WO2017196083A1 - Method and apparatus for transmitting setting information of resource for control channel, method and apparatus for transmitting setting information of resource for uplink drs, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting number of downlink symbols - Google Patents
Method and apparatus for transmitting setting information of resource for control channel, method and apparatus for transmitting setting information of resource for uplink drs, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting number of downlink symbols Download PDFInfo
- Publication number
- WO2017196083A1 WO2017196083A1 PCT/KR2017/004842 KR2017004842W WO2017196083A1 WO 2017196083 A1 WO2017196083 A1 WO 2017196083A1 KR 2017004842 W KR2017004842 W KR 2017004842W WO 2017196083 A1 WO2017196083 A1 WO 2017196083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resource
- base station
- slot
- pbch
- terminal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 305
- 230000005540 biological transmission Effects 0.000 claims abstract description 84
- 238000005259 measurement Methods 0.000 claims description 142
- 238000013507 mapping Methods 0.000 claims description 20
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 201000000913 Duane retraction syndrome Diseases 0.000 description 232
- 238000000162 direct recoil spectroscopy Methods 0.000 description 232
- 210000004027 cell Anatomy 0.000 description 140
- 238000007781 pre-processing Methods 0.000 description 39
- 238000010586 diagram Methods 0.000 description 26
- 238000001514 detection method Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 9
- 238000010408 sweeping Methods 0.000 description 9
- 101100072620 Streptomyces griseus ind2 gene Proteins 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 101001107782 Homo sapiens Iron-sulfur protein NUBPL Proteins 0.000 description 7
- 102100021998 Iron-sulfur protein NUBPL Human genes 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000000284 extract Substances 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007726 management method Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000010187 selection method Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 101100311260 Caenorhabditis elegans sti-1 gene Proteins 0.000 description 2
- 101150071746 Pbsn gene Proteins 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 101000859935 Homo sapiens Protein CREG1 Proteins 0.000 description 1
- 108010003272 Hyaluronate lyase Proteins 0.000 description 1
- 102100027796 Protein CREG1 Human genes 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/16—Discovering, processing access restriction or access information
Definitions
- the present invention relates to a method and apparatus for transmitting configuration information of a resource for a control channel.
- the present invention also relates to a method and apparatus for transmitting configuration information of a resource for an uplink discovery reference signal (DRS).
- DRS uplink discovery reference signal
- the present invention also relates to a method and apparatus for transmitting an indicator indicating a type of a subframe / slot.
- the present invention also relates to a method and apparatus for transmitting the number of downlink symbols.
- the wireless communication system supports the frame structure according to the standard.
- a 3rd generation partnership project (3GPP) long term evolution (LTE) system supports three types of frame structures.
- the three types of frame structures include a type 1 frame structure applicable to frequency division duplexing (FDD), a type 2 frame structure applicable to time division duplexing (TDD), and a type 3 frame for transmission of unlicensed frequency bands. Include a structure.
- a transmission time interval means a basic time unit in which an encoded data packet is transmitted through a physical layer signal.
- the TTI of the LTE system consists of one subframe. That is, the time axis length of the physical resource block (PRB) pair, which is the minimum unit of resource allocation, is 1 ms.
- PRB physical resource block
- physical signals and channels are also mostly defined in subframe units. For example, a cell-specific reference signal (CRS) is fixedly transmitted in every subframe, a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), a physical uplink control channel (PUCCH), and a PUSCH (physical) uplink shared channel) may be transmitted for each subframe.
- the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) exist in every fifth subframe, and the physical broadcast channel (PBCH) exists in every tenth subframe.
- An object of the present invention is to provide a method and apparatus for transmitting configuration information of a control channel resource.
- Another object of the present invention is to provide a method and apparatus for transmitting configuration information of a UL DRS resource.
- Another object of the present invention is to provide a method and apparatus for transmitting an indicator indicating a type of a subframe / slot.
- Another object of the present invention is to provide a method and apparatus for transmitting the number of DL symbols.
- a transmission method of a base station includes: setting a first resource for a physical downlink control channel (PDCCH); Including the configuration information of the first resource in a first physical broadcast channel (PBCH); And transmitting the first PBCH.
- PDCCH physical downlink control channel
- PBCH physical broadcast channel
- the configuration information of the first resource may include an index of a resource block (RB) where the first resource starts and a bandwidth occupied by the PDCCH.
- RB resource block
- the transmission method of the base station includes: setting a second resource for an uplink (UL) discovery reference signal (UL) transmitted by a terminal; And including the configuration information of the second resource in the first PBCH.
- UL uplink
- UL discovery reference signal
- the setting of the second resource may include setting the second resource to the same number as the number of virtual sectors used by the base station.
- the transmitting of the first PBCH may include transmitting a first synchronization signal (SS) burst including the first PBCH, a first primary synchronization signal (PSS), and a first secondary synchronization signal (SSS). step; And transmitting a second SS burst including a second PBCH, a second PSS, and a second SSS having the same RV as the redundancy version (RV) of the first PBCH.
- SS synchronization signal
- PSS primary synchronization signal
- SSS secondary synchronization signal
- the transmitting of the first PBCH may include transmitting a first synchronization signal (SS) burst including the first PBCH, a first primary synchronization signal (PSS), and a first secondary synchronization signal (SSS). step; And transmitting a second SS burst including a second PBCH, a second PSS, and a second SSS having an RV different from the redundancy version (RV) of the first PBCH.
- SS synchronization signal
- PSS primary synchronization signal
- SSS secondary synchronization signal
- the scrambling resource for the first PBCH may be different from the scrambling resource for the second PBCH.
- the cyclic redundancy check (CRC) mask for the first PBCH may be different from the CRC mask for the second PBCH.
- a transmission method of a base station includes: generating a first indicator indicating a type of a slot; Including the first indicator in a physical downlink control channel (PDCCH); And transmitting the PDCCH to a terminal through a fixed downlink (DL) resource.
- a physical downlink control channel PDCCH
- the first indicator may indicate whether the slot is a DL slot, a DL-centric slot, an UL slot, or an uplink (UL) -centric slot.
- the slot is the DL slot, there may be no UL region in the slot.
- the slot When the slot is the UL slot, there may be no DL region in the slot.
- the DL area of the slot may be larger than the UL area of the slot.
- the UL area of the slot may be larger than the DL area of the slot.
- the transmitting of the PDCCH may include transmitting the first indicator by using one or more first REGs corresponding to identification information of the base station among resource element groups (REGs) belonging to the fixed DL resource. Can be.
- REGs resource element groups
- the transmission method of the base station may further include mapping a PDCCH candidate different from the PDCCH to remaining REGs other than the one or more first REGs among the REGs.
- the transmitting of the first indicator by using the one or more first REGs may include placing the one or more first REGs in a time domain symbol that is at the earliest of time domain symbols belonging to the slot.
- the transmitting of the first indicator using the one or more first REGs may include mapping the one or more first REGs to a plurality of frequencies.
- a transmission method of a base station includes: determining a number of time domain symbols for downlink (DL) among time domain symbols belonging to a slot; Determining a type of the slot; And transmitting a first channel including the determined number and the determined type through a common search space for a control channel.
- DL downlink
- the first channel may be decoded even by a terminal that is not connected to the radio resource control (RRC).
- RRC radio resource control
- the transmitting of the first channel may include one or more first REGs for transmitting a first indicator indicating the determined type among resource element groups (REGs) belonging to a resource for the control channel. And positioning the time domain symbol at the earliest of the time domain symbols.
- first REGs resource element groups
- the transmitting of the first channel may include transmitting one or more first REGs for transmitting a first indicator indicating the determined type from among resource element groups (REGs) belonging to a resource for the control channel, to a plurality of frequencies.
- Mapping may include.
- the time domain symbols for the DL may be used for radio resource management (RRM) measurement or channel state information (CSI) measurement.
- RRM radio resource management
- CSI channel state information
- a method and apparatus for transmitting configuration information of a control channel resource may be provided.
- a method and apparatus for transmitting configuration information of a UL DRS resource may be provided.
- a method and apparatus for transmitting an indicator indicating a type of a subframe / slot may be provided.
- a method and apparatus for transmitting the number of DL symbols may be provided.
- a method and apparatus for transmitting and receiving system information may be provided.
- a method and apparatus for measuring RRM radio resource management
- 1 is a diagram illustrating a subframe / slot type applicable to RRM measurement in the case of 3GPP NR TDD according to an embodiment of the present invention.
- FIG. 2 is a diagram illustrating a case where a 3GPP NR TDD is configured with a special subframe / slot in which both a DL region and a UL region are allocated according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating a case in which a subframe / slot used for RRM measurement is configured to be UE-specific (eg, UE-specific) according to an embodiment of the present invention.
- UE-specific eg, UE-specific
- FIG. 4 is a diagram illustrating a scenario regarding RRM measurement performed by a terminal according to an embodiment of the present invention.
- FIG. 5 is a diagram illustrating RE mapping of DL NR-DRS resources according to an embodiment of the present invention.
- FIG. 6 is a diagram illustrating resources that a 3GPP NR reference system has in one subframe / slot.
- FIG. 7 is a diagram illustrating a method RSSI0-1, in accordance with an embodiment of the present invention.
- FIG. 8 is a diagram illustrating a method RSSI0-1-1, in accordance with an embodiment of the present invention.
- FIG. 9 is a diagram illustrating a method RSSI0-1-2, in accordance with an embodiment of the present invention.
- FIG. 10 is a diagram illustrating a method RSSI0-2, in accordance with an embodiment of the present invention.
- FIG. 11 is a diagram illustrating a method RSSI0-2-1, in accordance with an embodiment of the present invention.
- FIG. 12 is a diagram illustrating a method RSSI0-2-2 for a method RSSI0-2, according to an embodiment of the present invention.
- FIG. 13 is a diagram illustrating a method RSSI0-2-3, in accordance with an embodiment of the present invention.
- FIG. 14 illustrates NR-SIB transmission according to an embodiment of the present invention.
- FIG. 15 illustrates a virtual sector of a base station according to an embodiment of the present invention.
- 16A and 16B illustrate a procedure for transmitting an NR-SIB to a terminal by a base station according to an embodiment of the present invention.
- FIG. 17 illustrates a computing device, in accordance with an embodiment of the present invention.
- a component when referred to as being 'connected' or 'connected' to another component, the component may be directly connected to or connected to the other component, but in between It will be understood that may exist.
- a component when referred to as 'directly connected' or 'directly connected' to another component, it should be understood that there is no other component in between.
- the term 'comprises' or 'having' is only intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more. It is to be understood that it does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, actions, components, parts or combinations thereof.
- 'and / or' includes any combination of the plurality of listed items or any of the plurality of listed items.
- 'A or B' may include 'A', 'B', or 'both A and B'.
- a terminal includes a mobile terminal, a mobile station, an advanced mobile station, a high reliability mobile station, a subscriber station, It may also refer to a portable subscriber station, an access terminal, a user equipment (UE), a machine type communication device (MTC), or the like. May include all or part of the functionality of a mobile station, a high-reliability mobile station, a subscriber station, a portable subscriber station, an access terminal, user equipment, MTC, and the like.
- UE user equipment
- MTC machine type communication device
- a base station includes an advanced base station (BS), a high reliability base station (HR-BS), a node B (NB), and an advanced node B (eNB: evolved node B), new radio node B (gNB), access point, radio access station, base transceiver station, mobile multihop relay (MSR) -BS , A relay station serving as a base station, a high reliability relay station serving as a base station, a repeater, a macro base station, a small base station, a femto base station, a home node B (HNB), a home Also referred to as eNB (HeNB), pico base station (pico BS), micro base station (micro BS) and the like, advanced base station, HR-BS, Node B, eNB, gNB, access point, radio access station, transmit and receive base station, MMR-BS, repeater, high reliability repeater, repeater, macro base station, small base station, femto base station,
- MMR-BS mobile multihop relay
- NR new radio
- RRM radio resource management
- NR-PBCH physical broadcast channel
- NR-DRS uplink discovery reference signal
- RV redundancy version
- a subframe / slot means a subframe or a slot.
- a slot may mean a slot or a subframe.
- PSTICH physical subframe / slot type indicator channel
- RSSI received signal strength indicator
- NR-PDCCH may be represented by PDCCH
- NR-DRS may be represented by DRS
- NR-PBCH may be represented by PBCH
- NR-PHICH may be represented by PHICH.
- a cell periodically transmits a reference signal (RS), and the terminal receives the RS.
- the terminal detects the presence of the cell from the received RS, and determines the quality of the radio link formed from the cell to the terminal.
- Various methods can be applied to the quality of a radio link depending on the purpose of the application.
- the terminal measurement defined in technical specification 36.213 includes channel state information (CSI) measurement.
- the terminal measurement defined in TS 36.214 includes a reference signal received power (RSRP), a reference signal received quality (RSRQ), a received signal strength indicator (RSSI), and a signal to interference plus noise ratio (RS-SINR).
- RSRP reference signal received power
- RSRQ reference signal received quality
- RSSI received signal strength indicator
- RS-SINR signal to interference plus noise ratio
- CSI measurement is performed by a terminal (eg, RRC_CONNECTED UE) that is connected to a radio resource control (RRC).
- RRC radio resource control
- PDSCH physical downlink shared channel
- BLER block error rate
- the RS corresponding to the transmission mode (TM) set by the serving cell is different.
- RS is a cell-specific reference signal (CRS)
- RS is CSI-RS.
- a precoding matrix indicator (PMI), a rank indicator (RI), a channel quality indicator (CQI), or a CSI-RS resource indicator (CRI) is derived.
- a cell may mean a base station that provides or services a cell.
- RSRP measurement is performed by a terminal (eg, RRC_CONNECTED UE) that is RRC connected to the base station and a terminal (eg, RRC_IDLE UE) that is not RRC connected to the base station.
- a terminal eg, RRC_CONNECTED UE
- RRC_IDLE UE terminal that is not RRC connected to the base station.
- CRS antenna port 0 may be used, and CRS antenna port 0 and CRS antenna port 1 may also be used. Since the UE already knows the sequence (sequence) constituting the CRS and already knows the time domain boundary of the symbol including the CRS, the UE measures the RSRP through an appropriate reception algorithm in the RE including the CRS.
- the time domain symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, a single carrier (SC) -frequency division multiple access (FDMA) symbol, or the like.
- OFDM orthogonal frequency division multiplexing
- SC single carrier
- FDMA frequency division multiple access
- a time domain symbol may be represented by a symbol.
- the number of subcarriers used by the UE depends on the measurement bandwidth (eg, AllowedMeasBandwidth) allowed by the serving cell.
- the UE utilizes only subframes / slots allowed by the measurement subframe pattern (eg, MeasSubframePattern) set by the serving cell for RSRP measurement.
- the UE utilizes only subframes / slots belonging to discovery reference signal measurement timing configuration (DMTC) for RSRP measurement.
- DMTC discovery reference signal measurement timing configuration
- RSRQ measurement is performed by a terminal (eg, RRC_CONNECTED UE) that is RRC-connected to the base station and a terminal (eg, RRC_IDLE UE) that is not RRC-connected to the base station.
- RSRQ is defined as the ratio between RSRP and RSSI.
- RSSI measurement is performed on the OFDM symbol including the CRS antenna port 0, or if there is a separate configuration by the serving cell, all OFDM symbols are utilized for RSSI calculation. Only subcarriers belonging to the physical resource block (PRB) used for RSRP measurement are used for RSSI measurement.
- the subframe / slot used by the UE for RSSI measurement corresponds to the subframe / slot utilized for RSRP measurement.
- the unit of RSRQ is dB, and is converted into an integer defined in TS and expressed.
- the terminal When the terminal separately measures the RSSI, the terminal (eg, RRC_CONNECTED UE) connected to the base station performs the RRC_CONNECTED UE, and measures the RSSI only in the subframe / slot configured by the RSSI (RSSI measurement timing configuration).
- the number of OFDM symbols utilized for RSSI measurement may be set by the RMTC.
- RSSI measurement timing uses downlink (DL) timing of the serving cell.
- the unit of RSSI is dBm, which is converted into a natural number defined in TS and expressed.
- RS-SINR measurement is performed by a terminal (eg, RRC_CONNECTED UE) connected to an RRC to a base station, and performed in an RE including a CRS antenna port 0.
- RS-SINR measurement is performed in subframes / slots allowed by the serving cell.
- the unit of RS-SINR is dB and is converted into a natural number defined in TS and expressed.
- CSI-RSRP measurement is performed by a terminal (eg, RRC_CONNECTED UE) connected to the base station RRC, and performed in the RE including the CSI-RS antenna port 15.
- the UE measures the CSI-RSRP in the subframe / slot belonging to the subframe / slot configured by the DMTC.
- the subcarriers belonging to the bandwidth allowed by the serving cell are utilized for CSI-RSRP measurement.
- the unit of CSI-RSRP is dBm, which is converted into a natural number defined in TS and expressed.
- the serving cell may utilize the measurement of such a terminal for various purposes.
- the link adaptation of the serving cell may perform DL scheduling according to the CQI of the terminal (eg, RRC_CONNECTED UE) connected to the base station RRC.
- a single user (SU) -multiple input multiple output (MIMO) operation or a multiple user (MU) -MIMO operation may be performed, and an open loop MIMO operation may be performed.
- DL load balancing of the serving cell resets an RRC connection to the UE so that cell reselection is performed according to RSRP or RSRQ of a UE (eg, RRC_CONNECTED UE) connected to the base station. do.
- the handover of the serving cell uses RSRP or RSRQ to support mobility of a terminal (eg, RRC_CONNECTED UE) that is RRC connected to the base station.
- the UE may perform RRM measurement only on the DL subframe / slot.
- LTE long term evolution
- the UE has a specific subframe / slot in a DL subframe. You should be able to determine if it is a slot.
- the serving cell is configured with a measurement object configuration, a cell ID list, a TDD uplink (DL) -DL subframe / slot configuration, and a multimedia broadcast multicast service (MBSFN). over single frequency network) configures a subframe / slot configuration to the UE. The UE thus extracts a valid DL subframe / slot and uses it for RRM measurement.
- DL TDD uplink
- MBSFN multimedia broadcast multicast service
- 3rd generation partnership project (3GPP) new radio supports the service scenarios of enhanced mobile broadband (eMBB), the service scenarios of ultra-reliable low latency communication (URLLC), and the service scenarios of massive machine type communications (mMTC). To study technical requirements.
- eMBB enhanced mobile broadband
- URLLC ultra-reliable low latency communication
- mMTC massive machine type communications
- eMBB wants to handle large amounts of traffic.
- URLLC seeks to reduce the end-to-end (L2) L2 (layer 2) latency and to reduce the L1 (layer 1) packet error rate.
- L2 layer 2
- L1 layer 1
- the mMTC intends to serve traffic through occasional serving cell base stations when the terminals are distributed at a high geographical density.
- the present invention may contemplate the case where eMBB and URLLC are supported at least simultaneously, and where possible with mMTC.
- channel encoders and channel decoders or codewords can be designed to have a shorter transmission time interval (TTI) and a shorter processing time. There is a way to reduce the code size.
- TTI transmission time interval
- a method of reducing the number of time domain symbols constituting the TTI or a method of reducing symbol length by extending subcarrier spacing constituting a multicarrier symbol is applied. Can be.
- Mixed numerology which operates by setting a plurality of subcarrier spacings, is one of the features that distinguish 3GPP NR from 3GPP LTE.
- the system can be operated with TDD.
- FDD frequency division duplexing
- a large number of guard bands are required.
- full duplex processing should be considered because in-band emission is large.
- ADC analog to digital converter
- 3GPP NR considers both the use of high frequencies above 6 GHz and low frequencies below 6 GHz. Since the high frequency band of 6 GHz or more has a wide bandwidth, 3GPP NR can allocate a sufficient guard band even on a single system carrier and operate the system like FDD. However, when the 3GPP NR system is deployed in the high frequency region of 6 GHz or more, MIMO processing must be taken into consideration because propagation path loss of a wireless channel is large. Since such MIMO is based on a phased array, the amount of MIMO gain varies greatly according to channel estimation accuracy. If FDD is used, uplink channel feedback for a large number of DL antenna ports requires uplink signal overhead.
- the system when the system is operated with TDD, if channel reciprocity is used and the transmitter unit (TxU) and the receiver unit (RxU) are properly calibrated, the DL channel response through the UL signal This can be estimated. If TDD is used, the uplink signal overhead can be avoided. In other words, if TDD is used, a larger number of antenna ports can be defined.
- the serving cell base station defines an UL-DL subframe / slot pattern for the terminal through RRC configuration.
- the terminal transmits UL HARQ (hybrid automatic repeat and request) in the UL subframe / slot. send.
- HARQ hybrid automatic repeat and request
- the serving cell base station transmits a scheduling grant to the terminal in the DL subframe / slot
- the terminal transmits the UL data in the UL subframe / slot
- the serving cell base station transmits the DL HARQ. Transmit in DL subframe / slot. Therefore, the L1 delay of the UL traffic depends on the frequency at which DL subframes / slots and UL subframes / slots appear.
- the L1 delay of the FDD is always equal to or less than the L1 delay of the TDD.
- a method of converting a subframe / slot pattern in each subframe / slot may be used.
- the terminal that receives the scheduling assignment from the serving cell base station considers the corresponding subframe / slot as a DL subframe / slot.
- the terminal that receives the scheduling grant from the serving cell base station regards the corresponding subframe / slot as an UL subframe / slot.
- the UE belonging to other cases does not assume the corresponding subframe / slot as a DL subframe / slot and also does not assume a UL subframe / slot.
- this method is applied to 3GPP NR, in order for idle terminals to perform RRM measurement, the serving cell base station should always allocate some radio resources as fixed DL resources.
- the serving cell base station may define this fixed DL resource in a particular subframe / slot.
- the fixed DL resource may include information such as a discovery reference signal (DRS), a physical downlink control channel (PDCCH), and a system information block (SIB).
- DRS discovery reference signal
- PDCCH physical downlink control channel
- SIB system information block
- 3GPP NR calls this approach dynamic TDD. If the 3GPP NR TDD is operated as a dynamic TDD, the L1 delay of the URLLC scenario can be reduced because the serving cell base station can allocate any UL resource and any DL resource as needed. Dynamic TDD is one of the distinguishing features of 3GPP NR and 3GPP LTE.
- the UE may predict DL resources in advance in DL subframes / slots or special subframes / slots. For example, since the DL resource means all subcarriers of the DL symbol allowed by the subframe / slot type, the 3GPP LTE terminal can measure the RSSI using all the DL symbols, and RSRP in the subcarrier including RS. Can be measured. Even in the case of inter-frequency measurement, the 3GPP LTE terminal can easily determine the subframe / slot type of a specific subframe / slot.
- the UE detects a primary synchronization signal (PSS), it may be assumed that the corresponding subframe / slot is a special subframe / slot or a DL subframe / slot. If the UE detects a secondary synchronization signal (SSS), it may be assumed that the corresponding subframe / slot is a DL subframe / slot. If the UL-DL subframe configuration is configured for the 3GPP LTE UE, if the 3GPP LTE UE knows the subframe / slot index of the corresponding subframe / slot, the type of the subframe / slot to be shown later will be previously determined. Able to know.
- PSS primary synchronization signal
- SSS secondary synchronization signal
- the fixed DL resource includes at least NR-PDCCH and DL NR-DRS.
- the fixed DL resource may have one numerology.
- Subframe / slot types that may be applied to the 3GPP NR TDD system may include at least the cases illustrated in FIGS. 1, 2, and 3 (reference system).
- FIG. 1 is a diagram illustrating a subframe / slot type applicable to RRM measurement in the case of 3GPP NR TDD according to an embodiment of the present invention.
- the horizontal axis represents subframes / slots
- the vertical axis represents carrier bandwidths.
- a DL-centric subframe / slot is illustrated.
- the fixed DL resource includes a first symbol among a plurality of symbols belonging to a subframe / slot and is transmitted at an earlier time point (eg, in front of a slot).
- the GP may be set via RRC or a GP may be defined in the TS, in which case the symbol corresponding to the GP is not assumed to be a DL region.
- DL data including several numerology can be set.
- the fixed DL resource includes a first symbol of a plurality of symbols belonging to a subframe / slot, and is transmitted at an earlier time point (eg, in front of a slot).
- a symbol including a fixed DL resource is assumed to be a DL region in all subcarriers.
- the symbol located next to the fixed DL resource corresponds to the GP.
- the serving cell base station In consideration of the processing delay and the timing advance command of the terminal, the serving cell base station must set an appropriate number of symbols for the GP. do.
- the GP does not belong to the DL region or to the UL region in all subcarriers.
- the symbol (s) located after the GP correspond to a UL region, and UL data is allocated to the symbol (s).
- 2 is a diagram illustrating a case where a 3GPP NR TDD is configured with a special subframe / slot in which both a DL region and a UL region are allocated according to an embodiment of the present invention.
- 2 illustrates subframes / slots applied to RRM measurement.
- the horizontal axis represents subframes / slots
- the vertical axis represents carrier bandwidths.
- a DL region is allocated before a symbol assigned as a GP in the middle region of a subframe / slot, and a UL region is allocated after a symbol assigned as a GP.
- the DL region contains at least fixed DL resources.
- the UL region includes at least one symbol for each subframe / slot.
- FIG. 2 illustrates a DL-centric special subframe / slot.
- the DL region occupies most of the subframes / slots.
- FIG. 2B a UL-centric special subframe / slot is illustrated.
- the UL region occupies most of the subframes / slots than the DL region including the fixed DL resources.
- the serving cell base station may utilize such DL-centric subframes / slots or UL-centric subframes / slots differently for each subframe / slot.
- FIG. 3 is a diagram illustrating a case in which a subframe / slot used for RRM measurement is configured to be UE-specific (eg, UE-specific) according to an embodiment of the present invention.
- the horizontal axis represents subframes / slots
- the vertical axis represents carrier bandwidths.
- FIG. 3A illustrates DL-centric subframes / slots
- FIG. 3B illustrates UL-centric subframes / slots
- FIG. 3C Special subframes / slots are illustrated.
- the serving cell base station has a cell-specific subframe / slot type fixed to a special subframe / slot. Or DL resources).
- the serving cell base station may grant UL data (or UL resource) to the terminal.
- the serving cell base station may allocate (or schedule, grant) DL data (or DL resources) and UL data (or UL resources) in the same subframe / slot.
- a separate GP is not cell-specific and a DL region and an UL region are defined.
- the 3GPP NR cell can implicitly allocate a UE-specific (eg, UE-specific) GP, thereby reducing GP overhead. Since there is no cell-specific GP, the scheduler must adjust the DL-UL interference to perform scheduling. For example, a serving cell allocates different subframes / slot types to two different UEs UE1 and UE2, and the two UEs UE1 and UE2 have a similar geographical location at the edge of coverage (eg, cell edge). In the case of having a location, a propagation delay is large for a UE UE1 allocated with a DL-centric subframe / slot, and a UE UE2 assigned with a UL-centric subframe / slot.
- a UE-specific eg, UE-specific
- Timing advance is large. In this case, interference occurs in a particular symbol, terminal UE1 acts as a victim and terminal UE2 acts as an attacker. Therefore, the serving cell base station must appropriately adjust the number of symbols occupied by the DL data and the number of symbols occupied by the UL data, and perform adjustment to prevent the above-described interference scenario.
- the mobile communication system is mainly deployed in a low band having good propagation characteristics (for example, 2 GHz), even if the base station does not perform separate beamforming, it is relatively that the terminal receives the information. It is easy.
- base station antennas are installed at relatively high locations (eg, on the roof of a building). Since the terminals are in a relatively low position, the base station antenna is steered at an angle slightly lower than horizontal. This is mechanical tilting. In order to perform electrical tilting, the base station receives feedback of channel information from the terminal and performs precoding in baseband. This can be interpreted in response to electrical steering.
- the base station periodically transmits a synchronization signal (eg, PSS, SSS) and a cell common signal (eg, CRS) by using mechanical steering, and also periodically transmits a physical broadcast channel (PBCH) even if there is no separate baseband preprocessing.
- a synchronization signal eg, PSS, SSS
- CRS cell common signal
- PBCH physical broadcast channel
- the UE receives the PSS, the SSS, the CRS, and the PBCH to obtain synchronization, and decodes a MIB (master information block) included in the PBCH. This information may be used for PDCCH discovery and SIB reception.
- MIB master information block
- the base station can transmit information to the terminal through separate beamforming. Since the diffraction and reflection characteristics of radio waves are not good, propagation properties are generally poor. Therefore, in order for the base station to transmit data to the terminal, not only mechanical steering but also electrical steering can be used. And the essential system information delivered to the terminal, the base station can be efficiently transmitted using the beam forming.
- the base station may determine such beamforming through feedback information from the terminal. For example, according to the Institute of Electrical and Electronic Engineers (IEEE) 802.11 ad, a beam sweeping procedure is performed in order for a terminal to communicate with a base station in a wireless communication system operating in a tens GHz band.
- IEEE Institute of Electrical and Electronic Engineers
- the beam sweeping procedure consists of two steps.
- all base station sectors each form a rough beam to transmit a predetermined packet, which is received by the terminal.
- the terminal selects one of a plurality of base station sectors and feeds back the index of the selected base station sector to the base station.
- the terminal In the second step of the beam sweeping procedure, after the base station receives the feedback from the terminal, the terminal forms a fine beam within the base station sector selected by the terminal to transmit a predetermined packet, which is received by the terminal.
- the terminal feeds back the beam index of one beam among the multiple thin beams to the base station.
- the base station can know a thin beam that can be used when transmitting data to the terminal.
- This beam sweeping procedure has a complexity that is directly proportional to the sum of the number of thick beams formed by the base station and the number of thin beams formed per sector. If the base station forms only a thin beam and transmits it to the terminal, a larger number of beams are transmitted. Thus, this is inefficient.
- the terminal In order to use the two-step beam sweeping procedure, it is necessary to assume that there is a reliable feedback link from the terminal to the base station. However, in order for the terminal to perform feedback, the terminal needs system information for allocating resources from the base station. Therefore, the above-described beam sweeping procedure cannot be applied to the mobile communication system. Since a base station or a terminal needs to perform repetition or transmit at a low code rate in order to reduce an error probability, transmission resources must be additionally allocated.
- a beam-formed control channel (eg, NR-PDCCH) must be transmitted to the UE.
- This also applies to system information (eg NR-SIB).
- the UE may know the location of a resource (eg, NR-PDSCH) in which the NR-SIB exists from the DL assignment received through the NR-PDCCH. Since the base station needs the feedback of the terminal to determine the beamforming method, a separate physical channel is required to indicate this.
- NR-PBCH plays this role.
- the base station periodically transmits the NR-PBCH using resources determined by the standard. If the base station uses beam sweeping, the base station may continuously transmit the NR-PBCH assuming an NR synchronization signal and a predetermined relative resource position. For each transmission, the base station can use different beams.
- the terminal decodes the NR-PBCH in a radio resource defined in the standard.
- the NR-subframe may be represented by an NR-slot as the case may be.
- the LTE-PBCH periodically transmitted by the base station includes LTE-MIB.
- the information transmitted by the LTE-MIB corresponds to a system bandwidth, physical hybrid automatic repeat and request indicator channel (LTE-PHICH) allocation information, and a system frame number (SFN).
- LTE-PHICH physical hybrid automatic repeat and request indicator channel
- SFN system frame number
- the system bandwidth informs the terminal of the sequence length of the LTE-CRS and may also inform the range in which the LTE-PDCCH resources are distributed.
- LTE-PHICH allocation information is necessary for detecting the position of a control channel element (CCE).
- CCE control channel element
- a resource element group (REG) that does not allocate a CCE and a REG that allocates a CCE are distinguished.
- SFN is information necessary to interpret the SIB scheduling information and the SI (system information) window included in the LTE-SIB type 1.
- SI system information
- the temporal location of the LTE-subframe / slot in which the SIB is received is defined by the TS, and the terminal receives the frame synchronization through the SFN and receives the LTE-SIB type 1.
- the LTE-PBCH includes an LTE-MIB and is transmitted every radio frame (eg, 10 ms).
- Channel coding and message size of LTE-PBCH are defined in TS.
- LTE-SIB Type 1 is transmitted every two radio frames (eg, 20 ms).
- the subframe in which the LTE-SIB type 1 is transmitted is defined in the TS, but the channel coding and the message size of the LTE-SIB type 1 are indicated by the LTE-PDCCH to which dynamic scheduling is applied.
- System information other than the LTE-SIB type 1 is limited to the type specified by the scheduling information list (eg, schedulingInfoList) included in the LTE-SIB type 1, and is sequentially transmitted by the base station.
- scheduling information list eg, schedulingInfoList
- the UE determines the LTE-PDCCH in the subframe (s) belonging to the number of window lengths (eg, si-WindowLength) on the basis of a specific subframe index. Decode the LTE-SIB by blind decoding.
- LTE-SIB is included only once within a window (eg, si-Window) and the UE cannot know in advance the subframe index from which the LTE-SIB is received, and the LTE-SIB type can be known in advance through LTE-SIB Type 1 have. This type is uniquely determined.
- LTE-SIB type 1 is information about time domain scheduling of another SIB and information about suitability for cell selection.
- LTE-SIB type 2 includes information about a common channel and a shared channel.
- LTE-SIB Type 3, Type 4, Type 5, Type 6, Type 7, and Type 8 include intra-frequency cell reselection, inter-frequency cell reselection, and Includes parameters required for inter-RAT cell reselection.
- the NR-PBCH does not necessarily need the above-mentioned information. If the NR-PDCCH is not distributed over the entire band, the base station does not need to inform the terminal of the system bandwidth. In addition, NR applies an adaptive and non-synchronous HARQ-ACK (acknowledgment) to both the DL and UL, so that the base station may not transmit the NR-PHICH. Alternatively, even if the base station transmits the NR-PHICH, the NR may be designed such that the NR-PDCCH and the NR-PHICH do not use the REG as a common resource pool. In this case, the NR-PBCH does not contain PHICH information.
- the base station does not perform the SIB transmission periodically, and performs the SIB transmission on-demand (on-demand) as the request (request) of the terminal, NR does not require the SFN. Therefore, if the design of the NR-PDCCH is different from the design of the LTE-PDCCH, the base station does not need to transmit the MIB and may include the above-described SFN and PHICH information in the NR-SIB transmitted by the base station to the terminal.
- the base station in order for the base station to transmit the NR-PDCCH, an appropriate preprocessing must be performed. If the base station receives separate information and can perform beamforming of terminals based on the information (eg, non-standalone scenario), proper beamforming for the NR-PDCCH may be performed. However, if the NR operates alone (eg, standalone scenario), information for preprocessing to be applied to the NR-PDCCH may be obtained through UL feedback from the terminal.
- UL based UE discovery eg, UE discovery
- the terminal transmits the UL NR-DRS to the base station.
- UL NR-DRS means a signal of the physical layer transmitted by the terminal regardless of the separate base station configuration.
- the terminal may transmit the UL NR-DRS even if the terminal does not know power control and timing advance. This does not mean only the physical random access channel (NR-PRACH) preamble.
- NR-PRACH physical random access channel
- the base station may receive the UL NR-DRS and recognize the presence of one or more terminals.
- the base station may form a reception beam by implementation, and may use it for preprocessing based on channel reciprocity.
- the UE may perform Tx beam sweeping using a UL NR-DRS occlusion in which UL NR-DRS is transmitted several times.
- the resource of the UL NR-DRS transmitted by the terminal may be set to one or more.
- the terminal may transmit the preprocessed NR-DRS in each UL NR-DRS resource.
- the preprocessing scheme utilized at this time may be separately instructed by the base station to the terminal. If there is no separate instruction for the preprocessing scheme, the UE may repeatedly transmit the UL NR-DRS to which the preprocessing is not applied or the same preprocessing is applied, in the UL NR-DRS resource.
- UL NR-DRSs belonging to UL NR-DRS resource do not necessarily have the same resource (frequency and time resource) and the same sequence identifier (ID). If the UE transmits unprocessed UL NR-DRS over several uplink slots, one long sequence (sequence) is used to transmit one UL NR-DRS sequence (sequence) over several uplink slots. Can transmit Alternatively, the length of one UL NR-DRS sequence (sequence) may be equal to or less than the length of one uplink slot, and the terminal may transmit several UL NR-DRS sequences (sequence) over several uplink slots. have. In this case, the UL NR-DRS sequences (sequences) do not necessarily have the same sequence identifier (ID) and the same resource (frequency and time resource).
- the UE should be able to know the UL resources for UL feedback.
- the configuration information of the NR-SRS (sounding reference signal) assumes the configuration equivalent to the LTE SRS.
- the UE should be able to know the transmission power, transmission bandwidth, and timing advance of the NR-SRS.
- the UE knows the resource location of the NR-PRACH preamble, and transmits the NR-PRACH preamble in the corresponding resource.
- the terminal determines the NR-PRACH preamble index through a function of the terminal identification information (eg, UE ID) or the terminal identification information and the slot index among the indexes belonging to the NR-PRACH preamble index set defined in the TS, and the determined NR-PRACH
- the preamble index is transmitted to the base station.
- the base station receives the NR-PRACH preamble index, and may use this to estimate which virtual sector the terminal is located in or estimate the radio channel.
- the base station can use this estimated information for preprocessing based on channel equivalency. As such, since the amount of configuration information required by the NR-PRACH preamble is smaller than that of the NR-SRS, the NR-PRACH preamble can be utilized as the UL NR-DRS.
- the base station may include UL NR-DRS preprocessing information of the terminal in the NR-PDCCH or a random access response to transmit to the terminal.
- the radio resource where the UL NR-DRS received from the terminal is located and the radio resource to be transmitted by the base station are the same.
- a method of transmitting a UL NR-DRS by using a DL frequency resource may be considered. If the NR consists of TDD, this method may be used. Even when the NR is configured with FDD, the terminal may be allowed to use the DL frequency resource in order to maximize channel equivalentity.
- the terminal In order for the base station to transmit configuration information of the NR-PRACH preamble to the terminal, the terminal must search for the presence of the base station. This corresponds to a case of performing DL based cell search or cell discovery.
- the base station transmits DL NR-DRS. Even if the UE does not have any information in advance, in order to receive and utilize the DL NR-DRS, the DL NR-DRS transmitted by the base station uses a radio resource defined in the specification.
- the sequence (sequence) of the DL NR-DRS is generated from an equation including at least an index of the virtual sector or identification information (eg, identification) of the virtual sector.
- the preprocessing that the serving base station applies to one virtual sector is equally applied to the NR-DRS and NR-PBCH.
- NR-DRS or PSS, SSS
- NR-PBCH are referred to as SS bursts. Therefore, in this specification, one virtual sector corresponds one-to-one to one SS burst.
- NR-SSS may be used as NR DL-DRS resources as well as downlink synchronization, or may be used for RSRP measurement, or NR-PBCH It can also be used for demodulation.
- a method of transmitting a DL NR-DRS by a base station will be described. Specifically, a method of transmitting the NR-DRS in one step (hereinafter, 'method S1') and a method of transmitting the NR-DRS in two steps (hereinafter, 'method S2') will be described.
- the base station allocates DL NR-DRS resources for each virtual sector, and the terminal receives the DL NR-DRS to estimate sequence (sequence) information of the DL NR-DRS.
- the UE can know the index i of the virtual sector to which the UE belongs from the DL NR-DRS sequence (sequence).
- the terminal may deliver the index i of the virtual sector to the base station using a reliable feedback link.
- a method of performing reliable feedback a method of transmitting the UL NR-DRS by the aforementioned terminal may be considered.
- the terminal may implicitly deliver the index of the virtual sector to the base station by selecting a radio resource used by the UL NR-DRS.
- the base station For example, if the base station configures several UL NR-DRS resources and the terminal selects the i-th UL NR-DRS resource among them and transmits the UL NR-DRS using the selected resources, the base station is a virtual sector to which the terminal belongs. Index i can be estimated. In this way, the base station estimates the index of the virtual sector and can form a narrower beam (sharp beam) toward the terminal by using the signal received from the terminal. In order for method S1 to be performed, the base station should be able to perform preprocessing using a signal from the terminal.
- the radio channel from the base station to the terminal is a matrix It is expressed as The DL channel (DL channel has the number of antennas of the base station in columns and the number of antennas of the terminal in rows) has a complex value.
- the preprocessing vector used by the base station while forming a virtual sector (index i) is Can be expressed as The length of corresponds to the number of antennas the base station has.
- the base station associates the i th virtual sector with the i th DL NR-DRS resource, since the base station associates the i th virtual sector with the i th DL NR-DRS resource, the same preprocessing vector Is used.
- the value of the i-th DL NR-DRS may be represented by one.
- the signal received by the terminal to be.
- the UE has separate linear matched filter vector for each resource of DL NR-DRS Using, effective channel Estimation
- the matching process at this time Can be expressed as Is obtained.
- complex number Using The size of (eg 2-norm) is set to one.
- the UE indexes the largest absolute value of the result obtained after receiving the DL NR-DRS among the indexes Get
- the terminal preprocesses the UL NR-DRS and transmits it to the base station, and the preprocessing vector applied to the case where there is one UL NR-DRS antenna port is Use here, Is Means a complex conjugate of.
- the radio channel from the terminal to the base station due to channel equality is It can be expressed as.
- UL NR-DRS is represented by 1
- a signal received from a radio resource allocated by the base station corresponding to the i th virtual sector Is Corresponds to The base station has a separate linear matched filter vector for each radio resource allocated corresponding to the i th virtual sector.
- Effective channel using Estimation The matching process at this time can be expressed as Is obtained.
- complex numbers Using The size of (eg 2-norm) is set to one.
- the base station is a preprocessing vector for transmission to the terminal
- system information eg, NR-SIB
- a data channel eg, NR-PDSCH
- a control channel eg, NR-PDCCH
- the received signal of the terminal is Expressed as Corresponds to Here, 1 denotes an NR-DM (demodulation) -RS used by the base station for convenience.
- Terminal already knows Can be used to receive a signal.
- Is a square matrix with singular points as elements (eg positive real numbers). Is Represents the left singularity matrix of, Is Represents the right singularity matrix of.
- the base station Since the exponent for R is high, there is a difference in the ratio of singular values (eg, condition number). Therefore, it can be interpreted that the base station formed a finer beam in the NR-DM-RS. If the terminal uses the optimal linear match vector, higher reception strength may be obtained. Based on this approach, the base station can utilize the method S1 to obtain a narrow beam.
- the base station may only transmit the NR-DRS in one step to perform the preprocessing (e.g., method S1). No narrower beams can be formed. In this case, a method (eg, method S2) of transmitting the NR-DRS in two steps may be applied.
- the base station allocates DL NR-DRS resources for each virtual sector, and the terminal estimates the index i of the virtual sector to which the terminal belongs using the DL NR-DRS. This is the same as the method S1.
- the second step belonging to the method S2 is performed when there is feedback from the terminal.
- the base station preprocesses a separate DL NR-DRS for each narrow beam to form a narrower beam in the virtual sector (index i) selected by the terminal.
- the terminal receives the DL NR-DRS represented through each narrow beam, and estimates sequence (sequence) information of the DL NR-DRS.
- the terminal uses the same method as that of the terminal extracting the virtual sector index, the terminal estimates the index j of the narrow beam.
- the terminal may implicitly transmit the index of the narrow beam to the base station. If the analog beamforming is possible at the base station and the digital preprocessing is difficult, the base station may use method S2 to form a narrow beam j applicable to the terminal.
- a method of transmitting an NR-PBCH and an NR-PDCCH by a base station will be described. Specifically, a method for transmitting the NR-PBCH and the NR-PDCCH independently for each virtual sector of the base station (hereinafter, 'method T1') and a method for transmitting the same NR-PBCH and NR-PDCCH for each physical sector of the base station (hereinafter, ' Method T2 ') is explained.
- resources of the NR-PBCH may be different for each virtual sector of the base station, and resources of the NR-PDCCH may be different.
- the base station may use time multiplexing, frequency multiplexing, or spatial multiplexing, and may support different virtual sectors by dividing the search space of the NR-PDCCH. .
- the base station may set the NR-subframe / slot offset of the NR-PBCH and the NR-PDCCH equally for each virtual sector.
- the base station may set different NR-subframe / slot offsets of the NR-PBCH for each virtual sector, and different NR-RB (resource block) indexes of the NR-PDCCH for each virtual sector.
- This independent configuration may be utilized as a means of avoiding interference between NR-PBCHs and interference between NR-PDCCHs of virtual sectors.
- the serving base station is assigned to different virtual sectors in the same slot.
- the scheduling information may be delivered to the located terminals.
- the terminal may receive NR-DRS and NR-PBCH from several virtual sectors, and select a virtual sector having a higher reception quality for NR-DRS (or NR-PBCH and NR-DRS).
- Method T1-1 for the method T1 the terminal selects only one virtual sector.
- Method T1-2 for Method T1 allows the terminal to select a plurality of virtual sectors.
- the content indicated by the NR-PBCH is applied to one virtual sector.
- the content indicated by the NR-PBCH may be applied to each of several virtual sectors. For example, when UL NR-DRS resources are configured through NR-PBCH, if method T1-2 is used, the UE selects several UL NR-DRS resources and uses UL NR-DRS for the selected resources. Can be transmitted separately.
- Method T2 sets the NR-PBCH resource and the NR-PDCCH resource to all virtual sectors equally, sets the NR-PBCH resource to all virtual sectors identically, or sets the NR-PDCCH resource to all virtual sectors identically.
- the NR-PBCH includes UL NR-DRS resource settings corresponding to each virtual sector
- one same NR-PBCH may include several UL NR-DRS resources.
- the NR-PBCH may include several NR-PDCCH resources corresponding to each virtual sector.
- a large payload of the NR-PBCH is required.
- Method R1 corresponds to the case where the location of the UL NR-DRS resource is fixed by the specification.
- Method R2 corresponds to a case where the location of UL NR-DRS resources can be set.
- the terminal may receive the UL NR-DRS without additional signaling from the base station. Therefore, the base station does not set up the UL NR-DRS resource in any other physical channel including the NR-PBCH.
- the method R1 is inefficient when the number of terminals is small. And in the aspect that forward compatibility of NR is supported, UL NR-DRS resource needs to be allowed to be set.
- the base station in order to set the location of the UL NR-DRS resource, the base station must allocate a separate radio resource.
- the NR-PBCH may include the location of the UL NR-DRS resource.
- the base station may set a resource for the UL NR-DRS, include configuration information of the UL NR-DRS resource in a broadcast channel (eg, NR-PBCH), and transmit a broadcast channel.
- the number of UL NR-DRS resources of the NR-PBCH is one or more, which is equal to the number of virtual sectors utilized by the base station.
- the base station may set UL NR-DRS resources to the same number as the number of virtual sectors used by the base station. Since the base station can configure the UL NR-DRS resource by transmitting the NR-PBCH, the base station supports forward compatibility.
- the NR-PBCH may further include a bit indicating whether system information is transmitted, in addition to configuration information of the UL NR-DRS resource. Between subframes / slots including NR-PBCH, system information may be transmitted using the NR-PDCCH.
- the base station may include a bit field indicating whether system information is transmitted through a control channel (eg, NR-PDCCH) in the broadcast channel (eg, NR-PBCH).
- a time interval corresponding to a period of the NR-PBCH is a window for receiving system information, and the UE observes the corresponding bit field in the NR-PBCH.
- the terminal detects a bit indicating that the base station transmits system information, it is assumed that the terminal receives the system information block before receiving the next NR-PBCH, and performs blind decoding on the NR-PDCCH.
- the UE appropriately updates a DRx timer for this purpose. If the terminal detects a bit indicating that the base station does not transmit system information, the terminal does not need to observe the NR-PDCCH.
- the NR-PBCH can be transmitted cell-specific with a bit width of the number of virtual sectors. Or if the NR-PBCH is transmitted in virtual sector-specific, transmission of the NR-PBCH is defined by the number of virtual sectors and one NR-PBCH may include one bit.
- the base station when the base station intends to transmit the NR-PBCH cell-specifically, one broadcast channel having a bit width corresponding to the number of virtual sectors may be generated. For another example, if the base station wants to send the NR-PBCH virtual sector-specific, it may generate multiple NR-PBCHs for multiple virtual sectors.
- the NR-PDCCH is transmitted in every NR-subframe / slot by the base station.
- the NR-PDCCH may be assumed to be transmitted in every NR-subframe / slot after the base station receives the UL NR-DRS.
- the time resources occupied by the NR-PDCCH are predefined in the specification, set via the NR-PBCH, signaled via the NR-PDCCH, or transmitted with the NR-PDCCH (physical control format indicator channel). Can be specified via).
- the base station may transmit the NR-PDCCH through the appropriate preprocessing to the terminal.
- the terminal decodes the NR-PDCCH using the NR-DM-RS.
- the method of setting the frequency resource of the NR-PDCCH includes the method C1 and the method C2.
- Method C1 corresponds to the case where the location of NR-PDCCH resources is fixed by the specification.
- Method C2 corresponds to the case where the location of the NR-PDCCH resource can be set.
- method C1 and method C2 relate to a method of defining an NR-PDCCH, information included in the NR-PBCH may be determined according to a specific embodiment of method C2.
- the terminal may receive the NR-PDCCH without additional signaling from the base station. Therefore, the base station does not set the position of the frequency resource used by the NR-PDCCH in any other physical channel including the NR-PBCH. However, the base station cannot assign RBs belonging to the union of NR-PDCCH resources to data transmission. And in terms of supporting forward compatibility of NR, it is necessary to allow NR-PDCCH resources to be set.
- the base station may transmit the NR-PDCCH in the frequency resource determined by the standard.
- the specification specifies a minimum bandwidth so that the base station can operate even if the base station has a narrow system bandwidth.
- the base station schedules and assigns an NR-PDSCH including the NR-SIB while transmitting the NR-PDCCH.
- the UEs that have transmitted UL NR-DRS receive the NR-PDCCH and decode the NR-SIB. If the base station establishes an NR-RRC connection to provide the eMBB service or URLLC service through the NR-PDSCH in addition to the NR-SIB to the UE, the NR-PDCCH-eMBB resource is separately configured or the NR-PDCCH- URLLC resources can be set separately.
- the terminal having received such a setting no longer receives the NR-PDCCH and may receive the NR-PDCCH-eMBB or the NR-PDCCH-URLLC.
- the base station which has transmitted this configuration no longer transmits the NR-PDCCH to the terminal.
- the base station in order to set the position of the frequency resource used by the NR-PDCCH, the base station must allocate a separate radio resource.
- the NR-PBCH may include the location of the NR-PDCCH resources.
- the base station may configure a resource for the NR-PDCCH and include configuration information of the NR-PDCCH resource in the NR-PBCH.
- the number of NR-PDCCH resources of the NR-PBCH is one or more, and one NR-PDCCH resource corresponds to a virtual sector utilized by the base station.
- the location of the NR-PDCCH resource includes an RB index or NR-PDCCH bandwidth.
- the configuration information of the NR-PDCCH resource may include an index of the RB where the NR-PDCCH resource starts and a bandwidth occupied by the NR-PDCCH.
- the UE receives a frequency resource of the NR-PDCCH from the RBs belonging to the bandwidth occupied by the NR-PDCCH based on the RB index. Since the base station can set the NR-PDCCH resources by transmitting the NR-PBCH, the base station supports future compatibility.
- the NR-PBCH may include UL NR-DRS resource configuration or NR-PDCCH resource configuration.
- the UL NR-DRS resource configuration may be expressed in the form of a list.
- the UL NR-DRS resource configuration list is a set of UL NR-DRS resource indexes.
- the UL NR-DRS resource index specifies a radio resource of the UL NR-DRS.
- the time resource of the UL NR-DRS is a position relative to the NR subframe / slot in which the DL NR-DRS is transmitted and may be defined as an NR subframe / slot offset.
- the index of the NR-subframe / slot for the UL NR-DRS may be expressed as an absolute value. If an absolute NR-subframe / slot index is assigned to the terminal, the base station must also signal a system frame number (NR-SFN) to the terminal.
- NR-SFN system frame number
- the frequency resource of the UL NR-DRS may include an RB index or a bandwidth. If the bandwidth for transmitting the UL NR-DRS is predefined in the standard, the UE can know the frequency resource for the UL NR-DRS only by the RB index received from the NR-PBCH.
- the NR-PDCCH resource configuration may be expressed in the form of a list.
- the NR-PDCCH resource configuration list is a set of NR-PDCCH resource indexes.
- the NR-PDCCH resource index specifies a radio resource of the NR-PDCCH.
- the time resource of the NR-PDCCH may be previously defined in the specification and follows the above-described method.
- the frequency resource of the NR-PDCCH follows the above-described setting method.
- the base station delivers an OFDM symbol index set and a PRB index set in which an NR-PDCCH candidate exists, which is called a control resource set.
- the terminal may monitor one or more sets of control resources.
- the number of NR-DM-RS antenna ports required for decoding the NR-PDCCH may be explicitly included in the NR-PDCCH resource configuration, or may be implicitly included in the NR-PBCH.
- the number of NR-DM-RS antenna ports may be included in the NR-PBCH through a cyclic redundancy check (CRC) mask of the NR-PBCH, and the terminal performs a blind test to perform the blind test. Know the RS antenna port.
- CRC cyclic redundancy check
- the serving base station regards the NR-PBCH and the synchronization signal (e.g., PSS, SSS) as one unit (e.g., synchronization signal burst) belonging to the same virtual sector, and thus the NR-PBCH and the synchronization signal (e.g., PSS, SSS). Apply the same pretreatment. That is, a synchronization signal (SS) burst includes an NR-PBCH and a synchronization signal (eg, PSS, SSS). The number of SS bursts is determined and transmitted according to the number of beams or preprocesses transmitted by the serving base station. Although the terminal does not know the number of SS bursts, the terminal may perform cell search and initial access. Since the UE has a less time delay while increasing the reception quality of the NR-PBCH while performing the cell search procedure, the UE can combine not only one SS burst but also NR-PBCHs belonging to several SS bursts. have.
- SS synchronization signal
- the serving base station may transmit the same redundancy version (RV) of the NR-PBCH in different SS bursts when the SS bursts are successively transmitted several times in order to assist in the reception combining of the UE. (Hereinafter 'Method PBCH-rv-1'). Alternatively, the serving base station may transmit different encoded versions (RVs) of the NR-PBCH in different SS bursts (hereinafter, 'method PBCH-rv-2').
- RV redundancy version
- Method PBCH-rv-1 is a method in which all PBCHs transmitted in the SS burst set have the same encoded version (RV). That is, NR-PBCHs belonging to SS bursts transmitted by the base station may have the same RV.
- the UE synthesizes PBCHs that have undergone different preprocessing but have the same encoded version (RV).
- the serving base station may include Z SS bursts in the SS burst set.
- the transmission period of the PBCH is T 1 , and all RVs of the PBCH are transmitted once every T. In this case, the Z PBCHs belonging to the SS burst set have the same RV with each other.
- the UE can achieve less delay time than the method of synthesizing each of the Z PBCHs by separating the PBCHs having the same preprocessing from each other.
- the terminal may receive a relatively weak or relatively strong PBCH to which a specific preprocessing is applied. Therefore, when the method PBCH-rv-1 is used, the relatively weakly received RV does not greatly help the synthesis process of the terminal. Rather, when a relatively weakly received PBCH has a RV different from that of a relatively strongly received PBCH, the UE may use more parity bits in the synthesis process, and thus, reception quality may be improved. have.
- Method PBCH-rv-2 is a method in which PBCHs transmitted in an SS burst set have different RVs. That is, NR-PBCHs belonging to SS bursts transmitted by the base station may have different RVs.
- the UEs combine different PBCHs that have undergone different preprocessing and have different RVs.
- the serving base station may include Z SS bursts in the SS burst set.
- the transmission period of the PBCH is T 1 . In the case where all RVs of the PBCH are transmitted once in a period of T, the Z PBCHs belonging to the SS burst set may have different RVs.
- Terminal do not know the value of Z in advance, on the assumption that the detection success of the PBCH Z 1 items (where, Z 1 ⁇ Z) may have a different RV, decodes PBCH.
- the UE indirectly recognizes the value of RV of each PBCH while receiving the PBCH.
- the serving base station may use scrambling resources or CRC masking for the PBCH differently depending on the RV. That is, different scrambling resources (or CRC masks) may be applied to NR-PBCHs belonging to SS bursts transmitted by the base station.
- the UE may demodulate (eg, blind demodulation) randomly such scrambling and calculate an RV based on these results.
- the serving base station optimizes the combination of RVs so that the UE can decode even if the UE receives PBCHs corresponding to different RVs.
- the serving base station has four SS bursts (SS bursts 1, 2, 3, and 1) so that the values of RV during the time period are 1, 3, 0, 2 and SS burst 4 has the values 3, 0, 2, and 1 during the T burst. 4) can be transmitted.
- the UE detects the PBCH of Z 1 items (where, Z 1 ⁇ 4) in the SS sets the burst, and synthesis and decoding the PBCH, after detection of a value of each RV PBCH having, based on this. Since the UE receives different RVs having different qualities, it is possible to obtain a preprocessing multiplexing gain in the PBCH.
- the order of the RVs may be defined in the TS so that the combination of the RV having a lot of parity bits and the RV having few parity bits are alternately transmitted.
- the UE receives the PBCH while alternating the value of the RV to an odd number and an even number, and may synthesize and decode the PBCH based on this. Since the UE receives different RVs having different qualities, it is possible to obtain a preprocessing multiplexing gain in the PBCH.
- Method C1 corresponds to the case where the location of the NR-PDCCH resource is defined by the standard.
- Method C2 corresponds to the case where the location of the NR-PDCCH resource is allowed to be set.
- the NR-SIB transmission method for the method C2 will be described by dividing the method C2-1 and the method C2-2 according to the NR-PBCH transmission method.
- the NR using both the method C1 and the method R2 does not need to transmit the NR-PBCH.
- the NR-SIB transmission method when the method C1 is used will be described.
- the base station periodically transmits the DL NR-DRS.
- the base station periodically transmits the NR-PBCH using the DL NR-DRS antenna port. If method T1 is used, the base station transmits a separate DL NR-PBCH for each virtual sector.
- the base station transmits the same DL NR-PBCH without distinguishing the virtual sector (s).
- the preprocessing of the DL NR-DRS antenna port is not defined in the specification and is implemented by the base station.
- the base station may preprocess the DL NR-DRS resource, similarly to the virtual sector.
- the base station may transmit DL NR-DRS resources in the same manner as the number of virtual sectors.
- the UE may receive the DL NR-DRS even if the UE does not receive the configuration information of the DL NR-DRS in advance. Although the UE does not receive the number of DL NR-DRS resources in advance, the UE performs cell detection through blind detection.
- the terminal successfully receives a specific DL NR-DRS, the terminal demodulates the NR-PBCH using the received DL NR-DRS antenna port.
- the NR-PBCH includes setting information of the UL NR-DRS.
- the terminal Since the terminal estimates the index i of the virtual sector to which the terminal belongs from the received DL NR-DRS resources, the terminal selects the i-th UL NR-DRS resource and transmits the UL NR-DRS using the selected resource.
- the preprocessing of the terminal should be applied to the UL NR-DRS, but the preprocessing of the terminal is not defined by the standard and is performed by the implementation of the terminal.
- the terminal may apply the UL NR-DRS by reusing a linear filter for receiving the DL NR-DRS.
- the base station When the base station receives the UL NR-DRS from the terminal, it can implicitly know the index i of the virtual sector to which the terminal belongs.
- the base station starts to transmit the NR-PDCCH corresponding to the i-th virtual sector.
- the base station transmits a separate NR-PDCCH for each virtual sector.
- the base station transmits the same NR-PDCCH without distinguishing the virtual sector (s).
- the NR-PDCCH is transmitted by the base station based on the NR-DM-RS antenna port.
- the NR-DM-RS resource is transmitted through preprocessing, and the preprocessing method used at this time may be implemented by implementation.
- the base station can reuse the linear filter used to demodulate the UL NR-DRS received from the terminal. Since the NR-PDCCH is transmitted at a resource location predefined by the standard, the UE does not receive resource information of a separate NR-PDCCH. The terminal detects a DL scheduling assignment on the NR-PDCCH. The terminal detects allocation information of the NR-PDSCH from the detected DL scheduling allocation information. Since the NR-SIB is included in the NR-PDSCH, the UE can decode the NR-SIB. Information included in the NR-SIB may recognize SFN, system bandwidth, physical layer cell identification information, and the like. In addition, scheduling information for receiving system information for establishing an NR-RRC connection may be received by the terminal.
- the base station periodically transmits the DL NR-DRS.
- the base station periodically transmits NR-MIB type 1 over the NR-PBCH using the DL NR-DRS antenna port.
- the NR-PBCH transmission method uses the same method as the NR-PBCH method described in Method C1.
- the base station transmits a separate DL NR-PBCH for each virtual sector.
- the base station transmits the same DL NR-PBCH without distinguishing the virtual sector (s).
- the NR-MIB type 1 included in the DL NR-PBCH includes configuration information of the UL NR-DRS resource.
- the base station When the terminal selects a specific resource and transmits the UL NR-DRS, the base station starts the transmission of the NR-PBCH, followed by the transmission of the NR-PDCCH.
- the base station transmits a separate NR-PBCH and a separate NR-PDCCH for each virtual sector.
- the base station transmits the same NR-PBCH and the same NR-PDCCH without distinguishing the virtual sector (s).
- the base station transmits the NR-PBCH using the NR-DRS antenna port, and uses a resource distinguished from the NR-PDCCH based on the DL NR-DM-RS antenna port.
- the preprocessing method determined by the base station is applied to the NR-DM-RS and the NR-DRS.
- the information contained in the NR-PBCH is NR-MIB type 2.
- NR-MIB type 2 includes configuration information of NR-PDCCH resources.
- NR-MIB type 2 explicitly or implicitly includes the location of the NR-subframe / slot to which the NR-SIB is delivered.
- the NR-MIB type 2 includes SFN information, and the terminal may estimate the NR-subframe / slot in which the NR-SIB is received.
- the NR-PDSCH, including the NR-SIB has a period defined by the specification.
- the terminal decodes the NR-PDCCH using the NR-DM-RS antenna port and detects scheduling allocation information for the NR-PDSCH.
- the terminal decodes the NR-PDSCH to obtain an NR-SIB.
- the NR-SIB includes direct and indirect information for establishing an NR-RRC connection. As in LTE, the NR-SIB may be set to have different periods according to its contents.
- the method C2-1 may be modified and applied to an NR-SIB transmission scheme of NR (eg, 6 GHz or less) operating in a low frequency band.
- NR-SIB transmission scheme eg, procedures for 6 GHz or more
- transmission of NR-MIB type 1 and transmission of UL NR-DRS may be excluded. That is, NR-SIB procedures similar to each other in terms of band agnostic may be used.
- the base station periodically transmits the DL NR-DRS.
- the base station periodically transmits the NR-MIB through the NR-PBCH using the DL NR-DRS antenna port.
- the NR-PBCH transmission method uses the same method as the NR-PBCH method described in Method C1.
- the base station transmits a separate DL NR-PBCH for each virtual sector.
- the base station transmits the same DL NR-PBCH without distinguishing the virtual sector (s).
- the NR-MIB includes configuration information of the NR-PDCCH resource.
- the NR-MIB further includes configuration information of the UL NR-DRS resource, and includes both configuration information of the NR-PDCCH resource and configuration information of the UL NR-DRS resource.
- the amount of information that the NR-MIB has in the method C2-2 is greater than that in the method C1 or the method C2-1, the UE may establish the NR-RRC connection faster.
- the terminal receives the DL NR-DRS and selects a virtual sector i corresponding to one NR-DRS resource.
- the terminal transmits the UL NR-DRS using the i-th UL NR-DRS resource.
- the base station recognizes the existence of the terminal using the UL NR-DRS received from the terminal, and starts transmitting the NR-PDCCH.
- the base station transmits a separate NR-PBCH and a separate NR-PDCCH for each virtual sector.
- the base station transmits the same NR-PBCH and the same NR-PDCCH without distinguishing the virtual sector (s).
- the base station transmits the NR-PDCCH through an implementational preprocessing using the NR-DM-RS antenna port.
- the terminal decodes the NR-PDCCH from the DL NR-subframe / slot after transmitting the UL NR-DRS.
- the base station may transmit the NR-SIB to the terminal using the NR-PDSCH.
- the NR-SIB includes not only SFN, system bandwidth, etc., but also direct and indirect information for establishing an NR-RRC connection.
- the idle terminal may receive the NR-PDCCH using the NR-MIB.
- the idle terminal may not receive the NR-SIB transmitted by the base station using the NR-PDSCH. Since the NR-SIB includes at least cell selection / reselection, public land mobile network (PLMN) identification list and cell barring information, the idle terminal is assigned to the corresponding NR cell. It is not possible to determine whether or not an association can be made. Therefore, the idle terminal should transmit the UL NR-DRS to induce the base station to transmit the NR-SIB in the NR-PDCCH and NR-PDSCH.
- PLMN public land mobile network
- the idle terminal transmits the UL NR-DRS
- power consumption is directly proportional to the number of NR-cells observed.
- the UE may observe whether NR-SIB transmission (eg, NR-SIB transmission to be applied for each virtual sector) included in the above-described NR-PBCH. Through this, even if only one terminal among other terminals belonging to the same virtual sector as the idle terminal transmits the UL NR-DRS, the base station can adjust the bit field of the NR-PBCH.
- NR-SIB transmission eg, NR-SIB transmission to be applied for each virtual sector
- the terminal that wants to receive the NR-SIB among the terminals belonging to the corresponding virtual sector, in the consecutive downlink subframe / slot (s) after the NR-PBCH Observe the NR-PDCCH.
- the monitoring window for the idle terminal may use a subframe / slot window defined by the standard.
- the UE may observe the NR-PDCCH in all subframes / slot (s) allowed by discontinuous reception (DRx) until the next NR-PBCH is received.
- 4 is a diagram illustrating a scenario regarding RRM measurement performed by a terminal according to an embodiment of the present invention.
- 5 is a diagram illustrating RE mapping of DL NR-DRS resources according to an embodiment of the present invention.
- One base station has a plurality of cells, and each cell is deployed at a different frequency (eg, F 1 , F 2 ). 4, four cells are illustrated.
- the UE performs RRM measurement for four cells.
- the UE does not perform RRM measurement in every subframe / slot.
- the TS defines the period and subframe / slot offset of the fixed DL resource including the DL NR-DRS resource transmitted by the base station.
- the UE may know from a known period and a subframe / slot offset whether a specific subframe / slot includes a DL NR-DRS resource or not.
- the UE can know the subframe / slot including the DL NR-DRS resource through the configuration of the base station or the reception of the physical layer signal, and performs RRM measurement only in the corresponding subframe / slot.
- the fixed DL resource may be composed of adjacent resource elements (REs) that may be represented by localized time and localized frequency.
- the fixed DL resource may be composed of non-contiguous REs to obtain diversity.
- the DL NR-DRS resource is a subset of the fixed DL resource, and is composed of REs distributed apart from each other to obtain diversity. Such DL NR-DRS resources may be distributed in various forms in fixed DL resources.
- DL NR-DRS resource means all DL NR-DRS antenna ports transmitted by the serving base station, and may be configured with one or more.
- FIG. 5A illustrates uniform allocation for DL NR-DRS RE
- FIG. 5B illustrates equi-distance allocation for DL NR-DRS RE. have.
- the RE mapping of DL NR-DRS resources may use the same subcarrier while using multiple symbols within a fixed DL resource.
- the RE mapping of the DL NR-DRS resource may use several symbols and several subcarriers within a fixed DL resource.
- FIG. 5A can be used for DL coverage expansion.
- the RE mapping for DL NR-DRS is timed. It has lower channel estimation error in the domain and frequency domain.
- the terminal demodulates a physical channel belonging to a fixed DL resource, a predetermined interpolation method for performing channel estimation on an arbitrary RE can be easily used. If the UE demodulates a PBCH using DL NR-DRS, an RE mapping having a form similar to the RE mapping illustrated in FIG. 5B may be performed.
- the fixed DL resource means a physical signal and a physical channel transmitted regardless of the subframe / slot type.
- the fixed DL resource includes at least a DL NR-DRS, a synchronization signal, and an NR-MIB (master information block).
- a physical signal and a physical channel are not transmitted periodically or intermittently (eg, on-demand or event-driven), they may not be included in the fixed DL resource.
- the amount of these aperiodic physical signals and physical channels is proportional to the DL load. For example, DL scheduling assignment among UE-specific beamformed PDCCHs (eg, UE-specific beamformed PDCCHs) and UE-specific beamformed EPDCCHs (eg, UE-specific beamformed EPDCCHs).
- the control channel associated with is included in the fixed DL resource.
- the fixed DL resource includes a UE specific PDSCH (eg, UE-specific PDSCH).
- a common search space (CSS) of the SIB and a PDCCH scheduling the same is included in the fixed DL resource.
- a paging channel is included in the fixed DL resource.
- a physical multicast channel (PMCH) is included in a fixed DL resource.
- the classification method of the physical signal and the physical channel may be used regardless of the number of symbols constituting the TTI or irrespective of the numerology.
- the UE Since the 3GPP NR TDD reference system 1 can change the subframe / slot type for each subframe / slot, the UE cannot know the existence of the GP in advance and the GP position in the subframe / slot in advance. As a way for the UE to know the presence of the GP, the UE decodes the NR-PDCCH in the corresponding subframe / slot and receives the DL assignment, thereby making the subframe / slot a DL subframe / slot or DL-centric ( centric) subframe / slot. The latter case corresponds to the case where a GP is defined in a DL-centric subframe / slot.
- the terminal may receive a UL grant and determine that the corresponding subframe / slot is a UL subframe / slot or a UL-centric subframe / slot.
- the terminal receives the UL grant and receives a starting symbol index or ending symbol index of the UL data region, so that the GP exists in the corresponding subframe / slot and that the GP The location can be determined indirectly.
- the subframe / slot type is a DL subframe / slot, a DL-centric subframe / slot, an UL subframe / slot, a UL-centric subframe / Slot, and one of a special subframe / slot. If the subframe / slot type corresponds to a special subframe / slot, the UE can know the number of symbols belonging to the DL region.
- method IND1 and method IND2 can be considered.
- the serving cell includes a subframe / slot type indicator (STI) indicating the subframe / slot type in the fixed DL resource.
- STI subframe / slot type indicator
- Method IND1-1 corresponds to a case where a physical subframe / slot type indicator channel (PSTICH) including an STI is separately defined by the TS.
- Method IND1-1 may explicitly inform the UE of a cell-specific type. For this purpose, an RE should be additionally used, but despite this overhead, the UE can easily know the corresponding subframe / slot type.
- the terminal performing inter-frequency RRM measurement whether the subframe / slot is a DL subframe / slot (eg, the UL region does not exist) only in STI in a fixed DL resource, DL-centric (centric This DL, since it can be seen whether it is a subframe / slot, a UL subframe / slot (e.g., no DL region exists), a UL-centric subframe / slot, or a special subframe / slot.
- Regions can be used for RRM measurements.
- the STI must convey the number of five cases. However, if the STI is defined to simply change the algorithm that performs the RRM measurement, it is sufficient that the STI carries only two cases.
- a minimum resource over a symbol and frequency domain (eg, a symbol and frequency domain predefined by the TS or preset by the base station) for the UE is a DL region of a subframe / slot. It can mean whether it is included in (region) or not. In this case, the STI can carry only 1 bit.
- the length of the DL region in the STI can be encoded.
- the number of symbols additionally allocated as DL regions after the fixed DL resource may be defined by the TS in some cases.
- the STI can convey the number of four cases, the first case can show zero, the second case can show four, the third case can show eight, In the fourth case, 12 can be displayed.
- the STI may signal the number of DL symbols to unspecified terminals by using 2 bits.
- the STI may deliver slot types subdivided into three or more cases to the UEs.
- the UE may not only support RRM measurement or CSI feedback that requires recognition of the DL region, but also support a scenario in which the UE needs to recognize the UL region.
- the operation of the terminal configured from the serving base station to measure the UL interference signal from the neighbor base station may be considered.
- the serving base station may configure the terminal to perform measurements on DL interference signals and UL interference signals from neighboring base stations, respectively.
- the measurement may mean a CSI measurement, an RRM measurement, or a CSI and RRM measurement.
- the UE needs to know information about the UL region as well as the DL region of the neighbor base station, which can be obtained from the STI included in the PSTICH transmitted by the neighbor base station.
- the PSTICH can use multiple REs within a fixed DL resource to obtain frequency diversity through encoding.
- PSTICH belongs to a fixed DL resource in which DL NR-DRS resources are defined.
- STIs for RRM measurement need not be transmitted.
- the processing time is required to be very short, it is advantageous for the UE to know the subframe / slot type or STI at a very early time, and also to know the subframe / slot type or STI of the adjacent cell.
- the PSTICH may be transmitted every subframe / slot.
- the PSTICH will include at least the subframe / slot type, as well as the time and frequency location of the blank resource, and the number of symbols with the DL control channel. Can be.
- the blank resource may have a unit of a subband and a mini-slot.
- the time location and frequency location of the PSTICH resource are defined by the TS, and UEs (eg, RRC_IDLE UEs) and non-serving UEs that are not RRC-connected to the base station may also measure the location. Can be done.
- UEs eg, RRC_IDLE UEs
- non-serving UEs that are not RRC-connected to the base station may also measure the location. Can be done.
- the PSTICH is transmitted through a single antenna port, and the terminal should be able to receive the PSTICH using a cell-specific antenna port.
- a separate DM-RS for PSTICH may be introduced.
- the NR cell may modulate the PSTICH using an antenna port for CSS (common search space) of the PDCCH.
- the PSTICH and the PDCCH do not use different DM-RSs, and the UE can reuse the DM-RS for the PDCCH to demodulate the PSTICH.
- the serving base station needs to transmit more DM-RS, which is disadvantageous in terms of resource efficiency. Do.
- the PSTICH should be able to be detected by a terminal in an RRC idle state or an RRC connected terminal belonging to an adjacent base station. Therefore, in order for the terminal not connected to the serving base station or the terminal belonging to the neighboring base station to detect the PSTICH, the serving base station is larger than the amount of DM-RS transmitted only for the serving terminal in the RRC connected state. DM-RS may be included in the PSTICH and transmitted. Therefore, in order to minimize additional transmission of the PSTICH DM-RS, the same preprocessing as the preprocessing for the PDCCH DM-RS transmitting a common search space (CSS) may be applied to the PSTICH.
- SCS common search space
- the serving base station may transmit using the PSTICH and the PDCCH in the same frequency band or alternately interleaved frequency resources (for example, the PSTICH uses an odd REG index and the PDCCH uses an even REG index).
- the UE may assume that the CSS of the PSTICH and the CSS of the PDCCH use the same antenna port.
- additional DM-RSs may be transmitted or a lower coding rate may be applied to the subframe / slot type indicator (STI) in order for the terminals to have a higher reception quality (eg, a lower error rate).
- STI subframe / slot type indicator
- the coded STI can be mapped to a greater amount of time and frequency resources. Since the STI should be utilized at an early point in the subframe / slot, the serving base station can use a larger amount of frequency instead of increasing the latency for demodulation of the UE by using a smaller amount of time. . Through this, frequency multiplexing gain can also be obtained.
- the PSTICH may be allowed to have different values for each virtual sector. In this case, the PSTICH may be transmitted separately for each virtual sector. If the PSTICH is transmitted cell-specifically, all of the slot types that should be present for each virtual sector may be included in the cell-specific PSTICH.
- Method IND1-2 corresponds to a case where the PSTICH is included in the NR-PDCCH.
- the base station may generate an STI indicating the type of subframe / slot, include the STI in the NR-PDCCH, and transmit the NR-PDCCH to the terminal through the fixed DL resource.
- the terminal finds a subframe / slot type indicator (STI) in the common search space or cell-specific search space (CSS) of the NR-PDCCH.
- STI subframe / slot type indicator
- SCS cell-specific search space
- the method IND1-2 since the UE needs to search for a separate PDCCH candidate, the UE must perform PDCCH demodulation in order to perform RRM measurement.
- the method IND1-2 since the terminal operates more complicatedly, the method IND1-2 is disadvantageous than the method IND1-1.
- the meaning of the STI and the method of setting the DM-RS in the method IND1-2 are the same as those in the method IND1-1.
- the terminal should be able to recognize the location of the time and frequency resources of the STI without randomly (eg blind decoding) the search space of the PDCCH.
- a separate scrambling operation for the REG (or CCE) including the STI may not be performed among the REGs (or CCEs) belonging to the PDCCH.
- a REG may be separately allocated as a part of a PDCCH, and the REG (or CCE) may include at least information of an STI, and in addition, the REG (or CCE) may be a blank resource. ), Or may include additional information such as reserved resources. That is, the base station may transmit the STI by using the REG (or CCE) corresponding to the identification information of the base station among the REGs (or CCEs) belonging to the fixed DL resource (or PDCCH resource). The terminal may infer the frequency and time resources of some resources of the PDCCH according to identification information of the serving base station (or serving cell). Since the resources for transmitting the STI may vary according to identification information of the serving base station (or serving cell), the STIs transmitted by different base stations (or cells) may avoid collision.
- the terminal may recognize the STI of the serving base station or the STI of the neighboring base station and perform an operation such as RRM measurement or CSI measurement as set by the serving base station.
- the serving base station Since the method of transmitting the STI as part of the PDCCH uses REG or CCE, the serving base station avoids REG (or CCE) for STI transmission and performs REG mapping (or CCE mapping) for another PDCCH candidate. do. For example, the serving base station performs mapping for CCE configuration using remaining REGs other than the REG for STI transmission among REGs, and then maps PDCCH candidates to the already generated CCE. That is, the serving base station may map PDCCH candidates to remaining REGs other than the REG for STI transmission among REGs belonging to the fixed DL resource.
- the serving base station when the serving base station performs indexing or numbering of the REG constituting the CCE, the serving base station performs indexing using only the REGs to which the STI is not mapped and configures the CCE. For another example, the serving base station may perform indexing using only the remaining CCEs except for the CCE for STI transmission among the CCEs. Thereafter, the serving base station performs mapping for the PDCCH candidate.
- the method of defining the PSTICH may use the method STI-1 as in the LTE PCFICH, or may use the method STI-2 as in the LTE PDCCH.
- the PSTICH is designed similar to the LTE PCFICH.
- the serving base station processes the encoded STI in REG units (or CCE units), and encodes the resource into a resource that can be inferred from the identification information of the serving base station (or serving cell) or at the REG (or CCE) location defined by the TS. Mapped STIs in REG units (or CCE units).
- the REG or CCE including the STI may be located in the first DL symbol.
- the base station may locate the REG (or CCE) for STI transmission in the time domain symbol that is the one of the time domain symbols belonging to the subframe / slot.
- the serving base station may map REGs or CCEs including the STI over several frequencies. For example, the serving base station may map REGs (or CCEs) for STI transmission to multiple frequencies belonging to the system bandwidth. Through this, a frequency diversity gain can be obtained.
- the PSTICH is included in a cell-specific search space of the PDCCH.
- the PSTICH includes at least information for knowing the number of DL symbols.
- y and STI may be encoded and included in the PSTICH in an index form.
- the UE may interpret the (x-y) symbols as GP or UL symbols.
- the terminal may recognize that the corresponding symbol is a UL symbol or a GP symbol by receiving the PSTICH.
- the UE performs reception and transmission according to the DL assignment and the UL grant of the base station, and may use y symbols for DL measurement (eg, RRM measurement, CSI measurement, etc.).
- the REG (s) or CCE (s) including the STI may be located in the first DL symbol.
- the base station may place one or more REGs (or CCEs) for STI transmission among the REGs (or CCEs) belonging to the PDCCH resource in the symbol that is the one of the y DL symbols.
- the serving base station may map REGs or CCEs including the STI over several frequencies. For example, the serving base station may map one or more REGs (or CCEs) for STI transmission among REGs (or CCEs) belonging to a PDCCH resource, to a plurality of frequencies within a system bandwidth. Through this, a frequency diversity gain can be obtained.
- the serving base station processes the encoded STIs in CCE units (or REG units), maps the STIs encoded in CREG units (or REG units) to the REG location (or CCE location) defined by the TS, or serves the serving base station (or
- the encoded STI is mapped to a CCE unit (or REG unit) to a resource that can be inferred from the identification information of the serving cell).
- the terminal may infer the location of system information (eg, SIB) belonging to the SS burst from identification information of the serving base station (or serving cell), and may know the location of the STI by demodulating the SIB.
- the STI may be mapped to a resource that is determined based on identification information of the serving base station (or serving cell).
- the STI may be sent in the resource determined by the TS.
- Method IND1-3 may increase the reception strength of the DL NR-DRS antenna port by a spreading factor using code division multiplexing (CDM) in the DL NR-DRS resource.
- CDM code division multiplexing
- LTE CSI-RS or LTE DM-RS may increase the reception strength of the terminal using CDM-2 and CDM-4.
- Each orthogonal cover code (OCC) applied to the CDM corresponds to one antenna port.
- the subframe / slot type of the DL NR-DRS subframe / slot is a DL-centric subframe / slot
- a specific OCC eg, OCC 1
- DL-NR DRS sub-frame / slot type of the sub-frame / slot is centered UL- (centric) when the sub-frame / slot, and the OCC (for example, 1 OCC and OCC different 2) different in DL-NR DRS resources applicable . Since the UE can estimate the OCC applied to the DL NR-DRS resource, the UE can know the subframe / slot type of the corresponding DL NR-DRS subframe / slot. This is a method in which 3GPP NR cells perform implicit indication through DL NR-DRS resources without defining a separate physical channel.
- an NR cell may use an L-length OCC.
- Method IND2 is a method in which the UE recognizes a subframe / slot type without additional indication.
- the UE may infer the subframe / slot type according to the characteristics of the subframe / slot type for 3GPP NR TDD.
- the GP is not defined or the GP position contains the last symbol of the subframe / slot. If the subframe / slot type is a UL-centric subframe / slot, the symbol located next to the fixed DL resource and the next symbol (s) belong to the GP. If the subframe / slot type is a special subframe / slot, a non-zero number of DL symbols are located after the fixed DL resource, after which a GP is located, followed by a UL region. ) Is located. Accordingly, the UE can determine the subframe / slot type by detecting the position of the GP.
- the method for detecting the position of the GP may use a method in which the terminal performs energy detection.
- the UE Since 3GPP NR TDD requires that geographically adjacent base stations operate in time synchronization, the UE assumes that there is no DL data transmission according to scheduling assignment or UL data transmission according to scheduling grant in a resource belonging to GP. can do. In the resource belonging to the GP, relatively less energy is received than the DL region or the UL region. Therefore, the terminal detects the position of the GP by performing energy detection for each symbol.
- the energy value detected by the UE in the next symbol of the symbol including the fixed DL resource is E 1
- the energy value detected by the UE by repeating this process is [E 1 , E 2 , ..., E L ].
- L is a natural number and corresponds to a symbol index belonging to a subframe / slot and not including a fixed DL resource.
- the terminal In order to detect the presence of a GP of unknown length, the terminal You can compare the values of and E L. If the region containing the symbol is a DL region, since the interference hypothesis is the same, the value of S L corresponding to the partial average does not differ significantly from E L. . If the region containing the symbol differs from the region corresponding to the partial average, the value of S L is E L. Can make a big difference. According to the result of such change detection in one symbol, the terminal may detect the presence of the GP.
- the terminal may perform hypothesis testing using a larger number of symbols.
- the UE may divide (or group) the symbols into GP and UL regions in a UL-centric subframe / slot.
- the UE may divide (or group) symbols into DL regions or group (or group) DL regions in a DL-centric subframe / slot.
- [E 1 , E 2 , ..., E M ] can be divided into two groups or less.
- M represents the maximum value of L.
- the boundary when [E 1 , E 2 , ..., E M ] is divided into two groups corresponds to one.
- the UE utilizes all of the (M + 1) values after storing all one subframe / slot in the data buffer, a latency as long as the length of the subframe / slot occurs. However, since only energy values are stored (that is, (M + 1) values are stored), the amount of data is not large. In addition, when the detection of the GP position is utilized for the RRM measurement, the latency as long as the length of the subframe / slot is negligibly small.
- the index of the GP symbol cannot be detected correctly.
- the direction in which the terminal to detect the subframe / slot type is located is nulled by preprocessing selected by the cell scheduler. In this case, even if the terminal is assumed to be located in the cell center, even if non-trivial energy is radiated in the DL region and the terminal receives it, the terminal is small. It is possible to collect energy.
- a terminal for detecting a subframe / slot type is located at a cell edge. In this case, due to path loss, the received energy level may not be significantly different from the noise level. In this case, the terminal may misdetect the GP.
- Another example is when there is less DL data in the data buffer.
- the terminal since the scheduler does not radiate energy even when the terminal is located in the cell center, the terminal cannot collect much energy. In this case, it is difficult for the terminal to detect the presence of the GP. If there is no predetermined large difference (eg, offset greater than threshold) in sufficient statistics obtained from hypothesis testing, the terminal may not determine the presence of a GP, and the terminal may not determine the corresponding subframe. It is not possible to determine the subframe / slot type of the slot.
- the cell association may reduce the control plane latency based on the load condition.
- a case where a base station operates several system carriers with several frequency allocations is considered. This corresponds to a case where cells having different frequencies are operated at the same site.
- the UE performs RRM measurement for each cell.
- the terminal may measure a larger RSRP for a cell (eg, cell 1) deployed at a low frequency.
- a cell eg, cell 1
- the terminal may measure a larger RSRP for cell 1 at the same site. Can be obtained. In this case, the terminal tends to have initial access to the cell 1.
- RSRP is a function of the propagation distance between the terminal and the cell, even when the traffic load of the cell is large, the serving base station may transmit the terminal to the cell. Associate.
- the serving base station performs load balancing to signal a handover command for handing over some of the serving terminals to a cell (eg, cell 2) deployed at a high frequency. do. These operations consume a lot of control plane latency.
- the eMBB scenario is not significantly affected by this control plane delay, but the URLLC scenario should also reduce this control plane delay. Accordingly, the UE may search for a cell having a low load and then perform a cell selection procedure and a cell reselection procedure.
- the UE belonging to the RRC idle (RRC_IDLE) state may also measure the load of the cell.
- the UE in the RRC_CONNECTED state operates in an RRC idle state after a predetermined time determined by a DRx cycle or an RRC connection timer set by the serving cell.
- the serving cell base station searches for the terminal through paging, and when the UL session occurs, the terminal performs initial access (initial access) in the camped-on cell (camped-on cell). Since the UE in the RRC idle state (RRC_IDLE) determines the camping cell based on RSRP or RSRQ, it has a tendency to select a cell (eg, cell 1).
- the UE may perform a cell selection procedure by reflecting a DL load and perform a cell selection procedure by reflecting a UL load.
- FIG. 6 is a diagram illustrating resources that a 3GPP NR reference system has in one subframe / slot. Specifically, FIG. 6 illustrates a case in which resources are divided into six (eg, fixed DL resources, resource A, resource B, resource C, resource E, and resource E). In Figure 6, the horizontal axis represents subframes and the vertical axis represents system bandwidth.
- the DL region and the UL region are not divided.
- the time boundary and frequency boundary of a resource will be described based on the numerology used by the fixed DL resource.
- the fixed DL resource includes information such as a synchronization signal, DL NR-DRS, PDCCH, and PBCH. This information corresponds to essential information for standalone operation.
- the fixed DL resource uses one type of neurology defined by the TS.
- the fixed DL resource may consist of a set of adjacent REs. Alternatively, the fixed DL resource may be configured such that the RE sets are not adjacent to each other on the frequency axis in order to obtain diversity.
- resource A is composed of symbols including fixed DL resources, and is composed of subcarriers belonging to the allowed measurement bandwidth allowed for the terminal but not belonging to the fixed DL resources.
- the fixed DL resource and the resource A may use different neurology. If half-duplex is used in 3GPP NR, resource A belongs to DL resource.
- resource B is composed of resources that do not belong to a measurement bandwidth among resources belonging to a symbol including a fixed DL resource.
- the fixed DL resource and the resource B may use different neurology.
- resource B belongs to DL resource.
- resource C uses the same subcarrier as the subcarrier for the fixed DL resource, but uses a symbol different from the symbol for the fixed DL resource.
- the fixed DL resource and the resource C may use different neurology. If the subframe / slot type includes a GP, part of the resource C belongs to the GP and the other part belongs to the UL region.
- resource D is composed of resources belonging to a subcarrier not used by a fixed DL resource among subcarriers belonging to a measurement bandwidth, and is composed of resources belonging to a symbol not used by a fixed DL resource.
- the fixed DL resource and the resource D may use different numerologies. If a GP is included in the subframe / slot type, part of the resource D belongs to the GP and the other part belongs to the UL region.
- resource E is composed of resources that do not belong to the symbol for fixed DL resources while not belonging to the measurement bandwidth.
- the fixed DL resource and the resource E may use different neurology. If a GP is included in the subframe / slot type, part of the resource E belongs to the GP and the other part belongs to the UL region.
- RRM measurements that apply to 3GPP NR systems are defined.
- an RRM metric can be defined.
- the RRM metric of the 3GPP NR system cannot use RSRP, RSRQ, and RS-SINR of 3GPP LTE as it is in the 3GPP NR system. Since the DL NR-DRS resource includes a fixed DL resource, the UE can measure RSRP.
- the RSSI measurement method for measuring the RSRQ will be described.
- the time and frequency boundaries of the resources used for RSSI measurements are defined.
- a 3GPP NR system using several numerologies may define symbol boundaries according to the neuralology used by fixed DL resources.
- the measurement bandwidth defines a subcarrier boundary.
- subcarriers located at the boundary of the measurement bandwidth are utilized for the guard band.
- the energy received at these subcarriers may not be reflected in the value of RSSI.
- the SINR For RS-SINR measurement, the SINR must be measured at the same RE as the RE for RS. However, since this is a resource confined within a fixed DL resource, it is a value measured regardless of the traffic load.
- the energy measured in the RE and the energy measured in the symbol need to be distinguished.
- the UE removes a cyclic prefix (CP) from the received symbols and extracts a subcarrier having DL NR-DRS in the frequency domain. Thereafter, the terminal configures the sequence only with subcarriers having DL NR-DRS.
- the terminal performs coherent detection by comparing the configured sequence with a DL NR-DRS sequence already known to the terminal.
- the terminal does not need to perform coherent detection and measures energy received within a time boundary of the symbol. Since only a specific subcarrier is not processed separately, the UE may measure energy measured in a symbol in the time domain.
- a resource corresponding to a specific RE is removed from the RSSI measurement resource, separate processing is required. For example, a case in which an RE including a DL NR-DRS resource is excluded from the RSSI measurement resource may be considered.
- the terminal removes a cyclic prefix (CP) from the symbol and extracts a subcarrier having a DL NR-DRS in the frequency domain.
- the terminal calculates energy from the remaining subcarriers.
- CP cyclic prefix
- the unit for measuring RSSI in the RSSI measurement resource may be RE instead of a symbol, and the above-described method may be applied when RSSI is measured in RE unit.
- RSRQ applicable to 3GPP NR system may be defined as a function between RSRP and RSSI.
- RSRQ may be determined by the ratio between RSRP and RSSI / N.
- the value of N corresponds to the number of PRBs used by the UE for RSSI measurement.
- the RSRQ may be determined by the ratio between RSRP and (RSRP + RSSI / N).
- the 3GPP NR TDD reference systems 1, 2, and 3 may define multiple neurolologies, and the TS may allocate fixed DL resources for each neurolography. In this case, if the UE knows all of these fixed DL resources, the UE may perform RRM measurement by utilizing all of several fixed DL resources.
- the RSSI measurement method (method RSSI0-1, method RSSI0-2, method RSSI0-3, etc.) for 3GPP NR cells will be described.
- Method RSSI0-1 assumes that the UE does not know the corresponding subframe / slot type since the 3GPP NR TDD reference system 1 may operate in dynamic TDD.
- FIG. 7 is a diagram illustrating a method RSSI0-1, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 7 and RSSI measurement resources are illustrated in (b) of FIG. 7.
- Method RSSI0-1 assumes that method IND1 and method IND2 are not used.
- the RSRP may be measured in the RE for the DL NR-DRS among the REs belonging to the fixed DL resource.
- the RSSI may be measured in symbol (s) belonging to the resource A and the fixed DL resource. That is, the RSSI may be measured on a resource belonging to a symbol having a fixed DL resource and belonging to a measurement bandwidth.
- the energy collected by all UEs that can be known as a DL region is used for RSSI.
- the UE cannot accurately measure the DL traffic load of the NR cell. Since fixed DL resources transmit physical signals and physical channels that are essential for system operation rather than DL data, RSSI over-estimates the DL traffic load. In addition, since the UE measures RSRP and RSSI in different PRBs (eg, resource A), RSSI may experience a different frequency response from RSRP according to frequency selective fading, and RSRP and RSSI may be different from each other. May experience DL interference. On the other hand, RSSI used for 3GPP LTE RSRQ is a function of DL interference, and RSSI is independent of frequency selective fading because RSRP and RSSI are measured in the same band.
- RSSI0-1-1 is a diagram illustrating a method RSSI0-1-1, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 8, and RSSI measurement resources are illustrated in (b) of FIG. 8.
- Method RSSI0-1-1 for Method RSSI0-1 measures RSRP in an RE including a DL NR-DRS among REs belonging to a fixed DL resource, as illustrated in FIG.
- the method RSSI0-1-1 measures RSSI in a symbol belonging to resource A and a fixed DL resource, but on a subcarrier that does not include DL NR-DRS.
- RSSI may be measured in a symbol or may be measured in an RE. That is, RSSI refers to the remaining subcarriers other than the DL NR-DRS resource among the subcarriers belonging to a symbol having a fixed DL resource.
- the DL NR-DRS resource means a collection of DL NR-DRS resources transmitted by each of the 3GPP NR cells.
- a UE in an RRC idle state must detect a DL NR-DRS resource corresponding to a part of the entire set of DL NR-DRSs, and a UE in an RRC_CONNECTED state is a DL NR-DRS configured from a serving base station.
- a set of resources may be applied or some DL NR-DRS resources may be detected by themselves.
- the RSSI measured by the terminal may include all of the PDCCH, SIB, and PDSCH of the NR cell.
- This RSSI measurement method measures both the control channel load and the DL traffic load of the NR cell at the terminal. Since the control channel load of the NR cell includes DL scheduling assignment and UL scheduling grant, the UE can infer the amount of DL traffic and the amount of UL traffic. The accuracy of this guess is low. Since the beamforming of the PDCCH, the CCE aggregation level, and the beamforming of the PDSCH are different from each other, an interference condition is difficult to guess. The amount of UL traffic cannot be measured from the PUSCH and can be indirectly inferred from the amount of PDCCH.
- a resource having a neuron and a different one for the fixed DL resource may be allocated by the 3GPP NR cell.
- the RSSI measured at the resource A reflects not only the data load but also the control load.
- the control channel transmitted in this case is usually transmitted to the terminal in the RRC_CONNECTED state, the beam formation of the control channel and the beam formation of the data channel may not be significantly different.
- FIG. 9 is a diagram illustrating a method RSSI0-1-2, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in FIG. 9A, and RSSI measurement resources are illustrated in FIGS. 9B and 9C.
- Method RSSI0-1-2 for Method RSSI0-1 measures RSRP at a RE including DL NR-DRS among REs belonging to a fixed DL resource, and measures RSSI belonging to resource A, resource B, and fixed DL resource. Measure at the symbol.
- RSSI may be measured at the symbol level or may be measured at the RE level. If the RSSI is measured in the RE, the RSSI may be measured in the RE which does not include the DL NR-DRS.
- FIG. 9B illustrates a case where RSSI is measured in the entire symbol (eg, fixed DL resource, resource A, resource B).
- the RSSI is measured in an RE that does not include the DL NR-DRS (eg, other REs except the DL-NR DRS RE among the REs belonging to the fixed DL resource, resource A, and resource B). The case is illustrated.
- the terminal may measure the RSSI in the symbol including the fixed DL resource, regardless of the subframe / slot type.
- the method RSSI0-2 assumes that the 3GPP NR TDD reference system 1 operates in dynamic TDD and the UE can know the subframe / slot type through the method IND1.
- FIG. 10 is a diagram illustrating a method RSSI0-2, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in FIG. 10A, and RSSI measurement resources are illustrated in FIG. 10B.
- the terminal may distinguish a resource corresponding to the DL region from the resource C and the resource D.
- FIG. RSSI may be measured at the symbol level or may be measured at the RE level.
- the terminal measures RSRP using DL NR-DRS resources belonging to a fixed DL resource.
- the terminal may measure the RSSI in a DL region belonging to a measurement bandwidth. That is, the terminal can measure the RSSI in the fixed DL resource, resource A, resource C, and resource D.
- the RSSI measurement method can be simply implemented, but the control channel or DL NR-DRS resource included in the fixed DL resource does not properly reflect the traffic load.
- the 3GPP NR cell may allocate PDCCHs having different neurons from resource A, resource C, and resource D in order to deliver data scheduling assignment to the UE in an RRC_CONNECTED state. This is not a data load. However, since this corresponds to a physical channel allocated in proportion to the cell load, it may be reflected in the RSSI measurement.
- the frequency selectivity of the channel may affect the RSSI.
- an embodiment of the present invention may be applied.
- a resource corresponding to a DL region is extracted from the resource C and the resource D, and an embodiment of the present invention is applied to the extracted resource.
- FIG. 11 is a diagram illustrating a method RSSI0-2-1, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in FIG. 11A, and RSSI measurement resources are illustrated in FIG. 11B.
- Method RSSI0-2-1 for Method RSSI0-2 assumes that 3GPP NR TDD Reference System 1 operates in dynamic TDD and the UE knows a subframe / slot type through method IND1.
- the terminal may identify a resource corresponding to the DL region from the resource C.
- RSSI may be measured at the symbol level or may be measured at the RE level.
- the UE measures RSRP using DL NR-DRS resources belonging to a fixed DL resource.
- the terminal may measure the RSSI in the fixed DL resource and the resource C.
- FIG. 11 the terminal may measure the RSSI in the fixed DL resource and the resource C.
- the channel frequency selectivity for RSRP and RSSI is equally reflected in the calculation.
- an embodiment of the present invention may be applied.
- a resource corresponding to a DL region is extracted from the resource C, and an embodiment of the present invention may be applied to the extracted resource.
- FIG. 12 is a diagram illustrating a method RSSI0-2-2 for a method RSSI0-2, according to an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 12, and RSSI measurement resources are illustrated in (b) of FIG. 12.
- the UE may measure RSRP using DL NR-DRS resources.
- the UE may measure the RSSI on the remaining resources except the DL NR-DRS resources among the fixed DL resources.
- the UE can extract the DL region in the resource C using the method IND2, the extracted DL region is used for RSSI measurement. If the UE cannot detect the presence of a GP in resource C using the method IND2, resource C is not used for RSSI measurement.
- RSSI may be measured at the symbol level or may be measured at the RE level.
- the method IND2 in the case of the 3GPP NR terminal located at the boundary of coverage, since the detection probability of the GP is reduced, the amount of resources used for the RSSI is small. On the other hand, in the case of 3GPP NR terminals located in the cell center, the amount of resources used for RSSI is relatively larger. Thus, when the method IND2 is used, the position of the terminal affects the RSRQ measurement delay.
- Resources utilized for RSSI include at least fixed DL resources, but do not include DL NR-DRS resources.
- a UE in an RRC idle state must detect a DL NR-DRS resource corresponding to a part of the entire set of DL NR-DRSs, and a UE in an RRC_CONNECTED state is a DL NR-DRS configured from a serving base station.
- a set of resources may be applied or some DL NR-DRS resources may be detected by themselves.
- the RSSI measurement resource defined as above since the PDCCH is included in the fixed DL resource and the PDCCH is transmitted periodically, the DL data load is not accurately represented.
- the PDCCH transmitted is usually transmitted to a UE in an RRC_CONNECTED state
- beamforming of the PDCCH and beamforming of the PDSCH may not be significantly different. Therefore, when the DL data load is measured in the fixed DL resource, a physical channel and a physical signal having UE-specific beamforming may be included in the fixed DL resource.
- an embodiment of the present invention may be applied.
- a resource corresponding to a DL region is extracted from the resource C, and an embodiment of the present invention may be applied to the extracted resource.
- FIG. 13 is a diagram illustrating a method RSSI0-2-3, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 13 and RSSI measurement resources are illustrated in (b) of FIG. 13.
- Method RSSI0-2-3 for method RSSI0-2 is applicable when 3GPP NR TDD Reference System 1 operates with dynamic TDD and the NR cell uses method IND1 to explicitly know the subframe / slot type. .
- the UE measures RSRP using DL NR-DRS resources.
- the UE measures the RSSI in the DL region of the resource C.
- RSSI may be measured at the symbol level or may be measured at the RE level.
- the 3GPP NR cell uses more than one neuron, multiple N's are applied to resource C.
- the 3GPP NR cell may allocate a separate control channel for this to resource C. Therefore, when the UE measures the RSSI using the resource C, the control load and the data load are measured together. Since the PDCCH indicates the DL scheduling assignment or the UL scheduling grant to the UE in the RRC_CONNECTED state, beamforming of the PDCCH is performed not significantly different from beamforming of the PDSCH.
- the terminal may measure the DL load to some extent through the RSSI.
- an embodiment of the present invention may be applied.
- a resource corresponding to a DL region is extracted from the resource C, and an embodiment of the present invention may be applied to the extracted resource.
- the method RSSI0-3 corresponds to the case where the 3GPP NR TDD Reference System 1, the 3GPP NR TDD Reference System 2, and the 3GPP NR TDD Reference System 3 operate with dynamic TDD.
- the UE measures the RSRP using the DL NR-DRS resource (eg, FIG. 13A) and measures the RSSI at the resource C (eg, FIG. 13B).
- RSSI may be measured at the symbol level or may be measured at the RE level.
- the 3GPP NR cell may utilize resource C for any subframe / slot type.
- the terminal utilizes all symbols belonging to resource C and belonging to the measurement bandwidth as RSSI measurement resources.
- This method corresponds to a summation method that is independent (or equivalent) of the DL load and the UL load.
- the utilization method for the case in which the UE measures the UL load is as follows.
- the UE in the RRC idle (RRC_IDLE) When the UE in the RRC idle (RRC_IDLE) generates UL traffic corresponding to the URLLC service, the UL traffic load is reflected in the RRM measurement to associate with an NR cell having a low UL traffic load. In this case, control plane latency can be reduced.
- the proximity of the terminal affects the UL traffic load.
- a terminal performing RRM measurement acts as a victim and another terminal receiving UL scheduling grant and transmitting UL data acts as an attacker.
- RSSI is over-estimated even if the UL traffic load is small.
- the UL resource region is difficult to be SDM and must be TDM or FDM. In this case, the control plane delay for receiving the UL scheduling grant is large.
- the serving base station may set the RRM measurement for the inter-frequency (inter-frequency) to the terminal.
- the terminal does not have a sufficient number of receiver units (RxU)
- the serving base station sets the measurement gap (measurement gap) to the terminal
- the terminal uses the measurement gap RSRP, for a cell (or base station) belonging to the inter frequency RSRQ, or RSRP and RSRQ can be measured.
- Setting of the measurement gap includes the measurement gap length, the measurement gap repetition period, and the subframe offset (or slot offset) of the first subframe (or first slot) belonging to the measurement gap. It includes at least.
- the specific frequency and the specific base station measured by the terminal in the measurement gap are not set by the serving base station, but are selected by the terminal according to the implementation algorithm of the terminal.
- the serving base station should set an appropriate measurement gap in the terminal so that the terminal can achieve sufficient RRM measurement accuracy within a predetermined time.
- the serving base station sets a measurement gap in the terminal, and the terminal measures a signal and a physical channel belonging to a specific frequency within the measurement gap.
- a signal includes at least a main synchronous signal (PSS), a floater signal (SSS), an RRM signal (hereinafter 'RRS'), and a PBCH DM-RS, and may include a DL NR-DRS.
- this physical channel includes at least a broadcast channel (eg, PBCH).
- the serving base station treats the main synchronizer signal, the floater signal, and the broadcast channel as one transmission unit, and may transmit one or more transmission units in sequence over time.
- this transmission unit is referred to as SS burst in NR, and the maximum number of SS bursts is defined in the specification according to the frequency band in which the serving base station operates.
- the serving base station actually transmits fewer SS bursts than this maximum number, and the period in which the SS bursts are transmitted is defined in the specification.
- the period and slot offset in which the SS burst is transmitted may be transmitted by the serving base station.
- the period and slot offset at which the SS burst is transmitted may have a value selected by the serving base station from among values not defined in the standard as well as values defined by the standard.
- the serving base station and the neighboring base stations can transmit the SS burst in the slot belonging to the corresponding measurement gap. Since the terminal may not receive the SS burst in the measurement gap, the serving base station may set the measurement gap and the measurement frequency to the terminal. For example, the serving base station sets one or more measurement gaps to the terminal and sets each measurement gap to be associated with a specific frequency band. Therefore, the configuration information of the measurement gap not only includes the period and the slot offset of the measurement gap, but also includes at least a frequency resource to be measured by the terminal in the slot belonging to the measurement gap.
- the frequency resource may be represented by a relative index (eg, cell index, etc.) or may be represented by an absolute index (eg, frequency identification information, etc.).
- the frequency identification information may be an absolute radio-frequency channel number (ARFCN).
- the terminal performs the measurement in the slot and the measurement frequency belonging to the measurement gap.
- the physical quantity measured by the terminal may be RSRP, RSRQ, RS-SINR, or any combination thereof, depending on the setting of the serving base station.
- the terminal receives a common search space (CSS) of the PSTICH or the PDCCH from each base station, and recognizes the STI based on this.
- the UE derives a DL region using the STI and then measures the RSRQ.
- SCS common search space
- the base stations operate beam-centric at the measurement frequency to treat the main and floating signals as a unit (e.g., SS burst), and these units are transmitted to form a set of SS bursts. Is considered. It is assumed that the terminal can observe at least one or more periods of SS bursts within the measurement gap, and it is assumed that the base station applies the same preprocessing to signals belonging to one SS burst.
- the UE performs RRM measurement using RRS resources belonging to the SS burst and derives different RRM measurements for different preprocesses.
- the UE assumes that four different preprocesses exist and distinguishes RRS resources belonging to each SS burst from each other, and performs four RRM measurements.
- the terminal receiving the RSRP measurement may derive four RSRPs, and the terminal receiving the RSRQ measurement may derive four RSRQs.
- FIG. 14 illustrates NR-SIB transmission according to an embodiment of the present invention. Specifically, Fig. 14 illustrates the case where the method C2-2 is used.
- FI101 represents the period of NR-subframe / slot in which DL NR-DRS is transmitted.
- one or more DL NR-DRS resources are transmitted.
- One DL NR-DRS resource corresponds to a virtual sector of the base station.
- the period of the DL NR-DRS may use a value defined by the specification.
- FI102 represents a DL NR-DRS occlusion duration.
- the base station may transmit DL NR-DRS resources in a continuous and valid DL NR-subframe / slot.
- the DL NR-DRS Occasion Period is for expansion of DL coverage. Since the base station transmits the NR-PBCH based on the DL NR-DRS antenna port, the base station may transmit the corresponding DL NR-PBCH in the DL NR-DRS occasion period.
- the base station may set the value of the DL NR-DRS occasion interval to the terminal through higher layer signaling. When there is no separate signaling from the base station, the terminal estimates the value of the DL NR-DRS occasion period through blind detection.
- FI103 represents a frequency resource including a DL NR-DRS and an NR-PBCH.
- FI103 may be represented by an NR-RB index or a combination of a subband index and an NR-RB index.
- FI104-1 indicates the location of time resource of the UL NR-DRS resource.
- the terminal estimates FI104-1 from the NR-PBCH transmitted by virtual sector 1 of the base station.
- the time resource is a relative value based on the first NR subframe / slot belonging to the DL NR-DRS occasion period and may be defined as an NR subframe / slot offset or a symbol offset.
- the time resource is an absolute value of the NR subframe / slot to which the UL NR-DRS resource belongs, and may be defined as an NR subframe / slot index.
- the transmission time of the UL NR-DRS resource may be a symbol belonging to the same NR-subframe / slot as the transmission time of the DL NR-DRS resource.
- the location of the time resource corresponds to a symbol offset.
- UL NR-DRS resources may be set in separate NR-subframes / slots. In this case, the location of the time resource corresponds to the NR-subframe / slot offset.
- FI104-2 indicates a location of a time resource of a UL NR-DRS resource.
- the terminal estimates FI104-2 from the NR-PBCH transmitted by virtual sector 2 of the base station.
- FI104-2 has the same meaning as FI104-1.
- the base station transmits more than one virtual sector, several UL NR-DRS resources may be configured.
- FI105-1 indicates a location of frequency resources of UL NR-DRS resources.
- the terminal estimates FI105-1 from the NR-PBCH transmitted by the virtual sector 1 of the base station.
- FI105-1 may be represented by an NR-RB index or a combination of a subband index and an NR-RB index.
- FI105-2 indicates the position of a frequency resource of the UL NR-DRS resource.
- the terminal estimates FI105-2 from the NR-PBCH transmitted by the virtual sector 2 of the base station.
- FI105-2 has the same meaning as FI105-1.
- FI106 represents a radio resource including a DL NR-DRS and an NR-PBCH.
- FI107-1 represents a radio resource including the UL NR-DRS.
- the UL NR-DRS may be transmitted using FI107-1.
- FI107-2 represents a radio resource including the UL NR-DRS.
- the UL NR-DRS may be transmitted using FI107-2.
- FI108 represents a bandwidth to which DL NR-DRS resource and NR-PBCH are allocated. FI108 may use the value defined by the specification.
- FI109 represents a bandwidth to which an UL NR-DRS resource is allocated.
- the terminal uses FI109 as a value defined by the standard, or uses FI109 as a value set by the NR-PBCH transmitted by the base station.
- FI110 represents an amount of time resource to which an NR-PDCCH is allocated.
- the terminal uses FI110 as a value defined by the standard, or uses the FI110 as a value set by the NR-PBCH transmitted by the base station.
- NR-PDCCH may be defined by the number of symbols.
- the NR-PDCCH may be defined in units of NR-subframes / slots.
- FI111 represents a bandwidth to which an NR-PDCCH is allocated.
- the terminal uses FI111 as a value defined by the standard, or uses FI111 as a value set by the NR-PBCH transmitted by the base station.
- FI112-1 represents the frequency location of the NR-PDCCH resource transmitted by virtual sector 1 of the base station.
- the base station may set the frequency location of a separate NR-PDCCH resource for another virtual sector.
- the base station may set the same frequency position of the NR-PDCCH resource regardless of the virtual sector index.
- the frequency location of the NR-PDCCH resource may be defined by the standard.
- FI113-1 represents an NR-PDCCH resource transmitted by virtual sector 1 of the base station.
- FI114 represents a period in which the NR-PDCCH is transmitted.
- the NR-PDCCH appears every difference between the first symbols to which the NR-PDCCH is allocated.
- the NR-PDCCH is transmitted in units of NR-subframes / slots, the NR-PDCCHs appear every difference between the NR-subframes / slots.
- FIG. 15 illustrates a virtual sector of a base station according to an embodiment of the present invention.
- the cell of the base station may be virtually subdivided into multiple virtual sectors.
- four virtual sectors FI2-1, FI2-2, FI2-3, and FI2-4 are illustrated in FIG. 15.
- FIGS. 16A and 16B illustrate a procedure for a base station (or serving cell) to transmit an NR-SIB to a terminal according to an embodiment of the present invention.
- NR-DRSRP means RSRP based on NR-DRS.
- the procedures ST10-ST20 illustrated in FIGS. 16A and 16B can be applied when the method R2 and the method C1 (or the method C2) are used.
- the computing device TN100 of FIG. 17 may be a base station or a terminal described herein.
- the computing device TN100 of FIG. 17 may be a wireless device, a communication node, a transmitter, or a receiver.
- the computing device TN100 may include at least one processor TN110, a transceiver TN120 connected to a network to perform communication, and a memory TN130.
- the computing device TN100 may further include a storage device TN140, an input interface device TN150, an output interface device TN160, and the like. Components included in the computing device TN100 may be connected by a bus TN170 to communicate with each other.
- the processor TN110 may execute a program command stored in at least one of the memory TN130 and the storage device TN140.
- the processor TN110 may refer to a central processing unit (CPU), a graphics processing unit (GPU), or a dedicated processor on which methods according to an embodiment of the present invention are performed.
- Processor TN110 may be configured to implement the procedures, functions, and methods described in connection with embodiments of the present invention.
- the processor TN110 may control each component of the computing device TN100.
- Each of the memory TN130 and the storage device TN140 may store various information related to an operation of the processor TN110.
- Each of the memory TN130 and the storage device TN140 may be configured of at least one of a volatile storage medium and a nonvolatile storage medium.
- the memory TN130 may be configured as at least one of a read only memory (ROM) and a random access memory (RAM).
- the transceiver TN120 may transmit or receive a wired signal or a wireless signal.
- the computing device TN100 may have a single antenna or multiple antennas.
- the embodiment of the present invention is not implemented only through the apparatus and / or method described so far, but may be implemented through a program that realizes a function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded.
- Such implementations can be readily implemented by those skilled in the art from the description of the above-described embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A transmission method of a base station is provided. The base station sets a first resource for a physical downlink control channel (PDCCH). The base station includes setting information of the first resource in a first physical broadcast channel (PBCH). Then, the base station transmits the first PBCH.
Description
본 발명은 제어 채널을 위한 자원의 설정 정보를 전송하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for transmitting configuration information of a resource for a control channel.
또한 본 발명은 상향링크 DRS(discovery reference signal)를 위한 자원의 설정 정보를 전송하는 방법 및 장치에 관한 것이다.The present invention also relates to a method and apparatus for transmitting configuration information of a resource for an uplink discovery reference signal (DRS).
또한 본 발명은 서브프레임/슬롯의 타입을 지시하는 지시자를 전송하는 방법 및 장치에 관한 것이다. The present invention also relates to a method and apparatus for transmitting an indicator indicating a type of a subframe / slot.
또한 본 발명은 하향링크 심볼의 개수를 전송하는 방법 및 장치에 관한 것이다.The present invention also relates to a method and apparatus for transmitting the number of downlink symbols.
무선 통신 시스템은 규격에 따른 프레임 구조를 지원한다. 예를 들어, 3GPP(3rd generation partnership project) LTE(long term evolution) 시스템은 세 가지 타입의 프레임 구조를 지원한다. 세 가지 타입의 프레임 구조는, FDD(frequency division duplexing)에 적용 가능한 타입(type) 1 프레임 구조, TDD(time division duplexing)에 적용 가능한 타입 2 프레임 구조, 그리고 비면허 주파수 대역의 전송을 위한 타입 3 프레임 구조를 포함한다.The wireless communication system supports the frame structure according to the standard. For example, a 3rd generation partnership project (3GPP) long term evolution (LTE) system supports three types of frame structures. The three types of frame structures include a type 1 frame structure applicable to frequency division duplexing (FDD), a type 2 frame structure applicable to time division duplexing (TDD), and a type 3 frame for transmission of unlicensed frequency bands. Include a structure.
LTE 시스템과 같은 무선 통신 시스템에서, TTI(transmission time interval)는 부호화된 데이터 패킷이 물리 계층 신호를 통해 전송되는 기본 시간 단위를 의미한다. In a wireless communication system such as an LTE system, a transmission time interval (TTI) means a basic time unit in which an encoded data packet is transmitted through a physical layer signal.
LTE 시스템의 TTI는 하나의 서브프레임으로 구성된다. 즉, 자원 할당의 최소 단위인 PRB(physical resource block) 페어(pair)의 시간 축 길이는, 1ms이다. 1ms TTI 단위의 전송을 지원하기 위해, 물리 신호와 채널도 대부분 서브프레임 단위로 정의된다. 예를 들어, CRS(cell-specific reference signal)는 매 서브프레임에 고정적으로 전송되고, PDCCH(physical downlink control channel), PDSCH(physical downlink shared channel), PUCCH(physical uplink control channel), 및 PUSCH(physical uplink shared channel)는 서브프레임마다 전송될 수 있다. 반면에, PSS(primary synchronization signal)와 SSS(secondary synchronization signal)는 매 5번째 서브프레임마다 존재하고, PBCH(physical broadcast channel)는 매 10번째 서브프레임마다 존재한다. The TTI of the LTE system consists of one subframe. That is, the time axis length of the physical resource block (PRB) pair, which is the minimum unit of resource allocation, is 1 ms. In order to support transmission of 1 ms TTI, physical signals and channels are also mostly defined in subframe units. For example, a cell-specific reference signal (CRS) is fixedly transmitted in every subframe, a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), a physical uplink control channel (PUCCH), and a PUSCH (physical) uplink shared channel) may be transmitted for each subframe. On the other hand, the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) exist in every fifth subframe, and the physical broadcast channel (PBCH) exists in every tenth subframe.
한편, 차세대 통신 시스템을 위한 연구가 진행되고 있다. 차세대 통신 시스템을 위한 송수신 방법이 필요하다.On the other hand, research for the next generation communication system is in progress. There is a need for a transmission and reception method for a next generation communication system.
본 발명이 해결하고자 하는 과제는, 제어 채널 자원의 설정 정보를 전송하는 방법 및 장치를 제공하는 것이다.An object of the present invention is to provide a method and apparatus for transmitting configuration information of a control channel resource.
또한 본 발명이 해결하고자 하는 과제는, UL DRS 자원의 설정 정보를 전송하는 방법 및 장치를 제공하는 것이다.Another object of the present invention is to provide a method and apparatus for transmitting configuration information of a UL DRS resource.
또한 본 발명이 해결하고자 하는 과제는, 서브프레임/슬롯의 타입을 지시하는 지시자를 전송하는 방법 및 장치를 제공하는 것이다. Another object of the present invention is to provide a method and apparatus for transmitting an indicator indicating a type of a subframe / slot.
또한 본 발명이 해결하고자 하는 과제는, DL 심볼의 개수를 전송하는 방법 및 장치를 제공하는 것이다.Another object of the present invention is to provide a method and apparatus for transmitting the number of DL symbols.
본 발명의 실시예에 따르면, 기지국의 전송 방법이 제공된다. 상기 기지국의 전송 방법은, PDCCH(physical downlink control channel)를 위한 제1 자원을 설정하는 단계; 상기 제1 자원의 설정 정보를 제1 PBCH(physical broadcast channel)에 포함시키는 단계; 및 상기 제1 PBCH를 전송하는 단계를 포함한다.According to an embodiment of the present invention, a transmission method of a base station is provided. The transmission method of the base station includes: setting a first resource for a physical downlink control channel (PDCCH); Including the configuration information of the first resource in a first physical broadcast channel (PBCH); And transmitting the first PBCH.
상기 제1 자원의 설정 정보는, 상기 제1 자원이 시작되는 RB(resource block)의 인덱스와 상기 PDCCH에 의해 차지되는 대역폭을 포함할 수 있다.The configuration information of the first resource may include an index of a resource block (RB) where the first resource starts and a bandwidth occupied by the PDCCH.
상기 기지국의 전송 방법은, 단말에 의해 전송되는 상향링크(UL: uplink) DRS(discovery reference signal)를 위한 제2 자원을 설정하는 단계; 및 상기 제2 자원의 설정 정보를 상기 제1 PBCH에 포함시키는 단계를 더 포함할 수 있다.The transmission method of the base station includes: setting a second resource for an uplink (UL) discovery reference signal (UL) transmitted by a terminal; And including the configuration information of the second resource in the first PBCH.
상기 제2 자원을 설정하는 단계는, 상기 기지국에 의해 사용되는 가상 섹터들의 개수와 동일한 개수로, 상기 제2 자원을 설정하는 단계를 포함할 수 있다.The setting of the second resource may include setting the second resource to the same number as the number of virtual sectors used by the base station.
상기 제2 자원의 설정 정보를 상기 제1 PBCH에 포함시키는 단계는, 상기 제1 PBCH이 셀 특정(cell-specific)하게 전송되는 경우에, 상기 기지국에 의해 사용되는 가상 섹터들의 개수에 대응하는 비트 폭(bit width)을 가지는 하나의 제1 PBCH을 생성하는 단계; 및 상기 제1 PBCH이 가상 섹터 특정(virtual sector-specific)하게 전송되는 경우에, 상기 가상 섹터들을 위한 다수의 제1 PBCH들을 생성하는 단계를 포함할 수 있다.Including the configuration information of the second resource in the first PBCH, the bit corresponding to the number of virtual sectors used by the base station when the first PBCH is transmitted cell-specific (cell-specific) Generating a first PBCH having a bit width; And generating the plurality of first PBCHs for the virtual sectors when the first PBCH is transmitted virtually sector-specific.
상기 제1 PBCH를 전송하는 단계는, 상기 제1 PBCH, 제1 PSS(primary synchronization signal), 및 제1 SSS(secondary synchronization signal)를 포함하는 제1 SS(synchronization signal) 버스트(burst)를 전송하는 단계; 및 상기 제1 PBCH의 RV(redundancy version)와 동일한 RV를 가지는 제2 PBCH, 제2 PSS, 및 제2 SSS를 포함하는 제2 SS 버스트를 전송하는 단계를 포함할 수 있다.The transmitting of the first PBCH may include transmitting a first synchronization signal (SS) burst including the first PBCH, a first primary synchronization signal (PSS), and a first secondary synchronization signal (SSS). step; And transmitting a second SS burst including a second PBCH, a second PSS, and a second SSS having the same RV as the redundancy version (RV) of the first PBCH.
상기 제1 PBCH를 전송하는 단계는, 상기 제1 PBCH, 제1 PSS(primary synchronization signal), 및 제1 SSS(secondary synchronization signal)를 포함하는 제1 SS(synchronization signal) 버스트(burst)를 전송하는 단계; 및 상기 제1 PBCH의 RV(redundancy version)와 다른 RV를 가지는 제2 PBCH, 제2 PSS, 및 제2 SSS를 포함하는 제2 SS 버스트를 전송하는 단계를 포함할 수 있다.The transmitting of the first PBCH may include transmitting a first synchronization signal (SS) burst including the first PBCH, a first primary synchronization signal (PSS), and a first secondary synchronization signal (SSS). step; And transmitting a second SS burst including a second PBCH, a second PSS, and a second SSS having an RV different from the redundancy version (RV) of the first PBCH.
상기 제1 PBCH를 위한 스크램블링(scrambling) 자원은, 상기 제2 PBCH를 위한 스크램블링 자원과 다를 수 있다.The scrambling resource for the first PBCH may be different from the scrambling resource for the second PBCH.
상기 제1 PBCH를 위한 CRC(cyclic redundancy check) 마스크는, 상기 제2 PBCH를 위한 CRC 마스크와 다를 수 있다.The cyclic redundancy check (CRC) mask for the first PBCH may be different from the CRC mask for the second PBCH.
또한 본 발명의 다른 실시예에 따르면, 기지국의 전송 방법이 제공된다. 상기 기지국의 전송 방법은, 슬롯의 타입을 지시하는 제1 지시자를 생성하는 단계; 상기 제1 지시자를 PDCCH(physical downlink control channel)에 포함시키는 단계; 및 상기 PDCCH를 고정된 DL(downlink) 자원을 통해, 단말에게 전송하는 단계를 포함한다.In addition, according to another embodiment of the present invention, a transmission method of a base station is provided. The transmission method of the base station includes: generating a first indicator indicating a type of a slot; Including the first indicator in a physical downlink control channel (PDCCH); And transmitting the PDCCH to a terminal through a fixed downlink (DL) resource.
상기 제1 지시자는 상기 슬롯이 DL 슬롯인지, DL-중심적(centric) 슬롯인지, UL 슬롯인지, UL(uplink)-중심적 슬롯인지를 나타낼 수 있다.The first indicator may indicate whether the slot is a DL slot, a DL-centric slot, an UL slot, or an uplink (UL) -centric slot.
상기 슬롯이 상기 DL 슬롯인 경우에, 상기 슬롯에는 UL 영역(region)이 존재하지 않을 수 있다.In the case where the slot is the DL slot, there may be no UL region in the slot.
상기 슬롯이 상기 UL 슬롯인 경우에, 상기 슬롯에는 DL 영역이 존재하지 않을 수 있다.When the slot is the UL slot, there may be no DL region in the slot.
상기 슬롯이 상기 DL-중심적 슬롯인 경우에, 상기 슬롯의 DL 영역이 상기 슬롯의 UL 영역 보다 더 클 수 있다.If the slot is the DL-centric slot, the DL area of the slot may be larger than the UL area of the slot.
상기 슬롯이 상기 UL-중심적 슬롯인 경우에, 상기 슬롯의 UL 영역이 상기 슬롯의 DL 영역 보다 더 클 수 있다.If the slot is the UL-centric slot, then the UL area of the slot may be larger than the DL area of the slot.
상기 PDCCH를 전송하는 단계는, 상기 고정된 DL 자원에 속하는 REG(resource element group)들 중에서 상기 기지국의 식별 정보에 대응하는 하나 이상의 제1 REG를 이용해, 상기 제1 지시자를 전송하는 단계를 포함할 수 있다.The transmitting of the PDCCH may include transmitting the first indicator by using one or more first REGs corresponding to identification information of the base station among resource element groups (REGs) belonging to the fixed DL resource. Can be.
상기 기지국의 전송 방법은, 상기 PDCCH와 다른 PDCCH 후보(candidate)를, 상기 REG들 중에서 상기 하나 이상의 제1 REG를 제외한 나머지 REG들에 맵핑하는 단계를 더 포함할 수 있다.The transmission method of the base station may further include mapping a PDCCH candidate different from the PDCCH to remaining REGs other than the one or more first REGs among the REGs.
상기 하나 이상의 제1 REG를 이용해 상기 제1 지시자를 전송하는 단계는, 상기 슬롯에 속하는 시간 도메인 심볼들 중에서 가장 앞에 있는 시간 도메인 심볼에 상기 하나 이상의 제1 REG를 위치시키는 단계를 포함할 수 있다.The transmitting of the first indicator by using the one or more first REGs may include placing the one or more first REGs in a time domain symbol that is at the earliest of time domain symbols belonging to the slot.
상기 하나 이상의 제1 REG를 이용해 상기 제1 지시자를 전송하는 단계는, 상기 하나 이상의 제1 REG를 다수의 주파수에 맵핑하는 단계를 포함할 수 있다.The transmitting of the first indicator using the one or more first REGs may include mapping the one or more first REGs to a plurality of frequencies.
또한 본 발명의 또 다른 실시예에 따르면, 기지국의 전송 방법이 제공된다. 상기 기지국의 전송 방법은, 슬롯에 속하는 시간 도메인 심볼들 중에서 하향링크(DL: downlink)를 위한 시간 도메인 심볼들의 개수를 결정하는 단계; 상기 슬롯의 타입을 결정하는 단계; 및 상기 결정된 개수와 상기 결정된 타입을 포함하는 제1 채널을, 제어 채널을 위한 공통 탐색 공간(common search space)을 통해 전송하는 단계를 포함한다.In addition, according to another embodiment of the present invention, a transmission method of a base station is provided. The transmission method of the base station includes: determining a number of time domain symbols for downlink (DL) among time domain symbols belonging to a slot; Determining a type of the slot; And transmitting a first channel including the determined number and the determined type through a common search space for a control channel.
상기 제1 채널은, 상기 기지국에 RRC(radio resource control) 연결되어 있지 않은 단말에 의해서도 복호 가능할 수 있다.The first channel may be decoded even by a terminal that is not connected to the radio resource control (RRC).
상기 제1 채널을 전송하는 단계는, 상기 제어 채널을 위한 자원에 속하는 REG(resource element group)들 중에서 상기 결정된 타입을 지시하는 제1 지시자를 전송하기 위한 하나 이상의 제1 REG를, 상기 DL을 위한 시간 도메인 심볼들 중에서 가장 앞에 있는 시간 도메인 심볼에 위치시키는 단계를 포함할 수 있다.The transmitting of the first channel may include one or more first REGs for transmitting a first indicator indicating the determined type among resource element groups (REGs) belonging to a resource for the control channel. And positioning the time domain symbol at the earliest of the time domain symbols.
상기 제1 채널을 전송하는 단계는, 상기 제어 채널을 위한 자원에 속하는 REG(resource element group)들 중에서 상기 결정된 타입을 지시하는 제1 지시자를 전송하기 위한 하나 이상의 제1 REG를, 다수의 주파수에 맵핑하는 단계를 포함할 수 있다.The transmitting of the first channel may include transmitting one or more first REGs for transmitting a first indicator indicating the determined type from among resource element groups (REGs) belonging to a resource for the control channel, to a plurality of frequencies. Mapping may include.
상기 DL을 위한 시간 도메인 심볼들은, RRM(radio resource management) 측정 또는 CSI(channel state information) 측정을 위해 사용될 수 있다.The time domain symbols for the DL may be used for radio resource management (RRM) measurement or channel state information (CSI) measurement.
본 발명의 실시예에 따르면, 제어 채널 자원의 설정 정보를 전송하는 방법 및 장치가 제공될 수 있다.According to an embodiment of the present invention, a method and apparatus for transmitting configuration information of a control channel resource may be provided.
또한 본 발명의 실시예에 따르면, UL DRS 자원의 설정 정보를 전송하는 방법 및 장치가 제공될 수 있다.In addition, according to an embodiment of the present invention, a method and apparatus for transmitting configuration information of a UL DRS resource may be provided.
또한 본 발명의 실시예에 따르면, 서브프레임/슬롯의 타입을 지시하는 지시자를 전송하는 방법 및 장치가 제공될 수 있다.In addition, according to an embodiment of the present invention, a method and apparatus for transmitting an indicator indicating a type of a subframe / slot may be provided.
또한 본 발명의 실시예에 따르면, DL 심볼의 개수를 전송하는 방법 및 장치가 제공될 수 있다. In addition, according to an embodiment of the present invention, a method and apparatus for transmitting the number of DL symbols may be provided.
또한 본 발명의 실시예에 따르면, 시스템 정보를 송수신하는 방법 및 장치가 제공될 수 있다.In addition, according to an embodiment of the present invention, a method and apparatus for transmitting and receiving system information may be provided.
또한 본 발명의 실시예에 따르면, RRM(radio resource management) 측정 방법 및 장치가 제공될 수 있다.In addition, according to an embodiment of the present invention, a method and apparatus for measuring RRM (radio resource management) may be provided.
도 1은 본 발명의 실시예에 따른, 3GPP NR TDD의 경우에 RRM 측정에 적용될 수 있는 서브프레임/슬롯 타입을 나타내는 도면이다.1 is a diagram illustrating a subframe / slot type applicable to RRM measurement in the case of 3GPP NR TDD according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른, DL 영역(region)과 UL 영역(region)이 모두 할당되는 특별 서브프레임/슬롯으로 3GPP NR TDD를 구성한 경우를 나타내는 도면이다.2 is a diagram illustrating a case where a 3GPP NR TDD is configured with a special subframe / slot in which both a DL region and a UL region are allocated according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른, RRM 측정을 위해 사용되는 서브프레임/슬롯이 단말 특정(예, UE-specific)하게 설정되는 경우를 나타내는 도면이다.3 is a diagram illustrating a case in which a subframe / slot used for RRM measurement is configured to be UE-specific (eg, UE-specific) according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따른, 단말에 의해 수행되는 RRM 측정에 관한 시나리오를 나타내는 도면이다. 4 is a diagram illustrating a scenario regarding RRM measurement performed by a terminal according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른, DL NR-DRS 자원의 RE 맵핑을 나타내는 도면이다.5 is a diagram illustrating RE mapping of DL NR-DRS resources according to an embodiment of the present invention.
도 6은 3GPP NR 레퍼런스 시스템이 하나의 서브프레임/슬롯에서 가지는 자원을 나타내는 도면이다.6 is a diagram illustrating resources that a 3GPP NR reference system has in one subframe / slot.
도 7은 본 발명의 실시예에 따른, 방법 RSSI0-1을 나타내는 도면이다.7 is a diagram illustrating a method RSSI0-1, in accordance with an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른, 방법 RSSI0-1-1을 나타내는 도면이다.8 is a diagram illustrating a method RSSI0-1-1, in accordance with an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른, 방법 RSSI0-1-2을 나타내는 도면이다.9 is a diagram illustrating a method RSSI0-1-2, in accordance with an embodiment of the present invention.
도 10은 본 발명의 실시예에 따른, 방법 RSSI0-2를 나타내는 도면이다.10 is a diagram illustrating a method RSSI0-2, in accordance with an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른, 방법 RSSI0-2-1을 나타내는 도면이다.11 is a diagram illustrating a method RSSI0-2-1, in accordance with an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른, 방법 RSSI0-2를 위한 방법 RSSI0-2-2을 나타내는 도면이다.12 is a diagram illustrating a method RSSI0-2-2 for a method RSSI0-2, according to an embodiment of the present invention.
도 13은 본 발명의 실시예에 따른, 방법 RSSI0-2-3을 나타내는 도면이다.13 is a diagram illustrating a method RSSI0-2-3, in accordance with an embodiment of the present invention.
도 14는 본 발명의 실시예에 따른, NR-SIB 전송을 나타내는 도면이다.14 illustrates NR-SIB transmission according to an embodiment of the present invention.
도 15는 본 발명의 실시예에 따른, 기지국의 가상 섹터를 나타내는 도면이다.15 illustrates a virtual sector of a base station according to an embodiment of the present invention.
도 16a 및 도 16b는 본 발명의 실시예에 따른, 기지국이 단말에게 NR-SIB를 전송하기 위한 절차를 나타내는 도면이다.16A and 16B illustrate a procedure for transmitting an NR-SIB to a terminal by a base station according to an embodiment of the present invention.
도 17은 본 발명의 실시예에 따른, 컴퓨팅 장치를 나타내는 도면이다.17 illustrates a computing device, in accordance with an embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
본 명세서에서, 동일한 구성요소에 대해서 중복된 설명은 생략한다.In this specification, duplicate descriptions of the same components are omitted.
또한 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '직접 연결되어' 있다거나 '직접 접속되어' 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.Also, in the present specification, when a component is referred to as being 'connected' or 'connected' to another component, the component may be directly connected to or connected to the other component, but in between It will be understood that may exist. On the other hand, in the present specification, when a component is referred to as 'directly connected' or 'directly connected' to another component, it should be understood that there is no other component in between.
또한, 본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용되는 것으로써, 본 발명을 한정하려는 의도로 사용되는 것이 아니다. Also, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
또한 본 명세서에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. Also, in this specification, the singular forms may include the plural forms unless the context clearly indicates otherwise.
또한 본 명세서에서, '포함하다' 또는 '가지다' 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것이 존재함을 지정하려는 것일 뿐, 하나 또는 그 이상의 다른 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 할 것이다.Also, as used herein, the term 'comprises' or 'having' is only intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more. It is to be understood that it does not exclude in advance the possibility of the presence or addition of other features, numbers, steps, actions, components, parts or combinations thereof.
또한 본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.Also in this specification, the term 'and / or' includes any combination of the plurality of listed items or any of the plurality of listed items. In the present specification, 'A or B' may include 'A', 'B', or 'both A and B'.
또한 본 명세서에서, 단말(terminal)은, 이동 단말(mobile terminal), 이동국(mobile station), 진보된 이동국(advanced mobile station), 고신뢰성 이동국(high reliability mobile station), 가입자국(subscriber station), 휴대 가입자국(portable subscriber station), 접근 단말(access terminal), 사용자 장비(UE: user equipment), 기계형 통신 장비(MTC: machine type communication device) 등을 지칭할 수도 있고, 이동 단말, 이동국, 진보된 이동국, 고신뢰성 이동국, 가입자국, 휴대 가입자국, 접근 단말, 사용자 장비, MTC 등의 전부 또는 일부의 기능을 포함할 수도 있다.Further, in the present specification, a terminal includes a mobile terminal, a mobile station, an advanced mobile station, a high reliability mobile station, a subscriber station, It may also refer to a portable subscriber station, an access terminal, a user equipment (UE), a machine type communication device (MTC), or the like. May include all or part of the functionality of a mobile station, a high-reliability mobile station, a subscriber station, a portable subscriber station, an access terminal, user equipment, MTC, and the like.
또한 본 명세서에서, 기지국(BS: base station)은, 진보된 기지국(advanced base station), 고신뢰성 기지국(HR-BS: high reliability base station), 노드B(NB: node B), 고도화 노드B(eNB: evolved node B), NR(new radio) 노드B(gNB), 접근점(access point), 라디오 접근국(radio access station), 송수신 기지국(base transceiver station), MMR(mobile multihop relay)-BS, 기지국 역할을 수행하는 중계기(relay station), 기지국 역할을 수행하는 고신뢰성 중계기(high reliability relay station), 리피터, 매크로 기지국, 소형 기지국, 펨토 기지국, 홈 노드B(HNB: home node B), 홈 eNB(HeNB), 피코 기지국(pico BS), 마이크로 기지국(micro BS) 등을 지칭할 수도 있고, 진보된 기지국, HR-BS, 노드B, eNB, gNB, 접근점, 무선 접근국, 송수신 기지국, MMR-BS, 중계기, 고신뢰성 중계기, 리피터, 매크로 기지국, 소형 기지국, 펨토 기지국, HNB, HeNB, 피코 기지국, 마이크로 기지국 등의 전부 또는 일부의 기능을 포함할 수도 있다.In addition, in the present specification, a base station (BS) includes an advanced base station (BS), a high reliability base station (HR-BS), a node B (NB), and an advanced node B ( eNB: evolved node B), new radio node B (gNB), access point, radio access station, base transceiver station, mobile multihop relay (MSR) -BS , A relay station serving as a base station, a high reliability relay station serving as a base station, a repeater, a macro base station, a small base station, a femto base station, a home node B (HNB), a home Also referred to as eNB (HeNB), pico base station (pico BS), micro base station (micro BS) and the like, advanced base station, HR-BS, Node B, eNB, gNB, access point, radio access station, transmit and receive base station, MMR-BS, repeater, high reliability repeater, repeater, macro base station, small base station, femto base station, HNB, HeNB, pico base station, mi A it may include all or some of the features of such a base station.
이하에서는, 이동통신 시스템에서 시스템 정보를 송수신하는 방법에 대하여 설명한다. 그리고 NR(new radio) 시스템의 초기 셀 탐색(initial cell search)을 위한 방법에 대하여 설명한다. 그리고 RRM(radio resource management)을 측정하는 방법에 대하여 설명한다. 그리고 NR-PDCCH 자원을 NR-PBCH(physical broadcast channel)에 포함시키는 방법에 대하여 설명한다. 그리고 UL(uplink) NR-DRS(discovery reference signal) 자원을 NR-PBCH에 포함시키는 방법에 대하여 설명한다. 그리고 NR-PBCH의 RV(redundancy version)를 특정 조합에 기초해 전송하는 방법에 대하여 설명한다. 그리고 서브프레임/슬롯 타입을 지시(indicate)하는 방법에 대하여 설명한다. 본 명세서에서, 서브프레임/슬롯은 서브프레임 또는 슬롯을 의미한다. 또한 본 명세서에서, 슬롯은 슬롯이나 서브프레임을 의미할 수도 있다. 그리고 PSTICH(physical subframe/slot type indicator channel)를 설계하는 방법에 대하여 설명한다. 그리고 RSSI(received signal strength indicator)를 측정하는 방법에 대하여 설명한다. 그리고 RSSI 측정 자원의 영역에 대하여 설명한다. 본 명세서에서, NR-PDCCH는 PDCCH로 표현될 수도 있고, NR-DRS는 DRS로 표현될 수도 있고, NR-PBCH는 PBCH로 표현될 수도 있고, NR-PHICH는 PHICH로 표현될 수도 있다.Hereinafter, a method of transmitting and receiving system information in a mobile communication system will be described. A method for initial cell search of a new radio (NR) system will now be described. Next, a method of measuring RRM (radio resource management) will be described. Next, a method of including an NR-PDCCH resource in a physical broadcast channel (NR-PBCH) will be described. A method of including uplink (UL) discovery reference signal (NR-DRS) resources in the NR-PBCH will be described. Next, a method of transmitting the redundancy version (RV) of the NR-PBCH based on a specific combination will be described. A method of indicating a subframe / slot type will be described. In this specification, a subframe / slot means a subframe or a slot. In addition, in the present specification, a slot may mean a slot or a subframe. A method of designing a physical subframe / slot type indicator channel (PSTICH) will be described. And it describes how to measure the received signal strength indicator (RSSI). Next, an area of the RSSI measurement resource will be described. In the present specification, NR-PDCCH may be represented by PDCCH, NR-DRS may be represented by DRS, NR-PBCH may be represented by PBCH, and NR-PHICH may be represented by PHICH.
무선 통신 시스템에서는, 셀이 주기적으로 RS(reference signal)를 전송하고, 단말은 RS를 수신한다. 단말은 수신한 RS로부터 셀의 존재를 탐지하고, 셀에서 단말로 형성된 무선 링크의 품질을 판단한다. 무선 링크의 품질에는 응용의 목적에 따라 여러 방법이 적용될 수 있다. TS(technical specification) 36.213에서 정의되는 단말 측정(measurement)은 CSI(channel state information) 측정을 포함한다. TS 36.214에서 정의되는 단말 측정은 RSRP(reference signal received power), RSRQ(reference signal received quality), RSSI(received signal strength indicator), 및 RS-SINR(signal to interference plus noise ratio)를 포함한다.In a wireless communication system, a cell periodically transmits a reference signal (RS), and the terminal receives the RS. The terminal detects the presence of the cell from the received RS, and determines the quality of the radio link formed from the cell to the terminal. Various methods can be applied to the quality of a radio link depending on the purpose of the application. The terminal measurement defined in technical specification 36.213 includes channel state information (CSI) measurement. The terminal measurement defined in TS 36.214 includes a reference signal received power (RSRP), a reference signal received quality (RSRQ), a received signal strength indicator (RSSI), and a signal to interference plus noise ratio (RS-SINR).
CSI 측정은 기지국에 RRC(radio resource control) 연결되어 있는 단말(예, RRC_CONNECTED UE)에 의해 수행된다. CSI 레퍼런스 자원(reference resource)에서 PDSCH(physical downlink shared channel)가 전송되는 경우에 BLER(block error rate)이 10% 에 해당하도록, CSI 보고(report)가 생성된다. CSI measurement is performed by a terminal (eg, RRC_CONNECTED UE) that is connected to a radio resource control (RRC). When a physical downlink shared channel (PDSCH) is transmitted in a CSI reference resource, a CSI report is generated such that a block error rate (BLER) corresponds to 10%.
서빙 셀(또는 서빙 셀 기지국)에 의해 설정된 TM(transmission mode)에 대응하는 RS가 다르다. 예를 들어, TM 5의 경우에 RS는 CRS(cell-specific reference signal)이며, TM 10의 경우에 RS는 CSI-RS 이다. 이에 따라, PMI(precoding matrix indicator), RI(rank indicator), CQI(channel quality indicator), 또는 CRI(CSI-RS resource indicator)가 도출된다. 본 명세서에서, 셀은 셀을 제공 또는 서비스하는 기지국을 의미할 수 있다.The RS corresponding to the transmission mode (TM) set by the serving cell (or serving cell base station) is different. For example, in the case of TM 5, RS is a cell-specific reference signal (CRS), and in the case of TM 10, RS is CSI-RS. Accordingly, a precoding matrix indicator (PMI), a rank indicator (RI), a channel quality indicator (CQI), or a CSI-RS resource indicator (CRI) is derived. In the present specification, a cell may mean a base station that provides or services a cell.
RSRP 측정은 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)과 기지국에 RRC 연결되어 있지 않은 단말(예, RRC_IDLE UE)에 의해 수행된다. 이를 위해, CRS 안테나 포트(port) 0 이 사용되고, CRS 안테나 포트 0 과 CRS 안테나 포트 1 도 사용될 수 있다. 단말은 CRS 를 구성하는 시퀀스(수열)을 이미 알고 있고, CRS 를 포함하는 심볼의 시간 도메인 경계를 이미 알고 있으므로, CRS 를 포함하는 RE에서 적절한 수신 알고리즘을 통해 RSRP를 측정한다. 본 명세서에서, 시간 도메인 심볼은 OFDM(orthogonal frequency division multiplexing) 심볼, 또는 SC(single carrier)-FDMA(frequency division multiple access) 심볼 등일 수 있다. 다만, 이는 예시일 뿐이며, 시간 도메인 심볼이 OFDM 심볼이나 SC-FDMA 심볼과 다른 심볼인 경우에도 본 발명은 적용될 수 있다. 본 명세서에서, 시간 도메인 심볼은 심볼로 표현될 수 있다. 단말이 활용하는 부반송파(subcarrier)의 개수는, 서빙 셀에 의해 허용된 측정 대역폭(예, AllowedMeasBandwidth)을 따른다. 단말은 RSRP 측정을 위해, 서빙 셀에 의해 설정된 측정 서브프레임 패턴(예, MeasSubframePattern)이 허용하는 서브프레임/슬롯만을 활용한다. 단말은 RSRP 측정을 위해, DMTC(discovery reference signal measurement timing configuration)에 속하는 서브프레임/슬롯 만을 활용한다. RSRP의 단위는 dBm 이며, TS 에서 정의된 자연수로 변환되어 표현된다. RSRP measurement is performed by a terminal (eg, RRC_CONNECTED UE) that is RRC connected to the base station and a terminal (eg, RRC_IDLE UE) that is not RRC connected to the base station. To this end, CRS antenna port 0 may be used, and CRS antenna port 0 and CRS antenna port 1 may also be used. Since the UE already knows the sequence (sequence) constituting the CRS and already knows the time domain boundary of the symbol including the CRS, the UE measures the RSRP through an appropriate reception algorithm in the RE including the CRS. In this specification, the time domain symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, a single carrier (SC) -frequency division multiple access (FDMA) symbol, or the like. However, this is only an example, and the present invention may be applied to a case where the time domain symbol is a symbol different from an OFDM symbol or an SC-FDMA symbol. In the present specification, a time domain symbol may be represented by a symbol. The number of subcarriers used by the UE depends on the measurement bandwidth (eg, AllowedMeasBandwidth) allowed by the serving cell. The UE utilizes only subframes / slots allowed by the measurement subframe pattern (eg, MeasSubframePattern) set by the serving cell for RSRP measurement. The UE utilizes only subframes / slots belonging to discovery reference signal measurement timing configuration (DMTC) for RSRP measurement. The unit of RSRP is dBm, which is converted into a natural number defined in TS and expressed.
RSRQ 측정은 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)과 기지국에 RRC 연결되어 있지 않은 단말(예, RRC_IDLE UE)에 의해 수행된다. RSRQ는 RSRP 와 RSSI 간의 비율로 정의된다. RSSI 측정은 CRS 안테나 포트 0을 포함하는 OFDM 심볼에서 수행되거나, 서빙 셀에 의한 별도의 설정이 있는 경우에 모든 OFDM 심볼이 RSSI 축정을 위해 활용된다. RSRP 측정을 위해 활용된 PRB(physical resource block)에 속하는 부반송파 만이, RSSI 측정을 위해 활용된다. 단말이 RSSI 측정을 위해 활용하는 서브프레임/슬롯은, RSRP 측정을 위해 활용된 서브프레임/슬롯에 해당한다. RSRQ 의 단위는 dB 이며, TS 에서 정의된 정수로 변환되어 표현된다.RSRQ measurement is performed by a terminal (eg, RRC_CONNECTED UE) that is RRC-connected to the base station and a terminal (eg, RRC_IDLE UE) that is not RRC-connected to the base station. RSRQ is defined as the ratio between RSRP and RSSI. RSSI measurement is performed on the OFDM symbol including the CRS antenna port 0, or if there is a separate configuration by the serving cell, all OFDM symbols are utilized for RSSI calculation. Only subcarriers belonging to the physical resource block (PRB) used for RSRP measurement are used for RSSI measurement. The subframe / slot used by the UE for RSSI measurement corresponds to the subframe / slot utilized for RSRP measurement. The unit of RSRQ is dB, and is converted into an integer defined in TS and expressed.
단말이 RSSI를 별도로 측정하는 경우에는, 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)이 이를 수행하며, RMTC(RSSI measurement timing configuration)에 의해 설정된 서브프레임/슬롯 에서만 RSSI를 측정한다. RSSI 측정을 위해 활용되는 OFDM 심볼의 개수는, RMTC 에 의해 설정될 수 있다. RSSI 측정 타이밍은 서빙 셀의 DL(downlink) 타이밍을 사용한다. RSSI 의 단위는 dBm 이며, TS 에서 정의된 자연수로 변환되어 표현된다.When the terminal separately measures the RSSI, the terminal (eg, RRC_CONNECTED UE) connected to the base station performs the RRC_CONNECTED UE, and measures the RSSI only in the subframe / slot configured by the RSSI (RSSI measurement timing configuration). The number of OFDM symbols utilized for RSSI measurement may be set by the RMTC. RSSI measurement timing uses downlink (DL) timing of the serving cell. The unit of RSSI is dBm, which is converted into a natural number defined in TS and expressed.
RS-SINR 측정은 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)에 의해 수행되며, CRS 안테나 포트 0 를 포함하는 RE 에서 수행된다. RS-SINR 측정은 서빙 셀에 의해 허용되는 서브프레임/슬롯에서 수행된다. RS-SINR 의 단위는 dB 이며, TS 에서 정의된 자연수로 변환되어 표현된다.RS-SINR measurement is performed by a terminal (eg, RRC_CONNECTED UE) connected to an RRC to a base station, and performed in an RE including a CRS antenna port 0. RS-SINR measurement is performed in subframes / slots allowed by the serving cell. The unit of RS-SINR is dB and is converted into a natural number defined in TS and expressed.
CSI-RSRP 측정은 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)에 의해 수행되며, CSI-RS 안테나 포트 15 를 포함하는 RE 에서 수행된다. 단말은 DMTC에 의해 설정된 서브프레임/슬롯에 속하는 서브프레임/슬롯에서 CSI-RSRP를 측정한다. 서빙 셀에 의해 허용된 대역폭에 속하는 부반송파가 CSI-RSRP 측정을 위해 활용된다. CSI-RSRP 의 단위는 dBm 이며, TS 에서 정의된 자연수로 변환되어 표현된다. CSI-RSRP measurement is performed by a terminal (eg, RRC_CONNECTED UE) connected to the base station RRC, and performed in the RE including the CSI-RS antenna port 15. The UE measures the CSI-RSRP in the subframe / slot belonging to the subframe / slot configured by the DMTC. The subcarriers belonging to the bandwidth allowed by the serving cell are utilized for CSI-RSRP measurement. The unit of CSI-RSRP is dBm, which is converted into a natural number defined in TS and expressed.
서빙 셀은 이러한 단말의 측정을 여러 용도로 활용할 수 있다. 서빙 셀의 링크 어댑테이션(link adaptation)은 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)의 CQI에 따라, DL 스케줄링(scheduling)을 수행할 수 있다. 단말에게 설정된 TM에 따라, SU(single user)-MIMO(multiple input multiple output) 동작 혹은 MU(multiple user)-MIMO 동작이 수행될 수 있고, 오픈 루프(open loop) MIMO 동작이 수행될 수 있다. 서빙 셀의 DL 로드 밸런싱(load balancing)은 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)의 RSRP 혹은 RSRQ 에 따라 셀 재선택(cell reselection)이 수행되도록, 단말에게 RRC 연결(connection)을 재설정한다. 서빙 셀의 핸드오버(handover)는 기지국에 RRC 연결되어 있는 단말(예, RRC_CONNECTED UE)의 이동성을 지원하기 위해, RSRP 혹은 RSRQ 을 이용한다.The serving cell may utilize the measurement of such a terminal for various purposes. The link adaptation of the serving cell may perform DL scheduling according to the CQI of the terminal (eg, RRC_CONNECTED UE) connected to the base station RRC. Depending on the TM configured for the UE, a single user (SU) -multiple input multiple output (MIMO) operation or a multiple user (MU) -MIMO operation may be performed, and an open loop MIMO operation may be performed. DL load balancing of the serving cell resets an RRC connection to the UE so that cell reselection is performed according to RSRP or RSRQ of a UE (eg, RRC_CONNECTED UE) connected to the base station. do. The handover of the serving cell uses RSRP or RSRQ to support mobility of a terminal (eg, RRC_CONNECTED UE) that is RRC connected to the base station.
서빙 셀이 동작하는 주파수의 경우에, 단말은 DL 서브프레임/슬롯에서만 RRM(radio resource management) 측정을 수행할 수 있다. 하지만, 인터 주파수(inter-frequency) RRM 측정의 경우 혹은 LTE(long term evolution) TDD(time division duplexing)에서 이웃 셀(neighbor cell)이 고려되는 경우에, 단말은 특정 서브프레임/슬롯이 DL 서브프레임/슬롯인지를 판단할 수 있어야 한다. 이를 위해서, 서빙 셀은 측정 오브젝트 설정(measurement object configuration)을 통해, 셀 식별자 리스트(cell ID list)와 함께, TDD UL(uplink)-DL 서브프레임/슬롯 설정(configuration)과 MBSFN(multimedia broadcast multicast service over single frequency network) 서브프레임/슬롯 설정(configuration)을 단말에게 설정한다. 단말은 이에 따라 유효한 DL 서브프레임/슬롯을 추출하여, RRM 측정을 위해 사용한다.In the case of the frequency at which the serving cell operates, the UE may perform RRM measurement only on the DL subframe / slot. However, in case of inter-frequency RRM measurement or when a neighbor cell is considered in long term evolution (LTE) time division duplexing (LDD), the UE has a specific subframe / slot in a DL subframe. You should be able to determine if it is a slot. To this end, the serving cell is configured with a measurement object configuration, a cell ID list, a TDD uplink (DL) -DL subframe / slot configuration, and a multimedia broadcast multicast service (MBSFN). over single frequency network) configures a subframe / slot configuration to the UE. The UE thus extracts a valid DL subframe / slot and uses it for RRM measurement.
3GPP(3rd generation partnership project) NR(new radio)은 eMBB(enhanced mobile broadband)의 서비스 시나리오, URLLC(ultra-reliable low latency communication) 의 서비스 시나리오, 그리고 mMTC(massive machine type communications)의 서비스 시나리오를 지원하기 위해, 기술적인 요구사항을 연구하고 있다. 3rd generation partnership project (3GPP) new radio (NR) supports the service scenarios of enhanced mobile broadband (eMBB), the service scenarios of ultra-reliable low latency communication (URLLC), and the service scenarios of massive machine type communications (mMTC). To study technical requirements.
eMBB 는 대용량의 트래픽을 처리하고자 한다. URLLC 는 E2E(end-to-end) L2(layer 2)의 지연시간을 줄이고 L1(layer 1) 패킷 에러율(packet error rate)을 줄이고자 한다. mMTC 는 단말들이 지리적으로 높은 밀도로 분포한 상황에서 가끔씩 발생하는 트래픽을 적은 수의 서빙 셀 기지국을 통해 서비스하고자 한다. 본 발명은 eMBB 와 URLLC 가 적어도 동시에 지원되며, 가능한 경우에 mMTC 도 함께 지원되는 경우를 고려할 수 있다. 특히, URLLC를 지원하기 위해서는, 더 짧은 TTI(transmission time interval)를 정의하는 방법과 더 짧은 프로세싱 시간(processing time)을 가지도록 채널 인코더(channel encoder)와 채널 디코더(channel decoder)를 설계하거나 코드워드 크기(codeword size)를 줄이는 방법이 있다. eMBB wants to handle large amounts of traffic. URLLC seeks to reduce the end-to-end (L2) L2 (layer 2) latency and to reduce the L1 (layer 1) packet error rate. The mMTC intends to serve traffic through occasional serving cell base stations when the terminals are distributed at a high geographical density. The present invention may contemplate the case where eMBB and URLLC are supported at least simultaneously, and where possible with mMTC. In particular, in order to support URLLC, channel encoders and channel decoders or codewords can be designed to have a shorter transmission time interval (TTI) and a shorter processing time. There is a way to reduce the code size.
더 짧은 TTI 를 정의하는 방법에는, TTI 를 구성하는 시간 도메인 심볼의 개수를 줄이는 방법 혹은 다중 반송파(multicarrier) 심볼을 구성하는 부반송파 간격(subcarrier spacing)을 넓혀서 심볼 길이(symbol length)를 줄이는 방법이 적용될 수 있다. To define a shorter TTI, a method of reducing the number of time domain symbols constituting the TTI or a method of reducing symbol length by extending subcarrier spacing constituting a multicarrier symbol is applied. Can be.
복수의 부반송파 간격(subcarrier spacing)을 설정하여 운영하는 혼합 뉴머롤러지(mixed numerology)는, 3GPP NR 과 3GPP LTE 를 구분 짓는 특징 중 하나이다.Mixed numerology, which operates by setting a plurality of subcarrier spacings, is one of the features that distinguish 3GPP NR from 3GPP LTE.
단면 스펙트럼(unpaired spectrum)을 가진 오퍼레이터(operator)가 3GPP NR 시스템을 배치(deploy)하는 경우에는, TDD 로 시스템을 운영할 수 있다. 하나의 시스템 반송파에서 DL 서브밴드(subband)와 UL 서브밴드(subband)를 나누어 FDD(frequency division duplexing) 처럼 시스템을 운영하기 위해서는, 적지 않은 가드 밴드(guard band)가 필요하다. 그리고 적은 가드 밴드 만이 할당되면, 대역 내 방출(in-band emission)이 크기 때문에, 전이중 프로세싱(full duplex processing)이 고려되어야 한다. 그렇지만 셀들 간의 UL-DL 미스매치(mismatch)와 단말들 간의 UL-DL 미스매치로 인해 신호의 세기보다 간섭의 세기가 훨씬 큰 상황이 종종 발생한다. 그러나 ADC(analog to digital converter) 해상도(resolution)가 유한하기 때문에, 큰 세기의 간섭이 수신되면, ADC가 큰 크기에 맞추어 동작하면서 상대적으로 미약한 신호를 ADC가 탐지할 수 없는 문제가 발생할 수 있다. 이로 인해, 전이중 프로세싱이 항상 사용되는 것은 어렵다.If an operator with an unpaired spectrum deploys the 3GPP NR system, the system can be operated with TDD. In order to operate a system like frequency division duplexing (FDD) by dividing the DL subband and the UL subband in one system carrier, a large number of guard bands are required. And if only a few guard bands are allocated, full duplex processing should be considered because in-band emission is large. However, due to the UL-DL mismatch between the cells and the UL-DL mismatch between the terminals, a situation in which interference strength is much larger than signal strength often occurs. However, because the analog to digital converter (ADC) resolution is finite, if a large amount of interference is received, the ADC may operate at a large size, which may cause the ADC to detect a relatively weak signal. . Because of this, it is difficult for full duplex processing to always be used.
한편, 3GPP NR 은 6 GHz 이상의 고주파와 6 GHz 미만의 저주파의 활용을 모두 고려하고 있다. 6 GHz 이상의 고주파 대역은 대역폭이 넓으므로, 3GPP NR 은 하나의 시스템 반송파에서도 충분한 보호 대역(guard band)을 할당하고 FDD 처럼 시스템을 운영할 수 있다. 그렇지만, 6 GHz 이상의 고주파 영역에서 3GPP NR 시스템이 배치(deploy)되는 경우에, 무선 채널(wireless channel)의 전파 경로 손실(propagation path loss)이 크기 때문에, MIMO 프로세싱이 필수적으로 고려되어야 한다. 이러한 MIMO 는 위상 어레이(phased array)에 기반하기 때문에, 채널 추정 정확도(channel estimation accuracy)에 따라 MIMO 이득(gain)의 양이 크게 변한다. 만일 FDD 가 사용되면, 많은 수의 DL 안테나 포트에 대한 상향링크 채널 피드백(uplink channel feedback)은 상향링크 신호 오버헤드를 필요로 한다. 반면에 TDD로 시스템이 운영되는 경우에는, 채널 가역성(channel reciprocity)이 이용되고 TxU(transmitter unit)와 RxU(receiver unit)가 적절히 캘리브레이션(calibration)된다면, UL 신호를 통해 DL 채널 응답(channel response)이 추정될 수 있다. TDD가 사용되면, 상향링크 신호 오버헤드를 피할 수 있다는 장점이 있다. 다른 표현으로써, TDD가 사용되면, 더욱 많은 개수의 안테나 포트가 정의될 수 있다.3GPP NR, on the other hand, considers both the use of high frequencies above 6 GHz and low frequencies below 6 GHz. Since the high frequency band of 6 GHz or more has a wide bandwidth, 3GPP NR can allocate a sufficient guard band even on a single system carrier and operate the system like FDD. However, when the 3GPP NR system is deployed in the high frequency region of 6 GHz or more, MIMO processing must be taken into consideration because propagation path loss of a wireless channel is large. Since such MIMO is based on a phased array, the amount of MIMO gain varies greatly according to channel estimation accuracy. If FDD is used, uplink channel feedback for a large number of DL antenna ports requires uplink signal overhead. On the other hand, when the system is operated with TDD, if channel reciprocity is used and the transmitter unit (TxU) and the receiver unit (RxU) are properly calibrated, the DL channel response through the UL signal This can be estimated. If TDD is used, the uplink signal overhead can be avoided. In other words, if TDD is used, a larger number of antenna ports can be defined.
TDD 를 활용하여 eMBB 와 URLLC 를 모두 지원하는 시나리오가 고려되면, URLLC 의 저지연 성능이 개선되어야 한다. 3GPP LTE TDD 의 경우에, 서빙 셀 기지국은 RRC 설정을 통해, 단말을 위한 UL-DL 서브프레임/슬롯 패턴을 정의한다. DL 트래픽의 경우에, 만약 서빙 셀 기지국이 단말에게 스케줄링 할당(scheduling assignment)과 DL 데이터를 DL 서브프레임/슬롯에서 전송하면, 단말은 UL HARQ(hybrid automatic repeat and request)를 UL 서브프레임/슬롯에서 전송한다. 따라서 DL 트래픽의 L1 지연은, DL 서브프레임/슬롯과 UL 서브프레임/슬롯이 나타나는 빈도에 의존한다. UL 트래픽의 경우에, 만약 서빙 셀 기지국이 단말에게 스케줄링 그랜트(scheduling grant)를 DL 서브프레임/슬롯 에서 전송하면, 단말은 UL 서브프레임/슬롯에서 UL 데이터를 전송하고, 서빙 셀 기지국은 DL HARQ를 DL 서브프레임/슬롯에서 전송한다. 따라서 UL 트래픽의 L1 지연은 DL 서브프레임/슬롯과 UL 서브프레임/슬롯이 나타나는 빈도에 의존한다. Considering scenarios that support both eMBB and URLLC using TDD, the low latency performance of URLLC should be improved. In the case of 3GPP LTE TDD, the serving cell base station defines an UL-DL subframe / slot pattern for the terminal through RRC configuration. In case of DL traffic, if the serving cell base station transmits scheduling assignment and DL data to the terminal in the DL subframe / slot, the terminal transmits UL HARQ (hybrid automatic repeat and request) in the UL subframe / slot. send. Thus, the L1 delay of DL traffic depends on the frequency with which DL subframes / slots and UL subframes / slots appear. In case of UL traffic, if the serving cell base station transmits a scheduling grant to the terminal in the DL subframe / slot, the terminal transmits the UL data in the UL subframe / slot, and the serving cell base station transmits the DL HARQ. Transmit in DL subframe / slot. Therefore, the L1 delay of the UL traffic depends on the frequency at which DL subframes / slots and UL subframes / slots appear.
반면, FDD 를 활용하여 URLLC 를 지원하는 시나리오의 경우에, DL 서브프레임/슬롯과 UL 서브프레임/슬롯이 항상 존재하기 때문에, FDD의 L1 지연은 항상 TDD의 L1 지연 보다 같거나 적다.On the other hand, in the scenario of supporting URLLC using FDD, since there is always a DL subframe / slot and a UL subframe / slot, the L1 delay of the FDD is always equal to or less than the L1 delay of the TDD.
이러한 단점을 보완하기 위해서, 서브프레임/슬롯 패턴을 각 서브프레임/슬롯에서 변환하는 방법이 사용될 수 있다. 서빙 셀 기지국으로부터 스케줄링 할당(scheduling assignment)을 수신한 단말은 해당 서브프레임/슬롯을 DL 서브프레임/슬롯으로 간주한다. 서빙 셀 기지국으로부터 스케줄링 그랜트를 수신한 단말은 해당 서브프레임/슬롯을 UL 서브프레임/슬롯으로 간주한다. 그 외의 경우에 속하는 단말은 해당 서브프레임/슬롯을 DL 서브프레임/슬롯으로 가정하지 않고 UL 서브프레임/슬롯으로도 가정하지 않는다. 이러한 방법이 3GPP NR에 적용되는 경우에, 아이들(idle) 상태의 단말들이 RRM 측정을 수행하기 위해서, 서빙 셀 기지국은 일부의 무선 자원을 항상 고정적인 DL 자원으로써 할당해야 한다. 서빙 셀 기지국은 특정한 서브프레임/슬롯에서 이러한 고정(fixed) DL 자원을 규정할 수 있다. 고정DL 자원은 DRS(discovery reference signal), PDCCH(physical downlink control channel), 및 SIB(system information block) 등의 정보를 포함할 수 있다. 3GPP NR 은 이러한 방식을 다이나믹(dynamic) TDD 라고 명명한다. 3GPP NR TDD가 다이나믹 TDD 로써 운영되면, 서빙 셀 기지국은 필요에 따라 임의의 UL 자원과 임의의 DL 자원을 할당할 수 있기 때문에, URLLC 시나리오의 L1 지연이 줄어들 수 있다. 다이나믹 TDD 는 3GPP NR 과 3GPP LTE 를 구분 짓는 특징 중 하나이다.To compensate for this disadvantage, a method of converting a subframe / slot pattern in each subframe / slot may be used. The terminal that receives the scheduling assignment from the serving cell base station considers the corresponding subframe / slot as a DL subframe / slot. The terminal that receives the scheduling grant from the serving cell base station regards the corresponding subframe / slot as an UL subframe / slot. The UE belonging to other cases does not assume the corresponding subframe / slot as a DL subframe / slot and also does not assume a UL subframe / slot. When this method is applied to 3GPP NR, in order for idle terminals to perform RRM measurement, the serving cell base station should always allocate some radio resources as fixed DL resources. The serving cell base station may define this fixed DL resource in a particular subframe / slot. The fixed DL resource may include information such as a discovery reference signal (DRS), a physical downlink control channel (PDCCH), and a system information block (SIB). 3GPP NR calls this approach dynamic TDD. If the 3GPP NR TDD is operated as a dynamic TDD, the L1 delay of the URLLC scenario can be reduced because the serving cell base station can allocate any UL resource and any DL resource as needed. Dynamic TDD is one of the distinguishing features of 3GPP NR and 3GPP LTE.
3GPP LTE TDD 의 경우에는, 단말이 DL 서브프레임/슬롯 혹은 특별(special) 서브프레임/슬롯 에서 DL 자원을 미리 예측할 수 있다. 예를 들어, DL 자원은 서브프레임/슬롯 타입에 의해 허용되는 DL 심볼의 모든 부반송파를 의미하기 때문에, 3GPP LTE 단말은 DL 심볼을 모두 이용하여 RSSI 를 측정할 수 있고, RS 를 포함하는 부반송파 에서 RSRP 를 측정할 수 있다. 인터 주파수 측정(inter-frequency measurement)의 경우에도, 3GPP LTE 단말은 특정 서브프레임/슬롯의 서브프레임/슬롯 타입을 손쉽게 결정할 수 있다. 예를 들어, 만일 단말이 PSS(primary synchronization signal)를 탐지한 경우에, 해당 서브프레임/슬롯을 특별 서브프레임/슬롯 이거나 DL 서브프레임/슬롯 이라고 가정할 수 있다. 만일 단말이 SSS(secondary synchronization signal)를 탐지한 경우에, 해당 서브프레임/슬롯을 DL 서브프레임/슬롯 이라고 가정할 수 있다. 만일 3GPP LTE 단말에게 UL-DL 서브프레임 설정(configuration)이 설정된 경우에는, 만약 3GPP LTE 단말이 해당 서브프레임/슬롯의 서브프레임/슬롯 인덱스를 알고 있다면, 이후에 나타날 서브프레임/슬롯의 타입을 미리 알 수 있다.In the case of 3GPP LTE TDD, the UE may predict DL resources in advance in DL subframes / slots or special subframes / slots. For example, since the DL resource means all subcarriers of the DL symbol allowed by the subframe / slot type, the 3GPP LTE terminal can measure the RSSI using all the DL symbols, and RSRP in the subcarrier including RS. Can be measured. Even in the case of inter-frequency measurement, the 3GPP LTE terminal can easily determine the subframe / slot type of a specific subframe / slot. For example, if the UE detects a primary synchronization signal (PSS), it may be assumed that the corresponding subframe / slot is a special subframe / slot or a DL subframe / slot. If the UE detects a secondary synchronization signal (SSS), it may be assumed that the corresponding subframe / slot is a DL subframe / slot. If the UL-DL subframe configuration is configured for the 3GPP LTE UE, if the 3GPP LTE UE knows the subframe / slot index of the corresponding subframe / slot, the type of the subframe / slot to be shown later will be previously determined. Able to know.
반면에, 3GPP NR TDD 가 다이나믹 TDD 로써 운영되는 경우에, 고정 DL 자원은 서브프레임/슬롯 타입에 무관하게 TS 에서 결정된다. 이는, 3GPP NR 단말이 아이들 상태이고 해당 셀이 별도의 사전 정보를 가지고 있지 않더라도, 초기 접속(initial access)이 허용되기 위함이다. 고정 DL 자원은 적어도 NR-PDCCH 와 DL NR-DRS 를 포함한다. 고정 DL 자원은 하나의 뉴머롤러지(numerology)를 가질 수 있다. On the other hand, when 3GPP NR TDD is operated as dynamic TDD, fixed DL resources are determined in the TS regardless of subframe / slot type. This is because initial access is allowed even if the 3GPP NR terminal is in an idle state and the corresponding cell does not have separate prior information. The fixed DL resource includes at least NR-PDCCH and DL NR-DRS. The fixed DL resource may have one numerology.
3GPP NR TDD 시스템에 적용될 수 있는 서브프레임/슬롯 타입은, 적어도 도 1, 도 2, 및 도 3에 예시된 경우를 포함할 수 있다(레퍼런스 시스템).Subframe / slot types that may be applied to the 3GPP NR TDD system may include at least the cases illustrated in FIGS. 1, 2, and 3 (reference system).
도 1은 본 발명의 실시예에 따른, 3GPP NR TDD의 경우에 RRM 측정에 적용될 수 있는 서브프레임/슬롯 타입을 나타내는 도면이다. 도 1에서, 가로축은 서브프레임/슬롯을 나타내고, 세로축은 반송파 대역폭을 나타낸다.1 is a diagram illustrating a subframe / slot type applicable to RRM measurement in the case of 3GPP NR TDD according to an embodiment of the present invention. In FIG. 1, the horizontal axis represents subframes / slots, and the vertical axis represents carrier bandwidths.
구체적으로 도 1의 (a)에는, DL-중심적(centric) 서브프레임/슬롯이 예시되어 있다. 고정 DL 자원은 서브프레임/슬롯에 속하는 복수의 심볼 중에서 첫 번째 심볼을 포함하며, 시간적으로 이른 시점(예, 슬롯의 앞쪽)에 전송된다. 고정 DL 자원을 포함하는 심볼은 모든 부반송파에서 DL 영역(region)으로 가정된다. 이후 나머지 심볼들은 모두 DL 영역(region)으로써 이용된다. 이는 GP(guard period)=0 에 해당한다. 만일 필요한 경우(예, GP≥1)에, GP는 RRC를 통해 설정되거나 TS 에 GP가 정의될 수 있고, 이러한 경우에, GP에 해당하는 심볼은 DL 영역(region)으로 가정되지 않는다. DL 영역(region)에서는, 여러 개의 뉴머롤러지(numerology)를 포함하는 DL 데이터가 설정될 수 있다. Specifically, in FIG. 1A, a DL-centric subframe / slot is illustrated. The fixed DL resource includes a first symbol among a plurality of symbols belonging to a subframe / slot and is transmitted at an earlier time point (eg, in front of a slot). A symbol including a fixed DL resource is assumed to be a DL region in all subcarriers. After that, all other symbols are used as DL regions. This corresponds to GP (guard period) = 0. If necessary (eg GP ≧ 1), the GP may be set via RRC or a GP may be defined in the TS, in which case the symbol corresponding to the GP is not assumed to be a DL region. In the DL region, DL data including several numerology can be set.
도 1의 (b)에는 UL-중심적(centric) 서브프레임/슬롯이 예시되어 있다. 고정 DL 자원은 서브프레임/슬롯에 속하는 복수의 심볼 중 첫 번째 심볼을 포함하며, 시간적으로 이른 시점(예, 슬롯의 앞쪽)에 전송된다. 고정 DL 자원을 포함하는 심볼은 모든 부반송파에서 DL 영역(region)으로 가정된다. 고정 DL 자원의 다음에 위치하는 심볼은 GP 에 해당하며, 단말의 프로세싱 지연(processing delay)과 타이밍 어드밴스 커맨드(timing advance command)를 고려하여, 서빙 셀 기지국은 적절한 개수의 심볼을 GP를 위해 설정하여야 한다. GP는 모든 부반송파에서, DL 영역(region)에 속하지 않고 UL 영역(region)에도 속하지 않는다. GP 이후에 위치하는 심볼(들)은 UL 영역(region) 에 해당하며, 해당 심볼(들)에는 UL 데이터가 할당된다.In FIG. 1B, a UL-centric subframe / slot is illustrated. The fixed DL resource includes a first symbol of a plurality of symbols belonging to a subframe / slot, and is transmitted at an earlier time point (eg, in front of a slot). A symbol including a fixed DL resource is assumed to be a DL region in all subcarriers. The symbol located next to the fixed DL resource corresponds to the GP. In consideration of the processing delay and the timing advance command of the terminal, the serving cell base station must set an appropriate number of symbols for the GP. do. The GP does not belong to the DL region or to the UL region in all subcarriers. The symbol (s) located after the GP correspond to a UL region, and UL data is allocated to the symbol (s).
도 2는 본 발명의 실시예에 따른, DL 영역(region)과 UL 영역(region)이 모두 할당되는 특별 서브프레임/슬롯으로 3GPP NR TDD 를 구성한 경우를 나타내는 도면이다. 도 2에는 RRM 측정에 적용되는 서브프레임/슬롯이 예시되어 있다. 도 2에서, 가로축은 서브프레임/슬롯을 나타내고, 세로축은 반송파 대역폭을 나타낸다.2 is a diagram illustrating a case where a 3GPP NR TDD is configured with a special subframe / slot in which both a DL region and a UL region are allocated according to an embodiment of the present invention. 2 illustrates subframes / slots applied to RRM measurement. In FIG. 2, the horizontal axis represents subframes / slots, and the vertical axis represents carrier bandwidths.
서브프레임/슬롯의 중간 영역에서 GP로써 할당된 심볼의 이전에는 DL 영역(region)이 할당되고, GP로써 할당된 심볼의 이후에는 UL 영역(region)이 할당된다. DL 영역(region)은 적어도 고정 DL 자원을 포함한다. UL 영역(region)은 각 서브프레임/슬롯 마다 적어도 하나의 심볼을 포함한다. A DL region is allocated before a symbol assigned as a GP in the middle region of a subframe / slot, and a UL region is allocated after a symbol assigned as a GP. The DL region contains at least fixed DL resources. The UL region includes at least one symbol for each subframe / slot.
구체적으로, 도 2의 (a)에는 DL-중심적(centric) 특별 서브프레임/슬롯이 예시되어 있다. DL 영역(region)이 서브프레임/슬롯의 대부분을 차지한다. Specifically, (a) of FIG. 2 illustrates a DL-centric special subframe / slot. The DL region occupies most of the subframes / slots.
도 2의 (b)에는 UL-중심적(centric) 특별 서브프레임/슬롯이 예시되어 있다. 고정 DL 자원을 포함하는 DL 영역(region) 보다 UL 영역(region)이 서브프레임/슬롯의 대부분을 차지한다. In FIG. 2B, a UL-centric special subframe / slot is illustrated. The UL region occupies most of the subframes / slots than the DL region including the fixed DL resources.
서빙 셀 기지국은 이러한 DL-중심적(centric) 서브프레임/슬롯 이나 UL-중심적(centric) 서브프레임/슬롯을, 각 서브프레임/슬롯 마다 다르게 활용할 수 있다.The serving cell base station may utilize such DL-centric subframes / slots or UL-centric subframes / slots differently for each subframe / slot.
도 3은 본 발명의 실시예에 따른, RRM 측정을 위해 사용되는 서브프레임/슬롯이 단말 특정(예, UE-specific)하게 설정되는 경우를 나타내는 도면이다. 도 3에서, 가로축은 서브프레임/슬롯을 나타내고, 세로축은 반송파 대역폭을 나타낸다.3 is a diagram illustrating a case in which a subframe / slot used for RRM measurement is configured to be UE-specific (eg, UE-specific) according to an embodiment of the present invention. In Figure 3, the horizontal axis represents subframes / slots, and the vertical axis represents carrier bandwidths.
도 3의 (a)에는 DL-중심적(centric) 서브프레임/슬롯이 예시되어 있고, 도 3의 (b)에는 UL-중심적(centric) 서브프레임/슬롯이 예시되어 있고, 도 3의 (c)에는 특별 서브프레임/슬롯이 예시되어 있다.FIG. 3A illustrates DL-centric subframes / slots, FIG. 3B illustrates UL-centric subframes / slots, and FIG. 3C Special subframes / slots are illustrated.
구체적으로 도 3의 (a)에 예시된 바와 같이, 서빙 셀 기지국은 셀 특정한(cell-specific) 서브프레임/슬롯 타입이 특별 서브프레임/슬롯으로 고정되지만, 스케줄러의 판단을 통해 단말에게 DL 데이터(또는 DL 자원)를 스케줄링할 수 있다. 도 3의 (b)에 예시된 바와 같이, 서빙 셀 기지국은 UL 데이터(또는 UL 자원)를 단말에게 그랜트(grant)할 수 있다. 도 3의 (c)에 예시된 바와 같이, 서빙 셀 기지국은 동일한 서브프레임/슬롯에서, DL 데이터(또는 DL 자원)와 UL 데이터(또는 UL 자원)를 할당(또는 스케줄링, 그랜트)할 수 있다. Specifically, as illustrated in (a) of FIG. 3, the serving cell base station has a cell-specific subframe / slot type fixed to a special subframe / slot. Or DL resources). As illustrated in FIG. 3B, the serving cell base station may grant UL data (or UL resource) to the terminal. As illustrated in (c) of FIG. 3, the serving cell base station may allocate (or schedule, grant) DL data (or DL resources) and UL data (or UL resources) in the same subframe / slot.
도 3의 경우에, 별도의 GP가 셀 특정(cell-specific)하게 정의되지 않고, DL 영역(region)과 UL 영역(region)이 정의된다. In the case of FIG. 3, a separate GP is not cell-specific and a DL region and an UL region are defined.
3GPP NR 셀은 단말 특정한(예, UE-specific) GP를 암시적으로(implicitly) 할당하여, GP 오버헤드를 줄일 수 있다. 셀 특정한(cell-specific) GP가 없기 때문에, 스케줄러는 DL-UL 간섭을 조절하여 스케줄링을 수행해야 한다. 예를 들어, 서빙 셀이 서로 다른 두 개의 단말(UE1, UE2)에게 서로 다른 서브프레임/슬롯 타입을 할당하고 두 단말들(UE1, UE2)이 커버리지의 경계 지역(예, cell edge)에서 비슷한 지리적 위치를 가지는 경우에, DL-중심적(centric) 서브프레임/슬롯을 할당 받은 단말(UE1)에 대해서는 전파 지연(propagation delay)이 크고, UL-중심적(centric) 서브프레임/슬롯을 할당 받은 단말(UE2)에 대해서는 타이밍 어드밴스(timing advance)가 크다. 이러한 경우에, 특정 심볼에서 간섭이 발생하며, 단말(UE1)은 희생자(victim)로 작용하고, 단말(UE2)은 공격자(aggressor)로 작용한다. 따라서 서빙 셀 기지국은 DL 데이터에 의해 차지되는 심볼의 개수와 UL 데이터에 의해 차지되는 심볼의 개수를 적절히 조절하고, 상술한 간섭 시나리오를 방지할 수 있도록 조절을 수행하여야 한다.The 3GPP NR cell can implicitly allocate a UE-specific (eg, UE-specific) GP, thereby reducing GP overhead. Since there is no cell-specific GP, the scheduler must adjust the DL-UL interference to perform scheduling. For example, a serving cell allocates different subframes / slot types to two different UEs UE1 and UE2, and the two UEs UE1 and UE2 have a similar geographical location at the edge of coverage (eg, cell edge). In the case of having a location, a propagation delay is large for a UE UE1 allocated with a DL-centric subframe / slot, and a UE UE2 assigned with a UL-centric subframe / slot. ), The timing advance (timing advance) is large. In this case, interference occurs in a particular symbol, terminal UE1 acts as a victim and terminal UE2 acts as an attacker. Therefore, the serving cell base station must appropriately adjust the number of symbols occupied by the DL data and the number of symbols occupied by the UL data, and perform adjustment to prevent the above-described interference scenario.
한편, 이동통신 시스템은 전파 특성이 좋은 낮은 대역(예, 2 GHz)에 주로 배치(deploy)되기 때문에, 기지국이 별도의 빔 형성(beamforming)을 수행하지 않더라도, 단말이 정보를 수신하는 것은 상대적으로 용이하다. 예를 들어, 3GPP LTE의 경우에, 기지국 안테나는 상대적으로 높은 위치(예, 건물의 옥상)에 설치된다. 단말들이 상대적으로 낮은 위치에 있기 때문에, 기지국 안테나는 수평보다 다소 낮은 각도로 조종(steer)된다. 이는 기계적 조향(mechanical tilting)이다. 기지국이 전기적 조향(electrical tilting)을 수행하기 위해서는, 단말로부터 채널 정보를 피드백 받아 기저대역(baseband)에서 전처리(precoding)를 수행한다. 이는 전기적 조향에 대응하여 해석될 수 있다. On the other hand, since the mobile communication system is mainly deployed in a low band having good propagation characteristics (for example, 2 GHz), even if the base station does not perform separate beamforming, it is relatively that the terminal receives the information. It is easy. For example, in the case of 3GPP LTE, base station antennas are installed at relatively high locations (eg, on the roof of a building). Since the terminals are in a relatively low position, the base station antenna is steered at an angle slightly lower than horizontal. This is mechanical tilting. In order to perform electrical tilting, the base station receives feedback of channel information from the terminal and performs precoding in baseband. This can be interpreted in response to electrical steering.
기지국은 별도의 기저대역 전처리가 없더라도, 기계적 조향을 이용하여 동기 신호(예, PSS, SSS)와 셀 공통신호(예, CRS)를 주기적으로 전송하고, PBCH(physical broadcast channel)도 주기적으로 전송한다. 단말은 PSS, SSS, CRS, PBCH 를 수신하여 동기를 획득하고, PBCH에 포함된 MIB(master information block)를 복호한다. 이러한 정보는 PDCCH 탐색과 SIB 수신을 위해 이용될 수 있다.The base station periodically transmits a synchronization signal (eg, PSS, SSS) and a cell common signal (eg, CRS) by using mechanical steering, and also periodically transmits a physical broadcast channel (PBCH) even if there is no separate baseband preprocessing. . The UE receives the PSS, the SSS, the CRS, and the PBCH to obtain synchronization, and decodes a MIB (master information block) included in the PBCH. This information may be used for PDCCH discovery and SIB reception.
반면에, 높은 대역(예, 60 GHz)에서 동작하는 이동통신 시스템이 고려된다면, 기지국은 별도의 빔 형성(beamforming)을 통해 단말에게 정보를 전송할 수 있다. 전파의 회절 특성과 반사 특성이 좋지 않기 때문에, 일반적으로 전파 특성이 좋지 않다. 따라서 기지국이 단말에게 데이터를 전송하기 위해서는, 기계적 조향 뿐만이 아니라 전기적 조향을 모두 사용할 수 있다. 그리고 단말에게 전달되는 필수적인 시스템 정보들도, 기지국은 빔 형성을 이용해 효율적으로 전송할 수 있다. 기지국은 이러한 빔 형성을, 단말로부터의 피드백 정보를 통해 결정할 수 있다. 예를 들어, IEEE(institute of electrical and electronics engineers) 802.11 ad 에 따르면, 수십 GHz 대역에서 동작하는 무선 통신 시스템에서 단말이 기지국과 통신하기 위해서, 빔 스위핑(beam sweeping) 절차가 수행된다. On the other hand, if a mobile communication system operating in a high band (eg, 60 GHz) is considered, the base station can transmit information to the terminal through separate beamforming. Since the diffraction and reflection characteristics of radio waves are not good, propagation properties are generally poor. Therefore, in order for the base station to transmit data to the terminal, not only mechanical steering but also electrical steering can be used. And the essential system information delivered to the terminal, the base station can be efficiently transmitted using the beam forming. The base station may determine such beamforming through feedback information from the terminal. For example, according to the Institute of Electrical and Electronic Engineers (IEEE) 802.11 ad, a beam sweeping procedure is performed in order for a terminal to communicate with a base station in a wireless communication system operating in a tens GHz band.
빔 스위핑 절차는 두 단계로 이루어진다. 빔 스위핑 절차의 첫 번째 단계에서는, 모든 기지국 섹터들이 각각 굵은 빔(rough beam)을 형성해 미리 정한 패킷을 전송하고, 이를 단말이 수신한다. 단말은 여러 개의 기지국 섹터들 중에서 하나를 선택하고, 선택된 기지국 섹터의 인덱스를 기지국으로 피드백한다. The beam sweeping procedure consists of two steps. In the first step of the beam sweeping procedure, all base station sectors each form a rough beam to transmit a predetermined packet, which is received by the terminal. The terminal selects one of a plurality of base station sectors and feeds back the index of the selected base station sector to the base station.
빔 스위핑 절차의 두 번째 단계에서는, 기지국이 단말의 피드백을 수신한 이후에, 단말에 의해 선택된 기지국 섹터 이내에서 얇은 빔(fine beam)을 형성하여 미리 정한 패킷을 전송하고, 이를 단말이 수신한다. 단말은 여러 개의 얇은 빔들 중에서 하나의 빔의 빔 인덱스를 기지국으로 피드백한다. 기지국은 단말에게 데이터를 전송할 때 사용할 수 있는 얇은 빔을 알 수 있다.In the second step of the beam sweeping procedure, after the base station receives the feedback from the terminal, the terminal forms a fine beam within the base station sector selected by the terminal to transmit a predetermined packet, which is received by the terminal. The terminal feeds back the beam index of one beam among the multiple thin beams to the base station. The base station can know a thin beam that can be used when transmitting data to the terminal.
이러한 빔 스위핑 절차는 기지국에 의해 형성된 굵은 빔의 개수와 섹터 마다 형성된 얇은 빔의 개수의 합에 정비례하는 복잡도를 갖는다. 만일 기지국이 얇은 빔만을 형성하여 단말에게 전송한다면, 더 많은 개수의 빔이 전송된다. 따라서, 이는 비효율적이다.This beam sweeping procedure has a complexity that is directly proportional to the sum of the number of thick beams formed by the base station and the number of thin beams formed per sector. If the base station forms only a thin beam and transmits it to the terminal, a larger number of beams are transmitted. Thus, this is inefficient.
두 단계로 이루어진 빔 스위핑 절차를 이용하기 위해서는, 단말로부터 기지국으로의 믿을만한(reliable) 피드백 링크가 존재한다는 가정이 필요하다. 그러나 단말이 피드백을 수행하기 위해서는 단말이 기지국으로부터 자원을 할당받기 위한 시스템 정보가 필요하므로, 상술한 빔 스위핑 절차가 이동통신 시스템에 적용되기에는 무리가 있다. 기지국이나 단말이 에러율(error probability)을 낮추기 위해서 반복 전송(repetition)을 수행하거나 혹은 낮은 부호율(code rate)로 전송을 수행해야 하므로, 전송 자원이 추가로 할당되어야 한다.In order to use the two-step beam sweeping procedure, it is necessary to assume that there is a reliable feedback link from the terminal to the base station. However, in order for the terminal to perform feedback, the terminal needs system information for allocating resources from the base station. Therefore, the above-described beam sweeping procedure cannot be applied to the mobile communication system. Since a base station or a terminal needs to perform repetition or transmit at a low code rate in order to reduce an error probability, transmission resources must be additionally allocated.
그러므로 수십 GHz 에서 동작하는 NR 시스템에서 데이터(예, NR-PDSCH)가 전송되기 위해서는, 빔 형성된 제어 채널(예, NR-PDCCH)이 단말에게 전송되어야 한다. 이는 시스템 정보(예, NR-SIB)에도 적용된다. 단말은 NR-PDCCH를 통해 수신한 DL 할당(assignment)으로부터, NR-SIB가 존재하는 자원(예, NR-PDSCH)의 위치를 알 수 있다. 기지국이 빔 형성 방식을 결정하기 위해서는 단말의 피드백이 반드시 필요하기 때문에, 이를 지시(indicate)하기 위한 별도의 물리 채널이 필요하다. NR-PBCH가 이러한 역할을 수행한다. 기지국은 규격에서 정해진 자원을 이용해, 주기적으로 NR-PBCH를 전송한다. 만일 기지국이 빔 스위핑을 이용하는 경우에, 기지국은 NR 동기 신호와 소정의 상대적인 자원 위치를 가정하여, NR-PBCH를 연속하여 전송할 수 있다. 매 전송마다, 기지국은 서로 다른 빔을 사용할 수 있다.Therefore, in order to transmit data (eg, NR-PDSCH) in an NR system operating at several tens of GHz, a beam-formed control channel (eg, NR-PDCCH) must be transmitted to the UE. This also applies to system information (eg NR-SIB). The UE may know the location of a resource (eg, NR-PDSCH) in which the NR-SIB exists from the DL assignment received through the NR-PDCCH. Since the base station needs the feedback of the terminal to determine the beamforming method, a separate physical channel is required to indicate this. NR-PBCH plays this role. The base station periodically transmits the NR-PBCH using resources determined by the standard. If the base station uses beam sweeping, the base station may continuously transmit the NR-PBCH assuming an NR synchronization signal and a predetermined relative resource position. For each transmission, the base station can use different beams.
단말은 규격에서 정해진 무선 자원에서 NR-PBCH를 복호한다. 이하에서는, NR-PBCH가 갖는 성질에 대하여 기술한다. NR-서브프레임은 경우에 따라, NR-슬롯으로 표현될 수 있다. NR-서브프레임은 x (단, x=7 or 14) 개의 심볼로 구성되는 단위이다. 따라서, 뉴머롤러지마다 NR-서브프레임의 길이가 다를 수 있다.The terminal decodes the NR-PBCH in a radio resource defined in the standard. Hereinafter, the property which NR-PBCH has is described. The NR-subframe may be represented by an NR-slot as the case may be. The NR-subframe is a unit composed of x symbols (where x = 7 or 14). Therefore, the length of the NR-subframe may differ for each neurolage.
3GPP LTE 시스템에서 기지국이 주기적으로 전송하는 LTE-PBCH는, LTE-MIB를 포함한다. LTE-MIB에 의해 전달되는 정보는, 시스템 대역폭(system bandwidth), LTE-PHICH(physical hybrid automatic repeat and request indicator channel) 할당 정보, 그리고 시스템 프레임 번호(SFN: system frame number)에 해당한다. In the 3GPP LTE system, the LTE-PBCH periodically transmitted by the base station includes LTE-MIB. The information transmitted by the LTE-MIB corresponds to a system bandwidth, physical hybrid automatic repeat and request indicator channel (LTE-PHICH) allocation information, and a system frame number (SFN).
시스템 대역폭(system bandwidth)은 단말에게 LTE-CRS의 시퀀스 길이를 알려주며, 또한 LTE-PDCCH 자원이 분포하는 범위를 알려 줄 수 있다. The system bandwidth informs the terminal of the sequence length of the LTE-CRS and may also inform the range in which the LTE-PDCCH resources are distributed.
LTE-PHICH 할당 정보는 CCE(control channel element)의 위치를 검출하기 위해서 필요하다. LTE-PDCCH 자원에서, CCE를 할당하지 않는 REG(resource element group)와 CCE를 할당하는 REG가 구분된다.LTE-PHICH allocation information is necessary for detecting the position of a control channel element (CCE). In the LTE-PDCCH resource, a resource element group (REG) that does not allocate a CCE and a REG that allocates a CCE are distinguished.
SFN은 LTE-SIB 타입 1에 포함된 SIB 스케줄링 정보와 SI(system information) 윈도우를 해석하기 위해서 필요한 정보이다. SIB가 수신되는 LTE-서브프레임/슬롯의 시간적인 위치가 TS에 의해 정의되어 있으며, 단말은 SFN을 통해 프레임 동기를 획득하여, LTE-SIB 타입 1을 수신한다.SFN is information necessary to interpret the SIB scheduling information and the SI (system information) window included in the LTE-SIB type 1. The temporal location of the LTE-subframe / slot in which the SIB is received is defined by the TS, and the terminal receives the frame synchronization through the SFN and receives the LTE-SIB type 1.
LTE-PBCH는 LTE-MIB를 포함하며 라디오 프레임(예, 10 ms) 마다 전송된다. LTE-PBCH의 채널 코딩과 메시지 크기(size)는 TS 에서 정의된다.The LTE-PBCH includes an LTE-MIB and is transmitted every radio frame (eg, 10 ms). Channel coding and message size of LTE-PBCH are defined in TS.
LTE-SIB 타입 1은 2개의 라디오 프레임(예, 20 ms) 마다 전송된다. LTE-SIB 타입 1이 전송되는 서브프레임은 TS에서 정의되지만, LTE-SIB 타입 1의 채널 코딩과 메시지 크기 등은 다이나믹 스케줄링이 적용된 LTE-PDCCH에 의해 지시된다. LTE-SIB Type 1 is transmitted every two radio frames (eg, 20 ms). The subframe in which the LTE-SIB type 1 is transmitted is defined in the TS, but the channel coding and the message size of the LTE-SIB type 1 are indicated by the LTE-PDCCH to which dynamic scheduling is applied.
LTE-SIB 타입 1 이외의 시스템 정보는 LTE-SIB 타입 1에 포함된 스케줄링 정보 리스트(예, schedulingInfoList)에 의해 지정되는 타입에 한정되어, 기지국에 의해 순서대로 전송된다. System information other than the LTE-SIB type 1 is limited to the type specified by the scheduling information list (eg, schedulingInfoList) included in the LTE-SIB type 1, and is sequentially transmitted by the base station.
단말은 TS에 정의된 수식을 따라, 특정한 서브프레임 인덱스를 기준으로 윈도우 길이(예, si-WindowLength)의 개수만큼에 속하는 서브프레임(들)에서, LTE-PDCCH를 SI-RNTI(radio network temporary identifier)를 통해 블라인드 디코딩(blind decoding)하여 LTE-SIB를 복호한다. According to the formula defined in the TS, the UE determines the LTE-PDCCH in the subframe (s) belonging to the number of window lengths (eg, si-WindowLength) on the basis of a specific subframe index. Decode the LTE-SIB by blind decoding.
윈도우(예, si-Window) 이내에서 LTE-SIB가 1회만 포함되며 LTE-SIB가 수신되는 서브프레임 인덱스를 단말은 미리 알 수 없으며, LTE-SIB 타입을 LTE-SIB 타입 1을 통해 미리 알 수 있다. 이러한 타입은 유일하게 결정된다. LTE-SIB is included only once within a window (eg, si-Window) and the UE cannot know in advance the subframe index from which the LTE-SIB is received, and the LTE-SIB type can be known in advance through LTE-SIB Type 1 have. This type is uniquely determined.
LTE-SIB 타입 1에 포함되는 정보는, 셀 선택(cell selection)에 적당한지(suitable) 여부에 관한 정보와 다른 SIB의 시간 도메인 스케줄링에 관한 정보이다. LTE-SIB 타입 2는 공통 채널(common channel)과 공유 채널(shared channel)에 관한 정보를 포함한다. LTE-SIB 타입 3, 타입 4, 타입 5, 타입 6, 타입 7, 및 타입 8은, 인트라 주파수 셀 재선택(intra-frequency cell reselection), 인터 주파수 셀 재선택(inter-frequency cell reselection), 그리고 인터 RAT(radio access technology) 셀 재선택(inter-RAT cell reselection)에 필요한 파라미터를 포함한다.The information included in the LTE-SIB type 1 is information about time domain scheduling of another SIB and information about suitability for cell selection. LTE-SIB type 2 includes information about a common channel and a shared channel. LTE-SIB Type 3, Type 4, Type 5, Type 6, Type 7, and Type 8 include intra-frequency cell reselection, inter-frequency cell reselection, and Includes parameters required for inter-RAT cell reselection.
NR-PBCH 는 상술한 정보들을 반드시 필요로 하지 않는다. 만일 NR-PDCCH가 전대역에 걸쳐서 분포하지 않는 경우에는, 기지국은 단말에게 시스템 대역폭을 알릴 필요가 없다. 또한 NR은 적응적이고(adaptive) 비동기적인(non-synchronous) HARQ-ACK(acknowledgment)을 DL과 UL에 모두 적용함으로써, 기지국은 NR-PHICH를 전송하지 않을 수 있다. 또는 기지국이 NR-PHICH를 전송하더라도, NR은 NR-PDCCH 와 NR-PHICH가 REG를 공통의 자원 풀(resource pool)로써 사용하지 않도록 설계할 수 있다. 이러한 경우에, NR-PBCH은 PHICH 정보를 포함하지 않는다. 그리고 기지국이 SIB 전송을 주기적으로 수행하지 않고, SIB 전송을 단말의 요청(request)으로 필요에 의해서만(on-demand) 수행한다면, NR은 SFN도 필요로 하지 않는다. 그러므로, 만일 NR-PDCCH의 설계가 LTE-PDCCH의 설계와 다르다면, 기지국은 MIB를 전송할 필요가 없고, 기지국이 단말에게 전송하는 NR-SIB에 상술한 SFN과 PHICH 정보를 포함시킬 수 있다.The NR-PBCH does not necessarily need the above-mentioned information. If the NR-PDCCH is not distributed over the entire band, the base station does not need to inform the terminal of the system bandwidth. In addition, NR applies an adaptive and non-synchronous HARQ-ACK (acknowledgment) to both the DL and UL, so that the base station may not transmit the NR-PHICH. Alternatively, even if the base station transmits the NR-PHICH, the NR may be designed such that the NR-PDCCH and the NR-PHICH do not use the REG as a common resource pool. In this case, the NR-PBCH does not contain PHICH information. And if the base station does not perform the SIB transmission periodically, and performs the SIB transmission on-demand (on-demand) as the request (request) of the terminal, NR does not require the SFN. Therefore, if the design of the NR-PDCCH is different from the design of the LTE-PDCCH, the base station does not need to transmit the MIB and may include the above-described SFN and PHICH information in the NR-SIB transmitted by the base station to the terminal.
그러나 기지국이 NR-PDCCH를 전송하기 위해서는 적절한 전처리를 수행해야 한다. 만일 기지국이 별도의 정보를 전달 받고, 그 정보에 기반하여 단말들의 빔 형성을 수행할 수 있는 경우(예, non-standalone scenario)에, NR-PDCCH를 위한 적절한 빔 형성이 수행될 수 있다. 하지만, 만일 NR이 단독으로 동작하는 경우(예, standalone scenario)에, NR-PDCCH에 적용될 전처리를 위한 정보는 단말로부터의 UL 피드백을 통해 획득될 수 있다. However, in order for the base station to transmit the NR-PDCCH, an appropriate preprocessing must be performed. If the base station receives separate information and can perform beamforming of terminals based on the information (eg, non-standalone scenario), proper beamforming for the NR-PDCCH may be performed. However, if the NR operates alone (eg, standalone scenario), information for preprocessing to be applied to the NR-PDCCH may be obtained through UL feedback from the terminal.
이는 UL 기반의 단말 탐색(예, UE discovery)이 수행되는 경우에 해당한다. 단말은 UL NR-DRS를 기지국으로 전송한다. 여기서, UL NR-DRS 는 단말이 별도의 기지국 설정에 무관하게 전송하는 물리계층의 신호를 의미한다. 단말은 전력 제어(power control) 및 타이밍 어드밴스(timing advance)를 모르더라도, UL NR-DRS 를 전송할 수 있다. 이는 NR-PRACH(physical random access channel) 프리앰블만을 의미하는 것은 아니다.This corresponds to a case where UL based UE discovery (eg, UE discovery) is performed. The terminal transmits the UL NR-DRS to the base station. Here, UL NR-DRS means a signal of the physical layer transmitted by the terminal regardless of the separate base station configuration. The terminal may transmit the UL NR-DRS even if the terminal does not know power control and timing advance. This does not mean only the physical random access channel (NR-PRACH) preamble.
기지국(예, 서빙 셀 기지국)은 UL NR-DRS를 수신하고, 하나 이상의 단말들의 존재를 인지할 수 있다. 기지국은 구현적으로 수신 빔을 형성하고, 이를 채널 등가성(channel reciprocity)을 토대로 전처리를 위해 활용할 수 있다. The base station (eg, serving cell base station) may receive the UL NR-DRS and recognize the presence of one or more terminals. The base station may form a reception beam by implementation, and may use it for preprocessing based on channel reciprocity.
만일 기지국이 채널 등가성을 활용할 수 없는 경우에는, 단말이 UL NR-DRS 가 여러 번 전송되는 UL NR-DRS 오케이션(occasion)을 사용하여, 송신 빔 스위핑(Tx beam sweeping)을 수행할 수 있다. 단말에 의해 전송되는 UL NR-DRS의 자원은 하나 이상으로 설정될 수 있다. 단말은 각 UL NR-DRS 자원에서 전처리된 NR-DRS 를 전송할 수 있다. 이 때 활용되는 전처리 방식은, 기지국에 의해 단말에게 별도로 지시될 수 있다. 만일 전처리 방식에 대한 별도의 지시가 없는 경우에, 단말은 전처리가 적용되지 않거나 혹은 동일한 전처리가 적용된 UL NR-DRS를, UL NR-DRS 자원에서 반복하여 전송할 수 있다. If the base station cannot utilize channel equivalency, the UE may perform Tx beam sweeping using a UL NR-DRS occlusion in which UL NR-DRS is transmitted several times. The resource of the UL NR-DRS transmitted by the terminal may be set to one or more. The terminal may transmit the preprocessed NR-DRS in each UL NR-DRS resource. The preprocessing scheme utilized at this time may be separately instructed by the base station to the terminal. If there is no separate instruction for the preprocessing scheme, the UE may repeatedly transmit the UL NR-DRS to which the preprocessing is not applied or the same preprocessing is applied, in the UL NR-DRS resource.
UL NR-DRS 자원(들)에 속하는 UL NR-DRS들은 반드시 동일한 시퀀스 식별자(ID)와 동일한 자원(주파수 및 시간 자원)을 가지지는 않는다. 만일 단말이 전처리되지 않은 UL NR-DRS를 여러 상향링크 슬롯에 걸쳐 전송하는 경우에는, 하나의 긴 시퀀스(수열)를 이용해, 여러 개의 상향링크 슬롯에 걸쳐서 하나의 UL NR-DRS 시퀀스(수열)를 전송할 수 있다. 다른 방법으로써, 하나의 UL NR-DRS 시퀀스(수열)의 길이는 하나의 상향링크 슬롯의 길이 이하일 수 있고, 단말은 여러 개의 상향링크 슬롯에 걸쳐 여러 개의 UL NR-DRS 시퀀스(수열)를 전송할 수 있다. 이 때, UL NR-DRS 시퀀스(수열)들은 반드시 동일한 시퀀스 식별자(ID)와 동일한 자원(주파수 및 시간 자원)을 가지지는 않는다.UL NR-DRSs belonging to UL NR-DRS resource (s) do not necessarily have the same resource (frequency and time resource) and the same sequence identifier (ID). If the UE transmits unprocessed UL NR-DRS over several uplink slots, one long sequence (sequence) is used to transmit one UL NR-DRS sequence (sequence) over several uplink slots. Can transmit Alternatively, the length of one UL NR-DRS sequence (sequence) may be equal to or less than the length of one uplink slot, and the terminal may transmit several UL NR-DRS sequences (sequence) over several uplink slots. have. In this case, the UL NR-DRS sequences (sequences) do not necessarily have the same sequence identifier (ID) and the same resource (frequency and time resource).
단말은 UL 피드백을 위해서 UL 자원을 알 수 있어야 한다. NR-SRS(sounding reference signal)의 설정 정보는 LTE SRS와 동등한 설정을 가정한다. 단말은 NR-SRS의 전송 전력(transmission power), 전송 대역폭, 그리고 타이밍 어드밴스(timing advance)를 알 수 있어야 한다. The UE should be able to know the UL resources for UL feedback. The configuration information of the NR-SRS (sounding reference signal) assumes the configuration equivalent to the LTE SRS. The UE should be able to know the transmission power, transmission bandwidth, and timing advance of the NR-SRS.
NR-PRACH 프리앰블의 경우에는, LTE PRACH 프리앰블과 동등한 성질을 가정한다. 단말은 NR-PRACH 프리앰블의 자원 위치를 알고 있다면, 해당 자원에서 NR-PRACH 프리앰블을 전송한다. 단말은 TS에서 정의된 NR-PRACH 프리앰블 인덱스 세트에 속하는 인덱스들 중에서 단말 식별정보(예, UE ID) 혹은 단말 식별정보와 슬롯 인덱스의 함수를 통해 NR-PRACH 프리앰블 인덱스를 결정하고, 결정된 NR-PRACH 프리앰블 인덱스를 기지국으로 전송한다.In the case of the NR-PRACH preamble, a property equivalent to the LTE PRACH preamble is assumed. If the UE knows the resource location of the NR-PRACH preamble, and transmits the NR-PRACH preamble in the corresponding resource. The terminal determines the NR-PRACH preamble index through a function of the terminal identification information (eg, UE ID) or the terminal identification information and the slot index among the indexes belonging to the NR-PRACH preamble index set defined in the TS, and the determined NR-PRACH The preamble index is transmitted to the base station.
기지국은 NR-PRACH 프리앰블 인덱스를 수신하고, 이를 이용해 단말이 어느 가상 섹터(virtual sector)에 위치하는지를 추정하거나 혹은 무선 채널을 추정할 수 있다. 기지국은 이렇게 추정한 정보를, 채널 등가성에 기초해 전처리를 위해 활용할 수 있다. 이처럼 NR-SRS 보다는 NR-PRACH 프리앰블에 의해 요구되는 설정 정보의 양이 더 적으므로, NR-PRACH 프리앰블은 UL NR-DRS로써 활용될 수 있다.The base station receives the NR-PRACH preamble index, and may use this to estimate which virtual sector the terminal is located in or estimate the radio channel. The base station can use this estimated information for preprocessing based on channel equivalency. As such, since the amount of configuration information required by the NR-PRACH preamble is smaller than that of the NR-SRS, the NR-PRACH preamble can be utilized as the UL NR-DRS.
만일 기지국이 채널 등가성을 활용할 수 없는 경우에는, UL NR-DRS의 전처리를 별도의 방법을 통해 결정한다. 기지국은 단말의 UL NR-DRS 전처리 정보를 NR-PDCCH 혹은 랜덤 액세스 응답(random access response)에 포함시켜 단말에게 전송할 수 있다. If the base station cannot utilize channel equivalency, the preprocessing of the UL NR-DRS is determined through a separate method. The base station may include UL NR-DRS preprocessing information of the terminal in the NR-PDCCH or a random access response to transmit to the terminal.
기지국에 의해 가정되는 채널 등가성이 사용되기 위해서는, 단말로부터 수신되는 UL NR-DRS가 위치하는 무선 자원과 기지국에 의해 전송될 무선 자원이 동일한 것이 유리하다. 다시 말해서, 단말이 UL NR-DRS를 DL 주파수 자원을 사용해서 전송하는 방법이 고려될 수 있다. NR이 TDD로 구성되는 경우에는, 이러한 방법이 사용될 수 있다. NR이 FDD로 구성되는 경우에도, 채널 등가성이 최대한으로 이용되기 위해서, 단말이 DL 주파수 자원을 사용하는 것이 허용될 수 있다.In order to use the channel equivalent assumed by the base station, it is advantageous that the radio resource where the UL NR-DRS received from the terminal is located and the radio resource to be transmitted by the base station are the same. In other words, a method of transmitting a UL NR-DRS by using a DL frequency resource may be considered. If the NR consists of TDD, this method may be used. Even when the NR is configured with FDD, the terminal may be allowed to use the DL frequency resource in order to maximize channel equivalentity.
기지국이 단말에게 NR-PRACH 프리앰블의 설정 정보를 전달하기 위해서, 단말은 기지국의 존재를 탐색해야 한다. 이는 DL 기반의 셀 탐색(cell search 또는 cell discovery)을 수행하는 경우에 해당한다. 기지국은 DL NR-DRS를 전송한다. 단말이 사전에 아무런 정보를 가지고 있지 않더라도 DL NR-DRS를 수신하고 이를 활용하기 위해서, 기지국에 의해 전송되는 DL NR-DRS는 규격(specification)에서 정의되는 무선 자원(radio resource)을 사용한다. DL NR-DRS의 시퀀스(수열)는 가상 섹터의 인덱스 혹은 가상 섹터의 식별 정보(예, identification)를 적어도 포함하는 수학식으로부터 생성된다. In order for the base station to transmit configuration information of the NR-PRACH preamble to the terminal, the terminal must search for the presence of the base station. This corresponds to a case of performing DL based cell search or cell discovery. The base station transmits DL NR-DRS. Even if the UE does not have any information in advance, in order to receive and utilize the DL NR-DRS, the DL NR-DRS transmitted by the base station uses a radio resource defined in the specification. The sequence (sequence) of the DL NR-DRS is generated from an equation including at least an index of the virtual sector or identification information (eg, identification) of the virtual sector.
또한 서빙 기지국이 하나의 가상 섹터에 적용하는 전처리는, NR-DRS 와 NR-PBCH 등에 동일하게 적용된다. 본 명세서에서, NR-DRS(또는 PSS, SSS) 및 NR-PBCH 는 SS 버스트(burst)로 지칭한다. 그러므로 본 명세서에서, 하나의 가상 섹터는 하나의 SS 버스트에 일대일 대응한다. The preprocessing that the serving base station applies to one virtual sector is equally applied to the NR-DRS and NR-PBCH. In this specification, NR-DRS (or PSS, SSS) and NR-PBCH are referred to as SS bursts. Therefore, in this specification, one virtual sector corresponds one-to-one to one SS burst.
NR DL-DRS 자원의 예로써, NR-SSS(또는 NR-SSS 자원)는 하향링크 동기 뿐만 아니라 NR DL-DRS 자원으로 활용될 수 있으며, 혹은 RSRP 측정에도 이용될 수 있고, 혹은 NR-PBCH의 복조에도 활용될 수 있다.As an example of NR DL-DRS resources, NR-SSS (or NR-SSS resources) may be used as NR DL-DRS resources as well as downlink synchronization, or may be used for RSRP measurement, or NR-PBCH It can also be used for demodulation.
기지국이 DL NR-DRS를 전송하는 방법에 대하여, 설명한다. 구체적으로, 하나의 단계로 NR-DRS를 전송하는 방법(이하 '방법 S1')과, 두 개의 단계로 NR-DRS를 전송하는 방법(이하 '방법 S2')을 설명한다.A method of transmitting a DL NR-DRS by a base station will be described. Specifically, a method of transmitting the NR-DRS in one step (hereinafter, 'method S1') and a method of transmitting the NR-DRS in two steps (hereinafter, 'method S2') will be described.
방법 S1에서는, 기지국이 가상 섹터마다 DL NR-DRS 자원을 할당하고, 단말은 DL NR-DRS를 수신하여 DL NR-DRS의 시퀀스(수열) 정보를 추정한다. 단말은 DL NR-DRS 시퀀스(수열)로부터, 단말이 속한 가상 섹터의 인덱스 i를 알 수 있다. 단말은 믿을 만한(reliable) 피드백 링크를 사용해서, 가상 섹터의 인덱스 i를 기지국에게 전달할 수 있다. 여기서, 믿을 만한 피드백을 수행하는 방법으로써, 상술한 단말이 UL NR-DRS를 전송하는 방법이 고려될 수 있다. 단말은 UL NR-DRS에 의해 사용되는 무선 자원을 선택함으로써, 기지국에게 가상 섹터의 인덱스를 암시적으로(implicitly) 전달할 수 있다. 예를 들어, 만약 기지국이 여러 개의 UL NR-DRS 자원을 설정하고 단말이 그 중에서 i번째 UL NR-DRS 자원을 선택하고 선택된 자원을 이용해 UL NR-DRS를 전송한다면, 기지국은 단말이 속하는 가상 섹터 인덱스 i를 추정할 수 있다. 이처럼 기지국은 가상 섹터의 인덱스를 추정하고, 단말로부터 수신한 신호를 이용해 단말로 향하는 더 좁은 빔(sharp beam)을 형성할 수 있다. 방법 S1이 수행되기 위해서는, 기지국은 단말로부터의 신호를 이용해 전처리 (preprocessing)를 수행할 수 있어야 한다. In the method S1, the base station allocates DL NR-DRS resources for each virtual sector, and the terminal receives the DL NR-DRS to estimate sequence (sequence) information of the DL NR-DRS. The UE can know the index i of the virtual sector to which the UE belongs from the DL NR-DRS sequence (sequence). The terminal may deliver the index i of the virtual sector to the base station using a reliable feedback link. Here, as a method of performing reliable feedback, a method of transmitting the UL NR-DRS by the aforementioned terminal may be considered. The terminal may implicitly deliver the index of the virtual sector to the base station by selecting a radio resource used by the UL NR-DRS. For example, if the base station configures several UL NR-DRS resources and the terminal selects the i-th UL NR-DRS resource among them and transmits the UL NR-DRS using the selected resources, the base station is a virtual sector to which the terminal belongs. Index i can be estimated. In this way, the base station estimates the index of the virtual sector and can form a narrower beam (sharp beam) toward the terminal by using the signal received from the terminal. In order for method S1 to be performed, the base station should be able to perform preprocessing using a signal from the terminal.
예를 들어, 기지국이 단말에게 향하는 좁은 빔을 형성하기 위해서, 아래의 수학식이 고려될 수 있다. 설명의 편의를 위해, 잡음(noise)이 없는 신호 모델을 가정한다. 기지국으로부터 단말로의 무선 채널은, 행렬 로 표현된다. 는 DL 채널(DL 채널은 기지국이 가지는 안테나의 개수를 열로 가지고 단말이 가지는 안테나의 개수를 행으로 가짐)을, 복소수의 값으로 가진다. 기지국이 가상 섹터(인덱스 i)를 형성하면서 사용하는 전처리 벡터는, 로 표현될 수 있고, 의 길이는 기지국이 갖는 안테나의 개수에 해당한다. For example, to form a narrow beam directed by the base station to the terminal, the following equation may be considered. For convenience of explanation, a signal model without noise is assumed. The radio channel from the base station to the terminal is a matrix It is expressed as The DL channel (DL channel has the number of antennas of the base station in columns and the number of antennas of the terminal in rows) has a complex value. The preprocessing vector used by the base station while forming a virtual sector (index i) is Can be expressed as The length of corresponds to the number of antennas the base station has.
DL NR-DRS 안테나 포트가 1개인 것으로 가정되는 경우에, 기지국은 i 번째 가상 섹터와 i번째 DL NR-DRS 자원을 대응시키기 때문에, 동일한 전처리 벡터 가 사용된다. 편의상 i번째 DL NR-DRS 의 값은 1로 표현될 수 있다. 단말이 수신하는 신호는, 이다. If it is assumed that there is one DL NR-DRS antenna port, since the base station associates the i th virtual sector with the i th DL NR-DRS resource, the same preprocessing vector Is used. For convenience, the value of the i-th DL NR-DRS may be represented by one. The signal received by the terminal, to be.
단말은 DL NR-DRS의 자원마다 별도의 선형 정합 필터(linear matched filter) 벡터 를 이용해서, 유효 채널(effective channel) 을 추정(estimation)한다. 이때의 정합(matching) 과정은 로 표현될 수 있고, 가 얻어진다. 여기서, 복소수 를 이용해 의 크기(예, 2-norm)는 1로 맞춰진다. UE has separate linear matched filter vector for each resource of DL NR-DRS Using, effective channel Estimation The matching process at this time Can be expressed as Is obtained. Where complex number Using The size of (eg 2-norm) is set to one.
단말은 인덱스들 중에서, DL NR-DRS 를 수신한 이후에 얻은 결과값의 절대값이 가장 큰 인덱스 를 얻는다. 단말은 UL NR-DRS를 전처리하여 기지국으로 전송하고, UL NR-DRS 안테나 포트가 1개인 경우에 적용되는 전처리 벡터는 를 사용한다. 여기서, 는 의 켤레 복소수(complex conjugate)을 의미한다. The UE indexes the largest absolute value of the result obtained after receiving the DL NR-DRS among the indexes Get The terminal preprocesses the UL NR-DRS and transmits it to the base station, and the preprocessing vector applied to the case where there is one UL NR-DRS antenna port is Use here, Is Means a complex conjugate of.
단말이 DL 주파수에서 UL NR-DRS를 전송하는 경우에, 채널 등가성에 의해 단말로부터 기지국으로의 무선 채널은 로 표현될 수 있다. 편의상 UL NR-DRS가 1로 표현되면, 기지국이 i 번째 가상 섹터에 대응하여 할당한 무선 자원에서 수신하는 신호 는, 에 해당한다. 기지국은 i 번째 가상 섹터에 대응하여 할당한 무선 자원마다, 별도의 선형 정합 필터(linear matched filter) 벡터 를 이용해 유효 채널(effective channel) 을 추정(estimation)한다. 이때의 정합(matching) 과정은 로 표현될 수 있고, 가 얻어진다. 여기서, 복소수 를 이용해, 의 크기(예, 2-norm)는 1로 맞춰진다. When the terminal transmits the UL NR-DRS at the DL frequency, the radio channel from the terminal to the base station due to channel equality is It can be expressed as. For convenience, when UL NR-DRS is represented by 1, a signal received from a radio resource allocated by the base station corresponding to the i th virtual sector Is, Corresponds to The base station has a separate linear matched filter vector for each radio resource allocated corresponding to the i th virtual sector. Effective channel using Estimation The matching process at this time Can be expressed as Is obtained. Where complex numbers Using The size of (eg 2-norm) is set to one.
이제, 기지국은 단말로의 전송을 위한 전처리 벡터 을 사용해서, 단말에게 시스템 정보(예, NR-SIB)를 데이터 채널(예, NR-PDSCH)을 이용해 전송할 수 있다. 또는 기지국은 제어 채널(예, NR-PDCCH)을 전송하는 경우에 전처리 벡터 를 적용할 수 있다. Now, the base station is a preprocessing vector for transmission to the terminal By using this, system information (eg, NR-SIB) can be transmitted to the terminal using a data channel (eg, NR-PDSCH). Or when the base station transmits a control channel (eg, NR-PDCCH) Can be applied.
만일 기지국이 단말에게 를 전처리 벡터로써 적용한 경우에, 단말의 수신 신호는 으로 표현되고, 이는 에 해당한다. 여기서, 1은 기지국에 의해 사용되는 NR-DM(demodulation)-RS 를 편의상 나타낸다. If the base station to the terminal When is applied as a preprocessing vector, the received signal of the terminal is Expressed as Corresponds to Here, 1 denotes an NR-DM (demodulation) -RS used by the base station for convenience.
단말이 이미 알고 있는 을 이용해, 신호를 수신할 수 있다. 단말이 선형 벡터 를 이용해 얻은 은, 으로 표현될 수 있다. 이 값은 단말이 DL NR-DRS 에서 수신한 세기인 와 비교될 수 있고, 단말이 DL NR-DM-RS 에서 수신한 세기인 와 비교될 수 있다.Terminal already knows Can be used to receive a signal. Terminal vector linear vector Obtained using silver, It can be expressed as. This value is the strength received by the UE from the DL NR-DRS. And the strength received by the UE in the DL NR-DM-RS. Can be compared with
가 간략화한 특이점 분해(skinny singular value decomposition)을 통해 로 표현된다면, 이며, 이다. 여기서, 는 정방 행렬이며, 특이점을 원소(예, 양의 실수)로 갖는다. 는 의 좌측 특이점 행렬을 나타내며, 는 의 우측 특이점 행렬을 나타낸다. Through simplified skinny singular value decomposition If expressed as Is, to be. here, Is a square matrix with singular points as elements (eg positive real numbers). Is Represents the left singularity matrix of, Is Represents the right singularity matrix of.
따라서, 에 대한 승수(exponent)가 높아지기 때문에, 특이값들의 비율(예, condition number)에 차이가 있다. 그러므로 기지국이 NR-DM-RS에서 더욱 세밀한 빔을 형성했다고 해석될 수 있다. 만일 단말이 최적의 선형 정합 벡터를 사용한다면, 더 높은 수신 세기를 얻을 수도 있다. 이러한 방식에 기초해, 기지국은 좁은 빔을 얻기 위해 방법 S1을 활용할 수 있다. therefore, Since the exponent for R is high, there is a difference in the ratio of singular values (eg, condition number). Therefore, it can be interpreted that the base station formed a finer beam in the NR-DM-RS. If the terminal uses the optimal linear match vector, higher reception strength may be obtained. Based on this approach, the base station can utilize the method S1 to obtain a narrow beam.
만일 기지국이 디지털 전처리(digital precoding)을 수행하기 어렵지만 아날로그 빔형성(analog beamforming)이 가능한 경우에, 기지국은 전처리를 수행하기 위해 하나의 단계로 NR-DRS를 전송하는 방법(예, 방법 S1)만으로는 더 좁은 빔을 형성할 수 없다. 이러한 경우에는, 두 개의 단계로 NR-DRS를 전송하는 방법(예, 방법 S2)가 적용될 수 있다.If the base station is difficult to perform digital precoding but analog beamforming is possible, the base station may only transmit the NR-DRS in one step to perform the preprocessing (e.g., method S1). No narrower beams can be formed. In this case, a method (eg, method S2) of transmitting the NR-DRS in two steps may be applied.
방법 S2에 속하는 첫번째 단계에서는, 기지국이 가상 섹터마다 DL NR-DRS 자원을 할당하고, 단말이 DL NR-DRS를 이용해 단말이 속한 가상 섹터의 인덱스 i를 추정한다. 이는, 방법 S1과 동일하다. In a first step belonging to method S2, the base station allocates DL NR-DRS resources for each virtual sector, and the terminal estimates the index i of the virtual sector to which the terminal belongs using the DL NR-DRS. This is the same as the method S1.
방법 S2에 속하는 두번째 단계는, 단말의 피드백이 있는 경우에 수행된다. 기지국은 단말에 의해 선택된 가상 섹터(인덱스 i)에서 더 좁은 빔을 형성하도록, 좁은 빔마다 별도의 DL NR-DRS를 하나씩 전처리한다. 단말은 각 좁은 빔을 통해 표현되는 DL NR-DRS를 수신하여, DL NR-DRS의 시퀀스(수열) 정보를 추정한다. 방법 S1에서 단말이 가상 섹터 인덱스를 추출하는 방법과 동일한 방식을 사용해서, 단말은 좁은 빔의 인덱스 j를 추정한다. 방법 S1에서 단말이 기지국에게 피드백하는 방식을 동일하게 사용해서, 단말은 기지국에게 암시적으로 좁은 빔의 인덱스를 전달할 수 있다. 만일 기지국에서 아날로그 빔형성이 가능하고 디지털 전처리가 어려운 경우에, 기지국은 방법 S2를 활용해서, 단말에게 적용할 수 있는 좁은 빔 j를 형성할 수 있다.The second step belonging to the method S2 is performed when there is feedback from the terminal. The base station preprocesses a separate DL NR-DRS for each narrow beam to form a narrower beam in the virtual sector (index i) selected by the terminal. The terminal receives the DL NR-DRS represented through each narrow beam, and estimates sequence (sequence) information of the DL NR-DRS. In method S1, using the same method as that of the terminal extracting the virtual sector index, the terminal estimates the index j of the narrow beam. In the same way as the terminal feeds back to the base station in the method S1, the terminal may implicitly transmit the index of the narrow beam to the base station. If the analog beamforming is possible at the base station and the digital preprocessing is difficult, the base station may use method S2 to form a narrow beam j applicable to the terminal.
그렇지만 방법 S2의 경우에는, 좁은 빔의 개수만큼의 무선 자원이 소비되기 때문에, 기지국에게 많은 부담이 된다. 만일 여러 개의 빔이 공간 다중화(SDM: spatial division multiplexing)되면, 전력이 균등하게 나뉘어 여러 개의 빔이 전송되기 때문에, 각 빔이 갖는 커버리지(coverage)가 감소한다. 만일 여러 개의 빔이 주파수 다중화(FDM: frequency division multiplexing)되면, 전력이 나뉘어 여러 개의 빔이 전송되는 현상이 동일하게 발생한다. 만일 여러 개의 빔이 시간 다중화 (TDM: time division multiplexing)되면, 좁은 빔의 영역이 확보될 수 있지만, 기지국이 오랜 시간에 걸쳐서 단말에게 좁은 빔을 측정하도록 지시해야 하므로, 지연 성능(latency performance)이 낮다. 만일 여러 개의 빔이 여러 방식을 통해 다중화되더라도, 기지국이 이러한 다중화 방식을 단말에게 미리 설정(configuration)하기 위해서 별도의 무선 자원이 필요하다.However, in the case of the method S2, as much radio resources are consumed as the number of narrow beams, it is a heavy burden on the base station. If multiple beams are spatial multiplexed (SDM), the coverage of each beam is reduced because power is divided evenly and multiple beams are transmitted. If multiple beams are frequency division multiplexed (FDM), power is divided and multiple beams are transmitted. If multiple beams are time division multiplexed (TDM), a narrow beam area can be secured, but the latency performance may be reduced because the base station should instruct the terminal to measure the narrow beam over a long time. low. If multiple beams are multiplexed through various schemes, a separate radio resource is needed for the base station to configure such multiplex scheme in advance to the terminal.
기지국이 NR-PBCH 와 NR-PDCCH 를 전송하는 방법에 대하여 설명한다. 구체적으로, 기지국의 가상 섹터마다 독립적으로 NR-PBCH 와 NR-PDCCH 를 전송하는 방법(이하 '방법 T1')과, 기지국의 물리 섹터마다 동일한 NR-PBCH 와 NR-PDCCH 을 전송하는 방법(이하 '방법 T2')을 설명한다. A method of transmitting an NR-PBCH and an NR-PDCCH by a base station will be described. Specifically, a method for transmitting the NR-PBCH and the NR-PDCCH independently for each virtual sector of the base station (hereinafter, 'method T1') and a method for transmitting the same NR-PBCH and NR-PDCCH for each physical sector of the base station (hereinafter, ' Method T2 ') is explained.
방법 T1에서는 기지국의 가상 섹터마다, NR-PBCH 의 자원이 서로 다를 수 있고 NR-PDCCH 의 자원이 서로 다를 수 있다. In method T1, resources of the NR-PBCH may be different for each virtual sector of the base station, and resources of the NR-PDCCH may be different.
NR-PBCH 와 NR-PDCCH가 가상 섹터마다 별도로 할당되는 경우에, 기지국은 시간 다중화, 주파수 다중화, 혹은 공간 다중화를 사용할 수 있고, NR-PDCCH 의 탐색 공간을 구분하여 서로 다른 가상 섹터를 지원할 수도 있다.When the NR-PBCH and the NR-PDCCH are allocated separately for each virtual sector, the base station may use time multiplexing, frequency multiplexing, or spatial multiplexing, and may support different virtual sectors by dividing the search space of the NR-PDCCH. .
예를 들어, 기지국은 가상 섹터마다 NR-PBCH 와 NR-PDCCH 의 NR-서브프레임/슬롯 옵셋(offset)을 동일하게 설정할 수 있다. 하지만 기지국은, 가상 섹터마다 NR-PBCH 의 NR-서브프레임/슬롯 옵셋을 서로 다르게 설정할 수 있으며, 가상 섹터마다 NR-PDCCH 의 NR-RB(resource block) 인덱스를 서로 다르게 설정할 수 있다. 이러한 독립적인 설정은, 가상 섹터들의 NR-PBCH 간의 간섭과 NR-PDCCH 간의 간섭을 회피하는 수단으로 활용될 수 있다. For example, the base station may set the NR-subframe / slot offset of the NR-PBCH and the NR-PDCCH equally for each virtual sector. However, the base station may set different NR-subframe / slot offsets of the NR-PBCH for each virtual sector, and different NR-RB (resource block) indexes of the NR-PDCCH for each virtual sector. This independent configuration may be utilized as a means of avoiding interference between NR-PBCHs and interference between NR-PDCCHs of virtual sectors.
다른 예를 들어, NR-PDCCH 의 단말 탐색 공간(예, user-specific search space)에 속한 CCE(control channel element)들에 서로 다른 전처리를 적용함으로써, 서빙 기지국은 동일한 슬롯에서 서로 다른 가상 섹터들에 위치한 단말들에게 스케줄링 정보를 전달할 수 있다.In another example, by applying different preprocessing to control channel elements (CCEs) belonging to a UE search space (eg, a user-specific search space) of the NR-PDCCH, the serving base station is assigned to different virtual sectors in the same slot. The scheduling information may be delivered to the located terminals.
단말은 여러 개의 가상 섹터들로부터 NR-DRS 와 NR-PBCH 를 수신하고, NR-DRS (또는 NR-PBCH 및 NR-DRS)에 대하여 더욱 높은 수신 품질을 갖는 가상 섹터를 선택할 수 있다. The terminal may receive NR-DRS and NR-PBCH from several virtual sectors, and select a virtual sector having a higher reception quality for NR-DRS (or NR-PBCH and NR-DRS).
방법 T1을 위한 방법 T1-1에서는 단말이 하나의 가상 섹터만을 선택한다. 방법 T1을 위한 방법 T1-2은 단말이 복수 개의 가상 섹터들을 선택할 수 있도록 허용한다. In method T1-1 for the method T1, the terminal selects only one virtual sector. Method T1-2 for Method T1 allows the terminal to select a plurality of virtual sectors.
방법 T1-1이 사용되면, NR-PBCH에 의해 지시되는 내용이 하나의 가상 섹터에 적용된다. 하지만, 방법 T1-2이 사용되면, NR-PBCH에 의해 지시되는 내용이 여러 가상 섹터 각각에 적용될 수 있다. 예를 들어, NR-PBCH을 통해 UL NR-DRS 자원이 설정되는 경우에, 만약 방법 T1-2가 사용되면, 단말은 여러 개의 UL NR-DRS 자원들을 선택하고, 선택된 자원들을 이용해 UL NR-DRS들을 각각 전송할 수 있다. If method T1-1 is used, the content indicated by the NR-PBCH is applied to one virtual sector. However, if method T1-2 is used, the content indicated by the NR-PBCH may be applied to each of several virtual sectors. For example, when UL NR-DRS resources are configured through NR-PBCH, if method T1-2 is used, the UE selects several UL NR-DRS resources and uses UL NR-DRS for the selected resources. Can be transmitted separately.
방법 T2는 NR-PBCH 자원과 NR-PDCCH 자원을 모든 가상 섹터에 동일하게 설정하거나, NR-PBCH 자원을 모든 가상 섹터에 동일하게 설정하거나, NR-PDCCH 자원을 모든 가상 섹터에 동일하게 설정한다. 예를 들어, NR-PBCH이 각 가상 섹터에 대응하는 UL NR-DRS 자원 설정을 포함하는 경우에, 하나의 동일한 NR-PBCH가 여러 개의 UL NR-DRS 자원들을 포함할 수 있다. 다른 예를 들어, NR-PBCH가 각 가상 섹터에 대응하는 NR-PDCCH 자원을 여러 개 포함할 수 있다. 방법 T2에서는 하나의 NR-PDCCH가 가상 섹터의 개수에 정비례하는 설정 정보를 포함하기 위해서, NR-PBCH 의 페이로드(payload)가 많이 필요하다.Method T2 sets the NR-PBCH resource and the NR-PDCCH resource to all virtual sectors equally, sets the NR-PBCH resource to all virtual sectors identically, or sets the NR-PDCCH resource to all virtual sectors identically. For example, when the NR-PBCH includes UL NR-DRS resource settings corresponding to each virtual sector, one same NR-PBCH may include several UL NR-DRS resources. For another example, the NR-PBCH may include several NR-PDCCH resources corresponding to each virtual sector. In method T2, in order for one NR-PDCCH to contain configuration information directly proportional to the number of virtual sectors, a large payload of the NR-PBCH is required.
UL NR-DRS 자원을 설정하는 방법에 대하여 설명한다. 구체적으로, 방법 R1은 UL NR-DRS 자원의 위치가 규격에 의해 고정되는 경우에 해당한다. 방법 R2는 UL NR-DRS 자원의 위치가 설정될 수 있는 경우에 해당한다.A method of setting UL NR-DRS resources will be described. Specifically, the method R1 corresponds to the case where the location of the UL NR-DRS resource is fixed by the specification. Method R2 corresponds to a case where the location of UL NR-DRS resources can be set.
방법 R1 에서는 규격에 의해 UL NR-DRS 자원의 위치가 고정되기 때문에, 단말은 기지국으로부터 별도의 시그널링(signalling) 없이 UL NR-DRS 를 수신할 수 있다. 그러므로 기지국은 NR-PBCH 를 포함한 어느 다른 물리 채널에서도, UL NR-DRS 자원을 설정하지 않는다. 그러나 기지국은 UL NR-DRS 자원들의 합집합을 무선 자원으로 사용할 수 없기 때문에, 단말의 수가 적은 경우에는 방법 R1은 비효율적이다. 그리고 NR 의 미래 호환성(forward compatibility)이 지원되는 측면에서는, UL NR-DRS 자원이 설정되는 것이 허용될 필요가 있다. In the method R1, since the location of the UL NR-DRS resource is fixed according to the specification, the terminal may receive the UL NR-DRS without additional signaling from the base station. Therefore, the base station does not set up the UL NR-DRS resource in any other physical channel including the NR-PBCH. However, since the base station cannot use the union of UL NR-DRS resources as a radio resource, the method R1 is inefficient when the number of terminals is small. And in the aspect that forward compatibility of NR is supported, UL NR-DRS resource needs to be allowed to be set.
방법 R2에서는 UL NR-DRS 자원의 위치를 설정하기 위해서, 기지국은 별도의 무선 자원을 할당해야 한다. 기지국이 좁은 빔을 형성하여 단말에게 데이터를 전송하기 위해서는, NR-PBCH 가 UL NR-DRS 자원의 위치를 포함할 수 있다. 예를 들어, 기지국은 UL NR-DRS를 위한 자원을 설정하고, UL NR-DRS 자원의 설정 정보를 방송 채널(예, NR-PBCH)에 포함시키고, 방송 채널을 전송할 수 있다. NR-PBCH 가 갖는 UL NR-DRS 자원의 개수는 하나 이상이며, 이는 기지국에 의해 활용되는 가상 섹터의 개수와 동일하다. 예를 들어, 기지국은 기지국에 의해 사용되는 가상 섹터의 개수와 동일한 개수로, UL NR-DRS 자원을 설정할 수 있다. 기지국은 NR-PBCH 를 전송하여 UL NR-DRS 자원을 설정할 수 있으므로, 기지국은 미래 호환성(forward compatibility)을 지원한다. In method R2, in order to set the location of the UL NR-DRS resource, the base station must allocate a separate radio resource. In order for the base station to form a narrow beam and transmit data to the terminal, the NR-PBCH may include the location of the UL NR-DRS resource. For example, the base station may set a resource for the UL NR-DRS, include configuration information of the UL NR-DRS resource in a broadcast channel (eg, NR-PBCH), and transmit a broadcast channel. The number of UL NR-DRS resources of the NR-PBCH is one or more, which is equal to the number of virtual sectors utilized by the base station. For example, the base station may set UL NR-DRS resources to the same number as the number of virtual sectors used by the base station. Since the base station can configure the UL NR-DRS resource by transmitting the NR-PBCH, the base station supports forward compatibility.
NR-PBCH 는 UL NR-DRS 자원의 설정 정보 이외에, 시스템 정보의 전송 여부를 알리는 비트를 더 포함할 수도 있다. NR-PBCH 를 포함하는 서브프레임/슬롯들 사이에서, 시스템 정보가 NR-PDCCH 를 이용해 전송될 수 있다. 예를 들어, 기지국은 시스템 정보가 제어 채널(예, NR-PDCCH)을 통해 전송되는지를 나타내는 비트 필드를, 방송 채널(예, NR-PBCH)에 포함시킬 수 있다. 이러한 경우에, NR-PBCH의 주기(periodicity)에 해당하는 시간 간격이 시스템 정보의 수신을 위한 윈도우 이며, 단말은 NR-PBCH 에서 해당 비트 필드를 관찰한다. 만일 단말이 기지국이 시스템 정보를 전송한다는 것을 나타내는 비트를 탐지하면, 단말은 다음 번의 NR-PBCH 를 수신하기 전에 시스템 정보 블록을 수신한다고 가정하고, NR-PDCCH에 대한 블라인드 디코딩을 수행한다. 단말은 이를 위해 DRx(discontinuous reception) 타이머를 적절히 갱신한다. 만일 단말이 기지국이 시스템 정보를 전송하지 않는다는 것을 나타내는 비트를 탐지하면, 단말은 NR-PDCCH 를 관찰할 필요가 없다. 방법 R2 과 방법 T1-2 가 함께 사용되는 경우에는, 만약 NR-PBCH가 가상 섹터의 수 만큼의 비트 폭(bit width)을 갖고 셀 특정하게(cell-specific)하게 전송될 수 있다. 또는 NR-PBCH가 가상 섹터 특정하게(virtual sector-specific) 전송된다면, NR-PBCH의 전송이 가상 섹터의 수 만큼 정의되고 하나의 NR-PBCH는 하나의 비트를 포함할 수 있다. 예를 들어, 기지국이 NR-PBCH를 셀 특정(cell-specific)하게 전송하고자 하는 경우에, 가상 섹터들의 개수에 대응하는 비트 폭(bit width)을 가지는 하나의 방송 채널을 생성할 수 있다. 다른 예를 들어, 기지국이 NR-PBCH를 가상 섹터 특정(virtual sector-specific)하게 전송하고자 하는 경우에, 다수의 가상 섹터들을 위한 다수의 NR-PBCH들을 생성할 수 있다.The NR-PBCH may further include a bit indicating whether system information is transmitted, in addition to configuration information of the UL NR-DRS resource. Between subframes / slots including NR-PBCH, system information may be transmitted using the NR-PDCCH. For example, the base station may include a bit field indicating whether system information is transmitted through a control channel (eg, NR-PDCCH) in the broadcast channel (eg, NR-PBCH). In this case, a time interval corresponding to a period of the NR-PBCH is a window for receiving system information, and the UE observes the corresponding bit field in the NR-PBCH. If the terminal detects a bit indicating that the base station transmits system information, it is assumed that the terminal receives the system information block before receiving the next NR-PBCH, and performs blind decoding on the NR-PDCCH. The UE appropriately updates a DRx timer for this purpose. If the terminal detects a bit indicating that the base station does not transmit system information, the terminal does not need to observe the NR-PDCCH. When the method R2 and the method T1-2 are used together, the NR-PBCH can be transmitted cell-specific with a bit width of the number of virtual sectors. Or if the NR-PBCH is transmitted in virtual sector-specific, transmission of the NR-PBCH is defined by the number of virtual sectors and one NR-PBCH may include one bit. For example, when the base station intends to transmit the NR-PBCH cell-specifically, one broadcast channel having a bit width corresponding to the number of virtual sectors may be generated. For another example, if the base station wants to send the NR-PBCH virtual sector-specific, it may generate multiple NR-PBCHs for multiple virtual sectors.
NR-PDCCH 자원을 설정하는 방법에 대하여 설명한다. A method of setting the NR-PDCCH resource will be described.
NR-PDCCH 는 기지국에 의해 모든 NR-서브프레임/슬롯 에서 전송된다고 가정될 수 있다. 또는 NR-PDCCH 는 기지국이 UL NR-DRS를 수신한 이후부터 모든 NR-서브프레임/슬롯 에서 전송된다고 가정될 수 있다. NR-PDCCH 에 의해 차지되는 시간 자원은, 규격에 미리 정의되거나, NR-PBCH를 통해 설정되거나, NR-PDCCH를 통해 시그널링되거나, 또는 NR-PDCCH 와 함께 전송되는 NR-PCFICH(physical control format indicator channel)를 통해 지정될 수 있다. It can be assumed that the NR-PDCCH is transmitted in every NR-subframe / slot by the base station. Alternatively, the NR-PDCCH may be assumed to be transmitted in every NR-subframe / slot after the base station receives the UL NR-DRS. The time resources occupied by the NR-PDCCH are predefined in the specification, set via the NR-PBCH, signaled via the NR-PDCCH, or transmitted with the NR-PDCCH (physical control format indicator channel). Can be specified via).
기지국은 단말에게 적절한 전처리를 거쳐서, NR-PDCCH 을 전송할 수 있다. 단말은 NR-DM-RS 를 이용해서 NR-PDCCH 를 복호한다. 여기서, NR-PDCCH 의 주파수 자원을 설정하는 방법에는, 방법 C1과 방법 C2가 있다. 방법 C1 은 NR-PDCCH 자원의 위치가 규격에 의해 고정되는 경우에 해당한다. 방법 C2 는 NR-PDCCH 자원의 위치가 설정될 수 있는 경우에 해당한다. 방법 C1 과 방법 C2 는 NR-PDCCH 를 정의하는 방식에 관한 것이지만, NR-PBCH 에 포함되는 정보는 방법 C2의 구체적인 실시예에 따라 결정될 수 있다.The base station may transmit the NR-PDCCH through the appropriate preprocessing to the terminal. The terminal decodes the NR-PDCCH using the NR-DM-RS. Here, the method of setting the frequency resource of the NR-PDCCH includes the method C1 and the method C2. Method C1 corresponds to the case where the location of NR-PDCCH resources is fixed by the specification. Method C2 corresponds to the case where the location of the NR-PDCCH resource can be set. Although method C1 and method C2 relate to a method of defining an NR-PDCCH, information included in the NR-PBCH may be determined according to a specific embodiment of method C2.
방법 C1 에서는 규격에 의해 NR-PDCCH 가 사용하는 주파수 자원의 위치가 고정되기 때문에, 단말은 기지국으로부터의 별도의 시그널링 없이 NR-PDCCH 를 수신할 수 있다. 그러므로 기지국은 NR-PBCH 를 포함한 어느 다른 물리 채널에서도, NR-PDCCH 에 의해 사용되는 주파수 자원의 위치를 설정하지 않는다. 그러나 기지국은 NR-PDCCH 자원들의 합집합에 속하는 RB 들을, 데이터 전송에 할당할 수 없다. 그리고 NR의 미래 호환성(forward compatibility)이 지원되는 측면에서는, NR-PDCCH 자원이 설정되는 것이 허용될 필요가 있다. In the method C1, since the location of the frequency resource used by the NR-PDCCH is fixed according to the specification, the terminal may receive the NR-PDCCH without additional signaling from the base station. Therefore, the base station does not set the position of the frequency resource used by the NR-PDCCH in any other physical channel including the NR-PBCH. However, the base station cannot assign RBs belonging to the union of NR-PDCCH resources to data transmission. And in terms of supporting forward compatibility of NR, it is necessary to allow NR-PDCCH resources to be set.
예를 들어, 단말이 UL NR-DRS를 전송하면, 기지국은 규격에 의해 정해진 주파수 자원에서 NR-PDCCH 를 전송할 수 있다. 규격은 최소한의 대역폭을 지정함으로써, 기지국이 좁은 시스템 대역폭(system bandwidth)를 갖는 경우에도 기지국이 동작할 수 있도록 한다. 기지국은 NR-PDCCH를 전송하면서, NR-SIB 을 포함하는 NR-PDSCH 을 스케줄링 할당(scheduling assignment)한다. For example, when the terminal transmits the UL NR-DRS, the base station may transmit the NR-PDCCH in the frequency resource determined by the standard. The specification specifies a minimum bandwidth so that the base station can operate even if the base station has a narrow system bandwidth. The base station schedules and assigns an NR-PDSCH including the NR-SIB while transmitting the NR-PDCCH.
UL NR-DRS 를 전송한 단말들은 NR-PDCCH 를 수신하고, NR-SIB 를 복호한다. 만일 기지국이 단말에게 NR-SIB 이외에 NR-PDSCH 를 통해서 eMBB 서비스나 URLLC 서비스를 제공하기 위해서, NR-RRC 연결을 맺으면서(establish), NR-PDCCH-eMBB 자원을 별도로 설정하거나 혹은 NR-PDCCH-URLLC 자원을 별도로 설정할 수 있다. 이러한 설정을 수신한 단말은 NR-PDCCH 를 더 이상 수신하지 않고, NR-PDCCH-eMBB 혹은 NR-PDCCH-URLLC 를 수신할 수 있다. 이러한 설정을 전송한 기지국은 NR-PDCCH 를 단말에게 더 이상 전송하지 않는다.UEs that have transmitted UL NR-DRS receive the NR-PDCCH and decode the NR-SIB. If the base station establishes an NR-RRC connection to provide the eMBB service or URLLC service through the NR-PDSCH in addition to the NR-SIB to the UE, the NR-PDCCH-eMBB resource is separately configured or the NR-PDCCH- URLLC resources can be set separately. The terminal having received such a setting no longer receives the NR-PDCCH and may receive the NR-PDCCH-eMBB or the NR-PDCCH-URLLC. The base station which has transmitted this configuration no longer transmits the NR-PDCCH to the terminal.
방법 C2에서는 NR-PDCCH에 의해 사용되는 주파수 자원의 위치를 설정하기 위해서, 기지국은 별도의 무선 자원을 할당해야 한다. 기지국이 좁은 빔을 형성하여 단말에게 데이터를 전송하기 위해서는, NR-PBCH는 NR-PDCCH 자원의 위치를 포함할 수 있다. 예를 들어, 기지국은 NR-PDCCH를 위한 자원을 설정하고, NR-PDCCH 자원의 설정 정보를 NR-PBCH에 포함시킬 수 있다. NR-PBCH가 갖는 NR-PDCCH 자원의 개수는 하나 이상이며, 하나의 NR-PDCCH 자원은 기지국에 의해 활용되는 가상 섹터에 대응한다. NR-PDCCH 자원의 위치는 RB 인덱스 혹은 NR-PDCCH 대역폭을 포함한다. 즉, NR-PDCCH 자원의 설정 정보는 NR-PDCCH 자원이 시작되는 RB의 인덱스와 NR-PDCCH에 의해 차지되는 대역폭을 포함할 수 있다. 단말은 RB 인덱스를 기준으로 NR-PDCCH에 의해 차지되는 대역폭에 속하는 RB 들로부터, NR-PDCCH 의 주파수 자원을 수신한다. 기지국은 NR-PBCH 를 전송하여 NR-PDCCH 자원을 설정할 수 있으므로, 기지국은 미래 호환성을 지원한다. In method C2, in order to set the position of the frequency resource used by the NR-PDCCH, the base station must allocate a separate radio resource. In order for the base station to transmit data to the terminal by forming a narrow beam, the NR-PBCH may include the location of the NR-PDCCH resources. For example, the base station may configure a resource for the NR-PDCCH and include configuration information of the NR-PDCCH resource in the NR-PBCH. The number of NR-PDCCH resources of the NR-PBCH is one or more, and one NR-PDCCH resource corresponds to a virtual sector utilized by the base station. The location of the NR-PDCCH resource includes an RB index or NR-PDCCH bandwidth. That is, the configuration information of the NR-PDCCH resource may include an index of the RB where the NR-PDCCH resource starts and a bandwidth occupied by the NR-PDCCH. The UE receives a frequency resource of the NR-PDCCH from the RBs belonging to the bandwidth occupied by the NR-PDCCH based on the RB index. Since the base station can set the NR-PDCCH resources by transmitting the NR-PBCH, the base station supports future compatibility.
NR-PBCH가 포함할 수 있는 정보에 대하여 설명한다. NR-PBCH 는 UL NR-DRS 자원 설정, 혹은 NR-PDCCH 자원 설정을 포함할 수 있다. Information that can be included in the NR-PBCH will be described. The NR-PBCH may include UL NR-DRS resource configuration or NR-PDCCH resource configuration.
UL NR-DRS 자원 설정은 리스트(list)의 형태로 표현될 수 있다. UL NR-DRS 자원 설정 리스트는 UL NR-DRS 자원 인덱스의 집합이다. UL NR-DRS 자원 인덱스는 UL NR-DRS 의 무선 자원을 지정한다. UL NR-DRS 의 시간 자원은 DL NR-DRS가 전송된 NR-서브프레임/슬롯과의 상대적인 위치로써, NR-서브프레임/슬롯 옵셋으로 정의될 수 있다. 혹은 UL NR-DRS를 위한 NR-서브프레임/슬롯의 인덱스는 절대적인 값으로 표현될 수 있다. 만일 절대적인 NR-서브프레임/슬롯 인덱스가 단말에게 지정되는 경우에, 기지국은 NR-SFN(system frame number)도 단말에게 시그널링 해야 한다. The UL NR-DRS resource configuration may be expressed in the form of a list. The UL NR-DRS resource configuration list is a set of UL NR-DRS resource indexes. The UL NR-DRS resource index specifies a radio resource of the UL NR-DRS. The time resource of the UL NR-DRS is a position relative to the NR subframe / slot in which the DL NR-DRS is transmitted and may be defined as an NR subframe / slot offset. Alternatively, the index of the NR-subframe / slot for the UL NR-DRS may be expressed as an absolute value. If an absolute NR-subframe / slot index is assigned to the terminal, the base station must also signal a system frame number (NR-SFN) to the terminal.
UL NR-DRS 의 주파수 자원은 RB 인덱스, 혹은 대역폭을 포함할 수 있다. 만일 UL NR-DRS 를 전송하는 대역폭이 규격에 미리 정의되어 있다면, 단말은 NR-PBCH 로부터 수신한 RB 인덱스만으로 UL NR-DRS 를 위한 주파수 자원을 알 수 있다. The frequency resource of the UL NR-DRS may include an RB index or a bandwidth. If the bandwidth for transmitting the UL NR-DRS is predefined in the standard, the UE can know the frequency resource for the UL NR-DRS only by the RB index received from the NR-PBCH.
NR-PDCCH 자원 설정은 리스트의 형태로 표현될 수 있다. NR-PDCCH 자원 설정 리스트는 NR-PDCCH 자원 인덱스의 집합이다. NR-PDCCH 자원 인덱스는 NR-PDCCH 의 무선 자원을 지정한다. NR-PDCCH 의 시간 자원은 미리 규격에 정의될 수 있으며, 상술한 방법을 따른다. NR-PDCCH 의 주파수 자원은 상술한 설정 방법을 따른다. 기지국은 단말에게 NR-PDCCH 후보(candidate)가 존재하는 OFDM 심볼 인덱스 세트와 PRB 인덱스 세트를 전달하는데, 이러한 세트를 제어 자원 세트(control resource set)라 한다. 단말은 하나 이상의 제어 자원 세트를 모니터링할 수 있다. NR-PDCCH 의 복호에 필요한 NR-DM-RS 안테나 포트의 개수가, 명시적으로 NR-PDCCH 자원 설정에 포함될 수 있고, 혹은 암시적으로 NR-PBCH 에 포함될 수 있다. 예를 들어, NR-PBCH 의 CRC(cyclic redundancy check) 마스크를 통해 NR-DM-RS 안테나 포트의 개수가 NR-PBCH에 포함될 수 있고, 단말은 블라인드 테스트(blind test)를 수행하여 NR-DM-RS 안테나 포트를 알 수 있다. The NR-PDCCH resource configuration may be expressed in the form of a list. The NR-PDCCH resource configuration list is a set of NR-PDCCH resource indexes. The NR-PDCCH resource index specifies a radio resource of the NR-PDCCH. The time resource of the NR-PDCCH may be previously defined in the specification and follows the above-described method. The frequency resource of the NR-PDCCH follows the above-described setting method. The base station delivers an OFDM symbol index set and a PRB index set in which an NR-PDCCH candidate exists, which is called a control resource set. The terminal may monitor one or more sets of control resources. The number of NR-DM-RS antenna ports required for decoding the NR-PDCCH may be explicitly included in the NR-PDCCH resource configuration, or may be implicitly included in the NR-PBCH. For example, the number of NR-DM-RS antenna ports may be included in the NR-PBCH through a cyclic redundancy check (CRC) mask of the NR-PBCH, and the terminal performs a blind test to perform the blind test. Know the RS antenna port.
서빙 기지국은 NR-PBCH 와 동기 신호(예, PSS, SSS)를 동일한 가상 섹터에 속한 하나의 단위(예, synchronization signal burst)로 간주하여, NR-PBCH 와 동기 신호(예, PSS, SSS)에 동일한 전처리를 적용한다. 즉, SS(synchronization signal) 버스트는 NR-PBCH와 동기 신호(예, PSS, SSS)를 포함한다. 서빙 기지국에 의해 전송되는 빔 혹은 전처리의 개수에 따라 SS 버스트의 개수가 결정되어 전송된다. 단말은 SS 버스트의 개수를 모르더라도, 셀 탐색 및 초기 접속(initial access)을 수행할 수 있다. 단말이 셀 탐색 절차를 수행하면서 NR-PBCH의 수신 품질을 증가시키는 것이 더 적은 시간 지연을 가지므로, 단말은 하나의 SS 버스트 뿐만이 아니라 여러 개의 SS 버스트에 속한 NR-PBCH 를 합성(combining)할 수 있다.The serving base station regards the NR-PBCH and the synchronization signal (e.g., PSS, SSS) as one unit (e.g., synchronization signal burst) belonging to the same virtual sector, and thus the NR-PBCH and the synchronization signal (e.g., PSS, SSS). Apply the same pretreatment. That is, a synchronization signal (SS) burst includes an NR-PBCH and a synchronization signal (eg, PSS, SSS). The number of SS bursts is determined and transmitted according to the number of beams or preprocesses transmitted by the serving base station. Although the terminal does not know the number of SS bursts, the terminal may perform cell search and initial access. Since the UE has a less time delay while increasing the reception quality of the NR-PBCH while performing the cell search procedure, the UE can combine not only one SS burst but also NR-PBCHs belonging to several SS bursts. have.
서빙 기지국은 단말의 수신 합성(combining)에 도움을 주기 위해 SS 버스트를 여러 번 연이어서 전송하는 경우에, NR-PBCH의 서로 같은 부호화 버전(RV: redundancy version)을 서로 다른 SS 버스트에서 각각 전송할 수 있다(이하 '방법 PBCH-rv-1'). 또는 서빙 기지국은 NR-PBCH 의 서로 다른 부호화 버전(RV)을 서로 다른 SS 버스트에서 각각 전송할 수 있다(이하 '방법 PBCH-rv-2'). The serving base station may transmit the same redundancy version (RV) of the NR-PBCH in different SS bursts when the SS bursts are successively transmitted several times in order to assist in the reception combining of the UE. (Hereinafter 'Method PBCH-rv-1'). Alternatively, the serving base station may transmit different encoded versions (RVs) of the NR-PBCH in different SS bursts (hereinafter, 'method PBCH-rv-2').
방법 PBCH-rv-1은 SS 버스트 세트에서 전송되는 PBCH 들이 모두 같은 부호화 버전(RV)를 갖는 방법이다. 즉, 기지국에 의해 전송되는 SS 버스트들에 속하는 NR-PBCH들은 서로 동일한 RV를 가질 수 있다. 서로 다른 전처리를 겪었지만 동일한 부호화 버전(RV)을 가지는 PBCH들을, 단말은 합성한다. 서빙 기지국은 SS 버스트 세트에 Z개의 SS 버스트를 포함시킬 수 있다. PBCH 의 전송 주기는 T1 이며, T를 주기로 PBCH의 모든 RV가 1회씩 전송된다. 이러한 경우에, SS 버스트 세트에 속한 Z 개의 PBCH 는 서로 같은 RV를 가진다. 단말은 Z의 값을 사전에 알지 못하지만, 탐지 성공된 Z1 개(단, Z1≤Z)의 PBCH 가 모두 같은 RV를 가진다고 가정하여 PBCH를 복호한다. 이러한 과정을 통해, 단말은 동일한 전처리를 갖는 PBCH를 서로 구분하여 Z개의 PBCH 각각을 합성하는 방법보다, 더욱 적은 지연 시간을 달성할 수 있다. Method PBCH-rv-1 is a method in which all PBCHs transmitted in the SS burst set have the same encoded version (RV). That is, NR-PBCHs belonging to SS bursts transmitted by the base station may have the same RV. The UE synthesizes PBCHs that have undergone different preprocessing but have the same encoded version (RV). The serving base station may include Z SS bursts in the SS burst set. The transmission period of the PBCH is T 1 , and all RVs of the PBCH are transmitted once every T. In this case, the Z PBCHs belonging to the SS burst set have the same RV with each other. Terminal is assumed to not know the value of Z in advance, is detected, the PBCH of success Z 1 items (where, Z 1 ≤Z) said to have a RV of all decode the PBCH. Through this process, the UE can achieve less delay time than the method of synthesizing each of the Z PBCHs by separating the PBCHs having the same preprocessing from each other.
단말이 겪는 무선 채널(radio channel)에 따라, 단말은 특정 전처리가 적용된 PBCH 를 상대적으로 약하게 수신하거나 상대적으로 강하게 수신할 수 있다. 그러므로, 방법 PBCH-rv-1 이 사용되는 경우에, 상대적으로 약하게 수신된 RV는 단말의 합성 과정에 큰 도움을 주지 않는다. 오히려 상대적으로 약하게 수신된 PBCH 가 상대적으로 강하게 수신된 PBCH 와 다른 RV를 갖고 있는 경우에, 단말은 합성 과정에서 더 다양한 패리티 비트(parity bit)를 이용할 수 있으므로, 수신 품질이 향상될 수 있는 여지가 있다. According to a radio channel experienced by the terminal, the terminal may receive a relatively weak or relatively strong PBCH to which a specific preprocessing is applied. Therefore, when the method PBCH-rv-1 is used, the relatively weakly received RV does not greatly help the synthesis process of the terminal. Rather, when a relatively weakly received PBCH has a RV different from that of a relatively strongly received PBCH, the UE may use more parity bits in the synthesis process, and thus, reception quality may be improved. have.
방법 PBCH-rv-2 은 SS 버스트 세트에서 전송되는 PBCH 들이 서로 다른 RV를 갖는 방법이다. 즉, 기지국에 의해 전송되는 SS 버스트들에 속하는 NR-PBCH들은 서로 다른 RV를 가질 수 있다. 서로 다른 전처리를 겪었으며 서로 다른 RV를 갖는 PBCH 들을, 단말은 합성(combining)한다. 서빙 기지국이 SS 버스트 세트에 Z개의 SS 버스트를 포함시킬 수 있다. PBCH 의 전송 주기는 T1 이다. T 를 주기로 PBCH 의 모든 RV가 1회씩 전송되는 경우에, SS 버스트 세트에 속한 Z 개의 PBCH 는 서로 다른 RV를 가질 수 있다. 단말은 Z의 값을 사전에 알지 못하지만, 탐지 성공된 Z1 개(단, Z1≤Z)의 PBCH 가 서로 다른 RV 를 가질 수 있다고 가정하여, PBCH를 복호한다. 단말은 각 PBCH 들이 갖는 RV 의 값을, PBCH 를 수신하면서 간접적으로 인지한다. 예를 들어, 서빙 기지국은 PBCH를 위한 스크램블링 자원 혹은 CRC 마스킹을, RV에 따라 다르게 사용할 수 있다. 즉, 기지국에 의해 전송되는 SS 버스트들에 속하는 NR-PBCH들에는, 서로 다른 스크램블링 자원(또는 CRC 마스크)가 적용될 수 있다. 이러한 경우에, 단말은 이러한 스크램블링을 무작위적으로 복조(예, blind demodulation)하고, 이러한 결과를 바탕으로 RV 를 계산할 수 있다. 서빙 기지국은 단말이 서로 다른 RV들에 해당하는 PBCH들을 수신하더라도 복호할 수 있도록, RV 들의 조합을 최적화한다. Method PBCH-rv-2 is a method in which PBCHs transmitted in an SS burst set have different RVs. That is, NR-PBCHs belonging to SS bursts transmitted by the base station may have different RVs. The UEs combine different PBCHs that have undergone different preprocessing and have different RVs. The serving base station may include Z SS bursts in the SS burst set. The transmission period of the PBCH is T 1 . In the case where all RVs of the PBCH are transmitted once in a period of T, the Z PBCHs belonging to the SS burst set may have different RVs. Terminal do not know the value of Z in advance, on the assumption that the detection success of the PBCH Z 1 items (where, Z 1 ≤Z) may have a different RV, decodes PBCH. The UE indirectly recognizes the value of RV of each PBCH while receiving the PBCH. For example, the serving base station may use scrambling resources or CRC masking for the PBCH differently depending on the RV. That is, different scrambling resources (or CRC masks) may be applied to NR-PBCHs belonging to SS bursts transmitted by the base station. In this case, the UE may demodulate (eg, blind demodulation) randomly such scrambling and calculate an RV based on these results. The serving base station optimizes the combination of RVs so that the UE can decode even if the UE receives PBCHs corresponding to different RVs.
서빙 기지국이 4개의 SS 버스트(예, Z=4)를 전송하면서, RV의 값인 0, 1, 2, 3 에 대해서 PBCH 를 부호화하여 각 SS 버스트에 맵핑할 수 있다. 예를 들어, SS 버스트 1이 T 동안에 갖는 RV 의 값이 0, 2, 1, 3 라고 가정하면, SS 버스트 2 가 T 동안에 갖는 RV 의 값은 2, 1, 3, 0 이고 SS 버스트 3이 T 동안에 갖는 RV의 값은 1, 3, 0, 2 이고 SS 버스트 4 가 T 동안에 갖는 RV의 값은 3, 0, 2, 1 이도록, 서빙 기지국은 4개의 SS 버스트(SS 버스트 1, 2, 3, 4)를 전송할 수 있다. 단말은 SS 버스트 세트에서 Z1 개(단, Z1≤4) 의 PBCH 를 탐지하고, 각 PBCH 가 갖는 RV 의 값을 탐지한 후, 이를 바탕으로 PBCH 를 합성 및 복호한다. 단말은 서로 다른 품질을 갖는 서로 다른 RV 를 수신하기 때문에, PBCH 에서 전처리 다중화 이득을 얻을 수 있다.While the serving base station transmits four SS bursts (eg, Z = 4), the PBCHs may be encoded and mapped to each SS burst as 0, 1, 2, and 3, which are RV values. For example, assuming that the value of RV that SS burst 1 has during T is 0, 2, 1, 3, the value of RV that SS burst 2 has during T is 2, 1, 3, 0 and SS burst 3 is T The serving base station has four SS bursts (SS bursts 1, 2, 3, and 1) so that the values of RV during the time period are 1, 3, 0, 2 and SS burst 4 has the values 3, 0, 2, and 1 during the T burst. 4) can be transmitted. The UE detects the PBCH of Z 1 items (where, Z 1 ≤4) in the SS sets the burst, and synthesis and decoding the PBCH, after detection of a value of each RV PBCH having, based on this. Since the UE receives different RVs having different qualities, it is possible to obtain a preprocessing multiplexing gain in the PBCH.
만일 서빙 기지국이 2개의 SS 버스트(예, Z=2)를 전송하면, RV 의 값은 0과 2를 하나의 RV 조합으로써 가지고, 1과 3을 하나의 RV 조합으로써 가지며, SS 버스트의 전송 시점마다 각 RV 조합이 적용될 수 있다. RV 0 은 정보 비트를 대부분 갖고 있으며, RV 3 은 패리티 비트를 대부분 갖고 있기 때문에, 단말은 RV 0 과 RV 3 을 하나의 SS 버스트 세트에 포함시킬 수 있다. RV 1 과 RV 2 는 정보 비트와 패리티 비트를 적당히 섞어서 가지고 있으므로, 하나의 SS 버스트 세트에 포함될 수 있다. 예를 들어, 서빙 기지국은 SS 버스트 1이 T 동안에 갖는 RV 의 값을 0, 1, 2, 3 라고 가정하면, SS 버스트 2 가 T 동안에 갖는 RV 의 값을 2, 3, 0, 1 라고 가정한다. 여기서, RV 의 순서가 그레이 (gray) 맵핑을 따르는 경우에, 패리티 비트가 많은 RV들이 연이어 전송되고 패리티 비트가 적은 RV들이 연이어 전송된다. 따라서, 패리티 비트가 많은 RV의 조합과 패리티 비트가 적은 RV의 조합이 번갈아 전송되도록, RV의 순서가 TS에 정의될 수 있다. 단말은 RV 의 값을 홀수와 짝수로 번갈아가면서 PBCH를 수신하고, 이를 바탕으로 PBCH를 합성하여 복호할 수 있다. 단말은 서로 다른 품질을 갖는 서로 다른 RV 를 수신하기 때문에, PBCH 에서 전처리 다중화 이득을 얻을 수 있다.If the serving base station transmits two SS bursts (eg, Z = 2), the value of RV has 0 and 2 as one RV combination, 1 and 3 as one RV combination, and the time of transmission of the SS burst. Each RV combination can be applied. Since RV 0 has most of the information bits and RV 3 has most of the parity bits, the UE can include RV 0 and RV 3 in one SS burst set. Since RV 1 and RV 2 have an adequate mix of information and parity bits, they can be included in one set of SS bursts. For example, the serving base station assumes that the value of RV that SS burst 1 has during T is 0, 1, 2, 3, and assumes that the value of RV that SS burst 2 has during T is 2, 3, 0, 1. . Here, when the order of the RVs follows the gray mapping, RVs having many parity bits are transmitted in succession, and RVs having fewer parity bits are transmitted in succession. Therefore, the order of the RVs may be defined in the TS so that the combination of the RV having a lot of parity bits and the RV having few parity bits are alternately transmitted. The UE receives the PBCH while alternating the value of the RV to an odd number and an even number, and may synthesize and decode the PBCH based on this. Since the UE receives different RVs having different qualities, it is possible to obtain a preprocessing multiplexing gain in the PBCH.
방법 C1 과 방법 C2 이 사용되는 경우를 위한 NR-SIB 전송 방법에 대하여, 설명한다. 방법 C1은, NR-PDCCH 자원의 위치가 규격에 의해 정의된 경우에 해당한다. 방법 C2는 NR-PDCCH 자원의 위치가 설정될 수 있도록 허용되는 경우에 해당한다. 방법 C2를 위한 NR-SIB 전송 방법을, NR-PBCH 전송 방법에 따라 방법 C2-1 과 방법 C2-2 로 나누어 설명한다. 덧붙여, 방법 C1 과 방법 R2 를 모두 사용하는 NR 은 NR-PBCH 을 전송할 필요가 없다.The NR-SIB transmission method for the case where the method C1 and the method C2 are used will be described. Method C1 corresponds to the case where the location of the NR-PDCCH resource is defined by the standard. Method C2 corresponds to the case where the location of the NR-PDCCH resource is allowed to be set. The NR-SIB transmission method for the method C2 will be described by dividing the method C2-1 and the method C2-2 according to the NR-PBCH transmission method. In addition, the NR using both the method C1 and the method R2 does not need to transmit the NR-PBCH.
방법 C1이 사용되는 경우의 NR-SIB 전송 방법에 대하여 설명한다. 기지국은 DL NR-DRS 를 주기적으로 전송한다. 기지국은 DL NR-DRS 안테나 포트를 이용해 NR-PBCH 를 주기적으로 전송한다. 방법 T1이 사용되는 경우에, 기지국은 가상 섹터마다 별도의 DL NR-PBCH을 전송한다. 방법 T2이 사용되는 경우에, 기지국은 가상 섹터(들)를 구분하지 않고 동일한 DL NR-PBCH 를 전송한다. DL NR-DRS 안테나 포트의 전처리는 규격에 정의되지 않고 기지국에 의해 구현된다. 기지국은 가상 섹터와 동일하게, DL NR-DRS 자원을 전처리할 수 있다. 기지국은 가상 섹터의 개수와 동일하게, DL NR-DRS 자원을 전송할 수 있다. The NR-SIB transmission method when the method C1 is used will be described. The base station periodically transmits the DL NR-DRS. The base station periodically transmits the NR-PBCH using the DL NR-DRS antenna port. If method T1 is used, the base station transmits a separate DL NR-PBCH for each virtual sector. When method T2 is used, the base station transmits the same DL NR-PBCH without distinguishing the virtual sector (s). The preprocessing of the DL NR-DRS antenna port is not defined in the specification and is implemented by the base station. The base station may preprocess the DL NR-DRS resource, similarly to the virtual sector. The base station may transmit DL NR-DRS resources in the same manner as the number of virtual sectors.
단말은 DL NR-DRS 의 설정 정보를 미리 전달받지 않더라도, DL NR-DRS 를 수신할 수 있다. 단말은 DL NR-DRS 자원의 개수를 미리 전달받지 않더라도, 블라인드 탐지(blind detection)를 통해 셀 탐지를 수행한다. 단말이 특정 DL NR-DRS 를 성공적으로 수신한 경우에, 단말은 수신한 DL NR-DRS 안테나 포트를 사용해서 NR-PBCH 를 복조한다. 방법 R2가 사용되는 경우에, NR-PBCH 에는 UL NR-DRS 의 설정 정보가 포함되어 있다. 단말은 수신한 DL NR-DRS 자원으로부터, 단말이 속한 가상 섹터의 인덱스 i를 추정하므로, 단말은 i 번째 UL NR-DRS 자원을 선택하고 선택된 자원을 이용해 UL NR-DRS 를 전송한다. UL NR-DRS 에는 단말의 전처리가 적용되어야 하지만, 단말의 전처리는 규격에 의해 정의되지 않고 단말의 구현에 의해 수행된다. 단말은 DL NR-DRS를 수신하기 위한 선형 필터를 재사용해서, UL NR-DRS 에 적용할 수 있다. The UE may receive the DL NR-DRS even if the UE does not receive the configuration information of the DL NR-DRS in advance. Although the UE does not receive the number of DL NR-DRS resources in advance, the UE performs cell detection through blind detection. When the terminal successfully receives a specific DL NR-DRS, the terminal demodulates the NR-PBCH using the received DL NR-DRS antenna port. When the method R2 is used, the NR-PBCH includes setting information of the UL NR-DRS. Since the terminal estimates the index i of the virtual sector to which the terminal belongs from the received DL NR-DRS resources, the terminal selects the i-th UL NR-DRS resource and transmits the UL NR-DRS using the selected resource. The preprocessing of the terminal should be applied to the UL NR-DRS, but the preprocessing of the terminal is not defined by the standard and is performed by the implementation of the terminal. The terminal may apply the UL NR-DRS by reusing a linear filter for receiving the DL NR-DRS.
기지국은 단말로부터 UL NR-DRS 를 수신하면, 단말이 속한 가상 섹터의 인덱스 i를 암시적으로 알 수 있다. 기지국은 i 번째 가상 섹터에 해당하는 NR-PDCCH 를 전송하기 시작한다. 방법 T1이 사용되는 경우에, 기지국은 가상 섹터마다 별도의 NR-PDCCH 을 전송한다. 방법 T2 가 사용되는 경우에, 기지국은 가상 섹터(들)를 구분하지 않고 동일한 NR-PDCCH 를 전송한다. NR-PDCCH 는 NR-DM-RS 안테나 포트에 기반하여 기지국에 의해 전송된다. NR-DM-RS 자원은 전처리를 거쳐 전송되며, 이 때 사용되는 전처리 방법은 구현적으로 수행될 수 있다. 기지국은 단말로부터 수신한 UL NR-DRS 를 복조하기 위해 사용한 선형 필터를, 재사용할 수 있다. NR-PDCCH 는 규격에 의해 미리 정의된 자원 위치에서 전송되기 때문에, 단말은 별도의 NR-PDCCH 의 자원 정보를 지시 받지 않는다. 단말은 NR-PDCCH 에서 DL 스케줄링 할당 (scheduling assignment)를 탐지(detect)한다. 단말은 탐지한 DL 스케줄링 할당 정보로부터, NR-PDSCH 의 할당 정보를 탐지한다. NR-PDSCH 에는 NR-SIB 가 포함되어 있으므로, 단말은 NR-SIB 를 복호(decode)할 수 있다. NR-SIB에 포함된 정보는 SFN, 시스템 대역폭, 물리계층 셀 식별정보 등을 인지할 수 있다. 그 이외에도 NR-RRC 연결을 맺기 위한 시스템 정보들을 수신하기 위한 스케줄링 정보가 단말에 의해 수신될 수 있다. When the base station receives the UL NR-DRS from the terminal, it can implicitly know the index i of the virtual sector to which the terminal belongs. The base station starts to transmit the NR-PDCCH corresponding to the i-th virtual sector. When the method T1 is used, the base station transmits a separate NR-PDCCH for each virtual sector. When the method T2 is used, the base station transmits the same NR-PDCCH without distinguishing the virtual sector (s). The NR-PDCCH is transmitted by the base station based on the NR-DM-RS antenna port. The NR-DM-RS resource is transmitted through preprocessing, and the preprocessing method used at this time may be implemented by implementation. The base station can reuse the linear filter used to demodulate the UL NR-DRS received from the terminal. Since the NR-PDCCH is transmitted at a resource location predefined by the standard, the UE does not receive resource information of a separate NR-PDCCH. The terminal detects a DL scheduling assignment on the NR-PDCCH. The terminal detects allocation information of the NR-PDSCH from the detected DL scheduling allocation information. Since the NR-SIB is included in the NR-PDSCH, the UE can decode the NR-SIB. Information included in the NR-SIB may recognize SFN, system bandwidth, physical layer cell identification information, and the like. In addition, scheduling information for receiving system information for establishing an NR-RRC connection may be received by the terminal.
방법 C2-1이 사용되는 경우의 NR-SIB 전송 방법에 대하여 설명한다. The NR-SIB transmission method when the method C2-1 is used will be described.
기지국은 DL NR-DRS 를 주기적으로 전송한다. 기지국은 DL NR-DRS 안테나 포트를 이용해, 주기적으로 NR-PBCH 을 통해 NR-MIB 타입 1을 전송한다. NR-PBCH 의 전송 방법은 방법 C1에서 서술한 NR-PBCH 방법과 동일한 방법을 사용한다. 방법 T1이 사용되는 경우에, 기지국은 가상 섹터마다 별도의 DL NR-PBCH 을 전송한다. 방법 T2가 사용되는 경우에, 기지국은 가상 섹터(들)를 구분하지 않고 동일한 DL NR-PBCH 를 전송한다. 방법 R2가 사용되는 경우에는, DL NR-PBCH 에 포함된 NR-MIB 타입 1 은 UL NR-DRS 자원의 설정 정보를 포함한다. 단말이 특정 자원을 선택해서 UL NR-DRS 를 전송하면, 기지국은 NR-PBCH 의 전송을 시작하고, 곧이어 NR-PDCCH 의 전송을 시작한다. 방법 T1이 사용되는 경우에, 기지국은 가상 섹터마다 별도의 NR-PBCH 와 별도의 NR-PDCCH 을 전송한다. 방법 T2가 사용되는 경우에, 기지국은 가상 섹터(들)를 구분하지 않고 동일한 NR-PBCH 와 동일한 NR-PDCCH 를 전송한다. 기지국은 NR-PBCH 을 NR-DRS 안테나 포트를 이용해서 전송하고, DL NR-DM-RS 안테나 포트 기반의 NR-PDCCH와는 구분되는 자원을 사용한다. NR-DM-RS와 NR-DRS 에는 기지국에 의해 구현적으로 결정된 전처리 방법이 적용된다. 방법 C2 가 사용되는 경우에, NR-PBCH 에 포함되는 정보는 NR-MIB 타입 2 이다. NR-MIB 타입 2는 NR-PDCCH 자원의 설정 정보를 포함한다. NR-MIB 타입 2는 NR-SIB이 전달되는 NR-서브프레임/슬롯의 위치를 명시적으로 혹은 암시적으로 포함한다. 예를 들어, NR-MIB 타입 2는 SFN 정보를 포함하고, 단말은 NR-SIB가 수신되는 NR-서브프레임/슬롯을 추정할 수 있다. NR-SIB 을 포함하는 NR-PDSCH 는 규격에 의해 정의된 주기(periodicity)를 갖는다. The base station periodically transmits the DL NR-DRS. The base station periodically transmits NR-MIB type 1 over the NR-PBCH using the DL NR-DRS antenna port. The NR-PBCH transmission method uses the same method as the NR-PBCH method described in Method C1. When the method T1 is used, the base station transmits a separate DL NR-PBCH for each virtual sector. If method T2 is used, the base station transmits the same DL NR-PBCH without distinguishing the virtual sector (s). When the method R2 is used, the NR-MIB type 1 included in the DL NR-PBCH includes configuration information of the UL NR-DRS resource. When the terminal selects a specific resource and transmits the UL NR-DRS, the base station starts the transmission of the NR-PBCH, followed by the transmission of the NR-PDCCH. When the method T1 is used, the base station transmits a separate NR-PBCH and a separate NR-PDCCH for each virtual sector. When method T2 is used, the base station transmits the same NR-PBCH and the same NR-PDCCH without distinguishing the virtual sector (s). The base station transmits the NR-PBCH using the NR-DRS antenna port, and uses a resource distinguished from the NR-PDCCH based on the DL NR-DM-RS antenna port. The preprocessing method determined by the base station is applied to the NR-DM-RS and the NR-DRS. When method C2 is used, the information contained in the NR-PBCH is NR-MIB type 2. NR-MIB type 2 includes configuration information of NR-PDCCH resources. NR-MIB type 2 explicitly or implicitly includes the location of the NR-subframe / slot to which the NR-SIB is delivered. For example, the NR-MIB type 2 includes SFN information, and the terminal may estimate the NR-subframe / slot in which the NR-SIB is received. The NR-PDSCH, including the NR-SIB, has a period defined by the specification.
단말은 NR-DM-RS 안테나 포트를 이용해 NR-PDCCH 를 복호하여, NR-PDSCH 에 대한 스케줄링 할당 정보를 탐지한다. 단말은 NR-PDSCH를 복호하여, NR-SIB 를 얻는다. NR-SIB에는, NR-RRC 연결을 맺기 위한 직접적인 정보들과 간접적인 정보들이 포함된다. LTE 에서처럼, NR-SIB도 그 내용에 따라 서로 다른 주기를 갖도록 설정될 수 있다. 저주파 대역에서 동작하는 NR(예, 6 GHz 이하)의 NR-SIB 전송 방식에도, 방법 C2-1가 수정되어 적용될 수 있다. 즉, 상술한 NR-SIB 전송 방식(예, 6 GHz 이상을 위한 절차들)에서, NR-MIB 타입 1의 전송과 UL NR-DRS의 전송이 제외될 수 있다. 즉, 대역 독립성(band agnostic) 측면에서 서로 유사한 NR-SIB 절차가 사용될 수 있다. The terminal decodes the NR-PDCCH using the NR-DM-RS antenna port and detects scheduling allocation information for the NR-PDSCH. The terminal decodes the NR-PDSCH to obtain an NR-SIB. The NR-SIB includes direct and indirect information for establishing an NR-RRC connection. As in LTE, the NR-SIB may be set to have different periods according to its contents. The method C2-1 may be modified and applied to an NR-SIB transmission scheme of NR (eg, 6 GHz or less) operating in a low frequency band. That is, in the above-described NR-SIB transmission scheme (eg, procedures for 6 GHz or more), transmission of NR-MIB type 1 and transmission of UL NR-DRS may be excluded. That is, NR-SIB procedures similar to each other in terms of band agnostic may be used.
방법 C2-2가 사용되는 경우의 NR-SIB 전송 방법에 대하여 설명한다. The NR-SIB transmission method when the method C2-2 is used will be described.
기지국은 DL NR-DRS 를 주기적으로 전송한다. 기지국은 DL NR-DRS 안테나 포트를 이용해서 주기적으로 NR-PBCH 를 통해 NR-MIB 를 전송한다. NR-PBCH 의 전송 방법은 방법 C1에서 서술한 NR-PBCH 방법과 동일한 방법을 사용한다. 방법 T1이 사용되는 경우에, 기지국은 가상 섹터마다 별도의 DL NR-PBCH 을 전송한다. 방법 T2가 사용되는 경우에, 기지국은 가상 섹터(들)를 구분하지 않고 동일한 DL NR-PBCH 를 전송한다. NR-MIB 에는 NR-PDCCH 자원의 설정 정보가 포함된다. 방법 R2가 사용되는 경우에, NR-MIB 는 UL NR-DRS 자원의 설정 정보를 더 포함하여, NR-PDCCH 자원의 설정 정보와 UL NR-DRS 자원의 설정 정보를 모두 포함한다. 방법 C2-2에서 NR-MIB가 갖는 정보의 양이 방법 C1 이나 방법 C2-1 에서보다 많지만, 단말은 더 빠르게 NR-RRC 연결을 맺을 수 있다. The base station periodically transmits the DL NR-DRS. The base station periodically transmits the NR-MIB through the NR-PBCH using the DL NR-DRS antenna port. The NR-PBCH transmission method uses the same method as the NR-PBCH method described in Method C1. When the method T1 is used, the base station transmits a separate DL NR-PBCH for each virtual sector. If method T2 is used, the base station transmits the same DL NR-PBCH without distinguishing the virtual sector (s). The NR-MIB includes configuration information of the NR-PDCCH resource. When the method R2 is used, the NR-MIB further includes configuration information of the UL NR-DRS resource, and includes both configuration information of the NR-PDCCH resource and configuration information of the UL NR-DRS resource. Although the amount of information that the NR-MIB has in the method C2-2 is greater than that in the method C1 or the method C2-1, the UE may establish the NR-RRC connection faster.
단말은 DL NR-DRS 를 수신하고, 하나의 NR-DRS 자원에 대응하는 가상 섹터 i를 선택한다. 단말은 i번째 UL NR-DRS 자원을 사용해서, UL NR-DRS 를 전송한다. The terminal receives the DL NR-DRS and selects a virtual sector i corresponding to one NR-DRS resource. The terminal transmits the UL NR-DRS using the i-th UL NR-DRS resource.
기지국은 단말로부터 수신한 UL NR-DRS 을 사용해서 단말의 존재를 인지하고, NR-PDCCH 를 전송하기 시작한다. 방법 T1이 사용되는 경우에, 기지국은 가상 섹터마다 별도의 NR-PBCH 와 별도의 NR-PDCCH 을 전송한다. 방법 T2가 사용되는 경우에, 기지국은 가상 섹터(들)를 구분하지 않고 동일한 NR-PBCH 와 동일한 NR-PDCCH 를 전송한다. 기지국은 NR-DM-RS 안테나 포트를 사용해 구현적인 전처리를 거쳐서, NR-PDCCH 를 전송한다. The base station recognizes the existence of the terminal using the UL NR-DRS received from the terminal, and starts transmitting the NR-PDCCH. When the method T1 is used, the base station transmits a separate NR-PBCH and a separate NR-PDCCH for each virtual sector. When method T2 is used, the base station transmits the same NR-PBCH and the same NR-PDCCH without distinguishing the virtual sector (s). The base station transmits the NR-PDCCH through an implementational preprocessing using the NR-DM-RS antenna port.
단말은 UL NR-DRS 를 전송한 이후의 DL NR-서브프레임/슬롯에서부터, NR-PDCCH 를 복호한다. The terminal decodes the NR-PDCCH from the DL NR-subframe / slot after transmitting the UL NR-DRS.
기지국은 NR-PDSCH 를 사용해, NR-SIB 를 단말에게 전송할 수 있다. NR-SIB 에는, SFN, 시스템 대역폭 등 뿐만 아니라, NR-RRC 연결을 맺을 수 있는 직접적인 정보들과 간접적인 정보들이 포함된다.The base station may transmit the NR-SIB to the terminal using the NR-PDSCH. The NR-SIB includes not only SFN, system bandwidth, etc., but also direct and indirect information for establishing an NR-RRC connection.
이하에서는, 아이들(idle) 단말의 동작에 대하여 설명한다.Hereinafter, the operation of an idle terminal will be described.
아이들 단말은 NR-MIB 을 이용해서 NR-PDCCH 을 수신할 수 있다. The idle terminal may receive the NR-PDCCH using the NR-MIB.
만일 기지국이 UL NR-DRS 을 수신하지 않을 때 NR-PDSCH 를 전송하지 않는다면, 아이들 단말은 NR-PDSCH를 이용해 기지국에 의해 전송된 NR-SIB 을 수신할 수 없다. NR-SIB 은 셀 선택/재선택(cell selection/reselection), PLMN(public land mobile network) 식별 리스트(identification list), 셀 베어링(cell barring) 정보를 적어도 포함하기 때문에, 아이들 단말이 해당 NR 셀에 어소시에이트(associate) 할 수 있을지 없을지를 판단할 수 없다. 그러므로 아이들 단말은 UL NR-DRS 를 전송하여, 기지국이 NR-PDCCH 와 NR-PDSCH 에서 NR-SIB 를 전송하도록 유도해야 한다. 그러나 아이들 단말이 UL NR-DRS 을 전송하면, NR-셀을 관찰하는 개수에 정비례하여 전력을 소모한다. 이를 줄이기 위한 방법으로써, 단말은 상술한 NR-PBCH 에 포함되는 NR-SIB 전송 여부(예, 가상 섹터 별로 적용될 NR-SIB 전송 여부)를 관찰할 수 있다. 이를 통해, 아이들 단말과 동일한 가상 섹터에 속한 다른 단말들 중에서 하나의 단말만이 UL NR-DRS 을 전송하더라도, 기지국은 NR-PBCH 의 비트 필드를 조절할 수 있다. If the base station does not transmit the NR-PDSCH when the base station does not receive the UL NR-DRS, the idle terminal may not receive the NR-SIB transmitted by the base station using the NR-PDSCH. Since the NR-SIB includes at least cell selection / reselection, public land mobile network (PLMN) identification list and cell barring information, the idle terminal is assigned to the corresponding NR cell. It is not possible to determine whether or not an association can be made. Therefore, the idle terminal should transmit the UL NR-DRS to induce the base station to transmit the NR-SIB in the NR-PDCCH and NR-PDSCH. However, when the idle terminal transmits the UL NR-DRS, power consumption is directly proportional to the number of NR-cells observed. As a method for reducing this, the UE may observe whether NR-SIB transmission (eg, NR-SIB transmission to be applied for each virtual sector) included in the above-described NR-PBCH. Through this, even if only one terminal among other terminals belonging to the same virtual sector as the idle terminal transmits the UL NR-DRS, the base station can adjust the bit field of the NR-PBCH.
기지국이 NR-PBCH를 통해 NR-SIB 전송을 예고하면, 해당 가상 섹터에 속한 단말들 중에서 NR-SIB 를 수신하고자 하는 단말은, NR-PBCH 이후에 연속한 하향링크 서브프레임/슬롯(들)에서 NR-PDCCH 를 관찰한다. 아이들 단말을 위한 모니터링 윈도우(monitoring window)는, 규격에 의해 정의된 서브프레임/슬롯 윈도우를 사용할 수 있다. 또는 단말은 다음 번 NR-PBCH를 수신하기 전까지, DRx(discontinuous reception)에 의해 허용되는 모든 서브프레임/슬롯(들)에서 NR-PDCCH 를 관찰할 수 있다.When the base station predicts the NR-SIB transmission through the NR-PBCH, the terminal that wants to receive the NR-SIB among the terminals belonging to the corresponding virtual sector, in the consecutive downlink subframe / slot (s) after the NR-PBCH Observe the NR-PDCCH. The monitoring window for the idle terminal may use a subframe / slot window defined by the standard. Alternatively, the UE may observe the NR-PDCCH in all subframes / slot (s) allowed by discontinuous reception (DRx) until the next NR-PBCH is received.
이하에서는, 단말들에 의해 수행하는 RRM 측정(measurement)에 대하여 설명한다.Hereinafter, the RRM measurement performed by the terminals will be described.
도 4는 본 발명의 실시예에 따른, 단말에 의해 수행되는 RRM 측정에 관한 시나리오를 나타내는 도면이다. 그리고 도 5는 본 발명의 실시예에 따른, DL NR-DRS 자원의 RE 맵핑을 나타내는 도면이다.4 is a diagram illustrating a scenario regarding RRM measurement performed by a terminal according to an embodiment of the present invention. 5 is a diagram illustrating RE mapping of DL NR-DRS resources according to an embodiment of the present invention.
복수의 기지국과 단말이 존재한다. 하나의 기지국은 복수의 셀을 가지며, 각 셀은 서로 다른 주파수(예, F1, F2)에 배치(deploy)된다. 도 4에는, 4개의 셀이 예시되어 있다. 단말은 4개의 셀에 대한 RRM 측정을 수행한다.There are a plurality of base stations and terminals. One base station has a plurality of cells, and each cell is deployed at a different frequency (eg, F 1 , F 2 ). 4, four cells are illustrated. The UE performs RRM measurement for four cells.
단말은 모든 서브프레임/슬롯에서 RRM 측정을 수행하지는 않는다. TS는 기지국에 의해 전송되는 DL NR-DRS 자원을 포함하는 고정 DL 자원의 주기와 서브프레임/슬롯 옵셋을 규정한다. 단말은 이미 알고 있는 주기와 서브프레임/슬롯 옵셋으로부터, 특정 서브프레임/슬롯이 DL NR-DRS 자원을 포함하는지 포함하지 않는지를 알 수 있다. 단말은 DL NR-DRS 자원을 포함하는 서브프레임/슬롯을 기지국의 설정 혹은 물리 계층 신호의 수신을 통해 알 수 있고, 해당 서브프레임/슬롯에서만 RRM 측정을 수행한다.The UE does not perform RRM measurement in every subframe / slot. The TS defines the period and subframe / slot offset of the fixed DL resource including the DL NR-DRS resource transmitted by the base station. The UE may know from a known period and a subframe / slot offset whether a specific subframe / slot includes a DL NR-DRS resource or not. The UE can know the subframe / slot including the DL NR-DRS resource through the configuration of the base station or the reception of the physical layer signal, and performs RRM measurement only in the corresponding subframe / slot.
고정 DL 자원은 현지화된 시간(localized time)과 현지화된 주파수(localized frequency)로 표현될 수 있는 인접한 RE(resource element)들로 구성될 수도 있다. 또는 고정 DL 자원은 다이버시티(diversity)를 얻기 위해서, 인접하지 않은 RE들로 구성될 수 있다.The fixed DL resource may be composed of adjacent resource elements (REs) that may be represented by localized time and localized frequency. Alternatively, the fixed DL resource may be composed of non-contiguous REs to obtain diversity.
DL NR-DRS 자원은 고정 DL 자원의 부분 집합이며, 다이버시티를 얻기 위해서 서로 떨어져 분포하는 RE들로 구성된다. 이러한 DL NR-DRS 자원은 고정 DL 자원에서 여러 형태로 분포될 수 있다. DL NR-DRS 자원은 서빙 기지국에 의해 전송되는 모든 DL NR-DRS 안테나 포트를 의미하며, 하나 이상으로 구성될 수 있다. The DL NR-DRS resource is a subset of the fixed DL resource, and is composed of REs distributed apart from each other to obtain diversity. Such DL NR-DRS resources may be distributed in various forms in fixed DL resources. DL NR-DRS resource means all DL NR-DRS antenna ports transmitted by the serving base station, and may be configured with one or more.
도 5의 (a)에는 DL NR-DRS RE를 위한 균일 할당(uniform allocation)이 예시되어 있고, 도 5의 (b)에는 DL NR-DRS RE를 위한 등거리 할당(equi-distance allocation)이 예시되어 있다.FIG. 5A illustrates uniform allocation for DL NR-DRS RE, and FIG. 5B illustrates equi-distance allocation for DL NR-DRS RE. have.
도 5의 (a)에 예시된 바와 같이, DL NR-DRS 자원의 RE 맵핑은 고정 DL 자원 이내에서 여러 개의 심볼을 사용하면서도 동일한 부반송파를 이용할 수 있다.As illustrated in (a) of FIG. 5, the RE mapping of DL NR-DRS resources may use the same subcarrier while using multiple symbols within a fixed DL resource.
또는 도 5의 (b)에 예시된 바와 같이, DL NR-DRS 자원의 RE 맵핑은 고정 DL 자원 이내에서 여러 개의 심볼과 여러 개의 부반송파를 이용할 수 있다.Alternatively, as illustrated in FIG. 5B, the RE mapping of the DL NR-DRS resource may use several symbols and several subcarriers within a fixed DL resource.
도 5의 (a)에 예시된 바와 같이, DL NR-DRS를 위한 RE 맵핑이 동일 부반송파 및 인접 심볼들을 사용하는 경우에, 시간 도메인에서 확산 부호(spreading code)가 사용되면, 서로 다른 DL NR-DRS 안테나 포트들 혹은 서로 다른 서빙 기지국들로부터의 DL NR-DRS 안테나 포트들이 다중화(multiplex)될 수 있다. 이를 통해 수신 전력 이득이 획득될 수 있으므로, 도 5의 (a)는 DL 커버리지 확장에 활용될 수 있다. As illustrated in (a) of FIG. 5, in case the RE mapping for DL NR-DRS uses the same subcarrier and adjacent symbols, if spreading codes are used in the time domain, different DL NR− DRS antenna ports or DL NR-DRS antenna ports from different serving base stations may be multiplexed. Since the received power gain can be obtained through this, FIG. 5A can be used for DL coverage expansion.
도 5의 (b)에 예시된 바와 같이, 고정 DL 자원 이내에서 부반송파들이 심볼마다 일정한 거리를 유지하도록 DL NR-DRS를 위한 RE 맵핑이 수행되는 경우에, DL NR-DRS를 위한 RE 맵핑은 시간 도메인과 주파수 도메인에서 더욱 낮은 채널 추정 오류를 가진다. 단말이 고정 DL 자원에 속한 물리 채널을 복조하는 경우에, 임의(arbitrary)의 RE에 대한 채널 추정을 수행하기 위한 소정의 보간법을 용이하게 사용할 수 있다. 만일 단말이 DL NR-DRS를 이용해 PBCH 등을 복조하는 경우에, 도 5의 (b)에 예시된 RE 맵핑과 유사한 형태를 가지는 RE 맵핑이 수행될 수 있다.As illustrated in FIG. 5B, when RE mapping for DL NR-DRS is performed such that subcarriers maintain a constant distance per symbol within a fixed DL resource, the RE mapping for DL NR-DRS is timed. It has lower channel estimation error in the domain and frequency domain. When the terminal demodulates a physical channel belonging to a fixed DL resource, a predetermined interpolation method for performing channel estimation on an arbitrary RE can be easily used. If the UE demodulates a PBCH using DL NR-DRS, an RE mapping having a form similar to the RE mapping illustrated in FIG. 5B may be performed.
한편, 고정 DL 자원은 서브프레임/슬롯 타입에 무관하게 전송되는 물리 신호(physical signal)와 물리 채널(physical channel)을 의미한다. 고정 DL 자원은 DL NR-DRS, 동기 신호, 그리고 NR-MIB(master information block)를 적어도 포함한다. 물리 신호와 물리 채널이 주기적으로 전송되지 않거나 혹은 간헐적으로(예, on-demand or event-driven) 전송되는 경우에는, 고정 DL 자원에 포함되지 않을 수 있다. 이러한 비주기적인 물리 신호와 물리 채널의 양은 DL 로드(load)에 비례한다. 예를 들어, 단말 특정으로 빔 형성된 PDCCH(예, UE-specific beamformed PDCCH)와 단말 특정으로 빔 형성된 EPDCCH(enhanced physical downlink control channel)(예, UE-specific beamformed EPDCCH) 중에서 DL 스케줄링 할당(scheduling assignment)에 관련된 제어 채널이, 고정 DL 자원에 포함된다. 다른 예를 들어, 고정 DL 자원은 단말 특정 PDSCH(예, UE-specific PDSCH)을 포함한다. 또 다른 예를 들어, SIB(system information block)가 PDSCH를 통해 전송되는 경우에, SIB와 이를 스케줄링하는 PDCCH의 CSS(common search space)가, 고정 DL 자원에 포함된다. 또 다른 예를 들어, 페이징 채널(paging channel)이 고정 DL 자원에 포함된다. 또 다른 예를 들어, PMCH(physical multicast channel)가 고정 DL 자원에 포함된다. 이러한 물리 신호 및 물리 채널의 분류 방법은, 뉴머롤러지(numerology)에 무관하게 혹은 TTI를 구성하는 심볼의 개수에 무관하게 사용될 수 있다.Meanwhile, the fixed DL resource means a physical signal and a physical channel transmitted regardless of the subframe / slot type. The fixed DL resource includes at least a DL NR-DRS, a synchronization signal, and an NR-MIB (master information block). When a physical signal and a physical channel are not transmitted periodically or intermittently (eg, on-demand or event-driven), they may not be included in the fixed DL resource. The amount of these aperiodic physical signals and physical channels is proportional to the DL load. For example, DL scheduling assignment among UE-specific beamformed PDCCHs (eg, UE-specific beamformed PDCCHs) and UE-specific beamformed EPDCCHs (eg, UE-specific beamformed EPDCCHs). The control channel associated with is included in the fixed DL resource. For another example, the fixed DL resource includes a UE specific PDSCH (eg, UE-specific PDSCH). For another example, when a system information block (SIB) is transmitted through a PDSCH, a common search space (CSS) of the SIB and a PDCCH scheduling the same is included in the fixed DL resource. In another example, a paging channel is included in the fixed DL resource. In another example, a physical multicast channel (PMCH) is included in a fixed DL resource. The classification method of the physical signal and the physical channel may be used regardless of the number of symbols constituting the TTI or irrespective of the numerology.
3GPP NR TDD 레퍼런스 시스템 1은 서브프레임/슬롯 타입을 각 서브프레임/슬롯 마다 바꿀 수 있기 때문에, 단말은 GP의 존재를 미리 알 수 없으며 그리고 서브프레임/슬롯 내의 GP 위치를 미리 알 수 없다. 단말이 GP의 존재를 아는 방법으로써, 단말이 해당 서브프레임/슬롯에서 NR-PDCCH 를 복호해 DL 할당(assignment)을 수신하여, 해당 서브프레임/슬롯을 DL 서브프레임/슬롯이거나 혹은 DL-중심적(centric) 서브프레임/슬롯 이라고 판단할 수 있다. 후자의 경우는, DL-중심적(centric) 서브프레임/슬롯에 GP가 정의된 경우에 해당한다. 또는 단말이 UL 그랜트를 수신하여, 해당 서브프레임/슬롯을 UL 서브프레임/슬롯이거나 혹은 UL-중심적(centric) 서브프레임/슬롯 이라고 판단할 수 있다. 또는 단말이 UL 그랜트를 수신하고 UL 데이터 영역(region)의 시작 심볼 인덱스(starting symbol index)나 끝 심볼 인덱스(ending symbol index)를 수신하여, 해당 서브프레임/슬롯 내에 GP가 존재한다는 것과 해당 GP의 위치를 간접적으로 판단할 수 있다. Since the 3GPP NR TDD reference system 1 can change the subframe / slot type for each subframe / slot, the UE cannot know the existence of the GP in advance and the GP position in the subframe / slot in advance. As a way for the UE to know the presence of the GP, the UE decodes the NR-PDCCH in the corresponding subframe / slot and receives the DL assignment, thereby making the subframe / slot a DL subframe / slot or DL-centric ( centric) subframe / slot. The latter case corresponds to the case where a GP is defined in a DL-centric subframe / slot. Alternatively, the terminal may receive a UL grant and determine that the corresponding subframe / slot is a UL subframe / slot or a UL-centric subframe / slot. Alternatively, the terminal receives the UL grant and receives a starting symbol index or ending symbol index of the UL data region, so that the GP exists in the corresponding subframe / slot and that the GP The location can be determined indirectly.
만일 단말이 해당 서브프레임/슬롯에서 DL 할당(assignment)과 UL 그랜트를 수신하지 않은 경우에, 서빙 셀의 서브프레임/슬롯 타입을 알기 어렵다. TDD 로 동작하는 무선통신 시스템의 경우에, 서브프레임/슬롯 타입은, DL 서브프레임/슬롯, DL-중심적(centric) 서브프레임/슬롯, UL 서브프레임/슬롯, UL-중심적(centric) 서브프레임/슬롯, 및 특별 서브프레임/슬롯 중에서 하나에 해당한다. 만일 서브프레임/슬롯 타입이 특별 서브프레임/슬롯에 해당하는 경우에, DL 영역(region) 에 속하는 심볼의 개수를 단말이 알 수 있다.If the UE does not receive the DL assignment and the UL grant in the corresponding subframe / slot, it is difficult to know the subframe / slot type of the serving cell. In the case of a wireless communication system operating with TDD, the subframe / slot type is a DL subframe / slot, a DL-centric subframe / slot, an UL subframe / slot, a UL-centric subframe / Slot, and one of a special subframe / slot. If the subframe / slot type corresponds to a special subframe / slot, the UE can know the number of symbols belonging to the DL region.
이러한 경우에, 방법 IND1 과 방법 IND2가 고려될 수 있다.In this case, method IND1 and method IND2 can be considered.
방법 IND1에서, 서빙 셀은 서브프레임/슬롯 타입을 지시하는 STI(subframe/slot type indicator)를 고정 DL 자원에 포함시킨다. 방법 IND1을 위한 방법 IND1-1, 방법 IND1-2, 및 방법 IND1-3이 고려될 수 있다.In method IND1, the serving cell includes a subframe / slot type indicator (STI) indicating the subframe / slot type in the fixed DL resource. Methods IND1-1, Method IND1-2, and Method IND1-3 for Method IND1 can be considered.
방법 IND1-1은 STI를 포함하는 PSTICH(physical subframe/slot type indicator channel)가 TS에 의해 별도로 정의되는 경우에 해당한다. 방법 IND1-1은 셀 특정 타입(cell-specific type)을 단말에게 명시적으로 알릴 수 있다. 이를 위해서 RE가 추가로 사용되어야 하지만, 이러한 오버헤드에도 불구하고, 단말은 해당 서브프레임/슬롯 타입을 쉽게 알 수 있다. 특히 인터 주파수(inter-frequency) RRM 측정을 수행하는 단말은, 고정 DL 자원에서 STI 만으로도 해당 서브프레임/슬롯 이 DL 서브프레임/슬롯(예, UL 영역이 존재하지 않음)인지, DL-중심적(centric) 서브프레임/슬롯 인지, UL 서브프레임/슬롯(예, DL 영역이 존재하지 않음)인지, UL-중심적(centric) 서브프레임/슬롯 인지, 특별 서브프레임/슬롯 인지를 알 수 있기 때문에, 이러한 DL 영역(region)이 RRM 측정을 위해 활용될 수 있다. 이러한 경우에, STI 가 5가지 경우의 수 를 전달해야 한다. 하지만, RRM 측정을 수행하는 알고리즘을 단순하게 변경하기 위해 STI가 정의되는 경우에는, STI 가 2 가지 경우의 수만을 전달하는 것으로 충분하다. 여기서, 2가지 경우의 수 는, 단말을 위한 심볼 및 주파수 영역(예, TS에 의해 미리 정의되거나 혹은 기지국에 의해 미리 설정된 심볼 및 주파수 영역)에 걸친 최소한의 자원이, 서브프레임/슬롯의 DL 영역(region)에 포함되는지, 혹은 포함되지 않는지를 의미할 수 있다. 이러한 경우에, STI 는 1 비트 만을 전달할 수 있다. Method IND1-1 corresponds to a case where a physical subframe / slot type indicator channel (PSTICH) including an STI is separately defined by the TS. Method IND1-1 may explicitly inform the UE of a cell-specific type. For this purpose, an RE should be additionally used, but despite this overhead, the UE can easily know the corresponding subframe / slot type. In particular, the terminal performing inter-frequency RRM measurement, whether the subframe / slot is a DL subframe / slot (eg, the UL region does not exist) only in STI in a fixed DL resource, DL-centric (centric This DL, since it can be seen whether it is a subframe / slot, a UL subframe / slot (e.g., no DL region exists), a UL-centric subframe / slot, or a special subframe / slot. Regions can be used for RRM measurements. In this case, the STI must convey the number of five cases. However, if the STI is defined to simply change the algorithm that performs the RRM measurement, it is sufficient that the STI carries only two cases. Here, the number of two cases is that a minimum resource over a symbol and frequency domain (eg, a symbol and frequency domain predefined by the TS or preset by the base station) for the UE is a DL region of a subframe / slot. It can mean whether it is included in (region) or not. In this case, the STI can carry only 1 bit.
다른 방법으로써, STI 에서 DL 영역(region) 의 길이가 부호화될 수 있다. 고정 DL 자원 이후에 DL 영역(region)으로써 추가로 할당되는 심볼(symbol)의 개수가, 몇 가지 경우로 TS 에 의해 정의될 수 있다. 예를 들어, STI가 4가지의 경우의 수를 전달할 수 있고, 첫번째 경우는 0개를 표시할 수 있고, 두번째 경우는 4개를 표시할 수 있고, 세번째 경우에는 8개를 표시할 수 있고, 네번째 경우는 12개를 표시할 수 있다. STI 는 2 bits 을 이용해, DL 심볼의 개수를 불특정 다수의 단말들에게 시그널링 할 수 있다. Alternatively, the length of the DL region in the STI can be encoded. The number of symbols additionally allocated as DL regions after the fixed DL resource may be defined by the TS in some cases. For example, the STI can convey the number of four cases, the first case can show zero, the second case can show four, the third case can show eight, In the fourth case, 12 can be displayed. The STI may signal the number of DL symbols to unspecified terminals by using 2 bits.
STI은 3가지 경우 혹은 그 이상으로 세분화된 슬롯 타입을 단말들에게 전달할 수도 있다. 이러한 경우는, 단말들이 DL 영역(region)을 인지해야 하는 RRM 측정 이나 CSI 피드백을 지원할 수 있을 뿐만 아니라, UL 영역(region)을 인지해야 하는 시나리오를 지원할 수 있다. 예를 들어, 인접 기지국으로부터의 UL 간섭 신호를 측정하도록 서빙 기지국으로부터 설정받은 단말의 동작이 고려될 수 있다. 서빙 기지국은 다이나믹 TDD 로 동작하는 경우에, 단말에게 인접 기지국으로부터의 DL 간섭 신호와 UL 간섭 신호에 대한 측정을 각각 수행하도록 설정할 수 있다. 여기서, 측정은 CSI 측정, RRM 측정, 또는 CSI 및 RRM 측정을 의미할 수 있다. 이러한 경우에, 단말은 인접 기지국의 DL 영역(region) 뿐만 아니라 UL 영역(region) 에 대한 정보도 알아야 하는데, 이는 인접 기지국에 의해 전송되는 PSTICH에 포함된 STI 로부터 획득될 수 있다.The STI may deliver slot types subdivided into three or more cases to the UEs. In this case, the UE may not only support RRM measurement or CSI feedback that requires recognition of the DL region, but also support a scenario in which the UE needs to recognize the UL region. For example, the operation of the terminal configured from the serving base station to measure the UL interference signal from the neighbor base station may be considered. When the serving base station operates in dynamic TDD, the serving base station may configure the terminal to perform measurements on DL interference signals and UL interference signals from neighboring base stations, respectively. Here, the measurement may mean a CSI measurement, an RRM measurement, or a CSI and RRM measurement. In this case, the UE needs to know information about the UL region as well as the DL region of the neighbor base station, which can be obtained from the STI included in the PSTICH transmitted by the neighbor base station.
PSTICH 는 고정 DL 자원 이내에서 여러 개의 RE들을 사용하여, 인코딩을 통해 주파수 다이버시티를 얻을 수 있다.The PSTICH can use multiple REs within a fixed DL resource to obtain frequency diversity through encoding.
PSTICH 는 DL NR-DRS 자원이 정의된 고정 DL 자원 에 속한다. DL NR-DRS 자원이 전송되지 않는 서브프레임/슬롯 에서는, RRM 측정을 목적으로 하는 STI가 전송될 필요가 없다. 그러나 만일 프로세싱 시간이 매우 짧게 요구되는 경우에는, 단말이 서브프레임/슬롯 타입 또는 STI를 굉장히 이른 시점에 미리 알고 있는 것이 유리하며, 또한 인접한 셀의 서브프레임/슬롯 타입 또는 STI를 아는 것이 유리하다. 이러한 경우에, 매 서브프레임/슬롯 마다 PSTICH가 전송될 수 있다. 만일 기지국이 매 서브프레임/슬롯 마다 PSTICH를 전송하는 경우에, PSTICH는 서브프레임/슬롯 타입 뿐만 아니라, 블랭크(blank) 자원의 시간 및 주파수 위치, 그리고 DL 제어 채널을 갖는 심볼의 개수를 적어도 포함할 수 있다. 여기서, 블랭크 자원은 서브밴드(subband) 및 미니 슬롯(mini-slot) 의 단위를 가질 수 있다.PSTICH belongs to a fixed DL resource in which DL NR-DRS resources are defined. In subframes / slots in which DL NR-DRS resources are not transmitted, STIs for RRM measurement need not be transmitted. However, if the processing time is required to be very short, it is advantageous for the UE to know the subframe / slot type or STI at a very early time, and also to know the subframe / slot type or STI of the adjacent cell. In this case, the PSTICH may be transmitted every subframe / slot. If the base station transmits a PSTICH every subframe / slot, the PSTICH will include at least the subframe / slot type, as well as the time and frequency location of the blank resource, and the number of symbols with the DL control channel. Can be. Here, the blank resource may have a unit of a subband and a mini-slot.
PSTICH 자원의 시간 위치(time location)와 주파수 위치(frequency location) 는 TS 에 의해 정의되며, 기지국에 RRC 연결되어 있지 않은 단말(예, RRC_IDLE UE), 넌-서빙(non-serving) 단말 등도 측정을 수행할 수 있다.The time location and frequency location of the PSTICH resource are defined by the TS, and UEs (eg, RRC_IDLE UEs) and non-serving UEs that are not RRC-connected to the base station may also measure the location. Can be done.
PSTICH 는 단일(single) 안테나 포트를 통해 전송되며, 단말은 셀 특정(cell-specific) 안테나 포트를 이용해 PSTICH를 수신할 수 있어야 한다. NR 셀에서 PSTICH 를 위한 별도의 DM-RS가 도입될 수 있다. 혹은 NR 셀은 PDCCH 의 CSS(common search space)를 위한 안테나 포트를 이용해서 PSTICH 를 변조할 수 있다. PSTICH와 PDCCH는 서로 다른 DM-RS 를 이용하지 않고, 단말은 PSTICH를 복조하기 위해 PDCCH를 위한 DM-RS 를 재사용할 수 있다. 반면에, PSTICH 복조를 위한 DM-RS 와 PDCCH 복조를 위한 DM-RS 가 서로 구분되고 서로 다른 안테나 포트를 이용하는 경우에, 서빙 기지국은 DM-RS를 더욱 많이 전송해야 하므로, 이는 자원 효율 측면에서 불리하다. The PSTICH is transmitted through a single antenna port, and the terminal should be able to receive the PSTICH using a cell-specific antenna port. In the NR cell, a separate DM-RS for PSTICH may be introduced. Alternatively, the NR cell may modulate the PSTICH using an antenna port for CSS (common search space) of the PDCCH. The PSTICH and the PDCCH do not use different DM-RSs, and the UE can reuse the DM-RS for the PDCCH to demodulate the PSTICH. On the other hand, when the DM-RS for PSTICH demodulation and the DM-RS for PDCCH demodulation are separated from each other and use different antenna ports, the serving base station needs to transmit more DM-RS, which is disadvantageous in terms of resource efficiency. Do.
PSTICH 는 RRC 아이들(RRC_IDLE) 상태의 단말이나 인접 기지국에 속한 RRC 연결(connected) 단말 등에 의해서도 탐지될 수 있어야 한다. 따라서, 서빙 기지국에 RRC 연결되어 있지 않은 단말이나 혹은 인접 기지국에 속한 단말도 PSTICH를 탐지할 수 있도록 하기 위해서, 서빙 기지국은 RRC 연결 상태의 서빙 단말만을 위해 전송되는 DM-RS의 양보다 더욱 많은 양의 DM-RS를 PSTICH에 포함시켜 전송할 수 있다. 그러므로 PSTICH DM-RS 의 추가적인 전송을 최소화하기 위해서, CSS(common search space)를 전송하는 PDCCH DM-RS를 위한 전처리와 동일한 전처리가 PSTICH에 적용될 수 있다. 이러한 경우에, 서빙 기지국은 PSTICH 와 PDCCH를 동일한 주파수 대역 혹은 서로 번갈아가며 엮인(interleaved) 주파수 자원(예, PSTICH는 odd REG index를 사용하고 PDCCH는 even REG index를 사용)을 활용하여 전송할 수 있다. 이러한 경우에, 단말은 PSTICH의 CSS 와 PDCCH 의 CSS가 동일한 안테나 포트를 사용한다고 가정할 수 있다.The PSTICH should be able to be detected by a terminal in an RRC idle state or an RRC connected terminal belonging to an adjacent base station. Therefore, in order for the terminal not connected to the serving base station or the terminal belonging to the neighboring base station to detect the PSTICH, the serving base station is larger than the amount of DM-RS transmitted only for the serving terminal in the RRC connected state. DM-RS may be included in the PSTICH and transmitted. Therefore, in order to minimize additional transmission of the PSTICH DM-RS, the same preprocessing as the preprocessing for the PDCCH DM-RS transmitting a common search space (CSS) may be applied to the PSTICH. In this case, the serving base station may transmit using the PSTICH and the PDCCH in the same frequency band or alternately interleaved frequency resources (for example, the PSTICH uses an odd REG index and the PDCCH uses an even REG index). In this case, the UE may assume that the CSS of the PSTICH and the CSS of the PDCCH use the same antenna port.
PSTICH 의 경우에는, 단말들이 더욱 높은 수신 품질(예, 더 낮은 에러 비율)을 갖기 위해서, 추가적인 DM-RS가 전송되거나 혹은 STI(subframe/slot type indicator)에 더욱 낮은 부호화율이 적용될 수 있다. STI에 더욱 낮은 부호화율이 적용되기 위해서, 부호화된 STI는 더 많은 양의 시간 및 주파수 자원에 맵핑될 수 있다. STI 는 서브프레임/슬롯의 이른 시점에서 활용되어야 하므로, 서빙 기지국은 더 적은 양의 시간을 이용함으로써 단말의 복조를 위한 지연(latency)을 증가시키지 않고, 대신에 더 많은 양의 주파수를 이용할 수 있다. 이를 통해, 주파수 다중화 이득도 획득될 수 있다.In the case of the PSTICH, additional DM-RSs may be transmitted or a lower coding rate may be applied to the subframe / slot type indicator (STI) in order for the terminals to have a higher reception quality (eg, a lower error rate). In order to apply a lower coding rate to the STI, the coded STI can be mapped to a greater amount of time and frequency resources. Since the STI should be utilized at an early point in the subframe / slot, the serving base station can use a larger amount of frequency instead of increasing the latency for demodulation of the UE by using a smaller amount of time. . Through this, frequency multiplexing gain can also be obtained.
PSTICH 는 가상 섹터 마다 서로 다른 값을 갖는 것이 허용될 수 있다. 이러한 경우에, 가상 섹터 마다 PSTICH가 별도로 전송될 수 있다. 만일 PSTICH가 셀 특정(cell-specific)하게 전송되는 경우에는, 가상 섹터 마다 가져야 하는 슬롯 타입 모두는 셀 특정한(cell-specific) PSTICH 에 포함될 수 있다.The PSTICH may be allowed to have different values for each virtual sector. In this case, the PSTICH may be transmitted separately for each virtual sector. If the PSTICH is transmitted cell-specifically, all of the slot types that should be present for each virtual sector may be included in the cell-specific PSTICH.
방법 IND1-2은, PSTICH가 NR-PDCCH에 포함되는 경우에 해당한다. 예를 들어, 기지국은 서브프레임/슬롯의 타입을 지시하는 STI를 생성하고, STI를 NR-PDCCH에 포함시키고, NR-PDCCH를 고정 DL 자원을 통해 단말에게 전송할 수 있다. 단말은 NR-PDCCH의 CSS(common search space or cell-specific search space)에서 STI(subframe/slot type indicator)를 찾는다. 이러한 경우에, 단말은 별도의 PDCCH 후보(candidate)를 탐색해야 하기 때문에, 단말은 RRM 측정을 수행하기 위해서 PDCCH 복조를 수행해야 한다. 이를 위해 단말은 더 복잡하게 동작하기 때문에, 방법 IND1-2은 방법 IND1-1 보다 불리하다. 방법 IND1-2에서 STI 의미와 DM-RS 설정 방법은, 방법 IND1-1에서와 동일하다. Method IND1-2 corresponds to a case where the PSTICH is included in the NR-PDCCH. For example, the base station may generate an STI indicating the type of subframe / slot, include the STI in the NR-PDCCH, and transmit the NR-PDCCH to the terminal through the fixed DL resource. The terminal finds a subframe / slot type indicator (STI) in the common search space or cell-specific search space (CSS) of the NR-PDCCH. In this case, since the UE needs to search for a separate PDCCH candidate, the UE must perform PDCCH demodulation in order to perform RRM measurement. For this purpose, since the terminal operates more complicatedly, the method IND1-2 is disadvantageous than the method IND1-1. The meaning of the STI and the method of setting the DM-RS in the method IND1-2 are the same as those in the method IND1-1.
단말의 복잡도를 줄이기 위해서, 단말은 PDCCH 의 탐색 공간을 무작위적(예, blind decoding)으로 뒤지지 않고도, STI 의 시간 및 주파수 자원의 위치를 인지할 수 있어야 한다. 이를 위해, PDCCH에 속한 REG들(혹은 CCE들) 중에서 STI를 포함하는 REG(혹은 CCE)에 대한 별도의 스크램블링(scrambling) 등의 동작이 수행되지 않을 수 있다.In order to reduce the complexity of the terminal, the terminal should be able to recognize the location of the time and frequency resources of the STI without randomly (eg blind decoding) the search space of the PDCCH. To this end, a separate scrambling operation for the REG (or CCE) including the STI may not be performed among the REGs (or CCEs) belonging to the PDCCH.
예를 들어, PDCCH의 일부 자원으로써 REG(혹은 CCE)가 별도로 할당되고, 상기 REG(혹은 CCE)는 STI의 정보를 적어도 포함할 수 있고, 그 외에도 상기 REG(혹은 CCE)는 블랭크 자원(blank resource) 혹은 비축 자원(reserved resource) 등의 정보를 추가로 포함할 수 있다. 즉, 기지국은 고정 DL 자원(또는 PDCCH 자원)에 속하는 REG들(또는 CCE들) 중에서 기지국의 식별 정보에 대응하는 REG(또는 CCE)를 이용해, STI를 전송할 수 있다. 이러한 PDCCH 의 일부 자원이 갖는 주파수 및 시간 자원을, 서빙 기지국(혹은 서빙 셀)의 식별 정보에 따라 단말이 스스로 유추할 수 있다. STI 를 전송하는 자원은 서빙 기지국(혹은 서빙 셀)의 식별 정보에 따라 달라질 수 있으므로, 서로 다른 기지국들(혹은 셀들)에 의해 전송되는 STI들은 충돌을 회피할 수 있다.For example, a REG (or CCE) may be separately allocated as a part of a PDCCH, and the REG (or CCE) may include at least information of an STI, and in addition, the REG (or CCE) may be a blank resource. ), Or may include additional information such as reserved resources. That is, the base station may transmit the STI by using the REG (or CCE) corresponding to the identification information of the base station among the REGs (or CCEs) belonging to the fixed DL resource (or PDCCH resource). The terminal may infer the frequency and time resources of some resources of the PDCCH according to identification information of the serving base station (or serving cell). Since the resources for transmitting the STI may vary according to identification information of the serving base station (or serving cell), the STIs transmitted by different base stations (or cells) may avoid collision.
이에 따라서, 단말은 서빙 기지국의 STI 혹은 인접 기지국의 STI 를 인지하고, 서빙 기지국으로부터 설정받은 대로 RRM 측정 혹은 CSI 측정 등의 동작을 수행할 수 있다. Accordingly, the terminal may recognize the STI of the serving base station or the STI of the neighboring base station and perform an operation such as RRM measurement or CSI measurement as set by the serving base station.
STI 를 PDCCH의 일부로써 전송하는 방법은 REG 혹은 CCE 를 이용하기 때문에, 서빙 기지국은 STI 전송을 위한 REG(혹은 CCE)를 피해서, 다른 PDCCH 후보(candidate)를 위한 REG 맵핑(혹은 CCE 맵핑)을 수행한다. 예를 들어, 서빙 기지국은 REG들 중에서 STI 전송을 위한 REG를 제외한 나머지 REG들을 이용해 CCE 구성을 위한 맵핑을 수행하고, 그 이후 PDCCH 후보들을 이미 생성된 CCE에 맵핑한다. 즉, 서빙 기지국은 PDCCH 후보들을, 고정 DL 자원에 속하는 REG들 중에서 STI 전송을 위한 REG를 제외한 나머지 REG들에 맵핑할 수 있다. 그러므로, 서빙 기지국은 CCE를 구성하는 REG의 인덱싱(indexing or numbering)을 수행하는 경우에, STI가 맵핑되지 않은 REG들만을 이용해 인덱싱을 수행하고, CCE를 구성한다. 다른 예를 들어, 서빙 기지국은 CCE들 중에서 STI 전송을 위한 CCE를 제외한 나머지 CCE들만을 이용해 인덱싱을 수행할 수 있다. 그 이후, 서빙 기지국은 PDCCH 후보를 위한 맵핑을 수행한다.Since the method of transmitting the STI as part of the PDCCH uses REG or CCE, the serving base station avoids REG (or CCE) for STI transmission and performs REG mapping (or CCE mapping) for another PDCCH candidate. do. For example, the serving base station performs mapping for CCE configuration using remaining REGs other than the REG for STI transmission among REGs, and then maps PDCCH candidates to the already generated CCE. That is, the serving base station may map PDCCH candidates to remaining REGs other than the REG for STI transmission among REGs belonging to the fixed DL resource. Therefore, when the serving base station performs indexing or numbering of the REG constituting the CCE, the serving base station performs indexing using only the REGs to which the STI is not mapped and configures the CCE. For another example, the serving base station may perform indexing using only the remaining CCEs except for the CCE for STI transmission among the CCEs. Thereafter, the serving base station performs mapping for the PDCCH candidate.
PSTICH 설계의 예를 설명한다. An example of the PSTICH design will be described.
PSTICH 를 정의하는 방법은, LTE PCFICH에서처럼 방법 STI-1를 사용할 수 있고, 또는 LTE PDCCH에서처럼 방법 STI-2을 사용할 수 있다.The method of defining the PSTICH may use the method STI-1 as in the LTE PCFICH, or may use the method STI-2 as in the LTE PDCCH.
방법 STI-1에서, PSTICH는 LTE PCFICH 와 유사하게 설계된다. 서빙 기지국은 부호화된 STI를 REG 단위(혹은 CCE 단위)로 처리하고, TS에 의해 정의된 REG(혹은 CCE) 위치에 혹은 서빙 기지국(혹은 서빙 셀)의 식별 정보로부터 유추될 수 있는 자원에, 부호화된 STI를 REG 단위(혹은 CCE 단위)로 맵핑한다. In method STI-1, the PSTICH is designed similar to the LTE PCFICH. The serving base station processes the encoded STI in REG units (or CCE units), and encodes the resource into a resource that can be inferred from the identification information of the serving base station (or serving cell) or at the REG (or CCE) location defined by the TS. Mapped STIs in REG units (or CCE units).
단말이 STI 를 더욱 이른 시점에서 복조하기 위해, STI를 포함하는 REG 혹은 CCE는 첫번째 DL 심볼에 위치할 수 있다. 예를 들어, 기지국은 서브프레임/슬롯에 속하는 시간 도메인 심볼들 중에서 가장 앞에 있는 시간 도메인 심볼에, STI 전송을 위한 REG(또는 CCE)를 위치시킬 수 있다.In order for the UE to demodulate the STI earlier, the REG or CCE including the STI may be located in the first DL symbol. For example, the base station may locate the REG (or CCE) for STI transmission in the time domain symbol that is the one of the time domain symbols belonging to the subframe / slot.
STI의 복호 성능을 높이기 위해서, 서빙 기지국은 STI 를 포함하는 REG들 혹은 CCE들을 여러 주파수에 걸쳐서 맵핑할 수 있다. 예를 들어, 서빙 기지국은 STI 전송을 위한 REG들(또는 CCE들)을, 시스템 대역폭에 속하는 다수의 주파수에 맵핑시킬 수 있다. 이를 통해, 주파수 다이버시티 이득이 획득될 수 있다.In order to increase the decoding performance of the STI, the serving base station may map REGs or CCEs including the STI over several frequencies. For example, the serving base station may map REGs (or CCEs) for STI transmission to multiple frequencies belonging to the system bandwidth. Through this, a frequency diversity gain can be obtained.
방법 STI-2에서, PSTICH는 PDCCH의 셀 특정 탐색 공간(cell-specific search space)에 포함된다.In method STI-2, the PSTICH is included in a cell-specific search space of the PDCCH.
PSTICH는 DL 심볼의 개수를 알기 위한 정보를 적어도 포함한다. 예를 들어, 서빙 기지국은 하나의 서브프레임/슬롯을 x 개(단, x=7 or 14)의 심볼로 구성하고, 하나의 서브프레임/슬롯에 DL 심볼이 y 개(단, y<x) 존재하는 경우에, 서빙 기지국은 단말에게 y 의 값을 알려야 한다. 예를 들어, 서빙 기지국은 서브프레임/슬롯에 속하는 x개의 시간 도메인 심볼들 중에서 DL을 위한 시간 도메인 심볼의 개수(y)를 결정하고, 서브프레임/슬롯의 타입을 결정하고, 결정된 개수(y)와 결정된 서브프레임/슬롯 타입(또는 STI)을 포함하는 PSTICH을, PDCCH를 위한 CSS를 통해 전송할 수 있다. 여기서, y와 STI는 부호화되어 인덱스 형태로 PSTICH에 포함될 수 있다.The PSTICH includes at least information for knowing the number of DL symbols. For example, the serving base station configures one subframe / slot with x symbols (where x = 7 or 14), and y DL symbols (y <x) in one subframe / slot. If present, the serving base station should inform the terminal of the value of y. For example, the serving base station determines the number y of time domain symbols for the DL among the x time domain symbols belonging to the subframe / slot, determines the type of the subframe / slot, and determines the determined number y And a PSTICH including the determined subframe / slot type (or STI) may be transmitted through CSS for the PDCCH. Here, y and STI may be encoded and included in the PSTICH in an index form.
단말은 (x-y) 개의 심볼이 GP 이거나 UL 심볼에 해당하는 것으로 해석할 수 있다. 단말은 PSTICH 를 수신함으로써, 해당 심볼이 UL 심볼이거나 GP 심볼 이라고 인지할 수 있다. 단말은 기지국의 DL 할당(assignment)과 UL 그랜트에 맞추어, 수신과 송신을 수행하며, y개의 심볼을 DL 측정(예, RRM 측정, CSI 측정 등)을 위해 활용할 수 있다. The UE may interpret the (x-y) symbols as GP or UL symbols. The terminal may recognize that the corresponding symbol is a UL symbol or a GP symbol by receiving the PSTICH. The UE performs reception and transmission according to the DL assignment and the UL grant of the base station, and may use y symbols for DL measurement (eg, RRM measurement, CSI measurement, etc.).
서빙 기지국(혹은 서빙 셀)에 속한 RRC 연결(connected) 상태의 단말 뿐만 아니라, 인터 주파수 측정(inter-frequency measurement)을 수행하고 있는 단말이나, RRC 아이들 상태의 단말도, PSTICH를 복호할 수 있다. 이를 통해, 단말은 y의 값을 알 수 있다. 예를 들어, 단말은 y 값을 이용하여, 서빙 기지국(혹은 서빙 셀)에 대한 적절한 RSSI를 측정할 수 있다.Not only the terminal in the RRC connected state belonging to the serving base station (or serving cell), but also the terminal performing inter-frequency measurement, or the terminal in the RRC idle state, may decode the PSTICH. Through this, the terminal can know the value of y. For example, the terminal may measure an appropriate RSSI for the serving base station (or serving cell) using the y value.
단말이 STI를 더욱 이른 시점에서 복조하기 위해서, STI를 포함하는 REG(들) 혹은 CCE(들)는 첫번째 DL 심볼에 위치할 수 있다. 예를 들어, 기지국은 PDCCH 자원에 속하는 REG들(또는 CCE들) 중에서 STI 전송을 위한 하나 이상의 REG(또는 CCE)를, y개의 DL 심볼들 중에서 가장 앞에 있는 심볼에 위치시킬 수 있다.In order for the UE to demodulate the STI earlier, the REG (s) or CCE (s) including the STI may be located in the first DL symbol. For example, the base station may place one or more REGs (or CCEs) for STI transmission among the REGs (or CCEs) belonging to the PDCCH resource in the symbol that is the one of the y DL symbols.
STI의 복호 성능을 높이기 위해서, 서빙 기지국은 STI를 포함하는 REG들 혹은 CCE들을 여러 주파수에 걸쳐서 맵핑할 수 있다. 예를 들어, 서빙 기지국은 PDCCH 자원에 속하는 REG들(또는 CCE들) 중에서 STI 전송을 위한 하나 이상의 REG(또는 CCE)를, 시스템 대역폭 이내에서 다수의 주파수에 맵핑할 수 있다. 이를 통해, 주파수 다이버시티 이득이 획득될 수 있다. In order to increase the decoding performance of the STI, the serving base station may map REGs or CCEs including the STI over several frequencies. For example, the serving base station may map one or more REGs (or CCEs) for STI transmission among REGs (or CCEs) belonging to a PDCCH resource, to a plurality of frequencies within a system bandwidth. Through this, a frequency diversity gain can be obtained.
서빙 기지국은 부호화된 STI를 CCE 단위(또는 REG 단위)로 처리하고, TS에 의해 정의된 REG 위치(혹은 CCE 위치)에 부호화된 STI를 CCE 단위(또는 REG 단위)로 맵핑하거나 혹은 서빙 기지국(혹은 서빙 셀)의 식별 정보로부터 유추될 수 있는 자원에 부호화된 STI를 CCE 단위(또는 REG 단위)로 맵핑한다. 예를 들어, 단말은 서빙 기지국(혹은 서빙 셀)의 식별 정보로부터 SS 버스트에 속한 시스템 정보(예, SIB)의 위치를 유추할 수 있으며, SIB를 복조함으로써 STI의 위치를 알 수 있다. 또 다른 예를 들어, STI는 서빙 기지국(혹은 서빙 셀)의 식별 정보에 기초해 결정되는 자원에 맵핑될 수 있다. 또 다른 예를 들어, STI는 TS 에 의해 결정된 자원에서 전송될 수 있다.The serving base station processes the encoded STIs in CCE units (or REG units), maps the STIs encoded in CREG units (or REG units) to the REG location (or CCE location) defined by the TS, or serves the serving base station (or The encoded STI is mapped to a CCE unit (or REG unit) to a resource that can be inferred from the identification information of the serving cell). For example, the terminal may infer the location of system information (eg, SIB) belonging to the SS burst from identification information of the serving base station (or serving cell), and may know the location of the STI by demodulating the SIB. As another example, the STI may be mapped to a resource that is determined based on identification information of the serving base station (or serving cell). For another example, the STI may be sent in the resource determined by the TS.
방법 IND1-3은, DL NR-DRS 자원에서 CDM(code division multiplexing)을 사용하여, DL NR-DRS 안테나 포트의 수신 세기를 스프레딩 인자(spreading factor) 만큼 증가시킬 수 있다. 예를 들어, LTE CSI-RS 혹은 LTE DM-RS는 CDM-2 와 CDM-4 를 이용하여, 단말의 수신 세기를 증가시킬 수 있다. CDM에 적용되는 각 OCC(orthogonal cover code)는 하나의 안테나 포트에 대응한다. Method IND1-3 may increase the reception strength of the DL NR-DRS antenna port by a spreading factor using code division multiplexing (CDM) in the DL NR-DRS resource. For example, LTE CSI-RS or LTE DM-RS may increase the reception strength of the terminal using CDM-2 and CDM-4. Each orthogonal cover code (OCC) applied to the CDM corresponds to one antenna port.
만일 DL NR-DRS 서브프레임/슬롯의 서브프레임/슬롯 타입이 DL-중심적(centric) 서브프레임/슬롯인 경우에, 각 DL NR-DRS 자원에 특정 OCC(예, OCC1)가 적용된다. DL NR-DRS 서브프레임/슬롯의 서브프레임/슬롯 타입이 UL-중심적(centric) 서브프레임/슬롯인 경우에, DL NR-DRS 자원에 다른 OCC(예, OCC1과 다른 OCC2)가 적용된다. 단말은 DL NR-DRS 자원에 적용된 OCC를 추정할 수 있기 때문에, 단말은 해당 DL NR-DRS 서브프레임/슬롯 의 서브프레임/슬롯 타입을 알 수 있다. 이는, 3GPP NR 셀이 별도의 물리 채널을 정의하지 않고 DL NR-DRS 자원을 통해 암시적 지시(implicit indication)를 수행하는 방법이다.If the subframe / slot type of the DL NR-DRS subframe / slot is a DL-centric subframe / slot, a specific OCC (eg, OCC 1 ) is applied to each DL NR-DRS resource. DL-NR DRS sub-frame / slot type of the sub-frame / slot is centered UL- (centric) when the sub-frame / slot, and the OCC (for example, 1 OCC and OCC different 2) different in DL-NR DRS resources applicable . Since the UE can estimate the OCC applied to the DL NR-DRS resource, the UE can know the subframe / slot type of the corresponding DL NR-DRS subframe / slot. This is a method in which 3GPP NR cells perform implicit indication through DL NR-DRS resources without defining a separate physical channel.
구체적으로, 여러 개(예, L 개)의 DL NR-DRS RE들로 구성된 DL NR-DRS 자원이 TS에 의해 정의되는 경우에, NR 셀은 L-length OCC를 사용할 수 있다. 단말이 탐지하는 OCC에 따라, 서브프레임/슬롯 타입을 결정할 수 있다. 예를 들어, L=2 인 경우에, 단말은 [+1, +1]을 탐지하여, 서브프레임/슬롯 타입이 DL-중심적(centric) 서브프레임/슬롯 이라고 판단할 수 있다. 다른 예를 들어, 단말은 [+1, -1]을 탐지하여, 서브프레임/슬롯 타입이 UL-중심적(centric) 서브프레임/슬롯이라고 판단할 수 있다.In detail, when a DL NR-DRS resource composed of several (eg, L) DL NR-DRS REs is defined by a TS, an NR cell may use an L-length OCC. The subframe / slot type may be determined according to the OCC detected by the terminal. For example, when L = 2, the UE detects [+1, +1] to determine that the subframe / slot type is a DL-centric subframe / slot. For another example, the UE detects [+1, -1] to determine that the subframe / slot type is a UL-centric subframe / slot.
방법 IND2은 단말이 별도의 지시(indication) 없이 서브프레임/슬롯 타입을 인지하는 방법이다.Method IND2 is a method in which the UE recognizes a subframe / slot type without additional indication.
방법 IND2를 위한 방법 IND2-1에서, 단말은 3GPP NR TDD를 위한 서브프레임/슬롯 타입의 특징에 따라, 서브프레임/슬롯 타입을 추측할 수 있다. In method IND2-1 for method IND2, the UE may infer the subframe / slot type according to the characteristics of the subframe / slot type for 3GPP NR TDD.
서브프레임/슬롯 타입이 DL-중심적(centric) 서브프레임/슬롯인 경우에, GP가 정의되지 않거나 GP 위치가 서브프레임/슬롯의 마지막 심볼을 포함한다. 서브프레임/슬롯 타입이 UL-중심적(centric) 서브프레임/슬롯인 경우에, 고정 DL 자원 의 다음에 위치한 심볼과 그 다음 심볼(들)은 GP에 속한다. 서브프레임/슬롯 타입이 특별 서브프레임/슬롯인 경우에, 고정 DL 자원의 다음에 넌-제로(non-zero) 개수의 DL 심볼이 위치하고, 그 이후에 GP가 위치하고, 그 이후에 UL 영역(region) 이 위치한다. 따라서 단말은 GP의 위치를 탐지하여, 서브프레임/슬롯 타입을 결정할 수 있다. GP의 위치를 탐지하는 방법은, 단말이 에너지 탐지(energy detection)를 수행하는 방법을 사용할 수 있다.
If the subframe / slot type is a DL-centric subframe / slot, the GP is not defined or the GP position contains the last symbol of the subframe / slot. If the subframe / slot type is a UL-centric subframe / slot, the symbol located next to the fixed DL resource and the next symbol (s) belong to the GP. If the subframe / slot type is a special subframe / slot, a non-zero number of DL symbols are located after the fixed DL resource, after which a GP is located, followed by a UL region. ) Is located. Accordingly, the UE can determine the subframe / slot type by detecting the position of the GP. The method for detecting the position of the GP may use a method in which the terminal performs energy detection.
3GPP NR TDD에서는 지리적으로 인접한 기지국들이 시간 동기화되어 동작해야 하므로, 단말은 GP에 속하는 자원에서는 스케줄링 할당(scheduling assignment)에 따른 DL 데이터 전송이나 혹은 스케줄링 그랜트(scheduling grant)에 따른 UL 데이터 전송이 없다고 가정할 수 있다. GP에 속하는 자원 에서는 DL 영역(region) 이나 UL 영역(region) 보다 상대적으로 적은 에너지가 수신된다. 그러므로 단말은 에너지 탐지를 각 심볼 마다 수행해서, GP의 위치를 탐지한다.Since 3GPP NR TDD requires that geographically adjacent base stations operate in time synchronization, the UE assumes that there is no DL data transmission according to scheduling assignment or UL data transmission according to scheduling grant in a resource belonging to GP. can do. In the resource belonging to the GP, relatively less energy is received than the DL region or the UL region. Therefore, the terminal detects the position of the GP by performing energy detection for each symbol.
고정 DL 자원을 포함하는 심볼의 다음 심볼에서 단말에 의해 탐지된 에너지 값을, E1이라 가정하면, 단말이 이러한 과정을 반복하여 탐지한 에너지 값은, [E1, E2, ..., EL] 로 표현될 수 있다. 여기서, L은 자연수이며, 서브프레임/슬롯에 속하면서 고정 DL 자원을 포함하지 않는 심볼 인덱스에 대응한다.Assuming that the energy value detected by the UE in the next symbol of the symbol including the fixed DL resource is E 1 , the energy value detected by the UE by repeating this process is [E 1 , E 2 , ..., E L ]. Here, L is a natural number and corresponds to a symbol index belonging to a subframe / slot and not including a fixed DL resource.
길이를 모르는 GP의 존재를 탐지하기 위해서, 단말은 과 EL의 값을 비교할 수 있다. 만일 해당 심볼을 포함한 영역(region)이 DL 영역(region) 이면, 간섭 가설(interference hypothesis)이 동일하기 때문에, 부분적 평균(partial average)에 해당하는 SL 의 값은, EL과 크게 차이 나지 않는다. 만일 해당 심볼을 포함한 영역(region)과 부분적 평균(partial average)에 해당하는 영역(region)이 서로 다르다면, SL 의 값은 EL
과 크게 차이 날 수 있다. 하나의 심볼에서 이러한 변화 탐지(change detection)의 결과에 따라, 단말은 GP의 존재를 탐지할 수 있다. In order to detect the presence of a GP of unknown length, the terminal You can compare the values of and E L. If the region containing the symbol is a DL region, since the interference hypothesis is the same, the value of S L corresponding to the partial average does not differ significantly from E L. . If the region containing the symbol differs from the region corresponding to the partial average, the value of S L is E L. Can make a big difference. According to the result of such change detection in one symbol, the terminal may detect the presence of the GP.
오보 가능성(false alarm probability)을 낮추기 위해, 단말은 더 많은 개수의 심볼을 이용해 가설 검증(hypothesis testing)을 수행할 수 있다. 단말은 UL-중심적(centric) 서브프레임/슬롯에서 심볼들을 GP 와 UL 영역(region)으로 구분(또는 grouping)할 수 있다. 단말은 DL-중심적(centric) 서브프레임/슬롯에서 심볼들을 DL 영역(region)으로 구분(또는 grouping)하거나, DL 영역(region)과 GP로 구분(또는 grouping)할 수 있다. [E1, E2, ..., EM]는 2개 이하의 그룹으로 나뉠 수 있다. 여기서, M 은 L의 최대값을 나타낸다. [E1, E2, ..., EM]이 2개의 그룹으로 나뉘는 경우의 경계(boundary)는, 1개에 해당한다. 만일 단말이 (M+1)개의 값을 모두 활용하기 위해서는 하나의 서브프레임/슬롯을 모두 데이터 버퍼에 저장한 이후에 활용하기 때문에, 서브프레임/슬롯의 길이만큼의 지연(latency)이 발생한다. 그러나 에너지 값만이 저장되기 때문에(즉, (M+1)개의 값이 저장되므로), 데이터의 양은 많지 않다. 또한 GP 위치의 탐지가 RRM 측정을 위해 활용되는 경우에, 서브프레임/슬롯의 길이만큼의 지연(latency)은 무시할 정도로 작다.In order to reduce false alarm probability, the terminal may perform hypothesis testing using a larger number of symbols. The UE may divide (or group) the symbols into GP and UL regions in a UL-centric subframe / slot. The UE may divide (or group) symbols into DL regions or group (or group) DL regions in a DL-centric subframe / slot. [E 1 , E 2 , ..., E M ] can be divided into two groups or less. Here, M represents the maximum value of L. The boundary when [E 1 , E 2 , ..., E M ] is divided into two groups corresponds to one. If the UE utilizes all of the (M + 1) values after storing all one subframe / slot in the data buffer, a latency as long as the length of the subframe / slot occurs. However, since only energy values are stored (that is, (M + 1) values are stored), the amount of data is not large. In addition, when the detection of the GP position is utilized for the RRM measurement, the latency as long as the length of the subframe / slot is negligibly small.
그러나 GP 심볼의 인덱스가 정확히 탐지될 수 없는 시나리오가 여러 개 존재한다. 예를 들어, 서브프레임/슬롯 타입을 탐지하고자 하는 단말이 위치한 방향이 셀 스케줄러가 선택한 전처리에 의해 널링(nulling)되는 경우가 있다. 이러한 경우에, 단말이 비록 셀 센터(cell center)에 위치한다고 가정되더라도, DL 영역(region)에서 사소하지 않은 에너지(non-trivial energy)가 방사(radiate)되고 단말이 이를 수신하더라도, 단말은 적은 에너지를 수집(collect)할 수 있다. 다른 예를 들어, 서브프레임/슬롯 타입을 탐지하고자 하는 단말이 셀 엣지(cell edge)에 위치한 경우가 있다. 이러한 경우에는, 경로 손실(path loss)에 의해, 수신 에너지 레벨이 노이즈 레벨(noise level)과 크게 차이 나지 않을 수 있다. 이러한 경우에, 단말은 GP를 오탐지(misdetection)할 수 있다. 또 다른 예를 들어, 데이터 버퍼 안에 있는 DL 데이터가 적은 경우가 있다. 이러한 경우에, 스케줄러는 단말이 셀 센터에 위치하더라도 에너지를 방사하지 않기 때문에, 단말이 에너지를 많이 수집할 수 없다. 이러한 경우에는, 단말은 GP의 존재를 탐지하기 어렵다. 가설 검증(hypothesis testing)로부터 획득되는 충분한 통계(sufficient statistics)에서 소정의 큰 차이(예, offset greater than threshold)가 없는 경우에, 단말은 GP의 존재를 판단하지 못할 수 있고, 단말은 해당 서브프레임/슬롯의 서브프레임/슬롯 타입을 결정할 수 없다.However, there are several scenarios in which the index of the GP symbol cannot be detected correctly. For example, there is a case where the direction in which the terminal to detect the subframe / slot type is located is nulled by preprocessing selected by the cell scheduler. In this case, even if the terminal is assumed to be located in the cell center, even if non-trivial energy is radiated in the DL region and the terminal receives it, the terminal is small. It is possible to collect energy. For another example, there is a case where a terminal for detecting a subframe / slot type is located at a cell edge. In this case, due to path loss, the received energy level may not be significantly different from the noise level. In this case, the terminal may misdetect the GP. Another example is when there is less DL data in the data buffer. In this case, since the scheduler does not radiate energy even when the terminal is located in the cell center, the terminal cannot collect much energy. In this case, it is difficult for the terminal to detect the presence of the GP. If there is no predetermined large difference (eg, offset greater than threshold) in sufficient statistics obtained from hypothesis testing, the terminal may not determine the presence of a GP, and the terminal may not determine the corresponding subframe. It is not possible to determine the subframe / slot type of the slot.
셀 어소시에이션(cell association)은 로드 조건(load condition)에 기반하면, 제어 평면 지연(control plane latency)을 줄일 수 있다. 기지국이 여러 개의 주파수 할당(frequency allocation)을 가지고 여러 개의 시스템 반송파를 운영하는 경우가 고려된다. 이는, 동일한 사이트(site)에서 서로 다른 주파수를 가지는 셀들이 운영되는 경우에 해당한다. The cell association may reduce the control plane latency based on the load condition. A case where a base station operates several system carriers with several frequency allocations is considered. This corresponds to a case where cells having different frequencies are operated at the same site.
단말은 각 셀에 대한 RRM 측정을 수행한다. 단말이 별도의 설정 없이 각 셀에 대한 RSRP를 측정하는 경우에, 단말은 저주파수(low frequency)에 배치(deploy)된 셀(예, cell 1)에 대하여 더 큰 RSRP를 측정할 수 있다. 전송 전력(transmission power)이 동일한 경우에, 저주파수에서의 경로 손실(path loss)이 고주파수(high frequency)에서의 경로 손실보다 더 적기 때문에, 단말은 동일한 사이트에서 셀(cell 1)에 대하여 더 큰 RSRP를 얻을 수 있다. 이러한 경우에, 단말은 셀(cell 1)에 초기 접속(initial access)하는 경향을 가진다. 그러나 이는 셀의 트래픽 로드 조건(traffic load condition)에 무관하며 RSRP는 단말과 셀 간의 전파 도달 거리에 관한 함수에 해당하기 때문에, 셀의 트래픽 로드가 큰 경우에라도, 서빙 기지국은 해당 단말을 해당 셀에 어소시에이트(associate)시킨다. 그 이후에, 서빙 기지국은 로드 밸런싱(load balancing)을 수행하여, 서빙 단말들의 일부를 고주파수에 배치(deploy)된 셀(예, cell 2)로 핸드오버시키기 위한 핸드오버 커맨드(handover command)를 시그널링 한다. 이러한 동작들은 제어 평면 지연(control plane latency)를 많이 소모한다. eMBB 시나리오는, 이러한 제어 평면 지연에 큰 영향을 받지 않지만, URLLC 시나리오는 이러한 제어 평면 지연도 줄여야 한다. 따라서 단말은 낮은 로드(low load)를 갖는 셀을 찾은 후, 셀 선택(cell selection) 절차와 셀 재선택(cell reselection) 절차를 수행할 수 있다. The UE performs RRM measurement for each cell. When the terminal measures the RSRP for each cell without additional setting, the terminal may measure a larger RSRP for a cell (eg, cell 1) deployed at a low frequency. When the transmission power is the same, since the path loss at low frequency is less than the path loss at high frequency, the terminal has a larger RSRP for cell 1 at the same site. Can be obtained. In this case, the terminal tends to have initial access to the cell 1. However, since this is independent of the traffic load condition of the cell and RSRP is a function of the propagation distance between the terminal and the cell, even when the traffic load of the cell is large, the serving base station may transmit the terminal to the cell. Associate. Thereafter, the serving base station performs load balancing to signal a handover command for handing over some of the serving terminals to a cell (eg, cell 2) deployed at a high frequency. do. These operations consume a lot of control plane latency. The eMBB scenario is not significantly affected by this control plane delay, but the URLLC scenario should also reduce this control plane delay. Accordingly, the UE may search for a cell having a low load and then perform a cell selection procedure and a cell reselection procedure.
RRC 아이들(RRC_IDLE) 상태에 속한 단말도 셀의 로드를 측정할 수 있다. The UE belonging to the RRC idle (RRC_IDLE) state may also measure the load of the cell.
RRC 연결(RRC_CONNECTED) 상태의 단말은 세션(session)이 끝나면, 서빙 셀로부터 설정 받은 DRx 사이클(cycle) 혹은 RRC 연결 타이머에 의해 정해진 일정 시간 이후에, RRC 아이들(RRC_IDLE) 상태로 동작한다. 그 이후에 다시 DL 세션이 발생하면, 서빙 셀 기지국은 페이징을 통해 단말을 탐색하고, UL 세션이 발생하면, 단말은 캠프 온 셀(camped-on cell)에서 초기 접속(initial access)을 수행한다. RRC 아이들(RRC_IDLE) 상태의 단말은 RSRP 혹은 RSRQ에 기반하여 캠핑(camping) 셀을 결정하기 때문에, 셀(예, cell 1)을 선택하는 경향을 가진다. 하지만 이는 로드를 여전히 고려하지 않기 때문에, 로드 밸런싱에 의한 핸드오버가 빈번하게 수행되어야 하며, 결국 제어 평면 지연이 증가한다. 그러므로 URLLC를 적극적으로 지원하기 위해서, 단말은 DL 로드를 반영하여 셀 선택(cell selection) 절차를 수행하고, 한편으로 UL 로드를 반영하여 셀 선택(cell selection) 절차를 수행할 수 있다.After the session is completed, the UE in the RRC_CONNECTED state operates in an RRC idle state after a predetermined time determined by a DRx cycle or an RRC connection timer set by the serving cell. After that, if the DL session occurs again, the serving cell base station searches for the terminal through paging, and when the UL session occurs, the terminal performs initial access (initial access) in the camped-on cell (camped-on cell). Since the UE in the RRC idle state (RRC_IDLE) determines the camping cell based on RSRP or RSRQ, it has a tendency to select a cell (eg, cell 1). However, since this still does not take into account the load, hand balancing by load balancing must be performed frequently, resulting in increased control plane delay. Therefore, in order to actively support URLLC, the UE may perform a cell selection procedure by reflecting a DL load and perform a cell selection procedure by reflecting a UL load.
도 6은 3GPP NR 레퍼런스 시스템이 하나의 서브프레임/슬롯에서 가지는 자원을 나타내는 도면이다. 구체적으로 도 6에는, 자원이 여섯 가지(예, 고정 DL 자원, 자원 A, 자원 B, 자원 C, 자원 E, 자원 E)로 구분되는 경우가 예시되어 있다. 도 6에서, 가로축은 서브프레임을 나타내고 세로축은 시스템 대역폭을 나타낸다.6 is a diagram illustrating resources that a 3GPP NR reference system has in one subframe / slot. Specifically, FIG. 6 illustrates a case in which resources are divided into six (eg, fixed DL resources, resource A, resource B, resource C, resource E, and resource E). In Figure 6, the horizontal axis represents subframes and the vertical axis represents system bandwidth.
도 6에는, DL 영역(region)과 UL 영역(region)이 구분되어 있지 않다. 자원의 시간 경계(time boundary)와 주파수 경계(frequency boundary)를, 고정 DL 자원에 의해 사용되는 뉴머롤러지(numerology)를 기준으로 설명한다.In FIG. 6, the DL region and the UL region are not divided. The time boundary and frequency boundary of a resource will be described based on the numerology used by the fixed DL resource.
도 6에서, 고정 DL 자원은 동기 신호, DL NR-DRS, PDCCH, 및 PBCH 등의 정보를 포함한다. 이러한 정보는 자립형 동작(standalone operation)을 위한 필수적인 정보에 해당한다. 고정 DL 자원은 TS에 의해 정의된 한 가지의 뉴머롤러지를 사용한다. 고정 DL 자원은 인접한 RE들의 집합으로 구성될 수 있다. 또는 고정 DL 자원은 다이버시티를 얻기 위해, RE 집합들이 서로 주파수 축에서 인접하지 않도록 구성될 수도 있다.In FIG. 6, the fixed DL resource includes information such as a synchronization signal, DL NR-DRS, PDCCH, and PBCH. This information corresponds to essential information for standalone operation. The fixed DL resource uses one type of neurology defined by the TS. The fixed DL resource may consist of a set of adjacent REs. Alternatively, the fixed DL resource may be configured such that the RE sets are not adjacent to each other on the frequency axis in order to obtain diversity.
도 6에서, 자원 A 는 고정 DL 자원을 포함하는 심볼로 구성되고, 단말에게 허용된 측정 대역폭(allowed measurement bandwidth)에 속하지만 고정 DL 자원에 속하지 않는 부반송파로 구성된다. 고정 DL 자원과 자원 A 는 서로 다른 뉴머롤러지를 사용할 수 있다. 3GPP NR 에서 반이중(half-duplex)이 사용되는 경우에, 자원 A 는 DL 자원에 속한다.In FIG. 6, resource A is composed of symbols including fixed DL resources, and is composed of subcarriers belonging to the allowed measurement bandwidth allowed for the terminal but not belonging to the fixed DL resources. The fixed DL resource and the resource A may use different neurology. If half-duplex is used in 3GPP NR, resource A belongs to DL resource.
도 6에서, 자원 B 는 고정 DL 자원을 포함하는 심볼에 속하는 자원들 중에서 측정 대역폭에 속하지 않는 자원으로 구성된다. 고정 DL 자원 과 자원 B 는 서로 다른 뉴머롤러지를 사용할 수 있다. 3GPP NR 에서 반이중(half-duplex)이 사용되는 경우에, 자원 B는 DL 자원에 속한다.In FIG. 6, resource B is composed of resources that do not belong to a measurement bandwidth among resources belonging to a symbol including a fixed DL resource. The fixed DL resource and the resource B may use different neurology. In the case where half-duplex is used in 3GPP NR, resource B belongs to DL resource.
도 6에서, 자원 C 는 고정 DL 자원을 위한 부반송파와 동일한 부반송파를 사용하지만, 고정 DL 자원을 위한 심볼과 다른 심볼을 사용한다. 고정 DL 자원과 자원 C 는 서로 다른 뉴머롤러지를 사용할 수 있다. 만일 서브프레임/슬롯 타입에 GP가 포함되는 경우에, 자원 C의 일부는 GP에 속하고 다른 일부는 UL 영역(region)에 속한다.In FIG. 6, resource C uses the same subcarrier as the subcarrier for the fixed DL resource, but uses a symbol different from the symbol for the fixed DL resource. The fixed DL resource and the resource C may use different neurology. If the subframe / slot type includes a GP, part of the resource C belongs to the GP and the other part belongs to the UL region.
도 6에서, 자원 D 는 측정 대역폭에 속하는 부반송파들 중에서 고정 DL 자원에 의해 사용되지 않는 부반송파에 속하는 자원으로 구성되며, 고정 DL 자원에 의해 사용되지 않는 심볼에 속하는 자원으로 구성된다. 고정 DL 자원 과 자원 D 는 서로 다른 뉴머롤러지를 사용할 수 있다. 만일 서브프레임/슬롯 타입에 GP가 포함되는 경우에, 자원 D의 일부는 GP 에 속하고 다른 일부는 UL 영역(region) 에 속한다.In FIG. 6, resource D is composed of resources belonging to a subcarrier not used by a fixed DL resource among subcarriers belonging to a measurement bandwidth, and is composed of resources belonging to a symbol not used by a fixed DL resource. The fixed DL resource and the resource D may use different numerologies. If a GP is included in the subframe / slot type, part of the resource D belongs to the GP and the other part belongs to the UL region.
도 6에서, 자원 E는 측정 대역폭에 속하지 않으면서 고정 DL 자원을 위한 심볼에 속하지 않는 자원으로 구성된다. 고정 DL 자원과 자원 E는 서로 다른 뉴머롤러지를 사용할 수 있다. 만일 서브프레임/슬롯 타입에 GP 가 포함되는 경우에, 자원 E의 일부는 GP 에 속하고 다른 일부는 UL 영역(region) 에 속한다.In FIG. 6, resource E is composed of resources that do not belong to the symbol for fixed DL resources while not belonging to the measurement bandwidth. The fixed DL resource and the resource E may use different neurology. If a GP is included in the subframe / slot type, part of the resource E belongs to the GP and the other part belongs to the UL region.
3GPP NR 시스템에 적용되는 RRM 측정이 정의된다. 트래픽 로드와 RSRP 간의 함수로써, RRM 메트릭(metric)이 정의될 수 있다.RRM measurements that apply to 3GPP NR systems are defined. As a function between traffic load and RSRP, an RRM metric can be defined.
3GPP NR 시스템의 RRM 메트릭(metric)은 3GPP LTE의 RSRP, RSRQ, 및 RS-SINR을 3GPP NR 시스템에서 그대로 사용할 수 없다. DL NR-DRS 자원은 고정 DL 자원을 포함하므로, 단말은 RSRP를 측정할 수 있다.The RRM metric of the 3GPP NR system cannot use RSRP, RSRQ, and RS-SINR of 3GPP LTE as it is in the 3GPP NR system. Since the DL NR-DRS resource includes a fixed DL resource, the UE can measure RSRP.
RSRQ 를 측정하기 위한 RSSI 측정 방법에 대하여 설명한다. RSSI 측정을 위해 사용되는 자원의 시간 경계와 주파수 경계가 정의된다. 여러 개의 뉴머롤러지를 사용하는 3GPP NR 시스템은, 고정 DL 자원에 의해 사용되는 뉴머롤러지에 따라 심볼 경계를 정의할 수 있다. 고정 DL 자원에 의해 사용되는 뉴머롤러지를 기준으로, 측정 대역폭은 부반송파 경계를 정의한다. 이러한 경우에, 두 가지 이상의 뉴머롤러지가 사용되기 때문에, 측정 대역폭의 경계에 위치한 부반송파들은 보호 대역(guard band)을 위해 활용된다. 따라서, 이러한 부반송파들에서 수신되는 에너지는 RSSI의 값에 반영되지 않을 수 있다.The RSSI measurement method for measuring the RSRQ will be described. The time and frequency boundaries of the resources used for RSSI measurements are defined. A 3GPP NR system using several numerologies may define symbol boundaries according to the neuralology used by fixed DL resources. Based on the numerology used by the fixed DL resources, the measurement bandwidth defines a subcarrier boundary. In this case, since two or more numerologies are used, subcarriers located at the boundary of the measurement bandwidth are utilized for the guard band. Thus, the energy received at these subcarriers may not be reflected in the value of RSSI.
RS-SINR 측정을 위해서는, RS를 위한 RE와 동일한 RE에서 SINR이 측정되어야 한다. 하지만, 이는 고정 DL 자원 이내에 국한된 자원이기 때문에, 트래픽 로드에 무관하게 측정되는 값이다.For RS-SINR measurement, the SINR must be measured at the same RE as the RE for RS. However, since this is a resource confined within a fixed DL resource, it is a value measured regardless of the traffic load.
RE에서 측정되는 에너지와 심볼에서 측정되는 에너지는 구별될 필요가 있다. DL NR-DRS 자원에서 측정되는 RSRP의 경우에, 단말은 수신한 심볼에서 CP(cyclic prefix)를 제거하고, 주파수 도메인에서 DL NR-DRS를 갖는 부반송파를 추출한다. 그 이후에, 단말은 DL NR-DRS를 갖는 부반송파 만으로 시퀀스를 구성한다. 그리고 단말은 구성된 시퀀스를 단말이 이미 알고 있는 DL NR-DRS 시퀀스와 비교하여, 코히어런트 탐지(coherent detection)를 수행한다. 반면에, 심볼에서 에너지 탐지가 수행되는 경우에, 단말은 코히어런트 탐지를 수행할 필요가 없으며, 심볼의 시간 경계 이내에서 수신한 에너지를 측정한다. 특정한 부반송파만을 따로 처리하지 않기 때문에, 단말은 심볼에서 측정하는 에너지를 시간 도메인에서 측정할 수도 있다. The energy measured in the RE and the energy measured in the symbol need to be distinguished. In the case of RSRP measured in DL NR-DRS resources, the UE removes a cyclic prefix (CP) from the received symbols and extracts a subcarrier having DL NR-DRS in the frequency domain. Thereafter, the terminal configures the sequence only with subcarriers having DL NR-DRS. The terminal performs coherent detection by comparing the configured sequence with a DL NR-DRS sequence already known to the terminal. On the other hand, when energy detection is performed on a symbol, the terminal does not need to perform coherent detection and measures energy received within a time boundary of the symbol. Since only a specific subcarrier is not processed separately, the UE may measure energy measured in a symbol in the time domain.
만일 특정한 RE에 해당하는 자원을 RSSI 측정 자원에서 제거하기 위해서는, 별도의 프로세싱이 필요하다. 예를 들어, DL NR-DRS 자원을 포함하는 RE가 RSSI 측정 자원에서 제외되는 경우가 고려될 수 있다. 단말은 해당 심볼에서 CP(cyclic prefix)를 제거하고, 주파수 도메인에서 DL NR-DRS를 가지는 부반송파를 추출한다. 단말은 나머지 부반송파들에서 에너지를 계산한다. If a resource corresponding to a specific RE is removed from the RSSI measurement resource, separate processing is required. For example, a case in which an RE including a DL NR-DRS resource is excluded from the RSSI measurement resource may be considered. The terminal removes a cyclic prefix (CP) from the symbol and extracts a subcarrier having a DL NR-DRS in the frequency domain. The terminal calculates energy from the remaining subcarriers.
RSSI 측정 자원에서 RSSI 측정을 위한 단위는 심볼이 아닌 RE 일 수 있으며, RE 단위로 RSSI가 측정되는 경우에는 상술한 방식이 적용될 수 있다. The unit for measuring RSSI in the RSSI measurement resource may be RE instead of a symbol, and the above-described method may be applied when RSSI is measured in RE unit.
3GPP NR 시스템에 적용될 수 있는 RSRQ 는, RSRP 와 RSSI 간의 함수로 정의될 수 있다. 예를 들어, RSRQ는 RSRP 와 RSSI/N 간의 비율로 결정될 수 있다. 여기서, N 의 값은 단말이 RSSI 측정을 위해 사용한 PRB의 개수에 해당한다. 다른 예를 들어, RSRQ는 RSRP 와 (RSRP+RSSI/N) 간의 비율로 결정될 수 있다.RSRQ applicable to 3GPP NR system may be defined as a function between RSRP and RSSI. For example, RSRQ may be determined by the ratio between RSRP and RSSI / N. Here, the value of N corresponds to the number of PRBs used by the UE for RSSI measurement. As another example, the RSRQ may be determined by the ratio between RSRP and (RSRP + RSSI / N).
3GPP NR TDD 레퍼런스 시스템 1, 2, 및 3은 여러 개의 뉴머롤러지를 정의할 수 있고, TS는 뉴머롤러지 마다 고정 DL 자원을 할당할 수 있다. 이러한 경우에, 만약 단말이 이러한 고정 DL 자원을 모두 알고 있다면, 단말은 여러 개의 고정 DL 자원을 모두 활용하여 RRM 측정을 수행할 수 있다.The 3GPP NR TDD reference systems 1, 2, and 3 may define multiple neurolologies, and the TS may allocate fixed DL resources for each neurolography. In this case, if the UE knows all of these fixed DL resources, the UE may perform RRM measurement by utilizing all of several fixed DL resources.
3GPP NR 셀에 대한 RSSI 측정 방법(방법 RSSI0-1, 방법 RSSI0-2, 방법 RSSI0-3 등)에 대하여 설명한다.The RSSI measurement method (method RSSI0-1, method RSSI0-2, method RSSI0-3, etc.) for 3GPP NR cells will be described.
방법 RSSI0-1은 3GPP NR TDD 레퍼런스 시스템 1은 다이나믹 TDD 로 동작할 수 있기 때문에, 단말이 해당 서브프레임/슬롯 타입을 알 수 없는 경우를 가정한다.Method RSSI0-1 assumes that the UE does not know the corresponding subframe / slot type since the 3GPP NR TDD reference system 1 may operate in dynamic TDD.
도 7은 본 발명의 실시예에 따른, 방법 RSSI0-1을 나타내는 도면이다. 구체적으로, 도 7의 (a)에는 RSRP 측정 자원이 예시되어 있고, 도 7의 (b)에는 RSSI 측정 자원이 예시되어 있다.7 is a diagram illustrating a method RSSI0-1, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 7 and RSSI measurement resources are illustrated in (b) of FIG. 7.
방법 RSSI0-1은 방법 IND1 과 방법 IND2가 사용되지 않은 경우를 가정한다. Method RSSI0-1 assumes that method IND1 and method IND2 are not used.
도 7의 (a)에 예시된 바와 같이, RSRP는 고정 DL 자원에 속하는 RE들 중에서 DL NR-DRS를 위한 RE에서 측정될 수 있다. 도 7의 (b)에 예시된 바와 같이, RSSI는 자원 A 와 고정 DL 자원에 속한 심볼(들)에서 측정될 수 있다. 즉, RSSI는, 고정 DL 자원을 갖는 심볼에 속하며 측정 대역폭에 속하는 자원에서 측정될 수 있다. 단말이 DL 영역(region)이라고 알 수 있는 모든 심볼에서 수집한 에너지를, RSSI를 위해 사용한다.As illustrated in (a) of FIG. 7, the RSRP may be measured in the RE for the DL NR-DRS among the REs belonging to the fixed DL resource. As illustrated in FIG. 7B, the RSSI may be measured in symbol (s) belonging to the resource A and the fixed DL resource. That is, the RSSI may be measured on a resource belonging to a symbol having a fixed DL resource and belonging to a measurement bandwidth. The energy collected by all UEs that can be known as a DL region is used for RSSI.
하지만, 이러한 측정 방법에 의해서는 단말이 NR 셀의 DL 트래픽 로드를 정확히 측정할 수 없다. 고정 DL 자원은 DL 데이터 보다는 시스템 동작(operation)에 필수적인 물리 신호와 물리 채널을 전송하기 때문에, RSSI는 DL 트래픽 로드를 과대 추정(over-estimation) 한다. 그리고 단말은 RSRP 와 RSSI 를 서로 다른 PRB(예, 자원 A)에서 측정하기 때문에, RSSI 는 주파수 선택적 페이딩(frequency selective fading)에 따라 RSRP 와는 다른 주파수 응답을 겪을 수 있으며, 또한 RSRP 와 RSSI 는 서로 다른 DL 간섭을 겪을 수도 있다. 반면에, 3GPP LTE RSRQ를 위해 사용되는 RSSI 는, DL 간섭의 함수이며, RSRP 와 RSSI가 동일한 대역에서 측정되기 때문에 RSSI는 주파수 선택적 페이딩(frequency selective fading)에 무관하다.However, by this measuring method, the UE cannot accurately measure the DL traffic load of the NR cell. Since fixed DL resources transmit physical signals and physical channels that are essential for system operation rather than DL data, RSSI over-estimates the DL traffic load. In addition, since the UE measures RSRP and RSSI in different PRBs (eg, resource A), RSSI may experience a different frequency response from RSRP according to frequency selective fading, and RSRP and RSSI may be different from each other. May experience DL interference. On the other hand, RSSI used for 3GPP LTE RSRQ is a function of DL interference, and RSSI is independent of frequency selective fading because RSRP and RSSI are measured in the same band.
3GPP NR TDD 레퍼런스 시스템 2 와 3GPP NR TDD 레퍼런스 시스템 3이 다이나믹 TDD 로 동작하는 경우에, 본 발명의 실시예가 적용될 수 있다.When the 3GPP NR TDD reference system 2 and the 3GPP NR TDD reference system 3 operate with dynamic TDD, an embodiment of the present invention may be applied.
도 8은 본 발명의 실시예에 따른, 방법 RSSI0-1-1을 나타내는 도면이다. 구체적으로, 도 8의 (a)에는 RSRP 측정 자원이 예시되어 있고, 도 8의 (b)에는 RSSI 측정 자원이 예시되어 있다.8 is a diagram illustrating a method RSSI0-1-1, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 8, and RSSI measurement resources are illustrated in (b) of FIG. 8.
방법 RSSI0-1을 위한 방법 RSSI0-1-1은, 도 8의 (a)에 예시된 바와 같이, RSRP를 고정 DL 자원에 속하는 RE들 중에서 DL NR-DRS 를 포함하는 RE에서 측정한다. Method RSSI0-1-1 for Method RSSI0-1 measures RSRP in an RE including a DL NR-DRS among REs belonging to a fixed DL resource, as illustrated in FIG.
방법 RSSI0-1-1은, 도 8의 (b)에 예시된 바와 같이, RSSI 를 자원 A 및 고정 DL 자원에 속하는 심볼에서 측정하되 DL NR-DRS를 포함하지 않는 부반송파에서 측정한다. As illustrated in (b) of FIG. 8, the method RSSI0-1-1 measures RSSI in a symbol belonging to resource A and a fixed DL resource, but on a subcarrier that does not include DL NR-DRS.
RSSI는 심볼에서 측정될 수도 있고, 또는 RE에서 측정될 수도 있다. 즉, RSSI는, 고정 DL 자원을 갖는 심볼에 속하는 부반송파들 중에서 DL NR-DRS 자원을 제외한 나머지 부반송파를 의미한다. 여기서, DL NR-DRS 자원은 3GPP NR 셀들 각각에 의해 전송되는 DL NR-DRS 자원들의 집합(collection of DL NR-DRS resources)을 의미한다. RRC 아이들(RRC_IDLE) 상태의 단말은 DL NR-DRS들의 전체 집합 중 일부에 해당하는 DL NR-DRS 자원을 스스로 탐지해야 하며, RRC 연결(RRC_CONNECTED) 상태의 단말은 서빙 기지국으로부터 설정받은 DL NR-DRS 자원들의 집합을 적용 받거나 혹은 스스로 일부의 DL NR-DRS 자원을 탐지할 수 있다.RSSI may be measured in a symbol or may be measured in an RE. That is, RSSI refers to the remaining subcarriers other than the DL NR-DRS resource among the subcarriers belonging to a symbol having a fixed DL resource. Here, the DL NR-DRS resource means a collection of DL NR-DRS resources transmitted by each of the 3GPP NR cells. A UE in an RRC idle state must detect a DL NR-DRS resource corresponding to a part of the entire set of DL NR-DRSs, and a UE in an RRC_CONNECTED state is a DL NR-DRS configured from a serving base station. A set of resources may be applied or some DL NR-DRS resources may be detected by themselves.
단말은 DL NR-DRS 자원에서 RSSI 를 측정하지 않기 때문에, 단말에 의해 측정되는 RSSI 는 NR 셀의 PDCCH, SIB, 와 PDSCH 를 모두 포함할 수 있다.Since the terminal does not measure the RSSI in the DL NR-DRS resource, the RSSI measured by the terminal may include all of the PDCCH, SIB, and PDSCH of the NR cell.
이러한 RSSI 측정 방법은 단말에서 NR 셀의 제어 채널 로드와 DL 트래픽 로드를 모두 측정한다. NR 셀의 제어 채널 로드는 DL 스케줄링 할당(scheduling assignment)과 UL 스케줄링 그랜트(scheduling grant)를 포함하기 때문에, 단말이 DL 트래픽의 양과 UL 트래픽의 양을 추측할 수 있다. 이러한 추측의 정확도는 낮다. PDCCH의 빔 형성 및 CCE 집성 레벨(aggregation level)과 PDSCH의 빔 형성이 서로 다르기 때문에, 간섭 조건(interference condition)이 추측되기 어렵다. UL 트래픽의 양은 PUSCH로부터 측정될 수 없으며, PDCCH의 양으로부터 간접적으로 추측될 수 있다.This RSSI measurement method measures both the control channel load and the DL traffic load of the NR cell at the terminal. Since the control channel load of the NR cell includes DL scheduling assignment and UL scheduling grant, the UE can infer the amount of DL traffic and the amount of UL traffic. The accuracy of this guess is low. Since the beamforming of the PDCCH, the CCE aggregation level, and the beamforming of the PDSCH are different from each other, an interference condition is difficult to guess. The amount of UL traffic cannot be measured from the PUSCH and can be indirectly inferred from the amount of PDCCH.
또한 자원 A의 일부 중에서 고정 DL 자원을 위한 뉴머롤러지와 다른 뉴머롤러지를 가지는 자원이, 3GPP NR 셀에 의해 할당될 수 있다. 이러한 경우에, 별도의 PDCCH가 3GPP NR 셀에 의해 할당될 수 있기 때문에, 자원 A에서 측정되는 RSSI 는 데이터 로드 뿐만 아니라 제어 로드 도 함께 반영한다. 이 때 전송되는 제어 채널은 대개의 경우에, RRC 연결(RRC_CONNECTED) 상태의 단말을 대상으로 전송되기 때문에, 제어 채널의 빔 형성과 데이터 채널의 빔 형성이 크게 다르지 않을 수 있다.In addition, among the portions of the resource A, a resource having a neuron and a different one for the fixed DL resource may be allocated by the 3GPP NR cell. In this case, since a separate PDCCH can be allocated by the 3GPP NR cell, the RSSI measured at the resource A reflects not only the data load but also the control load. In this case, since the control channel transmitted in this case is usually transmitted to the terminal in the RRC_CONNECTED state, the beam formation of the control channel and the beam formation of the data channel may not be significantly different.
3GPP NR TDD 레퍼런스 시스템 2 와 3GPP NR TDD 레퍼런스 시스템 3이 다이나믹 TDD 로 동작하는 경우에, 본 발명의 실시 예가 적용될 수 있다.When the 3GPP NR TDD reference system 2 and the 3GPP NR TDD reference system 3 operate with dynamic TDD, an embodiment of the present invention may be applied.
도 9는 본 발명의 실시예에 따른, 방법 RSSI0-1-2을 나타내는 도면이다. 구체적으로, 도 9의 (a)에는 RSRP 측정 자원이 예시되어 있고, 도 9의 (b) 및 (c)에는 RSSI 측정 자원이 예시되어 있다.9 is a diagram illustrating a method RSSI0-1-2, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in FIG. 9A, and RSSI measurement resources are illustrated in FIGS. 9B and 9C.
방법 RSSI0-1을 위한 방법 RSSI0-1-2는, RSRP를 고정 DL 자원에 속하는 RE들 중에서 DL NR-DRS를 포함하는 RE 에서 측정하고, RSSI를 자원 A, 자원 B, 및 고정 DL 자원에 속하는 심볼에서 측정한다.Method RSSI0-1-2 for Method RSSI0-1 measures RSRP at a RE including DL NR-DRS among REs belonging to a fixed DL resource, and measures RSSI belonging to resource A, resource B, and fixed DL resource. Measure at the symbol.
RSSI는 심볼 레벨에서 측정될 수도 있고, 혹은 RE 레벨에서 측정될 수도 있다. 만일 RSSI가 RE에서 측정되는 경우에, RSSI는 DL NR-DRS를 포함하지 않는 RE에서 측정될 수 있다. 도 9의 (b)에는, RSSI가 심볼 전체(예, 고정 DL 자원, 자원 A, 자원 B)에서 측정되는 경우가 예시되어 있다. 도 9의 (c)에는, DL NR-DRS를 포함하지 않는 RE(예, 고정 DL 자원에 속하는 RE들 중 DL-NR DRS RE를 제외한 나머지 RE들, 자원 A, 자원 B)에서 RSSI가 측정되는 경우가 예시되어 있다. RSSI may be measured at the symbol level or may be measured at the RE level. If the RSSI is measured in the RE, the RSSI may be measured in the RE which does not include the DL NR-DRS. FIG. 9B illustrates a case where RSSI is measured in the entire symbol (eg, fixed DL resource, resource A, resource B). In FIG. 9C, the RSSI is measured in an RE that does not include the DL NR-DRS (eg, other REs except the DL-NR DRS RE among the REs belonging to the fixed DL resource, resource A, and resource B). The case is illustrated.
이러한 방식에 따르면, 단말은 서브프레임/슬롯 타입에 무관하게, 고정 DL 자원을 포함하는 심볼에서 RSSI를 측정할 수 있다.According to this scheme, the terminal may measure the RSSI in the symbol including the fixed DL resource, regardless of the subframe / slot type.
방법 RSSI0-2는, 3GPP NR TDD 레퍼런스 시스템 1이 다이나믹 TDD 로 동작하고 단말이 방법 IND1을 통해 서브프레임/슬롯 타입을 알 수 있는 경우를 가정한다. The method RSSI0-2 assumes that the 3GPP NR TDD reference system 1 operates in dynamic TDD and the UE can know the subframe / slot type through the method IND1.
도 10은 본 발명의 실시예에 따른, 방법 RSSI0-2를 나타내는 도면이다. 구체적으로, 도 10의 (a)에는 RSRP 측정 자원이 예시되어 있고, 도 10의 (b)에는 RSSI 측정 자원이 예시되어 있다.10 is a diagram illustrating a method RSSI0-2, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in FIG. 10A, and RSSI measurement resources are illustrated in FIG. 10B.
단말은 자원 C 와 자원 D에 대하여, DL 영역(region)에 해당하는 자원을 구분할 수 있다. RSSI는 심볼 레벨에서 측정될 수도 있고, 혹은 RE 레벨에서 측정될 수도 있다.The terminal may distinguish a resource corresponding to the DL region from the resource C and the resource D. FIG. RSSI may be measured at the symbol level or may be measured at the RE level.
도 10의 (a)에 예시된 바와 같이, 단말은 RSRP를, 고정 DL 자원에 속한 DL NR-DRS 자원을 이용해서 측정한다. As illustrated in (a) of FIG. 10, the terminal measures RSRP using DL NR-DRS resources belonging to a fixed DL resource.
도 10의 (b)에 예시된 바와 같이, 단말은 RSSI를, 측정 대역폭에 속하는 DL 영역(region)에서 측정할 수 있다. 즉, 단말은 RSSI를, 고정 DL 자원, 자원 A, 자원 C, 및 자원 D에서 측정할 수 있다.As illustrated in (b) of FIG. 10, the terminal may measure the RSSI in a DL region belonging to a measurement bandwidth. That is, the terminal can measure the RSSI in the fixed DL resource, resource A, resource C, and resource D.
이러한 RSSI 측정 방법은 간단하게 구현될 수 있지만, 고정 DL 자원에 포함되는 제어 채널이나 DL NR-DRS 자원이 트래픽 로드를 적절히 반영하지 않는다.The RSSI measurement method can be simply implemented, but the control channel or DL NR-DRS resource included in the fixed DL resource does not properly reflect the traffic load.
3GPP NR 셀은 RRC 연결(RRC_CONNECTED) 상태의 단말에게 데이터 스케줄링 할당(data scheduling assignment)을 전달하기 위해서, 자원 A, 자원 C, 및 자원 D에서 서로 다른 뉴머롤러지를 가지는 PDCCH를 할당할 수 있다. 이는 데이터 로드에 해당하지 않는다. 하지만 이는 셀 로드에 비례하여 할당되는 물리 채널에 해당하기 때문에, RSSI 측정에 반영될 수 있다.The 3GPP NR cell may allocate PDCCHs having different neurons from resource A, resource C, and resource D in order to deliver data scheduling assignment to the UE in an RRC_CONNECTED state. This is not a data load. However, since this corresponds to a physical channel allocated in proportion to the cell load, it may be reflected in the RSSI measurement.
RSSI가 측정되는 PRB와 RSRP가 측정되는 PRB가 다르기 때문에, 채널의 주파수 선택도(frequency selectivity)가 RSSI에 영향을 줄 수 있다.Since the PRB in which the RSSI is measured and the PRB in which the RSRP is measured are different, the frequency selectivity of the channel may affect the RSSI.
3GPP NR TDD 레퍼런스 시스템 2와 3GPP NR TDD 레퍼런스 시스템 3이 다이나믹 TDD 로 동작하는 경우에, 본 발명의 실시예가 적용될 수 있다. 자원 C와 자원 D 에서 DL 영역(region)에 해당하는 자원이 추출되고, 추출된 자원에 본 발명의 실시예가 적용된다.When the 3GPP NR TDD reference system 2 and the 3GPP NR TDD reference system 3 operate with dynamic TDD, an embodiment of the present invention may be applied. A resource corresponding to a DL region is extracted from the resource C and the resource D, and an embodiment of the present invention is applied to the extracted resource.
도 11은 본 발명의 실시예에 따른, 방법 RSSI0-2-1을 나타내는 도면이다. 구체적으로, 도 11의 (a)에는 RSRP 측정 자원이 예시되어 있고, 도 11의 (b)에는 RSSI 측정 자원이 예시되어 있다.11 is a diagram illustrating a method RSSI0-2-1, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in FIG. 11A, and RSSI measurement resources are illustrated in FIG. 11B.
방법 RSSI0-2를 위한 방법 RSSI0-2-1은, 3GPP NR TDD 레퍼런스 시스템 1이 다이나믹 TDD 로 동작하고 단말이 방법 IND1을 통해 서브프레임/슬롯 타입을 알 수 있는 경우를 가정한다. Method RSSI0-2-1 for Method RSSI0-2 assumes that 3GPP NR TDD Reference System 1 operates in dynamic TDD and the UE knows a subframe / slot type through method IND1.
단말은 자원 C 에 대하여, DL 영역(region)에 해당하는 자원을 구분할 수 있다. RSSI는 심볼 레벨에서 측정될 수도 있고, 혹은 RE 레벨에서 측정될 수도 있다.The terminal may identify a resource corresponding to the DL region from the resource C. RSSI may be measured at the symbol level or may be measured at the RE level.
도 11의 (a)에 예시된 바와 같이, 단말은 RSRP를, 고정 DL 자원에 속하는 DL NR-DRS 자원을 이용해 측정한다. As illustrated in (a) of FIG. 11, the UE measures RSRP using DL NR-DRS resources belonging to a fixed DL resource.
도 11의 (b)에 예시된 바와 같이, 단말은 RSSI를, 고정 DL 자원 및 자원 C에서 측정할 수 있다.As illustrated in (b) of FIG. 11, the terminal may measure the RSSI in the fixed DL resource and the resource C. FIG.
단말은 RSRP 와 RSSI를 동일한 PRB 에서 측정하므로, RSRP와 RSSI를 위한 채널 주파수 선택도(channel frequency selectivity)를 동등하게 계산에 반영한다. Since the UE measures RSRP and RSSI in the same PRB, the channel frequency selectivity for RSRP and RSSI is equally reflected in the calculation.
3GPP NR TDD 레퍼런스 시스템 2와 3GPP NR TDD 레퍼런스 시스템 3이 다이나믹 TDD 로 동작하는 경우에, 본 발명의 실시예가 적용될 수 있다. 자원 C 에서 DL 영역(region)에 해당하는 자원이 추출되고, 추출된 자원에 본 발명의 실시예가 적용될 수 있다.When the 3GPP NR TDD reference system 2 and the 3GPP NR TDD reference system 3 operate with dynamic TDD, an embodiment of the present invention may be applied. A resource corresponding to a DL region is extracted from the resource C, and an embodiment of the present invention may be applied to the extracted resource.
도 12는 본 발명의 실시예에 따른, 방법 RSSI0-2를 위한 방법 RSSI0-2-2을 나타내는 도면이다. 구체적으로, 도 12의 (a)에는 RSRP 측정 자원이 예시되어 있고, 도 12의 (b)에는 RSSI 측정 자원이 예시되어 있다.12 is a diagram illustrating a method RSSI0-2-2 for a method RSSI0-2, according to an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 12, and RSSI measurement resources are illustrated in (b) of FIG. 12.
도 12의 (a)에 예시된 바와 같이, 단말은 RSRP를 DL NR-DRS 자원을 이용해 측정할 수 있다. As illustrated in (a) of FIG. 12, the UE may measure RSRP using DL NR-DRS resources.
도 12의 (b)에 예시된 바와 같이, 단말은 RSSI를, 고정 DL 자원들 중에서 DL NR-DRS 자원들을 제외한 나머지 자원에서 측정할 수 있다. As illustrated in (b) of FIG. 12, the UE may measure the RSSI on the remaining resources except the DL NR-DRS resources among the fixed DL resources.
만일 단말이 방법 IND2를 이용해 자원 C 내에서 DL 영역(region)을 추출할 수 있다면, 추출된 DL 영역을 RSSI 측정을 위해 활용한다. 만일 단말이 방법 IND2 를 이용해 자원 C 내에서 GP의 존재를 탐지할 수 없다면, 자원 C를 RSSI 측정을 위해 활용하지 않는다. If the UE can extract the DL region in the resource C using the method IND2, the extracted DL region is used for RSSI measurement. If the UE cannot detect the presence of a GP in resource C using the method IND2, resource C is not used for RSSI measurement.
RSSI는 심볼 레벨에서 측정될 수도 있고, 혹은 RE 레벨에서 측정될 수도 있다.RSSI may be measured at the symbol level or may be measured at the RE level.
방법 IND2에 따르면, 커버리지의 경계에 위치한 3GPP NR 단말의 경우에, GP의 탐지 가능성(detection probability)이 감소하기 때문에, RSSI를 위해 사용되는 자원의 양이 적다. 반면에, 셀 센터에 위치한 3GPP NR 단말의 경우에, RSSI를 위해 사용되는 자원의 양이 상대적으로 더 크다. 따라서, 방법 IND2가 사용되는 경우에, 단말의 위치가 RSRQ 측정 지연에 영향을 미친다.According to the method IND2, in the case of the 3GPP NR terminal located at the boundary of coverage, since the detection probability of the GP is reduced, the amount of resources used for the RSSI is small. On the other hand, in the case of 3GPP NR terminals located in the cell center, the amount of resources used for RSSI is relatively larger. Thus, when the method IND2 is used, the position of the terminal affects the RSRQ measurement delay.
RSSI를 위해 활용되는 자원은 고정 DL 자원을 적어도 포함하지만, DL NR-DRS 자원들은 포함하지 않는다. RRC 아이들(RRC_IDLE) 상태의 단말은 DL NR-DRS들의 전체 집합 중 일부에 해당하는 DL NR-DRS 자원을 스스로 탐지해야 하며, RRC 연결(RRC_CONNECTED) 상태의 단말은 서빙 기지국으로부터 설정받은 DL NR-DRS 자원들의 집합을 적용 받거나 혹은 스스로 일부의 DL NR-DRS 자원을 탐지할 수 있다. 이렇게 정의된 RSSI 측정 자원에 있어서, 고정 DL 자원에 PDCCH가 포함되고 PDCCH가 주기적으로 전송되기 때문에, DL 데이터 로드가 정확히 표현되지 않는다. 이 때 전송되는 PDCCH는 대개의 경우에, RRC 연결(RRC_CONNECTED) 상태의 단말을 대상으로 전송되기 때문에, PDCCH의 빔 형성과 PDSCH의 빔 형성이 크게 다르지 않을 수 있다. 그러므로 고정 DL 자원에서 DL 데이터 로드가 측정되는 경우에, 단말 특정(예, UE-specific) 빔 형성을 가지는 물리 채널과 물리 신호가 고정 DL 자원에 포함될 수 있다.Resources utilized for RSSI include at least fixed DL resources, but do not include DL NR-DRS resources. A UE in an RRC idle state must detect a DL NR-DRS resource corresponding to a part of the entire set of DL NR-DRSs, and a UE in an RRC_CONNECTED state is a DL NR-DRS configured from a serving base station. A set of resources may be applied or some DL NR-DRS resources may be detected by themselves. In the RSSI measurement resource defined as above, since the PDCCH is included in the fixed DL resource and the PDCCH is transmitted periodically, the DL data load is not accurately represented. In this case, since the PDCCH transmitted is usually transmitted to a UE in an RRC_CONNECTED state, beamforming of the PDCCH and beamforming of the PDSCH may not be significantly different. Therefore, when the DL data load is measured in the fixed DL resource, a physical channel and a physical signal having UE-specific beamforming may be included in the fixed DL resource.
3GPP NR TDD 레퍼런스 시스템 2와 3GPP NR TDD 레퍼런스 시스템 3이 다이나믹 TDD로 동작하는 경우에, 본 발명의 실시예가 적용될 수 있다. 자원 C에서 DL 영역(region)에 해당하는 자원이 추출되고, 추출된 자원에 본 발명의 실시예가 적용될 수 있다.When the 3GPP NR TDD Reference System 2 and the 3GPP NR TDD Reference System 3 operate with Dynamic TDD, an embodiment of the present invention may be applied. A resource corresponding to a DL region is extracted from the resource C, and an embodiment of the present invention may be applied to the extracted resource.
도 13은 본 발명의 실시예에 따른, 방법 RSSI0-2-3을 나타내는 도면이다. 구체적으로, 도 13의 (a)에는 RSRP 측정 자원이 예시되어 있고, 도 13의 (b)에는 RSSI 측정 자원이 예시되어 있다.13 is a diagram illustrating a method RSSI0-2-3, in accordance with an embodiment of the present invention. Specifically, RSRP measurement resources are illustrated in (a) of FIG. 13 and RSSI measurement resources are illustrated in (b) of FIG. 13.
방법 RSSI0-2를 위한 방법 RSSI0-2-3은, 3GPP NR TDD 레퍼런스 시스템 1이 다이나믹 TDD 로 동작하고 NR 셀이 방법 IND1을 사용해 단말이 서브프레임/슬롯 타입을 명시적으로 아는 경우에, 해당한다. Method RSSI0-2-3 for method RSSI0-2 is applicable when 3GPP NR TDD Reference System 1 operates with dynamic TDD and the NR cell uses method IND1 to explicitly know the subframe / slot type. .
도 13의 (a)에 예시된 바와 같이, 단말은 RSRP를 DL NR-DRS 자원을 이용해 측정한다. As illustrated in (a) of FIG. 13, the UE measures RSRP using DL NR-DRS resources.
도 13의 (b)에 예시된 바와 같이, 단말은 RSSI를 자원 C의 DL 영역(region)에서 측정한다. RSSI는 심볼 레벨에서 측정될 수도 있고, 혹은 RE 레벨에서 측정될 수도 있다.As illustrated in (b) of FIG. 13, the UE measures the RSSI in the DL region of the resource C. RSSI may be measured at the symbol level or may be measured at the RE level.
3GPP NR 셀이 여러 개의 뉴머롤러지를 사용하는 경우에, 자원 C에 여러 개의 뉴머롤러지가 적용된다. 3GPP NR 셀은 이를 위한 별도의 제어 채널을 자원 C에 할당할 수 있다. 따라서 단말이 자원 C를 이용해 RSSI를 측정하는 경우에, 제어 로드와 데이터 로드를 함께 측정한다. 이러한 PDCCH는 RRC 연결(RRC_CONNECTED) 상태의 단말에게 DL 스케줄링 할당(scheduling assignment) 또는 UL 스케줄링 그랜트(scheduling grant)를 지시하기 때문에, PDCCH의 빔 형성은 PDSCH의 빔 형성과 크게 다르지 않게 수행된다. 단말은 RSSI를 통해서 DL 로드를 어느 정도 측정할 수 있다.In the case where the 3GPP NR cell uses more than one neuron, multiple N's are applied to resource C. The 3GPP NR cell may allocate a separate control channel for this to resource C. Therefore, when the UE measures the RSSI using the resource C, the control load and the data load are measured together. Since the PDCCH indicates the DL scheduling assignment or the UL scheduling grant to the UE in the RRC_CONNECTED state, beamforming of the PDCCH is performed not significantly different from beamforming of the PDSCH. The terminal may measure the DL load to some extent through the RSSI.
3GPP NR TDD 레퍼런스 시스템 2와 3GPP NR TDD 레퍼런스 시스템 3이 다이나믹 TDD 로 동작하는 경우에, 본 발명의 실시예가 적용될 수 있다. 자원 C에서 DL 영역(region)에 해당하는 자원이 추출되고, 추출된 자원에 본 발명의 실시예가 적용될 수 있다.When the 3GPP NR TDD reference system 2 and the 3GPP NR TDD reference system 3 operate with dynamic TDD, an embodiment of the present invention may be applied. A resource corresponding to a DL region is extracted from the resource C, and an embodiment of the present invention may be applied to the extracted resource.
방법 RSSI0-3은, 3GPP NR TDD 레퍼런스 시스템 1, 3GPP NR TDD 레퍼런스 시스템 2, 및 3GPP NR TDD 레퍼런스 시스템 3이 다이나믹 TDD로 동작하는 경우에 해당한다. The method RSSI0-3 corresponds to the case where the 3GPP NR TDD Reference System 1, the 3GPP NR TDD Reference System 2, and the 3GPP NR TDD Reference System 3 operate with dynamic TDD.
방법 RSSI0-3에 따르면, 단말은 RSRP를 DL NR-DRS 자원을 이용해 측정하고(예, 도 13의 (a)), RSSI를 자원 C에서 측정한다(예, 도 13의 (b)). RSSI는 심볼 레벨에서 측정될 수도 있고, 혹은 RE 레벨에서 측정될 수도 있다.According to the method RSSI0-3, the UE measures the RSRP using the DL NR-DRS resource (eg, FIG. 13A) and measures the RSSI at the resource C (eg, FIG. 13B). RSSI may be measured at the symbol level or may be measured at the RE level.
3GPP NR 셀은 자원 C를 임의의 서브프레임/슬롯 타입을 위해 활용할 수 있다. 반면에, 단말은 서브프레임/슬롯 타입에 무관하게, 자원 C에 속하고 측정 대역폭에 속하는 심볼을 모두 RSSI 측정 자원으로 활용한다. 이러한 방법은, DL 로드와 UL 로드에 무관한(또는 동등한) 합산 방법에 해당한다. The 3GPP NR cell may utilize resource C for any subframe / slot type. On the other hand, regardless of the subframe / slot type, the terminal utilizes all symbols belonging to resource C and belonging to the measurement bandwidth as RSSI measurement resources. This method corresponds to a summation method that is independent (or equivalent) of the DL load and the UL load.
단말이 UL 로드를 측정하는 경우를 위한 활용 방법은 다음과 같다. RRC 아이들(RRC_IDLE) 상태의 단말이 URLLC 서비스에 해당하는 UL 트래픽을 생성한 경우에, 적은 UL 트래픽 로드를 가지는 NR 셀로 어소시에이션(association) 하도록, RRM 측정에 UL 트래픽 로드가 반영된다. 이러한 경우에, 제어 평면 지연(control plane latency)이 감소할 수 있다.The utilization method for the case in which the UE measures the UL load is as follows. When the UE in the RRC idle (RRC_IDLE) generates UL traffic corresponding to the URLLC service, the UL traffic load is reflected in the RRM measurement to associate with an NR cell having a low UL traffic load. In this case, control plane latency can be reduced.
UL 트래픽 로드에 단말의 인접 정도(proximity)가 영향을 미치는 경우가 존재한다. 예를 들어, 지리적으로 인접한 두 개의 단말들 중에서, RRM 측정을 수행하는 단말이 희생자(victim)로 동작하고, UL 스케줄링 그랜트를 수신하여 UL 데이터를 전송하는 다른 단말이 공격자(aggressor)로 동작하는 경우가 있다. 이러한 경우에, 단말 간의 거리가 짧기 때문에, UL 트래픽 로드가 작더라도 RSSI가 과대 추정(over-estimation)된다. 그러나 UL 트래픽 로드가 RSSI 측정에 영향을 미칠 만큼 지속적으로 발생하는 경우에, 두 개의 단말들이 지리적으로 인접하기 때문에, UL 자원 영역(region)은 SDM 되기 어렵고 TDM 이나 FDM 되어야 한다. 이러한 경우에는, UL 스케줄링 그랜트를 받기 위한 제어 평면 지연이 크다.There is a case where the proximity of the terminal affects the UL traffic load. For example, among two geographically adjacent terminals, a terminal performing RRM measurement acts as a victim and another terminal receiving UL scheduling grant and transmitting UL data acts as an attacker. There is. In this case, since the distance between terminals is short, RSSI is over-estimated even if the UL traffic load is small. However, when the UL traffic load continuously occurs to affect the RSSI measurement, since the two terminals are geographically adjacent, the UL resource region is difficult to be SDM and must be TDM or FDM. In this case, the control plane delay for receiving the UL scheduling grant is large.
서빙 기지국은 단말에게 인터 주파수(inter-frequency)에 대한 RRM 측정을 설정할 수 있다. 단말이 충분한 수의 RxU(receiver unit)을 갖지 못한 경우에, 서빙 기지국이 측정 갭(measurement gap)을 단말에게 설정하고, 단말은 측정 갭을 이용해 인터 주파수에 속하는 셀(혹은 기지국)에 대하여 RSRP, RSRQ, 혹은 RSRP 및 RSRQ를 측정할 수 있다. 측정 갭의 설정은, 측정 갭의 길이(measurement gap length), 측정 갭의 주기(measurement gap repetition period), 그리고 측정 갭에 속하는 첫번째 서브프레임(혹은 첫번째 슬롯)이 가지는 서브프레임 옵셋(혹은 슬롯 옵셋)을 적어도 포함한다. The serving base station may set the RRM measurement for the inter-frequency (inter-frequency) to the terminal. When the terminal does not have a sufficient number of receiver units (RxU), the serving base station sets the measurement gap (measurement gap) to the terminal, the terminal uses the measurement gap RSRP, for a cell (or base station) belonging to the inter frequency RSRQ, or RSRP and RSRQ can be measured. Setting of the measurement gap includes the measurement gap length, the measurement gap repetition period, and the subframe offset (or slot offset) of the first subframe (or first slot) belonging to the measurement gap. It includes at least.
단말이 측정 갭에서 측정하는 특정 주파수 및 특정 기지국 등은, 서빙 기지국에 의해 설정되지 않으며, 단말의 구현 알고리즘에 따라 단말에 의해 선택된다. 서빙 기지국은 단말이 충분한 RRM 측정 정확도를 소정의 시간 이내에서 달성할 수 있도록, 적절한 측정 갭을 단말에게 설정하여야 한다. The specific frequency and the specific base station measured by the terminal in the measurement gap are not set by the serving base station, but are selected by the terminal according to the implementation algorithm of the terminal. The serving base station should set an appropriate measurement gap in the terminal so that the terminal can achieve sufficient RRM measurement accuracy within a predetermined time.
서빙 기지국은 단말에게 측정 갭을 설정하고, 단말은 측정 갭 이내에서 특정한 주파수에 속하는 신호 및 물리 채널을 측정한다. 예를 들어, 이러한 신호는 주동기 신호(PSS), 부동기 신호(SSS), RRM 신호(이하 'RRS'), 및 PBCH DM-RS를 적어도 포함하며, DL NR-DRS를 포함할 수도 있다. 그리고 이러한 물리 채널은 방송 채널(예, PBCH)을 적어도 포함한다. The serving base station sets a measurement gap in the terminal, and the terminal measures a signal and a physical channel belonging to a specific frequency within the measurement gap. For example, such a signal includes at least a main synchronous signal (PSS), a floater signal (SSS), an RRM signal (hereinafter 'RRS'), and a PBCH DM-RS, and may include a DL NR-DRS. And this physical channel includes at least a broadcast channel (eg, PBCH).
서빙 기지국은 주동기 신호, 부동기 신호, 및 방송 채널을 하나의 전송 단위로 취급하여, 하나 이상의 전송 단위를 시간에 따라 차례대로 전송할 수 있다. 예를 들어, 이러한 전송 단위는 NR에서 SS 버스트로 지칭되며, 서빙 기지국이 동작하는 주파수 대역에 따라 SS 버스트의 최대 개수가 규격에 정의되어 있다. 서빙 기지국은 이러한 최대 개수보다 적은 개수의 SS 버스트를 실제로 전송하며, SS 버스트가 전송되는 주기는 규격에 정의되어 있다. The serving base station treats the main synchronizer signal, the floater signal, and the broadcast channel as one transmission unit, and may transmit one or more transmission units in sequence over time. For example, this transmission unit is referred to as SS burst in NR, and the maximum number of SS bursts is defined in the specification according to the frequency band in which the serving base station operates. The serving base station actually transmits fewer SS bursts than this maximum number, and the period in which the SS bursts are transmitted is defined in the specification.
그러나 서빙 기지국이 특정 단말에게 측정 갭을 설정한 경우에, SS 버스트가 전송되는 주기와 슬롯 옵셋은 서빙 기지국에 의해 전송될 수 있다. 여기서, SS 버스트가 전송되는 주기와 슬롯 옵셋은, 규격에 의해 정의된 값들 뿐만 아니라, 규격에 정의되어 있지 않은 값들 중에서 서빙 기지국에 의해 선택된 값을 가질 수 있다. However, when the serving base station sets the measurement gap to a specific terminal, the period and slot offset in which the SS burst is transmitted may be transmitted by the serving base station. Here, the period and slot offset at which the SS burst is transmitted may have a value selected by the serving base station from among values not defined in the standard as well as values defined by the standard.
단말이 인터 주파수에 대한 RRM 측정을 수행하기 위해 측정 갭을 사용하기 때문에, 서빙 기지국과 인접 기지국들은 해당 측정 갭에 속한 슬롯에서 SS 버스트 를 전송할 수 있다. 단말이 측정 갭에서 SS 버스트를 수신하지 못할 수도 있기 때문에, 서빙 기지국은 측정 갭과 측정 주파수를 단말에게 설정할 수 있다. 예를 들어, 서빙 기지국은 단말에게 하나 이상의 측정 갭을 구분하여 설정하되, 각 측정 갭이 특정한 주파수 대역에 연관되도록 설정한다. 그러므로 측정 갭의 설정 정보는 측정 갭의 주기와 슬롯 옵셋을 포함할 뿐만 아니라, 해당 측정 갭에 속한 슬롯에서 단말에 의해 측정되어야 하는 주파수 자원을 적어도 포함한다. 주파수 자원은 상대적인 인덱스(예, 셀 인덱스 등)로 표현될 수도 있고, 혹은 절대적인 인덱스(예, 주파수 식별 정보 등)로 표현될 수도 있다. 여기서, 주파수 식별 정보는 ARFCN(absolute radio-frequency channel number)일 수 있다.Since the UE uses the measurement gap to perform the RRM measurement for the inter frequency, the serving base station and the neighboring base stations can transmit the SS burst in the slot belonging to the corresponding measurement gap. Since the terminal may not receive the SS burst in the measurement gap, the serving base station may set the measurement gap and the measurement frequency to the terminal. For example, the serving base station sets one or more measurement gaps to the terminal and sets each measurement gap to be associated with a specific frequency band. Therefore, the configuration information of the measurement gap not only includes the period and the slot offset of the measurement gap, but also includes at least a frequency resource to be measured by the terminal in the slot belonging to the measurement gap. The frequency resource may be represented by a relative index (eg, cell index, etc.) or may be represented by an absolute index (eg, frequency identification information, etc.). Here, the frequency identification information may be an absolute radio-frequency channel number (ARFCN).
단말은 측정 갭에 속한 슬롯 및 측정 주파수에서 측정을 수행한다. 여기서, 단말에 의해 측정되는 물리량은 서빙 기지국의 설정에 따라, RSRP, RSRQ, RS-SINR, 혹은 이들의 임의 조합일 수 있다.The terminal performs the measurement in the slot and the measurement frequency belonging to the measurement gap. Here, the physical quantity measured by the terminal may be RSRP, RSRQ, RS-SINR, or any combination thereof, depending on the setting of the serving base station.
만일 측정 주파수에서 기지국들이 다이나믹 TDD 로 동작하고 있는 경우에, 단말이 RSRQ 를 측정해야 하는 시나리오가 고려된다. 이러한 경우에, 단말은 각 기지국으로부터 PSTICH 혹은 PDCCH의 CSS(common search space)을 수신하고, 이를 바탕으로 STI를 인지한다. 단말은 STI를 이용해 DL 영역(region)을 도출한 후, RSRQ를 측정한다. If the base stations are operating in dynamic TDD at the measurement frequency, a scenario in which the UE should measure the RSRQ is considered. In this case, the terminal receives a common search space (CSS) of the PSTICH or the PDCCH from each base station, and recognizes the STI based on this. The UE derives a DL region using the STI and then measures the RSRQ.
만일 측정 주파수에서 기지국들이 빔 중심적(beam-centric)으로 동작해 주동기 신호와 부동기 신호를 하나의 단위(예, SS burst)로 취급하고, 이러한 단위가 여러 개 전송되어 SS 버스트 세트를 이루는 경우가 고려된다. 단말은 측정 갭 이내에서 적어도 한 주기 이상의 SS 버스트를 관찰할 수 있다고 가정되고, 기지국이 하나의 SS 버스트에 속한 신호들에 동일한 전처리를 적용한다고 가정된다. 단말은 SS 버스트에 속하는 RRS 자원을 이용하여 RRM 측정을 수행하고, 서로 다른 전처리 마다 서로 다른 RRM 측정을 도출한다. 예를 들어, 하나의 서빙 기지국이 4개의 SS 버스트들을 전송하면, 단말은 4개의 서로 다른 전처리들이 존재한다고 가정하여 각 SS 버스트에 속하는 RRS 자원을 서로 구분하며, 4개의 RRM 측정을 수행한다. RSRP 측정을 설정받은 단말은 4개의 RSRP를 도출할 수 있고, RSRQ 측정을 설정받은 단말은 4개의 RSRQ를 도출할 수 있다.If the base stations operate beam-centric at the measurement frequency to treat the main and floating signals as a unit (e.g., SS burst), and these units are transmitted to form a set of SS bursts. Is considered. It is assumed that the terminal can observe at least one or more periods of SS bursts within the measurement gap, and it is assumed that the base station applies the same preprocessing to signals belonging to one SS burst. The UE performs RRM measurement using RRS resources belonging to the SS burst and derives different RRM measurements for different preprocesses. For example, if one serving base station transmits four SS bursts, the UE assumes that four different preprocesses exist and distinguishes RRS resources belonging to each SS burst from each other, and performs four RRM measurements. The terminal receiving the RSRP measurement may derive four RSRPs, and the terminal receiving the RSRQ measurement may derive four RSRQs.
도 14는 본 발명의 실시예에 따른, NR-SIB 전송을 나타내는 도면이다. 구체적으로 도 14에는, 방법 C2-2가 사용된 경우가 예시되어 있다. 14 illustrates NR-SIB transmission according to an embodiment of the present invention. Specifically, Fig. 14 illustrates the case where the method C2-2 is used.
도 14에서, FI101은 DL NR-DRS가 전송되는 NR-서브프레임/슬롯의 주기(periodicity)를 나타낸다. DL NR-DRS가 전송되는 NR-서브프레임/슬롯에서는, 하나 이상의 DL NR-DRS 자원이 전송된다. 하나의 DL NR-DRS 자원은 기지국의 가상 섹터에 대응한다. DL NR-DRS의 주기는 규격에 의해 정의된 값을 사용할 수 있다.In FIG. 14, FI101 represents the period of NR-subframe / slot in which DL NR-DRS is transmitted. In an NR-subframe / slot in which DL NR-DRS is transmitted, one or more DL NR-DRS resources are transmitted. One DL NR-DRS resource corresponds to a virtual sector of the base station. The period of the DL NR-DRS may use a value defined by the specification.
도 14에서, FI102는, DL NR-DRS 오케이션 구간(occasion duration)을 나타낸다. 기지국은 DL NR-DRS 자원을 연속적(consecutive)이며 유효(valid)한 DL NR-서브프레임/슬롯에서 전송할 수 있다. DL NR-DRS 오케이션 구간은, DL 커버리지(coverage)의 확장을 위한 것이다. 기지국은 DL NR-DRS 안테나 포트를 기준으로 NR-PBCH 를 전송하기 때문에, 기지국은 해당 DL NR-PBCH를 DL NR-DRS 오케이션 구간에서 전송할 수 있다. 기지국은 DL NR-DRS 오케이션 구간의 값을 상위 계층 시그널링 (higher layer signalling)을 통해 단말에게 설정할 수 있다. 기지국으로부터 별도의 시그널링이 없는 경우에, 단말은 블라인드 탐지(blind detection)를 통해 DL NR-DRS 오케이션 구간의 값을 추정한다.In FIG. 14, FI102 represents a DL NR-DRS occlusion duration. The base station may transmit DL NR-DRS resources in a continuous and valid DL NR-subframe / slot. The DL NR-DRS Occasion Period is for expansion of DL coverage. Since the base station transmits the NR-PBCH based on the DL NR-DRS antenna port, the base station may transmit the corresponding DL NR-PBCH in the DL NR-DRS occasion period. The base station may set the value of the DL NR-DRS occasion interval to the terminal through higher layer signaling. When there is no separate signaling from the base station, the terminal estimates the value of the DL NR-DRS occasion period through blind detection.
도 14에서, FI103은 DL NR-DRS 와 NR-PBCH 를 포함하는 주파수 자원을 나타낸다. 예를 들어, FI103은 NR-RB 인덱스로 표현되거나 혹은 서브밴드 인덱스와 NR-RB 인덱스의 조합으로 표현될 수 있다. In FIG. 14, FI103 represents a frequency resource including a DL NR-DRS and an NR-PBCH. For example, FI103 may be represented by an NR-RB index or a combination of a subband index and an NR-RB index.
도 14에서, FI104-1은 UL NR-DRS 자원이 갖는 시간 자원의 위치를 나타낸다. 단말은 기지국의 가상 섹터 1에 의해 전송된 NR-PBCH로부터 FI104-1를 추정한다. 시간 자원은 DL NR-DRS 오케이션 구간에 속하는 첫번째 NR-서브프레임/슬롯을 기준으로 하는 상대적인 값으로써, NR-서브프레임/슬롯 옵셋 혹은 심볼 옵셋으로 정의될 수 있다. 또는 시간 자원은 UL NR-DRS 자원이 속하는 NR-서브프레임/슬롯의 절대적인 값으로써, NR-서브프레임/슬롯 인덱스로 정의될 수 있다. 예를 들어, UL NR-DRS 자원의 전송 시점은 DL NR-DRS 자원의 전송 시점과 동일한 NR-서브프레임/슬롯에 속하는 심볼일 수 있다. 이러한 경우에, 시간 자원의 위치는 심볼 옵셋에 해당한다. 다른 예를 들어, UL NR-DRS 자원이 별도의 NR-서브프레임/슬롯에 설정될 수 있다. 이러한 경우에, 시간 자원의 위치는 NR-서브프레임/슬롯 옵셋에 해당한다.In FIG. 14, FI104-1 indicates the location of time resource of the UL NR-DRS resource. The terminal estimates FI104-1 from the NR-PBCH transmitted by virtual sector 1 of the base station. The time resource is a relative value based on the first NR subframe / slot belonging to the DL NR-DRS occasion period and may be defined as an NR subframe / slot offset or a symbol offset. Alternatively, the time resource is an absolute value of the NR subframe / slot to which the UL NR-DRS resource belongs, and may be defined as an NR subframe / slot index. For example, the transmission time of the UL NR-DRS resource may be a symbol belonging to the same NR-subframe / slot as the transmission time of the DL NR-DRS resource. In this case, the location of the time resource corresponds to a symbol offset. For another example, UL NR-DRS resources may be set in separate NR-subframes / slots. In this case, the location of the time resource corresponds to the NR-subframe / slot offset.
도 14에서, FI104-2는 UL NR-DRS 자원이 갖는 시간 자원의 위치를 나타낸다. 단말이 기지국의 가상 섹터 2에 의해 전송된 NR-PBCH로부터 FI104-2를 추정한다. FI104-2는 FI104-1과 동일한 의미를 갖는다.In FIG. 14, FI104-2 indicates a location of a time resource of a UL NR-DRS resource. The terminal estimates FI104-2 from the NR-PBCH transmitted by virtual sector 2 of the base station. FI104-2 has the same meaning as FI104-1.
만일 기지국이 하나 이상의 가상 섹터를 전송하는 경우에, 여러 개의 UL NR-DRS 자원이 설정될 수 있다.If the base station transmits more than one virtual sector, several UL NR-DRS resources may be configured.
도 14에서, FI105-1는 UL NR-DRS 자원이 갖는 주파수 자원의 위치를 나타낸다. 단말이 기지국의 가상 섹터 1에 의해 전송된 NR-PBCH 로부터, FI105-1를 추정한다. 예를 들어, FI105-1는 NR-RB 인덱스로 표현되거나 혹은 서브밴드 인덱스와 NR-RB 인덱스의 조합으로 표현될 수 있다.In FIG. 14, FI105-1 indicates a location of frequency resources of UL NR-DRS resources. The terminal estimates FI105-1 from the NR-PBCH transmitted by the virtual sector 1 of the base station. For example, FI105-1 may be represented by an NR-RB index or a combination of a subband index and an NR-RB index.
도 14에서, FI105-2는 UL NR-DRS 자원이 갖는 주파수 자원의 위치를 나타낸다. 단말이 기지국의 가상 섹터 2에 의해 전송된 NR-PBCH로부터, FI105-2를 추정한다. FI105-2는 FI105-1 과 동일한 의미를 갖는다.In FIG. 14, FI105-2 indicates the position of a frequency resource of the UL NR-DRS resource. The terminal estimates FI105-2 from the NR-PBCH transmitted by the virtual sector 2 of the base station. FI105-2 has the same meaning as FI105-1.
도 14에서, FI106 은 DL NR-DRS 와 NR-PBCH 를 포함하는 무선 자원을 나타낸다. In FIG. 14, FI106 represents a radio resource including a DL NR-DRS and an NR-PBCH.
도 14에서, FI107-1 은 UL NR-DRS 를 포함하는 무선 자원을 나타낸다. 단말이 가상 섹터 1을 선택하는 경우에, FI107-1을 이용해 UL NR-DRS 를 전송할 수 있다.In FIG. 14, FI107-1 represents a radio resource including the UL NR-DRS. When the terminal selects the virtual sector 1, the UL NR-DRS may be transmitted using FI107-1.
도 14에서, FI107-2 은 UL NR-DRS 를 포함하는 무선 자원을 나타낸다. 단말이 가상 섹터 2을 선택하는 경우에, FI107-2을 이용해 UL NR-DRS 를 전송할 수 있다.In FIG. 14, FI107-2 represents a radio resource including the UL NR-DRS. When the terminal selects the virtual sector 2, the UL NR-DRS may be transmitted using FI107-2.
도 14에서, FI108 은 DL NR-DRS 자원과 NR-PBCH이 할당되는 대역폭을 나타낸다. FI108 은 규격에 의해 정의된 값을 사용할 수 있다.In FIG. 14, FI108 represents a bandwidth to which DL NR-DRS resource and NR-PBCH are allocated. FI108 may use the value defined by the specification.
도 14에서, FI109 은 UL NR-DRS 자원이 할당되는 대역폭을 나타낸다. 단말은 규격에 의해 정의된 값으로 FI109을 사용하거나, 혹은 기지국이 전송한 NR-PBCH에 의해 설정된 값으로 FI109을 사용한다.In FIG. 14, FI109 represents a bandwidth to which an UL NR-DRS resource is allocated. The terminal uses FI109 as a value defined by the standard, or uses FI109 as a value set by the NR-PBCH transmitted by the base station.
도 14에서, FI110 은 NR-PDCCH가 할당되는 시간 자원의 양을 나타낸다. 단말은 규격에 의해 정의된 값으로 FI110을 사용하거나, 혹은 기지국이 전송한 NR-PBCH에 의해 설정된 값으로 FI110을 사용한다. 예를 들어, NR-PDCCH는 심볼의 수로 정의될 수 있다. 다른 예를 들어, NR-PDCCH는 NR-서브프레임/슬롯의 단위로 정의될 수 있다.In FIG. 14, FI110 represents an amount of time resource to which an NR-PDCCH is allocated. The terminal uses FI110 as a value defined by the standard, or uses the FI110 as a value set by the NR-PBCH transmitted by the base station. For example, NR-PDCCH may be defined by the number of symbols. For another example, the NR-PDCCH may be defined in units of NR-subframes / slots.
도 14에서, FI111 은 NR-PDCCH 가 할당된 대역폭을 나타낸다. 단말은 규격에 의해 정의된 값으로 FI111을 사용하거나, 혹은 기지국이 전송한 NR-PBCH에 의해 설정된 값으로 FI111을 사용한다. In FIG. 14, FI111 represents a bandwidth to which an NR-PDCCH is allocated. The terminal uses FI111 as a value defined by the standard, or uses FI111 as a value set by the NR-PBCH transmitted by the base station.
도 14에서, FI112-1 은 기지국의 가상 섹터 1에 의해 전송되는 NR-PDCCH 자원의 주파수 위치를 나타낸다. 기지국은 다른 가상 섹터에 대하여 별도의 NR-PDCCH 자원의 주파수 위치를 설정할 수 있다. 또는, 기지국이 가상 섹터 인덱스에 무관하게 NR-PDCCH 자원의 주파수 위치를 동일하게 설정할 수 있다. 또는, NR-PDCCH 자원의 주파수 위치가 규격에 의해 정의될 수 있다.In FIG. 14, FI112-1 represents the frequency location of the NR-PDCCH resource transmitted by virtual sector 1 of the base station. The base station may set the frequency location of a separate NR-PDCCH resource for another virtual sector. Alternatively, the base station may set the same frequency position of the NR-PDCCH resource regardless of the virtual sector index. Alternatively, the frequency location of the NR-PDCCH resource may be defined by the standard.
도 14에서, FI113-1 은 기지국의 가상 섹터 1에 의해 전송되는 NR-PDCCH 자원을 나타낸다.In FIG. 14, FI113-1 represents an NR-PDCCH resource transmitted by virtual sector 1 of the base station.
도 14에서, FI114 는 NR-PDCCH가 전송되는 주기를 나타낸다. NR-PDCCH 가 심볼 단위로 전송되는 경우에, NR-PDCCH는 NR-PDCCH가 할당된 첫번째 심볼들 간의 차이 마다 나타난다. NR-PDCCH가 NR-서브프레임/슬롯 단위로 전송되는 경우에, NR-PDCCH는 NR-서브프레임/슬롯들 간의 차이 마다 나타난다.In FIG. 14, FI114 represents a period in which the NR-PDCCH is transmitted. When the NR-PDCCH is transmitted in symbol units, the NR-PDCCH appears every difference between the first symbols to which the NR-PDCCH is allocated. When the NR-PDCCH is transmitted in units of NR-subframes / slots, the NR-PDCCHs appear every difference between the NR-subframes / slots.
도 15는 본 발명의 실시예에 따른, 기지국의 가상 섹터를 나타내는 도면이다. 기지국의 셀은 가상적으로 다수의 가상 섹터로 세분화될 수 있다. 구체적으로, 도 15에는 4개의 가상 섹터(FI2-1, FI2-2, FI2-3, FI2-4)가 예시되어 있다.15 illustrates a virtual sector of a base station according to an embodiment of the present invention. The cell of the base station may be virtually subdivided into multiple virtual sectors. In detail, four virtual sectors FI2-1, FI2-2, FI2-3, and FI2-4 are illustrated in FIG. 15.
도 16a 및 도 16b는 본 발명의 실시예에 따른, 기지국(또는 서빙 셀)이 단말에게 NR-SIB를 전송하기 위한 절차를 나타내는 도면이다. 도 16a에서, NR-DRSRP는 NR-DRS에 기반한 RSRP를 의미한다. 도 16a 및 도 16b에 예시된 절차(ST10~ST20)는, 방법 R2 와 방법 C1(혹은 방법 C2)이 사용되는 경우에 적용될 수 있다.16A and 16B illustrate a procedure for a base station (or serving cell) to transmit an NR-SIB to a terminal according to an embodiment of the present invention. In FIG. 16A, NR-DRSRP means RSRP based on NR-DRS. The procedures ST10-ST20 illustrated in FIGS. 16A and 16B can be applied when the method R2 and the method C1 (or the method C2) are used.
도 17은 본 발명의 실시예에 따른, 컴퓨팅 장치를 나타내는 도면이다. 도 17의 컴퓨팅 장치(TN100)는 본 명세서에서 기술된 기지국 또는 단말 등일 수 있다. 또는 도 17의 컴퓨팅 장치(TN100)는, 무선기기, 통신노드, 송신기, 또는 수신기일 수 있다.17 illustrates a computing device, in accordance with an embodiment of the present invention. The computing device TN100 of FIG. 17 may be a base station or a terminal described herein. Alternatively, the computing device TN100 of FIG. 17 may be a wireless device, a communication node, a transmitter, or a receiver.
도 17의 실시예에서, 컴퓨팅 장치(TN100)는 적어도 하나의 프로세서(TN110), 네트워크에 연결되어 통신을 수행하는 송수신 장치(TN120), 및 메모리(TN130)를 포함할 수 있다. 또한, 컴퓨팅 장치(TN100)는 저장 장치(TN140), 입력 인터페이스 장치(TN150), 출력 인터페이스 장치(TN160) 등을 더 포함할 수 있다. 컴퓨팅 장치(TN100)에 포함된 구성 요소들은 버스(bus)(TN170)에 의해 연결되어 서로 통신을 수행할 수 있다.In the embodiment of FIG. 17, the computing device TN100 may include at least one processor TN110, a transceiver TN120 connected to a network to perform communication, and a memory TN130. In addition, the computing device TN100 may further include a storage device TN140, an input interface device TN150, an output interface device TN160, and the like. Components included in the computing device TN100 may be connected by a bus TN170 to communicate with each other.
프로세서(TN110)는 메모리(TN130) 및 저장 장치(TN140) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(TN110)는 중앙 처리 장치(CPU: central processing unit), 그래픽 처리 장치(GPU: graphics processing unit), 또는 본 발명의 실시예에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다. 프로세서(TN110)는 본 발명의 실시예와 관련하여 기술된 절차, 기능, 및 방법들을 구현하도록 구성될 수 있다. 프로세서(TN110)는 컴퓨팅 장치(TN100)의 각 구성 요소를 제어할 수 있다.The processor TN110 may execute a program command stored in at least one of the memory TN130 and the storage device TN140. The processor TN110 may refer to a central processing unit (CPU), a graphics processing unit (GPU), or a dedicated processor on which methods according to an embodiment of the present invention are performed. Processor TN110 may be configured to implement the procedures, functions, and methods described in connection with embodiments of the present invention. The processor TN110 may control each component of the computing device TN100.
메모리(TN130) 및 저장 장치(TN140) 각각은 프로세서(TN110)의 동작과 관련된 다양한 정보를 저장할 수 있다. 메모리(TN130) 및 저장 장치(TN140) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(TN130)는 읽기 전용 메모리(ROM: read only memory) 및 랜덤 액세스 메모리(RAM: random access memory) 중에서 적어도 하나로 구성될 수 있다. Each of the memory TN130 and the storage device TN140 may store various information related to an operation of the processor TN110. Each of the memory TN130 and the storage device TN140 may be configured of at least one of a volatile storage medium and a nonvolatile storage medium. For example, the memory TN130 may be configured as at least one of a read only memory (ROM) and a random access memory (RAM).
송수신 장치(TN120)는 유선 신호 또는 무선 신호를 송신 또는 수신할 수 있다. 그리고 컴퓨팅 장치(TN100)는 단일 안테나 또는 다중 안테나를 가질 수 있다.The transceiver TN120 may transmit or receive a wired signal or a wireless signal. The computing device TN100 may have a single antenna or multiple antennas.
한편, 본 발명의 실시예는 지금까지 설명한 장치 및/또는 방법을 통해서만 구현되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 상술한 실시예의 기재로부터 본 발명이 속하는 기술 분야의 당업자라면 쉽게 구현할 수 있는 것이다. On the other hand, the embodiment of the present invention is not implemented only through the apparatus and / or method described so far, but may be implemented through a program that realizes a function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded. Such implementations can be readily implemented by those skilled in the art from the description of the above-described embodiments.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
Claims (20)
- PDCCH(physical downlink control channel)를 위한 제1 자원을 설정하는 단계; Establishing a first resource for a physical downlink control channel (PDCCH);상기 제1 자원의 설정 정보를 제1 PBCH(physical broadcast channel)에 포함시키는 단계; 및Including the configuration information of the first resource in a first physical broadcast channel (PBCH); And상기 제1 PBCH를 전송하는 단계Transmitting the first PBCH를 포함하는 기지국의 전송 방법.Transmission method of the base station comprising a.
- 제1항에 있어서,The method of claim 1,상기 제1 자원의 설정 정보는, 상기 제1 자원이 시작되는 RB(resource block)의 인덱스와 상기 PDCCH에 의해 차지되는 대역폭을 포함하는The configuration information of the first resource includes an index of a resource block (RB) where the first resource starts and a bandwidth occupied by the PDCCH.기지국의 전송 방법Transmission method of base station
- 제1항에 있어서,The method of claim 1,단말에 의해 전송되는 상향링크(UL: uplink) DRS(discovery reference signal)를 위한 제2 자원을 설정하는 단계; 및Setting a second resource for an uplink (UL) discovery reference signal (UL) transmitted by the terminal; And상기 제2 자원의 설정 정보를 상기 제1 PBCH에 포함시키는 단계Incorporating configuration information of the second resource into the first PBCH.를 더 포함하는 기지국의 전송 방법.Transmission method of the base station further comprising.
- 제3항에 있어서,The method of claim 3,상기 제2 자원을 설정하는 단계는,Setting the second resource,상기 기지국에 의해 사용되는 가상 섹터들의 개수와 동일한 개수로, 상기 제2 자원을 설정하는 단계를 포함하는Setting the second resource to a number equal to the number of virtual sectors used by the base station;기지국의 전송 방법.Transmission method of the base station.
- 제3항에 있어서,The method of claim 3,상기 제2 자원의 설정 정보를 상기 제1 PBCH에 포함시키는 단계는,Including the configuration information of the second resource in the first PBCH,상기 제1 PBCH이 셀 특정(cell-specific)하게 전송되는 경우에, 상기 기지국에 의해 사용되는 가상 섹터들의 개수에 대응하는 비트 폭(bit width)을 가지는 하나의 제1 PBCH을 생성하는 단계; 및When the first PBCH is cell-specifically transmitted, generating one first PBCH having a bit width corresponding to the number of virtual sectors used by the base station; And상기 제1 PBCH이 가상 섹터 특정(virtual sector-specific)하게 전송되는 경우에, 상기 가상 섹터들을 위한 다수의 제1 PBCH들을 생성하는 단계를 포함하는 Generating a plurality of first PBCHs for the virtual sectors when the first PBCH is transmitted in virtual sector-specific manner.기지국의 전송 방법.Transmission method of the base station.
- 제3항에 있어서,The method of claim 3,상기 제1 PBCH를 전송하는 단계는,Transmitting the first PBCH,상기 제1 PBCH, 제1 PSS(primary synchronization signal), 및 제1 SSS(secondary synchronization signal)를 포함하는 제1 SS(synchronization signal) 버스트(burst)를 전송하는 단계; 및Transmitting a first synchronization signal (SS) burst comprising the first PBCH, a first primary synchronization signal (PSS), and a first secondary synchronization signal (SSS); And상기 제1 PBCH의 RV(redundancy version)와 동일한 RV를 가지는 제2 PBCH, 제2 PSS, 및 제2 SSS를 포함하는 제2 SS 버스트를 전송하는 단계를 포함하는Transmitting a second SS burst comprising a second PBCH, a second PSS, and a second SSS having the same RV as the redundancy version (RV) of the first PBCH.기지국의 전송 방법.Transmission method of the base station.
- 제3항에 있어서,The method of claim 3,상기 제1 PBCH를 전송하는 단계는,Transmitting the first PBCH,상기 제1 PBCH, 제1 PSS(primary synchronization signal), 및 제1 SSS(secondary synchronization signal)를 포함하는 제1 SS(synchronization signal) 버스트(burst)를 전송하는 단계; 및Transmitting a first synchronization signal (SS) burst comprising the first PBCH, a first primary synchronization signal (PSS), and a first secondary synchronization signal (SSS); And상기 제1 PBCH의 RV(redundancy version)와 다른 RV를 가지는 제2 PBCH, 제2 PSS, 및 제2 SSS를 포함하는 제2 SS 버스트를 전송하는 단계를 포함하는Transmitting a second SS burst comprising a second PBCH, a second PSS, and a second SSS having an RV different from the redundancy version (RV) of the first PBCH.기지국의 전송 방법.Transmission method of the base station.
- 제7항에 있어서,The method of claim 7, wherein상기 제1 PBCH를 위한 스크램블링(scrambling) 자원은, 상기 제2 PBCH를 위한 스크램블링 자원과 다른The scrambling resource for the first PBCH is different from the scrambling resource for the second PBCH.기지국의 전송 방법.Transmission method of the base station.
- 제7항에 있어서,The method of claim 7, wherein상기 제1 PBCH를 위한 CRC(cyclic redundancy check) 마스크는, 상기 제2 PBCH를 위한 CRC 마스크와 다른The cyclic redundancy check (CRC) mask for the first PBCH is different from the CRC mask for the second PBCH.기지국의 전송 방법.Transmission method of the base station.
- 슬롯의 타입을 지시하는 제1 지시자를 생성하는 단계;Generating a first indicator indicating the type of the slot;상기 제1 지시자를 PDCCH(physical downlink control channel)에 포함시키는 단계; 및Including the first indicator in a physical downlink control channel (PDCCH); And상기 PDCCH를 고정된 DL(downlink) 자원을 통해, 단말에게 전송하는 단계Transmitting the PDCCH to a terminal through a fixed downlink (DL) resource를 포함하는 기지국의 전송 방법.Transmission method of the base station comprising a.
- 제10항에 있어서,The method of claim 10,상기 제1 지시자는 상기 슬롯이 DL 슬롯인지, DL-중심적(centric) 슬롯인지, UL 슬롯인지, UL(uplink)-중심적 슬롯인지를 나타내고,The first indicator indicates whether the slot is a DL slot, a DL-centric slot, an UL slot, an uplink (UL) -centric slot,상기 슬롯이 상기 DL 슬롯인 경우에, 상기 슬롯에는 UL 영역(region)이 존재하지 않고, If the slot is the DL slot, there is no UL region in the slot,상기 슬롯이 상기 UL 슬롯인 경우에, 상기 슬롯에는 DL 영역이 존재하지 않고, If the slot is the UL slot, there is no DL region in the slot,상기 슬롯이 상기 DL-중심적 슬롯인 경우에, 상기 슬롯의 DL 영역이 상기 슬롯의 UL 영역 보다 더 크고, If the slot is the DL-centric slot, the DL area of the slot is larger than the UL area of the slot,상기 슬롯이 상기 UL-중심적 슬롯인 경우에, 상기 슬롯의 UL 영역이 상기 슬롯의 DL 영역 보다 더 큰If the slot is the UL-centric slot, then the UL area of the slot is larger than the DL area of the slot.기지국의 전송 방법.Transmission method of the base station.
- 제10항에 있어서,The method of claim 10,상기 PDCCH를 전송하는 단계는,Transmitting the PDCCH,상기 고정된 DL 자원에 속하는 REG(resource element group)들 중에서 상기 기지국의 식별 정보에 대응하는 하나 이상의 제1 REG를 이용해, 상기 제1 지시자를 전송하는 단계를 포함하는Transmitting the first indicator by using one or more first REGs corresponding to identification information of the base station among resource element groups (REGs) belonging to the fixed DL resource;기지국의 전송 방법.Transmission method of the base station.
- 제12항에 있어서,The method of claim 12,상기 PDCCH와 다른 PDCCH 후보(candidate)를, 상기 REG들 중에서 상기 하나 이상의 제1 REG를 제외한 나머지 REG들에 맵핑하는 단계Mapping a PDCCH candidate different from the PDCCH to remaining REGs other than the one or more first REGs among the REGs;를 더 포함하는 기지국의 전송 방법.Transmission method of the base station further comprising.
- 제12항에 있어서,The method of claim 12,상기 하나 이상의 제1 REG를 이용해 상기 제1 지시자를 전송하는 단계는,Transmitting the first indicator using the one or more first REGs,상기 슬롯에 속하는 시간 도메인 심볼들 중에서 가장 앞에 있는 시간 도메인 심볼에 상기 하나 이상의 제1 REG를 위치시키는 단계를 포함하는Positioning the one or more first REGs in a time domain symbol that is at the earliest of time domain symbols belonging to the slot;기지국의 전송 방법.Transmission method of the base station.
- 제12항에 있어서,The method of claim 12,상기 하나 이상의 제1 REG를 이용해 상기 제1 지시자를 전송하는 단계는,Transmitting the first indicator using the one or more first REGs,상기 하나 이상의 제1 REG를 다수의 주파수에 맵핑하는 단계를 포함하는Mapping the one or more first REGs to a plurality of frequencies.기지국의 전송 방법.Transmission method of the base station.
- 슬롯에 속하는 시간 도메인 심볼들 중에서 하향링크(DL: downlink)를 위한 시간 도메인 심볼들의 개수를 결정하는 단계;Determining a number of time domain symbols for downlink (DL) among time domain symbols belonging to a slot;상기 슬롯의 타입을 결정하는 단계; 및Determining a type of the slot; And상기 결정된 개수와 상기 결정된 타입을 포함하는 제1 채널을, 제어 채널을 위한 공통 탐색 공간(common search space)을 통해 전송하는 단계Transmitting a first channel including the determined number and the determined type through a common search space for a control channel를 포함하는 기지국의 전송 방법.Transmission method of the base station comprising a.
- 제16항에 있어서,The method of claim 16,상기 제1 채널은, The first channel,상기 기지국에 RRC(radio resource control) 연결되어 있지 않은 단말에 의해서도 복호 가능한Decodable by a UE that is not connected to the RRC (radio resource control)기지국의 전송 방법.Transmission method of the base station.
- 제16항에 있어서,The method of claim 16,상기 제1 채널을 전송하는 단계는, Transmitting the first channel,상기 제어 채널을 위한 자원에 속하는 REG(resource element group)들 중에서 상기 결정된 타입을 지시하는 제1 지시자를 전송하기 위한 하나 이상의 제1 REG를, 상기 DL을 위한 시간 도메인 심볼들 중에서 가장 앞에 있는 시간 도메인 심볼에 위치시키는 단계를 포함하는One or more first REGs for transmitting a first indicator indicating the determined type among resource element groups (REGs) belonging to a resource for the control channel; Positioning the symbol기지국의 전송 방법.Transmission method of the base station.
- 제16항에 있어서,The method of claim 16,상기 제1 채널을 전송하는 단계는, Transmitting the first channel,상기 제어 채널을 위한 자원에 속하는 REG(resource element group)들 중에서 상기 결정된 타입을 지시하는 제1 지시자를 전송하기 위한 하나 이상의 제1 REG를, 다수의 주파수에 맵핑하는 단계를 포함하는Mapping one or more first REGs to a plurality of frequencies for transmitting a first indicator indicating the determined type among resource element groups (REGs) belonging to a resource for the control channel;기지국의 전송 방법.Transmission method of the base station.
- 제16항에 있어서,The method of claim 16,상기 DL을 위한 시간 도메인 심볼들은, The time domain symbols for the DL areRRM(radio resource management) 측정 또는 CSI(channel state information) 측정을 위해 사용되는Used for radio resource management (RRM) measurement or channel state information (CSI) measurement기지국의 전송 방법.Transmission method of the base station.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/300,204 US20190230580A1 (en) | 2016-05-13 | 2017-05-10 | Method and apparatus for transmitting setting information of resource for control channel, method and apparatus for transmitting setting information of resource for uplink drs, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting number of downlink symbols |
CN201780029729.3A CN109196799B (en) | 2016-05-13 | 2017-05-10 | Base station sending method, terminal receiving method and random access method |
JP2018559778A JP6803925B2 (en) | 2016-05-13 | 2017-05-10 | Base station transmission method and terminal reception method |
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0059067 | 2016-05-13 | ||
KR20160059067 | 2016-05-13 | ||
KR10-2016-0101401 | 2016-08-09 | ||
KR20160101401 | 2016-08-09 | ||
KR10-2016-0126986 | 2016-09-30 | ||
KR20160126986 | 2016-09-30 | ||
KR20160147019 | 2016-11-04 | ||
KR10-2016-0147019 | 2016-11-04 | ||
KR10-2016-0174968 | 2016-12-20 | ||
KR20160174968 | 2016-12-20 | ||
KR20170052423 | 2017-04-24 | ||
KR10-2017-0052423 | 2017-04-24 | ||
KR1020170057610A KR102313906B1 (en) | 2016-05-13 | 2017-05-08 | Method and apparatus for transmitting configuration information of resource for control channel, method and apparatus for transmitting configuration information of resource for uplink discovery reference signal, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting the number of downlink symbols |
KR10-2017-0057610 | 2017-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017196083A1 true WO2017196083A1 (en) | 2017-11-16 |
Family
ID=60267873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/004842 WO2017196083A1 (en) | 2016-05-13 | 2017-05-10 | Method and apparatus for transmitting setting information of resource for control channel, method and apparatus for transmitting setting information of resource for uplink drs, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting number of downlink symbols |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017196083A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019110017A1 (en) * | 2017-12-08 | 2019-06-13 | 中兴通讯股份有限公司 | Communication method and system |
CN110351740A (en) * | 2018-04-04 | 2019-10-18 | 中兴通讯股份有限公司 | The sending method of signaling channel, base station, storage medium, electronic device |
WO2019212673A1 (en) * | 2018-04-30 | 2019-11-07 | At&T Intellectual Property I, L.P. | Physical downlink shared channel time domain resource allocation for 5g or other next generation network |
WO2020078479A1 (en) * | 2018-10-19 | 2020-04-23 | 中兴通讯股份有限公司 | Method, apparatus and device for sending downlink message, and computer readable medium |
US11196606B2 (en) | 2017-07-31 | 2021-12-07 | Electronics And Telecommunications Research Institute | Method for transmitting and receiving synchronization signal in communication system |
US20220038974A1 (en) * | 2018-10-31 | 2022-02-03 | Mediatek Singapore Pte. Ltd. | Inter-frequency cell reselection in new radio unlicensed |
US11310798B2 (en) | 2019-02-15 | 2022-04-19 | Electronics And Telecommunications Research Institute | Measurement method and apparatus for supporting mobility in communication system |
US11323971B2 (en) | 2017-09-06 | 2022-05-03 | Electronics And Telecommunications Research Institute | Method for transmitting and receiving system information in communication system |
US11432321B2 (en) | 2018-01-12 | 2022-08-30 | Panasonic Intellectual Property Corporation Of America | Base station, terminal, and communication method |
CN115053561A (en) * | 2020-02-14 | 2022-09-13 | 高通股份有限公司 | Method and apparatus to facilitate CSI feedback in multiple TRP communications |
US11546124B2 (en) | 2019-10-11 | 2023-01-03 | Electronics And Telecommunications Research Institute | Method and apparatus for communication using fronthaul interface |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130322363A1 (en) * | 2012-05-17 | 2013-12-05 | Qualcomm Incorporated | Narrow band partitioning and efficient resource allocation for low cost user equipments |
KR20140095994A (en) * | 2013-01-25 | 2014-08-04 | 한국전자통신연구원 | Methods of cell discovery |
KR20140142706A (en) * | 2012-02-21 | 2014-12-12 | 엘지전자 주식회사 | Initial access method and device in wireless communication system |
US9166718B2 (en) * | 2012-05-11 | 2015-10-20 | Intel Corporation | Downlink control indication for a stand-alone new carrier type (NCT) |
KR20150140321A (en) * | 2013-04-05 | 2015-12-15 | 퀄컴 인코포레이티드 | Physical broadcast channel (pbch) coverage enhancements for machine type communications (mtc) |
-
2017
- 2017-05-10 WO PCT/KR2017/004842 patent/WO2017196083A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140142706A (en) * | 2012-02-21 | 2014-12-12 | 엘지전자 주식회사 | Initial access method and device in wireless communication system |
US9166718B2 (en) * | 2012-05-11 | 2015-10-20 | Intel Corporation | Downlink control indication for a stand-alone new carrier type (NCT) |
US20130322363A1 (en) * | 2012-05-17 | 2013-12-05 | Qualcomm Incorporated | Narrow band partitioning and efficient resource allocation for low cost user equipments |
KR20140095994A (en) * | 2013-01-25 | 2014-08-04 | 한국전자통신연구원 | Methods of cell discovery |
KR20150140321A (en) * | 2013-04-05 | 2015-12-15 | 퀄컴 인코포레이티드 | Physical broadcast channel (pbch) coverage enhancements for machine type communications (mtc) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11196606B2 (en) | 2017-07-31 | 2021-12-07 | Electronics And Telecommunications Research Institute | Method for transmitting and receiving synchronization signal in communication system |
US11323971B2 (en) | 2017-09-06 | 2022-05-03 | Electronics And Telecommunications Research Institute | Method for transmitting and receiving system information in communication system |
JP2021506176A (en) * | 2017-12-08 | 2021-02-18 | 中興通訊股▲ふん▼有限公司Zte Corporation | Communication method and system |
WO2019110017A1 (en) * | 2017-12-08 | 2019-06-13 | 中兴通讯股份有限公司 | Communication method and system |
JP7135266B2 (en) | 2017-12-08 | 2022-09-13 | 中興通訊股▲ふん▼有限公司 | Communication method and system |
US12003449B2 (en) | 2017-12-08 | 2024-06-04 | Zte Corporation | Communication node of a reference signal and storage medium |
US11451353B2 (en) | 2017-12-08 | 2022-09-20 | Zte Corporation | Communication method of reference signal and non-transitory storage medium |
US11997708B2 (en) | 2018-01-12 | 2024-05-28 | Panasonic Intellectual Property Corporation Of America | Base station, terminal, and communication method |
US11432321B2 (en) | 2018-01-12 | 2022-08-30 | Panasonic Intellectual Property Corporation Of America | Base station, terminal, and communication method |
CN110351740A (en) * | 2018-04-04 | 2019-10-18 | 中兴通讯股份有限公司 | The sending method of signaling channel, base station, storage medium, electronic device |
WO2019212673A1 (en) * | 2018-04-30 | 2019-11-07 | At&T Intellectual Property I, L.P. | Physical downlink shared channel time domain resource allocation for 5g or other next generation network |
US11050546B2 (en) | 2018-04-30 | 2021-06-29 | At&T Intellectual Property I, L.P. | Physical downlink shared channel time domain resource allocation for 5G or other next generation network |
WO2020078479A1 (en) * | 2018-10-19 | 2020-04-23 | 中兴通讯股份有限公司 | Method, apparatus and device for sending downlink message, and computer readable medium |
US20220038974A1 (en) * | 2018-10-31 | 2022-02-03 | Mediatek Singapore Pte. Ltd. | Inter-frequency cell reselection in new radio unlicensed |
US11310798B2 (en) | 2019-02-15 | 2022-04-19 | Electronics And Telecommunications Research Institute | Measurement method and apparatus for supporting mobility in communication system |
US11546124B2 (en) | 2019-10-11 | 2023-01-03 | Electronics And Telecommunications Research Institute | Method and apparatus for communication using fronthaul interface |
CN115053561A (en) * | 2020-02-14 | 2022-09-13 | 高通股份有限公司 | Method and apparatus to facilitate CSI feedback in multiple TRP communications |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017196083A1 (en) | Method and apparatus for transmitting setting information of resource for control channel, method and apparatus for transmitting setting information of resource for uplink drs, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting number of downlink symbols | |
WO2018203708A1 (en) | Method and apparatus for synchronization signal block index and timing indication in wireless systems | |
WO2021172942A1 (en) | Method and apparatus for supporting beam indication channel | |
WO2019098768A1 (en) | Method for transmitting and receiving downlink channel and device therefor | |
WO2018143776A1 (en) | Method for monitoring wireless link by terminal in wireless communication system and device for supporting same | |
WO2019098769A1 (en) | Method for transmitting and receiving reference signal and device therefor | |
WO2018056730A1 (en) | Method and apparatus for random access in wireless systems | |
WO2020167019A1 (en) | Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission | |
WO2019088680A1 (en) | Method and apparatus for rmsi coreset configuration in wireless communication system | |
WO2018164515A1 (en) | Method and apparatus for processing reference signals in wireless communication system | |
WO2018143771A1 (en) | Method for transmitting and receiving signals between terminal and base station in wireless communication system, and apparatus for supporting same | |
WO2020032666A1 (en) | Method and apparatus for measuring remote cross-link interference | |
WO2019182401A1 (en) | Method and apparatus for performing positioning in next generation wireless network | |
WO2018052275A1 (en) | Method and apparatus for transmitting initial access signals in wireless communication systems | |
WO2018147700A1 (en) | Method for terminal and base station including multiple transmission and reception points (trp) to transmit/receive signals in wireless communication system, and device therefor | |
EP4248689A1 (en) | Method and apparatus of uplink timing adjustment | |
WO2018231010A1 (en) | Method for transreceiving downlink channel and apparatus for same | |
WO2018143721A1 (en) | Method for reporting channel state information in wireless communication system and apparatus for same | |
WO2019139298A1 (en) | Methods for transmitting and receiving physical random access channel, and device for same | |
WO2017209505A1 (en) | Rrm reporting method in wireless communication system, and apparatus supporting same | |
WO2018182256A1 (en) | Method for reporting channel state information in wireless communication system and apparatus therefor | |
WO2018062937A1 (en) | Method for transmitting and receiving data in wireless communication system and apparatus therefor | |
WO2021261877A1 (en) | Method and device for transmitting and receiving signal in wireless communication system | |
WO2018062845A1 (en) | Method whereby user equipment operates in wireless communication system, and device for supporting same | |
WO2019194490A1 (en) | Method for performing measurement, user equipment and base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018559778 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17796383 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17796383 Country of ref document: EP Kind code of ref document: A1 |