[go: up one dir, main page]

WO2017199980A1 - Hydrogenated polymer, molding material and resin molded body - Google Patents

Hydrogenated polymer, molding material and resin molded body Download PDF

Info

Publication number
WO2017199980A1
WO2017199980A1 PCT/JP2017/018427 JP2017018427W WO2017199980A1 WO 2017199980 A1 WO2017199980 A1 WO 2017199980A1 JP 2017018427 W JP2017018427 W JP 2017018427W WO 2017199980 A1 WO2017199980 A1 WO 2017199980A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
hydrogenated polymer
polymer
carbon
molding material
Prior art date
Application number
PCT/JP2017/018427
Other languages
French (fr)
Japanese (ja)
Inventor
卓士 寳川
健作 藤井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018518321A priority Critical patent/JPWO2017199980A1/en
Publication of WO2017199980A1 publication Critical patent/WO2017199980A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring

Definitions

  • the present invention relates to a hydrogenated polymer useful as a resin component of an optical molded body such as an optical element, a molding material containing the hydrogenated polymer, and a resin molded body obtained by molding the molding material.
  • the resin component of an optical molded body such as a lens is required to have excellent transparency.
  • a resin component of an optical molded article polymethyl methacrylate, polycarbonate, diethylene glycol bisallyl carbonate, polycyclohexyl methacrylate, poly-4-methylpentene, amorphous alicyclic polyolefin, polycyclic norbornene polymer, vinyl Alicyclic hydrocarbon polymers have been used.
  • Patent Document 1 describes an optical molded body obtained by using a molding material containing a polycyclic norbornene polymer having a specific repeating unit.
  • Patent Document 1 describes a ring-opened polymer hydride represented by the following formula (A).
  • the present invention provides a hydrogenated polymer useful as a resin component of a resin molded product such as an optical element, a molding material containing the hydrogenated polymer, and a resin molded product obtained by molding the molding material. For the purpose.
  • the present inventors have intensively studied a ring-opening polymer of a cyclic olefin monomer.
  • the polymer hydride obtained by using the monomer represented by the formula (1) described later as the cyclic olefin monomer the mechanical strength and the balance between the refractive index and the Abbe number are improved. It has been found that an excellent and low birefringent resin can be obtained, and the present invention has been completed.
  • the following [1] to [3] hydrogenated polymers, [4] molding materials, and [5] and [6] resin moldings are provided.
  • a hydrogenated polymer obtained by hydrogenating at least 90% of the carbon-carbon unsaturated bonds of the aromatic ring and carbon-carbon unsaturated bonds of the aromatic ring.
  • the monomer copolymerizable with the monomer represented by the formula (1) comprises a norbornene monomer, a cyclic monoolefin, a cyclic polyene, and an ⁇ -olefin having 2 to 20 carbon atoms.
  • [5] A resin molded product obtained by molding the molding material according to [4].
  • molding this molding material are provided.
  • the hydrogenated polymer of the present invention is a polymer that is excellent in mechanical strength, balance of refractive index and Abbe number, and can provide a low birefringence resin.
  • the hydrogenated polymer of the present invention is useful as a resin component of a resin molded product such as an optical element.
  • the hydrogenated polymer of the present invention has the following formula (1): And a unit derived from a monomer that is copolymerizable with the monomer (1), including a unit derived from the monomer represented by (hereinafter, sometimes referred to as “monomer (1)”) In which 90% or more of the carbon-carbon unsaturated bonds in the main and side chains and the carbon-carbon unsaturated bonds in the aromatic ring are hydrogenated.
  • a polymer can polymerize monomer (1) or polymerize monomer (1) and a monomer mixture of monomers copolymerizable with monomer (1). Can be obtained by obtaining a polymer and hydrogenating the polymer.
  • the polymer includes “units derived from the monomer (1)” or “can be copolymerized with units derived from the monomer (1) and the monomer (1)”.
  • Including a unit derived from a simple monomer preferably means 99.0% by mass or more, more preferably 100% by mass of “monomer (1 ) Or “units derived from monomer (1) and units derived from monomer copolymerizable with monomer (1)”.
  • the monomer (1) used in the preparation of the hydrogenated polymer of the present invention is a known compound, and can be produced and obtained by a known method.
  • monomer (1) can be produced by subjecting norbornadiene (2) and anthracene (3) to a Diels-Alder addition reaction under heating in an appropriate solvent. (See Journal of the American Chemical Society, 102 (2), 1980, 671-8, JP-A-2-185520, International Publication No. 2015/176588).
  • the monomer (1) is obtained by dispersing a quadricycle (4) and anthracene (3) in a suitable solvent to obtain a dispersion. (Journal of the American Chemical Society, 99 (3), 1977, 871-7).
  • the compound represented by the formula (5) is also produced as a by-product, so these are mixed in the obtained reaction product, but the reaction product is separated and purified by column chromatography or the like. By using the means, the monomer (1) can be isolated.
  • the hydrogenated polymer of the present invention has a monomer copolymerizable with the monomer represented by the above formula (1) (hereinafter, “ It may be referred to as “another monomer.”) It may have a repeating unit derived from.
  • Other monomers are not particularly limited as long as they are copolymerizable with monomer (1).
  • the other monomer include at least one selected from the group consisting of norbornene monomers, cyclic monoolefins, cyclic polyenes, and ⁇ -olefins having 2 to 20 carbon atoms. Among these, norbornene monomers are preferable. These can be used individually by 1 type or in combination of multiple types.
  • the norbornene-based monomer as the “other monomer” that can be used in the preparation of the hydrogenated polymer of the present invention is a compound having a norbornene ring and a polymerizable carbon-carbon unsaturated bond (provided that the monomer is a single monomer) Body (1) is excluded.
  • Specific examples include bicyclic monomers such as bicyclo [2.2.1] hept-2-ene (common name: norbornene) and derivatives thereof; tricyclo [4.3.0.1 2,5 ] deca -Tricyclic monomers such as 3,7-diene (common name: dicyclopentadiene) and derivatives thereof; 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene tetrahydrofluorene, also referred to as a tetracyclo [7.4.0.0 2,7 .1 10,13] trideca -2,4,
  • dodec-3-ene (common name: tetracyclododecene) and tetracyclic monomers such as derivatives thereof; 1,2,3,3a, 4,6a-hexahydro-1,2 , 4-methenopentalene (common name: deltacyclene, hereinafter sometimes referred to as “DCL”) and its derivatives, etc., monomers having 5 or more rings; Of these, tetracyclododecene is preferred.
  • the position of the substituent is not limited.
  • the substituent include an alkyl group such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an alkylidene group such as an ethylidene group and a propane-2-ylidene group; an aryl group such as a phenyl group; a hydroxy group; an acid anhydride group Carboxyl group; alkoxycarbonyl group such as methoxycarbonyl group; and the like.
  • the monomer has a plurality of substituents, the plurality of substituents may be the same or different.
  • the cyclic monoolefin as the “other monomer” that can be used in the preparation of the hydrogenated polymer of the present invention is a compound having a cyclic structure and one polymerizable carbon-carbon unsaturated bond (provided that Monomer (1) and norbornene monomers are excluded. Specific examples include cyclic monoolefins such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, and cyclooctene, and derivatives thereof (meaning those having a substituent in the ring; the same shall apply hereinafter).
  • these cyclic monoolefins may have a substituent, and the position of the substituent is not particularly limited.
  • the substituent include the same substituents as those described above for the norbornene monomer.
  • the monomer has a plurality of substituents, the plurality of substituents may be the same or different.
  • These cyclic monoolefins can be used singly or in combination of two or more.
  • the cyclic polyene as the “other monomer” that can be used in the preparation of the hydrogenated polymer of the present invention is a compound having a cyclic structure and having two or more polymerizable carbon-carbon unsaturated bonds (provided that And norbornene monomers are excluded).
  • cyclic diolefins such as cyclohexadiene and cyclooctadiene and derivatives thereof; dimethylcyclopentadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, 5- Examples include ethyl-1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, cyclooctatriene and the like.
  • these cyclic polyenes may have a substituent, and the position of the substituent is not particularly limited. Examples of the substituent include the same substituents as those described above for the norbornene monomer. Further, when the monomer has a plurality of substituents, the plurality of substituents may be the same or different.
  • Examples of the ⁇ -olefin having 2 to 20 carbon atoms used in the present invention include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-icocene, vinylcyclohexane Vinylcyclohexene, vinylcyclohexene, trimethylvinylsilane and the like.
  • ⁇ -olefins may have a substituent, and the position of the substituent is not particularly limited.
  • substituents include the same substituents as those described above for the norbornene monomer. Further, when the monomer has a plurality of substituents, the plurality of substituents may be the same or different. These ⁇ -olefins can be used alone or in combination of two or more.
  • the hydrogenated polymer of the present invention is as follows.
  • ring-opening polymer ( ⁇ ) A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds in the main chain and the side chain and the carbon-carbon unsaturated bonds in the aromatic ring [hereinafter referred to as “hydrogenated polymer ( ⁇ )”].
  • hydroch-opening polymer ( ⁇ ) A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds in the main chain and the side chain and the carbon-carbon unsaturated bonds in the aromatic ring.
  • hydrophilic polymer ( ⁇ ) A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds of the main chain and the side chain and the carbon-carbon unsaturated bonds of the aromatic ring [hereinafter referred to as “hydrogenated polymer ( ⁇ )”] There is. ] ( ⁇ ) a copolymer obtained by addition copolymerization of a monomer mixture of the monomer (1) and the monomer (1) and an addition copolymerizable monomer [hereinafter referred to as “addition polymer ( ⁇ ) ”. ], A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds in the main chain and the side chain and the carbon-carbon unsaturated bonds in the aromatic ring (hereinafter referred to as “hydrogenated polymer ( ⁇ )”). There is. ]
  • the hydrogenated polymers ( ⁇ ) and ( ⁇ ) are polymers having a repeating unit represented by the following (I) in the molecule.
  • the hydrogenated polymer ( ⁇ ) is a ring-opened polymer hydride consisting only of the repeating unit of the formula (I).
  • Hydrogenated polymer ( ⁇ ) is a ring-opening copolymer hydrogen having in its molecule a repeating unit of the above formula (I) and a repeating unit derived from a monomer copolymerizable with monomer (1). It is a monster.
  • the hydrogenated polymer ( ⁇ ) may have two or more kinds of repeating units derived from a monomer capable of ring-opening copolymerization with the monomer (1).
  • the hydrogenated polymer ( ⁇ ) may be any of a random copolymer, an alternating copolymer, and a block copolymer.
  • the ratio of the repeating unit represented by the formula (I) to the total repeating units of the hydrogenated polymer ( ⁇ ) is not particularly limited, but is preferably 10 to 80 mol%, More preferably, it is 20 to 60 mol%, particularly preferably 30 to 55 mol%.
  • the moldability of a molding material can be improved because the presence rate of the repeating unit shown by said Formula (I) shall be 80 mol% or less.
  • the ring-opening polymers ( ⁇ ) and ( ⁇ ) can be synthesized by subjecting the corresponding monomers to ring-opening polymerization according to a known method using a metathesis polymerization catalyst.
  • a metathesis polymerization catalyst There is no limitation in particular as a metathesis polymerization catalyst, A well-known thing is used.
  • a catalyst system comprising a metal halide, nitrate or acetylacetone compound selected from ruthenium, rhodium, palladium, osmium, iridium and platinum and a reducing agent; from titanium, vanadium, zirconium, tungsten and molybdenum
  • a catalyst system comprising a selected metal halide or acetylacetone compound and a co-catalyst organoaluminum compound; a Schrock-type or Grubbs-type living ring-opening metathesis polymerization catalyst (JP-A-7-179575, J. Am. Chem. Soc., 1986, 108, p.733, J.
  • metathesis polymerization catalysts can be used singly or in combination of two or more.
  • the amount of the metathesis polymerization catalyst used may be appropriately selected depending on the polymerization conditions and the like, but is usually 0.000001 to 0.1 mol, preferably 0.00001 to 0.01 mol, relative to 1 mol of all monomers. It is.
  • a molecular weight regulator When performing the ring-opening polymerization, a molecular weight regulator can be added.
  • the molecular weight of the resulting ring-opening polymer can be adjusted by adding a molecular weight regulator. It does not specifically limit as a molecular weight regulator to be used, A conventionally well-known thing can be used.
  • molecular weight regulators to be used include ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene, 1-octene and 1-octadecene; styrenes such as styrene and vinyltoluene; ethyl vinyl ether, isobutyl vinyl ether, allyl glycidyl Ethers such as ether; halogen-containing vinyl compounds such as allyl chloride; oxygen-containing vinyl compounds such as glycidyl methacrylate; nitrogen-containing vinyl compounds such as acrylamide; 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1 , 6-heptadiene, 2-methyl-1,4-pentadiene, non-conjugated dienes such as 2,5-dimethyl-1,5-hexadiene, or 1,3-butadiene, 2-methyl-1,3-butadiene, 2 , 3-Di
  • the ring-opening polymerization can be performed in an organic solvent.
  • the organic solvent is not particularly limited as long as it is inert to the polymerization reaction.
  • Organic solvents include aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; fats such as cyclohexane, methylcyclohexane, decalin and bicyclononane And cyclic hydrocarbon solvents; halogenated hydrocarbon solvents such as dichloroethane, chlorobenzene, dichlorobenzene, and trichlorobenzene;
  • the polymerization reaction is started by mixing the monomer (1), the monomer mixture of the monomer (1) and the monomer (1) and a copolymerizable monomer, and a polymerization catalyst. Is done.
  • the polymerization temperature is not particularly limited, but is usually ⁇ 20 to + 100 ° C., preferably 10 to 80 ° C., and more preferably 30 to 60 ° C.
  • the polymerization time is not particularly limited, but is usually 1 minute to 100 hours.
  • the pressure condition is not particularly limited, the polymerization is usually carried out under a pressure of 0 to 1 MPa.
  • the desired ring-opening polymer can be isolated by ordinary post-treatment operation.
  • the obtained ring-opening polymer ( ⁇ ) or ( ⁇ ) to a hydrogenation reaction, the corresponding hydrogenated polymers ( ⁇ ) and ( ⁇ ) can be obtained, respectively.
  • the method for hydrogenating the ring-opening polymers ( ⁇ ) and ( ⁇ ) includes the main chain and side chain carbon-carbon unsaturated bonds, and the aromatic ring carbon contained in the ring-opening polymers ( ⁇ ) and ( ⁇ ). -Any method that can hydrogenate 90% or more of the total carbon unsaturated bonds is not particularly limited.
  • the hydrogenation reaction is usually carried out by supplying hydrogen in the presence of a hydrogenation catalyst in a ring-opening polymer ( ⁇ ) or a solution of the ring-opening polymer ( ⁇ ).
  • a hydrogenation catalyst there are a homogeneous catalyst and a heterogeneous catalyst.
  • homogeneous catalysts include Wilkinson complex, that is, chlorotris (triphenylphosphine) rhodium (1), cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, titanocene dichloride / n-butyllithium, zirconocene dichloride.
  • Wilkinson complex that is, chlorotris (triphenylphosphine) rhodium (1), cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, titanocene dichloride / n-butyllithium, zirconocene dichloride.
  • Examples thereof include a catalyst comprising a combination of a transition metal compound / alkyl metal compound such as / sec-butyl lithium and tetrabutoxy titanate / dimethyl magnesium.
  • heterogeneous catalyst examples include a catalyst in which a metal known as a hydrogenation catalyst such as nickel or palladium is supported on a carrier.
  • a heterogeneous catalyst is preferable, and a combination of nickel and palladium as a metal or a heterogeneous catalyst using palladium is most preferable.
  • the carrier include alumina, silica, diatomaceous earth, and the like.
  • the hydrogenation reaction is usually performed in a solvent.
  • the solvent include the same solvents that can be used during the polymerization.
  • the hydrogenation reaction is usually in the temperature range of 100 to 200 ° C., preferably 130 to 195 ° C., usually 0.1 to 100 kgf / cm 2 , preferably 0.5 to 60 kgf / cm 2 , more preferably 1 to 50 kgf / It is carried out at a hydrogen pressure (gauge pressure) of cm 2 .
  • the hydrogenation rate in the carbon-carbon unsaturated bonds of the main chain and the side chain and the carbon-carbon unsaturated bonds of the aromatic ring is 90% or more, preferably 95% or more.
  • the hydrogenation rate of the carbon-carbon unsaturated bonds in the main chain and the side chain and the carbon-carbon unsaturated bonds in the aromatic ring structure is determined by the 1 H-NMR spectrum according to the carbon of the main chain and the side chain before hydrogenation.
  • the catalyst and the like are removed.
  • the removal method is not particularly limited, and examples thereof include methods such as centrifugation and filtration.
  • the catalyst removal can be promoted by adding a catalyst deactivator such as water or alcohol, or by adding an adsorbent such as activated clay, alumina, or silicon earth.
  • the hydrogenated polymers ( ⁇ ) and ( ⁇ ) are polymers having a repeating unit represented by the following formula (II) in the molecule.
  • the hydrogenated polymer ( ⁇ ) is an addition polymer hydride consisting only of the repeating unit represented by the formula (II).
  • the hydrogenated polymer ( ⁇ ) is an addition copolymer hydrogen having a repeating unit of the formula (II) in the molecule and a repeating unit derived from a monomer that can be addition copolymerized with the monomer (1). It is a monster.
  • the hydrogenated polymer ( ⁇ ) may have two or more types of repeating units derived from the monomer (1) and a monomer copolymerizable with the monomer (1). Further, the hydrogenated polymer ( ⁇ ) may be any of a random copolymer, an alternating copolymer, and a block copolymer.
  • the ratio of the repeating unit represented by the formula (II) to the total repeating units is not particularly limited, but is preferably 10 to 80 mol%, more preferably 20 to 60 mol. %, Particularly preferably 30 to 50 mol%.
  • the moldability of a molding material can be improved by making the presence rate of the repeating unit shown by the said formula (II) into 80 mol% or less.
  • the addition polymers ( ⁇ ) and ( ⁇ ) are, for example, the monomer (1) and, if necessary, the monomer (1) that can be added copolymerized with the monomer (1) in the presence of a metallocene catalyst. Can be obtained by addition copolymerization.
  • the metallocene catalyst to be used is not particularly limited, and a known catalyst conventionally used for addition polymerization reaction can be used.
  • a catalyst comprising a transition metal metallocene compound (a) and an organoaluminum oxy compound (b) or a borate or borane compound (c) can be mentioned.
  • Examples of the metallocene compound (a) include a bridged metallocene compound and a half metallocene compound. In order to efficiently polymerize the monomer (1), a crosslinked metallocene compound is preferred.
  • Examples of the bridged metallocene compound include those represented by the general formula (6).
  • M 1 is a metal atom selected from the group consisting of titanium, zirconium, and hafnium, and zirconium is preferred because of its excellent catalytic activity.
  • X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms or a halogen atom.
  • R 1 is a lower alkylene group such as a methylene group, an ethylene group or a propylene group; an alkylidene group such as an isopropylidene group; a substituted alkylene group such as diphenylmethylene; a substituted silylene group such as a dimethylsilylene group or a diphenylsilylene group; or a silylene group It is.
  • R 2 and R 3 are each independently a cyclopentadienyl group, an indenyl group, or a fluorenyl group, an alkyl group such as a methyl group, an ethyl group, an isopropyl group, or a t-butyl group; a phenyl group or a benzyl group May be substituted.
  • Examples of the bridged metallocene compound represented by the formula (6) include isopropylidene- (9-fluorenyl) (cyclopentadienyl) zirconium dichloride, diphenylmethylene- (9-fluorenyl) (cyclopentadienyl) zirconium dichloride, isopropyl Riden- (9-fluorenyl) [1- (3-methyl) cyclopentadienyl] zirconium dichloride, isopropylidene- (9-fluorenyl) [1- (3-t-butyl) cyclopentadienyl] zirconium dichloride, isopropyl Liden- (1-indenyl) (cyclopentadienyl) zirconium dichloride, dimethylsilylene-bis (1-indenyl) zirconium dichloride, ethylene-bis (1-indenyl) zirconium dichloride, diphenyl Styrene -
  • the half metallocene compounds include (t-butylamido) dimethyl-1-indenylsilane titanium dimethyl, (t-butylamido) dimethyl-1-indenylsilane titanium dichloride, (t-butylamido) dimethyl-9-fluorenyl.
  • the organoaluminum oxy compound (b) or borate or borane compound (c) constituting the metallocene catalyst is an activator for activating the metallocene compound.
  • the organoaluminum oxy compound (b) may be a conventionally known aluminoxane, or a benzene-insoluble organoaluminum oxy compound as disclosed in JP-A-2-78687.
  • the borate or borane compound (c) is an activator capable of reacting with the metallocene compound to convert the metallocene compound into a cationic species.
  • Examples of the borate or borane compound (c) include triethylammonium tetrakis (pentafluorophenyl) borate, trityltetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, ferrocete.
  • Borate compounds such as nium tetra (pentafluorophenyl) borate and lithium tetrakis (pentafluorophenyl) borate; tris (4-fluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (4-fluoromethylphenyl) Examples thereof include borane compounds such as boron and tris (pentafluorophenyl) boron.
  • the metallocene catalyst can contain an organoaluminum compound (d) as necessary.
  • organoaluminum compound (d) include organoaluminum compounds other than the above organoaluminum oxy compounds.
  • Specific examples of the organoaluminum compound (d) include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum; dimethylaluminum chloride, diisobutylaluminum chloride Dialkylaluminum halides such as diisobutylaluminum hydride; dialkylaluminum alkoxides such as dimethylaluminum methoxide; dialkylaluminum aryloxides such as diethylaluminum phenoxide.
  • the concentration of the metallocene compound (a) during the polymerization reaction is preferably 0.00005 to 1 mmol / liter, more preferably 0.0001 to 0.3 mmol / liter.
  • the organoaluminum oxy compound (b) or borate or borane compound (c) is preferably 1 to 10,000 equivalents relative to the metallocene compound (a).
  • the organoaluminum compound (d) is preferably 0.1 to 1,000 equivalents relative to the metallocene compound (a).
  • the addition polymerization reaction is not limited by the form of the polymerization reaction, and can be adopted from polymerization methods such as solution polymerization, bulk polymerization, and slurry polymerization.
  • the reactor can be either a continuous reactor or a batch reactor. Good.
  • Solvents used in the addition polymerization reaction include chain aliphatic hydrocarbons such as hexane, heptane, octane and kerosene; cycloaliphatic hydrocarbons such as cyclohexane, methylcyclohexane and decalin; aromatic carbonization such as benzene, toluene and xylene. Hydrogen; and the like. These solvents can be used alone or in combination of two or more.
  • the addition polymerization reaction is usually carried out in the temperature range of ⁇ 50 to + 230 ° C., preferably ⁇ 30 to + 200 ° C., more preferably ⁇ 20 to + 150 ° C., usually 2 minutes to 5 hours, preferably 5 minutes to 3 hours. .
  • the pressure (gauge pressure) during the reaction is usually 10 MPa or less, preferably 5 MPa or less.
  • the metallocene compound (a), the organoaluminum oxy compound (b) or the borate or borane compound (c), and the organoaluminum compound (d), which constitute the metallocene catalyst are separately added to the polymerization reactor. Alternatively, these may be mixed outside the reactor and then added to the polymerization reactor.
  • addition polymers ( ⁇ ) and ( ⁇ ) In order to hydrogenate the addition polymers ( ⁇ ) and ( ⁇ ), addition polymers ( ⁇ ), main chain and side chain carbon-carbon unsaturated bonds of ( ⁇ ), and aromatic ring carbon-carbon
  • the method is not particularly limited as long as 90% or more of the total unsaturated bonds can be hydrogenated.
  • the hydrogenation reaction is usually carried out by supplying hydrogen to a solution of the addition polymer ( ⁇ ) or ( ⁇ ) in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst used include the same ones listed as the hydrogenation catalysts used for the hydrogenation reaction of the ring-opening polymers ( ⁇ ) and ( ⁇ ).
  • the hydrogenation reaction is usually performed in a solvent.
  • the solvent include the same solvents that can be used during the addition polymerization.
  • the hydrogenation reaction and the post-treatment after the hydrogenation reaction can be performed under the same conditions as in the case of the ring-opening polymers ( ⁇ ) and ( ⁇ ).
  • This hydrogenation reaction can achieve the same hydrogenation rate as that of the ring-opening polymers ( ⁇ ) and ( ⁇ ).
  • the weight average molecular weight (Mw) of the hydrogenated polymer of the present invention is preferably 10,000 to 300,000, more preferably 15,000 to 200,000, and particularly preferably 17,000 to 150,000. If the weight average molecular weight (Mw) of the hydrogenated polymer is too small, the mechanical strength of the resin molding may be lowered. On the other hand, if the weight average molecular weight (Mw) of the hydrogenated polymer is too large, the moldability of the molding material may be reduced.
  • the weight average molecular weight (Mw) of the hydrogenated polymer of this invention can be controlled by changing the addition amount of the molecular weight modifier added at the time of superposition
  • the molecular weight distribution (Mw / Mn) of the hydrogenated polymer of the present invention is not particularly limited, but is preferably 1 to 8, more preferably 1 to 6. When the molecular weight distribution of the hydrogenated polymer is within the above range, a resin molded product having sufficient mechanical strength can be obtained.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the hydrogenated polymer of the present invention are standard polyisoprene conversion values by gel permeation chromatography (GPC) using cyclohexane as an eluent.
  • the hydrogenated polymer of the present invention has a repeating unit derived from the monomer (1), it has excellent mechanical strength and a balance between the refractive index and the Abbe number, and becomes a low birefringence polymer.
  • the refractive index (n d ) at 25 ° C. of the hydrogenated polymer of the present invention is preferably 1.540 or more, more preferably 1.545 to 1.560.
  • the Abbe number at 25 ° C. of the hydrogenated polymer of the present invention is preferably 40 or more, more preferably 45 or more, and usually 70 or less.
  • the values of the refractive index and the Abbe number can be measured and calculated by the methods described in the examples.
  • the birefringence amount ( ⁇ n) per unit thickness of the hydrogenated polymer of the present invention is preferably ⁇ 200 to +200, more preferably ⁇ 150 to +150, and particularly preferably ⁇ 120 to +120.
  • the glass transition temperature of the hydrogenated polymer of the present invention is preferably 120 to 180 ° C, more preferably 130 to 165 ° C. When the glass transition temperature of the hydrogenated polymer is within the above range, the balance between the moldability of the molding material and the heat resistance of the resin molded body becomes good.
  • the hydrogenated polymer of the present invention since the hydrogenated polymer of the present invention has repeating units derived from the monomer (1), it is excellent in mechanical strength, balance between refractive index and Abbe number, and low birefringence. is there. Due to these characteristics, the hydrogenated polymers ( ⁇ ) and ( ⁇ ) are preferred as the hydrogenated polymer of the present invention.
  • the hydrogenated polymer of the present invention is useful as a resin component of a resin molded product such as an optical element.
  • the molding material of the present invention contains the hydrogenated polymer of the present invention.
  • the molding material of the present invention may contain other components such as a resin component other than the hydrogenated polymer of the present invention and additives as long as the effects of the present invention are not impaired.
  • resin components other than the hydrogenated polymer of the present invention include styrene / butadiene block copolymers, styrene / butadiene / styrene block copolymers, styrene / Examples include isoprene block copolymers, styrene / isoprene / styrene block copolymers, and hydrides thereof, styrene polymers such as styrene / butadiene / random copolymers, and the like.
  • the molding material used in the present invention contains other resin components, the content is usually 0.1 to 100 parts by mass, preferably 1 to 100 parts by mass with respect to 100 parts by mass of the hydrogenated polymer of the present invention. 50 parts by mass.
  • the additive examples include an antioxidant, an ultraviolet absorber, a light stabilizer, a near infrared absorber, a plasticizer, an antistatic agent, and an acid scavenger.
  • examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.
  • phenolic antioxidants include 3,5-di-t-butyl-4-hydroxytoluene, dibutylhydroxytoluene, 2,2'-methylenebis (6-t-butyl-4-methylphenol), 4,4 ' -Butylidenebis (3-t-butyl-3-methylphenol), 4,4'-thiobis (6-t-butyl-3-methylphenol), ⁇ -tocophenol, 2,2,4-trimethyl-6-hydroxy -7-t-butylchroman, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, [pentaerythritol tetrakis [3- (3,5-di -T-butyl-4-hydroxyphenyl) propionate]] and the like.
  • phosphorus antioxidants include distearyl pentaerythritol diphosphite, bis (2,4-ditertiarybutylphenyl) pentaerythritol diphosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tetrakis (2 , 4-ditertiary butylphenyl) 4,4′-biphenyl diphosphite, trinonylphenyl phosphite and the like.
  • sulfur-based antioxidants examples include distearyl thiodipropionate and dilauryl thiodipropionate.
  • UV absorber examples include benzotriazole UV absorbers, bezoate UV absorbers, benzophenone UV absorbers, acrylate UV absorbers, and metal complex UV absorbers.
  • light stabilizer examples include hindered amine light stabilizers.
  • Near-infrared absorbers are cyanine-based near-infrared absorbers; pyrylium-based infrared absorbers; squarylium-based near-infrared absorbers; croconium-based infrared absorbers; azulenium-based near-infrared absorbers; phthalocyanine-based near-infrared absorbers; Examples include near infrared absorbers; naphthoquinone near infrared absorbers; anthraquinone near infrared absorbers; indophenol near infrared absorbers; Examples of the plasticizer include a phosphoric acid triester plasticizer, a fatty acid monobasic acid ester plasticizer, a dihydric alcohol ester plasticizer, and an oxyacid ester plasticizer.
  • the antistatic agent include fatty acid esters of polyhydric alcohols.
  • the acid scavenger include magnesium oxide and zinc stearate.
  • the content of these additives can be appropriately determined according to the purpose.
  • the content thereof is usually in the range of 0.001 to 5 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer of the present invention.
  • a molding material can be obtained by mixing each component according to a conventional method.
  • the mixing method include a method of mixing each component in an appropriate solvent and a method of kneading in a molten state. Kneading can be performed using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or a feeder ruder.
  • the kneading temperature is preferably in the range of 200 to 400 ° C, more preferably 240 to 350 ° C.
  • the components may be added together and kneaded, or may be kneaded while adding in several times. After kneading, it can be pelletized by extruding into a rod shape and cutting into an appropriate length with a strand cutter according to a conventional method.
  • the molding material obtained by the kneading method in a molten state usually has no melting point observed when DSC measurement is performed, and is excellent in transparency.
  • the molding material of the present invention contains the hydrogenated polymer of the present invention
  • the mechanical strength and the balance between the refractive index and the Abbe number are excellent, and the low birefringence is achieved.
  • a certain resin molding can be obtained efficiently.
  • the molding material of this invention is used suitably as a molding material of optical molded objects, such as a lens.
  • the molding material of the present invention is suitably used as a fuel because of its high density and high combustion heat.
  • the molding material of the present invention has at least the values of weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), refractive index (n d ), Abbe number, and birefringence amount as “hydrogenated polymer”. It is preferable to satisfy the above-described preferable range.
  • the resin molding of the present invention is obtained by molding the molding material of the present invention.
  • the molding method is not particularly limited, and examples thereof include injection molding, press molding, and extrusion molding. Among these, when a molded object is an optical member etc., since the target molded object can be obtained with sufficient precision, injection molding is preferable.
  • the melting temperature at the time of molding varies depending on the molding material used, but is usually 200 to 400 ° C., preferably 210 to 350 ° C.
  • the mold temperature in the case of using a mold is usually 20 ° C. to (Tg + 15) ° C., preferably (Tg ⁇ 30) ° C. to (Tg + 10) ° C., more preferably Tg as the glass transition temperature of the molding material.
  • the temperature is from (Tg ⁇ 20) ° C. to (Tg + 5) ° C.
  • the resin molding of the present invention is obtained by molding the molding material of the present invention, it is excellent in mechanical strength, balance between refractive index and Abbe number, and has low birefringence.
  • the resin molding of this invention can be used as optical elements, such as an optical lens, an optical disk, a light-guide plate, an optical film, and a light reflection board.
  • the measurement was performed under the conditions of using three columns (manufactured by Tosoh Corporation, TSKgel G5000HXL, TSKgel G4000HXL, and TSKgel G2000HXL) connected in series, a flow rate of 1.0 mL / min, a sample injection amount of 100 ⁇ L, and a column temperature of 40 ° C.
  • nd, nC, and nF represent refractive indexes at wavelengths of 587.6 nm, 656.3 nm, and 486.1 nm, respectively.
  • the glass transition temperature (Tg) of the molding material is a differential scanning calorimeter (product name: DSC6220SII, manufactured by Nanotechnology) using the hydrogenated polymer pellets obtained in the examples as measurement samples.
  • DSC6220SII differential scanning calorimeter
  • Example 1 15 parts of monomer (1), 15 parts of tetracyclododecene as another monomer copolymerizable with monomer (1), and 0.09 part of molecular weight regulator (1-hexene) A mixed monomer mixture was prepared. Next, 0.02 part of a polymerization catalyst [(1,3-dimesitymylimidazolidine-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride] in a glass reaction vessel purged with nitrogen inside, toluene as an organic solvent After adding 100 parts, the monomer mixture was added dropwise over 1 hour while stirring at 60 ° C. to conduct a ring-opening polymerization reaction. The conversion ratio of the monomer to the polymer was 100%, and the weight average molecular weight (Mw) of the polymer measured according to the above was 18,000 and the molecular weight distribution (Mw / Mn) was 1.5.
  • Mw weight average molecular weight
  • a pressure filter made by Ishikawajima-Harima Heavy Industries Co., Ltd., product name “Fundafilter” is made using diatomaceous earth (made by Showa Chemical Industry, product name “Radiolite (registered trademark) # 500”) as a filter bed. ) And pressure filtered at a pressure of 0.25 MPa to obtain a colorless and transparent solution.
  • the hydrogenation rate of the main chain and side chain carbon-carbon unsaturated bonds of the hydrogenated polymer obtained by the hydrogenation reaction and the total carbon-carbon unsaturated bonds of the aromatic ring were analyzed by 1 H-NMR. In 1 H-NMR analysis, the amount of carbon-carbon unsaturated bonds contained in the polymer before and after hydrogenation was measured.
  • the hydrogenation rate calculated based on the measurement results was 95%.
  • the conditions for 1 H-NMR analysis were the same as those for monomer (1).
  • an antioxidant [pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, product name “Irganox (registered)” was added to the resulting solution. Trademark) 1010 ”)] was added per 100 parts of polymer hydride.
  • This solution was filtered with a filter (product name “Zeta Plus (registered trademark) 30H”, pore size 0.5 to 1 ⁇ m, manufactured by Cunnow Filter Co., Ltd.), and then the filtrate was made of a metal fiber filter (manufactured by Nichidai, pore size 0.4 ⁇ m). ) To remove foreign matters.
  • a filter product name “Zeta Plus (registered trademark) 30H”, pore size 0.5 to 1 ⁇ m, manufactured by Cunnow Filter Co., Ltd.
  • the polymer hydride was obtained from the filtrate obtained above using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd.). Is extruded into a strand form in a molten state from a die directly connected to a concentrator, cooled with water, and then cut with a pelletizer (product name “OSP-2”, manufactured by Nagata Seisakusho) to contain pellets containing a hydrogenated polymer as a molding material Got.
  • a pelletizer product name “OSP-2”, manufactured by Nagata Seisakusho
  • the obtained molding material had a weight average molecular weight (Mw) of 17,300, a molecular weight distribution (Mw / Mn) of 1.5, a glass transition temperature (Tg) of 162 ° C., a refractive index of 1.548, and an Abbe number of 48. Met.
  • the birefringence amount per unit thickness was 110.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

A hydrogenated polymer that is obtained by hydrogenating 90% or more of all the carbon-carbon unsaturated bonds in the main chain and the side chains and carbon-carbon unsaturated bonds in the aromatic rings of a polymer which contains a unit derived from a monomer represented by formula (1), and which may contain a unit derived from a monomer that is copolymerizable with the monomer represented by formula (1); a molding material which contains this hydrogenated polymer; and a resin molded body which is obtained by molding this molding material.

Description

水素化重合体、成形材料および樹脂成形体Hydrogenated polymer, molding material and resin molding
 本発明は、光学素子等の光学用成形体の樹脂成分として有用な水素化重合体、この水素化重合体を含有する成形材料、この成形材料を成形して得られる樹脂成形体に関する。 The present invention relates to a hydrogenated polymer useful as a resin component of an optical molded body such as an optical element, a molding material containing the hydrogenated polymer, and a resin molded body obtained by molding the molding material.
 レンズ等の光学用成形体の樹脂成分には、透明性に優れることが求められる。この観点から、従来、光学用成形体の樹脂成分として、ポリメチルメタクリレート、ポリカーボネート、ジエチレングリコールビスアリルカーボネート、ポリシクロヘキシルメタクリレート、ポリ4-メチルペンテン、非晶性脂環式ポリオレフィン、多環ノルボルネンポリマー、ビニル脂環式炭化水素重合体等が用いられてきた。例えば、特許文献1には、特定の繰り返し単位を有する多環ノルボルネンポリマーを含有する成形材料を用いて得られた光学用成形体が記載されている。 The resin component of an optical molded body such as a lens is required to have excellent transparency. From this viewpoint, conventionally, as a resin component of an optical molded article, polymethyl methacrylate, polycarbonate, diethylene glycol bisallyl carbonate, polycyclohexyl methacrylate, poly-4-methylpentene, amorphous alicyclic polyolefin, polycyclic norbornene polymer, vinyl Alicyclic hydrocarbon polymers have been used. For example, Patent Document 1 describes an optical molded body obtained by using a molding material containing a polycyclic norbornene polymer having a specific repeating unit.
 また、近年、携帯電話用カメラ等のレンズにおいては、さらなる薄肉化や高解像度化が求められている。このため、透明性に優れることのみならず、機械的強度に富み、屈折率とアッベ数のバランスに優れ、且つ低複屈折性の樹脂が求められてきている。 In recent years, lenses for mobile phone cameras and the like have been required to be thinner and have higher resolution. Therefore, there is a demand for a resin having not only excellent transparency but also high mechanical strength, excellent balance between refractive index and Abbe number, and low birefringence.
 本発明に関連して、特許文献1には、下記式(A)で表される開環重合体水素化物が記載されている。 In connection with the present invention, Patent Document 1 describes a ring-opened polymer hydride represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 しかしながら、この文献には、芳香環を水素化して得られる開環重合体水素化物は記載されていない。 However, this document does not describe a ring-opened polymer hydride obtained by hydrogenating an aromatic ring.
国際公開第2015/176588号International Publication No. 2015/176588
 本発明は、光学素子などの樹脂成形体の樹脂成分として有用な水素化重合体、この水素化重合体を含有する成形材料、及び、この成形材料を成形して得られる樹脂成形体を提供することを目的とする。 The present invention provides a hydrogenated polymer useful as a resin component of a resin molded product such as an optical element, a molding material containing the hydrogenated polymer, and a resin molded product obtained by molding the molding material. For the purpose.
 本発明者らは上記課題を解決すべく、環状オレフィン単量体の開環重合体について鋭意検討した。その結果、環状オレフィン単量体として、後述する式(1)で示される単量体を用いて得られる重合体の水素化物によれば、機械的強度、及び屈折率とアッベ数とのバランスに優れ、且つ低複屈折性の樹脂が得られることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventors have intensively studied a ring-opening polymer of a cyclic olefin monomer. As a result, according to the polymer hydride obtained by using the monomer represented by the formula (1) described later as the cyclic olefin monomer, the mechanical strength and the balance between the refractive index and the Abbe number are improved. It has been found that an excellent and low birefringent resin can be obtained, and the present invention has been completed.
 かくして本発明によれば、下記〔1〕~〔3〕の水素化重合体、〔4〕の成形材料、及び〔5〕、〔6〕の樹脂成形体が提供される。
〔1〕 下記式(1)
Figure JPOXMLDOC01-appb-C000003
 で示される単量体に由来する単位を含み、且つ、前記式(1)で示される単量体と共重合可能な単量体に由来する単位を含みうる重合体の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上が水素化されてなる、水素化重合体。
〔2〕前記式(1)で示される単量体の開環単位を含むことを特徴とする〔1〕に記載の水素化重合体。
〔3〕前記式(1)で示される単量体と共重合可能な単量体が、ノルボルネン系単量体、環状モノオレフィン、環状ポリエン、及び、炭素数2~20のα-オレフィンからなる群から選ばれる少なくとも一種であることを特徴とする、〔1〕または〔2〕に記載の水素化重合体。
〔4〕前記〔1〕~〔3〕のいずれかに記載の水素化重合体を含有する成形材料。
〔5〕前記〔4〕に記載の成形材料を成形して得られる樹脂成形体。
〔6〕光学素子である、〔5〕に記載の樹脂成形体。
Thus, according to the present invention, the following [1] to [3] hydrogenated polymers, [4] molding materials, and [5] and [6] resin moldings are provided.
[1] The following formula (1)
Figure JPOXMLDOC01-appb-C000003
And a main chain and a side chain of a polymer containing a unit derived from a monomer represented by formula (1) and a unit derived from a monomer copolymerizable with the monomer represented by formula (1). A hydrogenated polymer obtained by hydrogenating at least 90% of the carbon-carbon unsaturated bonds of the aromatic ring and carbon-carbon unsaturated bonds of the aromatic ring.
[2] The hydrogenated polymer as described in [1], which contains a ring-opening unit of the monomer represented by the formula (1).
[3] The monomer copolymerizable with the monomer represented by the formula (1) comprises a norbornene monomer, a cyclic monoolefin, a cyclic polyene, and an α-olefin having 2 to 20 carbon atoms. The hydrogenated polymer according to [1] or [2], which is at least one selected from the group.
[4] A molding material containing the hydrogenated polymer according to any one of [1] to [3].
[5] A resin molded product obtained by molding the molding material according to [4].
[6] The resin molded product according to [5], which is an optical element.
 本発明によれば、光学素子などの樹脂成形体の樹脂成分として有用な水素化重合体、この水素化重合体を含有する成形材料、この成形材料を成形して得られる樹脂成形体が提供される。
 本発明の水素化重合体は、機械的強度、及び屈折率とアッベ数のバランスに優れ、且つ低複屈折性の樹脂を提供可能な重合体である。
 本発明の水素化重合体は、光学素子などの樹脂成形体の樹脂成分として有用である。
ADVANTAGE OF THE INVENTION According to this invention, the hydrogenated polymer useful as a resin component of resin moldings, such as an optical element, the molding material containing this hydrogenated polymer, and the resin molding obtained by shape | molding this molding material are provided. The
The hydrogenated polymer of the present invention is a polymer that is excellent in mechanical strength, balance of refractive index and Abbe number, and can provide a low birefringence resin.
The hydrogenated polymer of the present invention is useful as a resin component of a resin molded product such as an optical element.
 以下、本発明を、1)水素化重合体、2)成形材料、及び、3)樹脂成形体に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing it into 1) hydrogenated polymer, 2) molding material, and 3) resin molded body.
1)水素化重合体
 本発明の水素化重合体は、下記式(1)
Figure JPOXMLDOC01-appb-C000004
  で示される単量体(以下、「単量体(1)」ということがある。)に由来する単位を含み、且つ、単量体(1)と共重合可能な単量体に由来する単位を含みうる重合体の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上を水素化してなる重合体である。そのような重合体は、単量体(1)を重合すること、或いは、単量体(1)及び単量体(1)と共重合可能な単量体の単量体混合物を重合することにより重合体を得て、かかる重合体を水素化することにより得ることができる。
 なお、本明細書において、重合体が「単量体(1)に由来する単位を含」む、或いは、「単量体(1)に由来する単位及び単量体(1)と共重合可能な単量体に由来する単位を含」むこととは、重合体を構成する全単量体単位の好ましくは99.0質量%以上、より好ましくは100質量%が、「単量体(1)に由来する単位」又は「単量体(1)に由来する単位及び単量体(1)と共重合可能な単量体に由来する単位」により占められることを意味する。
 単量体として、前記式(1)で示される単量体を用いることにより、機械的強度、及び、屈折率とアッベ数のバランスに優れ、且つ低複屈折性の水素化重合体が得られる。
1) Hydrogenated polymer The hydrogenated polymer of the present invention has the following formula (1):
Figure JPOXMLDOC01-appb-C000004
And a unit derived from a monomer that is copolymerizable with the monomer (1), including a unit derived from the monomer represented by (hereinafter, sometimes referred to as “monomer (1)”) In which 90% or more of the carbon-carbon unsaturated bonds in the main and side chains and the carbon-carbon unsaturated bonds in the aromatic ring are hydrogenated. Such a polymer can polymerize monomer (1) or polymerize monomer (1) and a monomer mixture of monomers copolymerizable with monomer (1). Can be obtained by obtaining a polymer and hydrogenating the polymer.
In the present specification, the polymer includes “units derived from the monomer (1)” or “can be copolymerized with units derived from the monomer (1) and the monomer (1)”. Including a unit derived from a simple monomer preferably means 99.0% by mass or more, more preferably 100% by mass of “monomer (1 ) Or “units derived from monomer (1) and units derived from monomer copolymerizable with monomer (1)”.
By using the monomer represented by the above formula (1) as the monomer, a hydrogenated polymer having excellent mechanical strength and a balance between the refractive index and the Abbe number and having a low birefringence can be obtained. .
〔単量体(1)〕
 本発明の水素化重合体の調製にあたって使用する単量体(1)は、公知の化合物であり、公知の方法により製造し、入手することができる。例えば、単量体(1)は、下記反応式に示すように、ノルボルナジエン(2)とアントラセン(3)とを、適当な溶媒中、加熱下ディールズアルダー付加反応させることにより、製造することができる(Journal of the Amereican Chemical Society,102(2),1980年,671-8、特開平2-185520号公報、国際公開第2015/176588号参照)。
Figure JPOXMLDOC01-appb-C000005
[Monomer (1)]
The monomer (1) used in the preparation of the hydrogenated polymer of the present invention is a known compound, and can be produced and obtained by a known method. For example, as shown in the following reaction formula, monomer (1) can be produced by subjecting norbornadiene (2) and anthracene (3) to a Diels-Alder addition reaction under heating in an appropriate solvent. (See Journal of the American Chemical Society, 102 (2), 1980, 671-8, JP-A-2-185520, International Publication No. 2015/176588).
Figure JPOXMLDOC01-appb-C000005
 また、単量体(1)は、下記に示すように、クワドリサイクラン(quadricyclane)(4)とアントラセン(3)とを適切な溶媒中にて分散して分散液を得て、かかる分散液に対して紫外線を照射することによっても、製造することができる(Journal of the American Chemical Society,99(3)、1977年,871-7)。この場合、単量体(1)のほかに式(5)で示される化合物も副生するため、得られた反応物中にはこれらが混在するが、反応物をカラムクロマトグラフィー等の分離精製手段に供することにより、単量体(1)を単離することができる。
Figure JPOXMLDOC01-appb-C000006
In addition, as shown below, the monomer (1) is obtained by dispersing a quadricycle (4) and anthracene (3) in a suitable solvent to obtain a dispersion. (Journal of the American Chemical Society, 99 (3), 1977, 871-7). In this case, in addition to the monomer (1), the compound represented by the formula (5) is also produced as a by-product, so these are mixed in the obtained reaction product, but the reaction product is separated and purified by column chromatography or the like. By using the means, the monomer (1) can be isolated.
Figure JPOXMLDOC01-appb-C000006
 本発明の水素化重合体は、分子内に、単量体(1)由来の繰り返し単位に加えて、前記式(1)で示される単量体と共重合可能な単量体(以下、「他の単量体」ということがある。)由来の繰り返し単位を有していてもよい。
 他の単量体としては、単量体(1)と共重合可能なものであれば、特に制限されない。他の単量体としては、例えば、ノルボルネン系単量体、環状モノオレフィン、環状ポリエン、及び、炭素数2~20のα-オレフィンからなる群から選ばれる少なくとも一種が挙げられる。中でも、ノルボルネン系単量体が好ましい。これらは、一種単独で、或いは複数種を組み合わせて用いることができる。
In addition to the repeating unit derived from the monomer (1), the hydrogenated polymer of the present invention has a monomer copolymerizable with the monomer represented by the above formula (1) (hereinafter, “ It may be referred to as “another monomer.”) It may have a repeating unit derived from.
Other monomers are not particularly limited as long as they are copolymerizable with monomer (1). Examples of the other monomer include at least one selected from the group consisting of norbornene monomers, cyclic monoolefins, cyclic polyenes, and α-olefins having 2 to 20 carbon atoms. Among these, norbornene monomers are preferable. These can be used individually by 1 type or in combination of multiple types.
〔ノルボルネン系単量体〕
 本発明の水素化重合体の調製にあたって使用しうる「他の単量体」としてのノルボルネン系単量体は、ノルボルネン環及び重合性炭素-炭素不飽和結合を有する化合物である(但し、単量体(1)は除かれる。)。
 具体例としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)及びその誘導体等の2環式単量体;トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)及びその誘導体等の3環式単量体;7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン、テトラシクロ[7.4.0.02,7.110,13]トリデカ-2,4,6,11-テトラエンともいう)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)及びこれらの誘導体等の4環式単量体;1,2,3,3a,4,6a-ヘキサハイドロ-1,2,4-メテノペンタレン(慣用名:デルタサイクレン、以下、「DCL」ということがある。)及びその誘導体等の5以上の環を有する単量体;等が挙げられる。中でも、テトラシクロドデセンが好ましい。
[Norbornene monomer]
The norbornene-based monomer as the “other monomer” that can be used in the preparation of the hydrogenated polymer of the present invention is a compound having a norbornene ring and a polymerizable carbon-carbon unsaturated bond (provided that the monomer is a single monomer) Body (1) is excluded.)
Specific examples include bicyclic monomers such as bicyclo [2.2.1] hept-2-ene (common name: norbornene) and derivatives thereof; tricyclo [4.3.0.1 2,5 ] deca -Tricyclic monomers such as 3,7-diene (common name: dicyclopentadiene) and derivatives thereof; 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene tetrahydrofluorene, also referred to as a tetracyclo [7.4.0.0 2,7 .1 10,13] trideca -2,4,6,11- tetraene), tetracyclo [4.4.0.1 2,5 . 1,7,10 ] dodec-3-ene (common name: tetracyclododecene) and tetracyclic monomers such as derivatives thereof; 1,2,3,3a, 4,6a-hexahydro-1,2 , 4-methenopentalene (common name: deltacyclene, hereinafter sometimes referred to as “DCL”) and its derivatives, etc., monomers having 5 or more rings; Of these, tetracyclododecene is preferred.
 これらの単量体が置換基を有するとき、置換基の位置は限定されない。置換基としては、メチル基、エチル基等のアルキル基;ビニル基等のアルケニル基;エチリデン基、プロパン-2-イリデン基等のアルキリデン基;フェニル基等のアリール基;ヒドロキシ基;酸無水物基;カルボキシル基;メトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。単量体が複数の置換基を有する場合に、かかる複数の置換基は同一であっても相異なっていても良い。
 そして、これらのノルボルネン系単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。
When these monomers have a substituent, the position of the substituent is not limited. Examples of the substituent include an alkyl group such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an alkylidene group such as an ethylidene group and a propane-2-ylidene group; an aryl group such as a phenyl group; a hydroxy group; an acid anhydride group Carboxyl group; alkoxycarbonyl group such as methoxycarbonyl group; and the like. When the monomer has a plurality of substituents, the plurality of substituents may be the same or different.
These norbornene monomers can be used singly or in combination of two or more.
〔環状モノオレフィン〕
 本発明の水素化重合体の調製にあたって使用しうる「他の単量体」としての環状モノオレフィンは、環状構造を有し、重合性炭素-炭素不飽和結合を一つ有する化合物である(但し、単量体(1)及びノルボルネン系単量体は除かれる。)。
 具体例としては、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン等の環状モノオレフィン及びその誘導体(環に置換基を有するものをいう。以下同じ)等が挙げられる。また、これらの環状モノオレフィンは置換基を有していても良く、置換基の位置は特に限定されない。また、かかる置換基としては、ノルボルネン系単量体について上記したような置換基と同様の置換基が挙げられる。さらに、単量体が複数の置換基を有する場合に、かかる複数の置換基は同一であっても相異なっていても良い。
 そして、これらの環状モノオレフィンは1種単独で、あるいは2種以上を組み合わせて用いることができる。
[Cyclic monoolefin]
The cyclic monoolefin as the “other monomer” that can be used in the preparation of the hydrogenated polymer of the present invention is a compound having a cyclic structure and one polymerizable carbon-carbon unsaturated bond (provided that Monomer (1) and norbornene monomers are excluded.
Specific examples include cyclic monoolefins such as cyclobutene, cyclopentene, cyclohexene, cycloheptene, and cyclooctene, and derivatives thereof (meaning those having a substituent in the ring; the same shall apply hereinafter). Moreover, these cyclic monoolefins may have a substituent, and the position of the substituent is not particularly limited. Examples of the substituent include the same substituents as those described above for the norbornene monomer. Further, when the monomer has a plurality of substituents, the plurality of substituents may be the same or different.
These cyclic monoolefins can be used singly or in combination of two or more.
〔環状ポリエン〕
 本発明の水素化重合体の調製にあたって使用しうる「他の単量体」としての環状ポリエンは、環状構造を有し、重合性炭素-炭素不飽和結合を二つ以上有する化合物である(但し、ノルボルネン系単量体は除かれる。)。その具体例としては、シクロヘキサジエン、シクロオクタジエン等の環状ジオレフィン及びその誘導体;ジメチルシクロペンタジエン、1,3-シクロペンタジエン、1,3-シクロへキサジエン、1,4-シクロへキサジエン、5-エチル-1,3-シクロへキサジエン、1,3-シクロへプタジエン、1,3-シクロオクタジエン、シクロオクタトリエン等が挙げられる。また、これらの環状ポリエンは置換基を有していても良く、置換基の位置は特に限定されない。また、かかる置換基としては、ノルボルネン系単量体について上記したような置換基と同様の置換基が挙げられる。さらに、単量体が複数の置換基を有する場合に、かかる複数の置換基は同一であっても相異なっていても良い。
 そして、これらの環状ポリエンは1種単独で、あるいは2種以上を組み合わせて用いることができる。
[Cyclic polyene]
The cyclic polyene as the “other monomer” that can be used in the preparation of the hydrogenated polymer of the present invention is a compound having a cyclic structure and having two or more polymerizable carbon-carbon unsaturated bonds (provided that And norbornene monomers are excluded). Specific examples thereof include cyclic diolefins such as cyclohexadiene and cyclooctadiene and derivatives thereof; dimethylcyclopentadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, 5- Examples include ethyl-1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, cyclooctatriene and the like. Moreover, these cyclic polyenes may have a substituent, and the position of the substituent is not particularly limited. Examples of the substituent include the same substituents as those described above for the norbornene monomer. Further, when the monomer has a plurality of substituents, the plurality of substituents may be the same or different.
These cyclic polyenes can be used alone or in combination of two or more.
〔炭素数2~20のα-オレフィン〕
 本発明に用いる炭素数2~20のα-オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-イコセン、ビニルシクロヘキサン、ビニルシクロヘキセン、ビニルシクロヘキセン、トリメチルビニルシラン等が挙げられる。また、これらのα-オレフィンは置換基を有していても良く、置換基の位置は特に限定されない。また、かかる置換基としては、ノルボルネン系単量体について上記したような置換基と同様の置換基が挙げられる。さらに、単量体が複数の置換基を有する場合に、かかる複数の置換基は同一であっても相異なっていても良い。
 これらのα-オレフィンは1種単独で、あるいは2種以上を組み合わせて用いることができる。
[C2-C20 α-olefin]
Examples of the α-olefin having 2 to 20 carbon atoms used in the present invention include ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-icocene, vinylcyclohexane Vinylcyclohexene, vinylcyclohexene, trimethylvinylsilane and the like. These α-olefins may have a substituent, and the position of the substituent is not particularly limited. Examples of the substituent include the same substituents as those described above for the norbornene monomer. Further, when the monomer has a plurality of substituents, the plurality of substituents may be the same or different.
These α-olefins can be used alone or in combination of two or more.
〔水素化重合体〕
 本発明の水素化重合体としては、具体的には、下記のものである。
 (α)単量体(1)の開環重合体〔以下、「開環重合体(α)」ということがある。〕の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上を水素化してなる重合体〔以下、「水素化重合体(α)」ということがある。〕
 (β)単量体(1)と、単量体(1)と開環共重合可能な単量体との単量体混合物を開環共重合してなる開環共重合体〔以下、「開環重合体(β)ということがある。」の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上を水素化してなる重合体〔以下、「水素化重合体(β)」ということがある。〕
 (γ)単量体(1)の付加重合体〔以下、「付加重合体(γ)」ということがある。〕の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上を水素化してなる重合体〔以下、「水素化重合体(γ)」ということがある。〕
 (δ)単量体(1)と、単量体(1)と付加共重合可能な単量体との単量体混合物を付加共重合してなる共重合体〔以下、「付加重合体(δ)」ということがある。〕の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上を水素化してなる重合体〔以下、「水素化重合体(δ)」ということがある。〕
(Hydrogenated polymer)
Specifically, the hydrogenated polymer of the present invention is as follows.
(Α) Ring-opening polymer of monomer (1) [hereinafter referred to as “ring-opening polymer (α)”. ], A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds in the main chain and the side chain and the carbon-carbon unsaturated bonds in the aromatic ring [hereinafter referred to as “hydrogenated polymer (α)”]. There is. ]
(Β) a ring-opening copolymer obtained by ring-opening copolymerization of a monomer mixture of monomer (1) and monomer (1) and a monomer capable of ring-opening copolymerization; A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds of the main chain and side chain and the carbon-carbon unsaturated bonds of the aromatic ring. [Hereinafter, it may be referred to as “hydrogenated polymer (β)”. ]
(Γ) Addition polymer of monomer (1) [hereinafter sometimes referred to as “addition polymer (γ)”. ], A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds of the main chain and the side chain and the carbon-carbon unsaturated bonds of the aromatic ring [hereinafter referred to as “hydrogenated polymer (γ)”] There is. ]
(Δ) a copolymer obtained by addition copolymerization of a monomer mixture of the monomer (1) and the monomer (1) and an addition copolymerizable monomer [hereinafter referred to as “addition polymer ( δ) ”. ], A polymer obtained by hydrogenating 90% or more of the carbon-carbon unsaturated bonds in the main chain and the side chain and the carbon-carbon unsaturated bonds in the aromatic ring (hereinafter referred to as “hydrogenated polymer (δ)”). There is. ]
 水素化重合体(α)及び(β)は、分子内に、下記(I)で示される繰り返し単位を有する高分子である。
Figure JPOXMLDOC01-appb-C000007
The hydrogenated polymers (α) and (β) are polymers having a repeating unit represented by the following (I) in the molecule.
Figure JPOXMLDOC01-appb-C000007
 水素化重合体(α)は、前記式(I)の繰り返し単位のみからなる開環重合体水素化物である。
 水素化重合体(β)は、分子内に、前記式(I)の繰り返し単位、及び、単量体(1)と共重合可能な単量体由来の繰り返し単位を有する開環共重合体水素化物である。水素化重合体(β)は、単量体(1)と開環共重合可能な単量体由来の繰り返し単位の2種以上を有していてもよい。また、水素化重合体(β)は、ランダム共重合体、交互共重合体、ブロック共重合体のいずれであってもよい。
 水素化重合体(β)において、前記式(I)で示される繰り返し単位の、水素化重合体(β)の全繰り返し単位に対する存在割合は、特に限定されないが、好ましくは10~80モル%、より好ましくは、20~60モル%、特に好ましくは30~55モル%である。前記式(I)で示される繰り返し単位の存在割合が80モル%以下とすることで、成形材料の成形性を高めることができる。
The hydrogenated polymer (α) is a ring-opened polymer hydride consisting only of the repeating unit of the formula (I).
Hydrogenated polymer (β) is a ring-opening copolymer hydrogen having in its molecule a repeating unit of the above formula (I) and a repeating unit derived from a monomer copolymerizable with monomer (1). It is a monster. The hydrogenated polymer (β) may have two or more kinds of repeating units derived from a monomer capable of ring-opening copolymerization with the monomer (1). The hydrogenated polymer (β) may be any of a random copolymer, an alternating copolymer, and a block copolymer.
In the hydrogenated polymer (β), the ratio of the repeating unit represented by the formula (I) to the total repeating units of the hydrogenated polymer (β) is not particularly limited, but is preferably 10 to 80 mol%, More preferably, it is 20 to 60 mol%, particularly preferably 30 to 55 mol%. The moldability of a molding material can be improved because the presence rate of the repeating unit shown by said Formula (I) shall be 80 mol% or less.
 開環重合体(α)及び(β)は、メタセシス重合触媒を用いる公知の方法に従って、対応する単量体を開環重合することにより合成することができる。
 メタセシス重合触媒としては、特に限定はなく、公知のものが用いられる。メタセシス重合触媒としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金などから選ばれる金属のハロゲン化物、硝酸塩又はアセチルアセトン化合物と、還元剤とからなる触媒系;チタン、バナジウム、ジルコニウム、タングステン及びモリブデンから選ばれる金属のハロゲン化物又はアセチルアセトン化合物と、助触媒の有機アルミニウム化合物とからなる触媒系;シュロック型又はグラブス型のリビング開環メタセシス重合触媒(特開平7-179575号、J.Am.Chem.Soc.,1986年,108,p.733、J.Am.Chem.Soc.,1993年,115,p.9858、及びJ.Am.Chem.Soc.,1996年,118,p.100);クロム、モリブデン、タングステン等の金属とイミド基含有配位子とを有する錯体を含む触媒系;等が挙げられる。
The ring-opening polymers (α) and (β) can be synthesized by subjecting the corresponding monomers to ring-opening polymerization according to a known method using a metathesis polymerization catalyst.
There is no limitation in particular as a metathesis polymerization catalyst, A well-known thing is used. As a metathesis polymerization catalyst, a catalyst system comprising a metal halide, nitrate or acetylacetone compound selected from ruthenium, rhodium, palladium, osmium, iridium and platinum and a reducing agent; from titanium, vanadium, zirconium, tungsten and molybdenum A catalyst system comprising a selected metal halide or acetylacetone compound and a co-catalyst organoaluminum compound; a Schrock-type or Grubbs-type living ring-opening metathesis polymerization catalyst (JP-A-7-179575, J. Am. Chem. Soc., 1986, 108, p.733, J. Am.Chem.Soc., 1993, 115, p.9858, and J.Am.Chem.Soc., 1996, 118, p.100); Chrome, molybdenum, tongue steak Catalyst system comprising a complex having a metal and an imide group-containing ligand and the like; and the like.
 これらのメタセシス重合触媒は、1種単独で、あるいは2種以上を組み合わせて用いることができる。メタセシス重合触媒の使用量は、重合条件等により適宜選択すればよいが、全単量体1モルに対して、通常0.000001~0.1モル、好ましくは、0.00001~0.01モルである。 These metathesis polymerization catalysts can be used singly or in combination of two or more. The amount of the metathesis polymerization catalyst used may be appropriately selected depending on the polymerization conditions and the like, but is usually 0.000001 to 0.1 mol, preferably 0.00001 to 0.01 mol, relative to 1 mol of all monomers. It is.
 開環重合を行う際は、分子量調節剤を添加することができる。分子量調節剤を添加することで、得られる開環重合体の分子量を調整することができる。用いる分子量調節剤としては特に限定されず、従来公知のものが使用できる。用いる分子量調節剤としては、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-オクタデセン等のα-オレフィン類;スチレン、ビニルトルエン等のスチレン類;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル等のエーテル類;アリルクロライド等のハロゲン含有ビニル化合物;グリシジルメタクリレート等酸素含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエン等の非共役ジエン、又は1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエンなどが挙げられる。
 分子量調節剤の添加量は、全単量体1モルに対して、通常0.001~0.030モル、好ましくは0.003~0.020モル、より好ましくは0.005~0.015モルである。
When performing the ring-opening polymerization, a molecular weight regulator can be added. The molecular weight of the resulting ring-opening polymer can be adjusted by adding a molecular weight regulator. It does not specifically limit as a molecular weight regulator to be used, A conventionally well-known thing can be used. Examples of molecular weight regulators to be used include α-olefins such as 1-butene, 1-pentene, 1-hexene, 1-octene and 1-octadecene; styrenes such as styrene and vinyltoluene; ethyl vinyl ether, isobutyl vinyl ether, allyl glycidyl Ethers such as ether; halogen-containing vinyl compounds such as allyl chloride; oxygen-containing vinyl compounds such as glycidyl methacrylate; nitrogen-containing vinyl compounds such as acrylamide; 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1 , 6-heptadiene, 2-methyl-1,4-pentadiene, non-conjugated dienes such as 2,5-dimethyl-1,5-hexadiene, or 1,3-butadiene, 2-methyl-1,3-butadiene, 2 , 3-Dimethyl-1,3-butadiene, 1,3-pen Diene, such as a conjugated diene such as 1,3-hexadiene, and the like.
The addition amount of the molecular weight regulator is usually 0.001 to 0.030 mol, preferably 0.003 to 0.020 mol, more preferably 0.005 to 0.015 mol with respect to 1 mol of all monomers. It is.
 開環重合は、有機溶媒中で行うことができる。有機溶媒としては、重合反応に不活性なものであれば格別な制限はない。有機溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、デカリン、ビシクロノナン等の脂環族炭化水素系溶媒;ジクロロエタン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化炭化水素系溶媒;等が挙げられる。 The ring-opening polymerization can be performed in an organic solvent. The organic solvent is not particularly limited as long as it is inert to the polymerization reaction. Organic solvents include aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; fats such as cyclohexane, methylcyclohexane, decalin and bicyclononane And cyclic hydrocarbon solvents; halogenated hydrocarbon solvents such as dichloroethane, chlorobenzene, dichlorobenzene, and trichlorobenzene;
 重合反応は、単量体(1)、又は、単量体(1)及び単量体(1)と共重合可能な単量体との単量体混合物、及び重合触媒を混合することにより開始される。重合温度は、特に限定されないが、通常-20~+100℃、好ましくは、10~80℃、さらに好ましくは、30~60℃である。重合時間は、特に制限されないが、通常1分間~100時間である。圧力条件も特に限定されないが、通常、0~1MPaの加圧下で重合を行う。 The polymerization reaction is started by mixing the monomer (1), the monomer mixture of the monomer (1) and the monomer (1) and a copolymerizable monomer, and a polymerization catalyst. Is done. The polymerization temperature is not particularly limited, but is usually −20 to + 100 ° C., preferably 10 to 80 ° C., and more preferably 30 to 60 ° C. The polymerization time is not particularly limited, but is usually 1 minute to 100 hours. Although the pressure condition is not particularly limited, the polymerization is usually carried out under a pressure of 0 to 1 MPa.
 反応終了後においては、通常の後処理操作により目的とする開環重合体を単離することができる。
 得られた開環重合体(α)又は(β)を水素化反応に供することで、それぞれ対応する水素化重合体(α)、(β)を得ることができる。
After completion of the reaction, the desired ring-opening polymer can be isolated by ordinary post-treatment operation.
By subjecting the obtained ring-opening polymer (α) or (β) to a hydrogenation reaction, the corresponding hydrogenated polymers (α) and (β) can be obtained, respectively.
 開環重合体(α)及び(β)を水素化する方法は、開環重合体(α)、(β)が有する、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上を水素化できる方法であれば、特に制限されない。
 水素化反応は、通常、開環重合体(α)又は開環重合体(β)の溶液にて、水素化触媒の存在下に水素を供給して、反応させればよい。
 水素化触媒としては、均一系触媒と不均一系触媒がある。
 均一系触媒としては、例えば、ウィルキンソン錯体、すなわち、クロロトリス(トリフェニルホスフィン)ロジウム(1)や、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n-ブチルリチウム、ジルコノセンジクロリド/sec-ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウムなどの遷移金属化合物/アルキル金属化合物の組み合わせからなる触媒が挙げられる。
The method for hydrogenating the ring-opening polymers (α) and (β) includes the main chain and side chain carbon-carbon unsaturated bonds, and the aromatic ring carbon contained in the ring-opening polymers (α) and (β). -Any method that can hydrogenate 90% or more of the total carbon unsaturated bonds is not particularly limited.
The hydrogenation reaction is usually carried out by supplying hydrogen in the presence of a hydrogenation catalyst in a ring-opening polymer (α) or a solution of the ring-opening polymer (β).
As the hydrogenation catalyst, there are a homogeneous catalyst and a heterogeneous catalyst.
Examples of homogeneous catalysts include Wilkinson complex, that is, chlorotris (triphenylphosphine) rhodium (1), cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, titanocene dichloride / n-butyllithium, zirconocene dichloride. Examples thereof include a catalyst comprising a combination of a transition metal compound / alkyl metal compound such as / sec-butyl lithium and tetrabutoxy titanate / dimethyl magnesium.
 不均一系触媒としては、例えば、ニッケル、パラジウムなどの水素化触媒として公知の金属を担体に担持したものが挙げられる。本発明においては不均一系触媒が好ましく、金属としてニッケルとパラジウムとの併用、またはパラジウムを用いた不均一系触媒が最も好ましい。担体としては、例えば、アルミナ、シリカ、珪藻土などが挙げられる。 Examples of the heterogeneous catalyst include a catalyst in which a metal known as a hydrogenation catalyst such as nickel or palladium is supported on a carrier. In the present invention, a heterogeneous catalyst is preferable, and a combination of nickel and palladium as a metal or a heterogeneous catalyst using palladium is most preferable. Examples of the carrier include alumina, silica, diatomaceous earth, and the like.
 水素化反応は通常溶媒中で行われる。溶媒としては、前記重合時に使用可能な溶媒と同じものが挙げられる。水素化反応は、通常100~200℃、好ましくは130~195℃の温度範囲で、通常0.1~100kgf/cm2、好ましくは0.5~60kgf/cm2、より好ましくは1~50kgf/cm2の水素圧(ゲージ圧)で行われる。 The hydrogenation reaction is usually performed in a solvent. Examples of the solvent include the same solvents that can be used during the polymerization. The hydrogenation reaction is usually in the temperature range of 100 to 200 ° C., preferably 130 to 195 ° C., usually 0.1 to 100 kgf / cm 2 , preferably 0.5 to 60 kgf / cm 2 , more preferably 1 to 50 kgf / It is carried out at a hydrogen pressure (gauge pressure) of cm 2 .
 この水素化反応によって、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体における水素化率を90%以上、好ましくは95%以上にする。主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環構造の炭素-炭素不飽和結合全体における水素化率は、1H-NMRスペクトルによって、水素化前の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環構造の炭素-炭素不飽和結合の量(X1)と、水素化後の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環構造の炭素-炭素不飽和結合の量(X2)とを測定して、式:100-X2/X1×100に従って求めることができる。 By this hydrogenation reaction, the hydrogenation rate in the carbon-carbon unsaturated bonds of the main chain and the side chain and the carbon-carbon unsaturated bonds of the aromatic ring is 90% or more, preferably 95% or more. The hydrogenation rate of the carbon-carbon unsaturated bonds in the main chain and the side chain and the carbon-carbon unsaturated bonds in the aromatic ring structure is determined by the 1 H-NMR spectrum according to the carbon of the main chain and the side chain before hydrogenation. -Carbon unsaturated bond and amount of carbon-carbon unsaturated bond of aromatic ring structure (X 1 ), main chain and side chain carbon-carbon unsaturated bond after hydrogenation, and carbon-carbon of aromatic ring structure The amount of unsaturated bonds (X 2 ) can be measured and determined according to the formula: 100−X 2 / X 1 × 100.
 重合及び水素化反応後、触媒等が除去される。除去方法は特に制限されず、遠心分離、濾過などの方法が挙げられる。さらに、水やアルコールなどの触媒不活性化剤を添加したり、また活性白土、アルミナ、珪素土などの吸着剤を添加したりして、触媒の除去を促進させることができる。 After polymerization and hydrogenation reaction, the catalyst and the like are removed. The removal method is not particularly limited, and examples thereof include methods such as centrifugation and filtration. Furthermore, the catalyst removal can be promoted by adding a catalyst deactivator such as water or alcohol, or by adding an adsorbent such as activated clay, alumina, or silicon earth.
 水素化重合体(γ)、(δ)は、分子内に、下記式(II)に示す繰り返し単位を有する高分子である。
Figure JPOXMLDOC01-appb-C000008
The hydrogenated polymers (γ) and (δ) are polymers having a repeating unit represented by the following formula (II) in the molecule.
Figure JPOXMLDOC01-appb-C000008
 水素化重合体(γ)は、前記式(II)で示される繰り返し単位のみからなる付加重合体水素化物である。
 水素化重合体(δ)は、分子内に、前記式(II)の繰り返し単位、及び、単量体(1)と付加共重合可能な単量体由来の繰り返し単位を有する付加共重合体水素化物である。水素化重合体(δ)は、2種以上の、単量体(1)と、単量体(1)と共重合可能な単量体由来の繰り返し単位を有していてもよい。また、水素化重合体(δ)は、ランダム共重合体、交互共重合体、ブロック共重合体のいずれであってもよい。
 水素化重合体(δ)において、前記式(II)で示される繰り返し単位の、全繰り返し単位に対する存在割合は、特に限定されないが、好ましくは10~80モル%、より好ましくは、20~60モル%、特に好ましくは30~50モル%である。前記式(II)で示される繰り返し単位の存在割合を80モル%以下とすることで、成形材料の成形性を高めることができる。
The hydrogenated polymer (γ) is an addition polymer hydride consisting only of the repeating unit represented by the formula (II).
The hydrogenated polymer (δ) is an addition copolymer hydrogen having a repeating unit of the formula (II) in the molecule and a repeating unit derived from a monomer that can be addition copolymerized with the monomer (1). It is a monster. The hydrogenated polymer (δ) may have two or more types of repeating units derived from the monomer (1) and a monomer copolymerizable with the monomer (1). Further, the hydrogenated polymer (δ) may be any of a random copolymer, an alternating copolymer, and a block copolymer.
In the hydrogenated polymer (δ), the ratio of the repeating unit represented by the formula (II) to the total repeating units is not particularly limited, but is preferably 10 to 80 mol%, more preferably 20 to 60 mol. %, Particularly preferably 30 to 50 mol%. The moldability of a molding material can be improved by making the presence rate of the repeating unit shown by the said formula (II) into 80 mol% or less.
 付加重合体(γ)及び(δ)は、例えば、メタロセン触媒の存在下に、単量体(1)及び必要に応じて、単量体(1)と付加共重合可能な単量体(他の単量体)を付加共重合することにより得ることができる。 The addition polymers (γ) and (δ) are, for example, the monomer (1) and, if necessary, the monomer (1) that can be added copolymerized with the monomer (1) in the presence of a metallocene catalyst. Can be obtained by addition copolymerization.
 用いるメタロセン触媒としては、特に限定されず、従来から付加重合反応に用いられている公知の触媒を使用できる。例えば、遷移金属のメタロセン化合物(a)と、有機アルミニウムオキシ化合物(b)又はボレート若しくはボラン化合物(c)とからなる触媒が挙げられる。 The metallocene catalyst to be used is not particularly limited, and a known catalyst conventionally used for addition polymerization reaction can be used. For example, a catalyst comprising a transition metal metallocene compound (a) and an organoaluminum oxy compound (b) or a borate or borane compound (c) can be mentioned.
 メタロセン化合物(a)として、例えば、架橋型メタロセン化合物及びハーフメタロセン化合物が挙げられる。単量体(1)を効率的に重合させるために、架橋型メタロセン化合物が好ましい。
 架橋型メタロセン化合物としては、例えば、一般式(6)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
Examples of the metallocene compound (a) include a bridged metallocene compound and a half metallocene compound. In order to efficiently polymerize the monomer (1), a crosslinked metallocene compound is preferred.
Examples of the bridged metallocene compound include those represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000009
 式(6)中、M1はチタン、ジルコニウム、及びハフニウムからなる群より選ばれる金属原子であり、触媒活性に優れることからジルコニウムが好ましい。
 X1及びX2は、それぞれ独立に、炭素数1~6のアルキル基、又はハロゲン原子である。
 R1は、メチレン基、エチレン基、プロピレン基などの低級アルキレン基;イソプロピリデン基などのアルキリデン基;ジフェニルメチレンなどの置換アルキレン基;ジメチルシリレン基、ジフェニルシリレン基などの置換シリレン基、又はシリレン基である。
 R2及びR3は、それぞれ独立に、シクロペンタジエニル基、インデニル基、又はフルオレニル基であり、メチル基、エチル基、イソプロピル基、t-ブチル基等のアルキル基;フェニル基若しくは、ベンジル基で置換されていてもよい。
In formula (6), M 1 is a metal atom selected from the group consisting of titanium, zirconium, and hafnium, and zirconium is preferred because of its excellent catalytic activity.
X 1 and X 2 are each independently an alkyl group having 1 to 6 carbon atoms or a halogen atom.
R 1 is a lower alkylene group such as a methylene group, an ethylene group or a propylene group; an alkylidene group such as an isopropylidene group; a substituted alkylene group such as diphenylmethylene; a substituted silylene group such as a dimethylsilylene group or a diphenylsilylene group; or a silylene group It is.
R 2 and R 3 are each independently a cyclopentadienyl group, an indenyl group, or a fluorenyl group, an alkyl group such as a methyl group, an ethyl group, an isopropyl group, or a t-butyl group; a phenyl group or a benzyl group May be substituted.
 式(6)で表される架橋型メタロセン化合物としては、イソプロピリデン-(9-フルオレニル)(シクロペンタジエニル)ジルコニウムジクロライド、ジフェニルメチレン-(9-フルオレニル)(シクロペンタジエニル)ジルコニウムジクロライド、イソプロピリデン-(9-フルオレニル)[1-(3-メチル)シクロペンタジエニル]ジルコニウムジクロライド、イソプロピリデン-(9-フルオレニル)[1-(3-t-ブチル)シクロペンタジエニル]ジルコニウムジクロライド、イソプロピリデン-(1-インデニル)(シクロペンタジエニル)ジルコニウムジクロライド、ジメチルシリレン-ビス(1-インデニル)ジルコニウムジクロライド、エチレン-ビス(1-インデニル)ジルコニウムジクロライド、ジフェニルメチレン-ビス(1-インデニル)ジルコニウムジクロライド、イソプロピリデン-ビス(1-インデニル)ジルコニウムジクロライドなどを挙げることができる。 Examples of the bridged metallocene compound represented by the formula (6) include isopropylidene- (9-fluorenyl) (cyclopentadienyl) zirconium dichloride, diphenylmethylene- (9-fluorenyl) (cyclopentadienyl) zirconium dichloride, isopropyl Riden- (9-fluorenyl) [1- (3-methyl) cyclopentadienyl] zirconium dichloride, isopropylidene- (9-fluorenyl) [1- (3-t-butyl) cyclopentadienyl] zirconium dichloride, isopropyl Liden- (1-indenyl) (cyclopentadienyl) zirconium dichloride, dimethylsilylene-bis (1-indenyl) zirconium dichloride, ethylene-bis (1-indenyl) zirconium dichloride, diphenyl Styrene - bis (1-indenyl) zirconium dichloride, isopropylidene - bis (1-indenyl) zirconium dichloride can be mentioned.
 なお、ハーフメタロセン化合物としては、(t-ブチルアミド)ジメチル-1-インデニルシランチタンジメチル、(t-ブチルアミド)ジメチル-1-インデニルシランチタンジクロライド、(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジメチル、(t-ブチルアミド)ジメチル-9-フルオレニルシランチタンジクロライド、(t-ブチルアミド)ジメチル-9-(3,6-ジメチルフルオレニル)シランチタンジメチル、(t-ブチルアミド)ジメチル-9-[3,6-ジ(i-プロピル)フルオレニル]シランチタンジメチル、(t-ブチルアミド)ジメチル-9-[3,6-ジ(t-ブチル)フルオレニル]シランチタンジメチル、(t-ブチルアミド)ジメチル-9-[2,7-ジ(t-ブチル)フルオレニル]シランチタンジメチル、(t-ブチルアミド)ジメチル-9-(2,3,6,7-テトラメチルフルオレニル)シランチタンジメチルなどが好ましいものとして挙げられる。 The half metallocene compounds include (t-butylamido) dimethyl-1-indenylsilane titanium dimethyl, (t-butylamido) dimethyl-1-indenylsilane titanium dichloride, (t-butylamido) dimethyl-9-fluorenyl. Silane titanium dimethyl, (t-butylamido) dimethyl-9-fluorenylsilane titanium dichloride, (t-butylamido) dimethyl-9- (3,6-dimethylfluorenyl) silane titanium dimethyl, (t-butylamido) dimethyl- 9- [3,6-Di (i-propyl) fluorenyl] silane titanium dimethyl, (t-butylamido) dimethyl-9- [3,6-di (t-butyl) fluorenyl] silane titanium dimethyl, (t-butylamide) Dimethyl-9- [2,7-di (t-butyl) fluore Le] silane titanium dimethyl, and as (t-butylamido) dimethyl-9- (2,3,6,7-tetramethyl-fluorenyl) as silane titanium dimethyl is preferred.
 メタロセン触媒を構成する、有機アルミニウムオキシ化合物(b)、又はボレート若しくはボラン化合物(c)は、メタロセン化合物を活性化するための活性化剤である。 The organoaluminum oxy compound (b) or borate or borane compound (c) constituting the metallocene catalyst is an activator for activating the metallocene compound.
 有機アルミニウムオキシ化合物(b)は、従来公知のアルミノオキサンであってもよく、また、特開平2-78687号公報に開示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。 The organoaluminum oxy compound (b) may be a conventionally known aluminoxane, or a benzene-insoluble organoaluminum oxy compound as disclosed in JP-A-2-78687.
 ボレート若しくはボラン化合物(c)は、メタロセン化合物と反応してメタロセン化合物をカチオン種に変換可能な活性化剤である。
 ボレート若しくはボラン化合物(c)としては、例えば、トリエチルアンモ二ウムテトラキス(ペンタフルオロフェニル)ボレート、トリチルテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、リチウムテトラキス(ペンタフルオロフェニル)ボレートなどのボレート化合物;トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロンなどのボラン化合物が挙げられる。
The borate or borane compound (c) is an activator capable of reacting with the metallocene compound to convert the metallocene compound into a cationic species.
Examples of the borate or borane compound (c) include triethylammonium tetrakis (pentafluorophenyl) borate, trityltetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, ferrocete. Borate compounds such as nium tetra (pentafluorophenyl) borate and lithium tetrakis (pentafluorophenyl) borate; tris (4-fluorophenyl) boron, tris (3,5-difluorophenyl) boron, tris (4-fluoromethylphenyl) Examples thereof include borane compounds such as boron and tris (pentafluorophenyl) boron.
 メタロセン触媒には、必要に応じて有機アルミニウム化合物(d)を含有させることができる。有機アルミニウム化合物(d)としては、上記有機アルミニウムオキシ化合物以外の有機アルミニウム化合物が挙げられる。有機アルミニウム化合物(d)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリn-ブチルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウムなどのトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジイソブチルアルミニウムクロライドなどのジアルキルアルミニウムハライド;ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド;ジメチルアルミニウムメトキシドなどのジアルキルアルミニウムアルコキシド;ジエチルアルミニウムフェノキシドなどのジアルキルアルミニウムアリーロキシド等が挙げられる。 The metallocene catalyst can contain an organoaluminum compound (d) as necessary. Examples of the organoaluminum compound (d) include organoaluminum compounds other than the above organoaluminum oxy compounds. Specific examples of the organoaluminum compound (d) include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum; dimethylaluminum chloride, diisobutylaluminum chloride Dialkylaluminum halides such as diisobutylaluminum hydride; dialkylaluminum alkoxides such as dimethylaluminum methoxide; dialkylaluminum aryloxides such as diethylaluminum phenoxide.
 重合反応時のメタロセン化合物(a)の濃度は、好ましくは0.00005~1ミリモル/リットル、より好ましくは0.0001~0.3ミリモル/リットルである。また有機アルミニウムオキシ化合物(b)又はボレート若しくはボラン化合物(c)は、メタロセン化合物(a)に対して、1~10,000当量であることが好ましい。
 有機アルミニウム化合物(d)は、メタロセン化合物(a)に対して0.1~1,000当量であることが好ましい。
The concentration of the metallocene compound (a) during the polymerization reaction is preferably 0.00005 to 1 mmol / liter, more preferably 0.0001 to 0.3 mmol / liter. The organoaluminum oxy compound (b) or borate or borane compound (c) is preferably 1 to 10,000 equivalents relative to the metallocene compound (a).
The organoaluminum compound (d) is preferably 0.1 to 1,000 equivalents relative to the metallocene compound (a).
 付加重合反応は、その重合反応形態で制限されず、溶液重合、塊状重合、スラリー重合などの重合法から採用することができ、また、反応器は連続式反応器及びバッチ式反応器のいずれでもよい。 The addition polymerization reaction is not limited by the form of the polymerization reaction, and can be adopted from polymerization methods such as solution polymerization, bulk polymerization, and slurry polymerization. The reactor can be either a continuous reactor or a batch reactor. Good.
 付加重合反応に用いられる溶媒としては、ヘキサン、ヘプタン、オクタン、灯油などの鎖状脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、デカリンなどの環状脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;などを挙げることができる。これら溶媒は1種単独でまたは2種以上を組み合わせて用いることができる。 Solvents used in the addition polymerization reaction include chain aliphatic hydrocarbons such as hexane, heptane, octane and kerosene; cycloaliphatic hydrocarbons such as cyclohexane, methylcyclohexane and decalin; aromatic carbonization such as benzene, toluene and xylene. Hydrogen; and the like. These solvents can be used alone or in combination of two or more.
 付加重合反応は、通常、-50~+230℃、好ましくは-30~+200℃、さらに好ましくは-20~+150℃の温度範囲で、通常2分間~5時間、好ましくは5分間~3時間行われる。反応時の圧力(ゲージ圧)は、通常10MPa以下、好ましくは5MPa以下である。 The addition polymerization reaction is usually carried out in the temperature range of −50 to + 230 ° C., preferably −30 to + 200 ° C., more preferably −20 to + 150 ° C., usually 2 minutes to 5 hours, preferably 5 minutes to 3 hours. . The pressure (gauge pressure) during the reaction is usually 10 MPa or less, preferably 5 MPa or less.
 メタロセン触媒は、それを構成する、メタロセン化合物(a)と、有機アルミニウムオキシ化合物(b)又はボレート若しくはボラン化合物(c)、さらに有機アルミニウム化合物(d)とを、重合反応器に別々に添加してもよいし、反応器外でこれらを混合してから重合反応器に添加してもよい。 In the metallocene catalyst, the metallocene compound (a), the organoaluminum oxy compound (b) or the borate or borane compound (c), and the organoaluminum compound (d), which constitute the metallocene catalyst, are separately added to the polymerization reactor. Alternatively, these may be mixed outside the reactor and then added to the polymerization reactor.
 前記付加重合体(γ)及び(δ)を水素化するには、付加重合体(γ)、(δ)が有する主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体における90%以上を水素化できる方法であれば、特に制限されない。水素化反応は、通常、付加重合体(γ)又は(δ)の溶液に、水素化触媒の存在下に水素を供給して、反応させればよい。
 用いる水素化触媒としては、前記開環重合体(α)及び(β)の水素化反応に用いる水素化触媒として列記したものと同じものが挙げられる。
In order to hydrogenate the addition polymers (γ) and (δ), addition polymers (γ), main chain and side chain carbon-carbon unsaturated bonds of (δ), and aromatic ring carbon-carbon The method is not particularly limited as long as 90% or more of the total unsaturated bonds can be hydrogenated. The hydrogenation reaction is usually carried out by supplying hydrogen to a solution of the addition polymer (γ) or (δ) in the presence of a hydrogenation catalyst.
Examples of the hydrogenation catalyst used include the same ones listed as the hydrogenation catalysts used for the hydrogenation reaction of the ring-opening polymers (α) and (β).
 水素化反応は通常溶媒中で行われる。溶媒としては、前記付加重合時に使用可能な溶媒と同じものが挙げられる。水素化反応及び水素化反応後の後処理は、前記開環重合体(α)及び(β)の場合と同様の条件で行うことができる。 The hydrogenation reaction is usually performed in a solvent. Examples of the solvent include the same solvents that can be used during the addition polymerization. The hydrogenation reaction and the post-treatment after the hydrogenation reaction can be performed under the same conditions as in the case of the ring-opening polymers (α) and (β).
 この水素化反応によって、前記開環重合体(α)及び(β)の場合と同様の水素化率を達成することができる。 This hydrogenation reaction can achieve the same hydrogenation rate as that of the ring-opening polymers (α) and (β).
 本発明の水素化重合体の重量平均分子量(Mw)は、好ましくは10,000~300,000、より好ましくは15,000~200,000、特に好ましくは17,000~150,000である。水素化重合体の重量平均分子量(Mw)が小さ過ぎると、樹脂成形体の機械的強度が低下するおそれがある。一方、水素化重合体の重量平均分子量(Mw)が大き過ぎると、成形材料の成形性が低下するおそれがある。
 なお、本発明の水素化重合体の重量平均分子量(Mw)は、重合体の重合時に添加する分子量調節剤の添加量を変更することによって、制御することができる。
The weight average molecular weight (Mw) of the hydrogenated polymer of the present invention is preferably 10,000 to 300,000, more preferably 15,000 to 200,000, and particularly preferably 17,000 to 150,000. If the weight average molecular weight (Mw) of the hydrogenated polymer is too small, the mechanical strength of the resin molding may be lowered. On the other hand, if the weight average molecular weight (Mw) of the hydrogenated polymer is too large, the moldability of the molding material may be reduced.
In addition, the weight average molecular weight (Mw) of the hydrogenated polymer of this invention can be controlled by changing the addition amount of the molecular weight modifier added at the time of superposition | polymerization of a polymer.
 本発明の水素化重合体の分子量分布(Mw/Mn)は、特に限定されないが、好ましくは1~8、より好ましくは1~6である。
 水素化重合体の分子量分布が上記範囲内にあることで、十分な機械的強度を有する樹脂成形体を得ることができる。
 本発明の水素化重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリイソプレン換算値である。
The molecular weight distribution (Mw / Mn) of the hydrogenated polymer of the present invention is not particularly limited, but is preferably 1 to 8, more preferably 1 to 6.
When the molecular weight distribution of the hydrogenated polymer is within the above range, a resin molded product having sufficient mechanical strength can be obtained.
The weight average molecular weight (Mw) and number average molecular weight (Mn) of the hydrogenated polymer of the present invention are standard polyisoprene conversion values by gel permeation chromatography (GPC) using cyclohexane as an eluent.
 本発明の水素化重合体は、単量体(1)由来の繰り返し単位を有するため、機械的強度、及び且つ屈折率とアッベ数のバランスに優れ、且つ低複屈折性の重合体になる。
 本発明の水素化重合体の25℃における屈折率(nd)は、好ましくは1.540以上、より好ましくは1.545~1.560である。
 本発明の水素化重合体の25℃におけるアッベ数は、好ましくは40以上、より好ましくは45以上であり、通常70以下である。
 ここで、屈折率及びアッベ数の値は、実施例に記載の方法により測定及び算出することができる。
 なお、本発明の水素化重合体の単位厚さあたりの複屈折量(δn)は、好ましくは-200~+200、より好ましくは-150~+150、特に好ましくは-120~+120である。
Since the hydrogenated polymer of the present invention has a repeating unit derived from the monomer (1), it has excellent mechanical strength and a balance between the refractive index and the Abbe number, and becomes a low birefringence polymer.
The refractive index (n d ) at 25 ° C. of the hydrogenated polymer of the present invention is preferably 1.540 or more, more preferably 1.545 to 1.560.
The Abbe number at 25 ° C. of the hydrogenated polymer of the present invention is preferably 40 or more, more preferably 45 or more, and usually 70 or less.
Here, the values of the refractive index and the Abbe number can be measured and calculated by the methods described in the examples.
The birefringence amount (δn) per unit thickness of the hydrogenated polymer of the present invention is preferably −200 to +200, more preferably −150 to +150, and particularly preferably −120 to +120.
 本発明の水素化重合体のガラス転移温度は、好ましくは120~180℃、より好ましくは130~165℃である。
 水素化重合体のガラス転移温度が上記の範囲内であることで、成形材料の成形性と樹脂成形体の耐熱性とのバランスが良好なものになる。
The glass transition temperature of the hydrogenated polymer of the present invention is preferably 120 to 180 ° C, more preferably 130 to 165 ° C.
When the glass transition temperature of the hydrogenated polymer is within the above range, the balance between the moldability of the molding material and the heat resistance of the resin molded body becomes good.
 上記のように、本発明の水素化重合体は、単量体(1)由来の繰り返し単位を有するため、機械的強度、及び屈折率とアッベ数のバランスに優れ、且つ、低複屈折性である。これらの特性により、本発明の水素化重合体としては、水素化重合体(α)及び(β)が好ましい。
 本発明の水素化重合体は、光学素子などの樹脂成形体の樹脂成分として有用である。
As described above, since the hydrogenated polymer of the present invention has repeating units derived from the monomer (1), it is excellent in mechanical strength, balance between refractive index and Abbe number, and low birefringence. is there. Due to these characteristics, the hydrogenated polymers (α) and (β) are preferred as the hydrogenated polymer of the present invention.
The hydrogenated polymer of the present invention is useful as a resin component of a resin molded product such as an optical element.
2)成形材料
 本発明の成形材料は、本発明の水素化重合体を含有する。本発明の成形材料は、本発明の効果を阻害しない範囲で、本発明の水素化重合体以外の樹脂成分や、添加剤等のその他の成分を含有してもよい。
2) Molding material The molding material of the present invention contains the hydrogenated polymer of the present invention. The molding material of the present invention may contain other components such as a resin component other than the hydrogenated polymer of the present invention and additives as long as the effects of the present invention are not impaired.
 本発明の水素化重合体以外の樹脂成分(以下、「その他の樹脂成分」ということがある。)としては、スチレン・ブタジエンブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、スチレン・イソプレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体、及びこれらの水素化物、スチレン・ブタジエン・ランダム共重合体等のスチレン系重合体が挙げられる。
 本発明に用いる成形材料が、その他の樹脂成分を含有する場合、その含有量は、本発明の水素化重合体100質量部に対して、通常、0.1~100質量部、好ましくは1~50質量部である。
Examples of resin components other than the hydrogenated polymer of the present invention (hereinafter sometimes referred to as “other resin components”) include styrene / butadiene block copolymers, styrene / butadiene / styrene block copolymers, styrene / Examples include isoprene block copolymers, styrene / isoprene / styrene block copolymers, and hydrides thereof, styrene polymers such as styrene / butadiene / random copolymers, and the like.
When the molding material used in the present invention contains other resin components, the content is usually 0.1 to 100 parts by mass, preferably 1 to 100 parts by mass with respect to 100 parts by mass of the hydrogenated polymer of the present invention. 50 parts by mass.
 添加剤としては、酸化防止剤、紫外線吸収剤、光安定剤、近赤外線吸収剤、可塑剤、帯電防止剤、酸捕捉剤等が挙げられる。
 酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。
Examples of the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a near infrared absorber, a plasticizer, an antistatic agent, and an acid scavenger.
Examples of the antioxidant include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like.
 フェノール系酸化防止剤としては、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、ジブチルヒドロキシトルエン、2,2'-メチレンビス(6-t-ブチル-4-メチルフェノール)、4,4'-ブチリデンビス(3-t-ブチル-3-メチルフェノール)、4,4'-チオビス(6-t-ブチル-3-メチルフェノール)、α-トコフェノール、2,2,4-トリメチル-6-ヒドロキシ-7-t-ブチルクロマン、テトラキス〔メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート〕メタン、〔ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]〕等が挙げられる。 Examples of phenolic antioxidants include 3,5-di-t-butyl-4-hydroxytoluene, dibutylhydroxytoluene, 2,2'-methylenebis (6-t-butyl-4-methylphenol), 4,4 ' -Butylidenebis (3-t-butyl-3-methylphenol), 4,4'-thiobis (6-t-butyl-3-methylphenol), α-tocophenol, 2,2,4-trimethyl-6-hydroxy -7-t-butylchroman, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, [pentaerythritol tetrakis [3- (3,5-di -T-butyl-4-hydroxyphenyl) propionate]] and the like.
 リン系酸化防止剤としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジターシャリーブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジターシャリーブチルフェニル)ホスファイト、テトラキス(2,4-ジターシャリーブチルフェニル)4,4'-ビフェニルジホスファイト、トリノニルフェニルホスファイト等が挙げられる。 Examples of phosphorus antioxidants include distearyl pentaerythritol diphosphite, bis (2,4-ditertiarybutylphenyl) pentaerythritol diphosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tetrakis (2 , 4-ditertiary butylphenyl) 4,4′-biphenyl diphosphite, trinonylphenyl phosphite and the like.
 イオウ系酸化防止剤としては、ジステアリルチオジプロピオネート、ジラウリルチオジプロピオネート等が挙げられる。 Examples of sulfur-based antioxidants include distearyl thiodipropionate and dilauryl thiodipropionate.
 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベゾエート系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、アクリレート系紫外線吸収剤、金属錯体系紫外線吸収剤等が挙げられる。
 光安定剤としては、ヒンダードアミン系光安定剤が挙げられる。
Examples of the UV absorber include benzotriazole UV absorbers, bezoate UV absorbers, benzophenone UV absorbers, acrylate UV absorbers, and metal complex UV absorbers.
Examples of the light stabilizer include hindered amine light stabilizers.
 近赤外線吸収剤は、シアニン系近赤外線吸収剤;ピリリウム系赤外線吸収剤;スクワリリウム系近赤外線吸収剤;クロコニウム系赤外線吸収剤;アズレニウム系近赤外線吸収剤;フタロシアニン系近赤外線吸収剤;ジチオール金属錯体系近赤外線吸収剤;ナフトキノン系近赤外線吸収剤;アントラキノン系近赤外線吸収剤;インドフェノール系近赤外線吸収剤;アジ系近赤外線吸収剤;等が挙げられる。
 可塑剤としては、燐酸トリエステル系可塑剤、脂肪酸一塩基酸エステル系可塑剤、二価アルコールエステル系可塑剤、オキシ酸エステル系可塑剤等が挙げられる。
 帯電防止剤としては、多価アルコールの脂肪酸エステル等が挙げられる。
 酸捕捉剤としては、酸化マグネシウム、ステアリン酸亜鉛等が挙げられる。
Near-infrared absorbers are cyanine-based near-infrared absorbers; pyrylium-based infrared absorbers; squarylium-based near-infrared absorbers; croconium-based infrared absorbers; azulenium-based near-infrared absorbers; phthalocyanine-based near-infrared absorbers; Examples include near infrared absorbers; naphthoquinone near infrared absorbers; anthraquinone near infrared absorbers; indophenol near infrared absorbers;
Examples of the plasticizer include a phosphoric acid triester plasticizer, a fatty acid monobasic acid ester plasticizer, a dihydric alcohol ester plasticizer, and an oxyacid ester plasticizer.
Examples of the antistatic agent include fatty acid esters of polyhydric alcohols.
Examples of the acid scavenger include magnesium oxide and zinc stearate.
 これらの添加剤の含有量は、目的に合わせて適宜決定することができる。その含有量は、本発明の重合体100質量部に対して、通常0.001~5質量部、好ましくは0.01~1質量部の範囲である。 The content of these additives can be appropriately determined according to the purpose. The content thereof is usually in the range of 0.001 to 5 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer of the present invention.
 成形材料は、常法に従って、各成分を混合することにより得ることができる。混合方法としては、各成分を適当な溶媒中で混合する方法や、溶融状態で混錬する方法が挙げられる。
 混練は、単軸押出機、二軸押出機、バンバリーミキサー、ニーダー、フィーダールーダー等の溶融混練機を用いて行うことができる。混練温度は、好ましくは200~400℃、より好ましくは240~350℃の範囲である。混練に際し、各成分を一括添加して混練してもよいし、数回に分けて添加しながら混練してもよい。
 混錬後は、常法に従って、棒状に押出し、ストランドカッターで適当な長さに切ることで、ペレット化することができる。
A molding material can be obtained by mixing each component according to a conventional method. Examples of the mixing method include a method of mixing each component in an appropriate solvent and a method of kneading in a molten state.
Kneading can be performed using a melt kneader such as a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, or a feeder ruder. The kneading temperature is preferably in the range of 200 to 400 ° C, more preferably 240 to 350 ° C. In kneading, the components may be added together and kneaded, or may be kneaded while adding in several times.
After kneading, it can be pelletized by extruding into a rod shape and cutting into an appropriate length with a strand cutter according to a conventional method.
 溶融状態で混錬する方法により得られた成形材料は、通常、DSC測定を行ったときに融点が観測されないものであり、透明性により優れる。 The molding material obtained by the kneading method in a molten state usually has no melting point observed when DSC measurement is performed, and is excellent in transparency.
 本発明の成形材料は、本発明の水素化重合体を含有するため、本発明の成形材料を用いることで、機械的強度、及び屈折率とアッベ数のバランスに優れ、且つ低複屈折性である樹脂成形体を効率よく得ることができる。このため、本発明の成形材料は、レンズ等の光学用成形体の成形材料として好適に用いられる。また、本発明の成形材料は、高密度かつ高燃焼熱のため、燃料用途としても好適に用いられる。
 また、本発明の成形材料は、少なくとも、重量平均分子量(Mw)、分子量分布(Mw/Mn)、屈折率(nd)、アッベ数、及び複屈折量の値が、「水素化重合体」について上記した好適範囲を満たすことが好ましい。
Since the molding material of the present invention contains the hydrogenated polymer of the present invention, by using the molding material of the present invention, the mechanical strength and the balance between the refractive index and the Abbe number are excellent, and the low birefringence is achieved. A certain resin molding can be obtained efficiently. For this reason, the molding material of this invention is used suitably as a molding material of optical molded objects, such as a lens. Further, the molding material of the present invention is suitably used as a fuel because of its high density and high combustion heat.
Further, the molding material of the present invention has at least the values of weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), refractive index (n d ), Abbe number, and birefringence amount as “hydrogenated polymer”. It is preferable to satisfy the above-described preferable range.
3)樹脂成形体
 本発明の樹脂成形体は、本発明の成形材料を成形して得られるものである。
 成形方法は特に限定されず、射出成形、プレス成形、押出成形等が挙げられる。これらの中でも、成形体が光学部材等である場合には、精度よく目的の成形体を得ることができることから、射出成形が好ましい。
3) Resin molding The resin molding of the present invention is obtained by molding the molding material of the present invention.
The molding method is not particularly limited, and examples thereof include injection molding, press molding, and extrusion molding. Among these, when a molded object is an optical member etc., since the target molded object can be obtained with sufficient precision, injection molding is preferable.
 成形時の溶融温度は、用いる成形材料によっても異なるが、通常200~400℃、好ましくは210~350℃である。金型を使用する場合の金型温度は、成形材料のガラス転移温度をTgとすると、通常、20℃から(Tg+15)℃、好ましくは(Tg-30)℃から(Tg+10)℃、より好ましくは(Tg-20)℃から(Tg+5)℃の温度である。 The melting temperature at the time of molding varies depending on the molding material used, but is usually 200 to 400 ° C., preferably 210 to 350 ° C. The mold temperature in the case of using a mold is usually 20 ° C. to (Tg + 15) ° C., preferably (Tg−30) ° C. to (Tg + 10) ° C., more preferably Tg as the glass transition temperature of the molding material. The temperature is from (Tg−20) ° C. to (Tg + 5) ° C.
 本発明の樹脂成形体は、本発明の成形材料を成形して得られるものであるため、機械的強度、及び屈折率とアッベ数のバランスに優れ、且つ低複屈折性である。
 本発明の樹脂成形体は、光学レンズ、光ディスク、導光板、光学フィルム、光反射板などの光学素子として用いることができる。
Since the resin molding of the present invention is obtained by molding the molding material of the present invention, it is excellent in mechanical strength, balance between refractive index and Abbe number, and has low birefringence.
The resin molding of this invention can be used as optical elements, such as an optical lens, an optical disk, a light-guide plate, an optical film, and a light reflection board.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」、及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例において、各種の物性の測定は、下記の方法に従って行った。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In addition, in a polymer produced by copolymerizing a plurality of types of monomers, the proportion of monomer units formed by polymerizing a certain monomer in the polymer is usually unless otherwise specified. This coincides with the ratio (preparation ratio) of the certain monomer in the total monomers used for polymerization of the polymer.
In the examples, various physical properties were measured according to the following methods.
(1)単量体(1)の分析
(NMR)
 実施例で得られた単量体(1)を重クロロホルム(TMS入り)に溶解させて、濃度が5%の測定用溶液を調製した。この溶液を用いて、40℃で1H-NMRを測定した。
(1) Analysis of monomer (1) (NMR)
The monomer (1) obtained in the example was dissolved in deuterated chloroform (with TMS) to prepare a measurement solution having a concentration of 5%. Using this solution, 1 H-NMR was measured at 40 ° C.
(ガスクロマトグラフィー)
 以下の条件でガスクロマトグラフィー(GC)を行い、単量体を分析した。
  試料溶液:濃度が5%のシクロヘキサン溶液
  ガスクロマトグラフィー分析計:アジレント・テクノロジー社製、製品名:6850シリーズ
  カラム:アジレント・テクノロジー社製、製品名:HP-1、30m、内径0.32mm、膜厚25μm
  スプリット比:70:1
  スプリット流量:140mL/分
  インジェクション温度:160℃
  注入量:1.0μL
  検出温度:250℃
  N2流量:2.0mL/分
  温度条件:40℃で6分間保持した後、10℃/分で240℃まで昇温
(Gas chromatography)
The monomer was analyzed by gas chromatography (GC) under the following conditions.
Sample solution: Cyclohexane solution with a concentration of 5% Gas chromatography analyzer: manufactured by Agilent Technologies, product name: 6850 series Column: manufactured by Agilent Technologies, product name: HP-1, 30 m, inner diameter 0.32 mm, membrane 25 μm thick
Split ratio: 70: 1
Split flow rate: 140 mL / min Injection temperature: 160 ° C.
Injection volume: 1.0 μL
Detection temperature: 250 ° C
N 2 flow rate: 2.0 mL / min Temperature condition: held at 40 ° C. for 6 minutes, then raised to 240 ° C. at 10 ° C./min
(2)水素化重合体の重量平均分子量(Mw)及び数平均分子量(Mn)
 水素化重合体の重量平均分子量(Mw)は、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、標準ポリイソプレン換算値として求めた。
 標準ポリイソプレンとしては、標準ポリイソプレン(東ソー社製、Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000)を用いた。
 測定は、カラム(東ソー社製、TSKgelG5000HXL、TSKgelG4000HXL及びTSKgel G2000HXL)を3本直列に繋いで用い、流速1.0mL/分、サンプル注入量100μL、カラム温度40℃の条件で行った。
(2) Weight average molecular weight (Mw) and number average molecular weight (Mn) of the hydrogenated polymer
The weight average molecular weight (Mw) of the hydrogenated polymer was measured by gel permeation chromatography (GPC) using cyclohexane as an eluent and obtained as a standard polyisoprene conversion value.
Standard polyisoprene (manufactured by Tosoh Corporation, Mw = 602, 1390, 3920, 8050, 13800, 22700, 58800, 71300, 109000, 280000) was used as the standard polyisoprene.
The measurement was performed under the conditions of using three columns (manufactured by Tosoh Corporation, TSKgel G5000HXL, TSKgel G4000HXL, and TSKgel G2000HXL) connected in series, a flow rate of 1.0 mL / min, a sample injection amount of 100 μL, and a column temperature of 40 ° C.
(3)屈折率
 実施例で得られた水素化重合体のペレットを、厚さ5mmのシート状に成形し、〔重合体のガラス転移温度(Tg)-15〕℃の雰囲気下に20時間放置したものを測定試料とした。
 得られた測定試料について、精密屈折計(島津製作所社製、製品名:KPR-200、光源=Heランプ(587.6nm)を用いて、25℃における屈折率(nd)を測定した。
(3) Refractive Index The hydrogenated polymer pellets obtained in the examples were formed into a sheet having a thickness of 5 mm and left for 20 hours in an atmosphere of [polymer glass transition temperature (Tg) -15] ° C. This was used as a measurement sample.
The obtained measurement sample was measured for refractive index (nd) at 25 ° C. using a precision refractometer (manufactured by Shimadzu Corporation, product name: KPR-200, light source = He lamp (587.6 nm)).
(4)アッベ数(νd
 上記(3)で得られた測定試料と同じ測定試料についての屈折率測定により得られた、25℃における屈折率(nd、nC、nF)を用いて、下記式(1)に従ってアッベ数(νd)を算出した。
 νd=(nd-1)/(nF-nC
(4) Abbe number (ν d )
Using the refractive index (n d , n C , n F ) at 25 ° C. obtained by refractive index measurement for the same measurement sample as that obtained in (3) above, Abbe according to the following formula (1) The number (ν d ) was calculated.
ν d = (n d −1) / (n F −n C )
 式(1)中、nd、nC、nFはそれぞれ、波長587.6nm、656.3nm、486.1nmにおける屈折率を表す。 In the formula (1), nd, nC, and nF represent refractive indexes at wavelengths of 587.6 nm, 656.3 nm, and 486.1 nm, respectively.
(5)単位厚さあたりの複屈折量(δn)
 実施例で得られた水素化重合体のペレットを、35mm×10mm×1mmの形状に成形した。このシートの両端をクリップで固定した後に、片方のクリップに160gの重りを固定した。次いで、〔重合体のガラス転移温度(Tg)-15〕℃のオーブン内に、重りを固定していない方のクリップを起点にして、10分間シートを吊るして延伸処理を行い、これを測定試料とした。
 得られた測定試料について、複屈折計(王子計測器製、製品名:KOBRA-CCD/X)を用いて波長が650nmの光における、測定試料中心部のレタデーション値を測定した(この測定値をaとする。)。
 また、測定試料中心部の厚みを測定し(この測定値をb(mm)とする。)、式:δn=a×(1/b)、によりδn値を求めた。
 δn値が0に近いものほど複屈折が小さい。また、延伸方向に複屈折が発生したものは正の値を示し、延伸方向と直交する方向に複屈折が発生したものは負の値を示す。
(5) Birefringence amount per unit thickness (δn)
The hydrogenated polymer pellets obtained in the examples were molded into a shape of 35 mm × 10 mm × 1 mm. After fixing both ends of this sheet with clips, a 160 g weight was fixed to one clip. Next, in a [glass transition temperature of polymer (Tg) −15] ° C., starting from the clip on which the weight is not fixed, the sheet is hung for 10 minutes and stretched, and this is measured. It was.
With respect to the obtained measurement sample, the retardation value at the center of the measurement sample was measured with a birefringence meter (manufactured by Oji Scientific Instruments, product name: KOBRA-CCD / X) at a wavelength of 650 nm. a).
Further, the thickness of the central portion of the measurement sample was measured (this measured value is defined as b (mm)), and the δn value was determined by the formula: δn = a × (1 / b).
The closer the δn value is to 0, the smaller the birefringence. Moreover, the thing with which birefringence generate | occur | produced in the extending | stretching direction shows a positive value, and the thing which birefringence generate | occur | produced in the direction orthogonal to an extending | stretching direction shows a negative value.
(6)ガラス転移温度
 成形材料のガラス転移温度(Tg)は、実施例で得られた水素化重合体のペレットを測定試料として、示差走査熱量分析計(ナノテクノロジー社製、製品名:DSC6220SII)を用いて、JIS K 6911に基づき、昇温速度10℃/分の条件で測定した。
(6) Glass transition temperature The glass transition temperature (Tg) of the molding material is a differential scanning calorimeter (product name: DSC6220SII, manufactured by Nanotechnology) using the hydrogenated polymer pellets obtained in the examples as measurement samples. Was measured based on JIS K 6911 under a temperature rising rate of 10 ° C./min.
[製造例1]
〔単量体(1)〕の合成
 内部を窒素置換した反応容器に、トルエン30部、ノルボルナジエン30部、アントラセン10部を加えて、全容を攪拌しながら200℃に加熱し、そのまま12時間反応を行った。
 反応溶液を冷却後、トルエン50部を添加し、全容を撹拌したのち、固形分を濾別し、トルエンを減圧留去することにより粗生成物21部を得た。得られた粗生成物をトルエン/ヘキサン=1/2の混合溶剤で再結晶することにより、純生成物17部を得た。上記条件に従って、得られた純生成物をNMR分析して、純生成物が単量体(1)を同定した。また、上記条件に従ってガスクロマトグラフィーを行ったところ、純度は98%であった。
[Production Example 1]
Synthesis of [Monomer (1)] To a reaction vessel purged with nitrogen inside, 30 parts of toluene, 30 parts of norbornadiene and 10 parts of anthracene were added, and the whole volume was heated to 200 ° C. with stirring, and the reaction was continued for 12 hours. went.
After cooling the reaction solution, 50 parts of toluene was added, the whole volume was stirred, solids were filtered off, and toluene was distilled off under reduced pressure to obtain 21 parts of a crude product. The obtained crude product was recrystallized with a mixed solvent of toluene / hexane = 1/2 to obtain 17 parts of a pure product. The obtained pure product was subjected to NMR analysis according to the above conditions, and the pure product identified the monomer (1). Moreover, when gas chromatography was performed according to the said conditions, purity was 98%.
[実施例1]
 予め単量体(1)15部、単量体(1)と共重合可能な他の単量体としてのテトラシクロドデセン15部、及び分子量調節剤(1-ヘキセン)0.09部を内部混合した単量体混合液を用意した。次に内部を窒素置換したガラス製反応容器に、重合触媒〔(1,3-ジメシチルイミダゾリジン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド〕0.02部、有機溶媒としてのトルエン100部を加えた後に60℃で撹拌させながら、単量体混合液を1時間かけて滴下し、開環重合反応を行った。単量体の重合体への転化率は100%であり、上記に従って測定した重合体の重量平均分子量(Mw)は18,000、分子量分布(Mw/Mn)は1.5であった。
[Example 1]
15 parts of monomer (1), 15 parts of tetracyclododecene as another monomer copolymerizable with monomer (1), and 0.09 part of molecular weight regulator (1-hexene) A mixed monomer mixture was prepared. Next, 0.02 part of a polymerization catalyst [(1,3-dimesitymylimidazolidine-2-ylidene) (tricyclohexylphosphine) benzylideneruthenium dichloride] in a glass reaction vessel purged with nitrogen inside, toluene as an organic solvent After adding 100 parts, the monomer mixture was added dropwise over 1 hour while stirring at 60 ° C. to conduct a ring-opening polymerization reaction. The conversion ratio of the monomer to the polymer was 100%, and the weight average molecular weight (Mw) of the polymer measured according to the above was 18,000 and the molecular weight distribution (Mw / Mn) was 1.5.
 次いで、得られた重合反応溶液130部を攪拌器付きオートクレーブに移し、シクロヘキサン100部および珪藻土担持ニッケル触媒(日揮化学社製、製品名「T8400RL」、ニッケル担持率58%)6.0部を加えた。オートクレーブ内を水素で置換した後、200℃、4.5MPaの水素圧力下で12時間水素化反応を行った。
 水素化反応終了後、珪藻土(昭和化学工業社製、製品名「ラヂオライト(登録商標)♯500」)を濾過床として、加圧濾過器(石川島播磨重工社製、製品名「フンダフィルタ-」)を使用し、圧力0.25MPaで加圧濾過して、無色透明な溶液を得た。水素化反応により得られた水素化重合体の主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体における水添率を、1H-NMR分析した。1H-NMR分析では、水素化前後の重合体に含まれる炭素-炭素不飽和結合の量を測定した。測定結果に基づいて水添率を算出したところ、95%であった。なお、1H-NMR分析の条件は単量体(1)について分析する際と同じとした。
 次いで、得られた溶液に、酸化防止剤〔ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASF社製、製品名「イルガノックス(登録商標)1010」)〕を重合体水素化物100部当り、0.5部加えた。
Next, 130 parts of the resulting polymerization reaction solution was transferred to an autoclave equipped with a stirrer, and 100 parts of cyclohexane and diatomaceous earth-supported nickel catalyst (manufactured by JGC Chemical Co., Ltd., product name “T8400RL”, nickel support rate 58%) were added. It was. After the inside of the autoclave was replaced with hydrogen, hydrogenation reaction was performed for 12 hours at 200 ° C. and 4.5 MPa hydrogen pressure.
After completion of the hydrogenation reaction, a pressure filter (made by Ishikawajima-Harima Heavy Industries Co., Ltd., product name “Fundafilter”) is made using diatomaceous earth (made by Showa Chemical Industry, product name “Radiolite (registered trademark) # 500”) as a filter bed. ) And pressure filtered at a pressure of 0.25 MPa to obtain a colorless and transparent solution. The hydrogenation rate of the main chain and side chain carbon-carbon unsaturated bonds of the hydrogenated polymer obtained by the hydrogenation reaction and the total carbon-carbon unsaturated bonds of the aromatic ring were analyzed by 1 H-NMR. In 1 H-NMR analysis, the amount of carbon-carbon unsaturated bonds contained in the polymer before and after hydrogenation was measured. The hydrogenation rate calculated based on the measurement results was 95%. The conditions for 1 H-NMR analysis were the same as those for monomer (1).
Subsequently, an antioxidant [pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (manufactured by BASF, product name “Irganox (registered)” was added to the resulting solution. Trademark) 1010 ")] was added per 100 parts of polymer hydride.
 この溶液をフィルター(キュノーフィルター社製、製品名「ゼータプラス(登録商標)30H」、孔径0.5~1μm)で濾過した後、濾液を金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて濾過して異物を除去した。 This solution was filtered with a filter (product name “Zeta Plus (registered trademark) 30H”, pore size 0.5 to 1 μm, manufactured by Cunnow Filter Co., Ltd.), and then the filtrate was made of a metal fiber filter (manufactured by Nichidai, pore size 0.4 μm). ) To remove foreign matters.
 次いで、上記で得られた濾液を、円筒型濃縮乾燥機(日立製作所製)を用いて、温度260℃、圧力1kPa以下で、溶液からシクロヘキサン及びその他の揮発成分を除去した後、重合体水素化物を濃縮機に直結したダイから溶融状態でストランド状に押出し、水冷後、ペレタイザー(長田製作所製、製品名「OSP-2」)でカッティングして、成形材料である水素化重合体を含有するペレットを得た。得られた成形材料の重量平均分子量(Mw)は17,300、分子量分布(Mw/Mn)は1.5、ガラス転移温度(Tg)は162℃、屈折率は1.548、アッベ数は48であった。また、単位厚みあたりの複屈折量は110であった。
 このように、実施例に従って作製した本発明の水素化重合体を含む成形材料は、機械的強度、及び屈折率とアッベ数のバランスに優れ、且つ低複屈折性であったことが分かる。
Next, after removing the cyclohexane and other volatile components from the solution at a temperature of 260 ° C. and a pressure of 1 kPa or less, the polymer hydride was obtained from the filtrate obtained above using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd.). Is extruded into a strand form in a molten state from a die directly connected to a concentrator, cooled with water, and then cut with a pelletizer (product name “OSP-2”, manufactured by Nagata Seisakusho) to contain pellets containing a hydrogenated polymer as a molding material Got. The obtained molding material had a weight average molecular weight (Mw) of 17,300, a molecular weight distribution (Mw / Mn) of 1.5, a glass transition temperature (Tg) of 162 ° C., a refractive index of 1.548, and an Abbe number of 48. Met. The birefringence amount per unit thickness was 110.
Thus, it turns out that the molding material containing the hydrogenated polymer of this invention produced according to the Example was excellent in mechanical strength, the balance of refractive index and Abbe number, and low birefringence.

Claims (6)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    で示される単量体に由来する単位を含み、且つ、前記式(1)で示される単量体と共重合可能な単量体に由来する単位を含みうる重合体の、主鎖及び側鎖の炭素-炭素不飽和結合、並びに芳香環の炭素-炭素不飽和結合全体の90%以上が水素化されてなる、水素化重合体。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    And a main chain and a side chain of a polymer containing a unit derived from a monomer represented by formula (1) and a unit derived from a monomer copolymerizable with the monomer represented by formula (1). A hydrogenated polymer obtained by hydrogenating at least 90% of the carbon-carbon unsaturated bonds of the aromatic ring and carbon-carbon unsaturated bonds of the aromatic ring.
  2.  前記式(1)で示される単量体の開環単位を含む、請求項1に記載の水素化重合体。 The hydrogenated polymer according to claim 1, comprising a ring-opening unit of the monomer represented by the formula (1).
  3.  前記式(1)で示される単量体と共重合可能な単量体が、ノルボルネン系単量体、環状モノオレフィン、環状ポリエン、及び、炭素数2~20のα-オレフィンからなる群から選ばれる少なくとも一種であることを特徴とする、請求項1または2に記載の水素化重合体。 The monomer copolymerizable with the monomer represented by the formula (1) is selected from the group consisting of norbornene monomers, cyclic monoolefins, cyclic polyenes, and α-olefins having 2 to 20 carbon atoms. The hydrogenated polymer according to claim 1, wherein the hydrogenated polymer is at least one kind.
  4.  請求項1~3のいずれかに記載の水素化重合体を含有する成形材料。 A molding material containing the hydrogenated polymer according to any one of claims 1 to 3.
  5.  請求項4に記載の成形材料を成形して得られる樹脂成形体。 A resin molded body obtained by molding the molding material according to claim 4.
  6.  光学素子である請求項5に記載の樹脂成形体。 The resin molded body according to claim 5, which is an optical element.
PCT/JP2017/018427 2016-05-16 2017-05-16 Hydrogenated polymer, molding material and resin molded body WO2017199980A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018518321A JPWO2017199980A1 (en) 2016-05-16 2017-05-16 Hydrogenated polymer, molding material and resin molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098019 2016-05-16
JP2016-098019 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017199980A1 true WO2017199980A1 (en) 2017-11-23

Family

ID=60325244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018427 WO2017199980A1 (en) 2016-05-16 2017-05-16 Hydrogenated polymer, molding material and resin molded body

Country Status (2)

Country Link
JP (1) JPWO2017199980A1 (en)
WO (1) WO2017199980A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241516A1 (en) 2020-05-29 2021-12-02 日本ゼオン株式会社 Microchannel chip and method for manufacturing same
CN115850581A (en) * 2022-12-01 2023-03-28 无锡阿科力科技股份有限公司 Cycloolefin copolymer and preparation method and application thereof
WO2023053952A1 (en) 2021-09-30 2023-04-06 日本ゼオン株式会社 Laminate and method for manufacturing same
WO2023189188A1 (en) 2022-03-31 2023-10-05 日本ゼオン株式会社 Bonded body and method for manufacturing same
WO2024154617A1 (en) 2023-01-19 2024-07-25 日本ゼオン株式会社 Method for manufacturing cyclic-olefin-resin flow path device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174679A (en) * 2007-01-22 2008-07-31 Nippon Zeon Co Ltd Resin composition and optical molded article
JP2012057122A (en) * 2010-09-13 2012-03-22 Nippon Zeon Co Ltd Film comprising norbornene-based ring-opened copolymer hydride
WO2012043721A1 (en) * 2010-09-29 2012-04-05 日本ゼオン株式会社 Resin composition and molded resin
JP2012092284A (en) * 2010-09-28 2012-05-17 Nippon Zeon Co Ltd Hydrogenated norbornene-based ring-opened copolymer and its use
CN102731721A (en) * 2012-05-08 2012-10-17 中国科学院长春应用化学研究所 Cycloolefin copolymer and preparation method thereof
CN104910329A (en) * 2015-06-04 2015-09-16 天津大学 A kind of polar cycloolefin copolymer and preparation method thereof
WO2015176588A1 (en) * 2014-05-21 2015-11-26 中国科学院长春应用化学研究所 Cycloolefin copolymer and preparation method therefor
CN105254807A (en) * 2015-10-26 2016-01-20 中国科学院长春应用化学研究所 Cycloolefin copolymer and preparation method thereof
CN105367713A (en) * 2015-10-26 2016-03-02 中国科学院长春应用化学研究所 Cycloolefin copolymer and its preparation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174679A (en) * 2007-01-22 2008-07-31 Nippon Zeon Co Ltd Resin composition and optical molded article
JP2012057122A (en) * 2010-09-13 2012-03-22 Nippon Zeon Co Ltd Film comprising norbornene-based ring-opened copolymer hydride
JP2012092284A (en) * 2010-09-28 2012-05-17 Nippon Zeon Co Ltd Hydrogenated norbornene-based ring-opened copolymer and its use
WO2012043721A1 (en) * 2010-09-29 2012-04-05 日本ゼオン株式会社 Resin composition and molded resin
CN102731721A (en) * 2012-05-08 2012-10-17 中国科学院长春应用化学研究所 Cycloolefin copolymer and preparation method thereof
WO2015176588A1 (en) * 2014-05-21 2015-11-26 中国科学院长春应用化学研究所 Cycloolefin copolymer and preparation method therefor
CN104910329A (en) * 2015-06-04 2015-09-16 天津大学 A kind of polar cycloolefin copolymer and preparation method thereof
CN105254807A (en) * 2015-10-26 2016-01-20 中国科学院长春应用化学研究所 Cycloolefin copolymer and preparation method thereof
CN105367713A (en) * 2015-10-26 2016-03-02 中国科学院长春应用化学研究所 Cycloolefin copolymer and its preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MYLROIE, V. L. ET AL.: "Complete nuclear hydrogenation of 9,10-disubstituted, 9, 10-bridged anthracenes and their use in the preparation ob monomers", ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, vol. 214, 1973, pages 255 - 275, XP055598294, ISSN: 0077-8923 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241516A1 (en) 2020-05-29 2021-12-02 日本ゼオン株式会社 Microchannel chip and method for manufacturing same
WO2023053952A1 (en) 2021-09-30 2023-04-06 日本ゼオン株式会社 Laminate and method for manufacturing same
WO2023189188A1 (en) 2022-03-31 2023-10-05 日本ゼオン株式会社 Bonded body and method for manufacturing same
CN115850581A (en) * 2022-12-01 2023-03-28 无锡阿科力科技股份有限公司 Cycloolefin copolymer and preparation method and application thereof
CN115850581B (en) * 2022-12-01 2024-03-19 无锡阿科力科技股份有限公司 Cycloolefin copolymer and preparation method and application thereof
WO2024154617A1 (en) 2023-01-19 2024-07-25 日本ゼオン株式会社 Method for manufacturing cyclic-olefin-resin flow path device

Also Published As

Publication number Publication date
JPWO2017199980A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US11192976B2 (en) Copolymer, polymer, molding material and resin molded body
WO2017199980A1 (en) Hydrogenated polymer, molding material and resin molded body
EP3480239B1 (en) Cyclic olefin ring-opened polymer hydride, resin molded article, and optical member
US11905380B2 (en) Method for producing shaping material
JP5807644B2 (en) Resin composition and resin molded body
EP3176217B1 (en) Resin molded article
EP1961774A1 (en) Process for production of cyclic olefin addition polymer
EP3266829A1 (en) Resin composition and resin molded article
JP2010150443A (en) Norbornene-based ring-opening polymer hydrogenated material and utilization of the same
CN117624555A (en) Optical material
JP2016113585A (en) Resin composition, resin molded body, and optical member
JP2016008302A (en) Resin composition and resin molded body
JPH09324082A (en) Resin composition
JP2016069448A (en) Resin composition, resin molded body, and optical member
JP6733661B2 (en) Polymer, molding material and resin molding
JP2007197560A (en) Norbornene addition polymer hydride
JP2016196588A (en) Addition copolymer, molding material and resin molding
JP2006321912A (en) Method for producing cyclic olefin-based addition polymer
JPWO2005080467A1 (en) Norbornene polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018518321

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799404

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17799404

Country of ref document: EP

Kind code of ref document: A1