵素群、の組み合わせを含み、
第二の酵素群が、DNAポリメラーゼI活性を有する酵素およびDNAリガーゼ活性を有する酵素の組み合わせを含み、
第三の酵素群が、トポイソメラーゼIII活性を有する酵素および/またはトポイソメラーゼIV活性を有する酵素を含む、
上記[1]または[2]に記載の方法。
 [7] 第二の酵素群がさらに、RNaseH活性を有する酵素を含む、上記[6]に記載の方法。
 [8] 第三の酵素群がさらに、RecQ型ヘリカーゼ活性を有する酵素を含む、上記[6]に記載の方法。
 [9] 第一の酵素群において、
1種以上の核様体タンパク質がIHFまたはHUであり、
DNAジャイレース活性を有する酵素または酵素群が、GyrAおよびGyrBからなる複合体であり、
DnaB型ヘリカーゼ活性を有する酵素がDnaBヘリカーゼであり、
DNAヘリカーゼローダー活性を有する酵素がDnaCヘリカーゼローダーであり、
DNAプライマーゼ活性を有する酵素がDnaGプライマーゼであり、
DNAクランプ活性を有する酵素がDnaNクランプであり、
DNAポリメラーゼIII*活性を有する酵素または酵素群が、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEのいずれかを含む酵素または酵素群である、
上記[6]に記載の方法。
 [10] 工程(2)における等温条件が、25℃~50℃の範囲に含まれる一定の温度である、上記[1]に記載の方法。
 [11] 反応液が、さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、上記[1]または[2]に記載の方法。
 [12] 反応液が、さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、上記[1]または[2]に記載の方法。
 [13] 反応液が、さらにDNAの安定化因子を含む、上記[1]または[2]に記載の方法。
 [14] 工程(1)が
(1-1)以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液をプレインキュベーションする工程;
(1-2)当該反応液と鋳型となる環状DNAとの反応混合物を形成する工程;および
を含む、上記[1]または[2]に記載の方法。
 [15] 工程(2)を、油中水滴型エマルジョン内で行う、上記[1]または[2]に記載の方法。
 [16] 工程(2)に続いてさらに、
(3)反応後処理を行う工程;を含み、ここで、当該反応後処理は、
(i)第一から第三の酵素群を含まない反応液で五倍以上に希釈した後、再保温する処理;
(ii)直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼによる処理;および/または
(iii)ギャップリペア酵素による処理;である、
上記[1]または[2]に記載の方法。
 [17] 環状DNAの増幅用組成物であって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む、前記組成物。
 [18] さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤を含む、上記[17]に記載の組成物。
 [19] さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼを含む、上記[17]に記載の組成物。
 [20] さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、上記[17]に記載の組成物。
 [21] さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、上記[17]に記載の組成物。
 [22] さらにDNAの安定化因子を含む、上記[17]に記載の組成物。
 [23] 環状DNAの増幅用キットであって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
の組み合わせを含む、前記キット。
 [24] さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤との組み合わせを含む、上記[23]に記載のキット。
 [25] さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼとの組み合わせを含む、上記[23]に記載のキット。
 [26] さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、上記[23]に記載のキット。
 [27] さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、上記[23]に記載のキット。
 [28] さらにDNAの安定化因子を含む、上記[23]に記載のキット。
 [29] さらにギャップリペア酵素を含む、上記[23]に記載のキット。
 [30] 以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液と、鋳型となる環状DNAとの反応混合物を形成する工程を含み、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む、複製サイクルを繰り返し、指数的に環状DNAを増幅する方法。
 [31] 環状DNAの増幅方法であって、以下の工程:
(1)鋳型となる環状DNAと、以下:
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
(2)工程(1)において形成した反応混合物を所定の温度範囲で保温する工程;
を含む、前記方法。
 [32] 環状DNAの増幅用キットであって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
の組み合わせ、
ならびに、上記の組み合わせを含む反応液と鋳型となる環状DNAとの反応混合物において複製サイクルを繰り返すことで環状DNAを指数的に増幅する方法を実施するための指示が記載された説明書を含む、
前記キット。
 [33] 反応液にtRNAをさらに含む、上記[1]、[2]、[30]および[31]のいずれか1項に記載の方法。
 [34] 反応液にtRNAをさらに含む、上記[17]に記載の組成物。
 [35] 反応液にtRNAをさらに含む、上記[23]または[32]に記載のキット。
 [36] 反応液に、100mM以上のアルカリ金属イオン源をさらに含む、上記[1]、[2]、[30]および[31]のいずれか1項に記載の方法。
 [37] 反応液に、100mM以上のアルカリ金属イオン源をさらに含む、上記[17]に記載の組成物。
 [38] 反応液に、100mM以上のアルカリ金属イオン源をさらに含む、上記[23]または[32]に記載のキット。
 [39] 環状DNAが、少なくとも10倍に増幅する、上記[1]、[2]、[30]および[31]のいずれか1項に記載の方法。
 本発明により、大腸菌細胞やプラスミドベクターを用いることなく、環状DNA、特に長鎖環状DNAを簡便かつ指数的に増幅することのできる方法が提供される。本発明によれば、環状DNAを増幅するのにプライマーは不要であり、200 kbを超える長鎖環状DNAの増幅も可能である。そして、本発明の方法によれば、鋳型環状DNAはわずか1分子からでも環状DNAの増幅が可能である。また、本発明によって得られる増幅産物は、もとの鋳型と同じ環状構造のままのコピーである。さらに、複数のDNA断片を連結したのち、そのまま当該反応系に加えると、連結により環状化したDNAのみを特異的に増幅して調製することもできる。
図1は、本発明による複製サイクルのモデルを示す。 図2は、Gibson Assembly法を用いた試験管内連結により環状化したDNAの構造を示す。 図3は、9.6 kbの環状DNAを鋳型として用いた場合の反応時間ごとの増幅産物をアガロース電気泳動し、SYBR Greenによって検出した結果を示す。 図4は、200 kb及び80 kbの長鎖環状DNAを鋳型として用いた場合の増幅産物をアガロース電気泳動し、SYBR Greenによって検出した結果を示す。図4aは、200 kbの長鎖環状DNA(15 pM, 20 ng)を鋳型として用いた場合の、反応時間ごとの増幅産物の結果を示す。図4bは80 kb(15 pM, 8 ng)及び200 kb(5 pM, 6.7 ng)の長鎖環状DNAを鋳型として用いた場合の反応3時間後の増幅産物の結果を示す。 図5は、Gibson Assembly法を用いた試験管内連結により環状化したDNAを鋳型として用いた場合の増幅産物をアガロース電気泳動し、SYBR Greenによって検出した結果を示す。 図6は、微量(1分子レベル)の9.6 kbの環状DNAを鋳型として用いた増幅実験の結果を示す。図6aは、9.6 kbの環状DNAを鋳型として用いた場合の増幅産物をアガロース電気泳動し、SYBR Greenによって検出した結果を示す。図6bは、増幅産物のDNA量をPicoGreen法あるいは大腸菌形質転換法により定量し、その増幅度合いを示した結果を示すグラフである。 図7は、9.6 kbの環状DNAを鋳型として用いた場合の増幅時間に対する増幅した環状DNA分子数を示すグラフである。 図8は、混合物からの単一な環状DNAクローンの増幅試験結果を示す図である。図8aは、環状DNAの混合物の希釈についての模式図である。図8bは、環状DNAの混合物を希釈して増幅した場合の増幅産物をアガロース電気泳動し、SYBR Greenによって検出した結果を示す。 図9は、環状DNAの継代増幅試験結果を示す図である。図9aは、実験手順についての模式図である。図9bは、増幅反応後のDNA産物を希新たな反応液に希釈して、再度増幅を導くという継代増幅を10回くりかえした場合の結果を示す。増幅産物はアガロース電気泳動およびSYBR Greenによって検出した。 図10は、80 kbの環状DNAを鋳型として用い、RecGおよび直鎖状DNA特異的エキソヌクレアーゼを添加した場合の、増幅産物をアガロース電気泳動し、SYBR Greenによって検出した結果を示す。 図11は、実施例7の条件Aの結果を示すグラフである。 図12は、実施例7の条件Bの結果を示すグラフである。 図13は、実施例7の条件C(GTP、CTPおよびUTP量の検討)の結果を示すグラフ、及びゲル電気泳動の写真である。 図14は、実施例7の条件D(IHF量の検討)の結果を示すグラフである。 図15は、実施例7の条件E(Topo IV量の検討)の結果を示すグラフである。 図16は、実施例7の条件F(DNAジャイレース量の検討)の結果を示すグラフである。 図17は、実施例7の条件G(DNAポリメラーゼIII*量の検討)の結果を示すグラフである。 図18は、実施例7の条件H(アルカリ金属イオン源量の検討)の結果を示すグラフである。 図19は、実施例7の条件I(タンパク質の非特異吸着抑制剤および/または核酸の非特異吸着抑制剤の量の検討)の結果を示すグラフである。 図20は、実施例7の条件J(DnaA活性を有する酵素の量の検討)の結果を示すグラフである。 図21は、実施例7の条件K(DNAリガーゼ活性を有する酵素の量の検討)の結果を示すグラフである。 図22は、実施例7の条件L(SSB量の検討)の結果を示すグラフ、及びゲル電気泳動の写真である。 図23は、実施例7の条件M(DNAポリメラーゼI活性を有する酵素の量の検討)の結果を示すグラフである。 図24は、実施例7の条件N(DnaB型ヘリカーゼ活性を有する酵素およびDNAヘリカーゼローダー活性を有する酵素の量の検討)の結果を示すグラフである。 図25は、実施例7の条件O(RNaseH活性を有する酵素の量の検討)の結果を示すグラフである。 図26は、実施例7の条件Pの結果を示すグラフである。 図27は、実施例7の条件Q(第三の酵素群の酵素の組成および量の検討)の結果を示す、ゲル電気泳動の写真およびグラフである。 図28は、実施例7の条件Rの結果を示すグラフである。 図29は、実施例7の条件Sの結果を示すグラフである。 図30は、アルカリ金属イオン源の添加の効果を検討した結果を示すゲル電気泳動の写真である。 図31は、プレインキュベーションによる増幅反応の効率化を検討した結果を示すゲル電気泳動の写真である。 図32は、RecGおよびRecJを添加した場合の増幅産物を検出した結果を示す、ゲル電気泳動の写真である。 図33は、RecBCDおよびexo Iを添加した場合の増幅産物を検出した結果を示すゲル電気泳動の写真である。 図34は、増幅反応後に、RecBCDおよびexo Iで処理した場合の増幅産物を検出した結果を示すゲル電気泳動の写真である。 図35は、増幅反応後に、ギャップリペア酵素で処理した場合の増幅産物を検出した結果を示すゲル電気泳動の写真である。 図36は、長鎖環状DNAの安定化因子を用いた場合の増幅反応の効率を検討した結果を示すゲル電気泳動の写真である。 図37は、油中水滴型エマルジョン内での環状DNAの増幅反応を検討した結果を示すゲル電気泳動の写真である。 図38は、温度サイクルを伴う環状DNAの増幅反応における増幅産物を検出した結果を示すゲル電気泳動の写真である。
 以下に本発明を具体的に説明するが、本発明はこれらに限定されるものではない。本明細書で特段に定義されない限り、本発明に関連して用いられる科学用語及び技術用語は、当業者によって一般に理解される意味を有するものとする。
 <環状DNA>
 鋳型として用いる環状DNAは、2重鎖であることが好ましい。鋳型として用いる環状DNAは、DnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含むものであれば、特に制限はされず、微生物の環状染色体等の天然の環状DNA、天然の環状DNAを酵素処理等によって切断したもの等に別のDNA断片を連結し、それを環状化した環状DNA、すべて人工的に合成した環状DNA等を例示することができる。DnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))(以下、単に「複製開始配列」ということがある)としては、たとえば大腸菌、枯草菌等の細菌に存在する公知の複製開始配列を、NCBI(http://www.ncbi.nlm.nih.gov/)等の公的なデータベースから入手することができる。また、DnaA活性を有する酵素と結合可能なDNA断片をクローニングし、その塩基配列を解析することによって、複製開始配列を得ることもできる。
 本発明において鋳型として用いる環状DNAは、もともと複製開始配列を含む環状DNAであってもよいし、もともとは複製開始配列を含まない環状DNAに複製開始配列を導入したものであってもよい。
 本発明において鋳型として用いる環状DNAは、目的に応じて、カナマイシン、アンピシリン、テトラサイクリン等の薬剤耐性マーカー遺伝子配列を含むものであってよい。
 本発明において鋳型として用いる環状DNAは、精製されたものであってもよいが、環状DNAを含む菌体抽出物等の懸濁液の形態であってもよい。また、1種類の環状DNAを鋳型として用いてもよいが、たとえばDNAライブラリーのような複数種類の環状DNAの混合物を1つの試験管内で鋳型として用いてもよい。
 本発明において鋳型として用いる環状DNAの長さに制限はないが、たとえば1 kb(1000塩基長)以上、5 kb(5000塩基長)以上、8 kb(8,000塩基長)以上、10 kb(10,000塩基長)以上、50 kb(50,000塩基長)以上、100 kb(100,000塩基長)以上、200 kb(200,000塩基長)以上、500 kb(500,000塩基長)以上、1000 kb(1,000,000塩基長)以上、または2000 kb(2,000,000塩基長)以上の長さとすることができる。
 <第一、第二および第三の酵素群>
 1.第一の酵素群
 本明細書において第一の酵素群とは、環状DNAの複製を触媒する酵素群を意味する。
 環状DNAの複製を触媒する第一の酵素群としては、たとえばKaguni JM & Kornberg A. Cell. 1984, 38:183-90に記載された酵素群を用いることができる。具体的には、第一の酵素群として、以下:DnaA活性を有する酵素、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素または酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DnaB型ヘリカーゼ活性を有する酵素、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、およびDNAポリメラーゼIII*活性を有する酵素または酵素群、からなる群より選択される酵素または酵素群の1つ以上、または当該酵素または酵素群のすべての組み合わせ、を例示することができる。
 DnaA活性を有する酵素としては、大腸菌のイニシエータータンパク質であるDnaAと同様のイニシエーター活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDnaAを好適に用いることができる。大腸菌由来のDnaAは単量体として、反応液中、1nM~10μMの範囲で含まれていてもよく、好ましくは1nM~~5μM、1nM~3μM、1nM~1.5μM、1nM~1.0μM、1nM~500nM、50nM~200nM、50nM~150nMの範囲で含まれていてもよいが、これに限定されない。
 核様体タンパク質は、核様体に含まれるタンパク質をいう。本発明に用いる1種以上の核様体タンパク質は、大腸菌の核様体タンパク質と同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のIHF、すなわちIhfAおよび/またはIhfBの複合体(ヘテロ二量体またはホモ二量体)や、大腸菌由来のHU、すなわちhupAおよびhupBの複合体を好適に用いることができる。大腸菌由来のIHFはヘテロ/ホモ2量体として反応液中、5nM~400nMの範囲で含まれていてもよく、好ましくは5nM~200nM、5nM~100nM、5nM~50nM、10nM~50nM、10nM~40nM、10nM~30nM、の範囲で含まれていてもよいが、これに限定されない。大腸菌由来のHUは反応液中、1nM~50nMの範囲で含まれていてもよく、好ましくは5nM~50nM、5nM~25nMの範囲で含まれていてもよいが、これに限定されない。
 DNAジャイレース活性を有する酵素または酵素群としては、大腸菌のDNAジャイレースと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のGyrAおよびGyrBからなる複合体を好適に用いることができる。大腸菌由来のGyrAおよびGyrBからなる複合体はヘテロ4量体として反応液中、20nM~500nMの範囲で含まれていてもよく、好ましくは20nM~400nM、20nM~300nM、20nM~200nM、50nM~200nM、100nM~200nMの範囲で含まれていてもよいが、これに限定されない。
 一本鎖DNA結合タンパク質(single-strand binding protein(SSB))としては、大腸菌の一本鎖DNA結合タンパク質と同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のSSBを好適に用いることができる。大腸菌由来のSSBはホモ4量体として、反応液中、20nM~1000nMの範囲で含まれていてもよく、好ましくは20nM~500nM、20nM~300nM、20nM~200nM、50nM~500nM、50nM~400nM、50nM~300nM、50nM~200nM、50nM~150nM、100nM~500nM、100nM~400nM、の範囲で含まれていてもよいが、これに限定されない。
 DnaB型ヘリカーゼ活性を有する酵素としては、大腸菌のDnaBと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDnaBを好適に用いることができる。大腸菌由来のDnaBはホモ6量体として反応液中、5nM~200nMの範囲で含まれていてもよく、好ましくは5nM~100nM、5nM~50nM、5nM~30nMの範囲で含まれていてもよいが、これに限定されない。
 DNAヘリカーゼローダー活性を有する酵素としては、大腸菌のDnaCと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDnaCを好適に用いることができる。大腸菌由来のDnaCはホモ6量体として反応液中、5nM~200nMの範囲で含まれていてもよく、好ましくは5nM~100nM、5nM~50nM、5nM~30nMの範囲で含まれていてもよいが、これに限定されない。
 DNAプライマーゼ活性を有する酵素としては、大腸菌のDnaGと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDnaGを好適に用いることができる。大腸菌由来のDnaGは単量体として、反応液中、20nM~1000nMの範囲で含まれていてもよく、好ましくは20nM~800nM、50nM~800nM、100nM~800nM、200nM~800nM、250nM~800nM、250nM~500nM、300nM~500nMの範囲で含まれていてもよいが、これに限定されない。
 DNAクランプ活性を有する酵素としては、大腸菌のDnaNと同様の活性を有する酵素であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDnaNを好適に用いることができる。大腸菌由来のDnaNはホモ2量体として反応液中、10nM~1000nMの範囲で含まれていてもよく、好ましくは10nM~800nM、10nM~500nM、20nM~500nM、20nM~200nM、30nM~200nM、30nM~100nMの範囲で含まれていてもよいが、これに限定されない。
 DNAポリメラーゼIII*活性を有する酵素または酵素群としては、大腸菌のDNAポリメラーゼIII*複合体と同様の活性を有する酵素または酵素群であれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEのいずれかを含む酵素群、好ましくは大腸菌由来のDnaX、HolA、HolB、およびDnaEの複合体を含む酵素群、さらに好ましくは大腸菌由来のDnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEの複合体を含む酵素群を好適に用いることができる。大腸菌由来のDNAポリメラーゼIII*複合体はヘテロ多量体として反応液中、2nM~50nMの範囲で含まれていてもよく、好ましくは2nM~40nM、2nM~30nM、2nM~20nM、5nM~40nM、5nM~30nM、5nM~20nMの範囲で含まれていてもよいが、これに限定されない。
 2.第二の酵素群
 本明細書において第二の酵素群とは、岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する酵素群を意味する。
 本発明において、カテナンを形成する2つの姉妹環状DNAとは、DNA複製反応によって合成された2つの環状DNAがつながった状態にあるものをいう。
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群としては、たとえばDNAポリメラーゼI活性を有する酵素、DNAリガーゼ活性を有する酵素、およびRNaseH活性を有する酵素、からなる群より選択される1つ以上の酵素または当該酵素の組み合わせを例示することができる。
 DNAポリメラーゼI活性を有する酵素としては、大腸菌のDNAポリメラーゼIと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDNAポリメラーゼIを好適に用いることができる。大腸菌由来のDNAポリメラーゼIは単量体として反応液中、10nM~200nMの範囲で含まれていてもよく、好ましくは20nM~200nM、20nM~150nM、20nM~100nM、40nM~150nM、40nM~100nM、40nM~80nMの範囲で含まれていてもよいが、これに限定されない。
 DNAリガーゼ活性を有する酵素としては、大腸菌のDNAリガーゼと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のDNAリガーゼまたはT4ファージのDNAリガーゼを好適に用いることができる。大腸菌由来のDNAリガーゼは単量体として反応液中、10nM~200nMの範囲で含まれていてもよく、好ましくは15nM~200nM、20nM~200nM、20nM~150nM、20nM~100nM、20nM~80nMの範囲で含まれていてもよいが、これに限定されない。
 RNaseH活性を有する酵素としては、RNA:DNAハイブリッドのRNA鎖を分解する活性を有するものであれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のRNaseHを好適に用いることができる。大腸菌由来のRNaseHは単量体として反応液中、0.2nM~200nMの範囲で含まれていてもよく、好ましくは0.2nM~200nM、0.2nM~100nM、0.2nM~50nM、1nM~200nM、1nM~100nM、1nM~50nM、10nM~50nMの範囲で含まれていてもよいが、これに限定されない。
 3.第三の酵素群
 本明細書において第三の酵素群とは、2つの姉妹環状DNAの分離反応を触媒する酵素群を意味する。
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群としては、たとえばPeng H & Marians KJ. PNAS. 1993, 90: 8571-8575に記載された酵素群を用いることができる。具体的には、第三の酵素群として、以下:トポイソメラーゼIV活性を有する酵素、トポイソメラーゼIII活性を有する酵素、およびRecQ型ヘリカーゼ活性を有する酵素、から成る群より選択される1つ以上の酵素または当該酵素の組み合わせを例示することができる。
 トポイソメラーゼIII活性を有する酵素としては、大腸菌のトポイソメラーゼIIIと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のトポイソメラーゼIIIを好適に用いることができる。大腸菌由来のトポイソメラーゼIIIは単量体として反応液中、20nM~500nMの範囲で含まれていてもよく、好ましくは20nM~400nM、20nM~300nM、20nM~200nM、20nM~100nM、30~80nMの範囲で含まれていてもよいが、これに限定されない。
 RecQ型ヘリカーゼ活性を有する酵素としては、大腸菌のRecQと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、たとえば大腸菌由来のRecQを好適に用いることができる。大腸菌由来のRecQは単量体として反応液中、20nM~500nMの範囲で含まれていてもよく、好ましくは20nM~400nM、20nM~300nM、20nM~200nM、20nM~100nM、30~80nMの範囲で含まれていてもよいが、これに限定されない。
 トポイソメラーゼIV活性を有する酵素としては、大腸菌のトポイソメラーゼIVと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、たとえばParCとParEの複合体である大腸菌由来のトポイソメラーゼIVを好適に用いることができる。大腸菌由来のトポイソメラーゼIVはヘテロ4量体として反応液中、0.1nM~50nMMの範囲で含まれていてもよく、好ましくは0.1nM~40nM、0.1nM~30nM、0.1nM~20nM、1nM~40nM、1nM~30nM、1nM~20nM、1nM~10nM、1nM~5nMの範囲で含まれていてもよいが、これに限定されない。
 上記の第一、第二および第三の酵素群は、市販されているものを用いてもよいし、微生物等から抽出し、必要に応じて精製したものを用いてもよい。微生物からの酵素の抽出および精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 上記第一、第二および第三の酵素群として、上記に示す大腸菌由来の酵素以外を用いる場合は、上記大腸菌由来の酵素について特定された濃度範囲に対して、酵素活性単位として相当する濃度範囲で用いることができる。
 上記酵素の無細胞タンパク質発現系を含む反応液を、そのまま鋳型となる環状DNAと混合して、環状DNAの増幅のための反応混合液を形成してもよい。無細胞タンパク質発現系は、上記酵素をコードする遺伝子の塩基配列に相補的な配列からなるRNAを含む総RNA(total RNA)、mRNA、またはin vitro転写産物などを鋳型RNAとする無細胞翻訳系であってもよいし、各酵素をコードする遺伝子または各酵素をコードする遺伝子を含む発現ベクターなどを鋳型DNAとする無細胞転写翻訳系であってもよい。
 <環状DNAの増幅方法>
 本発明は、環状DNAの増幅方法であって、以下の工程:
(1)鋳型となる環状DNAと、以下:
 環状DNAの複製を触媒する第一の酵素群;
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
 緩衝液;
 ATP;
 GTP、CTPおよびUTP;
 dNTP;
 マグネシウムイオン源;および
 アルカリ金属イオン源;
を含む反応液との反応混合物を形成する工程、を含み、
ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む、前記方法に関する。
 別の態様において、本発明の方法は、上記工程(1)の前に、反応液をプレインキュベーションする工程をさらに含んでいてもよい。すなわち、本発明の方法は、環状DNAの増幅方法であって、以下の工程:
(1-1)以下:
 環状DNAの複製を触媒する第一の酵素群;
 岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
 2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
 緩衝液;
 ATP;
 GTP、CTPおよびUTP;
 dNTP;
 マグネシウムイオン源;および
 アルカリ金属イオン源;
を含む反応液をプレインキュベーションする工程;および
(1-2)当該反応液と鋳型となる環状DNAとの反応混合物を形成する工程、ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;
を含む、前記方法であってよい。プレインキュベーションは、例えば、0~40℃、10~40℃、15~37℃、または16~30℃の範囲で、5~60分間、5~45分間、5~30分間、15~60分間、15~45分間、15~30分間の間、保温することにより行ってもよい。プレインキュベーションは、反応液の温度が上記の温度範囲内に保たれればプレインキュベーション中に若干変動してもよい。
 理論により制限されるものではないが、本発明は図1に示すように複製サイクルを繰り返し、環状DNAを指数的に増幅する。本発明では、上述した環状DNAを鋳型として用いて、それを少なくとも10倍、50倍、100倍、200倍、500倍、1000倍、2000倍、3000倍、4000倍、5000倍、または10000倍に増幅することができる。
 反応液と混合する環状DNAについては、上記<環状DNA>の項目に記載した通りである。1反応あたりに用いる鋳型DNAの量に特に制限はなく、例えば、反応開始時に10ng/μl以下、5ng/μl以下、1ng/μl以下、0.8ng/μl以下、0.5ng/μl以下、0.3ng/μl以下の濃度で反応液中に存在させてもよい。さらには、反応開始時に、1反応あたり1分子の環状DNAを鋳型として存在させて増幅に用いることもできる。
 反応液に含まれる緩衝液は、pH7~9、好ましくはpH8、において用いるのに適した緩衝液であれば特に制限はない。例えば、Tris-HCl、Tris-OAc、Hepes-KOH、リン酸緩衝液、MOPS-NaOH、Tricine-HClなどが挙げられる。好ましい緩衝液はTris-HClまたはTris-OAcである。緩衝液の濃度は、当業者が適宜選択することができ、特に限定されないが、Tris-HClまたはTris-OAcの場合、例えば10mM~100mM、10mM~50mM、20mMの濃度を選択できる。
 ATPは、アデノシン三リン酸を意味する。反応開始時に反応液中に含まれるATPの濃度は、例えば0.1mM~3mMの範囲であってよく、好ましくは0.1mM~2mM、0.1mM~1.5mM、0.5mM~1.5mMの範囲であってよい。
 GTP、CTPおよびUTPは、それぞれグアノシン三リン酸、シチジン三リン酸、およびウリジン三リン酸を意味する。反応開始時に反応液中に含まれるGTP、CTPおよびUTPの濃度は、それぞれ独立して、例えば0.1mM~3.0mMの範囲であってよく、好ましくは0.5mM~3.0mM、0.5mM~2.0mMの範囲であってよい。
 dNTPは、デオキシアデノシン三リン酸(dATP)、デオキシグアノシン三リン酸(dGTP)、デオキシシチジン三リン酸(dCTP)、およびデオキシチミジン三リン酸(dTTP)の総称である。反応開始時に反応液中に含まれるdNTPの濃度は、例えば0.01~1mMの範囲であってよく、好ましくは0.05mM~1mM、0.1mM~1mMの範囲であってよい。
 マグネシウムイオン源は、反応液中にマグネシウムイオン(Mg2+)を与える物質である。例えば、Mg(OAc)、MgCl、およびMgSO、などが挙げられる。好ましいマグネシウムイオン源はMg(OAc)である。反応開始時に反応液中に含まれるマグネシウムイオン源の濃度は、例えば、反応液中にマグネシウムイオンを5~50mMの範囲で与える濃度であってよい。
 アルカリ金属イオン源は、反応液中にアルカリ金属イオンを与える物質である。アルカリ金属イオンとしては、例えばナトリウムイオン(Na)、カリウムイオン(K)が挙げられる。アルカリ金属イオン源の例として、グルタミン酸カリウム、アスパラギン酸カリウム、塩化カリウム、酢酸カリウム、グルタミン酸ナトリウム、アスパラギン酸ナトリウム、塩化ナトリウム、および酢酸ナトリウム、が挙げられる。好ましいアルカリ金属イオン源はグルタミン酸カリウムまたは酢酸カリウムである。反応開始時に反応液中に含まれるアルカリ金属イオン源の濃度は、反応液中にアルカリ金属イオンを100mM以上、好ましくは100mM~300mMの範囲で与える濃度であってよいが、これに限定されない。先行する出願との兼ね合いにおいては、上記のアルカリ金属イオン源の濃度から150mMが除かれてもよい。
 本発明の方法に用いる反応液はさらに、タンパク質の非特異吸着抑制剤または核酸の非特異吸着抑制剤を含んでいてもよい。好ましくは、反応液はさらに、タンパク質の非特異吸着抑制剤および核酸の非特異吸着抑制剤を含んでいてもよい。タンパク質の非特異吸着抑制剤及び/または核酸の非特異吸着抑制剤が反応液中に存在することで、反応効率が向上する。タンパク質の非特異吸着抑制剤及び/または核酸の非特異吸着抑制剤が、タンパク質同士および/またはタンパク質と環状DNAの非特異吸着や、タンパク質および環状DNAの容器表面への付着を抑制することで反応効率が向上すると考えられる。
 タンパク質の非特異吸着抑制剤とは、本発明の方法における増幅反応とは無関係なタンパク質である。そのようなタンパク質としては、例えば、ウシ血清アルブミン(BSA)、リゾチーム、ゼラチン、ヘパリン、およびカゼインなどが挙げられる。タンパク質の非特異吸着抑制剤は反応液中、0.02~2.0mg/mlの範囲、好ましくは0.1~2.0mg/ml、0.2~2.0mg/ml、0.5~2.0mg/mlの範囲で含まれていてもよいが、これに限定されない。
 核酸の非特異吸着抑制剤とは、本発明の方法における増幅反応とは無関係な核酸分子または核酸類似因子である。そのような核酸分子または核酸類似因子としては、例えば、tRNA(トランスファーRNA)、rRNA(リボソーマルRNA)、mRNA(メッセンジャーRNA)、グリコーゲン、ヘパリン、オリゴDNA、poly(I-C)(ポリイノシン-ポリシチジン)、poly(dI-dC)(ポリデオキシイノシン-ポリデオキシシチジン)、poly(A)(ポリアデニン)、およびpoly(dA)(ポリデオキシアデニン)などが挙げられる。核酸の非特異吸着抑制剤は反応液中、1~500ng/μlの範囲、好ましくは10~500ng/μl、10~200ng/μl、10~100ng/μlの範囲で含まれていてもよいが、これに限定されない。先行する出願との兼ね合いにおいては、核酸の非特異吸着抑制剤としてtRNAを選択する場合、tRNAの濃度から50ng/μlが除かれてもよい。
 本発明の方法に用いる反応液はさらに、DNAの安定化因子を含んでいてもよい。DNAの安定化因子が反応液中に存在することで、DNAの切断が抑制され、鋳型DNAおよび増幅産物を保護することができると考えられる。DNAの安定化因子の添加により、目的産物の収率向上につながる。特に、鋳型DNAが長鎖環状DNAである場合は、鋳型DNAおよび増幅産物が分解されやすいため、DNAの安定化因子の添加は有益である。DNAの安定化因子は、特に限定されないが、例えば、グルコース、スクロース、ジメチルスルホキシド(DMSO)、ウシ血清アルブミン(BSA)、グリコールエーテルジアミン四酢酸(EGTA)、バソクプロインジスルホン酸二ナトリウム(BDA)、ペニシラミン、タイロン(Tiron, 1,2-ジヒドロキシベンゼン-3,5-スルホネート)、ジエチレレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、およびDpsタンパク質(大腸菌由来)、メタロチオネインタンパク質(ヒト由来)からなる群より選択されるものであってもよい。この中で、DTPA、Tiron、BDA、Dpsタンパク質およびBSAは、環状DNA増幅反応を効率化作用をも有するので、特に好ましい。DTPAまたはTironは反応液中、0.01mM~0.3mM、好ましくは0.05~0.15mMの範囲で含まれていてもよいがこれに限定されない。BDAは、反応液中、0.01~0.5mM、好ましくは0.05~0.3mMの範囲で含まれていてもよいがこれに限定されない。Dpsタンパク質は反応液中、0.3~3.0μM、好ましくは0.3~1.5μMの範囲で含まれていてもよいがこれに限定されない。BSAは反応液中、0.02~2.0mg/mlの範囲、好ましくは0.1~2.0mg/ml、0.2~2.0mg/ml、0.5~2.0mg/mlの範囲で含まれていてもよいが、これに限定されない。
 本発明の方法に用いる反応液はさらに、直鎖状DNA特異的エキソヌクレアーゼまたはRecG型ヘリカーゼを含んでいてもよい。好ましくは、反応液はさらに、直鎖状DNA特異的エキソヌクレアーゼおよびRecG型ヘリカーゼを含んでいてもよい。直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼが反応液中に存在することで、増幅反応中に二重鎖切断などによって生じる直鎖状DNAの量を低減し、目的のスーパーコイル産物の収率を向上させる効果がある。
 本発明の方法に用いる反応液はさらに、RecG型ヘリカーゼまたは一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。好ましくは、反応液はさらに、RecG型ヘリカーゼおよび一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。RecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼが反応液中に存在することで、増幅反応中に生じる低分子の副次的な増幅産物の量を低減し、目的のスーパーコイル産物の収率を向上させる効果がある。
 本発明の方法に用いる反応液はさらに、直鎖状DNA特異的エキソヌクレアーゼまたは一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。好ましくは、反応液はさらに直鎖状DNA特異的エキソヌクレアーゼおよび一本鎖DNA特異的エキソヌクレアーゼを含んでいてもよい。直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼが反応液中に存在することで、増幅反応中に二重鎖切断などによって生じる直鎖状DNAの量を低減し、目的のスーパーコイル産物の収率を向上させる効果がある。
 直鎖状DNA特異的エキソヌクレアーゼは、直鎖状DNAの5’末端もしくは3’末端から逐次的に加水分解する酵素である。直鎖状DNA特異的エキソヌクレアーゼは、直鎖状DNAの5’末端もしくは3’末端から逐次的に加水分解する活性を有するものであれば、その種類や生物学的由来に特に制限はない。例えば、RecBCD、λエキソヌクレアーゼ、エキソヌクレアーゼIII、エキソヌクレアーゼVIII、T5エキソヌクレアーゼ、T7エキソヌクレアーゼ、およびPlasmid-SafeTMATP-Dependent DNase (epicentre)などを用いることができる。好ましい直鎖状DNA特異的エキソヌクレアーゼはRecBCDである。直鎖状DNAエキソヌクレアーゼは反応液中、0.001~1.0U/μL、好ましくは0.005U~1.0U/μL、0.01~1.0U/μl、0.05~1.0U/μL、または0.1~1.0U/μlの範囲で含まれていてもよいが、これに限定されない。直鎖状DNAエキソヌクレアーゼについての酵素活性単位(U)は、37℃、30分の反応において、直鎖状DNAの1nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。
 RecG型ヘリカーゼは、伸張反応の終結時に複製フォーク同士が衝突してできる副次的なDNA構造を解消するヘリケースと考えられている酵素である。RecG型ヘリカーゼは、大腸菌由来のRecGと同様の活性を有するものであれば、その生物学的由来に特に制限はないが、例えば大腸菌由来のRecGを好適に用いることができる。大腸菌由来のRecGは単量体として反応液中、100nM~800nMの範囲、好ましくは100nM~500nM、100nM~400nM、100nM~300nMの範囲で含まれていてもよいが、これに限定されない。RecG型ヘリカーゼは、上記大腸菌由来のRecGについて特定された濃度範囲に酵素活性単位として相当する濃度範囲で用いることができる。
 一本鎖DNA特異的エキソヌクレアーゼは、一本鎖DNAの5’末端もしくは3’末端のヌクレオチドを逐次的に加水分解する酵素である。一本鎖DNA特異的エキソヌクレアーゼは、一本鎖DNAの5’末端または3’末端のヌクレオチドを逐次的に加水分解する活性を有するものであれば、その種類や生物学的由来に特に制限はない。例えばエキソヌクレアーゼI(exo I)、RecJ、エキソヌクレアーゼT、などを用いることができる。好ましい一本鎖DNA特異的エキソヌクレアーゼはexo Iである。一本鎖DNA特異的エキソヌクレアーゼは反応液中、0.1~1.0U/μlの範囲、好ましくは0.15~1.0U/μl、0.2~1.0U/μL、または0.2~0.5U/μLの範囲で含まれていてもよいが、これに限定されない。exo Iについての酵素活性単位(U)は、37℃、30分の反応において、一本鎖DNAの10nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。RecJについての酵素活性単位(U)は、37℃、30分の反応において、一本鎖DNAの0.05nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。
 本発明の方法に用いる反応液はさらに、アンモニウム塩を含んでいてもよい。アンモニウム塩の例としては、硫酸アンモニウム、塩化アンモニウム、および酢酸アンモニウムが挙げられる。特に好ましいアンモニウム塩は硫酸アンモニウムまたは酢酸アンモニウムである。アンモニウム塩は反応液中、0.1mM~100mMの範囲、好ましくは0.1mM~50mM、1mM~50mM、1mM~20mMの範囲で含まれていてもよいが、これに限定されない。
 第二の酵素群の一つとして、DNAリガーゼ活性を有する酵素として大腸菌由来のDNAリガーゼを用いる場合、その補因子であるNAD(ニコチンアミドアデニンジヌクレオチド)が反応液中に含まれる。NADは反応液中、0.01mM~1.0mMの範囲、好ましくは0.1mM~1.0mM、0.1mM~0.5mMの範囲で含まれていてもよいが、これに限定されない。
 本発明の方法に用いる反応液はさらに、還元剤を含んでいてもよい。好ましい還元剤の例としては、DTT、β-メルカプトエタノール(2-メルカプトエタノール)、トリス(2-カルボキシエチル)ホスフィン(TCEP)およびグルタチオンが挙げられる。好ましい還元剤はDTTである。還元剤は、反応液中に1.0mM~15.0mMの濃度で、好ましくは2.0mM~10.0mM、4.0mM~8.0mMの濃度で含まれていてもよい。
 本発明の方法に用いる反応液はまた、ATPを再生するための酵素および基質を含んでいてもよい。ATP再生系の酵素と基質の組み合わせとしては、クレアチンキナーゼとクレアチンホスフェート、およびピルビン酸キナーゼとホスホエノールピルビン酸が挙げられる。ATP再生系の酵素としてはミオキナーゼが挙げられる。好ましいATP再生系の酵素と基質の組み合わせはクレアチンキナーゼおよびクレアチンホスフェート、である。
 反応液中に含まれる第一、第二、及び第三の酵素群については、上記<第一、第二および第三の酵素群>の項目に記載した通りである。
 ある態様において、本発明の方法に用いる第一の酵素群は、DnaA活性を有する酵素、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素または酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DnaB型ヘリカーゼ活性を有する酵素、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、およびDNAポリメラーゼIII*活性を有する酵素または酵素群、の組み合わせ含んでいてよい。ここにおいて、1種以上の核様体タンパク質はIHFまたはHUであってよく、DNAジャイレース活性を有する酵素または酵素群は、GyrAおよびGyrBからなる複合体であってよく、DnaB型ヘリカーゼ活性を有する酵素はDnaBヘリカーゼであってよく、DNAヘリカーゼローダー活性を有する酵素はDnaCヘリカーゼローダーであってよく、DNAプライマーゼ活性を有する酵素はDnaGプライマーゼであってよく、DNAクランプ活性を有する酵素はDnaNクランプであってよく、そして、DNAポリメラーゼIII*活性を有する酵素または酵素群は、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEのいずれかを含む酵素または酵素群であってよい。
 別の態様において、本発明の方法に用いる第二の酵素群は、DNAポリメラーゼI活性を有する酵素およびDNAリガーゼ活性を有する酵素の組み合わせを含んでいてよい。あるいは、第二の酵素群は、DNAポリメラーゼI活性を有する酵素、DNAリガーゼ活性を有する酵素、およびRNaseH活性を有する酵素の組み合わせを含んでいてよい。
 また別の態様において、本発明の方法に用いる第三の酵素群は、トポイソメラーゼIII活性を有する酵素および/またはトポイソメラーゼIV活性を有する酵素を含んでいてよい。あるいは、第三の酵素群は、トポイソメラーゼIII活性を有する酵素およびRecQ型ヘリカーゼ活性を有する酵素の組み合わせを含んでいてよい。あるいはまた、第三の酵素群は、トポイソメラーゼIII活性を有する酵素、RecQ型ヘリカーゼ活性を有する酵素、およびトポイソメラーゼIV活性を有する酵素の組み合わせであってもよい。
 本発明の方法は、工程(2)として、上記反応混合物を所定の温度範囲で保温する工程をさらに含んでもよい。所定の温度範囲は、DNA複製反応が進行することのできるものであれば特に制限はないが、たとえばDNAポリメラーゼの至適温度である20℃~80℃、25℃~50℃、または25℃~40℃の範囲であることができる。所定の温度範囲内での保温は、反応中にその所定の温度範囲内の温度変化または温度変動を許容する。好ましい態様において、上記工程(2)は、上記反応混合物を等温条件下で保温する工程であってもよい。等温条件としては、DNA複製反応が進行することのできるものであれば特に制限はないが、たとえばDNAポリメラーゼの至適温度である20℃~80℃の範囲に含まれる一定の温度とすることができ、25℃~50℃の範囲に含まれる一定の温度とすることができ、25℃~40℃の範囲に含まれる一定の温度とすることができ、30℃程度とすることができる。本明細書において「等温条件下で保温する」、「等温で反応させる」の用語は、反応中に設定した温度に対して±7℃、±5℃、±3℃、または±1℃の温度範囲内に保つことを意味する。保温時間は、目的とする環状DNAの増幅産物の量に応じて適宜設定することができるが、たとえば1~24時間とすることができる。
 あるいは、本発明の方法は、工程(2)として、上記反応混合物を、30℃以上でのインキュベーションおよび27℃以下でのインキュベーションを繰り返す温度サイクル下で、インキュベートする工程をさらに含んでいてもよい。30℃以上でのインキュベーションは、oriCを含む環状DNAの複製開始が可能な温度範囲であれば特に限定はなく、例えば、30~80℃、30~50℃、30~40℃、37℃であってよい。30℃以上でのインキュベーションは、特に限定されないが、1サイクルあたり10秒~10分間であってもよい。27℃以下でのインキュベーションは、複製開始が抑制され、DNAの伸張反応が進行する温度であれば特に限定はなく、例えば、10~27℃、16~25℃、24℃、であってよい。27℃以下でのインキュベーションは、特に限定されないが、増幅する環状DNAの長さに合わせて設定することが好ましく、例えば1サイクルにつき、1000塩基あたり1~10秒間であってもよい。温度サイクルのサイクル数は特に限定されないが、10~50サイクル、20~40サイクル、25~35サイクル、30サイクルであってもよい。
 ある態様において、工程(2)は、油中水滴型エマルジョン内で行ってもよい。油中水滴型エマルジョンは、工程(1)で形成した反応混合物にミネラルオイルおよび界面活性剤を添加して混合することにより調製することができる。ミネラルオイルおよび界面活性剤の種類および量は、当業者が適宜選択することができる。
 本発明の方法は、工程(2)の後に、第一から第三の酵素群を含まない反応液で五倍以上に希釈した後、再保温する工程をさらに含んでいてもよい。酵素群の希釈により新たな複製開始が抑えられる一方で、進行途中の複製伸長、カテナン形成、分離反応は残留酵素の効果で継続して進行する。また、反応中にニックなどが入って生じた副生成物も、この過程で残留ライゲースなどの効果によって修復可能である。よって、増幅中間体や副生成物からの最終産物への移行が特異的に導かれ、目的のスーパーコイル構造の環状DNAの収率向上が期待できる。
 本発明の方法は、工程(2)の後に、直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼで処理する工程をさらに含んでいてもよい。直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼで処理することで、増幅反応中に生じた副産物である直鎖状DNAを分解して除去することができる。直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼの種類および用いる量は、上述のとおりであってもよい。直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼによる処理は、例えば、25℃~40℃で、30分間~3時間行ってもよい。
 本発明の方法は、工程(2)の後に、ギャップリペア酵素で処理する工程をさらに含んでいてもよい。ギャップリペア酵素は、二本鎖DNAにおいて1個または複数の連続したヌクレオチドが欠けた状態であるギャップ、または二本鎖DNAにおいて隣り合ったヌクレオチド間のリン酸ジエステル結合が切断された状態のニックを修復し、完全な二本鎖スーパーコイルDNAとする酵素群である。ギャップリペア酵素で処理することで、増幅反応中に副産物として生じていたギャップまたはニックの入ったDNAを修復し、目的のスーパーコイル産物の収率を向上させる効果がある。
 ギャップリペア酵素は、二本鎖DNAのギャップまたはニックを修復できる酵素群であれば、その種類や生物学的由来に特に制限はない。例えば、エキソヌクレアーゼIII、DNAポリメラーゼI、DNAリガーゼ、DNAジャイレース活性を有する酵素または酵素群、の組合せを使用できる。エキソヌクレアーゼIII活性を有する酵素は5~100mU/μLの濃度で用いてもよいが、これに限定されない。エキソヌクレアーゼIIIについての酵素活性単位(U)は、37℃、30分の反応において、二本鎖DNAの1nmolのデオキシリボヌクレオチドを酸可溶性とするのに必要な酵素量を1Uとした単位である。DNAポリメラーゼI、DNAリガーゼ、DNAジャイレース活性を有する酵素または酵素群は、それぞれ前述の第一または第二の酵素群において定めた濃度で用いて良いが、これに限定されない。ギャップリペア酵素による処理は、例えば、25~40℃で、5~120分間、好ましくは10~60分間、行ってもよい。
 本発明の方法は、工程(2)の後に、目的に応じて、環状DNAの増幅産物を精製する工程を含んでもよい。環状DNAの精製は、当業者に利用可能な手法を用いて適宜実施することができる。
 本発明の方法を用いて増幅した環状DNAは、反応後の反応混合物をそのまま、あるいは適宜精製したものを、形質転換等のその後の目的に用いることができる。
 <環状DNAの増幅用組成物およびキット>
 本発明は、環状DNAの増幅用組成物であって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
を含む、前記組成物にも関する。
 本発明の組成物は、さらに、タンパク質の非特異吸着抑制剤、核酸の非特異吸着抑制剤、直鎖状DNA特異的エキソヌクレアーゼ、RecG型ヘリカーゼ、一本鎖DNA特異的エキソヌクレアーゼ、アンモニウム塩、NAD、還元剤、DNAの安定化因子、ならびに、ATP再生系の酵素および基質の組み合わせ、から選択される1以上の成分を含んでいてもよい。
 本発明の組成物に含まれる成分についての具体的な成分および濃度については、上記<環状DNA>、<第一、第二、第三の酵素群>、<環状DNAの増幅方法>の項目において記載した通りである。
 また、本発明は、環状DNAの増幅用キットであって、
環状DNAの複製を触媒する第一の酵素群;
岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
緩衝液;
ATP;
GTP、CTPおよびUTP;
dNTP;
マグネシウムイオン源;および
アルカリ金属イオン源;
の組み合わせを含む、前記キットにも関する。
 本発明のキットは、上記の構成品を1つのキットにすべて含むものであってもよく、また、本発明の方法に利用する目的のためのキットであれば、上記の構成品の一部を含まないものであってもよい。上記の構成品の一部を含まないキットである場合、実施者が、増幅時に必要な成分を、当該キットに追加して、本願発明の増幅方法を実施することができる。
 本発明のキットは、さらに、タンパク質の非特異吸着抑制剤、核酸の非特異吸着抑制剤、直鎖状DNA特異的エキソヌクレアーゼ、RecG型ヘリカーゼ、一本鎖DNA特異的エキソヌクレアーゼ、アンモニウム塩、NAD、還元剤、DNAの安定化因子、ならびに、ATP再生系の酵素および基質の組み合わせ、から選択される1以上の成分を含む追加の構成品を含んでいてもよい。本発明のキットはさらにまた、増幅反応後の処理のために、直鎖状DNA特異的エキソヌクレアーゼ、一本鎖DNA特異的エキソヌクレアーゼ、およびギャップリペア酵素、から選択される1以上の成分を含む追加の構成品を含んでいてもよい。追加の構成品は、1つのキットとして本発明のキットに含まれていてもよく、または本発明のキットとともに使用することを前提とした別のキットとして提供されてもよい。
 本発明のキットに含まれる各構成品についての具体的な成分および濃度については、上記<環状DNA>、<第一、第二、第三の酵素群>、<環状DNAの増幅方法>の項目において記載した通りである。
 本発明のキットは、上記構成品の混合物を1つに包装したものを含むものであってもよいが、上記構成品を個別に、あるいは数種類ずつまとめて混合したものを別個に包装したものを含むものであってよい。
 本発明のキットはまた、本発明の環状DNAの増幅方法を実施するための指示が記載された説明書を含むものであってもよい。当該説明書には、上記<環状DNA>、<第一、第二、第三の酵素群>、<環状DNAの増幅方法>の項目において記載した事項が説明として記載されていてもよい。
 以下、実施例に基づき本発明を具体的に説明する。なお、本発明は、下記実施例に記載の範囲に限定されるものではない。
 実施例1:環状DNAの増幅
<材料と方法>
 表1に示す組成の反応液に鋳型DNAを添加して氷上で混合した後、30℃のインキュベータで1時間、2時間、または3時間保温した。1反応あたりの総容量は10マイクロリットルとなるようにした。30℃における反応後、反応産物をアガロースゲル電気泳動(0.5% 1×TAE、150 V、100分間、14℃)したのち、SYBR Green(タカラバイオ株式会社)を用いてDNAを検出した。
Figure JPOXMLDOC01-appb-T000001
 表中、SSBは大腸菌由来SSB、IHFは大腸菌由来IhfAおよびIhfBの複合体、DnaGは大腸菌由来DnaG、DnaNは大腸菌由来DnaN、PolIII*は大腸菌由来DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEのからなる複合体であるDNAポリメラーゼIII*複合体、DnaBは大腸菌由来DnaB、DnaCは大腸菌由来DnaC、DnaAは大腸菌由来RNaseH、Ligaseは大腸菌由来DNAリガーゼ、PolIは大腸菌由来DNAポリメラーゼI、GyrAは大腸菌由来GyrA、GyrBは大腸菌由来GyrB、Topo IVは大腸菌由来ParCおよびParEの複合体、Topo IIIは大腸菌由来トポイソメラーゼIII、RecQは大腸菌由来RecQを表す。
 SSBは、SSBの大腸菌発現株から、硫安沈殿及びイオン交換カラムクロマトグラフィーを含む工程で精製し、調製した。
 IHFは、IhfA及びIhfBの大腸菌共発現株から、硫安沈殿及びアフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。
 DnaGは、DnaGの大腸菌発現株から、硫安沈殿、陰イオン交換カラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 DnaNは、DnaNの大腸菌発現株から、硫安沈殿及び陰イオン交換カラムクロマトグラフィーを含む工程で精製し、調製した。
 PolIII*は、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ及びHolEの大腸菌共発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 DnaB, DnaCは、DnaB及びDnaCの大腸菌共発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 DnaAは、DnaAの大腸菌発現株から、硫安沈殿、透析沈殿、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 GyrA, GyrBは、GyrAの大腸菌発現株とGyrBの大腸菌発現株の混合物から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 Topo IVは、ParCの大腸菌発現株とParEの大腸菌発現株の混合物から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 Topo IIIは、Topo IIIの大腸菌発現株から、硫安沈殿及びアフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。
 RecQは、RecQの大腸菌発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィー、及びゲル濾過カラムクロマトグラフィーを含む工程で精製し、調製した。
 RNaseH、Ligase、PolIは市販の大腸菌由来の酵素を用いた(タカラバイオ株式会社)。
 鋳型DNAとしては、9.6 kbの環状DNA(複製開始配列oriCを持つ環状DNA、カナマイシン耐性(Km))、80 kbの長鎖環状DNA(複製開始配列oriCを持つ環状DNA、カナマイシン耐性(Km))、200 kbの長鎖環状DNA(複製開始配列oriCを持つ環状DNA、カナマイシン耐性(Km))、または試験管内連結により環状化したDNAを用いた。
 9.6 kbの環状DNAおよび80 kb 、200 kbの長鎖環状DNAは、大腸菌細胞内組換え反応によって調製した。具体的には、λファージの組換えタンパク質群を発現している大腸菌を用い、細胞内組換え反応によって、カナマイシン耐性カセットと大腸菌染色体のうちoriCを含む領域とを含む、所望の長さの環状DNAを調製した。
 試験管内連結による環状化DNAの調製方法を、図2に示す。具体的には、複製開始配列oriCとカナマイシン耐性(Km)を持つもののPCR断片(2.3kb)に、dnaA遺伝子およびdnaN遺伝子配列を有するPCR断片(以下、dnaA-dnaN断片と記載する)(2.6 kb)を、Gibson assembly法により反応させることにより連結した。2つのPCR断片は両端に付加した20塩基の相同配列(H1, H2と記載する)を介して連結し、環状構造となる。反応は、Gibson Assembly Master Mix(NEB社)に上記2種類のPCR断片を混合し、50℃で15分間反応させることによって行った。反応後、反応溶液0.1マイクロリットル分(反応溶液の10倍希釈溶液1マイクロリットル分)を鋳型DNAとして、10マイクロリットルの増幅反応系(表1の組成)に直接添加し、30℃で1時間反応させた。
<結果1> 9.6 kbの環状DNA(0.08 ng、環状分子数にして約107個)を鋳型として用いた場合
 SYBR Greenによる増幅産物の検出結果を図3に示す。
 副次的産物(反応中間産物)もみられるものの、スーパーコイル構造の環状DNA増幅産物(黒枠で示す)を確認することができた。
 反応後の溶液をそのまま用いて大腸菌DH5α株を形質転換し、カナマイシン含有寒天培地で培養し、コロニー数を計測することによって、環状DNAの増幅量を求めた結果を表2に示す。対照としては、保温時間0時間の反応溶液を用いた。
Figure JPOXMLDOC01-appb-T000002
 本発明の方法により、9.6 kbの環状DNAを環状DNAとしておよそ6,000倍に増幅することができた。
<結果2> 80 kbおよび200 kbの長鎖環状DNAを鋳型として用いた場合
 SYBR Greenによる増幅産物の検出結果を図4に示す。
 スーパーコイル構造の環状DNA増幅産物(黒枠または矢印で示す)を確認することができた。
 本発明の方法により、80 kb又は200 kbという長大な環状DNAを鋳型として用いた場合でも、良好に増幅産物が得られることがわかった。
<結果3> 試験管内連結により環状化したDNAを鋳型として用いた場合
 SYBR Greenによる増幅産物の検出結果を図5に示す。
 本発明の方法により、試験管内連結により環状化したDNAを鋳型として用いた場合でも、良好に増幅産物が得られることがわかった。
 反応後の溶液をそのまま用いて大腸菌DH5α株を形質転換し、カナマイシン含有寒天培地で培養し、コロニー数を計測することによって、環状DNAの増幅量を求めた結果を表3に示す。対照として、増幅反応を行わなかったサンプルを用いた。
Figure JPOXMLDOC01-appb-T000003
 Gibson Assembly法を用いて環状化したDNAが、本発明の方法により、環状分子としておよそ2,000倍に増幅されたことがわかった。
 実施例2:少数の鋳型分子からの環状DNAの増幅
 実施例1に記載の9.6 kbの環状DNAを用い、実施例1と同様に増幅反応を行った。
(2-1)増幅効率の検討
 増幅反応液(実施例1、表1)10μlに、9.6 kbの環状DNAを環状分子として1~1000分子含まれるように加え、30℃で3時間保温することにより増幅反応を行った。反応物について、0.5%アガロースゲル電気泳動を行い、SybrGreen(タカラバイオ株式会社)で染色し、増幅DNAを検出した(図6a)。また、増幅産物の総DNA量を、PicoGreen検出キット(ThermoFisher社)により定量した(図6b:PicoGreen法)。環状DNA分子としての増幅量を、増幅産物を直接、大腸菌に形質転換し、カナマイシン耐性コロニー数を求めることにより定量した(図6b:形質転換法)。定量結果から、初期DNA量に対する増幅度合いを求め(増幅)、グラフに示した。
 上記の結果より、鋳型DNAとして1分子の環状DNAを、わずか3時間の等温反応で約1011分子にまで、増幅可能であることが明らかとなった(約1,000億倍の増幅)。
(2-2)倍加時間の検討
 増幅反応液(実施例1、表1)80μlに、上記の環状DNAを加え、30℃で保温することにより増幅反応を行った。環状DNAは反応液1μlあたり105分子となるよう加えた。経時的にサンプリングし、サンプルを直接、大腸菌に形質転換し、カナマイシン耐性コロニー数を求めることにより増幅された環状DNA分子数を定量した(図7)。
 上記の結果より、9.6 kbの環状DNA分子の倍加時間は約5分であることが確認された。
 実施例3:混合物から単一な環状DNAクローンの増幅
 実施例1に記載の9.6 kbの環状DNA及び12.0 kbの環状DNA(複製開始配列oriCを持つ環状DNA、カナマイシン耐性(Km))の混合物から単一な環状DNAクローンの増幅を行った。
 12.0 kbの環状DNAは、大腸菌細胞内組換え反応によって調製した。具体的には、λファージの組換えタンパク質群を発現している大腸菌を用い、細胞内組換え反応によって、oriCとカナマイシン耐性遺伝子からなるカセットと大腸菌染色体の一部の領域とを含む、所望の長さの環状DNAを調製した。
 増幅反応液(実施例1、表1)10μlに、上記2種の環状DNAの混合物を反応液中に各15分子あるいは各1.5分子となるように希釈して加え、30℃で6時間保温することにより増幅反応を行った。反応物について、0.5%アガロースゲル電気泳動を行い、SybrGreen(タカラバイオ株式会社)で染色し、増幅DNAを検出した(図8)。
 その結果、環状DNAが1.5分子にまで希釈された反応液では、各反応サンプルすべてに、どちらか一方のクローンのみが増幅された。このことは、鋳型DNAが混合物であっても、それを反応液中に1分子レベルにまで希釈することで、単一な環状DNAクローンの増幅が可能であることを示す。
 実施例4:継代増幅
 lacZ環状DNAを用いて、環状DNAの継代増幅について試験した。
 lacZ環状DNA(9.0 kb)は、oriCを含む二本鎖DNA断片(1.0 kb)、カナマイシン耐性遺伝子(Km)を含む二本鎖DNA断片(4.6 kb)及びlacZ(β-ガラクトシダーゼ)遺伝子を含む二本鎖DNA断片(3.4 kb)を連結させることにより調製した。増幅反応液(実施例1、表1)10μlに、lacZ環状DNAを1,000分子含まれるように加え、30℃で3時間保温することにより増幅反応を行い、これを1継代とした。前の継代数での増幅反応物を10倍希釈し、これを1μl、新たな増幅反応液に添加して同様に反応させることで次の継代増幅とした。この継代増幅を10回まで繰り返した。継代ごとの増幅産物について、0.5%アガロースゲル電気泳動を行い、SybrGreen(タカラバイオ株式会社)で染色し、検出した(図9)。また、その増幅産物の一部を大腸菌形質転換し、カナマイシン耐性コロニー数よりDNA増幅度合を定量、この値より、何世代指数増幅を繰り返したかを算出し総世代数として示した。
 その結果、10回の継代後も環状DNAの増幅が効率よく進行している事が分かった。実施例2(図7)の結果が示すように、環状DNAがある程度増幅すると、基質や酵素の枯渇により、増幅速度は頭打ちになる。一方で、本実施例の結果は、増幅反応物の一部を新たな反応液にて継代することで、環状DNAの指数増幅を半永久的に繰り返すことが可能であることを示している。すなわち、本発明の方法は、環状DNAの増幅を、細胞の継代増殖のように行うことが可能な方法である。
 実施例5:増幅反応における複製エラー発生率
 実施例4における鋳型の環状DNAにはlacZ遺伝子が含まれているため、この環状遺伝子で形質転換した大腸菌をX-galプレート上で培養すると、lacZ遺伝子が正常に発現したコロニー(lacZ+)はX-galを分解できるため青色を呈し、複製エラーによる変異導入でlacZ遺伝子が正常に機能しなくなったコロニー(lacZ)はX-galを分解できないため白色を呈する。すなわち、この環状遺伝子で形質転換した大腸菌がX-galプレート上で呈する色によって、増幅した環状DNAにおける複製エラーを判定できる。
 各継代サンプルの増幅反応物を直接大腸菌に形質転換し、X-galプレート上で培養して、lacZ-出現率を求めた。このlacZ-出現率と実施例4で求めた総世代数とから、Barnes の手法 (Barnes WM Gene. 1992, 112, 29-35) に従い、複製サイクル1世代あたりのエラー発生率を算出した。結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 上記の結果は、複製エラーは1億塩基につき1箇所程度(塩基当たり平均1.4 x 10-8エラー)であることを示す。これは、細胞内(ミスマッチ修復系をもたない株)の変異率と同程度であり、Taqポリメラーゼの約1万倍の正確性である。
 実施例6:エキソヌクレアーゼおよびRecGの追加
 実施例1に記載の80 kbの環状DNAを用い、増幅反応液にRecG型ヘリカーゼおよび直鎖状DNA特異的エキソヌクレアーゼをさらに添加して増幅反応を行う場合の効果を検討した。
 80 kbの環状DNAは、実施例1に示したとおりに調製した。
 RecG型ヘリカーゼとして、RecGを用いた。RecGは、RecGの大腸菌発発現株から、硫安沈殿、アフィニティーカラムクロマトグラフィーを含む工程で精製し、調製した。
 直鎖状DNA特異的エキソヌクレアーゼとして、市販のエキソヌクレアーゼであるPlasmid-SafeTMATP-Dependent DNase (epicentre)を用いた。ユニット数は、製造元の記載に従った。
 実施例1の表1に示す反応組成に、80 kbの環状DNAを0.8pg/μlまたは8pg/μl、RecGを0nM、100nM、300nM、または1000nM、および直鎖状DNA特異的エキソヌクレアーゼを0U/μlまたは0.2U/μl、となるように加えた増幅反応液(10μl)を、30℃で24時間保温することにより増幅反応を行った。反応物について、0.5%アガロースゲル電気泳動(1×TAEバッファー、150 V、100分)を行い、SybrGreen(タカラバイオ株式会社)で染色し、増幅DNAを検出した。
 その結果、RecGおよび直鎖状DNA特異的エキソヌクレアーゼの添加により、DNAの切断等による副産物である直鎖状DNAの生成が低減され、目的のスーパーコイル構造の環状DNA増幅産物の生成量の向上が観察された(図10)。
 実施例7:各種条件検討
 反応液の各成分について条件検討を行った結果を示す。
 1.方法
 鋳型となる環状DNAとして、8.0 kbの環状DNAを用いた。8.0 kbの環状DNAは、M13mp18プラスミドベクターにoriC断片を挿入して作成した。
 条件A~Rについては、表5に示す増幅反応液に8.0 kbの環状DNAを終濃度8.0ng/μlまたは0.8ng/μlになるように加え、30℃で1時間反応させた。反応液に[α-32P]dATPを添加しておき、DNA複製反応後、鋳型DNAに取り込まれたdNTP量を液体シンチレーションカウンターにて計測した。dNTP取り込み量は25μl反応液あたりの値を算出した。終濃度8.0ng/μlの環状DNAを鋳型として、100%複製反応が進行した場合(1ラウンドの複製)、600pmolのdNTPが取り込まれる。反応液の一部はアガロースゲル電気泳動後、BASイメージングプレートにて32P取り込み産物を検出し、目的のスーパーコイル構造産生を確認した。
 条件Sについては、表5に示す増幅反応液に8.0 kbの環状DNAを終濃度8.0ng/μlまたは0.8ng/μlになるように加え、30℃で2時間反応させた。反応物について、0.5%アガロースゲル電気泳動(1×TAEバッファー、150 V、100分)を行い、SybrGreen(タカラバイオ株式会社)で染色し、増幅DNAを検出した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 2.結果
 (1)条件A
 第一、第二及び第三の酵素群を加えて反応させることで、数ラウンドの複製サイクルの繰り返しが導かれることを見出した。しかしながら、複製サイクルを経るごとに反応の基質タンパク質が不足してくるため、複製サイクルは4ラウンドまでで停滞することが判明した(図11)。
 (2)条件B
 反応開始の鋳型DNA量を減らすことで複製サイクル数を向上させることができるかどうかについて検討した。反応開始時の鋳型DNA量について、8ng/μlおよび0.8ng/μlで検討した。
 その結果、反応開始時の鋳型DNA量が8ng/μlの場合は複製反応が見られたものの、鋳型DNA量を0.8ng/μlに減少させると、複製効率が著しく阻害され、DNAの増幅が観察されなかった(図12)。このことは、複製サイクル数を向上させるためには、単に鋳型DNA量を減少させればよいのではなく、反応組成の各種成分の量を含めた条件検討が必要であることを示している。
 (3)条件C
 反応組成におけるGTP、CTPおよびUTPの量を検討した。反応開始時のGTP、CTPおよびUTPの濃度について、0.2mM、0.5mM、1.0mMおよび2.0mMを検討した。
 結果を図13に示す。
 (4)条件D
 反応組成におけるIHFの量を検討した。反応開始時のIHFの濃度について、0nM、10nM、20nM、40nM、100nM、および200nMを検討した。
 結果を図14に示す。
 (5)条件E
 反応組成におけるTopo IVの量を検討した。反応開始時のTopo IVの濃度について、0nM、1nM、2nM、5nM、10nM、および20nMを検討した。
 結果を図15に示す。
 (6)条件F
 反応組成におけるDNAジャイレースの量を検討した。反応開始時のGyrA-GyrB複合体の濃度について、0nM、10nM、25nM、50nM、100nM、および200nMを検討した。
 結果を図16に示す。
 (7)条件G
 反応組成におけるDNAポリメラーゼIII*の量を検討した。反応開始時のPol III*の濃度について、0nM、1nM、2nM、5nM、および10nMを検討した。
 結果を図17に示す。
 (8)条件H
 反応組成におけるアルカリ金属イオン源の量を検討した。反応開始時のグルタミン酸カリウムの濃度について、50mMおよび150mMを検討した。
 結果を図18に示す。
 (9)条件I
 反応組成におけるタンパク質の非特異吸着抑制剤および/または核酸の非特異吸着抑制剤の量を検討した。反応組成にtRNAを含まず0.1mg/ml BSAを含む条件、20ng/μl tRNAおよび0.1mg/ml BSAを含む条件、tRNAを含まずBSAを0.5mg/ml含む条件、を検討した。
 結果を図19に示す。
 (10)条件J
 反応組成におけるDnaA活性を有する酵素の量を検討した。反応開始時のDnaAの濃度について、0nM、5nM、10nM、20nM、40nM、100nM、および200nMを検討した。
 結果を図20に示す。
 (11)条件K
 反応組成におけるDNAリガーゼ活性を有する酵素の量を検討した。反応開始時のリガーゼの濃度について、0nM、2nM、5nM、10nM、20nM、および50nMを検討した。
 結果を図21に示す。
 (12)条件L
 反応組成における一本鎖DNA結合タンパク質(SSB)の量を検討した。反応開始時のSSBの濃度について、0nM、10nM、20nM、50nM、100nM、200nM、および500nMを検討した。
 結果を図22に示す。
 (13)条件M
 反応組成におけるDNAポリメラーゼI活性を有する酵素の量を検討した。反応開始時のPol Iの濃度について、0nM、2nM、5nM、10nM、20nM、および50nMを検討した。
 結果を図23に示す。
 (14)条件N
 反応組成におけるDnaB型ヘリカーゼ活性を有する酵素およびDNAヘリカーゼローダー活性を有する酵素の量を検討した。反応開始時のDnaB-DnaC複合体の濃度について、0nM、5nM、10nM、20nM、および40nMを検討した。
 結果を図24に示す。
 (15)条件O
 反応組成におけるRNaseH活性を有する酵素の量を検討した。反応開始時のRNaseHの濃度について、1nM、3nM、および10nMを検討した。
 結果を図25に示す。
 (16)条件P
 条件Pについて、反応開始時の鋳型DNA量を、8ng/μl、0.8ng/μl、および0.27ng/μlとして増幅反応を検討した。
 結果を図26に示す。条件Pでは、鋳型DNAの量が0.8ng/μlの場合も効率よく増幅できた。さらに、鋳型DNAの量を0.27ng/μlに減らした場合も効率よく増幅できた。DNA合成量としては、100倍を超えて増幅していることが確認できた。
 (17)条件Q
 反応組成における、第三の酵素群の酵素の組成および量について検討した。第三の酵素群としてTopo IV、Topo III、およびRecQを用いた。各酵素について検討した濃度は図27に示すとおりである。
 結果を図27に示す。
 (18)条件R
 条件Rについて、DNAジャイレースの量を検討した。反応開始時のGyrA-GyrB複合体の濃度について、0nM、10nM、25nM、50nM、および150nMを検討した。
 結果を図28に示す。
 (19)条件S
 条件Sとして、tRNA、NAD、硫酸アンモニウム(AS)、IHF、SSB、TopoIVの濃度を変更して環状DNAの増幅を検討した。各成分について検討した濃度は図29に示すとおりである。
 結果を図29に示す。
 実施例8:バッファー組成の改良
 表1に示す反応バッファーの組成について、さらに条件検討を行った。
 具体的には、実施例1に記載の200kb環状DNAを0.5 pM用い、反応バッファーの組成に変更を加えた他は、実施例1と同様に増幅反応を行った。
 (1)ジチオスレイトール(DTT)の量の改良
 DTTについて、実施例1では8 mMの濃度としていたところ、4 mMに変更して増幅反応を行った。その結果、DTTの量を半減させても環状DNAの増幅反応が進行したことを確認した。
 (2)アルカリ金属イオン源の検討
 表1の反応バッファーの組成について、DTTを4 mMに変更するとともに、アルカリ金属イオン源を含まない反応バッファー、および、アルカリ金属イオン源としてグルタミン酸カリウムの代わりに150 mM 酢酸カリウムを含む反応バッファーを用いて、環状DNAの増幅反応を行った。
 結果を図30に示す。長鎖環状DNAを0.5 pM以下の低濃度から増幅する場合には、低分子の副生成物が増幅され、目的の増幅産物であるスーパーコイルの産生が確認できなくなるという問題が生じる。しかし、グルタミン酸カリウムや酢酸カリウムといったアルカリ金属イオン源を反応バッファーに含めることで、長鎖環状DNAを0.5 pMの低濃度から増幅する場合でも良好に目的産物であるスーパーコイルの増幅を確認することができた。
 以降の実験には、以下に示す組成の反応バッファーを用いた。
Figure JPOXMLDOC01-appb-T000008
 (3)緩衝剤の検討
 表6のバッファーの組成について、20 mM Tris-HCL (pH 8.0)を20 mM Tris-OAc (pH 8.0)に変更して環状DNAの増幅反応を行った。その結果、20 mM Tris-OAc (pH 8.0)を用いた場合も、20 mM Tris-HCL (pH 8.0)を用いた場合と同様の増幅産物が観察された。
 (4)ジチオスレイトール(DTT)の代替物の検討
 表6のバッファー組成について、4 mM DTTを、4 mM 2-メルカプトエタノール(2-Me)または4 mM トリス(2-カルボキシエチル)ホスフィン(TCEP)に変更して環状DNAの増幅反応を行った。その結果、2-MeおよびTCEPのいずれを用いた場合も、DTTを用いた場合と同様の増幅産物が観察された。
 (5)硫酸アンモニウムの代替物の検討
 表6のバッファー組成について、10 mM 硫酸アンモニウムを、10 mM 酢酸アンモニウムに変更して環状DNAの増幅反応を行った。その結果、酢酸アンモニウムを用いた場合も、硫酸アンモニウムを用いた場合と同様の増幅産物が観察された。
 実施例9:反応液のプレインキュベーションによる増幅効率化
 増幅反応前にプレインキュベーションを行う場合の効果を検討した。
 鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液を氷上で調製した。0℃、16℃、または30℃で、それぞれ0、5、15または30分間プレインキュベーションを行った。その後、反応液に鋳型DNAを終濃度が0.05 pMとなるよう添加して、30℃のインキュベータで3時間保温した。反応後、反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図31に示す。16℃または30℃でプレインキュベーションを行った場合、目的産物であるスーパーコイルの産生が増加したことが確認された。増幅反応前のプレインキュベーションは、長鎖環状DNAの低濃度からの増幅の場合でも、目的の増幅産物であるスーパーコイルの産生が多くなるという点で有効である。
 実施例10:RecGおよびRecJの追加
 増幅反応液にRecG型ヘリカーゼおよび一本鎖DNA特異的エキソヌクレアーゼをさらに添加して増幅反応を行う場合の効果を検討した。
 鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
 RecG型ヘリカーゼとして、RecGを用いた。RecGは実施例6と同様に調整したものを用いた。
 一本鎖DNA特異的エキソヌクレアーゼとしてRecJを用いた。RecJはNEB社より入手した。
 表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液に、200 kb環状DNAを0.5 pM(67pg/μl)、RecGを0nMまたは100nM、RecJを0U/μlまたは0.5U/μlとなるように加えた増幅反応液(10μl)を30℃で3時間または25時間保温することにより増幅反応を行った。反応後、反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図32に示す。RecGおよびRecJの添加により、低分子の副次的な増幅産物の精製が低減され、目的のスーパーコイル構造の環状DNA増幅産物の生成量の向上が観察された。増幅反応におけるRecG型ヘリカーゼおよび一本鎖DNA特異的エキソヌクレアーゼの添加は、特に、長鎖環状DNAを低濃度から増幅する場合に低分子の副生成物が増幅されるという問題を解消する手段として有効である。
 実施例11:RecBCDおよびexo Iの追加
 増幅反応液に直鎖状DNA特異的エキソヌクレアーゼおよび一本鎖DNA特異的エキソヌクレアーゼをさらに添加して増幅反応を行う場合の効果を検討した。
 鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
 直鎖状DNA特異的エキソヌクレアーゼとしてRecBCDを用いた。RecBCDはNEB社より入手した。
 一本鎖DNA特異的エキソヌクレアーゼとしてexo Iを用いた。exo Iは、NEB社より入手した。
 表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液に、200 kb環状DNAを0.5 pM(67pg/μl)、RecBCDを0、1.5、5.0、15.0、または50.0mU/μl、exo Iを200mU/μlとなるように加えた増幅反応液(10μl)を30℃で20時間保温することにより増幅反応を行った。反応後、反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図33に示す。RecBCDおよびexo Iの添加により、DNAの切断等による副産物である直鎖状DNAの生成が低減され、目的のスーパーコイル構造の環状DNA増幅産物の生成量の向上が観察された。増幅反応における直鎖状DNA特異的エキソヌクレアーゼおよび一本鎖特異的エキソヌクレアーゼの添加は、特に、長鎖環状DNAを低濃度から増幅する場合に直鎖状DNAの副生成物が増幅されるという問題を解消する手段として有効である。
 実施例12:反応後処理-希釈再保温による最終産物増加と再保温時のRecBCDおよびexoIによる直鎖状DNAの除去
 増幅反応後に希釈再保温処理を行うことにより、副生成物の除去が可能か否かを検討した。さらに、増幅反応後に直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖特異的エキソヌクレアーゼで処理することにより、副生成物の除去が可能か否かを検討した。
 鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
 直鎖状DNA特異的エキソヌクレアーゼとしてRecBCD、一本鎖DNA特異的エキソヌクレアーゼとしてexo Iを用いた。RecBCDおよびexo Iは実施例10と同様に入手した。
 表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液に、200 kb環状DNAを0.5 pM(67pg/μl)となるように加えた増幅反応液(10μl)を30℃で23時間保温することにより増幅反応を行った。
 増幅反応後の反応液を、表6からクレアチンキナーゼとウシ血清アルブミンを除いた組成の反応バッファーで1/5に希釈し、(i)そのまま30℃で1時間再保温、(ii)RecBCDを200mU/μl添加して30℃で1時間再保温、または(iii)RecBCDを200mU/μlおよびexo Iを200mU/μl添加して30℃で1時間再保温した。反応産物を、希釈再保温前の産物とともに、実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図34に示す。増幅反応後の反応液を希釈再保温することのみによっても目的のスーパーコイル構造の環状DNAが検出できた。さらに、直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖特異的エキソヌクレアーゼ存在下において、副産物である直鎖状DNAを除去することができた。
 希釈再保温処理は、産物中の増幅中間体の複製伸長や分離反応を促し、最終産物であるスーパーコイルDNAの産生量を高める手段として有効である。さらに、再保温の際に直鎖状DNA特異的エキソヌクレアーゼおよび一本鎖特異的エキソヌクレアーゼにより処理を付することは、特に、長鎖環状DNAを低濃度から増幅する場合に副生成物として生じる直鎖状DNAを除去できる手段として有効である。
 実施例13:反応後処理-ギャップリペア(GR)酵素による一本鎖ギャップの修復
 増幅反応後に、ギャップリペア(GR)酵素で処理することにより、目的のスーパーコイル構造の環状DNAの検出が可能か否かを検討した。
 表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液に、15 kb環状DNAを0.5 pM(5pg/μl)となるように加えた増幅反応液(10μl)を30℃で20時間保温することにより増幅反応を行った。鋳型DNAとして用いた15 kbの環状DNAは、大腸菌ゲノム上の15 kb 領域とoriC断片(0.4 kb)とを連結環状化し、大腸菌を用いてクローン化後、精製したものを用いた。
 増幅反応後産物について、20 mlの10 mM Tris-HCl (pH 8.0)で2時間透析を行い、そのうち0.5μlを、GR酵素を含む反応バッファー5μlに添加し、30℃で20分間または60分間インキュベートした。GR酵素としては、Exo III、DNAポリメラーゼI、リガーゼ及びジャイレースの組合せを用い、それぞれ20mU/μl、50nM、50nM、50nMの濃度で添加した。反応バッファーは表6に示す組成のものを用いた。
 GR酵素による処理のポジティブコントロールとして、ニックが入っているDNAであるPhiX174 RFII(NEB社)を用いてギャップリペア反応を行った。ギャップリペアが適切になされると、ニックが修復され、スーパーコイル構造の環状DNAが検出できる。
 反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図35に示す。本実験では、15 kbの環状DNAに至適な増幅時間(3時間程度)を上回る長時間反応のため、スーパーコイル産物はほとんど観察できなくなっている。この産物をGR酵素で処理することにより、スーパーコイル構造の環状DNAが検出できた。このことは、増幅反応後の副産物から、ギャップリペアにより目的のスーパーコイル構造の環状DNAを得ることができることを示している。
 実施例14:長鎖環状DNAの安定化因子およびそれを用いた増幅反応効率化
 (1)長鎖DNAの安定化因子の検討
 長鎖環状DNAを表6からクレアチンキナーゼとウシ血清アルブミンを除いた組成の反応バッファーにて、37℃でインキュベートすると、DNA損傷が誘導され、スーパーコイル構造の環状DNAが減少する様子が観察された。長鎖環状DNAの安定化に寄与する試薬について検討した。
 検討の結果、グルコース、スクロース、ジメチルスルホキシド(DMSO)、ウシ血清アルブミン(BSA)、グリコールエーテルジアミン四酢酸(EGTA)、バソクプロインジスルホン酸二ナトリウム(BDA)、ペニシラミン、タイロン(Tiron, 1,2-ジヒドロキシベンゼン-3,5-スルホネート)、ジエチレレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、Dpsタンパク質、(大腸菌由来)、メタロチオネインタンパク質(ヒト由来)が反応バッファーでの保温時におけるDNAの安定化に効果を示すことが明らかとなった。
 (2)DNA安定化因子による環状DNA増幅反応効率化
 表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液に、200 kb環状DNAを0.5 pM(67pg/μl)、DTPAもしくはTironを0.05、0.1または0.3mM、BDAを0.1、0.3または1mM、Dpsを0.3、1または3μMとなるように加えた増幅反応液(10μl)を30℃で20時間保温することにより増幅反応を行った。増幅後の反応液を、実施例11と同様に、30℃で1時間、希釈再保温した後、反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図36に示す。(1)で見出したDNA安定化因子のうち、DTPA、Tiron、BDA、Dpsタンパク質およびBSAを添加した増幅反応物においては、スーパーコイル構造の環状DNAの産生量が向上しており、環状DNA増幅反応を効率化する作用を有することが明らかとなった。
 実施例15:エマルジョンを用いた長鎖環状DNAの増幅反応
 油中水滴型エマルジョン内での環状DNAの増幅反応を検討した。
 鋳型DNAとして実施例1に記載の200 kb環状DNAを用いた。
 表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液に、200 kb環状DNAを0.5 pM(67pg/μl)となるように加えた増幅反応液(5μl)を調製した。この増幅反応液に、界面活性剤(2% ABIL EM90および0.05% Triton-X100)を含むミネラルオイル100μlを添加し、ボルテックスに60秒かけることにより混合した。この混合物を30℃で3時間または18時間時間保温することにより増幅反応を行った(エマルジョン)。また、比較のために、上記の増幅反応液をそのまま30℃で3時間または18時間保温することにより増幅反応を行った(バルク)。反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図37に示す。バルクの系では、低分子の副産物の生成が見られるとともに、反応時間が長くなると目的のスーパーコイル構造のDNAが観察されなくなった。エマルジョンの系では、低分子の副産物の生成が抑制されるとともに、反応時間に応じて目的のスーパーコイル構造のDNAの産生が向上した。
 実施例16:温度サイクルによる増幅効率化
 環状DNAの増幅反応においては、低分子であるほど複製が早く完了するので、副生成物として低分子の環状DNAが生じてしまうと、副生成物の方が早く増幅してしまう。長鎖DNAの増幅にあたっては、この現象により副生成物の増幅が優位になり、目的産物である長鎖DNAの増幅が見られなくなることが問題であった。長鎖DNAを効率よく増幅するためには、低分子DNAの過剰増幅を抑制する必要がある。
 ここで、発明者らはoriCを含む環状DNAの複製開始には30℃以上の温度が至適である一方、伸張・分離反応についてはより低温でも進行する点に着目した。環状DNAの増幅反応において温度サイクルをつけることで、複製開始のサイクルを揃え、低分子DNAの過剰増幅を抑制することを試みた。
 表6に示す組成の反応バッファーおよび表1に示す組成の酵素群を含む反応液を実施例8に従い30℃、30分間プレインキューベートした後、200 kb環状DNA(実施例1)を0.5 pM(67pg/μl)となるように加えた増幅反応液(10μl)を調製した。この増幅反応液について、37℃、5分間→16℃または24℃、30分間の温度サイクルを30サイクル実施した(2-Stepサイクル)。また、比較のための試料として、上記の増幅反応液を30℃、21時間保温した。反応産物を実施例1と同様にアガロースゲル電気泳動に供してDNAを検出した。
 結果を図38に示す。2-Stepサイクルで反応させた場合、低分子の副生成物の産生が抑制されるとともに、目的のスーパーコイル構造のDNAの産生量が増大した。
 本発明により、大腸菌細胞やプラスミドベクターを用いることなく、環状DNA、特に長鎖環状DNAを簡便かつ指数的に増幅することのできる方法を提供することができる。
 

Claims (29)

  1.  環状DNAの増幅方法であって、以下の工程:
    (1)鋳型となる環状DNAと、以下:
     環状DNAの複製を触媒する第一の酵素群;
     岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
     2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
     緩衝液;
     ATP;
     GTP、CTPおよびUTP;
     dNTP;
     マグネシウムイオン源;および
     アルカリ金属イオン源;
    を含む反応液との反応混合物を形成する工程、
    ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
    (2)工程(1)において形成した反応混合物を等温条件下で保温する工程;
    を含む、前記方法。
  2.  環状DNAの増幅方法であって、以下の工程:
    (1)鋳型となる環状DNAと、以下:
     環状DNAの複製を触媒する第一の酵素群;
     岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
     2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
     緩衝液;
     ATP;
     GTP、CTPおよびUTP;
     dNTP;
     マグネシウムイオン源;および
     アルカリ金属イオン源;
    を含む反応液との反応混合物を形成する工程、
    ここで当該環状DNAはDnaA活性を有する酵素と結合可能な複製開始配列(origin of chromosome(oriC))を含む;および
    (2)工程(1)において形成した反応混合物を、30℃以上でのインキュベーションおよび27℃以下でのインキュベーションを繰り返す温度サイクル下で、インキュベートする工程;
    を含む、前記方法。
  3.  反応液が、さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤を含む、請求項1または2に記載の方法。
  4.  反応液が、さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼを含む、請求項1または2に記載の方法。
  5.  反応液が、さらにアンモニウム塩を含む、請求項1または2に記載の方法。
  6.  第一の酵素群が、DnaA活性を有する酵素、1種以上の核様体タンパク質、DNAジャイレース活性を有する酵素または酵素群、一本鎖DNA結合タンパク質(single-strand binding protein(SSB))、DnaB型ヘリカーゼ活性を有する酵素、DNAヘリカーゼローダー活性を有する酵素、DNAプライマーゼ活性を有する酵素、DNAクランプ活性を有する酵素、およびDNAポリメラーゼIII*活性を有する酵素または酵素群、の組み合わせを含み、
     第二の酵素群が、DNAポリメラーゼI活性を有する酵素およびDNAリガーゼ活性を有する酵素の組み合わせを含み、
     第三の酵素群が、トポイソメラーゼIII活性を有する酵素および/またはトポイソメラーゼIV活性を有する酵素を含む、
    請求項1または2に記載の方法。
  7.  第二の酵素群がさらに、RNaseH活性を有する酵素を含む、請求項6に記載の方法。
  8.  第三の酵素群がさらに、RecQ型ヘリカーゼ活性を有する酵素を含む、請求項6に記載の方法。
  9.  第一の酵素群において、
     1種以上の核様体タンパク質がIHFまたはHUであり、
     DNAジャイレース活性を有する酵素または酵素群が、GyrAおよびGyrBからなる複合体であり、
     DnaB型ヘリカーゼ活性を有する酵素がDnaBヘリカーゼであり、
     DNAヘリカーゼローダー活性を有する酵素がDnaCヘリカーゼローダーであり、
     DNAプライマーゼ活性を有する酵素がDnaGプライマーゼであり、
     DNAクランプ活性を有する酵素がDnaNクランプであり、
     DNAポリメラーゼIII*活性を有する酵素または酵素群が、DnaX、HolA、HolB、HolC、HolD、DnaE、DnaQ、およびHolEのいずれかを含む酵素または酵素群である、
    請求項6に記載の方法。
  10.  工程(2)における等温条件が、25℃~50℃の範囲に含まれる一定の温度である、請求項1に記載の方法。
  11.  反応液が、さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項1または2に記載の方法。
  12.  反応液が、さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項1または2に記載の方法。
  13.  反応液が、さらにDNAの安定化因子を含む、請求項1または2に記載の方法。
  14.  工程(1)が
    (1-1)以下:
     環状DNAの複製を触媒する第一の酵素群;
     岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
     2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
     緩衝液;
     ATP;
     GTP、CTPおよびUTP;
     dNTP;
     マグネシウムイオン源;および
     アルカリ金属イオン源;
    を含む反応液をプレインキュベーションする工程;
    (1-2)当該反応液と鋳型となる環状DNAとの反応混合物を形成する工程;および
    を含む、請求項1または2に記載の方法。
  15.  工程(2)を、油中水滴型エマルジョン内で行う、請求項1または2に記載の方法。
  16.  工程(2)に続いてさらに、
    (3)反応後処理を行う工程;を含み、ここで、当該反応後処理は、
     (i)第一から第三の酵素群を含まない反応液で五倍以上に希釈した後、再保温する処理;
     (ii)直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼによる処理;および/または
     (iii)ギャップリペア酵素による処理;である、
    請求項1または2に記載の方法。
  17.  環状DNAの増幅用組成物であって、
     環状DNAの複製を触媒する第一の酵素群;
     岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
     2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
     緩衝液;
     ATP;
     GTP、CTPおよびUTP;
     dNTP;
     マグネシウムイオン源;および
     アルカリ金属イオン源;
    を含む、前記組成物。
  18.  さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤を含む、請求項17に記載の組成物。
  19.  さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼを含む、請求項17に記載の組成物。
  20.  さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項17に記載の組成物。
  21.  さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項17に記載の組成物。
  22.  さらにDNAの安定化因子を含む、請求項17に記載の組成物。
  23.  環状DNAの増幅用キットであって、
     環状DNAの複製を触媒する第一の酵素群;
     岡崎フラグメント連結反応を触媒して、カテナンを形成する2つの姉妹環状DNAを合成する第二の酵素群;
     2つの姉妹環状DNAの分離反応を触媒する第三の酵素群;
     緩衝液;
     ATP;
     GTP、CTPおよびUTP;
     dNTP;
     マグネシウムイオン源;および
     アルカリ金属イオン源;
    の組み合わせを含む、前記キット。
  24.  さらにタンパク質の非特異吸着抑制剤、および/または核酸の非特異吸着抑制剤との組み合わせを含む、請求項23に記載のキット。
  25.  さらに直鎖状DNA特異的エキソヌクレアーゼおよび/またはRecG型ヘリカーゼとの組み合わせを含む、請求項23に記載のキット。
  26.  さらにRecG型ヘリカーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項23に記載のキット。
  27.  さらに直鎖状DNA特異的エキソヌクレアーゼおよび/または一本鎖DNA特異的エキソヌクレアーゼを含む、請求項23に記載のキット。
  28.  さらにDNAの安定化因子を含む、請求項23に記載のキット。
  29.  さらにギャップリペア酵素を含む、請求項23に記載のキット。
     
PCT/JP2017/018472 2016-05-17 2017-05-17 環状dnaの増幅方法 WO2017199991A1 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2018518326A JP6764193B2 (ja) 2016-05-17 2017-05-17 環状dnaの増幅方法
RU2018144299A RU2748736C2 (ru) 2016-05-17 2017-05-17 Способ амплификации кольцевой днк
KR1020187036088A KR102378346B1 (ko) 2016-05-17 2017-05-17 환상 dna의 증폭 방법
EP17799415.9A EP3460058B1 (en) 2016-05-17 2017-05-17 Method for amplifying cyclic dna
CA3024546A CA3024546A1 (en) 2016-05-17 2017-05-17 Method of amplifying circular dna
US16/302,485 US12157915B2 (en) 2016-05-17 2017-05-17 Method of amplifying circular DNA
CN202211102191.3A CN115537454A (zh) 2016-05-17 2017-05-17 环状dna的扩增方法
SG11201810209VA SG11201810209VA (en) 2016-05-17 2017-05-17 Method of amplifying circular dna
CN201780034209.1A CN109415718B (zh) 2016-05-17 2017-05-17 环状dna的扩增方法
AU2017265723A AU2017265723B2 (en) 2016-05-17 2017-05-17 Method of amplifying circular dna
IL263027A IL263027A (en) 2016-05-17 2018-11-15 A method for amplifying circular DNA
US18/920,931 US20250043341A1 (en) 2016-05-17 2024-10-20 Method of Amplifying Circular DNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016099157 2016-05-17
JP2016-099157 2016-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/302,485 A-371-Of-International US12157915B2 (en) 2016-05-17 2017-05-17 Method of amplifying circular DNA
US18/920,931 Division US20250043341A1 (en) 2016-05-17 2024-10-20 Method of Amplifying Circular DNA

Publications (1)

Publication Number Publication Date
WO2017199991A1 true WO2017199991A1 (ja) 2017-11-23

Family

ID=60325215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018472 WO2017199991A1 (ja) 2016-05-17 2017-05-17 環状dnaの増幅方法

Country Status (11)

Country Link
US (2) US12157915B2 (ja)
EP (1) EP3460058B1 (ja)
JP (1) JP6764193B2 (ja)
KR (1) KR102378346B1 (ja)
CN (2) CN109415718B (ja)
AU (1) AU2017265723B2 (ja)
CA (1) CA3024546A1 (ja)
IL (1) IL263027A (ja)
RU (1) RU2748736C2 (ja)
SG (1) SG11201810209VA (ja)
WO (1) WO2017199991A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159669A1 (ja) * 2017-02-28 2018-09-07 国立研究開発法人 科学技術振興機構 環状dnaの複製または増幅方法
WO2020027110A1 (ja) 2018-07-30 2020-02-06 オリシロジェノミクス株式会社 無細胞系でdnaを編集する方法
WO2022018881A1 (en) * 2020-07-21 2022-01-27 The University Of Tokyo Method and kit for determining neuromuscular disease in subject
WO2023191034A1 (ja) * 2022-03-31 2023-10-05 モデルナ・エンザイマティクス株式会社 配列エラーの減少した二本鎖dnaの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6262877B2 (ja) 2014-11-18 2018-01-24 国立研究開発法人科学技術振興機構 環状dnaの増幅方法
CN114231524B (zh) * 2020-09-09 2023-12-26 深圳华大生命科学研究院 一种体外制备环状dna的方法
WO2024170684A1 (en) 2023-02-15 2024-08-22 Sanofi Screening codon-optimized nucleotide sequences

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229950A (ja) 2004-02-23 2005-09-02 National Food Research Institute 環状dnaの増幅方法
JP2008161182A (ja) 2006-10-24 2008-07-17 Qiagen Gmbh 環状ゲノムのローリングサークル増幅
JP2012501173A (ja) 2008-09-02 2012-01-19 ゼネラル・エレクトリック・カンパニイ Dnaミニサークルおよびその使用
WO2016080424A1 (ja) * 2014-11-18 2016-05-26 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677170A (en) 1994-03-02 1997-10-14 The Johns Hopkins University In vitro transposition of artificial transposons
US6355450B1 (en) 1995-04-21 2002-03-12 Human Genome Sciences, Inc. Computer readable genomic sequence of Haemophilus influenzae Rd, fragments thereof, and uses thereof
CA2366791A1 (en) 1999-04-06 2000-10-12 Kamal K. Midha Pharmaceutical dosage form for pulsatile delivery of d-threo-methylphenidate and a second cns stimulant
IL147125A0 (en) 1999-06-18 2002-08-14 Aventis Pharma Inc Novel vectors for improving cloning and expressions in low copy number plasmids
EP1759008A4 (en) 2004-04-26 2008-08-06 Replidyne Inc SYSTEMS AND METHODS FOR BACTERIAL REPLICATION
EP2867366B1 (en) * 2012-06-29 2018-05-16 General Electric Company Method for isothermal dna amplification starting from an rna template in a single reaction mixture
EP3591051A4 (en) 2017-02-28 2021-01-06 Oriciro Genomics, Inc. CIRCULAR DNA REPLICATION OR AMPLIFICATION PROCESS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229950A (ja) 2004-02-23 2005-09-02 National Food Research Institute 環状dnaの増幅方法
JP2008161182A (ja) 2006-10-24 2008-07-17 Qiagen Gmbh 環状ゲノムのローリングサークル増幅
JP2012501173A (ja) 2008-09-02 2012-01-19 ゼネラル・エレクトリック・カンパニイ Dnaミニサークルおよびその使用
WO2016080424A1 (ja) * 2014-11-18 2016-05-26 国立研究開発法人 科学技術振興機構 環状dnaの増幅方法

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
BARNES WM, GENE, vol. 112, 1992, pages 29 - 35
FAKRUDDIN M ET AL., J PHARM BIOALLIED SCI., vol. 5, 2013, pages 245 - 252
FUNNELL B ET AL., J BIOL CHEM., vol. 261, 1986, pages 5616 - 5624
FUNNELL, BARBARA E. ET AL.: "Compelete Enzymatic Replication of Plasmids Containing the Origin of the Escherichia coli Chromosome", J. BIOL. CHEM., vol. 261, no. 12, 1986, pages 5616 - 5624, XP055558721 *
HIASA H ET AL., J BIOL CHEM., vol. 269, 1994, pages 2093 - 2099
HIASA H; MARIANS KJ., J BIOL CHEM., vol. 269, 1994, pages 26959 - 26968
HIASA H; MARIANS KJ., J BIOL CHEM., vol. 269, 1994, pages 32655 - 32659
HIASA, H. ET AL.: "Decatenating activity of Escherichia coli DNA gyrase and topoisomerases I and III during oriC and pBR322 DNA replication in vitro", J. BIOL. CHEM., vol. 269, no. 3, 1994, pages 2093 - 2099, XP002779097 *
HIASA, H. ET AL.: "Primase couples leading- and lagging-strand DNA synthesis from oriC", J. BIOL. CHEM., vol. 269, no. 8, 1994, pages 6058 - 6063, XP055558714 *
HIASA, H. ET AL.: "Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during Theta-type DNA replication", J. BIOL. CHEM., vol. 269, no. 51, 1994, pages 32655 - 32659, XP002779098 *
HIASA, H. ET AL.: "Topoisomerase IV can support oriC DNA replication in vitro", J. BIOL. CHEM., vol. 269, no. 23, 1994, pages 16371 - 16375, XP055539849 *
KAGUNI JM; KORNBERG A, CELL, vol. 38, 1984, pages 183 - 90
KAGUNI, J. M. ET AL.: "Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes", CELL, vol. 38, August 1984 (1984-08-01), pages 183 - 190, XP023877840 *
PENG H; MARIANS KJ., PNAS, vol. 90, 1993, pages 8571 - 8575
PENG H; MARIANS KJ., PNAS., vol. 90, 1993, pages 8571 - 8575

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159669A1 (ja) * 2017-02-28 2018-09-07 国立研究開発法人 科学技術振興機構 環状dnaの複製または増幅方法
JPWO2018159669A1 (ja) * 2017-02-28 2020-01-30 オリシロジェノミクス株式会社 環状dnaの複製または増幅方法
WO2020027110A1 (ja) 2018-07-30 2020-02-06 オリシロジェノミクス株式会社 無細胞系でdnaを編集する方法
KR20210020132A (ko) 2018-07-30 2021-02-23 오리시로 제노믹스 가부시키가이샤 무세포계에서 dna를 편집하는 방법
JPWO2020027110A1 (ja) * 2018-07-30 2021-08-10 オリシロジェノミクス株式会社 無細胞系でdnaを編集する方法
JP7025552B2 (ja) 2018-07-30 2022-02-24 オリシロジェノミクス株式会社 無細胞系でdnaを編集する方法
RU2766717C1 (ru) * 2018-07-30 2022-03-15 Орикиро Дженомикс, Инк. Способ редактирования днк в бесклеточной системе
AU2019315179B2 (en) * 2018-07-30 2023-02-02 OriCiro Genomics, Inc. Method for editing dna in cell-free system
KR102520700B1 (ko) * 2018-07-30 2023-04-10 오리시로 제노믹스 가부시키가이샤 무세포계에서 dna를 편집하는 방법
WO2022018881A1 (en) * 2020-07-21 2022-01-27 The University Of Tokyo Method and kit for determining neuromuscular disease in subject
WO2023191034A1 (ja) * 2022-03-31 2023-10-05 モデルナ・エンザイマティクス株式会社 配列エラーの減少した二本鎖dnaの製造方法

Also Published As

Publication number Publication date
RU2018144299A (ru) 2020-06-17
JP6764193B2 (ja) 2020-09-30
US20190276883A1 (en) 2019-09-12
EP3460058A4 (en) 2020-01-15
EP3460058A1 (en) 2019-03-27
AU2017265723B2 (en) 2023-04-13
IL263027A (en) 2018-12-31
CN109415718A (zh) 2019-03-01
KR20190017793A (ko) 2019-02-20
CA3024546A1 (en) 2017-11-23
RU2748736C2 (ru) 2021-05-31
CN109415718B (zh) 2022-09-27
US20250043341A1 (en) 2025-02-06
EP3460058B1 (en) 2024-03-06
AU2017265723A1 (en) 2018-12-20
JPWO2017199991A1 (ja) 2019-03-22
US12157915B2 (en) 2024-12-03
CN115537454A (zh) 2022-12-30
SG11201810209VA (en) 2018-12-28
KR102378346B1 (ko) 2022-03-25
RU2018144299A3 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2017199991A1 (ja) 環状dnaの増幅方法
JP6960684B2 (ja) 環状dnaの複製または増幅方法
JP7025552B2 (ja) 無細胞系でdnaを編集する方法
JP6262877B2 (ja) 環状dnaの増幅方法
JP6701450B2 (ja) Dnaの産生方法及びdna断片連結用キット
CN106460040A (zh) 在低盐条件下的等温扩增
WO2025018068A1 (ja) 環状dnaの製造方法
WO2023191034A1 (ja) 配列エラーの減少した二本鎖dnaの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3024546

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018518326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036088

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017265723

Country of ref document: AU

Date of ref document: 20170517

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017799415

Country of ref document: EP

Effective date: 20181217