[go: up one dir, main page]

WO2017181553A1 - 超声探头以及具有该超声探头的超声检测设备 - Google Patents

超声探头以及具有该超声探头的超声检测设备 Download PDF

Info

Publication number
WO2017181553A1
WO2017181553A1 PCT/CN2016/092857 CN2016092857W WO2017181553A1 WO 2017181553 A1 WO2017181553 A1 WO 2017181553A1 CN 2016092857 W CN2016092857 W CN 2016092857W WO 2017181553 A1 WO2017181553 A1 WO 2017181553A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
ultrasound
transducer array
energy
unit
Prior art date
Application number
PCT/CN2016/092857
Other languages
English (en)
French (fr)
Inventor
毛军卫
Original Assignee
毛军卫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112018071660-0A priority Critical patent/BR112018071660B1/pt
Priority to KR1020187033517A priority patent/KR102181334B1/ko
Priority to EP16899140.4A priority patent/EP3446635B1/en
Priority to MX2018011561A priority patent/MX389518B/es
Priority to CA3017627A priority patent/CA3017627C/en
Priority to ES16899140T priority patent/ES2908068T3/es
Application filed by 毛军卫 filed Critical 毛军卫
Priority to RU2018140332A priority patent/RU2717206C1/ru
Priority to AU2016403655A priority patent/AU2016403655B2/en
Priority to JP2018555503A priority patent/JP6684364B2/ja
Publication of WO2017181553A1 publication Critical patent/WO2017181553A1/zh
Priority to US16/120,183 priority patent/US12138122B2/en
Priority to ZA2018/06019A priority patent/ZA201806019B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0833Clinical applications involving detecting or locating foreign bodies or organic structures
    • A61B8/085Clinical applications involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0833Clinical applications involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0666Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface used as a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/18Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency wherein the vibrator is actuated by pressure fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/20Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of a vibrating fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy

Definitions

  • the present invention relates to the field of ultrasonic testing technology, and in particular to an ultrasonic probe and an ultrasonic detecting device having the same.
  • Instantaneous elastography is a rapidly developing non-invasive diagnostic technique that uses mechanical vibration to generate low-frequency shear waves within the tissue, using ultrasound to track the propagation of shear waves within the tissue, through shear wave parameters. Measurement, calculation of information about the elasticity and attenuation of the tissue.
  • transient elastography is mainly used in non-invasive detection of liver fibrosis, fatty liver and the like.
  • transient elastography devices typically pass a vibrating column through the center of a B-ultrasonic probe that passes through an ultrasound transducer array of a B-ultrasound probe.
  • the transient elastography device generates shear waves by using vibration of the vibrating column, and acquires detection information of the shear wave by using an ultrasonic transducer array around the vibrating column, and obtains information such as tissue elasticity and anatomical structure through processing.
  • the monitoring of the shear wave by such a transient elastography device is only done by the ultrasound transducer array around the vibrating column.
  • the monitoring information has both longitudinal displacement and lateral displacement, and the processing process is complicated.
  • the loss of the ultrasound transducer array can be compensated by interpolation, beamforming, etc., it still affects the imaging effect and accuracy, and increases the amount of data processing.
  • the present invention provides an acoustic lens, an ultrasonic probe having the same, and an ultrasonic detecting apparatus having the ultrasonic probe.
  • An ultrasound probe includes: an ultrasound transducer array for transmitting and receiving ultrasonic waves; a conduction device disposed at a front end of the ultrasound transducer array, the conduction device including a fluid filled a fluid chamber having mutually communicating openings and an energy receiving port, the opening being disposed on a front surface of the conductive device and covered by an elastic film; and an energy application device coupled to the energy receiving port, And applying energy to the fluid in the fluid chamber to cause the elastic membrane to vibrate to generate shear waves.
  • the fluid is a liquid.
  • the fluid chamber is cylindrical.
  • the opening is circular or strip-shaped.
  • the energy application device includes an energy generating device and an energy transfer device coupled between the energy generating device and the energy receiving port.
  • the energy generating device comprises one or more of a stepper motor, a linear vibrator and a variable speed pump.
  • the fluid chamber is adapted to the shape of the ultrasound transducer array, the fluid chamber being coupled to a front end of the ultrasound transducer array.
  • the conducting means further comprises an acoustic lens coupled to the front end of the array of ultrasonic transducers, the fluid chamber being disposed in the acoustic lens.
  • a portion of the ultrasound transducer array corresponding to a projection of the fluid chamber is coupled to a first port, and other portions of the ultrasound transducer array are coupled to a second port, the first port being For transient elastography, the first port and the second port are for ultrasound imaging.
  • An ultrasonic testing apparatus comprising: any of the ultrasonic probes and processing apparatus as described above.
  • the processing device includes a drive unit coupled to the energy application device of the ultrasound probe to drive the energy application device, and an ultrasound unit coupled to the ultrasound transducer array of the ultrasound probe to Controlling the ultrasound transducer array to transmit and receive ultrasound; and an elastic imaging unit coupled to the ultrasound transducer array for receiving and processing a first electrical signal comprising shear wave information for transient elastography .
  • the elastography unit is coupled to a portion of the array of ultrasound transducers that corresponds to a projection of the fluid chamber.
  • the ultrasound unit is further configured to perform ultrasound imaging based on a second electrical signal received from the ultrasound transducer array.
  • the processing device further includes an integrated processing unit coupled to the elastic imaging unit and the ultrasonic unit for integrating processing results of the elastic imaging unit and the ultrasonic unit.
  • the integrated processing unit is further connected to the drive unit for controlling the drive unit.
  • the ultrasonic testing apparatus further includes a display device coupled to the processing device.
  • the ultrasonic probe provided by the present invention uses a complete ultrasonic transducer array to receive shears
  • the ultrasonic signal of the wave information does not need to be compensated for by the interpolation and beamforming of the acquired ultrasonic signal, thereby improving the convenience and accuracy of measuring the elasticity of the tissue and reducing the processing difficulty.
  • the ultrasonic detecting device using the ultrasonic probe has many advantages such as good imaging effect, small data processing amount, and fast detection speed.
  • the ultrasound probe supports the function of transient elastography and supports the composite function of traditional ultrasound imaging (including traditional imaging or blood flow imaging) and transient elastography.
  • FIG. 1 is a cross-sectional view of an ultrasound probe in accordance with one embodiment of the present invention.
  • FIG. 2 is a top plan view of an ultrasound probe in accordance with one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an ultrasound probe in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of an ultrasonic testing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an ultrasonic detecting apparatus according to another embodiment of the present invention.
  • an ultrasound probe is provided. 1 and 2 respectively show a cross-sectional view and a top view of an ultrasound probe in accordance with one embodiment of the present invention. 3 shows a cross-sectional view of an ultrasound probe in accordance with another embodiment of the present invention.
  • the ultrasonic probe provided by the present invention will be described in detail below with reference to Figs.
  • the ultrasound probe 100 includes an ultrasound transducer array 110, a conduction device 20, and an energy application device 140.
  • the ultrasound transducer array 110 is used to transmit and receive ultrasound waves.
  • Ultrasound transducer array 110 will The transmitted signal is subjected to electro-acoustic conversion to transmit an ultrasonic signal to the tissue, and to receive the ultrasonic echo signal reflected by the tissue and perform acoustic-electrical conversion to generate a received signal.
  • the received signal can include shear wave information.
  • the received signal may also include organization information.
  • the tissue information may include anatomical information of tissue and/or blood flow information or the like for conventional ultrasound imaging (referred to herein as ultrasound imaging).
  • the ultrasound imaging includes a two-dimensional ultrasound image acquired from anatomical information of the tissue and/or blood flow imaging acquired from blood flow information, and the like.
  • the ultrasound transducer array 110 can be any of a line array ultrasound transducer, a convex array ultrasound transducer, a phased array ultrasound transducer, and a two dimensional (2D) ultrasound transducer. Or a variety.
  • the ultrasound transducer array 110 can be used to monitor shear waves, but alternatively, the ultrasound transducer array 110 can also be used for conventional imaging or blood flow imaging by rationally configuring the processing device.
  • a conducting device 20 is disposed at the front end of the ultrasound transducer array 110.
  • the conductive device 20 includes a fluid chamber 130 that is filled with a fluid. Fluid chamber 130 is used to fill fluid 133.
  • the fluid 133 is primarily used to transfer energy, particularly vibrations (described in more detail below), and thus the "fluid" referred to in the present invention is intended to encompass all materials capable of transmitting energy, particularly vibration.
  • fluid 133 includes a gas or liquid. Since the fluid chamber 130 is disposed on the transmission path of the ultrasonic energy, the ultrasonic energy is attenuated faster in the gas than the liquid, and therefore, preferably, the fluid is a liquid. In a preferred embodiment, the fluid 133 is water.
  • the fluid chamber 130 has an opening 131 and an energy receiving port 132 that communicate with each other.
  • the opening 131 is provided at the front surface of the conductive device 20 (i.e., the upper surface shown in Fig. 1).
  • the front surface of the conductive device 20 refers to the surface of the conductive device 20 that is in contact with the body surface of a human or animal.
  • the opening 131 is covered by the elastic film 134.
  • the elastic film 134 may be a film made of various elastic materials.
  • the energy receiving port 132 is in communication with the opening 131.
  • the energy receiving port 132 is for receiving energy.
  • the energy received by the energy receiving port 132 passes through the fluid in the fluid chamber 130 and reaches the elastic membrane 134, causing the elastic membrane 134 to vibrate, generating a shear wave, and using ultrasonic waves to track the propagation of the shear wave inside the tissue for instantaneous elastography. , to obtain the organization's flexible information, attenuation information.
  • the structure and location of the energy receiving port 132 are not limited by the figures.
  • the energy receiving port 132 is for connecting the energy application device 140 to receive the energy provided by the energy application device 140.
  • the structure of the energy receiving port 132 can be designed to match the energy output of the energy application device 140.
  • the energy receiving port 132 may be disposed at any position of the fluid chamber 130 such as a side, a bottom, or a top as long as its function can be achieved.
  • the energy receiving port 132 can include an extension 132a to transfer energy provided by the energy application device 140 to fluid within the fluid chamber 130.
  • the energy receiving port 132 may not An extension 132a is included.
  • the energy output of the energy application device 140 can also be designed to protrude into the conduction device 20.
  • the energy receiving port 132 may also not include the extended section 132a.
  • the extension of the energy output of the energy application device 140 into the conductive device 20 may cause the ultrasonic waves emitted and received by the ultrasonic transducer array 110 to encounter the gaseous medium as it propagates through the conductive device 20, thereby attenuating the energy of the ultrasonic waves.
  • Energy application device 140 is coupled to energy receiving port 132 for applying energy to fluid 133 within fluid chamber 130. This energy is transmitted to the elastic film 134 via the fluid 133 to cause the elastic film 134 to vibrate to generate a shear wave.
  • the shear wave propagates from the body surface to the inside of the tissue to cause microscopic deformation of the biological tissue by external force or internal force.
  • the ultrasonic wave is transmitted through the ultrasonic transducer array 110, and the ultrasonic wave is used to track the propagation of the shear wave inside the tissue to measure the parameters of the shear wave, thereby calculating the elasticity and attenuation of the tissue.
  • the frequency of the shear wave can range from 10 Hz to 1000 Hz.
  • the amplitude of the shear wave can range from 0.2 mm to 5 mm.
  • the ultrasonic probe provided by the invention adopts a complete ultrasonic transducer array to receive an ultrasonic signal containing shear wave information, so that it is not necessary to compensate for the acquired ultrasonic signal by interpolation, beamforming, etc., thereby improving the measurement of tissue elasticity. Convenience and accuracy reduce the difficulty of processing. It can be seen that the ultrasonic detecting device using the ultrasonic probe has many advantages such as good imaging effect, small data processing amount, and fast detection speed. In addition, the ultrasound probe supports the function of transient elastography and supports the composite function of traditional ultrasound imaging (including traditional imaging or blood flow imaging) and transient elastography.
  • the conductive device 20 can also include an acoustic lens 120.
  • the acoustic lens 120 is coupled to the front end of the ultrasound transducer array 110.
  • the fluid chamber 130 is disposed in the acoustic lens 120.
  • the acoustic lens 120 can surround the fluid chamber 130 from the sides and bottom surface of the fluid chamber 130 as shown in FIG.
  • the acoustic lens 120 may enclose the fluid chamber 130 only from the side of the fluid chamber 130. In this case, the bottom surface of the fluid chamber 130 contacts the ultrasound transducer array 110.
  • the opening 131 of the fluid chamber 130 is disposed on the front surface of the acoustic lens 120.
  • the acoustic lens 120 is in contact with the body surface of a human or animal in use. In order to improve the detection sensitivity, that is, to increase the sound pressure of the measured area, a focus acoustic lens can be used.
  • the acoustic lens 120 can be made of any material that is transparent to sound, such as silicone rubber, room temperature vulcanized rubber, high temperature vulcanized rubber, and the like.
  • the fluid chamber 130 can have various shapes and is not limited to the shape shown in the figures. That is, as long as the fluid chambers 130 of various shapes capable of achieving the above functions are included in the protection scope of the present invention. Further, although only one fluid chamber 130 is shown in FIGS.
  • the acoustic lens 120 may be provided with a plurality of fluid chambers.
  • a plurality of fluid chambers may be arranged in a straight line in the acoustic lens 120 or in a two-dimensional matrix in the acoustic lens 120.
  • a plurality of fluid chambers may be disposed in the acoustic lens 120 in any other suitable manner as desired and/or desired.
  • fluid chamber 130' is coupled to the front end of ultrasonic transducer array 110.
  • the acoustic lens is omitted.
  • the fluid chamber 130' is adapted to the shape of the ultrasound transducer array 110.
  • the opening 131' of the fluid chamber 130' is disposed on a front surface thereof.
  • the front surface of the fluid chamber 130' is in contact with the body surface of a human or animal in use.
  • the opening 131' may be disposed on the entire front surface of the fluid chamber 130' or may be disposed on a portion of the front surface.
  • the energy receiving port 132' is in communication with the opening 131'.
  • the energy receiving port 132' is coupled to the energy application device 140 to receive the energy provided by the energy application device 140.
  • the fluid chambers 130 and 130' may be cylindrical.
  • the cylinder has a uniform cross section along the direction of propagation of the ultrasonic waves, and the cross section of the cylinder may be circular, semicircular, polygonal, or the like.
  • the fluid chambers 130 and 130' are arranged in a cylindrical shape, on the one hand, the energy can be prevented from being lost by collision with the side walls of the fluid chambers 130 and 130' during the transfer; on the other hand, the ultrasonic or vibration can be prevented from being fluidized during the transfer.
  • the sidewalls of the cavities 130 and 130' are reflected or refracted to increase the computational difficulty of imaging.
  • the ultrasonic probe of the current transient elastic imaging device is mainly used for detecting elasticity information, attenuation information, etc. of the liver, and the ultrasonic probe is mainly placed at the body surface between the ribs, and the sizes of the openings 131 and 131' of the fluid chamber 130 are usually designed. Smaller.
  • the openings 131 and 131' of the fluid chamber 130 may be circular to make point measurements of the detection area.
  • the openings 131 and 131' of the fluid chamber 130 may be strip-shaped to perform a face measurement of the detection region suitable for intercostal detection.
  • the energy application device 140 may include an energy generating device 141 and an energy transfer device 142.
  • Energy transfer device 142 is coupled between energy generating device 141 and energy receiving ports 132 and 132'.
  • the energy generating device 141 can include one or more of a stepper motor, a linear vibrator, and a variable speed pump.
  • the energy generating device 141 is used to generate low frequency vibrations that are transmitted through the energy transfer device 142 to the fluid within the fluid chambers 130 and 130'.
  • the energy generating device 141 may be assembled in a housing (not shown) of the ultrasonic probe 100 or may be disposed outside the housing of the ultrasonic probe 100 as long as energy can be output to the energy receiving ports 132 and 132 through the energy transfer device 142. 'Yes.
  • the energy transfer device 142 can transfer the vibration generated by the energy generating device 141 to the fluids 133 and 133' using a direct energy transfer mode or an indirect energy transfer mode.
  • Energy transfer device 142 is sealingly coupled to energy receiving ports 132 and 132'.
  • the energy transfer device 142 can be any form of mechanical linkage as long as the energy output by the energy generating device 141 can be transferred to the fluids 133 and 133'.
  • the above-described ultrasonic probe provided by the present invention can be used for transient elastography, and can also be used for image-guided transient elastography.
  • Image-guided transient elastography combines the functions of transient elastography with traditional ultrasound imaging (ie, ultrasound imaging).
  • Instantaneous elastography is used to obtain information such as elasticity and attenuation of tissue.
  • Ultrasound imaging is used to obtain information such as tissue anatomy, internal fluid flow rate, and the like. The acquired anatomical information plays a guiding role in the measurement of elasticity-related information.
  • the ultrasonic imaging function can be firstly used to obtain the two-dimensional ultrasonic image of the biological tissue in real time by moving the ultrasonic probe to assist and guide the ultrasonic probe to accurately position the tissue according to actual needs; and then switch to the instantaneous elastic imaging function. , to conduct elastic testing of tissues.
  • Ultrasound imaging and transient elastography can also be performed simultaneously if needed and/or desired.
  • portion 110a of the ultrasound transducer array 110 corresponding to the projection of fluid chamber 133 is used to receive An ultrasonic signal that shears the wave information for transient elastography; and the entire ultrasound transducer array 110 can be used to receive an ultrasound signal containing anatomical information and/or blood flow information for ultrasound imaging .
  • a portion 110a of the ultrasound transducer array 110 corresponding to the projection of the fluid chamber 133 is connected to the first port 151.
  • the other portion 110b of the ultrasound transducer array 110 is coupled to the second port 152.
  • the first port 151 can be used for transient elastography; and the first port 151 and the second port 152 can be used for ultrasound imaging.
  • the implementation and use of transient elastography and ultrasound imaging functions will be described in detail later.
  • the ultrasonic probe of the preferred embodiment includes both the functions of a conventional ultrasound imaging probe and, more importantly, the function of supporting transient elastography, which can measure tissue elasticity. It is very convenient for the operator to switch back and forth between the two probes without using it.
  • the first port and the second port may not be distinguished, that is, the various portions of the ultrasound transducer array 110
  • the connected ports can be used for both transient elastography and ultrasound imaging.
  • an ultrasonic testing apparatus is also provided.
  • Figure 4 shows a schematic block diagram of an ultrasonic testing apparatus in accordance with one embodiment of the present invention. As shown in FIG. 4, the ultrasonic testing apparatus includes an ultrasonic probe 100 and a processing device 200.
  • the ultrasound probe 100 can have any of the structures mentioned above, and for the sake of brevity, it will not be described in further detail herein.
  • the principle of the ultrasonic testing apparatus is illustrated in FIG. 4 by taking only the ultrasonic probe 100 shown in FIGS. 1-2 as an example. However, those skilled in the art will appreciate that the ultrasonic testing apparatus can also employ the ultrasonic probe shown in FIG.
  • the processing device 200 can include a drive unit 210, an ultrasound unit 220, and an elastography unit 230.
  • the drive unit 210 is coupled to the energy application device 140 of the ultrasonic probe 100 to drive the energy application device 140.
  • the driving unit 210 drives the energy application device 140 to pressurize the fluid in the fluid chamber 130, and pushes the elastic membrane of the liquid chamber 130 to vibrate to generate shear waves.
  • the ultrasound unit 220 is coupled to the ultrasound transducer array 110 of the ultrasound probe 100 to control the ultrasound transducer array 110 to transmit and receive ultrasound waves.
  • the ultrasonic unit 220 drives the ultrasonic transducer array 110 to emit ultrasonic waves into the biological tissue according to the loaded imaging parameters.
  • the ultrasonic waves can track the propagation of shear waves within the tissue, and the ultrasound transducer array 110 receives the reflected first ultrasonic signals (ie, ultrasonic echoes) including shear wave information.
  • the ultrasound transducer array 110 converts the first ultrasound signal into a first electrical signal that includes shear wave information.
  • the ultrasound unit 220 can include an ultrasound transmit module, an ultrasound receive module, and a transmit receive switch circuit.
  • the ultrasonic transmitting module is configured to control the ultrasonic transducer array 110 to transmit an ultrasonic signal;
  • the ultrasonic receiving module is configured to control the ultrasonic transducer array 110 to receive the ultrasonic echo signal; and the transmitting and receiving switching circuit is configured to isolate the high voltage.
  • the elastic imaging unit 230 is coupled to the ultrasound transducer array 110 of the ultrasound probe 100 to receive a first electrical signal comprising shear wave information and to process the first electrical signal for transient elastography.
  • the transient elastography is used to acquire elastic information of tissue, and/or attenuation information, and the like.
  • the elastography unit 230 is coupled to the ultrasound transducer array 110 and the fluid chamber 130 The corresponding portion of the projection (for example, 110a in Fig. 1).
  • the elastography unit 230 can also be coupled to the entire ultrasound transducer array 110 or any other portion of the ultrasound transducer array 110 to receive a first electrical signal containing shear wave information.
  • the first ultrasonic signal received through 110a includes relevant information of shear wave propagation, and does not require complicated processing such as interpolation, beamforming, and the like.
  • the method can process the first ultrasonic signal to obtain elastic information, attenuation information, and the like of the tissue.
  • the elastography unit 230 can also be coupled to all of the ultrasound transducer arrays 110 to The ultrasound transducer array 110 receives the first electrical signal.
  • the elastography unit 230 may also be connected only to a portion of the ultrasound transducer array 110.
  • the ultrasonic signal including the shear wave information is received by using the complete ultrasonic transducer array, and the acquired ultrasonic signal is not required to be compensated by interpolation, beamforming, etc., thereby improving the elasticity of the tissue.
  • the convenience and accuracy of the measurement reduces the difficulty of processing. It can be seen that the ultrasonic testing device has many advantages such as good imaging effect, small data processing amount, fast detection speed and the like.
  • the ultrasound unit 220 is also operative to perform ultrasound imaging based on a second electrical signal received from the ultrasound transducer array 110.
  • the ultrasound transducer array 110 emits ultrasound for conventional ultrasound imaging into the tissue and receives the reflected second ultrasound signal (ie, ultrasound echo).
  • the second ultrasonic signal contains anatomical information and/or blood flow information of the tissue and the like.
  • the ultrasound transducer array 110 converts the second ultrasound signal into a second electrical signal that is provided to the ultrasound unit 220 for ultrasound imaging.
  • the ultrasound unit 220 is similar to the ultrasound imaging unit in a conventional ultrasound imaging apparatus.
  • the processing includes, for example, one or more of beamforming, demodulation, compression, blood flow estimation, spectrum calculation, and DSC conversion.
  • the ultrasound imaging is used to acquire information such as anatomy, blood flow, and the like of the tissue.
  • the ultrasonic detecting apparatus of the preferred embodiment includes both the functions of conventional ultrasonic imaging and, more importantly, the function of supporting transient elastography, which can measure tissue elasticity. It is very convenient for the operator to switch back and forth between the two probes without using it.
  • the processing device 200 further includes an integrated processing unit 240. Except for this, the ultrasonic detecting apparatus shown in FIG. 5 is substantially the same as the ultrasonic detecting apparatus in the foregoing embodiment, and therefore the same reference numerals are used for the same or similar components in FIG. 5, and the same or Similar components are not described in further detail.
  • Comprehensive processing order Element 240 is coupled to elastography unit 230 and ultrasound unit 220.
  • the integrated processing unit 240 can integrate the processing results of the elastography unit 230 and the ultrasound unit 220 to provide various biological tissue information including tissue elasticity, attenuation, anatomy, blood flow, and the like.
  • the integrated processing unit 240 may also provide parameter control of the ultrasound imaging for the ultrasound unit 220 and the elastography unit 230.
  • the integrated processing unit 240 may perform calculations according to parameters such as ultrasonic propagation speed, array spacing, and depth of detection to control the on time, off time, and pulse of the ultrasound transducer array 110 by the ultrasound unit 220 and the elastic imaging unit 230. Width and pulse repetition rate.
  • the integrated processing unit 240 is also coupled to the drive unit 210 for controlling the drive unit 210.
  • the integrated processing unit 240 may control the vibration amplitude, frequency, and time at which the driving unit 210 drives the energy application device 140 to vibrate.
  • the ultrasonic testing apparatus further includes a display device 300 coupled to the processing device 200, as shown in Figures 4-5.
  • the display device 300 is for displaying a two-dimensional ultrasound image of a tissue, a blood flow image, and/or elasticity information, attenuation information, and the like.
  • the display device 300 may be connected to the integrated processing unit 240 to display the processing results calculated by the integrated processing unit 240.
  • the display device 300 can be directly coupled to the elastography unit 230 and/or the ultrasound unit 220 to directly display the elastography unit 230 and/or the ultrasound unit 220. Processing results.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Hematology (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种超声探头(100)以及具有该超声探头(100)的超声检测设备。该超声探头(100)包括:超声换能器阵列(110),用于发射和接收超声波;传导装置(20),设置在超声换能器阵列(110)的前端,传导装置(20)包括填充有流体(133,133')的流体腔(130,130'),流体腔(130,130')具有相互连通的开口(131,131')和能量接收端口(132,132'),开口(131,131')设置在传导装置(20)的前表面且由弹性膜(134)覆盖;能量施加装置(140),连接至能量接收端口(132,132'),用于对流体腔(130,130')内的流体(133,133')施加能量,以使弹性膜(134)振动产生剪切波。该超声检测设备采用完整的超声换能器阵列(110)接收包含剪切波信息的超声波信号,无需对超声波信号进行插补、波束成形等,提高了测量的便捷性和精确性,因此成像效果好、数据处理量小、检测速度快。超声检测设备既支持瞬时弹性成像的功能,又支持传统超声成像与瞬时弹性成像的复合功能。

Description

超声探头以及具有该超声探头的超声检测设备 技术领域
本发明涉及超声检测技术领域,具体地涉及一种超声探头以及具有该超声探头的超声检测设备。
背景技术
瞬时弹性成像技术是一种快速发展的无创诊断技术,这种技术利用机械振动在组织内部产生低频剪切波,利用超声波对剪切波在组织内部的传播进行追踪,通过对剪切波参数的测量,计算得到组织的弹性、衰减等相关信息。目前,瞬时弹性成像技术主要用于肝纤维化、脂肪肝等的无创检测等领域。
现有的瞬时弹性成像设备通常将振动柱从B超探头的中心穿过,振动柱穿过B超探头的超声换能器阵列。该瞬时弹性成像设备利用振动柱的振动产生剪切波,利用振动柱周围的超声换能器阵列获取剪切波的探测信息,经过处理获取组织弹性、解剖结构等信息。然而,这种瞬时弹性成像设备对剪切波的监听仅由振动柱周围的超声换能器阵列来完成。监听信息中既有纵向位移,又有侧向位移,处理过程复杂。超声换能器阵列的缺失虽然可以采用插补、波束成形等方法弥补,但对成像效果和准确性仍然会产生影响,并且会增加数据处理量。
发明内容
为了至少部分地解决现有技术中存在的问题,本发明提供一种声透镜、具有该声透镜的超声探头以及具有该超声探头的超声检测设备。
根据本发明的一个方面提供的超声探头,包括:超声换能器阵列,用于发射和接收超声波;传导装置,其设置在所述超声换能器阵列的前端,所述传导装置包括填充有流体的流体腔,所述流体腔具有相互连通的开口和能量接收端口,所述开口设置在所述传导装置的前表面且由弹性膜覆盖;以及能量施加装置,其连接至所述能量接收端口,用于对所述流体腔内的流体施加能量,以使所述弹性膜振动产生剪切波。
优选地,所述流体为液体。
优选地,所述流体腔呈柱体状。
优选地,所述开口呈圆形或条状。
优选地,所述能量施加装置包括能量产生装置和能量传递装置,所述能量传递装置连接在所述能量产生装置和所述能量接收端口之间。
优选地,所述能量产生装置包括步进电机、线性振动器和可调速泵中的一种或多种。
优选地,所述流体腔与所述超声换能器阵列的形状相适配,所述流体腔连接至所述超声换能器阵列的前端。
优选地,所述传导装置还包括声透镜,所述声透镜连接至所述超声换能器阵列的前端,所述流体腔设置在所述声透镜中。
优选地,所述超声换能器阵列中与所述流体腔的投影相对应的部分连接至第一端口,所述超声换能器阵列的其他部分连接至第二端口,所述第一端口用于瞬时弹性成像,所述第一端口和所述第二端口用于超声成像。
根据本发明的另一个方面提供的超声检测设备,包括:如上所述的任一种超声探头和处理装置。所述处理装置包括:驱动单元,其连接至所述超声探头的所述能量施加装置以驱动所述能量施加装置;超声单元,其连接至所述超声探头的所述超声换能器阵列,以控制所述超声换能器阵列发射和接收超声波;以及弹性成像单元,其连接至所述超声换能器阵列,用于接收并处理包含剪切波信息的第一电信号,以进行瞬时弹性成像。
优选地,所述弹性成像单元连接至所述超声换能器阵列中与所述流体腔的投影相对应的部分。
优选地,其特征在于,所述超声单元还用于根据从所述超声换能器阵列接收的第二电信号进行超声成像。
优选地,所述处理装置还包括综合处理单元,所述综合处理单元连接至所述弹性成像单元和所述超声单元,用于整合所述弹性成像单元和所述超声单元的处理结果。
优选地,所述综合处理单元还连接至所述驱动单元,用于控制所述驱动单元。
优选地,所述超声检测设备还包括连接至所述处理装置的显示装置。
本发明提供的超声探头采用完整的超声换能器阵列来接收包含剪切 波信息的超声波信号,因此无需对获取的超声波信号进行插补、波束成形等方法弥补,进而提高了对组织弹性进行测量的便捷性和精确性,降低了处理难度。由此可见,使用该超声探头的超声检测设备具有成像效果好、数据处理量小、检测速度快等诸多优点。此外,该超声探头即支持瞬时弹性成像的功能,又支持传统超声成像(包括传统影像或血流成像)与瞬时弹性成像的复合功能。
在发明内容中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
以下结合附图,详细说明本发明的优点和特征。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施方式及其描述,用来解释本发明的原理。在附图中,
图1为根据本发明一个实施例的超声探头的剖视图;
图2为根据本发明一个实施例的超声探头的俯视图;
图3为根据本发明另一个实施例的超声探头的剖视图;
图4为根据本发明一个实施例的超声检测设备的示意性框图;以及
图5为根据本发明另一个实施例的超声检测设备的示意性框图。
具体实施方式
在下文的描述中,提供了大量的细节以便能够彻底地理解本发明。然而,本领域技术人员可以了解,如下描述仅示例性地示出了本发明的优选实施例,本发明可以无需一个或多个这样的细节而得以实施。此外,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行详细描述。
根据本发明的一个方面,提供一种超声探头。图1和2分别示出了根据本发明一个实施例的超声探头的剖视图和俯视图。图3示出了根据本发明另一个实施例的超声探头的剖视图。下面将结合图1-3对本发明提供的超声探头进行详细描述。如图1-3所示,超声探头100包括超声换能器阵列110、传导装置20以及能量施加装置140。
超声换能器阵列110用于发射和接收超声波。超声换能器阵列110将 发射信号进行电-声转换以向组织发射超声波信号,并且接收组织反射后的超声回波信号并进行声-电转换以生成接收信号。该接收信号可以包含剪切波信息。可选地,该接收信号也可以包括组织信息。所述组织信息可以包括组织的解剖信息和/或血流信息等,以用于传统超声成像(本文简称为超声成像)。所述超声成像包括根据组织的解剖信息获取的二维超声图像和/或根据血流信息获取的血流成像等。在一个实施例中,超声换能器阵列110可以为线阵超声换能器、凸阵超声换能器、相控阵超声换能器和二维(2D)超声换能器中的任意一种或多种。超声换能器阵列110可以用来监听剪切波,然而可选地,通过合理地配置处理装置,超声换能器阵列110还可以用于传统成像或血流成像。
传导装置20设置在超声换能器阵列110的前端。传导装置20包括填充有流体的流体腔130。流体腔130用于填充流体133。该流体133主要用于传递能量,特别是传递振动(后文还将详细介绍),因此,本发明所提到的“流体”意图涵盖所有能够传递能量(特别是振动)的物质。通常情况下,流体133包括气体或液体。由于流体腔130设置在超声能量的传递路径上,相比于液体,超声能量在气体中的衰减速度较快,因此优选地,所述流体为液体。在一个优选实施例中,所述流体133为水。
流体腔130具有相互连通的开口131和能量接收端口132。开口131设置在传导装置20的前表面(即图1中所示的上表面)。传导装置20的前表面是指传导装置20的与人或动物的体表接触的表面。开口131由弹性膜134覆盖。弹性膜134可以为由各种弹性材料制成的膜。能量接收端口132与开口131连通。能量接收端口132用于接收能量。能量接收端口132接收的能量经由流体腔130内的流体传递后到达弹性膜134,引起弹性膜134振动,产生剪切波,利用超声波对剪切波在组织内部的传播进行追踪,进行瞬时弹性成像,获取组织的弹性信息、衰减信息。能量接收端口132的结构和位置不受附图所限制。能量接收端口132用于连接能量施加装置140,以接收由能量施加装置140提供的能量。能量接收端口132的结构可以设计成与能量施加装置140的能量输出端相适配。能量接收端口132可以设置在流体腔130的诸如侧面、底部或顶部的任何位置处,只要能够实现其功能即可。能量接收端口132可以包括延伸段132a,以将能量施加装置140提供的能量传递至流体腔130内的流体。本领域的技术人员可以理 解,在某些情况下,例如当流体腔130靠近传导装置20的边缘设置时,或者流体腔130的横向(即图1中所示的水平方向)尺寸较大时,能量接收端口132可以不包括延伸段132a。此外,也可以将能量施加装置140的能量输出端设计成伸入到传导装置20中。在此情况下,能量接收端口132也可以不包括延伸段132a。但是,能量施加装置140的能量输出端伸入到传导装置20中可能会导致超声换能器阵列110发射和接收的超声波在传导装置20中传播时遇到气体介质,而使超声波的能量衰减。
能量施加装置140连接至能量接收端口132,用于对流体腔130内的流体133施加能量。该能量经由流体133传递至弹性膜134,以使弹性膜134振动产生剪切波。剪切波从体表向组织内部传播,以通过外力或内力作用使生物组织发生微小形变。剪切波发出之后,通过超声换能器阵列110发射超声波,利用超声波对剪切波在组织内部的传播进行追踪来测量剪切波的参数,进而计算得出组织的弹性、衰减等相关信息。作为示例,剪切波的频率可以在10赫兹到1000赫兹范围内。剪切波的振幅可以在0.2毫米至5毫米范围内。
本发明提供的超声探头采用完整的超声换能器阵列来接收包含剪切波信息的超声波信号,因此无需对获取的超声波信号进行插补、波束成形等方法弥补,进而提高了对组织弹性进行测量的便捷性和精确性,降低了处理难度。由此可见,使用该超声探头的超声检测设备具有成像效果好、数据处理量小、检测速度快等诸多优点。此外,该超声探头即支持瞬时弹性成像的功能,又支持传统超声成像(包括传统影像或血流成像)与瞬时弹性成像的复合功能。
在一个实施例中,如图1-2所示,除了流体腔130之外,传导装置20还可以包括声透镜120。声透镜120连接至超声换能器阵列110的前端。流体腔130设置在声透镜120中。声透镜120可以如图1中所示地从流体腔130的侧面和底面包围流体腔130。在未示出的其他实施例中,声透镜120可以仅从流体腔130的侧面包围流体腔130。在此情况下,流体腔130的底面接触超声换能器阵列110。流体腔130的开口131设置在声透镜120的前表面。声透镜120在使用中与人或动物的体表接触。为了提高检测灵敏度即提高被测区域的声压,可采用聚焦声透镜。声透镜120可以采用任何能够透声的材料制成,例如有硅橡胶、室温硫化橡胶、高温硫化橡胶等。 流体腔130可以具有各种形状,而不限于图中所示的形状。也就是说,只要能够实现上述功能的各种形状的流体腔130都包含在本发明的保护范围之内。此外,虽然图1-2中仅示出一个流体腔130,但是声透镜120可以设置多个流体腔。示例性地,多个流体腔可以沿直线布置在声透镜120中,或者以二维矩阵的形式布置在声透镜120中。根据期望和/或需要,多个流体腔可以采用其他任何合适的方式布置在声透镜120中。
在另一个实施例中,如图3所示,流体腔130'连接至超声换能器阵列110的前端。在此实施例中,省略了声透镜。流体腔130'与超声换能器阵列110的形状相适配。流体腔130'的开口131'设置在其前表面上。流体腔130'的前表面在使用中与人或动物的体表接触。开口131'可以设置在流体腔130'的整个前表面上,也可以设置在所述前表面的一部分上。能量接收端口132'与开口131'连通。能量接收端口132'连接至能量施加装置140,以接收由能量施加装置140提供的能量。该实施例中与前述实施例相同或相似的部件使用了相同的附图标记,并且对于这些相同或相似部件,本文不再进一步详细描述。
在上述各种实施例中,优选地,流体腔130和130'可以呈柱体状。柱体沿着超声波的传播方向具有一致的横截面,柱体的横截面可以为圆形、半圆形、多边形等等。将流体腔130和130'设置为柱体状,一方面可以避免能量在传递过程中与流体腔130和130'的侧壁碰撞而损失;另一方面可以避免超声波或振动在传递过程中被流体腔130和130'的侧壁反射或折射而增加成像的计算难度。
目前的瞬时弹性成像装置的超声探头主要用于检测例如肝脏的弹性信息、衰减信息等,超声探头主要放置在肋间的体表处进行,流体腔130的开口131和131'的尺寸通常设计得较小。在一个优选实施例中,流体腔130的开口131和131'可以呈圆形,以对检测区域进行点测量。在另一个优选实施例中,流体腔130的开口131和131'可以呈条状,以对检测区域进行适于肋间检测的面测量。
可选地,如图1和图3所示,能量施加装置140可以包括能量产生装置141和能量传递装置142。能量传递装置142连接在能量产生装置141和能量接收端口132和132'之间。在一个实施例中,能量产生装置141可以包括步进电机、线性振动器和可调速泵中的一种或多种。在一个实施例 中,能量产生装置141用于产生低频振动,低频振动通过能量传递装置142传递至流体腔130和130'内的流体。能量产生装置141可以组装在超声探头100的壳体(未示出)内,也可以设置在超声探头100的壳体之外,只要能够通过能量传递装置142将能量输出至能量接收端口132和132'即可。能量传递装置142可以采用直接能量传递方式或间接能量传递方式将能量产生装置141产生的振动传递至流体133和133'。能量传递装置142密封地连接至在能量接收端口132和132'。能量传递装置142可以为任何形式的机械联动装置,只要能够将能量产生装置141输出的能量传递至流体133和133'即可。
本发明提供的上述超声探头可以用于瞬时弹性成像,此外还可以用于基于影像引导的瞬时弹性成像。基于影像引导的瞬时弹性成像综合了瞬时弹性成像与传统超声成像(即超声成像)的功能。瞬时弹性成像用于获取组织的弹性、衰减等信息。超声成像用于获取组织的解剖结构、内部流体流速等信息。获取的解剖结构信息对于弹性相关信息的测量又起到了引导定位的作用。在实际的使用过程中,可以首先利用超声成像功能,通过移动超声探头实时获取生物组织的二维超声图像,以根据实际需要辅助和引导超声探头对组织进行精确定位;然后切换至瞬时弹性成像功能,进行组织的弹性检测。如果需要和/或期望,超声成像和瞬时弹性成像也可以同时进行。
在超声探头综合了瞬时弹性成像与传统超声成像功能的情况下,对于图1-2所示的实施例,超声换能器阵列110中与流体腔133的投影相对应的部分110a用于接收含有剪切波信息的超声信号,该超声信号用于瞬时弹性成像;而整个超声换能器阵列110都可以用于接收含有解剖信息和/或血流信息的超声信号,该超声信号用于超声成像。超声换能器阵列110中与流体腔133的投影相对应的部分110a连接至第一端口151。超声换能器阵列110的其他部分110b连接至第二端口152。这样,第一端口151可以用于瞬时弹性成像;且第一端口151和第二端口152可以用于超声成像。对于瞬时弹性成像和超声成像功能的实现和运用,后文还将详细地描述。该优选实施例的超声探头既包含了传统超声成像探头的功能,更重要的是支持瞬时弹性成像的功能,可以对组织弹性进行测量。使用时无需两个探头之间来回切换,对于操作者来说非常方便。
在超声探头综合了瞬时弹性成像与传统超声成像功能的情况下,对于图3所示的实施例,可以不区分第一端口和第二端口,也就是说,超声换能器阵列110的各个部分连接的端口即可以用于瞬时弹性成像,又可以用于超声成像。
根据本发明的另一个方面,还提供一种超声检测设备。图4示出了根据本发明一个实施例的超声检测设备的示意性框图。如图4所示,超声检测设备包括超声探头100和处理装置200。
超声探头100可以具有上文提到的任一种结构,为了简洁,此处不再进一步详细地描述。图4中仅以图1-2所示的超声探头100为例来说明超声检测设备的原理。但是,本领域的技术人员可以理解,超声检测设备也可以采用图3所示的超声探头。
处理装置200可以包括驱动单元210、超声单元220和弹性成像单元230。
驱动单元210连接至超声探头100的能量施加装置140,以驱动能量施加装置140。驱动单元210驱动能量施加装置140对流体腔130中的流体加压,推动液体腔130的弹性膜振动,产生剪切波。
超声单元220连接至超声探头100的超声换能器阵列110,以控制超声换能器阵列110发射和接收超声波。驱动单元210驱动超声探头100发射剪切波之后,超声单元220根据所加载的成像参数,驱动超声换能器阵列110向生物组织内发射超声波。该超声波可以对剪切波在组织内的传播进行追踪,超声换能器阵列110接收反射回来的包括剪切波信息的第一超声信号(即超声回波)。超声换能器阵列110将该第一超声信号转化为第一电信号,该第一电信号包含剪切波信息。在一个具体实施例中,超声单元220可以包括超声发射模块、超声接收模块和发射接收开关电路。其中,超声发射模块用于控制超声换能器阵列110发射超声波信号;超声接收模块用于控制超声换能器阵列110接收超声回波信号;而发射接收开关电路用于隔离高压。
弹性成像单元230连接至超声探头100的超声换能器阵列110,以接收包含剪切波信息的第一电信号并对第一电信号进行处理,以进行瞬时弹性成像。所述瞬时弹性成像用于获取组织的弹性信息、和/或衰减信息等。
优选地,弹性成像单元230连接至超声换能器阵列110中与流体腔130 的投影相对应的部分(例如图1中的110a)。可选地,弹性成像单元230也可以连接至全部超声换能器阵列110或者其他任何部分的超声换能器阵列110,来接收包含剪切波信息的第一电信号。但是,在优选方案(即弹性成像单元230连接至110a)中,通过110a接收到的第一超声信号中就包括了剪切波传播的相关信息,并且无需采用插补、波束成形等复杂的处理方式对该第一超声信号进行处理就可以获得组织的弹性信息、衰减信息等。可以理解,在图3所示的实施例中,由于超声换能器阵列110和流体腔130的形状相适配,因此弹性成像单元230也可以连接至全部超声换能器阵列110,以从全部的超声换能器阵列110接收第一电信号。当然,可选地,弹性成像单元230也可以仅连接至超声换能器阵列110中的一部分。
本发明提供的超声检测设备中,使用完整的超声换能器阵列接收包含剪切波信息的超声波信号,无需对获取的超声波信号进行插补、波束成形等方法弥补,进而提高了对组织弹性进行测量的便捷性和精确性,降低了处理难度。由此可见,该超声检测设备具有成像效果好、数据处理量小、检测速度快等诸多优点。
在一个优选实施例中,超声单元220还用于根据从超声换能器阵列110接收的第二电信号进行超声成像。超声换能器阵列110向组织内发射用于传统超声成像的超声波,并接收反射回来的第二超声信号(即超声回波)。所述第二超声信号中含有组织的解剖信息和/或血流信息等。超声换能器阵列110将该第二超声信号转化为第二电信号提供给超声单元220,以进行超声成像。对于第二电信号的处理功能,超声单元220与传统的超声成像设备中的超声成像单元类似。所述处理例如包括波束成形、解调、压缩、血流估计、频谱计算和DSC变换等处理等中的一种或多种。所述超声成像用于获取组织的解剖、血流等信息。该优选实施例的超声检测设备既包含了传统超声成像的功能,更重要的是支持瞬时弹性成像的功能,可以对组织弹性进行测量。使用时无需两个探头之间来回切换,对于操作者来说非常方便。
在一个优选实施例中,如图5所示,处理装置200还包括综合处理单元240。除此之外,图5所示的超声检测设备与前述实施例中的超声检测设备基本相同,因此在图5中对于相同或相似的部件使用了相同的附图标记,并且本文对这些相同或相似的部件不再进一步详细描述。综合处理单 元240连接至弹性成像单元230和超声单元220。综合处理单元240可以整合弹性成像单元230和超声单元220的处理结果,以提供包括组织弹性、衰减、解剖结构、血流等各种生物组织信息。可选地,综合处理单元240还可以为超声单元220和弹性成像单元230提供超声成像的参数控制。示例性地,综合处理单元240可以根据超声波传播速度、阵元间距以及探测深度等参数进行计算,以通过超声单元220和弹性成像单元230控制超声换能器阵列110的开启时间、关闭时间、脉冲宽度以及脉冲重复率等方面。
在进一步优选的实施例中,综合处理单元240还连接至驱动单元210,用于控制驱动单元210。作为示例,综合处理单元240可以对驱动单元210驱动能量施加装置140振动的振动幅度、频率、时间进行控制。
在一个实施例中,超声检测设备还包括连接至处理装置200的显示装置300,如图4-5所示。显示装置300用于显示组织的二维超声图像、血流图像、和/或弹性信息和衰减信息等。可选地,显示装置300可以连接至综合处理单元240,以显示综合处理单元240计算得出的处理结果。可选地,在处理装置200不包含综合处理单元240的实施例中,显示装置300可以直接连接至弹性成像单元230和/或超声单元220,以直接显示弹性成像单元230和/或超声单元220的处理结果。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (15)

  1. 一种超声探头,其特征在于,所述超声探头包括:
    超声换能器阵列,用于发射和接收超声波;
    传导装置,其设置在所述超声换能器阵列的前端,所述传导装置包括填充有流体的流体腔,所述流体腔具有相互连通的开口和能量接收端口,所述开口设置在所述传导装置的前表面且由弹性膜覆盖;以及
    能量施加装置,其连接至所述能量接收端口,用于对所述流体腔内的流体施加能量,以使所述弹性膜振动产生剪切波。
  2. 如权利要求1所述的超声探头,其特征在于,所述流体为液体。
  3. 如权利要求1所述的超声探头,其特征在于,所述流体腔呈柱体状。
  4. 如权利要求1所述的超声探头,其特征在于,所述开口呈圆形或条状。
  5. 如权利要求1所述的超声探头,其特征在于,所述能量施加装置包括能量产生装置和能量传递装置,所述能量传递装置连接在所述能量产生装置和所述能量接收端口之间。
  6. 如权利要求5所述的超声探头,其特征在于,所述能量产生装置包括步进电机、线性振动器和可调速泵中的一种或多种。
  7. 如权利要求1所述的超声探头,其特征在于,所述流体腔与所述超声换能器阵列的形状相适配,所述流体腔连接至所述超声换能器阵列的前端。
  8. 如权利要求1所述的超声探头,其特征在于,所述传导装置还包括声透镜,所述声透镜连接至所述超声换能器阵列的前端,所述流体腔设置在所述声透镜中。
  9. 如权利要求8所述的超声探头,其特征在于,所述超声换能器阵列中与所述流体腔的投影相对应的部分连接至第一端口,所述超声换能器阵列的其他部分连接至第二端口,所述第一端口用于瞬时弹性成像,所述第一端口和所述第二端口用于超声成像。
  10. 一种超声检测设备,其特征在于,所述超声检测设备包括:
    如权利要求1-9中任一项所述的超声探头;以及
    处理装置,其包括:
    驱动单元,其连接至所述超声探头的所述能量施加装置以驱 动所述能量施加装置;
    超声单元,其连接至所述超声探头的所述超声换能器阵列,以控制所述超声换能器阵列发射和接收超声波;以及
    弹性成像单元,其连接至所述超声换能器阵列,用于接收并处理包含剪切波信息的第一电信号,以进行瞬时弹性成像。
  11. 如权利要求10所述的超声检测设备,其特征在于,所述弹性成像单元连接至所述超声换能器阵列中与所述流体腔的投影相对应的部分。
  12. 如权利要求10所述的超声检测设备,其特征在于,
    所述超声单元还用于根据从所述超声换能器阵列接收的第二电信号进行超声成像。
  13. 如权利要求12所述的超声检测设备,其特征在于,所述处理装置还包括综合处理单元,所述综合处理单元连接至所述弹性成像单元和所述超声单元,用于整合所述弹性成像单元和所述超声单元的处理结果。
  14. 如权利要求13所述的超声检测设备,其特征在于,所述综合处理单元还连接至所述驱动单元,用于控制所述驱动单元。
  15. 如权利要求10所述的超声检测设备,其特征在于,所述超声检测设备还包括连接至所述处理装置的显示装置。
PCT/CN2016/092857 2016-04-22 2016-08-02 超声探头以及具有该超声探头的超声检测设备 WO2017181553A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020187033517A KR102181334B1 (ko) 2016-04-22 2016-08-02 초음파 프로브 및 이 초음파 프로브를 구비하는 초음파 검출기기
EP16899140.4A EP3446635B1 (en) 2016-04-22 2016-08-02 Ultrasonic probe and ultrasonic detection device provided with said ultrasonic probe
MX2018011561A MX389518B (es) 2016-04-22 2016-08-02 Sonda ultrasónica y dispositivo detector ultrasónico provisto con la sonda.
CA3017627A CA3017627C (en) 2016-04-22 2016-08-02 Ultrasonic probe and ultrasonic detecting device provided with same
ES16899140T ES2908068T3 (es) 2016-04-22 2016-08-02 Sonda ultrasónica y dispositivo de detección por ultrasonidos dotado de dicha sonda ultrasónica
BR112018071660-0A BR112018071660B1 (pt) 2016-04-22 2016-08-02 Sonda ultrassônica e dispositivo de detecção ultrassônica fornecido com a mesma
RU2018140332A RU2717206C1 (ru) 2016-04-22 2016-08-02 Ультразвуковой датчик и ультразвуковой детектор с ультразвуковым датчиком
AU2016403655A AU2016403655B2 (en) 2016-04-22 2016-08-02 Ultrasonic probe and ultrasonic detecting device provided with same
JP2018555503A JP6684364B2 (ja) 2016-04-22 2016-08-02 超音波プローブ及び該超音波プローブを有する超音波検査装置
US16/120,183 US12138122B2 (en) 2016-04-22 2018-08-31 Ultrasonic probe and ultrasonic detecting device provided with same
ZA2018/06019A ZA201806019B (en) 2016-04-22 2018-09-07 Ultrasonic probe and ultrasonic detection device provided with said ultrasonic probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610257070.4 2016-04-22
CN201610257070.4A CN105748106B (zh) 2016-04-22 2016-04-22 超声探头以及具有该超声探头的超声检测设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/120,183 Continuation US12138122B2 (en) 2016-04-22 2018-08-31 Ultrasonic probe and ultrasonic detecting device provided with same

Publications (1)

Publication Number Publication Date
WO2017181553A1 true WO2017181553A1 (zh) 2017-10-26

Family

ID=56325635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092857 WO2017181553A1 (zh) 2016-04-22 2016-08-02 超声探头以及具有该超声探头的超声检测设备

Country Status (13)

Country Link
US (1) US12138122B2 (zh)
EP (1) EP3446635B1 (zh)
JP (1) JP6684364B2 (zh)
KR (1) KR102181334B1 (zh)
CN (1) CN105748106B (zh)
AU (1) AU2016403655B2 (zh)
BR (1) BR112018071660B1 (zh)
CA (1) CA3017627C (zh)
ES (1) ES2908068T3 (zh)
MX (1) MX389518B (zh)
RU (1) RU2717206C1 (zh)
WO (1) WO2017181553A1 (zh)
ZA (1) ZA201806019B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12138122B2 (en) 2016-04-22 2024-11-12 Wuxi Hisky Medical Technologies Co., Ltd. Wuxi (Cn) Ultrasonic probe and ultrasonic detecting device provided with same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107260216B (zh) * 2017-06-22 2023-09-19 苏州国科昂卓医疗科技有限公司 一种超声内窥探头及弹性成像系统、方法
CN109044402A (zh) * 2017-09-12 2018-12-21 乐普(北京)医疗器械股份有限公司 一种基于超声弹性成像技术的脂肪肝诊断系统
CN108095763A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108095766A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108095764B (zh) * 2018-01-18 2024-05-03 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108095762A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108095765A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN119732655A (zh) * 2018-09-19 2025-04-01 深圳迈瑞生物医疗电子股份有限公司 一种光声双模成像探头
WO2020061770A1 (zh) * 2018-09-25 2020-04-02 深圳迈瑞生物医疗电子股份有限公司 一种弹性成像的方法及设备、存储介质
US20200178941A1 (en) * 2018-12-07 2020-06-11 General Electric Company Ultrasound probe and method of making the same
WO2020239654A1 (en) * 2019-05-24 2020-12-03 Koninklijke Philips N.V. Ultrasound probe with cable retention using elastomeric insert
CN110720949B (zh) * 2019-11-12 2020-10-30 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法
CN114144119A (zh) * 2020-05-14 2022-03-04 深圳迈瑞生物医疗电子股份有限公司 瞬时弹性测量方法、声衰减参数测量方法和超声成像系统
CN112190234B (zh) * 2020-10-29 2025-05-13 武汉和视光声科技有限公司 一种用于动物头部光声成像的装置
CN114767162B (zh) * 2022-06-21 2022-09-23 深圳市影越医疗科技有限公司 瞬时弹性成像检测振动装置、探头、方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569276A (zh) * 2004-04-29 2005-01-26 云南大学 具有柔性界面的超声治疗探头
JP2005103193A (ja) * 2003-10-02 2005-04-21 Hitachi Medical Corp 超音波送波器及びこれを用いた超音波装置
US20090221917A1 (en) * 2008-02-05 2009-09-03 Fujitsu Limited Ultrasound probe device and method of operation
CN101600392A (zh) * 2007-01-24 2009-12-09 皇家飞利浦电子股份有限公司 使用可调流体透镜对运动进行超声检测的方法和装置
CN101912278A (zh) * 2010-08-12 2010-12-15 陈庆武 超声动态弹性成像探头及方法
CN104394933A (zh) * 2012-04-27 2015-03-04 美敦力阿迪安卢森堡有限公司 肾神经调制的超声装置、系统、和方法
CN105455850A (zh) * 2014-09-29 2016-04-06 美国西门子医疗解决公司 用于医学诊断超声成像的共形接口
CN105748106A (zh) * 2016-04-22 2016-07-13 毛军卫 超声探头以及具有该超声探头的超声检测设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289436A (en) * 1992-10-22 1994-02-22 General Electric Company Ultrasonic waveguide
US5494038A (en) * 1995-04-25 1996-02-27 Abbott Laboratories Apparatus for ultrasound testing
US5606971A (en) * 1995-11-13 1997-03-04 Artann Corporation, A Nj Corp. Method and device for shear wave elasticity imaging
US7022077B2 (en) * 2000-11-28 2006-04-04 Allez Physionix Ltd. Systems and methods for making noninvasive assessments of cardiac tissue and parameters
JP4151888B2 (ja) 2002-08-20 2008-09-17 日立建機ファインテック株式会社 超音波映像検査装置とその試料保持具ケース
FR2875695B1 (fr) * 2004-09-28 2006-12-01 Echosens Sa Instrument de mesure de l'elasticite d'un organe du type comportant un moyen de centrage
JPWO2006041050A1 (ja) * 2004-10-12 2008-05-15 株式会社日立メディコ 超音波探触子及び超音波撮像装置
JP2006201666A (ja) 2005-01-24 2006-08-03 Yamaha Corp オーサリング装置および情報出力プログラム
US7959438B2 (en) * 2005-08-11 2011-06-14 James Feine Movable pin ultrasonic transducer
DE102007054907A1 (de) 2007-11-15 2009-05-28 Sirona Dental Systems Gmbh Verfahren zur optischen Vermessung von Objekten unter Verwendung eines Triangulationsverfahrens
CN102405653B (zh) * 2009-04-21 2015-06-03 株式会社日立医疗器械 超声波探头
US20120265062A1 (en) * 2011-04-13 2012-10-18 St. Jude Medical, Inc. Optical coherence tomography catheter for elastographic property mapping of lumens utilizing micropalpation
US20130058195A1 (en) * 2011-06-29 2013-03-07 Guy Cloutier Device system and method for generating additive radiation forces with sound waves
CN102283679B (zh) * 2011-08-04 2014-05-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
RU2499560C1 (ru) * 2012-05-03 2013-11-27 Федеральное государственное бюджетное учреждение "Московский научно-исследовательский онкологический институт им. П.А. Герцена" Министерства здравоохранения и социального развития Российской Федерации (ФГБУ "МНИОИ им. П.А. Герцена" Минздравсоцразвития России) Способ диагностики метастатического поражения сторожевого лимфатического узла при раке щитовидной железы
JP6002970B2 (ja) * 2013-02-25 2016-10-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 音響分散性要素の濃度分布の決定
EP2978497B1 (en) * 2013-03-28 2021-09-01 University of Washington through its Center for Commercialization Focused ultrasound apparatus and methods of use
EP2865340A4 (en) * 2013-06-26 2016-03-16 Olympus Corp ULTRASONIC OBSERVATION SYSTEM AND METHOD FOR OPERATING THE ULTRASONIC OBSERVATION SYSTEM
KR102186096B1 (ko) * 2013-07-01 2020-12-03 한국전자통신연구원 유방암 진단을 위한 초음파 스캐닝 보조 장치 및 초음파 스캐닝 방법
KR102196878B1 (ko) * 2013-12-27 2020-12-30 삼성메디슨 주식회사 초음파 프로브 및 초음파 프로브 제조 방법
CN205849470U (zh) * 2016-04-22 2017-01-04 毛军卫 超声探头以及具有该超声探头的超声检测设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103193A (ja) * 2003-10-02 2005-04-21 Hitachi Medical Corp 超音波送波器及びこれを用いた超音波装置
CN1569276A (zh) * 2004-04-29 2005-01-26 云南大学 具有柔性界面的超声治疗探头
CN101600392A (zh) * 2007-01-24 2009-12-09 皇家飞利浦电子股份有限公司 使用可调流体透镜对运动进行超声检测的方法和装置
US20090221917A1 (en) * 2008-02-05 2009-09-03 Fujitsu Limited Ultrasound probe device and method of operation
CN101912278A (zh) * 2010-08-12 2010-12-15 陈庆武 超声动态弹性成像探头及方法
CN104394933A (zh) * 2012-04-27 2015-03-04 美敦力阿迪安卢森堡有限公司 肾神经调制的超声装置、系统、和方法
CN105455850A (zh) * 2014-09-29 2016-04-06 美国西门子医疗解决公司 用于医学诊断超声成像的共形接口
CN105748106A (zh) * 2016-04-22 2016-07-13 毛军卫 超声探头以及具有该超声探头的超声检测设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3446635A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12138122B2 (en) 2016-04-22 2024-11-12 Wuxi Hisky Medical Technologies Co., Ltd. Wuxi (Cn) Ultrasonic probe and ultrasonic detecting device provided with same

Also Published As

Publication number Publication date
KR102181334B1 (ko) 2020-11-20
ES2908068T3 (es) 2022-04-27
BR112018071660A2 (pt) 2019-02-19
KR20180132916A (ko) 2018-12-12
EP3446635A4 (en) 2019-12-18
AU2016403655A1 (en) 2018-09-27
BR112018071660B1 (pt) 2022-11-29
JP2019515736A (ja) 2019-06-13
MX389518B (es) 2025-03-20
CN105748106A (zh) 2016-07-13
EP3446635B1 (en) 2022-02-16
US12138122B2 (en) 2024-11-12
CA3017627A1 (en) 2017-10-26
RU2717206C1 (ru) 2020-03-18
JP6684364B2 (ja) 2020-04-22
US20180368809A1 (en) 2018-12-27
CA3017627C (en) 2023-05-09
CN105748106B (zh) 2018-07-31
EP3446635A1 (en) 2019-02-27
AU2016403655B2 (en) 2019-07-25
ZA201806019B (en) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2017181553A1 (zh) 超声探头以及具有该超声探头的超声检测设备
JP4713339B2 (ja) 高周波数高フレームレート超音波撮像システム
CN113795789A (zh) 具有可编程解剖和流成像的超声成像装置
CN109717904B (zh) 弹性成像系统
Azuma et al. Dual-frequency ultrasound imaging and therapeutic bilaminar array using frequency selective isolation layer
JP2010516372A (ja) 調整可能な流体レンズを使用するモーションの超音波検出方法及び装置
CN114451916A (zh) 声透结构、弹性检测装置、探头、系统及方法
CN114271855A (zh) 一种超声检测探头
CN109875608B (zh) 弹性成像方法
KR101484959B1 (ko) 초음파 트랜스듀서, 이를 포함한 초음파 프로브 및 초음파 진단 장치
CN205849470U (zh) 超声探头以及具有该超声探头的超声检测设备
CN115067996A (zh) 一种弹性检测振动装置、探头、方法及系统
KR20110003057A (ko) 초음파 프로브 및 초음파 진단장치
CN217040173U (zh) 一种弹性检测装置
CN209899435U (zh) 用于弹性成像的探头
CN209899434U (zh) 弹性成像系统
CN100539949C (zh) 高频、高帧率超声波成像系统
KR20110003056A (ko) 초음파 프로브 및 초음파 진단장치
JP4662521B2 (ja) 音響レンズ、超音波プローブおよび超音波診断装置
CN109717905B (zh) 用于弹性成像的探头
CN118141422A (zh) 弹性测量设备、弹性测量方法及装置
WO2024051710A1 (zh) 一种剪切波激励装置、弹性成像装置、方法及系统
CN119279635A (zh) 一种瞬时弹性检测装置、方法及系统
Zhu Study on High Resolution and High Sensitivity Imaging of Scatterer Distribution in Medical Ultrasound
シュウチン Study on High Resolution and High Sensitivity Imaging of Scatterer Distribution in Medical Ultrasound

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3017627

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011561

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016403655

Country of ref document: AU

Date of ref document: 20160802

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018555503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018071660

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187033517

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016899140

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016899140

Country of ref document: EP

Effective date: 20181122

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018071660

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181022