[go: up one dir, main page]

WO2017190294A1 - 一种基于授权辅助接入laa系统的上行传输方法及装置 - Google Patents

一种基于授权辅助接入laa系统的上行传输方法及装置 Download PDF

Info

Publication number
WO2017190294A1
WO2017190294A1 PCT/CN2016/081001 CN2016081001W WO2017190294A1 WO 2017190294 A1 WO2017190294 A1 WO 2017190294A1 CN 2016081001 W CN2016081001 W CN 2016081001W WO 2017190294 A1 WO2017190294 A1 WO 2017190294A1
Authority
WO
WIPO (PCT)
Prior art keywords
reserved
subframe
symbol
transport block
fdma symbol
Prior art date
Application number
PCT/CN2016/081001
Other languages
English (en)
French (fr)
Inventor
徐凯
李晓翠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020187034534A priority Critical patent/KR20190002625A/ko
Priority to JP2018557890A priority patent/JP2019515569A/ja
Priority to EP16900816.6A priority patent/EP3445079B1/en
Priority to BR112018072710A priority patent/BR112018072710A2/pt
Priority to US16/099,001 priority patent/US11071142B2/en
Priority to AU2016405421A priority patent/AU2016405421A1/en
Priority to PCT/CN2016/081001 priority patent/WO2017190294A1/zh
Priority to RU2018141587A priority patent/RU2696089C1/ru
Priority to CN201680085355.2A priority patent/CN109076350B/zh
Priority to CA3023180A priority patent/CA3023180A1/en
Publication of WO2017190294A1 publication Critical patent/WO2017190294A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an uplink transmission method and apparatus based on an authorized auxiliary access LAA system.
  • LAA Licensed-Assisted Access Using Long Term Evolution
  • LAA is part of the 3GPP LTE Advanced Pro Release 13 specification.
  • LAA refers to the use of LTE network technology in unlicensed frequency bands.
  • the licensed band carrier is used as the primary cell (PCell), and the unlicensed band carrier can only be used as the secondary cell (SCell).
  • SCell secondary cell
  • LBT Listen-Before-Talk
  • LBT is a Carrier Sense Multiple Access (CSMA) technology.
  • multiple User Equipments can perform uplink multiplexing (Multiplex).
  • Multiplex uplink multiplexing
  • An embodiment of the present invention provides an uplink transmission method and device based on an authorized auxiliary access LAA system, which can reserve a time gap for accessing a channel through an LBT for other UEs in an uplink transport block, and improve successful access of other UEs.
  • the probability of the channel enables multiple user equipments in the LAA communication system to perform uplink multiplexing.
  • an uplink transmission method based on an authorized auxiliary access LAA system including: For a transport block transmitted on the unlicensed carrier, at least one SC-FDMA symbol is reserved in a subframe of the uplink transport block corresponding to the transport block; wherein the at least one SC-FDMA is reserved In the symbol, the user equipment accesses the channel by listening to the LBT access mechanism.
  • At least one SC-FDMA symbol may be reserved at a start position and/or an end position of each subframe of the uplink transport block.
  • a time gap through the LBT access channel is reserved for other UEs at the start and/or end positions of each subframe, so that uplink multiplexing of multiple UEs can be achieved.
  • At least one SC-FDMA symbol may be reserved periodically at a start position and/or an end position of a partial subframe of the uplink transport block.
  • the time gap through the LBT access channel is reserved for other UEs at the beginning and/or the end position of the partial subframe of the uplink transport block periodically, so that uplink multiplexing of multiple UEs can be implemented.
  • At least one SC-FDMA symbol may be reserved at a start position and/or an end position of a designated subframe of the uplink transport block.
  • the at least one SC-FDMA symbol may be a low power transmit symbol. Part of the frequency resource on the low power transmission symbol involved in the embodiment of the present invention is allowed to be occupied. Moreover, on the unoccupied frequency resource of the ABS symbol, the user equipment can access the channel by listening to the LBT access mechanism. In this way, the WiFi access point can be prevented from accessing the idle channel through the LBT on the reserved at least one SC-FDMA symbol, so that the user equipment of the LAA-LTE cannot successfully access the channel (or reduce the LAA-LTE user). The probability of successful access to the device).
  • ETSI European Telecommunications Standards Institute
  • ETSI European Telecommunications Standards Institute
  • the low power transmit symbols allow the occupied frequencies to be distributed across resource blocks across the entire system bandwidth.
  • the reserved at least one SC-FDMA symbol may be configured by using a high-level configuration signaling (for example, RRC signaling), a physical downlink control channel (PDCCH), or the like, and specifically includes at least one of the following Item: the number of the reserved SC-FDMA symbols, the position of the reserved SC-FDMA symbol in the subframe, the type of the reserved SC-FDMA symbol, the pre- The period of the SC-FDMA symbol left and the offset.
  • a high-level configuration signaling for example, RRC signaling
  • PDCCH physical downlink control channel
  • the subframe including the reserved SC-FDMA symbol may be configured by using a high-level configuration signaling (for example, RRC signaling), a physical downlink control channel (PDCCH), or the like, and specifically includes the following At least one item: a number of subframes including the reserved SC-FDMA symbol, a position of the subframe including the reserved SC-FDMA symbol in an uplink transport block, and the reserved The period of the subframe of the SC-FDMA symbol and the offset.
  • a high-level configuration signaling for example, RRC signaling
  • PDCCH physical downlink control channel
  • a communication network apparatus comprising: a memory and a processor coupled to the memory, wherein: the memory is for storing implementation code of a method described in the first aspect, the processor is configured to execute The program code stored in the memory, that is, the uplink transmission method based on the authorization assisted access LAA system described in the first aspect.
  • a communication network apparatus comprising means for performing the method of the first aspect.
  • Embodiments of the present invention by reserving at least one SC-FDMA symbol in a subframe of an uplink transport block, wherein, on the reserved at least one SC-FDMA symbol, the user equipment may
  • the access mechanism of the LBT access channel can reserve the time gap for accessing the channel through the LBT for other UEs in the uplink transport block, and improve the probability of other UEs successfully accessing the channel, so that multiple users in the LAA communication system
  • the device is capable of upstream multiplexing.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an LBT access mechanism after listening to the first embodiment of the present invention
  • 3A-3C are schematic diagrams of several methods for reserving SC-FDMA symbols according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an LBT access mechanism after a listener in a LAA and Wi-Fi coexistence scenario according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of frequency domain characteristics of a low power transmission symbol according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication network apparatus according to an embodiment of the present invention.
  • the LBT access mechanism is: in the LAA communication system, a node (for example, UE2) monitors whether the channel is idle before sending data every time, if the channel is not If it is idle (ie, Clear Channel Assessment (CCA) fails), then it will not access the channel (ie, send data), and wait for a while before attempting to access. That is to say, the node can access the channel only when the channel is idle (ie, the idle channel evaluates the CCA success), thereby avoiding interrupting the ongoing transmission process of other nodes.
  • CCA Clear Channel Assessment
  • FIG. 2 is only an example for assisting in explaining the embodiments of the present invention and should not be construed as limiting.
  • the LAA communication system may include 2 or more communication nodes (not limited to UE1 and UE2 in FIG. 2).
  • An embodiment of the present invention provides an uplink transmission method and device based on an authorized auxiliary access LAA system, which can reserve a time gap for accessing a channel through an LBT for other UEs in an uplink transport block, and improve successful access of other UEs.
  • the probability of the channel enables multiple user equipments in the LAA communication system to perform uplink multiplexing.
  • the main inventive concept of the solution of the present invention includes: for one transport block transmitted on the unlicensed carrier, at least one SC-FDMA symbol is reserved in a subframe of the uplink transport block corresponding to the transport block; wherein, in the reserved On the at least one SC-FDMA symbol, the user equipment accesses the channel by listening to the LBT access mechanism. Thus, on the reserved at least one SC-FDMA symbol, the channel is in an idle state, and other UEs can access the channel through the LBT.
  • a transport block may include a downlink transport block and an uplink transport block, wherein each downlink transport block is preceded by a downlink idle channel assessment (CCA for DL), a downlink transport block, and The uplink transport block is separated by an uplink idle channel assessment (CCA for UL) and an uplink downlink-to-uplink switching (Downlink-to-Uplink switching).
  • CCA downlink idle channel assessment
  • UL uplink idle channel assessment
  • Downlink-to-Uplink switching Downlink-to-Uplink switching
  • an uplink transmission burst refers to a time-continuous transmission from a user equipment
  • a DL transmission burst refers to a time from a downlink transmission node (such as a base station).
  • a downlink transmission node such as a base station.
  • One continuous transmission Downlink block and upstream
  • the number of subframes included in the input block is not limited by the figure.
  • the uplink and downlink transport blocks please refer to the description in the protocol 3GPP TR 36.889, which is not described here.
  • FIG. 3A-3C respectively show several methods for reserving symbols provided by an embodiment of the present invention. among them:
  • At least one SC-FDMA symbol may be reserved at a start position and/or an end position of each subframe of the uplink transport block.
  • a time gap through the LBT access channel is reserved for other UEs at the start and/or end positions of each subframe, so that uplink multiplexing of multiple UEs can be achieved.
  • the "and/or” may include the following cases: SC-FDMA symbols are reserved at the beginning position of each subframe, and SC-FDMA symbols are reserved at the end position of each subframe, at each SC-FDMA symbols are reserved at the beginning and end of a subframe.
  • the first subframe of the uplink transport block (such as the subframe N+4 in the figure) has a channel access operation (such as CCA for UL)
  • the first subframe of the uplink transport block (such as the subframe N+4 in the figure) has a channel access operation (such as CCA for UL)
  • the first subframe of the uplink transport block (such as the subframe N+4 in the figure) has a channel access operation (such as CCA for UL)
  • the first subframe of the uplink transport block (such as the subframe N+4 in the figure) has a channel access operation (such as CCA for UL)
  • the reserved at least one SC-FDMA symbol does not include the SC-FDMA symbol at the beginning of the first subframe of the uplink transport block.
  • the end position of the last subframe is not required.
  • the SC-FDMA symbol is reserved. That is to say, the reserved at least one SC-FDMA symbol does not include: the SC-FDMA symbol at the end position of the last subframe of the uplink transport block.
  • different numbers of SC-FDMA symbols may be reserved corresponding according to access times required by different channel access schemes.
  • a fast channel access scheme is: an uplink LBT access scheme that can directly access the channel only needs to detect that the channel idle is greater than or equal to 25 ⁇ s.
  • the access time required by the fast channel access scheme is relatively short (equal to or slightly larger than 25 ⁇ s), and the access time required by the Category-4 based uplink LBT access mode is relatively long.
  • An access scheme may reserve an SC-FDMA symbol at a start or end position of each subframe of the uplink transport block; if a Category 4 based uplink LBT access scheme is adopted, the uplink may be Two SC-FDMA symbols are reserved at the beginning or end of each subframe of the transport block.
  • the example is only one embodiment of the embodiment of the present invention, and may be different in practical applications, and should not be construed as limiting.
  • the number of reserved SC-FDMA symbols is not limited. In specific implementation, the number of SC-FDMA symbols that need to be reserved may be determined according to actual application requirements.
  • At least one SC-FDMA symbol may be reserved periodically at a start position and/or an end position of a partial subframe of the uplink transport block.
  • the time gap through the LBT access channel is reserved for other UEs at the beginning and/or the end position of the partial subframe of the uplink transport block periodically, so that uplink multiplexing of multiple UEs can be implemented.
  • the period T of the reserved symbol is equal to 2 subframes, that is, the symbol reservation is performed once every 2 subframes, that is, the subframe N+4, the subframe N+6, and the subframe N can be selected.
  • SC-FDMA symbols are reserved in +8 respectively.
  • the example is only one implementation of the embodiment of the present invention. In an actual application, the period of the reserved symbol may also be other values, which is not limited herein.
  • the period T of the reserved symbols can also be represented by symbols.
  • the period T of the reserved symbol is equal to 2 subframes and 1 subframe contains N (N is a positive integer) symbols
  • the period T of the reserved symbols may also be represented as 2*N symbols.
  • a preset offset delta may be provided between periods of two adjacent reserved symbols.
  • the period T of the reserved symbol is equal to 2, and the preset offset delta is equal to +1 subframe, then, in the subframe N+4, the subframe N+6, the subframe N+9, the sub-frame
  • the SC-FDMA symbol is reserved at the beginning of the frame N+13, that is, every other period T, the subframe reserved symbol is shifted back in time.
  • the period T of the reserved symbol is equal to 3
  • the preset offset delta is equal to -1 subframe, then, in subframe N+4, subframe N+7, subframe N+9,
  • the SC-FDMA symbol is reserved at the start position of the subframe N+10, that is, every other period T is temporally shifted forward by one subframe reserved symbol.
  • the example is only one implementation manner of the embodiment of the present invention, and may be different in practical applications, and should not be construed as limiting.
  • the preset offset delta can also be represented by a symbol. For example, if the preset offset delta is equal to +1 subframe, and 1 subframe contains N (N is a positive integer) symbols, then The preset offset delta may be represented as +N symbols.
  • the period of reserved symbols can be dynamic.
  • the symbol reservation period in the i-th uplink transport block is 2, and the symbol reservation period in the i+1th uplink transport block is 3; i is a positive integer.
  • the example is only one implementation manner of the embodiment of the present invention, and may be different in practical applications, and should not be construed as limiting.
  • the reserved at least one SC-FDMA symbol does not include: an SC-FDMA symbol at a start position of a first subframe of the uplink transport block; or SC-FDMA symbol at the end position of the last subframe of the uplink transport block.
  • different numbers of SC-FDMA symbols can be reserved correspondingly according to the access time required by different channel access schemes.
  • the embodiment of the present invention does not limit the number of reserved SC-FDMA symbols.
  • the number of SC-FDMA symbols that need to be reserved may be determined according to actual application requirements.
  • At least one SC-FDMA symbol may be reserved at a start position and/or an end position of a designated subframe of the uplink transport block.
  • the designated subframe is the first subframe of each uplink transport block (subframe N+4 in the figure).
  • the example is only one implementation of the embodiment of the present invention.
  • the designated subframe may also be other subframes in the uplink transport block, and should not be limited.
  • the SC-FDMA symbol is reserved only at the end of the designated subframe; or, if The designated subframe is the last subframe of the uplink transport block, and the SC-FDMA symbol is reserved only at the beginning of the designated subframe.
  • different numbers of SC-FDMA symbols can be reserved correspondingly according to the access time required by different channel access schemes.
  • the embodiment of the present invention does not limit the number of reserved SC-FDMA symbols.
  • the number of SC-FDMA symbols that need to be reserved may be determined according to actual application requirements.
  • the actual application may reserve the at least one inside the subframe (not the start position and the end position of the subframe).
  • SC-FDMA symbols are not limited here.
  • the Wi-Fi and the LAA coexist, and in order to avoid mutual interference, the access mechanism that first listens to the LBT is used to access the channel.
  • the LBT mechanism between the two can be as shown in Figure 4.
  • the Wi-Fi AP considers that the channel is in a busy state if it detects that the energy of the entire channel exceeds a preset threshold.
  • the user equipment of the LAA-LTE cannot be successfully connected by using the LBT to access the idle channel on the reserved at least one SC-FDMA symbol by the access point (AP).
  • the at least one SC-FDMA symbol may be a low power transmission symbol.
  • Part of the frequency resource on the low power transmission symbol involved in the embodiment of the present invention is allowed to be occupied.
  • the user equipment can access the channel by listening to the LBT access mechanism, and the access mode can be referred to as narrowband access of the LBT.
  • the Wi-Fi AP It can be understood that, since some resources on the low-power transmission symbol are allowed to be occupied, the energy of the entire channel on the low-power transmission symbol is likely to exceed the preset threshold, so that the Wi-Fi AP It is determined that the entire channel is in a busy state and does not occupy the low power transmission symbol. In this way, on the reserved at least one low-power transmission symbol, other UEs can discover that part of the channel (unoccupied frequency band) is in an idle state through sub-band detection, and thus can access the idle state through the LBT. Part of the channel.
  • the low-power transmission symbol may be configured as a specified attribute (for example, a Cell Specific attribute) by using high-layer signaling, such as Radio Resource Control (RRC) signaling, so that the intra-cell is configured.
  • RRC Radio Resource Control
  • the UE is each capable of using the portion of the frequency resources allowed to be occupied on the low power transmission symbol.
  • the frequency characteristics of the low power transmission symbols are required to satisfy the following constraints: the low power transmission
  • the frequency allowed to be occupied on the symbol needs to span 80% of the entire bandwidth, that is, the frequency difference between the highest frequency occupied and the lowest frequency occupied is 80% of the entire bandwidth.
  • the frequency that is allowed to be occupied on the low-power transmission symbol may be used by a single user equipment, or may be multiplexed by multiple user equipments, which is not limited herein.
  • the frequency allowed on the low power transmission symbol may be distributed in resource blocks at both ends of the entire system bandwidth.
  • resource blocks at both ends of the entire system bandwidth may be allowed to be occupied, and resource blocks that are not allowed to be occupied in the middle are reserved for use by the LAA user equipment as LBT-based narrowband access.
  • the example is only one implementation manner of the embodiment of the present invention.
  • the frequency allowed to be occupied on the low-power transmission symbol may also be other distribution manners, as long as the ETSI setting is satisfied with respect to the low-power transmission symbol.
  • the frequency characteristics can be specified.
  • the reserved at least one SC-FDMA symbol may appear at a start position of a subframe of an uplink transport block or an end position of a subframe or an inside of a subframe; the reserved at least one SC
  • the number of the -FDMA symbols may be specifically determined according to the access scheme; the type of the at least one SC-FDMA symbol reserved may be a blank symbol (ie, the entire channel is idle in the symbol), or may be low power.
  • the transmitted symbol ie, part of the frequency resource on the symbol is allowed to be occupied); the reserved at least one SC-FDMA symbol may periodically appear in a partial subframe.
  • the reserved at least one SC-FDMA symbol may be configured by using a high-level configuration signaling (such as RRC signaling), a physical downlink control channel (PDCCH), or the like, and specifically includes at least one of the following: The number of the reserved SC-FDMA symbols, the position of the reserved SC-FDMA symbol in the subframe, the type of the reserved SC-FDMA symbol, and the reserved The period of the SC-FDMA symbol and the offset.
  • a high-level configuration signaling such as RRC signaling
  • PDCCH physical downlink control channel
  • the reserved at least one SC-FDMA symbol may appear in each subframe of the uplink transport block, or periodically appear in a partial subframe, or appear in a specified subframe.
  • the subframe that includes the reserved SC-FDMA symbol may be configured by using a high-level configuration signaling (for example, RRC signaling), a physical downlink control channel (PDCCH), or the like, and specifically includes at least one of the following Item: a number of subframes including the reserved SC-FDMA symbol, a position of the subframe including the reserved SC-FDMA symbol in an uplink transport block, and the reserved SC- The period of the sub-frame of the FDMA symbol and the offset.
  • a high-level configuration signaling for example, RRC signaling
  • PDCCH physical downlink control channel
  • Embodiments of the present invention by reserving at least one SC-FDMA symbol in a subframe of an uplink transport block, wherein, on the reserved at least one SC-FDMA symbol, the user equipment may
  • the LBT access mechanism access channel can be implemented in the uplink transport block for other
  • the UE reserves the time gap of accessing the channel through the LBT, and improves the probability that other UEs successfully access the channel, so that multiple user equipments in the LAA communication system can perform uplink multiplexing.
  • an embodiment of the present invention provides a communication network device 100 (shown in FIG. 6) for implementing the method described in the foregoing embodiments of FIGS. 3A-3C.
  • the communication network device 100 can include a memory 1002 and a processor 1001, a transmitter 1003, and a receiver 1004 coupled to the memory 1002, wherein the transmitter 1003 is configured to transmit data to an external device; the receiver 1004 is configured to receive The data transmitted by the external device; the memory 1002 is used to store the implementation code of the method described in the foregoing embodiment, and the processor 1001 is configured to execute the program code stored in the memory 1002, namely:
  • At least one SC-FDMA symbol is reserved in a subframe of the uplink transport block corresponding to the transport block; wherein the at least one SC-FDMA is reserved In the symbol, the user equipment accesses the channel by listening to the LBT access mechanism.
  • the processor 1001 is configured to: reserve at least one SC-FDMA symbol at a start position and/or an end position of each subframe of the uplink transport block. In this way, a time gap through the LBT access channel is reserved for other UEs at the start and/or end positions of each subframe, so that uplink multiplexing of multiple UEs can be achieved.
  • the processor 1001 is configured to: periodically reserve at least one SC-FDMA symbol at a start position and/or an end position of a partial subframe of the uplink transport block. In this way, the time gap through the LBT access channel is reserved for other UEs at the beginning and/or the end position of the partial subframe of the uplink transport block periodically, so that uplink multiplexing of multiple UEs can be implemented.
  • the processor 1001 is configured to reserve at least one SC-FDMA symbol at a start position and/or an end position of a designated subframe of the uplink transport block.
  • the at least one SC-FDMA symbol can be a low power transmit symbol. Part of the frequency resource on the low power transmission symbol involved in the embodiment of the present invention is allowed to be occupied. Moreover, on the unoccupied frequency resource of the ABS symbol, the user equipment can access the channel by listening to the LBT access mechanism. In this way, the WiFi access point can be prevented from accessing the idle channel through the LBT on the reserved at least one SC-FDMA symbol, thereby causing the LAA-LTE user equipment not to Can successfully access the channel (or reduce the successful access probability of LAA-LTE user equipment).
  • the frequencies allowed to be occupied on the low power transmission symbols may be distributed in resource blocks at both ends of the entire system bandwidth.
  • the processor 1001 may be further configured to: configure, by using a high-level configuration signaling, such as RRC signaling, a physical downlink control channel (PDCCH), or the like, to configure the reserved at least one SC-FDMA symbol, specifically
  • the method includes at least one of: a number of the reserved SC-FDMA symbols, a position of the reserved SC-FDMA symbol in a subframe, a type of the reserved SC-FDMA symbol, The period of the reserved SC-FDMA symbol and the offset.
  • the processor 1001 may be further configured to: configure, by using a high-level configuration signaling, such as RRC signaling, a physical downlink control channel (PDCCH), or the like, to configure a subframe including the reserved SC-FDMA symbol.
  • a high-level configuration signaling such as RRC signaling, a physical downlink control channel (PDCCH), or the like.
  • the method includes at least one of: a number of subframes including the reserved SC-FDMA symbol, a location of the subframe including the reserved SC-FDMA symbol in an uplink transport block, and the The period of the subframe of the reserved SC-FDMA symbol and the offset.
  • execution steps of the processor 1001 may also refer to the methods described in the foregoing embodiments of FIG. 3A-3C, and details are not described herein again.
  • an embodiment of the present invention further provides a communication network device, the communication network device comprising a functional module for performing the method described in the foregoing embodiments of Figures 3A-3C.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the present invention is directed to a method, apparatus (system), and computer program according to an embodiment of the present invention.
  • the flow chart and/or block diagram of the product is described. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种基于授权辅助接入LAA系统的上行传输方法及装置,该方法包括:针对非授权载波上传输的一个传输块,在所述传输块对应的上行传输块的子帧中,预留出至少一个SC-FDMA符号;其中,在预留出的所述至少一个SC-FDMA符号上,用户设备通过先听后说LBT的接入机制接入信道。上述方案可实现在上行传输块中为其他UE预留了通过LBT接入信道的时间间隙,提高其他UE成功接入信道的概率,使得LAA通信系统中的多个用户设备能够进行上行复用。

Description

一种基于授权辅助接入LAA系统的上行传输方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种基于授权辅助接入LAA系统的上行传输方法及装置。
背景技术
虽然移动通信技术不断演进,移动通信网络日渐成熟,但是移动数据流量的激增依然是运营商需要面对的现实挑战。正是在这一持续性的压力下,运营商将更多的目光聚焦到了未授权(Unlicense)频谱资源的高效利用上,长期演进的授权辅助接入(Licensed-Assisted Access Using Long Term Evolution,LAA-LTE)技术应运而生。
LAA是3GPP LTE Advanced Pro Release 13规范的一部分。从定义上看,LAA指的是在非授权频段中使用LTE网络技术,基于载波聚合的架构,由授权频段载波作为主小区(PCell),非授权频段载波只能作为辅小区(SCell)。同时为了保证和其他在非授权频段工作的技术共存,采用了先听后说(Listen-Before-Talk,LBT)的信道竞争接入机制。其中,LBT是一种载波监听多路访问(Carrier Sense Multiple Access,CSMA)技术。
在LAA系统中,多个用户设备(User Equipment,UE)可以进行上行复用(Multiplex)。但是,如图1所示,如果上行子帧N+4、N+5、N+6的全部符号都用于发送数据,那么,信道一直都被占用,其他UE就不能接入到信道中,从而导致多个UE不能进行上行复用。
发明内容
本发明实施例提供了一种基于授权辅助接入LAA系统的上行传输方法及装置,可实现在上行传输块中为其他UE预留了通过LBT接入信道的时间间隙,提高其他UE成功接入信道的概率,使得LAA通信系统中的多个用户设备能够进行上行复用。
第一方面,提供了一种基于授权辅助接入LAA系统的上行传输方法,包括: 针对非授权载波上传输的一个传输块,在所述传输块对应的上行传输块的子帧中,预留出至少一个SC-FDMA符号;其中,在预留出的所述至少一个SC-FDMA符号上,用户设备通过先听后说LBT的接入机制接入信道。
结合第一方面,在一种可能的实现方式中,可以在所述上行传输块的每一个子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。这样可实现在每一个子帧的开始和/或结束位置处为其他UE预留了通过LBT接入信道的时间间隙,从而可实现多个UE的上行复用。
结合第一方面,在一种可能的实现方式中,可以周期性的在所述上行传输块的部分子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。这样可实现在周期性的在上行传输块的部分子帧的开始和/或结束位置处为其他UE预留了通过LBT接入信道的时间间隙,从而可实现多个UE的上行复用。
结合第一方面,在一种可能的实现方式中,可以在所述上行传输块的指定子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。
结合第一方面,或者,结合第一方面的上述几种可能的实现方式,在一些可能的实现方式中,所述至少一个SC-FDMA符号可以是低功率发射符号。本发明实施例涉及的所述低功率发射符号上的部分频率资源允许被占用。并且,在所述ABS符号的未被占用的频率资源上,用户设备可以通过先听后说LBT的接入机制接入信道。这样,可避免WiFi接入点在预留出的所述至少一个SC-FDMA符号上通过LBT接入到空闲信道而导致LAA-LTE的用户设备不能成功接入信道(或降低LAA-LTE的用户设备的成功接入概率)。
在一些可能的实现方式中,为了满足欧洲电信标准化协会(ETSI)(European Telecommunications Standards Institute)关于所述低功率发射符号的频率特性的规定(即所述低功率发射符号上允许被占用的频率需要跨越整个带宽的80%),所述低功率发射符号上允许被占用的频率可以分布在整个系统带宽两端的资源块中。
本发明实施例中,可以通过高层配置信令(例如RRC信令),物理下行控制信道(PDCCH)等方式,对所述预留出的至少一个SC-FDMA符号进行配置,具体包括以下至少一项:所述预留出的SC-FDMA符号的个数、所述预留出的SC-FDMA符号在子帧中的位置、所述预留出的SC-FDMA符号的类型、所述预 留出的SC-FDMA符号的周期以及偏移量。
本发明实施例中,可以通过高层配置信令(例如RRC信令),物理下行控制信道(PDCCH)等方式,对包含所述预留出的SC-FDMA符号的子帧进行配置,具体包括以下至少一项:包含所述预留出的SC-FDMA符号的子帧个数、包含所述预留出的SC-FDMA符号的子帧在上行传输块中的位置、包含所述预留出的SC-FDMA符号的子帧的周期以及偏移量。
第二方面,提供了一种通信网络装置,包括:存储器以及与所述存储器耦合的处理器,其中:所述存储器用于存储第一方面描述的方法的实现代码,所述处理器用于执行所述存储器中存储的程序代码,即执行第一方面描述的基于授权辅助接入LAA系统的上行传输方法。
第三方面,提供了一种通信网络装置,包括用于执行第一方面所述方法的单元。
实施本发明实施例,通过在上行传输块的子帧中预留出至少一个SC-FDMA符号,其中,在预留出的所述至少一个SC-FDMA符号上,用户设备可以通过先听后说LBT的接入机制接入信道,可实现在上行传输块中为其他UE预留出通过LBT接入信道的时间间隙,提高其他UE成功接入信道的概率,使得LAA通信系统中的多个用户设备能够进行上行复用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本发明实施例涉及的一种应用场景的示意图;
图2是本发明实施例涉及的先听后说LBT接入机制的示意图;
图3A-3C是本发明实施例提供的几种预留SC-FDMA符号的方法示意图;
图4是本发明实施例涉及的LAA与Wi-Fi共存场景下的先听后说LBT接入机制示意图;
图5是本发明实施例提供的低功率发射符号的频域特性的示意图;
图6是本发明实施例提供的一种通信网络装置的结构示意图。
具体实施方式
本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。
如图2所示,本发明实施例涉及的先听后说LBT接入机制是:在LAA通信系统中,节点(例如UE2)在每一次发送数据之前先监听信道是否是空闲的,如果信道不是空闲的(即空闲信道评估(Clear Channel Assessment,CCA)失败),那么就先不接入信道(即发送数据),等待一段时间之后再尝试接入。也即是说,只有在信道是空闲的(即空闲信道评估CCA成功)情况下,节点才可以接入信道,从而避免打断其他节点正在进行的传输过程。需要说明的,图2仅仅是一种示例,用于辅助说明本发明实施例,不应构成限定。应理解的,LAA通信系统可以包含2个或2个以上通信节点(不限于图2中的UE1和UE2)。
本发明实施例提供了一种基于授权辅助接入LAA系统的上行传输方法及装置,可实现在上行传输块中为其他UE预留了通过LBT接入信道的时间间隙,提高其他UE成功接入信道的概率,使得LAA通信系统中的多个用户设备能够进行上行复用。
本发明方案的主要发明构思包括:针对非授权载波上传输的一个传输块,在所述传输块对应的上行传输块的子帧中,预留出至少一个SC-FDMA符号;其中,在预留出的所述至少一个SC-FDMA符号上,用户设备通过先听后说LBT的接入机制接入信道。这样,在预留出的所述至少一个SC-FDMA符号上,信道处于空闲状态,其他UE可以通过LBT接入信道。
具体的,如图1所示,一个传输块可以包括一个下行传输块和一个上行传输块,其中,每一个下行传输块的前面都有一个下行空闲信道评估(CCA for DL),下行传输块和上行传输块之间间隔一个上行空闲信道评估(CCA for UL)和一个上下行切换周期(Downlink-to-Uplink switching)。需要说明的,图1仅仅是传输块的一个示例,不应构成限定。
本发明实施例中,一个上行传输块(UL transmission burst)是指来自用户设备的时间上连续的一次传输,一个下行传输块(DL transmission burst)是指来自下行传输节点(如基站)的时间上连续的一次传输。下行传输块和上行传 输块包含的子帧个数不受附图限制,关于上、下行传输块的定义具体请参考协议3GPP TR 36.889中的描述,这里不赘述。
下面结合附图详细说明本发明实施例。
首先,图3A-3C分别示出了本发明实施例提供的几种预留符号的方法。其中:
如图3A所示,可以在所述上行传输块的每一个子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。这样可实现在每一个子帧的开始和/或结束位置处为其他UE预留了通过LBT接入信道的时间间隙,从而可实现多个UE的上行复用。
这里,所述“和/或”可包括以下几种情况:在每一个子帧的开始位置处预留SC-FDMA符号,在每一个子帧的结束位置处预留SC-FDMA符号,在每一个子帧的开始和结束位置处均预留SC-FDMA符号。
具体实施时,如图3A所示,由于上行传输块的第一个子帧(如图中的子帧N+4)前存在信道接入操作(如CCA for UL),因此,所述第一个子帧的开始位置处不需要预留SC-FDMA符号。也即是说,所述预留出的至少一个SC-FDMA符号不包括:所述上行传输块的第一个子帧的开始位置处的SC-FDMA符号。
具体实施时,如图3A所示,由于上行传输块的最后一个子帧(如图中的子帧N+6)之后没有上行数据传输,因此,所述最后一个子帧的结束位置处不需要预留SC-FDMA符号。也即是说,所述预留出的至少一个SC-FDMA符号不包括:所述上行传输块的最后一个子帧的结束位置处的SC-FDMA符号。
在一种可能的实现方式中,可以根据不同信道接入方案需要的接入时间来相应预留出不同数量的SC-FDMA符号。
举例来说,在LAA的上行通信中支持两种LBT的信道接入方案,一种是基于Category-4信道接入过程(Category-4channel access procedure)的上行LBT接入方案,另一种是一种快速的信道接入方案,该方案是:只需要检测到信道空闲大于等于25μs,即可直接接入信道的上行LBT接入方案。其中,快速的信道接入方案需要的接入时间相对较短(等于或略大于25μs),基于Category-4的上行LBT接入模式需要的接入时间相对较长。那么,如果采用快速的信道 接入方案,则可以在所述上行传输块的每一个子帧的开始或结束位置处预留出一个SC-FDMA符号;如果采用基于Category 4的上行LBT接入方案,则可以在所述上行传输块的每一个子帧的开始或结束位置处预留出两个SC-FDMA符号。示例仅仅是本发明实施例的一种实施方式,实际应用中还可以不同,不应构成限定。
需要说明的,本发明实施例对预留的SC-FDMA符号的个数不作限制,具体实施时,可以根据实际应用要求来确定出需要预留的SC-FDMA符号的个数。
如图3B所示,可以周期性的在所述上行传输块的部分子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。这样可实现在周期性的在上行传输块的部分子帧的开始和/或结束位置处为其他UE预留了通过LBT接入信道的时间间隙,从而可实现多个UE的上行复用。
例如,如图3B所示,预留符号的周期T等于2个子帧,即每隔2个子帧做一次符号预留,即可以选择在子帧N+4,子帧N+6,子帧N+8中分别预留出SC-FDMA符号。示例仅仅是本发明实施例的一种实现方式,实际应用中,预留符号的周期还可以是其他值,这里不作限制。
可以理解的,所述预留符号的周期T也可以用符号表示。例如,如果预留符号的周期T等于2个子帧,1个子帧包含N(N为正整数)个符号,那么,也可以将所述预留符号的周期T表示成2*N个符号。
在一种可能的实现方式中,相邻两个预留符号的周期之间可以具有预设偏移量delta。
例如,所述预留符号的周期T等于2,所述预设偏移量delta等于+1个子帧,那么,可以在子帧N+4,子帧N+6,子帧N+9,子帧N+13的开始位置处预留SC-FDMA符号,即每隔一个周期T则时间上向后偏移一个子帧预留符号。又例如,所述预留符号的周期T等于3,所述预设偏移量delta等于-1个子帧,那么,可以在子帧N+4,子帧N+7,子帧N+9,子帧N+10的开始位置处预留SC-FDMA符号,即每隔一个周期T则时间上向前偏移一个子帧预留符号。示例仅仅是本发明实施例的一种实现方式,实际应用中还可以不同,不应构成限定。
可以理解的,所述预设偏移量delta也可以用符号表示。例如,如果所述预设偏移量delta等于+1个子帧,1个子帧包含N(N为正整数)个符号,那么,也 可以将所述预设偏移量delta表示成+N个符号。
在一种可能的实现方式中,预留符号的周期可以是动态的。例如,第i个上行传输块中的符号预留周期是2,第i+1个上行传输块中的符号预留周期是3;i是正整数。示例仅仅是本发明实施例的一种实现方式,实际应用中还可以不同,不应构成限定。
参考图3A实施例中的内容可知,所述预留出的至少一个SC-FDMA符号不包括:所述上行传输块的第一个子帧的开始位置处的SC-FDMA符号;或者,所述上行传输块的最后一个子帧的结束位置处的SC-FDMA符号。
参考图3A实施例中的内容可知,可以根据不同信道接入方案需要的接入时间来相应预留出不同数量的SC-FDMA符号。本发明实施例对预留的SC-FDMA符号的个数不作限制,具体实施时,可以根据实际应用要求来确定出需要预留的SC-FDMA符号的个数。
如图3C所示,可以在所述上行传输块的指定子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。
例如,所述指定子帧是每一个上行传输块的第一个子帧(如图中子帧N+4)。示例仅仅是本发明实施例的一种实现方式,实际应用中所述指定子帧还可以是上行传输块中的其他子帧,不应构成限定。
参考图3A实施例中的内容可知,如果所述指定子帧是上行传输块的第一个子帧,则只在所述指定子帧的结束处预留SC-FDMA符号;或者,如果所述指定子帧是上行传输块的最后一个子帧,则只在所述指定子帧的开始处预留SC-FDMA符号。
参考图3A实施例中的内容可知,可以根据不同信道接入方案需要的接入时间来相应预留出不同数量的SC-FDMA符号。本发明实施例对预留的SC-FDMA符号的个数不作限制,具体实施时,可以根据实际应用要求来确定出需要预留的SC-FDMA符号的个数。
需要说明的,上述图3A-3C分别对应的预留符号的方法可以综合应用在上行传输过程中,不限于单纯使用上述一种预留符号的方法。
需要说明的,除了上述图3A-3C分别示出的预留符号的方法外,实际应用中还可以在子帧内部(不是子帧的开始位置和结束位置)预留出所述至少一个 SC-FDMA符号,这里不作限制。
应理解的,在所述非授权载波上,Wi-Fi与LAA共存,二者为了避免相互干扰,采用先听后说LBT的接入机制接入信道。二者之间的LBT机制可如图4所示。Wi-Fi的AP在进行信道检测时,如果检测到整个信道的能量超过预设门限值,则认为信道处于繁忙(busy)状态。
本发明实施例中,为了避免WiFi接入点(Access Point,AP)在预留出的所述至少一个SC-FDMA符号上通过LBT接入到空闲信道而导致LAA-LTE的用户设备不能成功接入信道(或降低LAA-LTE的用户设备的成功接入概率),所述至少一个SC-FDMA符号可以是低功率发射符号。本发明实施例涉及的所述低功率发射符号上的部分频率资源允许被占用。并且,在所述ABS符号的未被占用的频率资源上,用户设备可以通过先听后说LBT的接入机制接入信道,可以将这种接入方式称为LBT的窄带接入。
可以理解的,由于所述低功率发射符号上的部分资源允许被占用,因此,所述低功率发射符号上的整个信道的能量很可能会超过所述预设门限值,使得Wi-Fi AP判定整个信道为繁忙状态,不会占用所述低功率发射符号。这样,在预留出的所述至少一个低功率发射符号上,其他UE通过子带检测即可发现部分信道(未被占用的频带)处于空闲状态,进而可以通过LBT接入处于空闲状态的所述部分信道。
在一种可能的实现方式中,可以通过高层信令,例如无线资源控制(Radio Resource Control,RRC)信令,配置所述低功率发射符号为指定属性(例如Cell Specific属性),使得小区内的UE均能够使用所述低功率发射符号上的所述允许被占用的部分频率资源。
本发明实施例中,根据欧洲电信标准化协会(ETSI)(European Telecommunications Standards Institute)在标准ETSI EN 301 893中的相关规定,所述低功率发射符号的频率特性需满足以下约束:所述低功率发射符号上允许被占用的频率需要跨越整个带宽的80%,即:被占用的最高频率与被占用的最低频率的频率差值要达到整个带宽的80%。
这里,所述低功率发射符号上允许被占用的频率可以被单个用户设备使用,也可以被多个用户设备复用,这里不作限制。
在一种可能的实现方式中,为了满足ETSI的规定,所述低功率发射符号上允许被占用的频率可以分布在整个系统带宽两端的资源块中。例如,如图5所示,在所述低功率发射符号上,整个系统带宽两端的资源块可以允许占用,中间未被允许占用的资源块预留给LAA用户设备用作基于LBT的窄带接入。示例仅仅是本发明实施例的一种实现方式,实际应用中,所述低功率发射符号上允许被占用的频率还可以是其他的分布方式,只要满足ETSI设定的关于所述低功率发射符号的频率特性的规定即可。
根据上述内容可知,预留出的所述至少一个SC-FDMA符号可以出现在上行传输块的子帧的开始位置或子帧的结束位置或子帧的内部;预留出的所述至少一个SC-FDMA符号的个数可以根据接入方案具体确定;预留出的所述至少一个SC-FDMA符号的类型可以是空白符号(即该符号上整个信道都处于空闲状态),也可以是低功率发射符号(即该符号上的部分频率资源允许被占用);预留出的所述至少一个SC-FDMA符号可以周期性的出现在部分子帧中。
具体实现中,可以通过高层配置信令(例如RRC信令),物理下行控制信道(PDCCH)等方式,对所述预留出的至少一个SC-FDMA符号进行配置,具体包括以下至少一项:所述预留出的SC-FDMA符号的个数、所述预留出的SC-FDMA符号在子帧中的位置、所述预留出的SC-FDMA符号的类型、所述预留出的SC-FDMA符号的周期以及偏移量。
根据上述内容可知,预留出的所述至少一个SC-FDMA符号可以出现在上行传输块的每一个子帧中,或周期性的出现在部分子帧中,或出现在指定子帧中。
具体实现中,可以通过高层配置信令(例如RRC信令),物理下行控制信道(PDCCH)等方式,对包含所述预留出的SC-FDMA符号的子帧进行配置,具体包括以下至少一项:包含所述预留出的SC-FDMA符号的子帧个数、包含所述预留出的SC-FDMA符号的子帧在上行传输块中的位置、包含所述预留出的SC-FDMA符号的子帧的周期以及偏移量。
实施本发明实施例,通过在上行传输块的子帧中预留出至少一个SC-FDMA符号,其中,在预留出的所述至少一个SC-FDMA符号上,用户设备可以通过先听后说LBT的接入机制接入信道,可实现在上行传输块中为其他 UE预留出通过LBT接入信道的时间间隙,提高其他UE成功接入信道的概率,使得LAA通信系统中的多个用户设备能够进行上行复用。
基于同一发明构思,本发明实施例提供了一种通信网络装置100(如图6所示),该装置用于实现前述图3A-3C实施例所描述的方法。
参见图6,通信网络装置100可以包括:存储器1002以及与存储器1002耦合的处理器1001、发射器1003和接收器1004,其中,发射器1003用于向外部设备发送数据;接收器1004用于接收外部设备发送的数据;存储器1002用于存储前述实施例所描述的方法的实现代码,处理器1001用于执行存储器1002中存储的程序代码,即:
针对非授权载波上传输的一个传输块,在所述传输块对应的上行传输块的子帧中,预留出至少一个SC-FDMA符号;其中,在预留出的所述至少一个SC-FDMA符号上,用户设备通过先听后说LBT的接入机制接入信道。
在一种可能的实现方式中,处理器1001可用于:在所述上行传输块的每一个子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。这样可实现在每一个子帧的开始和/或结束位置处为其他UE预留了通过LBT接入信道的时间间隙,从而可实现多个UE的上行复用。
在一种可能的实现方式中,处理器1001可用于:周期性的在所述上行传输块的部分子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。这样可实现在周期性的在上行传输块的部分子帧的开始和/或结束位置处为其他UE预留了通过LBT接入信道的时间间隙,从而可实现多个UE的上行复用。
结合第一方面,在一种可能的实现方式中,处理器1001可用于:在所述上行传输块的指定子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。
在一些可能的实现方式中,所述至少一个SC-FDMA符号可以是低功率发射符号。本发明实施例涉及的所述低功率发射符号上的部分频率资源允许被占用。并且,在所述ABS符号的未被占用的频率资源上,用户设备可以通过先听后说LBT的接入机制接入信道。这样,可避免WiFi接入点在预留出的所述至少一个SC-FDMA符号上通过LBT接入到空闲信道而导致LAA-LTE的用户设备不 能成功接入信道(或降低LAA-LTE的用户设备的成功接入概率)。
在一些可能的实现方式中,为了满足ETSI关于所述低功率发射符号的频率特性的规定,所述低功率发射符号上允许被占用的频率可以分布在整个系统带宽两端的资源块中。
具体实现中,处理器1001还可用于:通过高层配置信令(例如RRC信令),物理下行控制信道(PDCCH)等方式,对所述预留出的至少一个SC-FDMA符号进行配置,具体包括以下至少一项:所述预留出的SC-FDMA符号的个数、所述预留出的SC-FDMA符号在子帧中的位置、所述预留出的SC-FDMA符号的类型、所述预留出的SC-FDMA符号的周期以及偏移量。
具体实现中,处理器1001还可用于:通过高层配置信令(例如RRC信令),物理下行控制信道(PDCCH)等方式,对包含所述预留出的SC-FDMA符号的子帧进行配置,具体包括以下至少一项:包含所述预留出的SC-FDMA符号的子帧个数、包含所述预留出的SC-FDMA符号的子帧在上行传输块中的位置、包含所述预留出的SC-FDMA符号的子帧的周期以及偏移量。
可理解的是,处理器1001的执行步骤还可参照前述图3A-3C实施例描述的方法,这里不再赘述。
基于同一发明构思,本发明实施例还提供一种通信网络装置,该通信网络装置包括用于执行前述图3A-3C实施例描述的方法的功能模块。
前述图3A-3C实施例描述的方法中的各种变化方式和具体实例同样适用于本实施例的通信网络装置,通过前述图3A-3C实施例描述的方法的详细描述,本领域技术人员可以清楚的知道本实施例中信号传输装置的实施方法,所以为了说明书的简洁,在此不再详述。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产 品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种基于授权辅助接入LAA系统的上行传输方法,其特征在于,包括:
    针对非授权载波上传输的一个传输块,在所述传输块对应的上行传输块的子帧中,预留出至少一个SC-FDMA符号;其中,在预留出的所述至少一个SC-FDMA符号上,用户设备通过先听后说LBT的接入机制接入信道。
  2. 如权利要求1所述的方法,其特征在于,所述在所述传输块对应的上行传输块的子帧中,预留出至少一个SC-FDMA符号,包括:
    在所述上行传输块的每一个子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号;或者,
    周期性的在所述上行传输块的部分子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号;或者,
    在所述上行传输块的指定子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。
  3. 如权利要求1或2所述的方法,其特征在于,所述预留出的至少一个SC-FDMA符号均为低功率发射符号,所述低功率发射符号上的部分频域资源允许被占用;所述低功率发射符号上的未被占用的频率资源上,所述用户设备通过先听后说LBT的接入机制接入信道。
  4. 如权利要求3所述的方法,其特征在于,所述低功率发射符号上的所述允许被占用的部分频率资源分布在整个系统带宽两端的资源块中。
  5. 如权利要求1-4中任一项所述的方法,其特征在于,所述预留出的至少一个SC-FDMA符号均不包括:所述上行传输块中的第一个子帧的起始位置处的符号,或者,所述上行传输块中的最后一个子帧的结束位置处的符号。
  6. 如权利要求1-5中任一项所述的方法,其特征在于,还包括:通过高层 配置信令和/或物理下行控制信道,对所述预留出的至少一个SC-FDMA符号进行配置,具体包括以下至少一项:所述预留出的SC-FDMA符号的个数、所述预留出的SC-FDMA符号在子帧中的位置、所述预留出的SC-FDMA符号的类型、所述预留出的SC-FDMA符号的周期以及偏移量。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,还包括:通过高层配置信令和/或物理下行控制信道,对包含所述预留出的SC-FDMA符号的子帧进行配置,具体包括以下至少一项:包含所述预留出的SC-FDMA符号的子帧个数、包含所述预留出的SC-FDMA符号的子帧在上行传输块中的位置、包含所述预留出的SC-FDMA符号的子帧的周期以及偏移量。
  8. 一种通信网络装置,其特征在于,包括:
    处理器,用于针对非授权载波上传输的一个传输块,在所述传输块对应的上行传输块的子帧中,预留出至少一个SC-FDMA符号;其中,在预留出的所述至少一个SC-FDMA符号上,用户设备通过先听后说LBT的接入机制接入信道。
  9. 如权利要求8所述的通信网络装置,其特征在于,所述处理器具体用于:
    在所述上行传输块的每一个子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号;或者,
    周期性的在所述上行传输块的部分子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号;或者,
    在所述上行传输块的指定子帧的开始位置和/或结束位置,预留出至少一个SC-FDMA符号。
  10. 如权利要求8或9所述的通信网络装置,其特征在于,所述预留出的至少一个SC-FDMA符号均为低功率发射符号,所述低功率发射符号上的部分频域资源允许被占用;所述低功率发射符号上的未被占用的频率资源上,所述用户设备通过先听后说LBT的接入机制接入信道。
  11. 如权利要求10所述的通信网络装置,其特征在于,所述低功率发射符号上的所述允许被占用的部分频率资源分布在整个系统带宽两端的资源块中。
  12. 如权利要求8-11中任一项所述的通信网络装置,其特征在于,所述预留出的至少一个SC-FDMA符号均不包括:所述上行传输块中的第一个子帧的起始位置处的符号,或者,所述上行传输块中的最后一个子帧的结束位置处的符号。
  13. 如权利要求8-12中任一项所述的通信网络装置,其特征在于,所述处理器还用于:通过高层配置信令和/或物理下行控制信道,对所述预留出的至少一个SC-FDMA符号进行配置,具体包括以下至少一项:所述预留出的SC-FDMA符号的个数、所述预留出的SC-FDMA符号在子帧中的位置、所述预留出的SC-FDMA符号的类型、所述预留出的SC-FDMA符号的周期以及偏移量。
  14. 如权利要求8-13中任一项所述的通信网络装置,其特征在于,所述处理器还用于:通过高层配置信令和/或物理下行控制信道,对包含所述预留出的SC-FDMA符号的子帧进行配置,具体包括以下至少一项:包含所述预留出的SC-FDMA符号的子帧个数、包含所述预留出的SC-FDMA符号的子帧在上行传输块中的位置、包含所述预留出的SC-FDMA符号的子帧的周期以及偏移量。
PCT/CN2016/081001 2016-05-04 2016-05-04 一种基于授权辅助接入laa系统的上行传输方法及装置 WO2017190294A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020187034534A KR20190002625A (ko) 2016-05-04 2016-05-04 면허 지원 액세스 laa 시스템에 기초한 업링크 전송 방법 및 장치
JP2018557890A JP2019515569A (ja) 2016-05-04 2016-05-04 ライセンス補助アクセスlaaシステムに基づくアップリンク送信方法、および装置
EP16900816.6A EP3445079B1 (en) 2016-05-04 2016-05-04 Uplink transmission method and device based on licensed-assisted access (laa) system
BR112018072710A BR112018072710A2 (pt) 2016-05-04 2016-05-04 método de transmissão de enlace ascendente baseado em sistema de acesso assistido licenciado laa, aparelho e meio de armazenamento legível por computador
US16/099,001 US11071142B2 (en) 2016-05-04 2016-05-04 Uplink transmission method based on licensed-assisted access LAA system, and apparatus
AU2016405421A AU2016405421A1 (en) 2016-05-04 2016-05-04 Uplink transmission method and device based on licensed-assisted access (LAA) system
PCT/CN2016/081001 WO2017190294A1 (zh) 2016-05-04 2016-05-04 一种基于授权辅助接入laa系统的上行传输方法及装置
RU2018141587A RU2696089C1 (ru) 2016-05-04 2016-05-04 Способ восходящей передачи, основанный на системе лицензированной поддержки доступа, laa, и устройство
CN201680085355.2A CN109076350B (zh) 2016-05-04 2016-05-04 一种基于授权辅助接入laa系统的上行传输方法及装置
CA3023180A CA3023180A1 (en) 2016-05-04 2016-05-04 Uplink transmission method based on licensed-assisted access laa system, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/081001 WO2017190294A1 (zh) 2016-05-04 2016-05-04 一种基于授权辅助接入laa系统的上行传输方法及装置

Publications (1)

Publication Number Publication Date
WO2017190294A1 true WO2017190294A1 (zh) 2017-11-09

Family

ID=60202608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081001 WO2017190294A1 (zh) 2016-05-04 2016-05-04 一种基于授权辅助接入laa系统的上行传输方法及装置

Country Status (10)

Country Link
US (1) US11071142B2 (zh)
EP (1) EP3445079B1 (zh)
JP (1) JP2019515569A (zh)
KR (1) KR20190002625A (zh)
CN (1) CN109076350B (zh)
AU (1) AU2016405421A1 (zh)
BR (1) BR112018072710A2 (zh)
CA (1) CA3023180A1 (zh)
RU (1) RU2696089C1 (zh)
WO (1) WO2017190294A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200288324A1 (en) * 2019-03-08 2020-09-10 Samsung Electronics Co., Ltd. Centralized coordination for shared spectrum systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385882B (zh) * 2018-12-28 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104994591A (zh) * 2015-07-08 2015-10-21 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整系统和基站
CN105227282A (zh) * 2014-07-04 2016-01-06 上海朗帛通信技术有限公司 一种laa资源分配的方法和装置
CN105230062A (zh) * 2013-05-20 2016-01-06 高通股份有限公司 用于未许可频谱上的无线通信的选通方案
US20160007368A1 (en) * 2014-07-03 2016-01-07 Samsung Electronics Co., Ltd. Method and apparatus for operating a base station and a terminal in a wireless communication system using unlicensed frequency band
US20160099799A1 (en) * 2014-10-03 2016-04-07 Shafi Bashar Methods, apparatuses, and systems for transmitting hybrid automatic repeat request transmissions using channels in an unlicensed shared medium

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8185120B2 (en) * 2010-03-26 2012-05-22 Microsoft Corporation Cellular service with improved service availability
US9655048B2 (en) 2014-04-07 2017-05-16 Futurewei Technologies, Inc. System and method for discontinuous transmissions and measurements
EP3140944B1 (en) * 2014-05-08 2021-06-23 Nokia Solutions and Networks Oy Improving communication efficiency
WO2015174437A1 (ja) * 2014-05-15 2015-11-19 株式会社Nttドコモ 無線基地局、ユーザ端末および無線通信システム
CN105323854B (zh) * 2014-08-03 2019-09-06 上海朗帛通信技术有限公司 一种laa干扰避免的方法和装置
BR112017005864A2 (pt) 2014-09-25 2018-02-06 Ericsson Telefon Ab L M método e aparelho para sinal de referência de uplink aumentado em sistemas de escute antes de falar
US10271325B2 (en) * 2014-11-17 2019-04-23 Telefonaktiebolaget Lm Ericsson (Publ) Channel access in listen before talk systems
KR102658360B1 (ko) * 2015-04-09 2024-04-17 삼성전자주식회사 비면허 대역을 사용하는 셀룰러 네트워크에서의 자원할당 방법 및 그 장치
WO2016167623A1 (ko) * 2015-04-16 2016-10-20 엘지전자(주) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
US10827525B2 (en) * 2015-09-24 2020-11-03 Apple Inc. Systems, methods and devices for sharing a wireless medium using listen before talk
CN108029023B (zh) * 2015-09-25 2021-11-30 松下电器(美国)知识产权公司 用户设备和无线通信方法
US10798735B2 (en) * 2015-11-06 2020-10-06 Qualcomm Incorporated Enhanced licensed assisted access uplink channel access
CN107046732B (zh) * 2016-02-05 2020-04-17 上海诺基亚贝尔股份有限公司 上行帧传输方法和装置
CN107295696B (zh) * 2016-04-01 2023-05-30 中兴通讯股份有限公司 信道接入方法、装置、ue及基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105230062A (zh) * 2013-05-20 2016-01-06 高通股份有限公司 用于未许可频谱上的无线通信的选通方案
US20160007368A1 (en) * 2014-07-03 2016-01-07 Samsung Electronics Co., Ltd. Method and apparatus for operating a base station and a terminal in a wireless communication system using unlicensed frequency band
CN105227282A (zh) * 2014-07-04 2016-01-06 上海朗帛通信技术有限公司 一种laa资源分配的方法和装置
US20160099799A1 (en) * 2014-10-03 2016-04-07 Shafi Bashar Methods, apparatuses, and systems for transmitting hybrid automatic repeat request transmissions using channels in an unlicensed shared medium
CN104994591A (zh) * 2015-07-08 2015-10-21 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整系统和基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200288324A1 (en) * 2019-03-08 2020-09-10 Samsung Electronics Co., Ltd. Centralized coordination for shared spectrum systems
US11863996B2 (en) * 2019-03-08 2024-01-02 Samsung Electronics Co., Ltd. Centralized coordination for shared spectrum systems

Also Published As

Publication number Publication date
AU2016405421A1 (en) 2018-11-29
KR20190002625A (ko) 2019-01-08
JP2019515569A (ja) 2019-06-06
EP3445079A4 (en) 2019-03-27
US11071142B2 (en) 2021-07-20
EP3445079B1 (en) 2020-12-09
EP3445079A1 (en) 2019-02-20
CN109076350A (zh) 2018-12-21
US20190159252A1 (en) 2019-05-23
CA3023180A1 (en) 2017-11-09
RU2696089C1 (ru) 2019-07-31
CN109076350B (zh) 2021-10-01
BR112018072710A2 (pt) 2019-02-19

Similar Documents

Publication Publication Date Title
JP7213092B2 (ja) Lbtパラメータの処理方法、コンテンションウィンドウの調整方法及び関連装置
CN107079455B (zh) 使用移动通信系统中免执照频带的用于通信的方法和设备
JP7005759B2 (ja) データ伝送方法、端末装置、およびネットワーク装置
CN107872860B (zh) 一种上行信号传输方法、装置和系统
EP3354094B1 (en) Methods, apparatuses, and systems for interference-dependent cross-carrier scheduling for license assisted access uplink
KR102820057B1 (ko) 통신 네트워크에서 상향링크 전송의 스케쥴링 방법
US10542438B2 (en) Method for detecting signal on unlicensed spectrum channel, user equipment, and base station
CN108352975A (zh) 支持授权和非授权频带的网络中的通信方法
WO2019157912A1 (zh) 一种信道资源分配方法及计算机可读存储介质和终端
CN107026724A (zh) 一种信号发送与接收的方法和用户设备
KR20170017910A (ko) 비허가된 라디오 주파수 스펙트럼 대역을 이용하는 송신들을 위해 프레임 구조 및 리슨-비포-토크 프로시저 (lbt) 를 향상시키는 기법들
WO2017133368A1 (zh) 一种非授权频谱中prach信号的传输方法和设备
JP2018530961A (ja) 物理ダウンリンク制御チャネルの伝送方法及び装置
US10820350B2 (en) Data transmission method and device
WO2017025004A1 (zh) 一种竞争接入方法和装置
CN113747599B (zh) 用户设备、基站及其方法
WO2016171595A1 (en) Controlling access to a radio medium for wireless communication
WO2017190294A1 (zh) 一种基于授权辅助接入laa系统的上行传输方法及装置
KR102225167B1 (ko) 신호 전송 방법, 신호 전송 제어 방법, 사용자 디바이스, 및 기지국
WO2017166249A1 (zh) 信息传输方法及装置
CN108271435B (zh) 用于在通信网络中调度上行链路发送的方法
EP3673698B1 (en) Methods and nodes for communication on multiple channels
WO2017024597A1 (zh) 一种数据传输方法、装置和系统
WO2018187947A1 (zh) 传输数据的方法、网络设备和终端设备
WO2024093347A1 (en) Sidelink tansmission

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557890

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3023180

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016900816

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018072710

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016900816

Country of ref document: EP

Effective date: 20181112

ENP Entry into the national phase

Ref document number: 20187034534

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016405421

Country of ref document: AU

Date of ref document: 20160504

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018072710

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181105