[go: up one dir, main page]

WO2017179535A1 - Structure condition assessing device, condition assessing system, and condition assessing method - Google Patents

Structure condition assessing device, condition assessing system, and condition assessing method Download PDF

Info

Publication number
WO2017179535A1
WO2017179535A1 PCT/JP2017/014667 JP2017014667W WO2017179535A1 WO 2017179535 A1 WO2017179535 A1 WO 2017179535A1 JP 2017014667 W JP2017014667 W JP 2017014667W WO 2017179535 A1 WO2017179535 A1 WO 2017179535A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
spatial distribution
state determination
dimensional spatial
differential
Prior art date
Application number
PCT/JP2017/014667
Other languages
French (fr)
Japanese (ja)
Inventor
浩 今井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017179535A1 publication Critical patent/WO2017179535A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the present invention relates to a technique for remotely determining the state of a defect or the like occurring in a structure.
  • Detecting defects such as cracks, delamination, and internal cavities in structures has been performed by visual inspection and hammering inspection by an inspector, and it is necessary for the inspector to approach the structure for inspection. For this reason, there are problems such as an increase in work cost by preparing an environment where work can be performed in the air and loss of economic opportunities by regulating traffic for setting the work environment.
  • a remote inspection method is desired.
  • Non-Patent Document 1 discloses a method for improving the detection accuracy of cracks by detecting the movement of a crack region from a moving image on the surface of a structure.
  • Patent Document 6 proposes a method of correcting an out-of-plane displacement from a displacement of a captured image in a method of measuring distortion generated on the surface of a measurement object.
  • the out-of-plane displacement is read from the side images before and after the deformation of the structure.
  • two video devices are provided, a first video device that images the surface of the structure and a second video device that images the side surface. That is, in this method, in order to photograph the side surface, another image device is required in addition to the image device that photographs the surface, and there is a problem in increasing the size and cost of the device.
  • Patent Document 7 discloses a method of illuminating pattern light and calculating a displacement from corresponding line segments between zoom-in image data and zoom-out image data.
  • pattern light illuminating means such as a projector is required to illuminate the pattern light, and the increase in size and cost of the apparatus are problems.
  • Patent Document 6 and Patent Document 7 when the apparatus is enlarged as in Patent Document 6 and Patent Document 7, for example, in the case of a bridge or the like, it is necessary to fix the imaging device or to secure an operator's scaffold in order to measure the side surface of the bridge. There is a problem that workability is deteriorated and measurement accuracy is lowered.
  • Patent Document 8 and Patent Document 9 disclose a method for obtaining the distance of a target object by superimposing and capturing two images with different optical paths using a single camera.
  • this method requires a means for performing processing for separating superimposed imaging in order to capture superimposed imaging on a single imaging device, and this processing is complicated and time consuming. It has become.
  • the present invention has been made in view of the above-described problems, and its purpose is to detect defects such as cracks, peeling, and internal cavities of a structure with high accuracy while controlling costs in a non-contact manner from a remote location. It is to make it possible.
  • the state determination apparatus of the present invention calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and before applying a load at the first imaging distance.
  • the first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the time-series image, and the amount of movement in the normal direction of the surface of the structure due to the load application is calculated using the first imaging distance.
  • a depth movement amount calculation unit calculates a correction amount based on the movement amount, and subtracts the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image to obtain a two-dimensional spatial distribution of the displacement of the structure surface.
  • a displacement separating portion to be separated from the surface of the structure It has a two-dimensional spatial distribution and the amount of movement of the position, and the threshold value relating to the amount of movement and spatial distribution of pre-equipped was displaced, based on a comparison of, and a malfunction determination unit for specifying a defect of the structure.
  • the state determination system of the present invention calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and before applying a load at the first imaging distance.
  • the first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the time-series image, and the amount of movement in the normal direction of the surface of the structure due to the load application is calculated using the first imaging distance.
  • a depth movement amount calculation unit calculates a correction amount based on the movement amount, and subtracts the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image to obtain a two-dimensional spatial distribution of the displacement of the structure surface.
  • Displacement separation part to be separated and the structure table An abnormality determination unit that identifies a defect of the structure based on a comparison between a two-dimensional spatial distribution of displacement and the amount of movement, and a spatial distribution of displacement provided in advance and a threshold value related to the amount of movement.
  • a two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and before applying the load at the first imaging distance.
  • a two-dimensional spatial distribution of the displacement of the time-series image is calculated from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and the first two-dimensional spatial distribution of the displacement of the image
  • the moving distance in the normal direction of the surface of the structure due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance, and the moving distance is calculated.
  • a correction amount is calculated based on the two-dimensional spatial distribution, and the two-dimensional spatial distribution of the displacement of the structure surface is separated by subtracting the correction amount from the two-dimensional spatial distribution of the displacement of the time-series image.
  • the two-dimensional spatial distribution and the movement amount are provided in advance.
  • a threshold for the movement amount and spatial distribution of the displacement based on a comparison of, identifying a defect in the structure.
  • the state determination apparatus of the present invention calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and before applying a load at the first imaging distance.
  • a displacement calculation unit for calculating a two-dimensional spatial distribution of the displacement of the time-series image from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and a two-dimensional spatial distribution of the displacement of the image
  • the first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the time-series image, and the amount of movement in the normal direction of the surface of the structure due to the load application is calculated using the first imaging distance.
  • a depth movement amount calculation unit; and an abnormality determination unit that identifies a defect of the structure based on a comparison between the movement amount and a threshold value relating to the movement amount provided in advance.
  • a two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and before applying the load at the first imaging distance.
  • a two-dimensional spatial distribution of the displacement of the time-series image is calculated from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and the first two-dimensional spatial distribution of the displacement of the image
  • the moving distance in the normal direction of the surface of the structure due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance, and the moving distance is calculated.
  • a defect of the structure is specified based on a comparison with a threshold value relating to the movement amount provided in advance.
  • FIG. 1 is a block diagram illustrating a configuration of a state determination device according to an embodiment of the present invention.
  • the state determination device 100 calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and loads at the first imaging distance.
  • a displacement calculation unit 101 that calculates a two-dimensional spatial distribution of the displacement of the time-series image from the difference between the image of the structure surface before application and the time-series image of the structure surface by applying a load.
  • the first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image
  • the amount of movement in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image.
  • a depth movement amount calculation unit 102 that calculates using the first imaging distance is provided.
  • a displacement separation unit that calculates a correction amount based on the movement amount, subtracts the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image, and separates the two-dimensional spatial distribution of the displacement of the structure surface. 103.
  • an abnormality that identifies a defect in the structure based on a comparison between a two-dimensional spatial distribution of displacement of the structure surface and the amount of movement, and a spatial distribution of displacement provided in advance and a threshold value related to the amount of movement.
  • the determination unit 104 is included.
  • the imaging distance on the surface of the structure and the amount of movement in the normal direction of the surface of the structure due to load application can be obtained. Furthermore, an out-of-plane displacement due to the movement of the surface of the structure in the normal direction can be obtained using the movement amount. By subtracting this out-of-plane displacement from the displacement caused by the load on the image of the structure surface, the in-plane displacement of the structure surface can be separated. According to the state determination apparatus 100, the above processing can be easily performed with good workability, and therefore, detection that distinguishes defects such as cracks, peeling, and internal cavities of the structure can be performed remotely and accurately with no contact. Is possible.
  • FIG. 2 is a block diagram illustrating a configuration of a state determination system according to the second embodiment of this invention.
  • the state determination system 10 includes a state determination device 1 and an imaging device 11.
  • the imaging device 11 captures the surface of the structure 20 before and after applying a load to the structure 20 as a time-series image on the XY plane, and inputs the captured image information to the state determination device 1.
  • the imaging device 11 also captures an image of the surface of the structure 20 at an imaging distance before applying a load and an image of the surface of the structure 20 at an imaging distance different from the imaging distance, and these images. Information is input to the state determination device 1.
  • the state determination device 1 acquires the image information as described above from the imaging device 11.
  • the structure 20 as the object to be measured has a beam-like structure supported at two points, but is not limited to this.
  • various defects 21 may exist in the structure 20.
  • FIG. 3 is a block diagram showing a configuration of the state determination device 1.
  • the state determination device 1 includes a displacement calculation unit 2, a depth movement amount calculation unit 3, a displacement separation unit 4, a differential displacement calculation unit 5, an abnormality determination unit 6, and an abnormality map creation unit 9.
  • the abnormality determination unit 6 includes a three-dimensional spatial distribution information analysis unit 7 and a time change information analysis unit 8.
  • FIG. 4 is a block diagram illustrating a configuration of the imaging device 11.
  • the imaging device 11 includes an optical path length control unit 12, a lens 13, an imaging element 14, and a processing circuit 15.
  • the lens 13, the image sensor 14, and the processing circuit 15 constitute an imaging camera.
  • the processing circuit 15 inputs an image of the surface of the structure 20 formed on the imaging surface of the imaging device 13 by the lens 13 to the state determination device 1.
  • the optical path length control unit 12 can change the optical path length (imaging distance) from the lens 13 to the surface of the structure 20 to be imaged.
  • the displacement calculation unit 2 of the state determination device 1 calculates the displacement for each (X, Y) coordinate on the XY plane of the time-series image. That is, using the frame image before the load application captured by the imaging device 11 as a reference, the displacement in the frame image at the first time after the load application is calculated from the difference between these frame images. Next, the displacement of the image before the load application is calculated for each time series image, such as the displacement of the frame image at the next time after the load application, and further the displacement of the frame image at the next time.
  • the displacement calculation unit 2 also changes the imaging distance of the surface of the structure 20 before the load is applied by the optical path length control unit 12 for each (X, Y) coordinate on the XY plane. Calculate the displacement.
  • the displacement calculation unit 2 can calculate the displacement using image correlation calculation. Further, the displacement calculating unit 2 can also represent the calculated displacement as a displacement distribution diagram having a two-dimensional spatial distribution on the XY plane.
  • the depth movement amount calculation unit 3 calculates the imaging distance before applying the load from the displacement of the image of the surface of the structure 20 having a different imaging distance. Further, the depth movement amount calculation unit 3 calculates, using the calculated imaging distance, a movement amount by which the surface of the structure 20 moves in the normal direction due to the deflection of the structure 20 from the displacement of the time-series image. To do. The depth movement amount calculation unit 3 inputs the movement amount to the displacement separation unit 4, the differential displacement calculation unit 5, and the abnormality determination unit 6.
  • the displacement separation unit 4 calculates a displacement based on the movement amount included in the displacement of the time-series image (referred to as out-of-plane displacement) using the calculated movement amount. Furthermore, the displacement separation unit 4 separates the displacement (referred to as in-plane displacement) generated on the surface of the structure 20 by subtracting the out-of-plane displacement from the displacement of the time-series image. The displacement separation unit 4 inputs the separated in-plane displacement to the differential displacement calculation unit 5 and the abnormality determination unit 6.
  • the differential displacement calculation unit 5 performs spatial differentiation on the displacement or displacement distribution diagram of the time-series image and the movement amount, and the differential displacement or the calculated differential displacement is converted into a two-dimensional differential space distribution on the XY plane. The distribution map and differential movement amount are calculated. The differential displacement calculation unit 5 inputs the calculation result to the abnormality determination unit 6.
  • the abnormality determination unit 6 determines the state of the structure 20 based on the input calculation result. That is, the abnormality determination unit 6 determines the location and type of the abnormality (defect 21) of the structure 20 from the analysis results of the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8. Furthermore, the abnormality determination unit 6 inputs the determined abnormality location and type of the structure 20 to the abnormality map creation unit 9.
  • the abnormality map creation unit 9 maps the spatial distribution of the abnormal state of the structure 20 to the XY plane, records it as an abnormality map, and outputs the result.
  • the state determination device 1 can be an information device such as a PC (Personal Computer) or a server.
  • a CPU Central Processing Unit
  • HDD Hard Disk Drive
  • FIG. 5A to 5D are diagrams for explaining the relationship between various abnormal states of the structure 20 and in-plane displacement of the surface.
  • FIG. 5A is a side view of the beam-like structure 20 supported at two points.
  • the imaging device 11 is arranged to image the lower surface of the structure 20 in the imaging direction (Z direction).
  • Z direction the imaging direction
  • a compressive stress is applied to the upper surface of the structure 20 and a tensile stress is applied to the lower surface with respect to the vertical load from the upper surface of the structure 20.
  • the structure 20 may not be a beam-like structure that is supported at two points as long as the same stress is applied.
  • the stress is proportional to the strain.
  • the Young's modulus which is a proportional constant, depends on the material of the structure. Since the strain proportional to the stress is a displacement per unit length, the strain can be calculated by spatially differentiating the result calculated by the displacement separation unit 4 by the differential displacement calculation unit 5. That is, the stress field can be obtained from the result of the differential displacement calculation unit 5.
  • the displacement of the structure surface to be measured in FIGS. 5A to 5D is an in-plane displacement (X direction and Y direction) in the XY plane. Therefore, the displacement separation unit 4 uses the apparent displacement (out-of-plane displacement) based on the amount of movement of the surface of the structure 20 in the normal direction due to the load calculated by the depth movement amount calculation unit 3 as a correction amount.
  • the in-plane displacement is separated by calculating and subtracting this out-of-plane displacement.
  • a method for calculating the out-of-plane displacement will be described.
  • the normal line is referred to when the surface is a curved surface, when the surface has a plurality of small curved surfaces and forms a large curved surface as a whole, the normal line for the large curved surface is used here. Moreover, although it is called a perpendicular for the case where the surface is a plane, in the following description, it will be expressed as a normal line for simplicity.
  • FIG. 6 is a diagram for explaining the out-of-plane displacement when the lower surface of the structure is imaged (see FIG. 2) when the structure 20 is bent due to the load.
  • the amount of movement of the surface of the structure 20 in the normal direction (Z direction) is caused by the deflection of the structure and is expressed as a deflection amount ⁇ .
  • the amount of movement of the surface in the Z direction is not limited to the amount of deflection, and may include, for example, the amount of movement when the entire structure 20 sinks due to a load.
  • the imaging surface of the imaging device 14 of the imaging device 11 has a two-dimensional space of displacement of the structure surface in the X direction.
  • ⁇ x i corresponding to the in-plane displacement ⁇ x which is the distribution
  • an out-of-plane displacement ⁇ x i occurs due to the deflection amount ⁇ .
  • ⁇ y i corresponding to the in-plane displacement ⁇ y and an out-of-plane displacement ⁇ y i due to the deflection amount ⁇ are generated in the Y direction.
  • the out-of-plane displacements ⁇ x i , ⁇ y i, and in-plane displacements ⁇ x i , ⁇ y i are: L is the imaging distance, f is the lens focal length, and (x, y) is the coordinate from the imaging center of the structure surface. They are represented by Formula 1, Formula 2, Formula 3, and Formula 4, respectively.
  • the distance x from the imaging center on the surface of the structure 20 is 200 mm.
  • the external displacement ⁇ x i is 1.6 ⁇ m from Equation 1.
  • the in-plane displacement ⁇ x i of the imaging surface is 1.6 ⁇ m from Equation 3.
  • Formulas 1 and Formula 2 are combined as out-of-plane displacement vectors ⁇ i ( ⁇ x i , ⁇ y i ), and Formulas 3 and 4 are combined as in-plane displacement vectors ⁇ i ( ⁇ x i , ⁇ y i ), Formulas 5 and 6 are respectively obtained. It becomes.
  • FIG. 7 is a diagram illustrating the relationship between the out-of-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) and the in-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) expressed by Equations 5 and 6. 7, out-of-plane displacement vector ⁇ i ( ⁇ x i, ⁇ y i) the radial vector group (thin solid line arrow in FIG. 7), and its size, R (x, y) Formula from Equation 1 and Equation 2 It becomes like 7.
  • Equation 7 if the deflection amount ⁇ is constant, the magnitude thereof is a value proportional to the distance from the imaging center, and if the proportionality constant is set to k as shown in Equation 8, Equation 7 becomes Equation 9 It is expressed as follows.
  • the displacement distribution calculated by the displacement calculation unit 2 includes an out-of-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) (thin solid line arrow in FIG. 7) and an in-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ). It is a measurement vector V (Vx, Vy) (dotted line arrow in FIG. 7) which is a combined vector with (a thick solid line arrow in FIG. 7).
  • V (Vx, Vy) dotted line arrow in FIG. 7
  • the magnitude of the measurement vector V (Vx, Vy) is Rmes (x, y), it is expressed as Expression 10 and Expression 11.
  • 8A and 8B are graphs showing examples of values of the magnitude R (x, y) of the out-of-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) given by the equations 7, 8, and 9.
  • 8A and 8B are graphs showing the magnitude R (x, y) of the out-of-plane displacement vector when the deflection amount ⁇ is 1 mm and 4 mm, respectively, and the imaging distance L before deflection of both graphs is 5000 mm.
  • the focal length f is 50 mm.
  • both graphs are similar in shape, and the larger the deflection amount ⁇ , the larger the enlargement ratio. This enlargement ratio corresponds to the proportionality constant k given by Equation 8.
  • FIG. 9 is a graph in which the magnitude Rmes (x, y) of the measurement vector V (Vx, Vy) is superimposed on the graph of FIG. 8B.
  • Rmes (x, y) is indicated by a thin solid line.
  • Rmes (x, y) is a magnitude R (x of the out-of-plane displacement vector when the magnitude R (x, y) of the out-of-plane displacement vector is larger than the in-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ).
  • Y the enlargement rate of R (x, y) can be estimated from Rmes (x, y).
  • the enlargement ratio of R (x, y) is estimated by obtaining a proportionality constant k that minimizes the evaluation function E (k) shown in Expression 12.
  • the calculation of the enlargement factor k using Equation 12 is performed using the least square method.
  • the evaluation function E (k) may use a sum of absolute values, another sum of powers, or the like other than the square sum of the difference between Rmes (x, y) and R (x, y).
  • the displacement separation unit 4 performs an operation of converting the estimated enlargement factor k into a deflection amount ⁇ using Expression 8, and estimates an out-of-plane displacement vector.
  • the displacement separation unit 4 further extracts the in-plane displacement vector by subtracting the out-of-plane displacement vector as a correction amount from the measurement vector obtained by the displacement calculation unit 2.
  • the out-of-plane displacement is calculated, and the calculated out-of-plane displacement is subtracted from the measured displacement to calculate the in-plane displacement.
  • An example of extraction will be described.
  • a time series image obtained by imaging the lower surface of the structure 20 shown in FIG. 2 from the imaging direction shown in the drawing before and after applying the load is used.
  • the imaging distance is 5 m
  • the structure 20 is concrete having a length of 20 m, a thickness of 0.5 m, and a width of 10 m (Young's modulus is 40 GPa).
  • the region where the displacement of the image is measured is in the range of ⁇ 200 mm in both the X direction and the Y direction, with the crack portion on the surface of the structure 20 as the image center.
  • the focal length of the lens 13 of the imaging device 11 is 50 mm
  • the pixel pitch of the imaging element 14 is 5 ⁇ m
  • a pixel resolution of 250 ⁇ m is obtained at an imaging distance of 5 m.
  • the imaging device 14 of the imaging device 11 is a monochrome device having 2000 pixels horizontally and 2000 pixels vertically so that a range of 0.5 m ⁇ 0.5 m can be imaged at an imaging distance of 5 m.
  • the frame rate of the image sensor 14 is 60 Hz.
  • sub-pixel displacement estimation by quadratic curve interpolation is used so that displacement can be estimated up to 1/100 pixels so that a displacement resolution of 2.5 ⁇ m can be obtained. it can.
  • the image displacement measurement region (in the range of ⁇ 200 mm to 200 mm in both the X direction and the Y direction) is horizontal 1600 pixels and vertical 1600 pixels.
  • the calculation of Expression 1 to Expression 12 is performed for this pixel region.
  • FIG. 10A showing the displacement in the X direction
  • a displacement of ⁇ 170 ⁇ m occurs in the imaging range of ⁇ 200 mm.
  • FIG. 10B showing the displacement in the Y direction
  • a displacement of ⁇ 160 ⁇ m is linearly generated in the imaging range of ⁇ 200 mm.
  • the displacement in the X direction is a displacement in which an out-of-plane displacement is superimposed on an in-plane displacement.
  • the displacement in the Y direction is a displacement of only out-of-plane displacement.
  • the proportionality constant k that minimizes the evaluation function E (k) of Equation 12 is obtained as 0.000008 by the least square method.
  • the deflection amount ⁇ is obtained as 4 mm and becomes the output of the depth movement amount calculation unit 3.
  • the out-of-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) is obtained by the displacement separation unit 4.
  • the displacement separation unit 4 further subtracts the out-of-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) from the measurement vector V (Vx, Vy) obtained by the displacement calculation unit 2 to thereby obtain an in-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) are obtained, and in-plane displacements in the X direction and the Y direction are calculated from Equation 6.
  • FIGS. 11A and 11B show the output of the displacement separation unit 4.
  • FIG. 11A is a graph showing the displacement in the X direction, and a discontinuous rapid 20 ⁇ m displacement occurs in the cracked portion.
  • FIG. 11B is a graph showing the displacement in the Y direction, and the displacement is zero.
  • the out-of-plane displacement can be separated to extract the in-plane displacement of the structure surface.
  • the depth movement amount calculation unit 3 calculates the imaging distance L from the switching of the optical path length in the optical path length control unit 12 of the imaging device 11.
  • the optical path length control unit 12a of the imaging device 11a includes a parallel plate glass 12a1 and a movable mechanism 12a2.
  • the parallel flat glass 12a1 has a refractive index n and a thickness t of the lens 13 in the optical axis direction.
  • the movable mechanism 12a2 switches whether the parallel plate glass 12a1 is inserted into the optical path or not when the imaging device 11a images the surface of the structure 20.
  • FIG. 12A shows a case where the parallel flat glass 12a1 is not inserted. In this case, the imaging distance is L.
  • FIG. 12B is a case where the parallel flat glass 12a1 is inserted. At this time, the apparent optical path length variation ⁇ ′ due to the insertion of the parallel flat glass 12 a 1 is as shown in Equation 13.
  • This optical path length change amount ⁇ ′ can be handled in the same manner as the deflection amount ⁇ causing the change in the imaging distance of Equations 1 to 8. Therefore, using ⁇ ′ instead of ⁇ , a proportionality constant k that minimizes the evaluation function E (k) of Expression 12 is obtained from the displacement of the image with and without the parallel flat glass 12a1 being inserted.
  • the imaging distance L is calculated using Equation 8 from the obtained proportionality constant k, the optical path length change amount ⁇ ′ obtained from Equation 13, and the known focal length f.
  • ⁇ ′ is 4 mm according to Equation 13.
  • the proportionality constant k that minimizes the evaluation function E (k) of Equation 12 using the measurement vector V (Vx, Vy) obtained by the displacement calculation unit 2 from the displacement of the image with and without the insertion of the parallel flat glass 12a1. Is obtained by the method of least squares, and 0.000008 is obtained.
  • the optical path length control unit 12a is not limited to the parallel plate glass 12a1, and the refractive index may be changed by an element having an electrooptic effect such as liquid crystal.
  • the imaging device 11 is not limited to the imaging device 11a of FIG. 12A and FIG. 12B.
  • FIG. 13 is a diagram for explaining a state in which the optical path length is switched by the optical path length control unit 12b having a configuration different from that in FIGS. 12A and 12B.
  • the optical path length control unit 12b of the imaging device 11b (the processing circuit 15 is omitted) includes a mirror 12b1 and a movable mechanism 12b2 that moves the mirror 12b1 in the optical axis direction (Z-axis direction). Further, in the image pickup apparatus 11b, an image can be formed on the image pickup element 14 by moving the lens 13 and the image pickup element 14 in conjunction with the movable mechanism 12b2. As described above, according to the imaging device 11b, the optical path length can be changed by moving the mirror 12b1 by the movable mechanism 12b2, and thus the imaging distance L can be obtained.
  • FIG. 14 is a diagram for explaining a state in which the optical path length is switched by the optical path length control unit 12c having still another configuration.
  • the optical path length control unit 12c of the imaging device 11c (the processing circuit 15 is omitted) includes a half mirror 12c1, a mirror 12c2, and a lens 13.
  • the imaging device 11c can capture the image 2 at the imaging distance L + ⁇ ′ by the optical path length control unit 12c together with the image 1 at the imaging distance L. If the optical path does not pass through the center (optical axis) and an image is formed on a plurality of optical paths, the lens 13 has imaging characteristics as long as the image 1 and the image 2 are divided and focused on the optical axis. Is not greatly reduced, and even a general-purpose lens can be geometrically corrected by image processing.
  • the displacement calculation unit 2 of the state determination device 1 cuts out portions of the image 1 and the image 2 captured by the image sensor 14 and calculates the displacement of the image 2 with respect to the image 1.
  • the depth movement amount calculation unit 3 can obtain the imaging distance L from the displacement of the image as in FIGS. 12A-B and FIG.
  • the depth movement amount calculation unit 3 can obtain the imaging distance for each time-series image. That is, the depth movement amount calculation unit 3 can obtain the deflection amount ⁇ (movement amount) for each time series image from the imaging distance obtained for each time series image.
  • the displacement separation unit 4 can obtain an out-of-plane displacement vector using the amount of movement and the imaging distance L before applying the load.
  • the displacement separating unit 4 can also subtract the in-plane displacement vector by subtracting the out-of-plane displacement vector from the measurement vector of the time-series image acquired from the displacement calculating unit 2.
  • Non-Patent Document 2 discloses a two-lens camera configuration in which two sets of two mirrors are attached to a normal camera having a lens and an imaging element. On the other hand, in the method of FIG. 14, it is only necessary to add the half mirror 12c1 and the mirror 12c2, and the number of additional parts can be suppressed.
  • the lens has a configuration in which the optical path does not pass through the center and images a plurality of optical paths.
  • the imaging is performed by switching the optical path length by the optical path length control unit 12 provided in the imaging device 11.
  • the distance L can be obtained.
  • the state determination system 10 of the present embodiment that can measure the imaging distance together with the imaging of the time series images of the surface of the structure, the imaging distance can be easily and accurately obtained.
  • FIG. 15 is a diagram illustrating a case where the structure 20 has an inclination in the calculation method of out-of-plane displacement.
  • the coordinate with the optical axis of the imaging device 11 as the z axis and the normal of the structure surface is z.
  • Equation 14 Equation 15
  • Equation 16 Equation 16
  • Equation 19 a function obtained by substituting Equation 19 and Equation 20 into Equation 7 is obtained.
  • is changed from 0 ° to 90 ° in increments of 0.5 °, for example, and the evaluation function E of Equation 12 is used using the function R ( ⁇ ) at each angle ⁇ .
  • the angle that minimizes the evaluation function E (k) among all the obtained k ( ⁇ ) is defined as the inclination angle.
  • the deflection amount ⁇ is obtained from the relationship between k at this inclination angle and Equation 8.
  • the out-of-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) can be estimated from the relationship between the obtained inclination angle and the amount of deflection ⁇ and the expressions 14, 15, 16, 17, 17, 18, and 20.
  • the displacement separation unit 4 obtains the in-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) by subtracting the out-of-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) from the measurement vector V (Vx, Vy).
  • the in-plane displacement vector ⁇ i ( ⁇ x i , ⁇ y i ) the projection onto the surface after application of the load is calculated using Expression 14, Expression 15, Expression 16, Expression 17, and Expression 18 to obtain the structure.
  • the in-plane displacement of the object can be obtained.
  • the in-plane displacement of the structure surface which is the output of the displacement separation unit 4, is replaced with the distortion of the structure surface by the differential displacement calculation unit 5. Multiplying the strain on the surface of the structure by the Young's modulus results in stress, and from this, the stress field on the surface of the structure is obtained.
  • the displacement information obtained by the displacement separation unit 4, the strain information obtained by the differential displacement calculation unit 5, and the movement amount obtained by the depth movement amount calculation unit 3 are input to the abnormality determination unit 6.
  • the abnormality determination unit 6 determines the type of defect based on the displacement information obtained by the displacement separation unit 4, the strain information obtained by the differential displacement calculation unit 5, and the movement amount obtained by the depth movement amount calculation unit 3. And identify the location. For this reason, the abnormality determination unit 6 preliminarily instructs the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 to determine a threshold value for determining a defect, a characteristic displacement corresponding to the type of defect, It has a distortion pattern.
  • the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 are shown in FIG. 5A to FIG. 5D by comparing displacement information, strain information, movement amount and the threshold value, and pattern matching with the pattern. Determine the healthy state or defects such as cracks, delamination and internal cavities.
  • FIG. 11A shows an example of in-plane displacement of the surface in the X direction of the structure due to load application when a crack along the Y direction exists. It can be seen that a 20 ⁇ m discontinuous in-plane displacement occurs in the cracked portion. Such a sudden displacement does not occur in a healthy state with no defects. Therefore, it is possible to detect a crack by confirming a displacement exceeding this by providing a threshold value for the magnitude of discontinuous displacement in advance.
  • FIG. 16A and FIG. 16B are diagrams showing the distribution of the stress field around the crack portion calculated by the differential displacement calculation unit 5 when there is a crack along the Y direction.
  • FIG. 16A since the stress direction is bent by the crack, even when tensile stress is applied to both ends of the structure in the X direction in FIG. Thus, a component in the Y direction is generated. Therefore, cracks can also be detected by detecting the presence or absence of the component in the Y direction.
  • the distribution of the stress field around the crack is known as a stress intensity factor in an elastic body showing a linear response, the information can also be used.
  • FIGS. 17A to 17D show examples of the two-dimensional displacement distribution of the displacement around the crack.
  • 17A and 17B are displacement contour lines in the horizontal direction (X direction) and the direction perpendicular to the paper surface (Y direction) in FIG. 5B, respectively.
  • the displacement contour line in the X direction has an abrupt displacement at the position of the crack. This corresponds to an abrupt displacement at the crack portion shown in FIG. 11A.
  • the density of the contour lines is sparser than in the region where there is no crack.
  • the region in which the displacement contour lines are sparse corresponds to a gentle displacement portion outside the rapid displacement at the crack portion shown in FIG. 11A. The displacement at this portion is gentler than the displacement when there is no crack.
  • FIGS. 17C and 17D show the cases where the cracks are deeper than those in FIGS. 17A and 17B, respectively.
  • the density of the displacement contour lines becomes sparser around the crack in each of the X direction and the Y direction. It is also possible to know the depth of cracks from this density information.
  • the above-described crack determination is performed by the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 of the state determination device 1 in FIG.
  • the strain in the X direction increases rapidly at the cracked portion. From this, it is possible to estimate that there is a crack at a location where a strain exceeding the threshold is detected by providing a threshold in advance in the value of strain in the X direction.
  • Each of the above threshold values can be set by a simulation using the same dimensions and materials as the structure or an experiment using a reduced model. Furthermore, an actual structure can be set from data accumulated by measuring over a long period of time.
  • the above determination can also be made by a pattern matching process as described below, without using the above numerical comparison.
  • FIGS. 17A to 17D are diagrams for explaining the pattern distribution processing of the displacement distribution by the three-dimensional spatial distribution information analysis unit 7.
  • the displacement can be represented as a displacement distribution diagram on the XY plane.
  • the three-dimensional spatial distribution information analysis unit 7 rotates and enlarges / reduces the X-direction pattern of the displacement around the crack stored in advance, and the displacement distribution diagram obtained by the displacement separation unit 4
  • the X-direction pattern of the displacement around the crack stored in advance can be created in advance by simulation or the like for each depth and width of the crack.
  • the three-dimensional spatial distribution information analysis unit 7 rotates and enlarges / reduces the pre-stored displacement around the crack in the Y direction, and the displacement distribution obtained by the displacement separation unit 4
  • the direction and depth of the crack are determined by pattern matching with the figure.
  • the Y-direction pattern of the displacement around the crack stored in advance can be created in advance by simulation or the like for each depth and width of the crack.
  • the three-dimensional spatial distribution information analysis unit 7 rotates and enlarges / reduces the previously stored differential vector field pattern around the crack, and the differential displacement calculation unit 5 obtains it.
  • the direction and depth of the crack are determined by pattern matching with a differential vector field (corresponding to a stress field).
  • the differential vector field pattern of the displacement around the crack stored in advance can be created in advance by simulation or the like for each depth and width of the crack.
  • the correlation calculation is used for the pattern matching.
  • Various other statistical calculation methods may be used for pattern matching.
  • FIG. 19A and 19B show a two-dimensional distribution of stress on the surface viewed from the imaging direction when an internal cavity as shown in FIG. 5D exists.
  • FIG. 19A is a perspective view
  • FIG. 19B is a plan view.
  • stress acts in the X direction of the figure due to the load, but the stress field bends in the hollow portion, and therefore there is a component in the Y direction of the figure in the stress.
  • FIG. 20A to 20C are diagrams showing the contour lines of the displacement of the surface and the stress field as seen from the imaging direction in the presence of the internal cavity.
  • FIG. 20A shows the contour lines of the displacement X component
  • FIG. 20A shows the contour lines of the displacement Y component.
  • FIG. 20B shows the stress field
  • FIG. 20C shows the stress field.
  • the density of contour lines of the X component of the displacement shown in FIG. 20A is reduced.
  • the contour line of the Y component of the displacement shown in FIG. 20B is a closed curve.
  • the stress field that is the differential of the displacement shown in FIG. 20C is bent at the hollow portion. Since the influence of the surface stress field becomes more prominent as the cavity portion is closer to the surface, the depth from the surface of the cavity portion can also be estimated from the bending method of the stress field.
  • the displacement pattern in the X direction of the displacement around the cavity, the displacement pattern in the Y direction of the displacement around the cavity, and the differential vector field (corresponding to the stress field) stored in advance in the three-dimensional spatial distribution information analysis unit 7 As in the case of determining a crack, applying FIG. 20A to FIG. 18A, FIG. 20B to FIG. 18B, and FIG. 20C to FIG. 18C makes it possible to determine the state of the position and depth of the internal cavity. For the pattern matching, correlation calculation is used, but other statistical calculation methods may be used.
  • FIG. 21A and 21B are diagrams for explaining the response when a load is applied to a structure having an internal cavity for a short time (referred to as impulse stimulation).
  • Impulse stimulation can be applied, for example, to a position where a load is applied.
  • FIG. 21B shows the time response of displacement at each point on the surface of A, B, and C shown in FIG. 21A in response to this impulse stimulus.
  • stress transmission is fast and the amplitude of displacement is large.
  • point C since stress is not transmitted in the internal cavity, stress is transmitted from the periphery of the cavity, so that stress transmission is slow and the displacement amplitude is small.
  • the stress transmission time and amplitude at the point B which is between the points A and C are intermediate values between the points A and C. Therefore, when the frequency distribution of the displacement distribution in the plane of the structure viewed from the imaging direction is analyzed by the time change information analysis unit 8 in the abnormality determination unit 6, the region of the internal cavity is determined from the amplitude and phase near the resonance frequency. Can be identified. Further, the internal cavity may be determined from the shift of the resonance frequency.
  • the internal cavity region can be specified by the time change information analysis unit 8.
  • the time response processing of the above displacement is performed by frequency analysis using fast Fourier transform in the time change information analysis unit 8.
  • frequency analysis various frequency analysis methods such as wavelet transform may be used.
  • 22A to 22C are diagrams showing the contour lines of the displacement of the surface and the stress field as seen from the imaging direction when there is peeling.
  • 22A shows the contour line of the X component of the displacement
  • FIG. 22B shows the contour line of the Y component of the displacement
  • FIG. 22C shows the stress field.
  • FIG. 22A shows the contour line of the X component of the displacement. Since the peeled portion is not distorted and moves in a certain direction, there is no contour line. The abnormality determination unit 6 can determine that there is peeling using this feature. In addition, since the point A in the figure is difficult to transmit stress due to tearing due to peeling, the contour lines are sparse compared to the point B which is a healthy part. The abnormality determination unit 6 may determine the peeled portion and the healthy portion using this property.
  • FIG. 22B shows the contour line of the Y component of the displacement.
  • a displacement in the Y direction occurs outside the outer periphery of the peeled portion.
  • the abnormality determination unit 6 can determine that there is peeling using this feature.
  • the stress field which is the differential of the displacement shown in FIG. 22C is 0 or a value in the vicinity thereof at the peeled portion.
  • the abnormality determination unit 6 can determine that there is peeling using this feature.
  • the displacement pattern in the X direction of the displacement around the separation, the displacement pattern in the Y direction of the displacement around the cavity, and the differential vector field (corresponding to the stress field) stored in advance in the three-dimensional spatial distribution information analysis unit 7 As in the case of determining the depth of the crack, applying FIG. 22A to FIG. 18A, FIG. 22B to FIG. 18B, and FIG. 22C to FIG.
  • correlation calculation is used, but other statistical calculation methods may be used.
  • FIG. 23 is a diagram showing a time response when a structure having delamination receives an impulse stimulus.
  • the peeled portion and the healthy portion have waveforms in which the displacement directions are opposite, that is, the phases are 180 ° different.
  • the amplitude is large.
  • the separation portion can be identified from the amplitude and phase.
  • the peeled portion may include a frequency component different from that of the entire structure. Therefore, the peeled portion may be determined from a shift in resonance frequency.
  • the frequency analysis in the time change information analysis unit 8 uses fast Fourier transform.
  • various frequency analysis methods such as wavelet transform may be used.
  • FIG. 24A and FIG. 24B are diagrams showing a state in which a structure is bent by a load.
  • FIG. 24A shows a healthy case
  • FIG. 24B shows a deteriorated case.
  • the amount of deflection becomes larger in the deteriorated state of FIG. 24B than in the healthy state of FIG. 24A.
  • a threshold value is provided for the deflection amount, and when the movement amount exceeds this threshold value, it can be determined that the deterioration has occurred.
  • This threshold value can be converted from a deflection amount when a predetermined load is applied in advance, for example, by calculating strength when designing the structure.
  • the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 compares the amount of movement with a threshold value to determine deterioration.
  • a structure bends, there is a case of not only a smooth curve drawing as shown in FIGS. 24A and 24B but also a flexure including a complicated change instead of a smooth curve.
  • FIG. 25A and FIG. 25B are examples of the above determination performed by the three-dimensional spatial distribution information analysis unit 7, and are diagrams for explaining processing in the case of performing a deflection including a complicated change in the X direction.
  • the imaging range is divided into, for example, nine areas from area A to area I.
  • the proportionality constant k that minimizes the evaluation function E (k) shown in Expression 12 for each region the amount of deflection (the amount of movement in the Z direction) in each region is calculated (FIG. 25B).
  • the amount of deflection in each region can be represented by the amount of deflection at the center of each region, for example, as shown in FIG. 25B.
  • FIG. 26 is a diagram illustrating a change in the movement amount (deflection amount) in the time from the start to the end of load application.
  • the time change of the movement amount in the region B of FIG. 25A is shown.
  • the maximum value of the movement amount can be set as the deflection amount.
  • Deterioration can be determined by comparing the amount of deflection with a threshold value. The time change of the movement amount can be recorded for each area.
  • FIG. 27 is a diagram illustrating a characteristic way of bending when there is a cavity inside the structure.
  • the method of bending when there is an internal cavity is a method of bending that causes the displacement at the surface where the internal cavity exists to be smaller than that when there is no internal cavity (distribution indicated by the broken line in the figure). Show.
  • the three-dimensional spatial distribution information analysis unit 7 can determine the presence of an internal cavity from the obtained deflection state by storing this characteristic deflection method in advance.
  • the differential displacement calculation unit 5 can obtain a differential value obtained by spatially differentiating the movement amount that is the displacement. Since the differential value of the movement amount represents the strain in the Z direction, the characteristic difference between the strain in the Z direction when there is an internal cavity and the strain when there is no internal cavity is preliminarily determined in a three-dimensional spatial distribution information analysis unit. 7, the presence of the internal cavity can be determined from the strain in the Z direction.
  • the time change information analysis unit 8 can determine deterioration such as aging from the time change of the movement amount. That is, when the structure ages, the period of change in the amount of movement when a load is applied becomes longer. Therefore, it is possible to determine that the structure has deteriorated by previously setting a threshold value for the period of change in the movement amount and when the period exceeds the threshold value. Further, it is possible to determine the deterioration in the same manner as described above by the period of change in the differential value of the movement amount.
  • FIG. 28 is a flowchart showing a state determination method of the state determination apparatus 1 of FIG.
  • the displacement calculation unit 2 includes a frame image before application of a load that serves as a reference for calculating displacement in a time-series image of the surface of the structure 20 before and after applying a load imaged by the imaging device 11. Capture the frame images after applying the load in time series. At this time, when imaging the frame image before applying the load, the imaging device 11 performs imaging at the initial imaging distance L and imaging at a distance obtained by shifting the imaging distance by ⁇ ′ by switching the optical path length control unit 12. Do. The displacement calculation unit 2 also captures these frame images.
  • the displacement calculation unit 2 calculates the displacement in the X and Y directions of the image after the load application with respect to the image before the load application as a reference in time series. Further, in the frame image before applying the load, the displacement in the X and Y directions of the image at a distance obtained by shifting the imaging distance with respect to the image at the initial imaging distance L by ⁇ ′ is also calculated.
  • the displacement calculation unit 2 may be a displacement distribution diagram (contour lines of displacement) in which the calculated two-dimensional distribution of displacement is displayed on an XY plane. Further, the displacement calculation unit 2 inputs the calculated displacement or displacement distribution diagram to the depth movement amount calculation unit 3 and the displacement separation unit 4.
  • step S2 the depth movement amount calculation unit 3 calculates the initial imaging distance L from the displacement in the X and Y directions of the image at a distance shifted by ⁇ 'with respect to the image at the initial imaging distance L. Further, the depth movement amount calculation unit 3 determines the movement amount by which the structure 20 surface moves in the normal direction due to the deflection of the structure 20 due to a load from the displacement of the time-series image calculated by the displacement calculation unit 2. Calculation is performed using the calculated imaging distance L. At this time, the depth movement amount calculation unit 3 estimates the inclination angle formed by the optical axis of the imaging device 11 and the normal line of the surface of the structure 20, and calculates the movement amount in consideration of this inclination angle. The depth movement amount calculation unit 3 inputs the calculated movement amount to the displacement separation unit 4, the differential displacement calculation unit 5, and the abnormality determination unit 6.
  • step S3 the displacement separation unit 4 calculates the out-of-plane displacement using the movement amount calculated by the depth movement amount calculation unit 3.
  • step S4 the displacement separating unit 4 subtracts the out-of-plane displacement from the displacement obtained by the displacement calculating unit 2 to separate the in-plane displacement. That is, the displacement separation unit 4 calculates the in-plane displacement in the XY direction of the surface of the structure 20 after the load is applied with respect to the reference before the load is applied. Further, the calculated two-dimensional distribution of in-plane displacement may be a displacement distribution diagram (contour lines of displacement) displayed on the XY plane. The displacement separation unit 4 inputs the calculated result to the differential displacement calculation unit 5 and the abnormality determination unit 6.
  • step S5 the differential displacement calculation unit 5 spatially differentiates the in-plane displacement or displacement distribution diagram input from the displacement separation unit 4 to calculate a differential displacement (stress value) or differential displacement distribution diagram (stress field). . Further, the differential displacement calculation unit 5 calculates a differential displacement (stress value) or a differential displacement distribution diagram (stress field) of the movement amount obtained by the depth movement amount calculation unit 3. The differential displacement calculation unit 5 inputs the calculated result to the abnormality determination unit 6.
  • steps S6, S7, S8, and S9 are steps in which the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines cracks, delamination, internal cavities, and deterioration that are defects in the structure.
  • the determination method will be described with reference to the above-described pattern matching method and threshold value method.
  • step S6 the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the state of cracks, separation, and internal cavities from the input displacement or displacement distribution diagram in the X direction.
  • the three-dimensional spatial distribution information analysis unit 7 includes, as a database, displacement distribution patterns created in advance corresponding to cracks, internal cavities, widths and depths of separation as shown in FIGS. 18A, 20A, and 22A. ing.
  • the three-dimensional spatial distribution information analysis unit 7 performs pattern matching by rotating and enlarging / reducing these displacement distribution patterns with respect to the displacement distribution diagram in the X direction input from the displacement separation unit 4 to detect defects in the XY plane. Can be determined.
  • the three-dimensional spatial distribution information analysis unit 7 determines, for example, the continuity of the displacement based on the input displacement in the X direction. That is, as shown in FIG. 11A, the presence or absence of continuity is determined based on the presence or absence of a steep change equal to or greater than the displacement threshold. The three-dimensional spatial distribution information analysis unit 7 determines that there is a possibility that a crack or separation may exist in any part of the XY plane when there is a steep change without continuity. While the continuous flag DisC (x, y, t) is set to 1, the displacement data at a place where there is a steep change is recorded as numerical information.
  • t is the time on the time-series image of the frame image captured in step S1.
  • the abnormality determination unit 6 inputs the defect information determined by pattern matching, or the discontinuity flag DisC (x, y, t) and numerical information determined by the displacement threshold to the abnormality map creation unit 9.
  • step S7 the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the state of cracks, separation, and internal cavities from the input displacement or displacement distribution diagram in the Y direction.
  • the two-dimensional spatial distribution information analysis unit 7 includes, as a database, displacement distribution patterns created in advance corresponding to cracks, internal cavities, widths and depths of separation, as shown in FIGS. 18B, 20B, and 22B. ing.
  • the three-dimensional spatial distribution information analysis unit 7 performs pattern matching on the displacement distribution diagram in the Y direction input from the displacement separation unit 4 by rotating and enlarging / reducing these displacement distribution patterns, and in the XY plane. Determine the position and type of the defect.
  • the three-dimensional spatial distribution information analysis unit 7 detects a displacement greater than a predetermined threshold value, it determines that the location is defective and sets the orthogonal flag ortho (x, y, t) to 1. At the same time, the displacement data of the location where the displacement greater than the threshold is detected is recorded as numerical information.
  • the abnormality determination unit 6 inputs the defect information determined by pattern matching, or the orthogonal flag ortho (x, y, t) and numerical information determined by displacement to the abnormality map creation unit 9.
  • step S8 the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the deterioration of the structure and the state of the defect from the input movement amount in the Z direction.
  • the abnormality determination unit 6 inputs the determined deterioration and defect information to the abnormality map creation unit 9.
  • step S9 the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the state of cracks, separation, and internal cavities from the input differential displacement (stress value) or differential displacement distribution diagram (stress field). .
  • the three-dimensional spatial distribution information analysis unit 7 includes, as a database, displacement distribution patterns created in advance corresponding to cracks, internal cavities, widths and depths of separation as shown in FIGS. 18C, 20C, and 22C. ing.
  • the three-dimensional spatial distribution information analysis unit 7 performs pattern matching on the differential displacement distribution diagram input from the differential displacement calculation unit 5 by rotating and enlarging / reducing these displacement distribution patterns, so that defects in the XY plane are detected. Determine the position and type.
  • the strain in the X direction increases rapidly because the differential value of the displacement diverges at the cracked portion. From this, it is possible to determine that there is a crack at a location where a strain exceeding the threshold is detected by providing a threshold value in advance for the strain value.
  • the three-dimensional spatial distribution information analysis unit 7 determines that there is a crack at the location, sets 1 to the differential value flag Diff (x, y, t), and sets the defect location. Record differential displacement data as numerical information.
  • the abnormality determination unit 6 inputs the defect information determined by pattern matching, or the differential value flag Diff (x, y, t) and numerical information determined by differential displacement to the abnormality map creation unit 9.
  • step S10 the displacement calculation unit 2 determines whether the processing of each frame image of the time series image has been completed. That is, when the number of frames of the time-series image is n, it is determined whether or not the n-th process is finished. If the number of processes is less than n (NO), the processes from step S1 are repeated. This is repeated until n sheets are completed. Note that n is not limited to the total number of frames, and can be set to an arbitrary number. When the process has finished n sheets (YES), the process proceeds to step S11.
  • step S11 the time change information analysis unit 8 of the abnormality determination unit 6 generates a displacement time response as shown in FIG. 21B or FIG. 23 from the time-series displacement or displacement distribution diagram corresponding to the n frame images.
  • the time frequency distribution (the time frequency is assumed to be f) is the amplitude A (x, y, z, f) and the phase P (x, y, z). , F).
  • the time change information analysis unit 8 determines that there is an internal cavity at a position where a phase shift occurs when the time frequency distribution has a characteristic in which the phase differs depending on the location as shown in FIG. 21B.
  • the time change information analysis unit 8 compares the period of change in the movement amount in the Z direction and the period of change in the differential value of the movement amount with a predetermined threshold of the period, thereby aging the structure. Determine.
  • the time change information analysis unit 8 inputs the above time frequency distribution calculation result and defect determination result to the abnormality map creation unit 9.
  • the abnormality map creation unit 9 creates an abnormality map (x, y, z) based on the information input in the above steps.
  • the results sent from the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 are data groups related to the point (x, y, z) on the XYZ coordinates. The state of the structure of these data is determined by the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 in the abnormality determination unit 6.
  • the abnormality map creation unit 9 can determine whether the displacement in the X direction and the differential displacement are attached, even if data loss occurs, for example, the determination in the displacement in the Y direction cannot be made. -The state of the location in the Y coordinate can be determined. Based on this determination, an abnormality map (x, y, z) can be created.
  • the defect state if the determination of the displacement in the X direction, the displacement in the Y direction, the displacement in the Z direction, and the differential displacement is different, it may be determined by majority vote. Alternatively, the item having the largest difference from the threshold value that is the criterion may be determined.
  • the abnormality map creation unit 9 can express the degree of defects based on the various numerical information described above. For example, the width and depth of a crack, the dimension of peeling, the dimension of an internal cavity, the depth from the surface, and the like can be expressed.
  • the abnormality map creation unit 9 uses the abnormality map (x, y, z) to determine the defect state of the structure performed by the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 in the abnormality determination unit 6. It can also be done when creating. That is, analysis data may be obtained from the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8, and the defect map generation unit 9 may determine the defect state based on the analysis data.
  • the result output of the abnormality map creation unit 9 may be information in a form that can be directly visualized by a person with a display device, or information in a form that is read by a machine.
  • the lens focal length of the imaging device 11 is 50 mm
  • the pixel pitch is 5 ⁇ m
  • a pixel resolution of 500 ⁇ m can be obtained at an imaging distance of 5 m.
  • the image pickup device 11 has a monochrome image pickup device with horizontal 2000 pixels and vertical 2000 pixels, and can capture a 1 m ⁇ 1 m range at an image pickup distance of 5 m.
  • the frame rate of the image sensor can be 60 Hz.
  • sub-pixel displacement estimation by quadratic curve interpolation can be used so that displacement can be estimated up to 1/100 pixels and a displacement resolution of 5 ⁇ m can be obtained.
  • the following various methods can be used for subpixel displacement estimation in image correlation.
  • a smoothing filter can be used to reduce noise during differentiation in displacement differentiation.
  • ⁇ ⁇ Interpolation by quadratic surface, equiangular line, etc. may be used for subpixel displacement estimation.
  • SAD Sum of Absolute Difference
  • SSD Sud of Squared Difference
  • NCC Normalized Cross Correlation
  • ZNCC Zero-mean Normalized
  • optical flow calculation by the gradient method may be used for displacement estimation.
  • the imaging distance L and the deflection amount ⁇ obtained by the depth movement amount calculation unit 3 may be output and input as reference values to other measuring instruments or the like.
  • the lens focal length of the imaging device 11, the pixel pitch of the imaging element, the number of pixels, and the frame rate may be appropriately changed according to the measurement target.
  • a beam-like structure can correspond to a bridge, and a load can correspond to a traveling vehicle.
  • a load is applied to the beam-like structure.
  • the material exhibits the same behavior as described above in terms of material mechanics, a structure having other materials, sizes and shapes, or a load method different from loading the structure, for example, a load is suspended. It can also be applied to a load method such as lowering.
  • time-series signal of a spatial two-dimensional distribution of the surface displacement of a structure it is not limited to a time-series image, but an array-shaped laser Doppler sensor, an array-shaped strain gauge, an array-shaped vibration sensor. An array-type acceleration sensor or the like may be used. Spatial two-dimensional time-series signals obtained from these array sensors may be handled as image information.
  • distance information and inclination information for calculating out-of-plane displacement due to movement of the structure surface in the normal direction can be acquired from images obtained by imaging the structure surface before and after applying a load.
  • the amount of movement of the structure surface in the normal direction can be obtained by measuring the amount of deflection due to the load from the side surface direction of the structure.
  • the structure is a bridge or the like
  • measurement from the side surface of the bridge is extremely difficult in work, and therefore the measurement accuracy is also lowered. Since this embodiment can also solve this problem in work, the displacement of the image on the structure surface can be corrected with high accuracy.
  • deviation from a side surface direction are also unnecessary, the increase in cost can be suppressed.
  • the imaging distance on the surface of the structure and the amount of movement in the normal direction of the surface of the structure due to the load application can be obtained. Furthermore, an out-of-plane displacement due to the movement of the surface of the structure in the normal direction can be obtained using the movement amount. By subtracting this out-of-plane displacement from the displacement caused by the load on the image of the structure surface, the in-plane displacement of the structure surface can be separated. According to the state determination apparatus 100, the above processing can be easily performed with good workability, and therefore, detection that distinguishes defects such as cracks, peeling, and internal cavities of the structure can be performed remotely and accurately with no contact. Is possible.
  • a two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and the image of the structure surface before the load application at the first imaging distance and A displacement calculation unit that calculates a two-dimensional spatial distribution of displacement of the time-series image from a difference between the time-series images of the surface of the structure by applying a load;
  • the first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image, and the movement amount in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image.
  • a depth movement amount calculation unit that calculates using an imaging distance of 1;
  • a displacement separation unit that calculates a correction amount based on the movement amount, subtracts the correction amount from the two-dimensional spatial distribution of displacement of the time-series image, and separates the two-dimensional spatial distribution of displacement of the structure surface;
  • An abnormality determination unit that identifies a defect in the structure based on a comparison between a two-dimensional spatial distribution of the displacement of the structure surface and the amount of movement, and a spatial distribution of the displacement provided in advance and a threshold relating to the amount of movement. And a state determination device.
  • (Appendix 2) The state determination apparatus according to claim 1, wherein the depth movement amount calculation unit estimates an inclination angle of the structure from the time series image and calculates the movement amount corrected by the inclination angle.
  • (Appendix 3) A differential displacement calculating unit that calculates a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface, wherein the abnormality determining unit is configured to differentiate the two-dimensional differential spatial distribution and a differential displacement provided in advance; The state determination device according to appendix 1 or 2, wherein a defect of the structure is specified based on a comparison with a spatial distribution.
  • (Appendix 4) The state determination apparatus according to any one of appendices 1 to 3, wherein the abnormality determination unit identifies a defect of the structure based on a temporal change in a two-dimensional spatial distribution of displacement of the structure surface.
  • (Appendix 5) The state determination apparatus according to appendix 3 or 4, wherein the abnormality determination unit specifies a defect of the structure based on a time change of the two-dimensional differential space distribution.
  • (Appendix 6) The state determination according to any one of appendices 1 to 5, wherein the abnormality determination unit identifies a defect of the structure based on a comparison between a displacement of the surface of the structure and a predetermined threshold value. apparatus.
  • Appendix 13 The state determination system according to appendix 12, wherein the imaging apparatus includes an optical path length control unit that sets the first and second imaging distances.
  • Appendix 14 The state determination system according to appendix 13, wherein the optical path length control unit sets the first and second imaging distances by changing a refractive index in the optical path or switching an optical path.
  • Appendix 19 The state determination method according to appendix 17 or 18, wherein a defect of the structure is specified based on a time change of the two-dimensional differential space distribution.
  • Appendix 20 20.
  • Appendix 21 21.
  • (Appendix 22) The state determination method according to any one of supplementary notes 15 to 21, wherein an abnormality map indicating the location and type of the defect is created based on the determination result.
  • (Appendix 24) The state determination method according to appendix 23, wherein the spatial distribution of the displacement provided in advance and the differential spatial distribution of the differential displacement provided in advance are based on information on the crack, the separation, and the internal cavity. (Appendix 25) 25.
  • a two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and the image of the structure surface before the load application at the first imaging distance and A displacement calculation unit that calculates a two-dimensional spatial distribution of displacement of the time-series image from a difference between the time-series images of the surface of the structure by applying a load;
  • the first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image, and the movement amount in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image.
  • a depth movement amount calculation unit that calculates using an imaging distance of 1;
  • the state determination apparatus which has an abnormality determination part which specifies the defect of the said structure based on the comparison with the threshold value regarding the said movement amount with which the said movement amount was equipped previously.
  • (Appendix 27) 27.
  • a differential displacement calculating unit configured to calculate a differential displacement of the movement amount, and the abnormality determination unit detects defects in the structure based on a comparison between the differential displacement of the movement amount and a differential displacement provided in advance.
  • a displacement separation unit is provided that calculates a correction amount based on the movement amount, subtracts the correction amount from the two-dimensional spatial distribution of the displacement of the time-series image, and separates the two-dimensional spatial distribution of the displacement of the structure surface.
  • the abnormality determining unit identifies defects of the structure based on a comparison between a two-dimensional spatial distribution of the displacement of the structure surface and a spatial distribution of the displacement provided in advance.
  • the state determination apparatus according to claim 1.
  • the differential displacement calculation unit calculates a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface, and the abnormality determination unit calculates the differential displacement of the differential displacement provided in advance and the two-dimensional differential spatial distribution.
  • the state determination apparatus according to appendix 28 or 29, wherein a defect of the structure is specified based on a comparison with a spatial distribution.
  • Appendix 31 The state determination according to any one of appendices 26 to 30, wherein the abnormality determination unit identifies a defect of the structure based on a time change of the two-dimensional spatial distribution of the movement amount or the displacement of the structure surface. apparatus.
  • Appendix 32 32.
  • Appendix 33 33.
  • the state determination device according to any one of appendices 26 to 32, further including an abnormality map creation unit that creates an abnormality map indicating the location and type of the defect based on a determination result of the abnormality determination unit.
  • Appendix 34 Calculating the two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances; Calculating a two-dimensional spatial distribution of the displacement of the time-series image from the difference between the image of the structure surface before the load application at the first imaging distance and the time-series image of the structure surface by the load application; Calculating the first imaging distance from a two-dimensional spatial distribution of the displacement of the image; The amount of movement in the normal direction of the surface of the structure due to the application of the load is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance,
  • a state determination method for identifying a defect in the structure based on a comparison between the movement amount and a threshold value relating to the movement amount provided in advance.
  • (Appendix 35) 35 The state determination method according to appendix 34, wherein an inclination angle of the structure is estimated from the time series image, and the movement amount corrected by the inclination angle is calculated.
  • (Appendix 36) Calculating a differential displacement of the amount of movement; 36.
  • (Appendix 37) Calculating a correction amount based on the movement amount, subtracting the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image, and separating a two-dimensional spatial distribution of the displacement of the structure surface; 37.
  • a state determination method according to any one of appendices 34 to 38, wherein a defect of the structure is specified based on a temporal change in the two-dimensional spatial distribution of the movement amount or the displacement of the structure surface.
  • Appendix 40 40.
  • Appendix 41 41.
  • the state determination method according to any one of appendices 44 to 40, wherein an abnormality map indicating the location and type of the defect is created.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The objective of the present invention is to make it possible to carry out accurate categorized detection of defects in a structure, such as cracking, detachment or internal voids, remotely and in a non-contact manner. The condition assessing device of the present invention comprises: a displacement calculating unit which calculates, from differences between images of a structure surface captured at a first imaging distance and a second imaging distance, a two-dimensional spatial distribution of displacements in the images, and which calculates, from an image of the structure surface prior to application of a load, captured at the first imaging distance, and differences between said image and time-series images of the structure surface resulting from the application of the load, a two-dimensional spatial distribution of displacements in the time-series images; a depth movement amount calculating unit which calculates the first imaging distance from the two-dimensional spatial distribution of the displacements between the images, and uses the first imaging distance to calculate an amount of movement of the structure surface, in the direction of a normal line thereto, resulting from the application of the load, from the two-dimensional spatial distribution of the displacements in the time-series images; a displacement separating unit which separates the two-dimensional spatial distribution of the displacements of the structure surface by calculating a correction amount on the basis of the amount of movement, and subtracting the correction amount from the two-dimensional spatial distribution of the displacements in the time-series images; and an abnormality assessing unit which identifies defects in the structure on the basis of a comparison between the two-dimensional spatial distribution of the displacements of the structure surface and the movement amount, and thresholds relating to the spatial distribution of the displacements and to the movement amount, provided in advance.

Description

構造物の状態判定装置と状態判定システムおよび状態判定方法Structure state determination apparatus, state determination system, and state determination method
 本発明は、構造物に生じる欠陥などの状態を遠隔から判定する技術に関する。 The present invention relates to a technique for remotely determining the state of a defect or the like occurring in a structure.
 トンネルや橋梁などのコンクリート構造物においては、構造物の表面に発生するひび割れ、剥離、内部空洞などの欠陥が、構造物の健全度に影響を及ぼすことが知られている。そのため、構造物の健全度を正確に判断するためには、これらの欠陥を正確に検出することが必要となる。 In concrete structures such as tunnels and bridges, it is known that defects such as cracks, delamination and internal cavities occurring on the surface of the structure affect the soundness of the structure. Therefore, in order to accurately determine the soundness of the structure, it is necessary to accurately detect these defects.
 構造物のひび割れ、剥離、内部空洞などの欠陥の検出は、検査員による目視検査や打音検査によって行われてきており、検査のためには検査員が構造物に接近する必要がある。そのため、空中での作業ができる環境を整えることによる作業コストの増加や、作業環境設定のために交通規制をすることによる経済的機会の損失などが問題となっており、検査員が構造物を遠隔より検査する方法が望まれている。 Detecting defects such as cracks, delamination, and internal cavities in structures has been performed by visual inspection and hammering inspection by an inspector, and it is necessary for the inspector to approach the structure for inspection. For this reason, there are problems such as an increase in work cost by preparing an environment where work can be performed in the air and loss of economic opportunities by regulating traffic for setting the work environment. A remote inspection method is desired.
 遠隔から構造物の状態を判定する方法として画像計測による方法がある。例えば、構造物を撮像装置で撮像して得られた画像を所定の閾値で2値化処理し、この2値化した画像からひび割れに対応する画像部分を検出する技術が提案されている(特許文献1)。また、構造物の応力状態から、構造物に生じている亀裂を検出する技術が提案されている(特許文献2、特許文献3)。また、赤外線撮像装置或は可視光撮像装置とレーザ撮像装置との両方を使用して、撮像画像を自動解析して計測対象物の不具合を判定するシステム(特許文献4)や、可搬性に優れた撮像手段で撮像した画像から欠陥マップを作成する方法(特許文献5)が提案されている。さらに、非特許文献1には、構造物表面の動画像により、ひび割れ領域の動きを検出することによって、ひび割れの検出精度を高める方法が開示されている。 There is a method based on image measurement as a method for determining the state of a structure from a remote location. For example, a technique has been proposed in which an image obtained by imaging a structure with an imaging device is binarized with a predetermined threshold, and an image portion corresponding to a crack is detected from the binarized image (patent) Reference 1). Moreover, the technique which detects the crack which has arisen in the structure from the stress state of a structure is proposed (patent document 2, patent document 3). Also, a system (Patent Document 4) that uses both an infrared imaging device or a visible light imaging device and a laser imaging device to automatically analyze a captured image to determine a defect of a measurement object, and has excellent portability There has been proposed a method (Patent Document 5) for creating a defect map from an image captured by an image capturing means. Furthermore, Non-Patent Document 1 discloses a method for improving the detection accuracy of cracks by detecting the movement of a crack region from a moving image on the surface of a structure.
特開2003-035528号公報JP 2003-035528 A 特開2008-232998号公報JP 2008-232998 A 特開2006-343160号公報JP 2006-343160 A 特開2004-347585号公報JP 2004-347585 A 特開2002-236100号公報Japanese Patent Laid-Open No. 2002-236100 特開2012-132786号公報JP 2012-132786 A 特開2013-181773号公報JP 2013-181773 A 特開2007-057386号公報JP 2007-057386 A 特開2009-180562号公報JP 2009-180562 A
 しかしながら、前記の技術では、例えば橋梁などの構造物の下表面を撮像する場合、荷重により構造物がたわむことで、撮像する表面の位置が表面の法線方向に移動することによる変位(面外変位という)が、構造物の欠陥の情報を有する表面の面内方向の変位(面内変位という)に加算されてしまう。このため、構造物の欠陥を検出する際の精度が低下するという課題があった。 However, in the above technique, for example, when imaging the lower surface of a structure such as a bridge, the structure is deflected by a load, so that the displacement of the surface to be imaged moves in the normal direction of the surface (out-of-plane Displacement) is added to the displacement in the in-plane direction of the surface having information on the defect of the structure (referred to as in-plane displacement). For this reason, there existed a subject that the precision at the time of detecting the defect of a structure fell.
 特許文献6には、測定対象物の表面に発生する歪を計測する方法において、撮像された画像の変位から面外変位を補正する方法が提案されている。特許文献6では、面外変位を構造物の変形前後の側面画像から読み取る。そのために、構造物の表面を撮影する第1映像装置と、側面を撮影する第2映像装置との、2台の映像装置を備えている。すなわち、この方法では、側面を撮影するために、表面を撮影する映像装置とは別にもう一台の映像装置が必要となり、装置の大型化やコスト増大が課題となっている。 Patent Document 6 proposes a method of correcting an out-of-plane displacement from a displacement of a captured image in a method of measuring distortion generated on the surface of a measurement object. In Patent Document 6, the out-of-plane displacement is read from the side images before and after the deformation of the structure. For this purpose, two video devices are provided, a first video device that images the surface of the structure and a second video device that images the side surface. That is, in this method, in order to photograph the side surface, another image device is required in addition to the image device that photographs the surface, and there is a problem in increasing the size and cost of the device.
 また、特許文献7には、パタン光を照明して、ズームイン画像データとズームアウト画像データとの間で対応する線断片から、変位を計算する方法が開示されている。しかしながら、この方法ではパタン光を照明するために、プロジェクタなどのパタン光照明手段が必要となり、装置の大型化やコスト増大が課題となっている。 Also, Patent Document 7 discloses a method of illuminating pattern light and calculating a displacement from corresponding line segments between zoom-in image data and zoom-out image data. However, in this method, pattern light illuminating means such as a projector is required to illuminate the pattern light, and the increase in size and cost of the apparatus are problems.
 さらに、特許文献6や特許文献7のように装置が大型化すると、例えば橋梁などの場合、橋梁の側面の測定のためには、撮像装置を固定したり作業者の足場を確保したりする必要があり、作業性が悪化して測定精度が低下することが課題となっている。 Further, when the apparatus is enlarged as in Patent Document 6 and Patent Document 7, for example, in the case of a bridge or the like, it is necessary to fix the imaging device or to secure an operator's scaffold in order to measure the side surface of the bridge. There is a problem that workability is deteriorated and measurement accuracy is lowered.
 また、特許文献8と特許文献9には、光路の異なる2枚の画像を1つのカメラで重畳撮像して対象物体の距離を求める方法が開示されている。しかしながら、この方法では、1つの撮像素子に重畳撮像を撮影するために、重畳撮像を分離する処理を行うための手段を必要とし、この処理が複雑で時間を要することから、コスト増大が課題となっている。 Also, Patent Document 8 and Patent Document 9 disclose a method for obtaining the distance of a target object by superimposing and capturing two images with different optical paths using a single camera. However, this method requires a means for performing processing for separating superimposed imaging in order to capture superimposed imaging on a single imaging device, and this processing is complicated and time consuming. It has become.
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、遠隔から非接触で構造物のひび割れや剥離や内部空洞などの欠陥を、コストを抑制しつつ精度良く検出することを可能とすることにある。 The present invention has been made in view of the above-described problems, and its purpose is to detect defects such as cracks, peeling, and internal cavities of a structure with high accuracy while controlling costs in a non-contact manner from a remote location. It is to make it possible.
 本発明の状態判定装置は、第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出部と、前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出部と、前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離する変位分離部と、前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する異常判定部と、を有する。 The state determination apparatus of the present invention calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and before applying a load at the first imaging distance. A displacement calculation unit for calculating a two-dimensional spatial distribution of the displacement of the time-series image from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and a two-dimensional spatial distribution of the displacement of the image The first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the time-series image, and the amount of movement in the normal direction of the surface of the structure due to the load application is calculated using the first imaging distance. A depth movement amount calculation unit calculates a correction amount based on the movement amount, and subtracts the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image to obtain a two-dimensional spatial distribution of the displacement of the structure surface. A displacement separating portion to be separated from the surface of the structure; It has a two-dimensional spatial distribution and the amount of movement of the position, and the threshold value relating to the amount of movement and spatial distribution of pre-equipped was displaced, based on a comparison of, and a malfunction determination unit for specifying a defect of the structure.
 本発明の状態判定システムは、第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出部と、前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出部と、前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離する変位分離部と、前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する異常判定部と、を有する状態判定装置と、前記時系列画像と前記画像を撮像し前記状態判定装置に提供する撮像装置と、を有する。 The state determination system of the present invention calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and before applying a load at the first imaging distance. A displacement calculation unit for calculating a two-dimensional spatial distribution of the displacement of the time-series image from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and a two-dimensional spatial distribution of the displacement of the image The first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the time-series image, and the amount of movement in the normal direction of the surface of the structure due to the load application is calculated using the first imaging distance. A depth movement amount calculation unit calculates a correction amount based on the movement amount, and subtracts the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image to obtain a two-dimensional spatial distribution of the displacement of the structure surface. Displacement separation part to be separated and the structure table An abnormality determination unit that identifies a defect of the structure based on a comparison between a two-dimensional spatial distribution of displacement and the amount of movement, and a spatial distribution of displacement provided in advance and a threshold value related to the amount of movement. A state determination device; and an imaging device that captures the time-series image and the image and provides the image to the state determination device.
 本発明の状態判定方法は、第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出し、前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出し、前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離し、前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する。 According to the state determination method of the present invention, a two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and before applying the load at the first imaging distance. A two-dimensional spatial distribution of the displacement of the time-series image is calculated from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and the first two-dimensional spatial distribution of the displacement of the image The moving distance in the normal direction of the surface of the structure due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance, and the moving distance is calculated. A correction amount is calculated based on the two-dimensional spatial distribution, and the two-dimensional spatial distribution of the displacement of the structure surface is separated by subtracting the correction amount from the two-dimensional spatial distribution of the displacement of the time-series image. The two-dimensional spatial distribution and the movement amount are provided in advance. A threshold for the movement amount and spatial distribution of the displacement, based on a comparison of, identifying a defect in the structure.
 本発明の状態判定装置は、第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出部と、前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出部と、前記移動量と、予め備えられた前記移動量に関する閾値との比較に基づいて、前記構造物の欠陥を特定する異常判定部と、を有する。 The state determination apparatus of the present invention calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and before applying a load at the first imaging distance. A displacement calculation unit for calculating a two-dimensional spatial distribution of the displacement of the time-series image from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and a two-dimensional spatial distribution of the displacement of the image The first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the time-series image, and the amount of movement in the normal direction of the surface of the structure due to the load application is calculated using the first imaging distance. A depth movement amount calculation unit; and an abnormality determination unit that identifies a defect of the structure based on a comparison between the movement amount and a threshold value relating to the movement amount provided in advance.
 本発明の状態判定方法は、第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出し、前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出し、前記移動量と、予め備えられた前記移動量に関する閾値との比較に基づいて、前記構造物の欠陥を特定する。 According to the state determination method of the present invention, a two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and before applying the load at the first imaging distance. A two-dimensional spatial distribution of the displacement of the time-series image is calculated from a difference between the image of the surface of the structure and a time-series image of the surface of the structure by applying a load, and the first two-dimensional spatial distribution of the displacement of the image The moving distance in the normal direction of the surface of the structure due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance, and the moving distance is calculated. And a defect of the structure is specified based on a comparison with a threshold value relating to the movement amount provided in advance.
 本発明によれば、遠隔から非接触で構造物のひび割れや剥離や内部空洞などの欠陥を、コストを抑制しつつ精度良く検出することが可能となる。 According to the present invention, it is possible to accurately detect defects such as cracks, peeling, and internal cavities of a structure from a remote location in a non-contact manner while suppressing costs.
本発明の第1の実施形態の状態判定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the state determination apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の状態判定システムの構成を示すブロック図である。It is a block diagram which shows the structure of the state determination system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の状態判定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the state determination apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施形態の状態判定システムの撮像装置の構成を示すブロック図である。It is a block diagram which shows the structure of the imaging device of the state determination system of the 2nd Embodiment of this invention. 構造物の状態(健全な場合)と表面の変位の関係を説明するための図である。It is a figure for demonstrating the relationship between the state (when healthy) of a structure, and the displacement of a surface. 構造物の状態(ひび割れの場合)と表面の変位の関係を説明するための図である。It is a figure for demonstrating the relationship between the state (in the case of a crack) of a structure, and the displacement of a surface. 構造物の状態(剥離の場合)と表面の変位の関係を説明するための図である。It is a figure for demonstrating the relationship between the state (in the case of peeling) of a structure, and the displacement of a surface. 構造物の状態(内部空洞の場合)と表面の変位の関係を説明するための図である。It is a figure for demonstrating the relationship between the state of a structure (in the case of an internal cavity), and the displacement of a surface. 荷重により構造物にたわみが発生する場合の、構造物の下面を撮像した時の面外変位を説明するための図である。It is a figure for demonstrating the out-of-plane displacement when the lower surface of a structure is imaged when a bending generate | occur | produces in a structure by a load. 面外変位ベクトルと面内変位ベクトルと計測ベクトルとの関係を説明するための図である。It is a figure for demonstrating the relationship between an out-of-plane displacement vector, an in-plane displacement vector, and a measurement vector. 面外変位ベクトルの大きさのグラフを示す図である。It is a figure which shows the graph of the magnitude | size of an out-of-plane displacement vector. 面外変位ベクトルの大きさのグラフを示す図である。It is a figure which shows the magnitude | size graph of an out-of-plane displacement vector. 面外変位ベクトルの大きさと計測ベクトルの大きさのグラフを示す図である。It is a figure which shows the graph of the magnitude | size of an out-of-plane displacement vector, and the magnitude | size of a measurement vector. 荷重前後の構造物(ひび割れの場合)のX方向の表面の変位を変位算出部で算出した結果を示す図である。It is a figure which shows the result of having calculated the displacement of the surface of the X direction of the structure (in the case of a crack) before and behind a load in the displacement calculation part. 荷重前後の構造物(ひび割れの場合)のY方向の表面の変位を変位算出部で算出した結果を示す図である。It is a figure which shows the result of having calculated the displacement of the surface of the Y direction of the structure (in the case of a crack) before and behind a load by the displacement calculation part. 荷重前後の構造物(ひび割れの場合)のX方向の表面の面内変位を変位分離部で算出した結果を示す図である。It is a figure which shows the result of having calculated the in-plane displacement of the surface of the surface of the X direction of the structure (in the case of a crack) before and behind a load in the displacement separation part. 荷重前後の構造物(ひび割れの場合)のY方向の表面の面内変位を変位分離部で算出した結果を示す図である。It is a figure which shows the result of having calculated the in-plane displacement of the surface of the Y direction surface of the structure (in the case of a crack) before and behind a load in the displacement separation part. 本発明の第2の実施形態の状態判定システムの撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device of the state determination system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の状態判定システムの撮像装置の構成を示す図である。It is a figure which shows the structure of the imaging device of the state determination system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の状態判定システムの撮像装置の別の構成を示す図である。It is a figure which shows another structure of the imaging device of the state determination system of the 2nd Embodiment of this invention. 本発明の第2の実施形態の状態判定システムの撮像装置のさらに別の構成を示す図である。It is a figure which shows another structure of the imaging device of the state determination system of the 2nd Embodiment of this invention. 構造物に傾斜がある場合の補正量の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the correction amount in case a structure has an inclination. ひび割れ周りの応力場の分布を示す図である。It is a figure which shows distribution of the stress field around a crack. ひび割れ周りの応力場の分布を示す図である。It is a figure which shows distribution of the stress field around a crack. ひび割れ周りの変位の2次元分布(X方向)の例を示す図である(ひび割れが浅い場合)。It is a figure which shows the example of the two-dimensional distribution (X direction) of the displacement around a crack (when a crack is shallow). ひび割れ周りの変位の2次元分布(Y方向)の例を示す図である(ひび割れが浅い場合)。It is a figure which shows the example of the two-dimensional distribution (Y direction) of the displacement around a crack (when a crack is shallow). ひび割れ周りの変位の2次元分布(X方向)の例を示す図である(ひび割れが深い場合)。It is a figure which shows the example of the two-dimensional distribution (X direction) of the displacement around a crack (when a crack is deep). ひび割れ周りの変位の2次元分布(Y方向)の例を示す図である(ひび割れが深い場合)。It is a figure which shows the example of the two-dimensional distribution (Y direction) of the displacement around a crack (when a crack is deep). 異常判定部による変位分布(変位のX方向のパタン)とのパタンマッチングを説明する図である。It is a figure explaining the pattern matching with the displacement distribution (pattern of the X direction of a displacement) by the abnormality determination part. 異常判定部による変位分布(変位のY方向のパタン)とのパタンマッチングを説明する図である。It is a figure explaining the pattern matching with the displacement distribution (the pattern of the Y direction of a displacement) by the abnormality determination part. 異常判定部による変位分布(変位の微分ベクトル場のパタン)とのパタンマッチングを説明する図である。It is a figure explaining pattern matching with the displacement distribution (pattern of the differential vector field of a displacement) by an abnormality determination part. 内部空洞が存在する場合の撮像方向から見た面の応力の2次元分布を示す斜視図である。It is a perspective view which shows the two-dimensional distribution of the stress of the surface seen from the imaging direction in case an internal cavity exists. 内部空洞が存在する場合の撮像方向から見た面の応力の2次元分布を示す平面図である。It is a top view which shows the two-dimensional distribution of the stress of the surface seen from the imaging direction in case an internal cavity exists. 内部空洞が存在する場合の撮像方向から見た面の変位の等高線(X成分)を示す図である。It is a figure which shows the contour line (X component) of the displacement of the surface seen from the imaging direction in case an internal cavity exists. 内部空洞が存在する場合の撮像方向から見た面の変位の等高線(Y成分)を示す図である。It is a figure which shows the contour line (Y component) of the displacement of the surface seen from the imaging direction in case an internal cavity exists. 内部空洞が存在する場合の撮像方向から見た面の応力場を示す図である。It is a figure which shows the stress field of the surface seen from the imaging direction in case an internal cavity exists. 内部空洞が存在する場合の構造体にインパルス刺激を与えた場合の応答を説明する図である(応答を得る位置ABCを示す)。It is a figure explaining the response at the time of giving an impulse stimulus to a structure in case an internal cavity exists (position ABC which obtains a response is shown). 内部空洞が存在する場合の構造体にインパルス刺激を与えた場合の応答を説明する図である(位置ABCでの応答を示す)。It is a figure explaining the response at the time of giving an impulse stimulus to a structure in case an internal cavity exists (the response in position ABC is shown). 剥離が存在する場合の撮像方向から見た面の変位の等高線(X成分)を示す図である。It is a figure which shows the contour line (X component) of the displacement of the surface seen from the imaging direction in case peeling exists. 剥離が存在する場合の撮像方向から見た面の変位の等高線(Y成分)を示す図である。It is a figure which shows the contour line (Y component) of the displacement of the surface seen from the imaging direction in case peeling exists. 剥離が存在する場合の撮像方向から見た面の応力場を示す図である。It is a figure which shows the stress field of the surface seen from the imaging direction in case peeling exists. 剥離が存在する場合の構造体にインパルス刺激を与えた場合の変位の時間応答を説明するための図である。It is a figure for demonstrating the time response of the displacement at the time of giving impulse stimulation to the structure in case peeling exists. 荷重により構造物(健全な場合)がたわむ様子を示す図である。It is a figure which shows a mode that a structure (when healthy) bends with a load. 荷重により構造物(劣化の場合)がたわむ様子を示す図である。It is a figure which shows a mode that a structure (in the case of deterioration) bends with a load. 構造物下面の撮像範囲を複数の領域に分割した例を示す図である。It is a figure which shows the example which divided | segmented the imaging range of the lower surface of a structure into several area | region. 複数の分割した領域ごとにたわみ量を求める例を示す図である。It is a figure which shows the example which calculates | requires the deflection amount for every several area | region divided | segmented. 荷重印加の開始から終了までの時間における移動量(たわみ量)の変化を示す図である。It is a figure which shows the change of the movement amount (deflection amount) in the time from the start to the end of load application. 構造物の内部に空洞がある場合の特徴的なたわみ方を説明するための図である。It is a figure for demonstrating the characteristic way of bending when there exists a cavity in the inside of a structure. 本発明の実施形態の状態判定装置における状態判定方法を示すフローチャートである。It is a flowchart which shows the state determination method in the state determination apparatus of embodiment of this invention.
 以下、図を参照しながら、本発明の実施形態を詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
(第1の実施形態)
 図1は、本発明の実施形態の状態判定装置の構成を示すブロック図である。本実施形態の状態判定装置100は、第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出部101を有する。さらに、前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出部102を有する。さらに、前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離する変位分離部103を有する。さらに、前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する異常判定部104を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.
(First embodiment)
FIG. 1 is a block diagram illustrating a configuration of a state determination device according to an embodiment of the present invention. The state determination device 100 according to the present embodiment calculates a two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances, and loads at the first imaging distance. A displacement calculation unit 101 that calculates a two-dimensional spatial distribution of the displacement of the time-series image from the difference between the image of the structure surface before application and the time-series image of the structure surface by applying a load. Further, the first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image, and the amount of movement in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image. A depth movement amount calculation unit 102 that calculates using the first imaging distance is provided. Further, a displacement separation unit that calculates a correction amount based on the movement amount, subtracts the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image, and separates the two-dimensional spatial distribution of the displacement of the structure surface. 103. Furthermore, an abnormality that identifies a defect in the structure based on a comparison between a two-dimensional spatial distribution of displacement of the structure surface and the amount of movement, and a spatial distribution of displacement provided in advance and a threshold value related to the amount of movement. The determination unit 104 is included.
 状態判定装置100によれば、構造物表面の撮像距離と、荷重印加による構造物表面の法線方向の移動量とが得られる。さらに、移動量を用いて、構造物表面の法線方向への移動による面外変位が得られる。この面外変位を構造物表面の画像の荷重による変位から差し引くことによって、構造物表面の面内変位を分離することができる。状態判定装置100によれば、以上の処理を作業性良く簡便に行うことができるため、構造物のひび割れや剥離や内部空洞などの欠陥を区別した検出を、遠隔から非接触で精度良く行うことが可能となる。 According to the state determination device 100, the imaging distance on the surface of the structure and the amount of movement in the normal direction of the surface of the structure due to load application can be obtained. Furthermore, an out-of-plane displacement due to the movement of the surface of the structure in the normal direction can be obtained using the movement amount. By subtracting this out-of-plane displacement from the displacement caused by the load on the image of the structure surface, the in-plane displacement of the structure surface can be separated. According to the state determination apparatus 100, the above processing can be easily performed with good workability, and therefore, detection that distinguishes defects such as cracks, peeling, and internal cavities of the structure can be performed remotely and accurately with no contact. Is possible.
 以上のように、本実施形態によれば、遠隔から非接触で構造物のひび割れや剥離や内部空洞などの欠陥を、コストを抑制しつつ精度良く検出することが可能となる。
(第2の実施形態)
 図2は、本発明の第2の実施形態の状態判定システムの構成を示すブロック図である。状態判定システム10は、状態判定装置1と撮像装置11とを備えている。撮像装置11は、構造物20に荷重を印加する前後の構造物20の表面を、X-Y平面の時系列画像として撮像し、撮像した画像情報を状態判定装置1に入力する。撮像装置11はまた、荷重を印加する前の撮像距離での構造物20の表面の画像と、この撮像距離とは異なる撮像距離での構造物20の表面の画像とを撮像し、これらの画像情報を状態判定装置1に入力する。状態判定装置1は、撮像装置11から前記のような画像情報を取得する。
As described above, according to the present embodiment, it is possible to accurately detect defects such as cracks, delamination, and internal cavities of a structure from a remote location in a non-contact manner while suppressing costs.
(Second Embodiment)
FIG. 2 is a block diagram illustrating a configuration of a state determination system according to the second embodiment of this invention. The state determination system 10 includes a state determination device 1 and an imaging device 11. The imaging device 11 captures the surface of the structure 20 before and after applying a load to the structure 20 as a time-series image on the XY plane, and inputs the captured image information to the state determination device 1. The imaging device 11 also captures an image of the surface of the structure 20 at an imaging distance before applying a load and an image of the surface of the structure 20 at an imaging distance different from the imaging distance, and these images. Information is input to the state determination device 1. The state determination device 1 acquires the image information as described above from the imaging device 11.
 図2では、被測定物である構造物20を2点支持された梁状の構造としているが、これには限定されない。また、構造物20には、各種の欠陥21が存在する場合がある。 In FIG. 2, the structure 20 as the object to be measured has a beam-like structure supported at two points, but is not limited to this. In addition, various defects 21 may exist in the structure 20.
 図3は、状態判定装置1の構成を示すブロック図である。状態判定装置1は、変位算出部2、奥行移動量算出部3、変位分離部4、微分変位算出部5、異常判定部6、異常マップ作成部9を備えている。異常判定部6は、3次元空間分布情報解析部7と時間変化情報解析部8を備えている。 FIG. 3 is a block diagram showing a configuration of the state determination device 1. The state determination device 1 includes a displacement calculation unit 2, a depth movement amount calculation unit 3, a displacement separation unit 4, a differential displacement calculation unit 5, an abnormality determination unit 6, and an abnormality map creation unit 9. The abnormality determination unit 6 includes a three-dimensional spatial distribution information analysis unit 7 and a time change information analysis unit 8.
 図4は、撮像装置11の構成を示すブロック図である。撮像装置11は、光路長制御部12とレンズ13と撮像素子14と処理回路15とを備えている。レンズ13と撮像素子14と処理回路15とは、撮像用のカメラを構成する。処理回路15は、レンズ13により撮像素子13の撮像面に結像する構造物20の表面の画像を、状態判定装置1に入力する。光路長制御部12は、レンズ13から撮像する構造物20の表面までの光路長(撮像距離)を変えることができる。 FIG. 4 is a block diagram illustrating a configuration of the imaging device 11. The imaging device 11 includes an optical path length control unit 12, a lens 13, an imaging element 14, and a processing circuit 15. The lens 13, the image sensor 14, and the processing circuit 15 constitute an imaging camera. The processing circuit 15 inputs an image of the surface of the structure 20 formed on the imaging surface of the imaging device 13 by the lens 13 to the state determination device 1. The optical path length control unit 12 can change the optical path length (imaging distance) from the lens 13 to the surface of the structure 20 to be imaged.
 状態判定装置1の変位算出部2は、時系列画像のX-Y平面上の各(X,Y)座標ごとの変位を算出する。すなわち、撮像装置11で撮像された荷重印加前のフレーム画像を基準とし、荷重印加後の最初の時刻のフレーム画像における変位を、これらのフレーム画像の差分から算出する。次に、荷重印加後の次の時刻のフレーム画像の変位、さらにその次の時刻のフレーム画像の変位という具合に、時系列画像ごとに荷重印加前の画像に対する変位を算出する。 The displacement calculation unit 2 of the state determination device 1 calculates the displacement for each (X, Y) coordinate on the XY plane of the time-series image. That is, using the frame image before the load application captured by the imaging device 11 as a reference, the displacement in the frame image at the first time after the load application is calculated from the difference between these frame images. Next, the displacement of the image before the load application is calculated for each time series image, such as the displacement of the frame image at the next time after the load application, and further the displacement of the frame image at the next time.
 変位算出部2はまた、光路長制御部12で撮像距離が変えられた、荷重を印加する前の構造物20の表面の画像の、X-Y平面上の各(X,Y)座標ごとの変位を算出する。 The displacement calculation unit 2 also changes the imaging distance of the surface of the structure 20 before the load is applied by the optical path length control unit 12 for each (X, Y) coordinate on the XY plane. Calculate the displacement.
 変位算出部2は、画像相関演算を用いて変位を算出することができる。また、変位算出部2は、算出した変位を、X-Y平面の2次元空間分布とする変位分布図として表すこともできる。 The displacement calculation unit 2 can calculate the displacement using image correlation calculation. Further, the displacement calculating unit 2 can also represent the calculated displacement as a displacement distribution diagram having a two-dimensional spatial distribution on the XY plane.
 奥行移動量算出部3は、撮像距離の異なる構造物20表面の画像の変位から、荷重印加前の撮像距離を算出する。さらに、奥行移動量算出部3は、時系列画像の変位から、構造物20がたわむなどして構造物20表面がその法線方向へ移動する移動量を、算出された撮像距離を用いて算出する。奥行移動量算出部3は、移動量を変位分離部4と微分変位算出部5と異常判定部6とに入力する。 The depth movement amount calculation unit 3 calculates the imaging distance before applying the load from the displacement of the image of the surface of the structure 20 having a different imaging distance. Further, the depth movement amount calculation unit 3 calculates, using the calculated imaging distance, a movement amount by which the surface of the structure 20 moves in the normal direction due to the deflection of the structure 20 from the displacement of the time-series image. To do. The depth movement amount calculation unit 3 inputs the movement amount to the displacement separation unit 4, the differential displacement calculation unit 5, and the abnormality determination unit 6.
 変位分離部4は、時系列画像の変位に含まれている移動量に基づく変位(面外変位という)を、算出された移動量を用いて算出する。さらに、変位分離部4は、時系列画像の変位から、面外変位を差し引くことによって、構造物20の表面に生じている変位(面内変位という)を分離する。変位分離部4は、分離した面内変位を、微分変位算出部5と異常判定部6とに入力する。 The displacement separation unit 4 calculates a displacement based on the movement amount included in the displacement of the time-series image (referred to as out-of-plane displacement) using the calculated movement amount. Furthermore, the displacement separation unit 4 separates the displacement (referred to as in-plane displacement) generated on the surface of the structure 20 by subtracting the out-of-plane displacement from the displacement of the time-series image. The displacement separation unit 4 inputs the separated in-plane displacement to the differential displacement calculation unit 5 and the abnormality determination unit 6.
 微分変位算出部5は、時系列画像の変位もしくは変位分布図や移動量に空間微分を施し、微分変位、もしくは、算出した微分変位をX-Y平面上の2次元微分空間分布とする微分変位分布図や微分移動量を算出する。微分変位算出部5は、算出結果を異常判定部6に入力する。 The differential displacement calculation unit 5 performs spatial differentiation on the displacement or displacement distribution diagram of the time-series image and the movement amount, and the differential displacement or the calculated differential displacement is converted into a two-dimensional differential space distribution on the XY plane. The distribution map and differential movement amount are calculated. The differential displacement calculation unit 5 inputs the calculation result to the abnormality determination unit 6.
 異常判定部6は、入力された算出結果に基づいて、構造物20の状態を判定する。すなわち、異常判定部6は、3次元空間分布情報解析部7と時間変化情報解析部8での解析結果から、構造物20の異常(欠陥21)の場所と種類を判定する。さらに、異常判定部6は、判定した構造物20の異常の場所と種類を、異常マップ作成部9に入力する。異常マップ作成部9は、構造物20の異常状態の空間分布をX-Y平面にマップ化し、異常マップとして記録し、結果を出力する。 The abnormality determination unit 6 determines the state of the structure 20 based on the input calculation result. That is, the abnormality determination unit 6 determines the location and type of the abnormality (defect 21) of the structure 20 from the analysis results of the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8. Furthermore, the abnormality determination unit 6 inputs the determined abnormality location and type of the structure 20 to the abnormality map creation unit 9. The abnormality map creation unit 9 maps the spatial distribution of the abnormal state of the structure 20 to the XY plane, records it as an abnormality map, and outputs the result.
 状態判定装置1は、PC(Personal Computer)やサーバなどの情報機器とすることができる。情報機器の有する演算資源であるCPU(Central Processing Unit)と、記憶資源であるメモリやHDD(Hard Disk Drive)を用いて、CPUでプログラムを動作させることにより、状態判定装置1を構成する各部を実現することができる。 The state determination device 1 can be an information device such as a PC (Personal Computer) or a server. By using a CPU (Central Processing Unit), which is a computing resource of an information device, and a memory or HDD (Hard Disk Drive), which is a storage resource, each part of the state determination device 1 is operated by the CPU. Can be realized.
 図5A~図5Dは、構造物20の各種異常状態と表面の面内変位の関係を説明するための図である。図5Aは、2点支持された梁状の構造物20の側面図である。図5Aに示すように、撮像装置11は、構造物20の下表面を撮像方向(Z方向)に撮像するよう配置されている。このとき、構造物20が健全であれば、図5Aに示すように、構造物20の上面からの垂直荷重に対し、構造物20の上面には圧縮応力が、下面には引張応力がそれぞれ働く。なお、構造物20は、同様の応力が働く条件であれば、特に2点支持された梁状の構造物でなくてもよい。 5A to 5D are diagrams for explaining the relationship between various abnormal states of the structure 20 and in-plane displacement of the surface. FIG. 5A is a side view of the beam-like structure 20 supported at two points. As illustrated in FIG. 5A, the imaging device 11 is arranged to image the lower surface of the structure 20 in the imaging direction (Z direction). At this time, if the structure 20 is healthy, as shown in FIG. 5A, a compressive stress is applied to the upper surface of the structure 20 and a tensile stress is applied to the lower surface with respect to the vertical load from the upper surface of the structure 20. . The structure 20 may not be a beam-like structure that is supported at two points as long as the same stress is applied.
 ここで構造物20が弾性体である場合、応力は歪に比例する。その比例定数であるヤング率は、構造物の材質に依存する。応力と比例する歪は単位長さあたりの変位であるので、変位分離部4で算出された結果を微分変位算出部5で空間微分することにより、歪を算出することができる。すなわち、微分変位算出部5の結果により、応力場を求めることが可能となる。 Here, when the structure 20 is an elastic body, the stress is proportional to the strain. The Young's modulus, which is a proportional constant, depends on the material of the structure. Since the strain proportional to the stress is a displacement per unit length, the strain can be calculated by spatially differentiating the result calculated by the displacement separation unit 4 by the differential displacement calculation unit 5. That is, the stress field can be obtained from the result of the differential displacement calculation unit 5.
 図5Bに示すように、ひび割れが存在する場合、ひび割れ部分は荷重による変位が大きい。一方で、ひび割れ部分の周辺は、ひび割れ部分により応力の伝達がないため、構造物20の下面の引張応力は、図5Aに示す健全な状態と比べ小さくなる。 As shown in FIG. 5B, when a crack exists, the cracked portion is greatly displaced by a load. On the other hand, since there is no transmission of stress around the cracked portion, the tensile stress on the lower surface of the structure 20 is smaller than the healthy state shown in FIG. 5A.
 また、図5Cに示すように、剥離が存在する場合、構造物20の下面から見た外観は、ひび割れの場合と同様の外観が観察される。しかしながら、剥離の場合は、剥離部分とその上部との間に応力伝達がない。そのため、荷重による変位は剥離部分においては一定方向に一定量が平行移動するだけであり、その空間微分値である歪は発生しない。よって、荷重による変位を空間微分することで得られる歪の情報を用いることで、ひび割れと剥離との区別をつけることが可能となる。 In addition, as shown in FIG. 5C, when peeling is present, the appearance seen from the lower surface of the structure 20 is observed as in the case of cracking. However, in the case of peeling, there is no stress transmission between the peeling part and the upper part thereof. Therefore, the displacement due to the load only translates a certain amount in a certain direction in the peeled portion, and no distortion which is a spatial differential value is generated. Therefore, it is possible to distinguish between cracking and peeling by using strain information obtained by spatially differentiating displacement due to load.
 また、図5Dに示すように、内部空洞が存在する場合、内部空洞では応力の伝達が妨げられるため、構造物20の下面における応力は小さくなる。よって、画像から算出される歪も小さくなることから、構造物20の外側から直接見ることができない内部空洞を見つけることが可能である。 Also, as shown in FIG. 5D, when an internal cavity exists, the stress on the lower surface of the structure 20 is reduced because the transmission of stress is hindered in the internal cavity. Therefore, since the distortion calculated from the image is also reduced, it is possible to find an internal cavity that cannot be directly seen from the outside of the structure 20.
 図5A~図5Dで計測すべき構造物表面の変位はX-Y面内の面内変位(X方向およびY方向)である。そのため、変位分離部4で、奥行移動量算出部3で算出された荷重による構造物20の表面のその法線方向への移動量に基づいた、見かけの変位(面外変位)を補正量として算出し、この面外変位を差し引いて面内変位を分離する。以下では、面外変位を算出する方法について説明する。 The displacement of the structure surface to be measured in FIGS. 5A to 5D is an in-plane displacement (X direction and Y direction) in the XY plane. Therefore, the displacement separation unit 4 uses the apparent displacement (out-of-plane displacement) based on the amount of movement of the surface of the structure 20 in the normal direction due to the load calculated by the depth movement amount calculation unit 3 as a correction amount. The in-plane displacement is separated by calculating and subtracting this out-of-plane displacement. Hereinafter, a method for calculating the out-of-plane displacement will be described.
 なお、表面が曲面である場合に対して法線というが、表面が複数の小さな曲面を有していて全体として大きな曲面を成している場合、ここでは大きな曲面に対する法線を指すものとする。また、表面が平面である場合に対しては垂線というが、以下の説明では、単純化のために法線と統一して表記することとする。 In addition, although the normal line is referred to when the surface is a curved surface, when the surface has a plurality of small curved surfaces and forms a large curved surface as a whole, the normal line for the large curved surface is used here. . Moreover, although it is called a perpendicular for the case where the surface is a plane, in the following description, it will be expressed as a normal line for simplicity.
 図6は、荷重により構造物20にたわみなどが発生する場合の、構造物の下表面を撮像した時の(図2を参照)、面外変位を説明するための図である。図6では、構造物20表面の、その法線方向(Z方向)への移動量を、構造物のたわみによるものとし、たわみ量δとして表記している。なお、表面のZ方向への移動量は、たわみ量だけには限定されず、例えば、荷重により構造物20の全体が沈み込むことで移動する量などが、含まれていても良い。 FIG. 6 is a diagram for explaining the out-of-plane displacement when the lower surface of the structure is imaged (see FIG. 2) when the structure 20 is bent due to the load. In FIG. 6, the amount of movement of the surface of the structure 20 in the normal direction (Z direction) is caused by the deflection of the structure and is expressed as a deflection amount δ. Note that the amount of movement of the surface in the Z direction is not limited to the amount of deflection, and may include, for example, the amount of movement when the entire structure 20 sinks due to a load.
 図6に示すように、荷重により構造物20にたわみ(たわみ量δ)が発生する場合、撮像装置11の撮像素子14の撮像面には、X方向で、構造物表面の変位の2次元空間分布である面内変位Δxに相当するΔxとは別に、たわみ量δによる面外変位δxが生じる。同様にY方向で、面内変位Δyに相当するΔyと、たわみ量δによる面外変位δyが生じる。面外変位δx、δyと、面内変位Δx、Δyとは、撮像距離をL、レンズ焦点距離をf、構造物表面の撮像中心からの座標を(x、y)とすると、それぞれ、式1、式2、式3、式4で表される。 As shown in FIG. 6, when a deflection (deflection amount δ) occurs in the structure 20 due to the load, the imaging surface of the imaging device 14 of the imaging device 11 has a two-dimensional space of displacement of the structure surface in the X direction. Apart from Δx i corresponding to the in-plane displacement Δx which is the distribution, an out-of-plane displacement δx i occurs due to the deflection amount δ. Similarly, Δy i corresponding to the in-plane displacement Δy and an out-of-plane displacement δy i due to the deflection amount δ are generated in the Y direction. The out-of-plane displacements δx i , δy i, and in-plane displacements Δx i , Δy i are: L is the imaging distance, f is the lens focal length, and (x, y) is the coordinate from the imaging center of the structure surface. They are represented by Formula 1, Formula 2, Formula 3, and Formula 4, respectively.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 例えば、構造物20の荷重前後のたわみ量δが4mm、撮像距離Lが5m、レンズ焦点距離fが50mmの場合、構造物20の表面における撮像中心からの距離xが200mmにおいて、撮像面の面外変位δxは式1より1.6μmとなる。一方、構造物20の表面に160μmの面内変位Δxが存在する場合、式3より撮像面の面内変位Δxは1.6μmとなる。このように、変位算出部2で算出された時系列画像の変位やX-Y平面の2次元空間分布とする変位分布図には、面内変位と同等の面外変位が重畳されている場合がある。 For example, when the deflection δ before and after the load of the structure 20 is 4 mm, the imaging distance L is 5 m, and the lens focal length f is 50 mm, the distance x from the imaging center on the surface of the structure 20 is 200 mm. The external displacement δx i is 1.6 μm from Equation 1. On the other hand, when an in-plane displacement Δx of 160 μm is present on the surface of the structure 20, the in-plane displacement Δx i of the imaging surface is 1.6 μm from Equation 3. In this way, when the displacement distribution diagram calculated by the displacement calculation unit 2 or the displacement distribution diagram representing the two-dimensional spatial distribution on the XY plane is superimposed with an out-of-plane displacement equivalent to the in-plane displacement There is.
 ここで、式1と式2を面外変位ベクトルδi(δx,δy)、式3と式4を面内変位ベクトルΔi(Δx,Δy)としてまとめると、それぞれ式5と式6となる。 Here, when Formula 1 and Formula 2 are combined as out-of-plane displacement vectors δi (δx i , δy i ), and Formulas 3 and 4 are combined as in-plane displacement vectors Δi (Δx i , Δy i ), Formulas 5 and 6 are respectively obtained. It becomes.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 図7は、式5と式6で示される面外変位ベクトルδi(δx,δy)と面内変位ベクトルΔi(Δx,Δy)の関係を示す図である。図7において、面外変位ベクトルδi(δx,δy)は放射状のベクトル群(図7中の細実線の矢印)となり、その大きさR(x,y)は式1と式2から式7のようになる。式7によれば、たわみ量δが一定であれば、その大きさは撮像中心からの距離に比例した値となり、比例定数を式8に示すようにkと置けば、式7は式9のように表される。 FIG. 7 is a diagram illustrating the relationship between the out-of-plane displacement vector δi (δx i , δy i ) and the in-plane displacement vector Δi (Δx i , Δy i ) expressed by Equations 5 and 6. 7, out-of-plane displacement vector δi (δx i, δy i) the radial vector group (thin solid line arrow in FIG. 7), and its size, R (x, y) Formula from Equation 1 and Equation 2 It becomes like 7. According to Equation 7, if the deflection amount δ is constant, the magnitude thereof is a value proportional to the distance from the imaging center, and if the proportionality constant is set to k as shown in Equation 8, Equation 7 becomes Equation 9 It is expressed as follows.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、変位算出部2で算出される変位分布は、面外変位ベクトルδi(δx,δy)(図7中の細実線の矢印)と面内変位ベクトルΔi(Δx,Δy)(図7中の太実線の矢印)との合成ベクトルである計測ベクトルV(Vx,Vy)(図7中の点線の矢印)である。計測ベクトルV(Vx,Vy)の大きさをRmes(x,y)とすると、式10、式11のように表される。 Here, the displacement distribution calculated by the displacement calculation unit 2 includes an out-of-plane displacement vector δi (δx i , δy i ) (thin solid line arrow in FIG. 7) and an in-plane displacement vector Δi (Δx i , Δy i ). It is a measurement vector V (Vx, Vy) (dotted line arrow in FIG. 7) which is a combined vector with (a thick solid line arrow in FIG. 7). When the magnitude of the measurement vector V (Vx, Vy) is Rmes (x, y), it is expressed as Expression 10 and Expression 11.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 図8A、図8Bは、式7、式8、式9で与えられる面外変位ベクトルδi(δx,δy)の大きさR(x,y)の値の例を示したグラフである。図8A、図8Bは、たわみ量δがそれぞれ1mm、4mmの場合の面外変位ベクトルの大きさR(x,y)を示したグラフであり、どちらのグラフもたわむ前の撮像距離Lは5000mm、焦点距離fは50mmである。図8A、図8Bのグラフを比較して分かるように、双方のグラフは相似形であり、たわみ量δが大きいとその拡大率も大きくなる。この拡大率とは、式8で与えられる比例定数kに相当する。 8A and 8B are graphs showing examples of values of the magnitude R (x, y) of the out-of-plane displacement vector δi (δx i , δy i ) given by the equations 7, 8, and 9. 8A and 8B are graphs showing the magnitude R (x, y) of the out-of-plane displacement vector when the deflection amount δ is 1 mm and 4 mm, respectively, and the imaging distance L before deflection of both graphs is 5000 mm. The focal length f is 50 mm. As can be seen by comparing the graphs of FIGS. 8A and 8B, both graphs are similar in shape, and the larger the deflection amount δ, the larger the enlargement ratio. This enlargement ratio corresponds to the proportionality constant k given by Equation 8.
 図9は、図8Bのグラフに計測ベクトルV(Vx,Vy)の大きさRmes(x,y)を重ねて表示したグラフである。図9においてRmes(x,y)は細実線で示す。Rmes(x,y)は、面内変位ベクトルΔi(Δx,Δy)に対して面外変位ベクトルの大きさR(x,y)が大きい場合、面外変位ベクトルの大きさR(x,y)と似た形状をしており、Rmes(x,y)から、R(x,y)の拡大率を推定することが可能となる。R(x,y)の拡大率の推定は、式12に示す評価関数E(k)を最小にする比例定数kを求めることで行う。 FIG. 9 is a graph in which the magnitude Rmes (x, y) of the measurement vector V (Vx, Vy) is superimposed on the graph of FIG. 8B. In FIG. 9, Rmes (x, y) is indicated by a thin solid line. Rmes (x, y) is a magnitude R (x of the out-of-plane displacement vector when the magnitude R (x, y) of the out-of-plane displacement vector is larger than the in-plane displacement vector Δi (Δx i , Δy i ). , Y), and the enlargement rate of R (x, y) can be estimated from Rmes (x, y). The enlargement ratio of R (x, y) is estimated by obtaining a proportionality constant k that minimizes the evaluation function E (k) shown in Expression 12.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式12による拡大係数kの算出は、最小2乗法を用いて行う。評価関数E(k)は、Rmes(x,y)とR(x,y)の差の2乗和以外に、絶対値和や、他の累乗和等を用いてもよい。 The calculation of the enlargement factor k using Equation 12 is performed using the least square method. The evaluation function E (k) may use a sum of absolute values, another sum of powers, or the like other than the square sum of the difference between Rmes (x, y) and R (x, y).
 変位分離部4は、推定した拡大率kから、式8を用いてたわみ量δに変換する演算をして、面外変位ベクトルを推定する。変位分離部4は、さらに、変位算出部2で得られる計測ベクトルから面外変位ベクトルを補正量として減算することによって、面内変位ベクトルを抽出する。 The displacement separation unit 4 performs an operation of converting the estimated enlargement factor k into a deflection amount δ using Expression 8, and estimates an out-of-plane displacement vector. The displacement separation unit 4 further extracts the in-plane displacement vector by subtracting the out-of-plane displacement vector as a correction amount from the measurement vector obtained by the displacement calculation unit 2.
 以下、構造物20が、図5Bに示すようなY方向に沿ったひび割れを有する場合を例として、面外変位を算出し、算出した面外変位を計測した変位から差し引いて、面内変位を抽出する例を説明する。変位算出部2による変位の算出には、図2に示す構造物20の下面を、荷重印加前後で図中に示す撮像方向から撮像した時系列画像を用いている。 Hereinafter, taking the case where the structure 20 has a crack along the Y direction as shown in FIG. 5B as an example, the out-of-plane displacement is calculated, and the calculated out-of-plane displacement is subtracted from the measured displacement to calculate the in-plane displacement. An example of extraction will be described. For the calculation of the displacement by the displacement calculating unit 2, a time series image obtained by imaging the lower surface of the structure 20 shown in FIG. 2 from the imaging direction shown in the drawing before and after applying the load is used.
 ここで、撮像距離は5m、構造物20は長さ20m、厚さ0.5m、幅10mのコンクリート(ヤング率40GPa)とし、10tの荷重をかけた場合と等価な条件の両持ち梁としている。画像の変位を計測する領域は、構造物20表面のひび割れ部分を画像中心として、X方向、Y方向共に±200mmの範囲としている。 Here, the imaging distance is 5 m, the structure 20 is concrete having a length of 20 m, a thickness of 0.5 m, and a width of 10 m (Young's modulus is 40 GPa). . The region where the displacement of the image is measured is in the range of ± 200 mm in both the X direction and the Y direction, with the crack portion on the surface of the structure 20 as the image center.
 例として、撮像装置11のレンズ13の焦点距離は50mm、撮像素子14の画素ピッチは5μmとして、撮像距離5mにおいて250μmの画素分解能が得られるようにしている。撮像装置11の撮像素子14は、モノクロで水平2000画素、垂直2000画素の画素数の素子を使用し、撮像距離5mにおいて0.5m×0.5mの範囲が撮像できるようにする。撮像素子14のフレームレートは60Hzとする。また、変位算出部2における画像相関では、2次曲線補間によるサブピクセル変位推定を使用し、1/100画素まで変位推定ができるようにし、2.5μmの変位分解能が得られるようにすることができる。 As an example, the focal length of the lens 13 of the imaging device 11 is 50 mm, the pixel pitch of the imaging element 14 is 5 μm, and a pixel resolution of 250 μm is obtained at an imaging distance of 5 m. The imaging device 14 of the imaging device 11 is a monochrome device having 2000 pixels horizontally and 2000 pixels vertically so that a range of 0.5 m × 0.5 m can be imaged at an imaging distance of 5 m. The frame rate of the image sensor 14 is 60 Hz. Further, in the image correlation in the displacement calculation unit 2, sub-pixel displacement estimation by quadratic curve interpolation is used so that displacement can be estimated up to 1/100 pixels so that a displacement resolution of 2.5 μm can be obtained. it can.
 以上の撮像装置11を用いた場合、画像変位計測領域(X方向、Y方向共に-200mmから200mmの範囲)は、水平1600画素、垂直1600画素となる。この画素領域について式1から式12の演算を行う。 When the above-described imaging device 11 is used, the image displacement measurement region (in the range of −200 mm to 200 mm in both the X direction and the Y direction) is horizontal 1600 pixels and vertical 1600 pixels. The calculation of Expression 1 to Expression 12 is performed for this pixel region.
 図10A、図10Bは、変位算出部2で得られた計測ベクトルV(Vx,Vy)のY=0mmにおけるX方向の変位分布、X=0mmにおけるY方向の変位分布をそれぞれ示す図である。図10A、図10Bは、計測ベクトルV(Vx,Vy)に含まれている面外変位は考慮せず、式6から得られた変位を、構造物20の被測定面の座標での変位としたグラフである。 10A and 10B are diagrams respectively showing the X direction displacement distribution at Y = 0 mm and the Y direction displacement distribution at X = 0 mm of the measurement vector V (Vx, Vy) obtained by the displacement calculation unit 2. 10A and 10B do not consider the out-of-plane displacement included in the measurement vector V (Vx, Vy), and the displacement obtained from Equation 6 is the displacement in the coordinates of the surface to be measured of the structure 20. It is a graph.
 X方向の変位を示す図10Aでは、撮像範囲±200mmの範囲で±170μmの変位が生じている。Y方向の変位を示す図10Bでは、撮像範囲±200mmの範囲で±160μmの変位が直線的に生じている。X方向の変位は、面内変位に面外変位が重畳された変位となっている。一方、Y方向の変位は、面外変位のみの変位となっている。 In FIG. 10A showing the displacement in the X direction, a displacement of ± 170 μm occurs in the imaging range of ± 200 mm. In FIG. 10B showing the displacement in the Y direction, a displacement of ± 160 μm is linearly generated in the imaging range of ± 200 mm. The displacement in the X direction is a displacement in which an out-of-plane displacement is superimposed on an in-plane displacement. On the other hand, the displacement in the Y direction is a displacement of only out-of-plane displacement.
 変位算出部2で得られた計測ベクトルV(Vx,Vy)を用いて、式12の評価関数E(k)を最小にする比例定数kは、最小2乗法により0.000008と求められる。この値を式8に代入すると、たわみ量δは4mmと求められ、奥行移動量算出部3の出力となる。 Using the measurement vector V (Vx, Vy) obtained by the displacement calculation unit 2, the proportionality constant k that minimizes the evaluation function E (k) of Equation 12 is obtained as 0.000008 by the least square method. By substituting this value into Equation 8, the deflection amount δ is obtained as 4 mm and becomes the output of the depth movement amount calculation unit 3.
 このたわみ量δを式5に代入すると、面外変位ベクトルδi(δx,δy)が変位分離部4で求められる。変位分離部4では、さらに、変位算出部2で得られた計測ベクトルV(Vx,Vy)からこの面外変位ベクトルδi(δx,δy)を減算することで、面内変位ベクトルΔi(Δx,Δy)を求め、式6よりX方向、Y方向それぞれの面内変位を算出する。 Substituting this deflection amount δ into Equation 5, the out-of-plane displacement vector δi (δx i , δy i ) is obtained by the displacement separation unit 4. The displacement separation unit 4 further subtracts the out-of-plane displacement vector δi (δx i , δy i ) from the measurement vector V (Vx, Vy) obtained by the displacement calculation unit 2 to thereby obtain an in-plane displacement vector Δi ( Δx i , Δy i ) are obtained, and in-plane displacements in the X direction and the Y direction are calculated from Equation 6.
 図11A、図11Bは、変位分離部4の出力を示す。図11AはX方向の変位を示すグラフであり、ひび割れ部では不連続な20μmの急激な変位が生じている。一方、図11BはY方向の変位を示すグラフであり、変位は0である。図11A、図11Bのように、面外変位を分離して構造物表面の面内変位を抽出することができる。 11A and 11B show the output of the displacement separation unit 4. FIG. 11A is a graph showing the displacement in the X direction, and a discontinuous rapid 20 μm displacement occurs in the cracked portion. On the other hand, FIG. 11B is a graph showing the displacement in the Y direction, and the displacement is zero. As shown in FIGS. 11A and 11B, the out-of-plane displacement can be separated to extract the in-plane displacement of the structure surface.
 ここで、撮像装置11の光路長制御部12での光路長の切り替えから、奥行移動量算出部3が撮像距離Lを算出する方法を説明する。 Here, a method in which the depth movement amount calculation unit 3 calculates the imaging distance L from the switching of the optical path length in the optical path length control unit 12 of the imaging device 11 will be described.
 図12Aと図12Bは、状態判定システム10の撮像装置11aの光路長制御部12aの構成と、光路長制御部12aにより光路長を切り替える様子を説明する図である。撮像装置11a(処理回路15の記載を省略)の光路長制御部12aは、平行平板ガラス12a1と可動機構12a2とを有する。平行平板ガラス12a1は、屈折率nと、レンズ13の光軸方向の厚さtとを有する。可動機構12a2は、撮像装置11aが構造物20の表面を撮像する際に、平行平板ガラス12a1を光路に挿入させるもしくは挿入させない、の切り替えをする。 12A and 12B are diagrams illustrating the configuration of the optical path length control unit 12a of the imaging device 11a of the state determination system 10 and how the optical path length is switched by the optical path length control unit 12a. The optical path length control unit 12a of the imaging device 11a (the processing circuit 15 is omitted) includes a parallel plate glass 12a1 and a movable mechanism 12a2. The parallel flat glass 12a1 has a refractive index n and a thickness t of the lens 13 in the optical axis direction. The movable mechanism 12a2 switches whether the parallel plate glass 12a1 is inserted into the optical path or not when the imaging device 11a images the surface of the structure 20.
 図12Aは、平行平板ガラス12a1を挿入させていない場合である。この場合、撮像距離はLとなる。一方、図12Bは、平行平板ガラス12a1を挿入させている場合である。このとき、平行平板ガラス12a1を挿入させたことによる見かけの光路長変化量δ’は、式13の通りとなる。 FIG. 12A shows a case where the parallel flat glass 12a1 is not inserted. In this case, the imaging distance is L. On the other hand, FIG. 12B is a case where the parallel flat glass 12a1 is inserted. At this time, the apparent optical path length variation δ ′ due to the insertion of the parallel flat glass 12 a 1 is as shown in Equation 13.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 この光路長変化量δ’は、式1から式8が有する撮像距離の変化をもたらしているたわみ量δと同じに扱うことができる。そこで、δの代わりにδ’を用いて、平行平板ガラス12a1の挿入有無での画像の変位から、式12の評価関数E(k)を最小にする比例定数kを求める。求められた比例定数kと、式13から求められる光路長変化量δ’と、既知の焦点距離fとから、式8を用いて撮像距離Lが算出される。 This optical path length change amount δ ′ can be handled in the same manner as the deflection amount δ causing the change in the imaging distance of Equations 1 to 8. Therefore, using δ ′ instead of δ, a proportionality constant k that minimizes the evaluation function E (k) of Expression 12 is obtained from the displacement of the image with and without the parallel flat glass 12a1 being inserted. The imaging distance L is calculated using Equation 8 from the obtained proportionality constant k, the optical path length change amount δ ′ obtained from Equation 13, and the known focal length f.
 例えば、平行平板ガラス12a1の屈折率nを1.5、厚さtを12mmとすると、式13よりδ’は4mmとなる。平行平板ガラス12a1の挿入有無での画像の変位から、変位算出部2で得られた計測ベクトルV(Vx,Vy)を用いて、式12の評価関数E(k)を最小にする比例定数kを最小2乗法により求めると、0.000008が得られる。式8をLについて解いて、δ’=4mm、比例定数k=0.000008、焦点距離f=50mmを代入すると、撮像距離L=5mが求まる。 For example, when the refractive index n of the parallel flat glass 12a1 is 1.5 and the thickness t is 12 mm, δ ′ is 4 mm according to Equation 13. The proportionality constant k that minimizes the evaluation function E (k) of Equation 12 using the measurement vector V (Vx, Vy) obtained by the displacement calculation unit 2 from the displacement of the image with and without the insertion of the parallel flat glass 12a1. Is obtained by the method of least squares, and 0.000008 is obtained. Solving Equation 8 for L and substituting δ ′ = 4 mm, proportionality constant k = 0.000008, and focal length f = 50 mm, the imaging distance L = 5 m is obtained.
 なお、光路長制御部12aは、平行平板ガラス12a1には限定されず、液晶等の電気光学効果がある素子により屈折率を変化させてもよい。また、撮像装置11は、図12A、図12Bの撮像装置11aには限定されない。 The optical path length control unit 12a is not limited to the parallel plate glass 12a1, and the refractive index may be changed by an element having an electrooptic effect such as liquid crystal. Moreover, the imaging device 11 is not limited to the imaging device 11a of FIG. 12A and FIG. 12B.
 図13は、図12A、図12Bとは別の構成の光路長制御部12bにより光路長を切り替える様子を説明する図である。撮像装置11b(処理回路15の記載を省略)の光路長制御部12bは、ミラー12b1と、ミラー12b1を光軸方向(Z軸方向)に移動させる可動機構12b2とを有する。さらに、撮像装置11bでは、可動機構12b2に連動させてレンズ13と撮像素子14とを移動させることによって、撮像素子14に結像させることができる。以上のようにして、撮像装置11bによれば、可動機構12b2でミラー12b1を移動させることによって光路長を変えることができ、これにより撮像距離Lを求めることができる。 FIG. 13 is a diagram for explaining a state in which the optical path length is switched by the optical path length control unit 12b having a configuration different from that in FIGS. 12A and 12B. The optical path length control unit 12b of the imaging device 11b (the processing circuit 15 is omitted) includes a mirror 12b1 and a movable mechanism 12b2 that moves the mirror 12b1 in the optical axis direction (Z-axis direction). Further, in the image pickup apparatus 11b, an image can be formed on the image pickup element 14 by moving the lens 13 and the image pickup element 14 in conjunction with the movable mechanism 12b2. As described above, according to the imaging device 11b, the optical path length can be changed by moving the mirror 12b1 by the movable mechanism 12b2, and thus the imaging distance L can be obtained.
 図14は、さらに別の構成の光路長制御部12cにより光路長を切り替える様子を説明する図である。撮像装置11c(処理回路15の記載を省略)の光路長制御部12cは、ハーフミラー12c1とミラー12c2とレンズ13とを有する。撮像装置11cは、撮像距離Lの画像1とともに、光路長制御部12cにより撮像距離L+δ’の画像2を撮像することができる。レンズ13は、光路が中心(光軸)を通らずかつ複数の光路を結像する場合において、光軸を中心として画像1と画像2とを分割して結像するのであれば、結像特性は大きく低下することはなく、汎用的なレンズであっても画像処理で幾何補正できる範囲である。 FIG. 14 is a diagram for explaining a state in which the optical path length is switched by the optical path length control unit 12c having still another configuration. The optical path length control unit 12c of the imaging device 11c (the processing circuit 15 is omitted) includes a half mirror 12c1, a mirror 12c2, and a lens 13. The imaging device 11c can capture the image 2 at the imaging distance L + δ ′ by the optical path length control unit 12c together with the image 1 at the imaging distance L. If the optical path does not pass through the center (optical axis) and an image is formed on a plurality of optical paths, the lens 13 has imaging characteristics as long as the image 1 and the image 2 are divided and focused on the optical axis. Is not greatly reduced, and even a general-purpose lens can be geometrically corrected by image processing.
 この場合、状態判定装置1の変位算出部2は、撮像素子14で撮像された画像1と画像2の部分を切り出し、画像1に対する画像2の変位を算出する。奥行移動量算出部3は、この画像の変位から図12A-Bや図13と同様に撮像距離Lを求めることができる。 In this case, the displacement calculation unit 2 of the state determination device 1 cuts out portions of the image 1 and the image 2 captured by the image sensor 14 and calculates the displacement of the image 2 with respect to the image 1. The depth movement amount calculation unit 3 can obtain the imaging distance L from the displacement of the image as in FIGS. 12A-B and FIG.
 また、図14の場合、奥行移動量算出部3は、撮像距離を時系列画像ごとに求めることができる。すなわち、奥行移動量算出部3は、時系列画像ごとに求められた撮像距離から、時系列画像ごとのたわみ量δ(移動量)を求めることができる。変位分離部4は、この移動量と荷重印加前の撮像距離Lを用いて、面外変位ベクトルを求めることができる。そして、変位分離部4は、この面外変位ベクトルを、変位算出部2から取得した時系列画像の計測ベクトルから減算して、面内変位ベクトルを分離することもできる。 Further, in the case of FIG. 14, the depth movement amount calculation unit 3 can obtain the imaging distance for each time-series image. That is, the depth movement amount calculation unit 3 can obtain the deflection amount δ (movement amount) for each time series image from the imaging distance obtained for each time series image. The displacement separation unit 4 can obtain an out-of-plane displacement vector using the amount of movement and the imaging distance L before applying the load. The displacement separating unit 4 can also subtract the in-plane displacement vector by subtracting the out-of-plane displacement vector from the measurement vector of the time-series image acquired from the displacement calculating unit 2.
 撮像距離Lを求める方法としては、非特許文献2に、レンズと撮像素子を有する通常のカメラに、2つのミラーを2組取り付けた2眼カメラ構成が開示されている。これに対して、図14の方法では、ハーフミラー12c1とミラー12c2とを追加するだけでよく、追加の部品数を抑制できる。なお、非特許文献2でも、レンズは光路が中心を通らず、かつ複数の光路を結像する構成である。 As a method for obtaining the imaging distance L, Non-Patent Document 2 discloses a two-lens camera configuration in which two sets of two mirrors are attached to a normal camera having a lens and an imaging element. On the other hand, in the method of FIG. 14, it is only necessary to add the half mirror 12c1 and the mirror 12c2, and the number of additional parts can be suppressed. In Non-Patent Document 2, the lens has a configuration in which the optical path does not pass through the center and images a plurality of optical paths.
 以上のように、本実施形態の状態判定システム10によれば、予め撮像距離Lを測定していなくても、撮像装置11に備えられている光路長制御部12による光路長の切り替えにより、撮像距離Lを求めることができる。構造物の状態判定に際して、撮像距離の測定を簡便に精度良く行うことは、作業性の悪さなどによって実際には容易ではない。構造物の表面の時系列画像の撮像と共に、撮像距離を測定できる本実施形態の状態判定システム10によれば、撮像距離を簡便に精度良く求めることが可能である。 As described above, according to the state determination system 10 of the present embodiment, even if the imaging distance L is not measured in advance, the imaging is performed by switching the optical path length by the optical path length control unit 12 provided in the imaging device 11. The distance L can be obtained. When determining the state of a structure, it is not actually easy to measure the imaging distance simply and accurately due to poor workability. According to the state determination system 10 of the present embodiment that can measure the imaging distance together with the imaging of the time series images of the surface of the structure, the imaging distance can be easily and accurately obtained.
 図15は、面外変位の算出方法において、構造物20に傾斜がある場合について説明する図である。図15に示すように、Y軸を軸として構造物20の表面の法線がθだけ回転している場合、撮像装置11の光軸をz軸とした座標と構造物表面の法線をz’軸とした座標との関係は式14、式15、式16で示される。 FIG. 15 is a diagram illustrating a case where the structure 20 has an inclination in the calculation method of out-of-plane displacement. As shown in FIG. 15, when the normal of the surface of the structure 20 is rotated by θ around the Y axis, the coordinate with the optical axis of the imaging device 11 as the z axis and the normal of the structure surface is z. 'The relationship with the coordinate as the axis is expressed by Equation 14, Equation 15, and Equation 16.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 Y軸を軸としてθ回転した映像面のX-Y座標は式17、式18で写像される。 XY coordinates of the image plane rotated by θ about the Y axis are mapped by Expression 17 and Expression 18.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 よって、荷重の印加により構造物20がたわむことでの座標P1(x1,y1,z1)から座標P2(x2,y2,z2)への変位による、X方向の面外変位δx、Y方向の面外変位δyは、各々、式19、式20で示される(図15中でY成分は図示せず)。 Therefore, the out-of-plane displacement δx i in the X direction and the Y direction due to the displacement from the coordinate P1 (x1, y1, z1) to the coordinate P2 (x2, y2, z2) due to the deflection of the structure 20 by the application of a load. The out-of-plane displacement δy i is expressed by Equation 19 and Equation 20, respectively (Y component is not shown in FIG. 15).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 したがって、傾斜θがある場合、式7に式19と式20を代入した関数R(θ)が求まる。ここで、傾斜角θが未知である場合、θを0°から90°まで例えば0.5°刻みで変化させて、各角度θにおける関数R(θ)を用いて、式12の評価関数E(k)を最小にするk(θ)を求める。そして、求めた全てのk(θ)の中で評価関数E(k)を最小にする角度を傾斜角とする。この傾斜角におけるkと式8の関係からたわみ量δが求められる。求められた傾斜角とたわみ量δと式14、式15、式16、式17、式18、式19、式20の関係から面外変位ベクトルδi(δx,δy)が推定できる。 Therefore, when there is an inclination θ, a function R (θ) obtained by substituting Equation 19 and Equation 20 into Equation 7 is obtained. Here, when the tilt angle θ is unknown, θ is changed from 0 ° to 90 ° in increments of 0.5 °, for example, and the evaluation function E of Equation 12 is used using the function R (θ) at each angle θ. Find k (θ) that minimizes (k). The angle that minimizes the evaluation function E (k) among all the obtained k (θ) is defined as the inclination angle. The deflection amount δ is obtained from the relationship between k at this inclination angle and Equation 8. The out-of-plane displacement vector δi (δx i , δy i ) can be estimated from the relationship between the obtained inclination angle and the amount of deflection δ and the expressions 14, 15, 16, 17, 17, 18, and 20.
 この結果を奥行移動量算出部3の出力として、変位分離部4に入力する。変位分離部4では計測ベクトルV(Vx,Vy)から面外変位ベクトルδi(δx,δy)を減算することで、面内変位ベクトルΔi(Δx,Δy)が求められる。ここで、面内変位ベクトルΔi(Δx,Δy)に対して、荷重印加後表面への射影を式14、式15、式16、式17、式18を用いて計算することで、構造物の面内変位を求めることができる。 This result is input to the displacement separation unit 4 as an output of the depth movement amount calculation unit 3. The displacement separation unit 4 obtains the in-plane displacement vector Δi (Δx i , Δy i ) by subtracting the out-of-plane displacement vector δi (δx i , δy i ) from the measurement vector V (Vx, Vy). Here, with respect to the in-plane displacement vector Δi (Δx i , Δy i ), the projection onto the surface after application of the load is calculated using Expression 14, Expression 15, Expression 16, Expression 17, and Expression 18 to obtain the structure. The in-plane displacement of the object can be obtained.
 なお、図15では、Y軸を軸として、構造物20表面の法線が撮像装置11の撮像方向の中心の光軸に対してθだけ回転している場合を取り扱ったが、X軸やZ軸を軸とする場合も同様に考えて、補正を行うことができる。 In FIG. 15, the case where the normal of the surface of the structure 20 is rotated by θ with respect to the optical axis at the center of the imaging direction of the imaging device 11 with the Y axis as an axis is handled. When the axis is the axis, correction can be performed in the same way.
 変位分離部4の出力である構造物表面の面内変位は、微分変位算出部5で構造物表面の歪に置き換えられる。構造物表面の歪にヤング率を乗ずると応力となるので、このことから構造物表面の応力場が求まる。変位分離部4で得られた変位情報と、微分変位算出部5で得られた歪情報と、奥行移動量算出部3で得られた移動量は、異常判定部6に入力される。 The in-plane displacement of the structure surface, which is the output of the displacement separation unit 4, is replaced with the distortion of the structure surface by the differential displacement calculation unit 5. Multiplying the strain on the surface of the structure by the Young's modulus results in stress, and from this, the stress field on the surface of the structure is obtained. The displacement information obtained by the displacement separation unit 4, the strain information obtained by the differential displacement calculation unit 5, and the movement amount obtained by the depth movement amount calculation unit 3 are input to the abnormality determination unit 6.
 異常判定部6は、変位分離部4で得られた変位情報や、微分変位算出部5で得られた歪情報や、奥行移動量算出部3で得られた移動量に基づいて、欠陥の種類と場所を特定する。このために、異常判定部6は、3次元空間分布情報解析部7と時間変化情報解析部8とに、予め、欠陥を判定するための閾値や、欠陥の種類に対応した特徴的な変位や歪のパタンを備えている。3次元空間分布情報解析部7と時間変化情報解析部8とは、変位情報や歪情報や移動量と前記閾値との比較や、前記パタンとのパタンマッチングにより、図5A~図5Dで示すような、健全な状態、もしくは、ひび割れや剥離や内部空洞といった欠陥を判定する。 The abnormality determination unit 6 determines the type of defect based on the displacement information obtained by the displacement separation unit 4, the strain information obtained by the differential displacement calculation unit 5, and the movement amount obtained by the depth movement amount calculation unit 3. And identify the location. For this reason, the abnormality determination unit 6 preliminarily instructs the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 to determine a threshold value for determining a defect, a characteristic displacement corresponding to the type of defect, It has a distortion pattern. The three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 are shown in FIG. 5A to FIG. 5D by comparing displacement information, strain information, movement amount and the threshold value, and pattern matching with the pattern. Determine the healthy state or defects such as cracks, delamination and internal cavities.
 以下の説明では、異常判定部6の動作の説明の順序として、まず、変位分離部4で得られた変位情報や、微分変位算出部5で得られた歪情報に対する判定の動作(X方向とY方向)を、次に、奥行移動量算出部3で得られた移動量に対する判定の動作(Z方向)を、順に説明する。 In the following description, as an order of description of the operation of the abnormality determination unit 6, first, a determination operation for the displacement information obtained by the displacement separation unit 4 and the distortion information obtained by the differential displacement calculation unit 5 (X direction and Next, the determination operation (Z direction) for the movement amount obtained by the depth movement amount calculation unit 3 will be described in order.
 はじめに、変位分離部4で得られた変位情報や、微分変位算出部5で得られた歪情報に対する判定の動作(X方向とY方向)を説明する。 First, the determination operation (X direction and Y direction) for the displacement information obtained by the displacement separation unit 4 and the strain information obtained by the differential displacement calculation unit 5 will be described.
 図11Aは、Y方向に沿ったひび割れが存在する場合の、荷重印加による構造物のX方向の表面の面内変位の例を示している。ひび割れ部では、不連続な20μmの急激な面内変位が生じていることが分かる。このような急激な変位は、欠陥の無い健全な状態では生じない。よって、予め不連続な変位の大きさに閾値を設けておくことで、これを上回る変位が確認されることでひび割れを検出することが可能である。 FIG. 11A shows an example of in-plane displacement of the surface in the X direction of the structure due to load application when a crack along the Y direction exists. It can be seen that a 20 μm discontinuous in-plane displacement occurs in the cracked portion. Such a sudden displacement does not occur in a healthy state with no defects. Therefore, it is possible to detect a crack by confirming a displacement exceeding this by providing a threshold value for the magnitude of discontinuous displacement in advance.
 図16Aと図16Bは、Y方向に沿ったひび割れがある場合の、微分変位算出部5で算出されるひび割れ部の周りの応力場の分布を示した図である。図16Aに示すように、ひび割れにより応力方向が曲げられるため、図16AにおけるX方向に引張応力が構造体の両端に働いている場合でも、ひび割れ部の端部近傍の応力方向は図16Bに示すようにY方向の成分が発生する。したがって、このY方向の成分の有無の検出によってもひび割れを検出できる。なお、このようなひび割れ周りの応力場は、線形応答を示す弾性体においては応力拡大係数としてその分布が知られているので、その情報を利用することも可能である。 FIG. 16A and FIG. 16B are diagrams showing the distribution of the stress field around the crack portion calculated by the differential displacement calculation unit 5 when there is a crack along the Y direction. As shown in FIG. 16A, since the stress direction is bent by the crack, even when tensile stress is applied to both ends of the structure in the X direction in FIG. Thus, a component in the Y direction is generated. Therefore, cracks can also be detected by detecting the presence or absence of the component in the Y direction. In addition, since the distribution of the stress field around the crack is known as a stress intensity factor in an elastic body showing a linear response, the information can also be used.
 図17A~17Dに、ひび割れ周りの変位の2次元変位分布の例を示す。図17Aと図17Bは、それぞれ、図5Bにおける水平方向(X方向)と、紙面に垂直な方向(Y方向)の変位等高線である。図17Aで、X方向の変位等高線は、ひび割れの位置で急激な変位を有する。これは、図11Aに示すひび割れ部分での急激な変位に相当する。これに対して、ひび割れの外側(X方向)では、ひび割れがない領域よりも等高線の密度が疎となる。この変位等高線が疎の領域は、図11Aに示すひび割れ部分での急激な変位の外側の、緩やかな変位の部分に相当する。この部分での変位は、ひび割れが無いときの変位よりも緩やかとなる。 FIGS. 17A to 17D show examples of the two-dimensional displacement distribution of the displacement around the crack. 17A and 17B are displacement contour lines in the horizontal direction (X direction) and the direction perpendicular to the paper surface (Y direction) in FIG. 5B, respectively. In FIG. 17A, the displacement contour line in the X direction has an abrupt displacement at the position of the crack. This corresponds to an abrupt displacement at the crack portion shown in FIG. 11A. On the other hand, on the outer side (X direction) of the crack, the density of the contour lines is sparser than in the region where there is no crack. The region in which the displacement contour lines are sparse corresponds to a gentle displacement portion outside the rapid displacement at the crack portion shown in FIG. 11A. The displacement at this portion is gentler than the displacement when there is no crack.
 また、図17Bに示すように、Y方向では、ひび割れ部分の周辺に変位のY方向の成分が生じる。これは、図16Bに示すように、ひび割れ部分の端部の周辺にY方向の応力の成分が発生することに起因している。Y方向の応力によりY方向に変位がもたらされた結果、図17Bのように、Y方向の変位等高線が生じている。 Also, as shown in FIG. 17B, in the Y direction, a component in the Y direction of displacement is generated around the cracked portion. This is because the stress component in the Y direction is generated around the edge of the cracked portion as shown in FIG. 16B. As a result of the displacement in the Y direction due to the stress in the Y direction, displacement contour lines in the Y direction are generated as shown in FIG. 17B.
 図17Cと図17Dは、それぞれ、図17Aと図17Bの場合よりもひび割れが深い場合を示す。この場合、X方向とY方向のそれぞれに関してひび割れ周りでは、変位等高線の密度がより疎になる。この疎密の情報から、ひび割れの深さを知ることも可能である。 FIGS. 17C and 17D show the cases where the cracks are deeper than those in FIGS. 17A and 17B, respectively. In this case, the density of the displacement contour lines becomes sparser around the crack in each of the X direction and the Y direction. It is also possible to know the depth of cracks from this density information.
 以上のひび割れの判定は、図3の状態判定装置1の異常判定部6の3次元空間分布情報解析部7で行われる。 The above-described crack determination is performed by the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 of the state determination device 1 in FIG.
 ひび割れがある場合、図11Aに示すように、ひび割れ部では、ひび割れの開きが大きくなることに対応して変位が急増する。よって、X方向もしくはY方向の単位長さ当りの変位の閾値を、各々、予め設けておくことで、閾値を超える変位が検出された場所にひび割れがあると推定することができる。 When there is a crack, as shown in FIG. 11A, in the cracked portion, the displacement rapidly increases corresponding to the increase of the crack opening. Therefore, it is possible to estimate that there is a crack at a location where a displacement exceeding the threshold is detected by previously setting a threshold of displacement per unit length in the X direction or the Y direction.
 また、X方向の歪は、ひび割れ部では急激に増大する。このことから、X方向の歪の値に閾値を予め設けておくことで、閾値を上回る歪が検出された場所にひび割れがあると推定することができる。 Also, the strain in the X direction increases rapidly at the cracked portion. From this, it is possible to estimate that there is a crack at a location where a strain exceeding the threshold is detected by providing a threshold in advance in the value of strain in the X direction.
 また、図16A、図16Bに示すように、ひび割れがある場合、Y方向の歪が生じる。よって、Y方向の歪の値に閾値を予め設けておくことで、閾値を上回る歪が検出された場所にひび割れがあると推定することができる。 Also, as shown in FIGS. 16A and 16B, when there is a crack, distortion in the Y direction occurs. Therefore, by providing a threshold value in advance in the strain value in the Y direction, it can be estimated that there is a crack at a location where a strain exceeding the threshold value is detected.
 以上の各閾値は、構造物と同様の寸法や材質を用いてのシミュレーションや、縮小模型による実験などにより設定することができる。さらに、実際の構造物を長期間にわたって測定し蓄積されたデータから設定することもできる。 Each of the above threshold values can be set by a simulation using the same dimensions and materials as the structure or an experiment using a reduced model. Furthermore, an actual structure can be set from data accumulated by measuring over a long period of time.
 以上の判定は、以上のような数値による比較によらずとも、以下に説明する様なパタンマッチング処理によっても可能である。 The above determination can also be made by a pattern matching process as described below, without using the above numerical comparison.
 図18A~18Cは、3次元空間分布情報解析部7による変位分布のパタンマッチング処理を説明する図である。変位分離部4や微分変位算出部5によれば、図17A~17Dに示したように、X-Y平面に変位を変位分布図として表すことができる。3次元空間分布情報解析部7は、図18Aに示すように、予め記憶されたひび割れ周りの変位のX方向のパタンを回転、拡大縮小して、変位分離部4で得られた変位分布図とのパタンマッチングにより、ひび割れの方向と深さを判定することができる。ここで、予め記憶されたひび割れ周りの変位のX方向のパタンは、ひび割れの深さや幅ごとに予めシミュレーションなどにより作成しておくことができる。 18A to 18C are diagrams for explaining the pattern distribution processing of the displacement distribution by the three-dimensional spatial distribution information analysis unit 7. FIG. According to the displacement separating unit 4 and the differential displacement calculating unit 5, as shown in FIGS. 17A to 17D, the displacement can be represented as a displacement distribution diagram on the XY plane. As shown in FIG. 18A, the three-dimensional spatial distribution information analysis unit 7 rotates and enlarges / reduces the X-direction pattern of the displacement around the crack stored in advance, and the displacement distribution diagram obtained by the displacement separation unit 4 By the pattern matching, it is possible to determine the direction and depth of the crack. Here, the X-direction pattern of the displacement around the crack stored in advance can be created in advance by simulation or the like for each depth and width of the crack.
 また、3次元空間分布情報解析部7は、図18Bに示すように、予め記憶されたひび割れ周りの変位のY方向のパタンを回転、拡大縮小して、変位分離部4で得られた変位分布図とのパタンマッチングにより、ひび割れの方向と深さを判定する。ここで、予め記憶されたひび割れ周りの変位のY方向のパタンは、ひび割れの深さや幅ごとに予めシミュレーションなどにより作成しておくことができる。 Further, as shown in FIG. 18B, the three-dimensional spatial distribution information analysis unit 7 rotates and enlarges / reduces the pre-stored displacement around the crack in the Y direction, and the displacement distribution obtained by the displacement separation unit 4 The direction and depth of the crack are determined by pattern matching with the figure. Here, the Y-direction pattern of the displacement around the crack stored in advance can be created in advance by simulation or the like for each depth and width of the crack.
 また、3次元空間分布情報解析部7は、図18Cに示すように、予め記憶されたひび割れ周りの変位の微分ベクトル場のパタンを回転、拡大縮小して、微分変位算出部5で得られた微分ベクトル場(応力場に相当)とのパタンマッチングにより、ひび割れの方向と深さを判定する。ここで、予め記憶されたひび割れ周りの変位の微分ベクトル場のパタンは、ひび割れの深さや幅ごとに予めシミュレーションなどにより作成しておくことができる。 Further, as shown in FIG. 18C, the three-dimensional spatial distribution information analysis unit 7 rotates and enlarges / reduces the previously stored differential vector field pattern around the crack, and the differential displacement calculation unit 5 obtains it. The direction and depth of the crack are determined by pattern matching with a differential vector field (corresponding to a stress field). Here, the differential vector field pattern of the displacement around the crack stored in advance can be created in advance by simulation or the like for each depth and width of the crack.
 前記パタンマッチングには相関演算を用いている。パタンマッチングにはその他の各種統計的演算手法を用いてもよい。 The correlation calculation is used for the pattern matching. Various other statistical calculation methods may be used for pattern matching.
 以上、構造物20がひび割れを有する場合について説明を行ってきたが、以下に、内部空洞を有する場合と剥離を有する場合とについて説明を行う。 As mentioned above, although the case where the structure 20 has a crack has been demonstrated, the case where it has an internal cavity and the case where it peels is demonstrated below.
 図19Aと図19Bは、図5Dに示すような内部空洞が存在する場合の撮像方向から見た面の応力の2次元分布を示す。図19Aは斜視図であり、図19Bは平面図である。図19Bに示すように、荷重によって図のX方向に応力が働くが、空洞部分では応力場が曲がるため、応力に図のY方向の成分が存在する。 19A and 19B show a two-dimensional distribution of stress on the surface viewed from the imaging direction when an internal cavity as shown in FIG. 5D exists. FIG. 19A is a perspective view, and FIG. 19B is a plan view. As shown in FIG. 19B, stress acts in the X direction of the figure due to the load, but the stress field bends in the hollow portion, and therefore there is a component in the Y direction of the figure in the stress.
 図20A~20Cは、内部空洞が存在する場合の撮像方向から見た面の変位の等高線及び応力場を示した図であり、変位のX成分の等高線を図20Aに、変位のY成分の等高線を図20Bに、応力場を図20Cにそれぞれ示す。 20A to 20C are diagrams showing the contour lines of the displacement of the surface and the stress field as seen from the imaging direction in the presence of the internal cavity. FIG. 20A shows the contour lines of the displacement X component, and FIG. 20A shows the contour lines of the displacement Y component. FIG. 20B shows the stress field and FIG. 20C shows the stress field.
 空洞部分では、図5Dの説明で述べた通り歪量が小さくなるので、図20Aに示す変位のX成分の等高線の密度が小さくなる。また、図20Bに示す変位のY成分の等高線は閉じた曲線となる。さらに、図20Cに示す、変位の微分である応力場は空洞部分で曲がることとなる。表面の応力場は空洞部分が表面に近いほどその影響が顕著になるため、応力場の曲がり方から空洞部分の表面からの深さを推定することもできる。 In the hollow portion, since the amount of strain is reduced as described in the explanation of FIG. 5D, the density of contour lines of the X component of the displacement shown in FIG. 20A is reduced. Further, the contour line of the Y component of the displacement shown in FIG. 20B is a closed curve. Furthermore, the stress field that is the differential of the displacement shown in FIG. 20C is bent at the hollow portion. Since the influence of the surface stress field becomes more prominent as the cavity portion is closer to the surface, the depth from the surface of the cavity portion can also be estimated from the bending method of the stress field.
 ここで、3次元空間分布情報解析部7で予め記憶された空洞周りの変位のX方向の変位のパタン、空洞周りの変位のY方向の変位のパタン、および微分ベクトル場(応力場に相当)を、ひび割れを判定した時と同様に、図18Aに図20Aを、図18Bに図20Bを、図18Cに図20Cを適用すると、内部空洞の位置および深さの状態判定をすることができる。前記パタンマッチングには相関演算を用いているが、その他の統計的演算手法を用いてもよい。 Here, the displacement pattern in the X direction of the displacement around the cavity, the displacement pattern in the Y direction of the displacement around the cavity, and the differential vector field (corresponding to the stress field) stored in advance in the three-dimensional spatial distribution information analysis unit 7 As in the case of determining a crack, applying FIG. 20A to FIG. 18A, FIG. 20B to FIG. 18B, and FIG. 20C to FIG. 18C makes it possible to determine the state of the position and depth of the internal cavity. For the pattern matching, correlation calculation is used, but other statistical calculation methods may be used.
 また、内部空洞を有する場合も、Y方向の変位やY方向の歪の特徴から、これらの変位や歪に閾値を予め設けて、これを上回る場合に内部空洞があると推定することもできる。 Also, in the case of having an internal cavity, it can be estimated from the characteristics of the displacement in the Y direction and the distortion in the Y direction that thresholds are set in advance for these displacements and distortions and the internal cavity exists when the threshold is exceeded.
 図21Aと図21Bは、内部空洞がある構造体に荷重を短時間与えた場合(インパルス刺激という)の応答を説明する図である。インパルス刺激は、例えば、荷重を掛ける位置に掛けることができる。このインパルス刺激に対する、図21Aに示すA、B、Cの表面の各点での変位の時間応答を、図21Bに示す。内部空洞がないA点では、応力伝達が早く変位の振幅も大きい。一方、C点では、内部空洞中は応力が伝達しないため、応力は空洞の周辺から伝達するため、応力伝達が遅くかつ変位の振幅が小さい。また、A点とC点の中間にあるB点での応力伝達時間と振幅は、A点とC点の中間の値となる。従って、構造体を撮像方向から見た面の面内における変位分布を、異常判定部6内の時間変化情報解析部8で周波数解析をすると、共振周波数近傍の振幅と位相とから内部空洞の領域を特定できる。また、共振周波数のずれから内部空洞を判定してもよい。 21A and 21B are diagrams for explaining the response when a load is applied to a structure having an internal cavity for a short time (referred to as impulse stimulation). Impulse stimulation can be applied, for example, to a position where a load is applied. FIG. 21B shows the time response of displacement at each point on the surface of A, B, and C shown in FIG. 21A in response to this impulse stimulus. At point A where there is no internal cavity, stress transmission is fast and the amplitude of displacement is large. On the other hand, at point C, since stress is not transmitted in the internal cavity, stress is transmitted from the periphery of the cavity, so that stress transmission is slow and the displacement amplitude is small. Further, the stress transmission time and amplitude at the point B which is between the points A and C are intermediate values between the points A and C. Therefore, when the frequency distribution of the displacement distribution in the plane of the structure viewed from the imaging direction is analyzed by the time change information analysis unit 8 in the abnormality determination unit 6, the region of the internal cavity is determined from the amplitude and phase near the resonance frequency. Can be identified. Further, the internal cavity may be determined from the shift of the resonance frequency.
 なお、荷重を長時間与えた場合であっても、荷重を与えた初期段階では図21Bに相当する変位の変動が確認される。但しこの場合、変位の収束値はゼロではなく荷重にバランスする値となる。よって、荷重を長時間与えた場合も、時間変化情報解析部8により内部空洞の領域を特定できる。 Even when the load is applied for a long time, a change in displacement corresponding to FIG. 21B is confirmed at the initial stage of applying the load. However, in this case, the convergence value of the displacement is not zero but a value that balances the load. Therefore, even when a load is applied for a long time, the internal cavity region can be specified by the time change information analysis unit 8.
 以上の変位の時間応答の処理は、時間変化情報解析部8において高速フーリエ変換を用いた周波数解析により行われる。また、周波数解析にはウェーブレット変換等の各種周波数解析法を用いてもよい。 The time response processing of the above displacement is performed by frequency analysis using fast Fourier transform in the time change information analysis unit 8. For frequency analysis, various frequency analysis methods such as wavelet transform may be used.
 図22A~22Cは、剥離が存在する場合の撮像方向から見た面の変位の等高線及び応力場を示した図である。図22Aは変位のX成分の等高線を、図22Bは変位のY成分の等高線を、図22Cは応力場を、それぞれ示す。 22A to 22C are diagrams showing the contour lines of the displacement of the surface and the stress field as seen from the imaging direction when there is peeling. 22A shows the contour line of the X component of the displacement, FIG. 22B shows the contour line of the Y component of the displacement, and FIG. 22C shows the stress field.
 図5Cに示すように、剥離が存在する場合、梁状の構造物の下面から見た外観ではひび割れと同様の外観が観察される。しかしながら、剥離部分とその上部との間には応力伝達がないため、荷重前後の変位は剥離部分において一定方向に一定量が平行移動するだけであり、その空間微分値である歪は発生しない。 As shown in FIG. 5C, when there is peeling, an appearance similar to a crack is observed when viewed from the lower surface of the beam-like structure. However, since there is no stress transmission between the peeled portion and its upper part, the displacement before and after the load only translates by a certain amount in the fixed direction at the peeled portion, and no distortion which is a spatial differential value is generated.
 図22Aは、変位のX成分の等高線を示す。剥離部分は歪がなく一定方向に移動するため等高線が存在しない。異常判定部6は、この特徴を用いて剥離が存在すると判定することができる。また、図中のA点の部分は剥離による断裂で応力が伝達しづらいので、健全部分であるB点に比べて等高線が疎になる。異常判定部6は、この性質を用いて剥離部分と健全部分とを判定してもよい。 FIG. 22A shows the contour line of the X component of the displacement. Since the peeled portion is not distorted and moves in a certain direction, there is no contour line. The abnormality determination unit 6 can determine that there is peeling using this feature. In addition, since the point A in the figure is difficult to transmit stress due to tearing due to peeling, the contour lines are sparse compared to the point B which is a healthy part. The abnormality determination unit 6 may determine the peeled portion and the healthy portion using this property.
 図22Bは、変位のY成分の等高線を示す。剥離部分の外周の外側にはY方向の変位が生じる。異常判定部6は、この特徴を用いて剥離が存在すると判定することができる。また、図22Cに示す変位の微分である応力場は、剥離部分では0かその近傍の値となる。異常判定部6は、この特徴を用いて剥離が存在すると判定することができる。 FIG. 22B shows the contour line of the Y component of the displacement. A displacement in the Y direction occurs outside the outer periphery of the peeled portion. The abnormality determination unit 6 can determine that there is peeling using this feature. Moreover, the stress field which is the differential of the displacement shown in FIG. 22C is 0 or a value in the vicinity thereof at the peeled portion. The abnormality determination unit 6 can determine that there is peeling using this feature.
 ここで、3次元空間分布情報解析部7で予め記憶された剥離周りの変位のX方向の変位のパタン、空洞周りの変位のY方向の変位のパタン、および微分ベクトル場(応力場に相当)を、ひび割れの深さを判定した時と同様に、図18Aに図22Aを、図18Bに図22Bを、図18Cに図22Cを適用すると、剥離の位置の判定をすることができる。前記パタンマッチングには相関演算を用いているが、その他の統計的演算手法を用いてもよい。 Here, the displacement pattern in the X direction of the displacement around the separation, the displacement pattern in the Y direction of the displacement around the cavity, and the differential vector field (corresponding to the stress field) stored in advance in the three-dimensional spatial distribution information analysis unit 7 As in the case of determining the depth of the crack, applying FIG. 22A to FIG. 18A, FIG. 22B to FIG. 18B, and FIG. 22C to FIG. For the pattern matching, correlation calculation is used, but other statistical calculation methods may be used.
 図23は、剥離を有する構造体がインパルス刺激を受けた場合の時間応答を示す図である。時間応答では、剥離部分と健全部分とでは変位の方向が逆、すなわち位相が180°異なる波形となる。また、剥離部分は軽くなっているため振幅が大きい。構造体を撮像方向から見た面の面内における変位分布を時間変化情報解析部8で周波数解析をすることで、振幅と位相から剥離部分を特定できる。また、剥離部分は構造体全体から浮いているため、構造体全体とは別の周波数成分を含んでいる場合があるため、共振周波数のずれから剥離部分を判定してもよい。 FIG. 23 is a diagram showing a time response when a structure having delamination receives an impulse stimulus. In the time response, the peeled portion and the healthy portion have waveforms in which the displacement directions are opposite, that is, the phases are 180 ° different. Moreover, since the peeled portion is light, the amplitude is large. By performing frequency analysis on the displacement distribution in the plane of the structure viewed from the imaging direction by the time change information analysis unit 8, the separation portion can be identified from the amplitude and phase. In addition, since the peeled portion floats from the entire structure, the peeled portion may include a frequency component different from that of the entire structure. Therefore, the peeled portion may be determined from a shift in resonance frequency.
 以上の処理において時間変化情報解析部8における周波数解析は高速フーリエ変換を用いている。周波数解析にはウェーブレット変換等の各種周波数解析法を用いてもよい。 In the above processing, the frequency analysis in the time change information analysis unit 8 uses fast Fourier transform. For frequency analysis, various frequency analysis methods such as wavelet transform may be used.
 次に、奥行移動量算出部3で得られた移動量および移動量の微分値に対する判定の動作(Z方向)を説明する。 Next, the movement amount obtained by the depth movement amount calculation unit 3 and the determination operation (Z direction) for the differential value of the movement amount will be described.
 図24Aと図24Bとは、荷重により構造物がたわむ様子を示す図であり、図24Aは健全な場合、図24Bは劣化の場合を示す。構造物が老朽化などにより劣化して弾性を失う場合、図24Aの健全な状態に対して、図24Bの劣化した状態では、たわみ量が大きくなる。このため、奥行移動量算出部3で算出される移動量の要因をたわみ量であるとして、たわみ量に閾値を設け、移動量がこの閾値を超えた場合に劣化と判定することができる。この閾値は、構造物を設計する際の強度計算などから、予め所定の荷重を印加した場合のたわみ量から換算しておくことができる。 FIG. 24A and FIG. 24B are diagrams showing a state in which a structure is bent by a load. FIG. 24A shows a healthy case, and FIG. 24B shows a deteriorated case. When the structure deteriorates due to aging or the like and loses elasticity, the amount of deflection becomes larger in the deteriorated state of FIG. 24B than in the healthy state of FIG. 24A. For this reason, assuming that the factor of the movement amount calculated by the depth movement amount calculation unit 3 is the deflection amount, a threshold value is provided for the deflection amount, and when the movement amount exceeds this threshold value, it can be determined that the deterioration has occurred. This threshold value can be converted from a deflection amount when a predetermined load is applied in advance, for example, by calculating strength when designing the structure.
 異常判定部6の3次元空間分布情報解析部7では、前記の移動量と閾値との比較を行い、劣化の判定を行う。ところで、構造物がたわむ際には、必ずしも図24A、図24Bのような滑らかな曲線を描くたわみ方だけではなく、滑らかな曲線ではなく複雑な変化を含むたわみ方をする場合が存在する。図25Aと図25Bとは、3次元空間分布情報解析部7の行う上記判定の例であって、X方向に複雑な変化を含むたわみ方をする場合の処理を説明するための図である。 The three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 compares the amount of movement with a threshold value to determine deterioration. By the way, when a structure bends, there is a case of not only a smooth curve drawing as shown in FIGS. 24A and 24B but also a flexure including a complicated change instead of a smooth curve. FIG. 25A and FIG. 25B are examples of the above determination performed by the three-dimensional spatial distribution information analysis unit 7, and are diagrams for explaining processing in the case of performing a deflection including a complicated change in the X direction.
 図25Aに示すように、撮像範囲を例えば領域Aから領域Iの9個の領域に分割する。各領域に対して式12に示す評価関数E(k)を最小にする比例定数kをそれぞれ求めることで、各領域におけるたわみ量(Z方向の変位である移動量)を算出する(図25B)。各領域におけるたわみ量は、例えば、図25Bに示すように、各領域の中心でのたわみ量で代表することができる。各領域のたわみ量を、予め各領域で設定されているたわみ量の閾値と比較することで、どの領域に劣化が生じているのかを判定することができる。なお、領域分割の分割数や寸法は任意に設定することができる。 As shown in FIG. 25A, the imaging range is divided into, for example, nine areas from area A to area I. By calculating the proportionality constant k that minimizes the evaluation function E (k) shown in Expression 12 for each region, the amount of deflection (the amount of movement in the Z direction) in each region is calculated (FIG. 25B). . The amount of deflection in each region can be represented by the amount of deflection at the center of each region, for example, as shown in FIG. 25B. By comparing the deflection amount of each region with a deflection amount threshold value set in advance in each region, it is possible to determine which region is deteriorated. Note that the number and size of area divisions can be arbitrarily set.
 図26は、荷重印加の開始から終了までの時間における移動量(たわみ量)の変化を示す図である。図26では、図25Aの領域Bにおける移動量の時間変化を示す。移動量の時間変化から、たとえば、移動量の最大値をたわみ量とすることができる。このたわみ量を閾値と比較することで劣化を判定することができる。なお、移動量の時間変化は、領域ごとに記録することができる。 FIG. 26 is a diagram illustrating a change in the movement amount (deflection amount) in the time from the start to the end of load application. In FIG. 26, the time change of the movement amount in the region B of FIG. 25A is shown. From the time change of the movement amount, for example, the maximum value of the movement amount can be set as the deflection amount. Deterioration can be determined by comparing the amount of deflection with a threshold value. The time change of the movement amount can be recorded for each area.
 図27は、構造物の内部に空洞がある場合の特徴的なたわみ方を説明する図である。内部空洞が存在する場合のたわみ方は、内部空洞が存在しない場合のたわみ方(図中の破線で示す分布)に比べて、内部空洞の存在する表面での変位が小さくなるようなたわみ方を示す。3次元空間分布情報解析部7では、この特徴的なたわみ方を予め記憶しておくことで、得られたたわみの状態から内部空洞の存在を判定することができる。 FIG. 27 is a diagram illustrating a characteristic way of bending when there is a cavity inside the structure. The method of bending when there is an internal cavity is a method of bending that causes the displacement at the surface where the internal cavity exists to be smaller than that when there is no internal cavity (distribution indicated by the broken line in the figure). Show. The three-dimensional spatial distribution information analysis unit 7 can determine the presence of an internal cavity from the obtained deflection state by storing this characteristic deflection method in advance.
 また、図26の移動量の変化から、微分変位算出部5にて変位である移動量を空間微分した微分値を得ることができる。移動量の微分値はZ方向の歪を表すことから、内部空洞がある場合のZ方向の歪と、内部空洞が無い場合の歪との特徴的な差異を、予め3次元空間分布情報解析部7で備えておくことによって、Z方向の歪からも内部空洞の存在を判定することができる。 Further, from the change in the movement amount in FIG. 26, the differential displacement calculation unit 5 can obtain a differential value obtained by spatially differentiating the movement amount that is the displacement. Since the differential value of the movement amount represents the strain in the Z direction, the characteristic difference between the strain in the Z direction when there is an internal cavity and the strain when there is no internal cavity is preliminarily determined in a three-dimensional spatial distribution information analysis unit. 7, the presence of the internal cavity can be determined from the strain in the Z direction.
 また、時間変化情報解析部8において、移動量の時間的な変化から、老朽化などの劣化を判定することができる。すなわち、構造物が老朽化すると、荷重を印加した時の移動量の変化の周期が長くなる。よって、予め移動量の変化の周期に閾値を設けておき、周期が閾値を超えたときに構造物が劣化したと判定することができる。また、移動量の微分値の変化の周期によっても、前記と同様に劣化を判定することが可能である。 Further, the time change information analysis unit 8 can determine deterioration such as aging from the time change of the movement amount. That is, when the structure ages, the period of change in the amount of movement when a load is applied becomes longer. Therefore, it is possible to determine that the structure has deteriorated by previously setting a threshold value for the period of change in the movement amount and when the period exceeds the threshold value. Further, it is possible to determine the deterioration in the same manner as described above by the period of change in the differential value of the movement amount.
 図28は、図3の状態判定装置1の状態判定方法を示すフローチャートである。 FIG. 28 is a flowchart showing a state determination method of the state determination apparatus 1 of FIG.
 ステップS1で、変位算出部2は、撮像装置11で撮像された荷重を印加する前後での構造物20の表面の時系列画像において、変位を算出する基準となる荷重印加前のフレーム画像と、荷重印加後のフレーム画像を時系列に取り込む。このとき撮像装置11は、荷重印加前のフレーム画像を撮像する際に、当初の撮像距離Lでの撮像と、光路長制御部12を切り替えて撮像距離をδ’ずらした距離での撮像とを行う。変位算出部2は、これらのフレーム画像も取り込む。 In step S <b> 1, the displacement calculation unit 2 includes a frame image before application of a load that serves as a reference for calculating displacement in a time-series image of the surface of the structure 20 before and after applying a load imaged by the imaging device 11. Capture the frame images after applying the load in time series. At this time, when imaging the frame image before applying the load, the imaging device 11 performs imaging at the initial imaging distance L and imaging at a distance obtained by shifting the imaging distance by δ ′ by switching the optical path length control unit 12. Do. The displacement calculation unit 2 also captures these frame images.
 変位算出部2は、基準となる荷重印加前の画像に対する荷重印加後の画像のX、Y方向の変位を時系列に算出する。また、荷重印加前のフレーム画像において、当初の撮像距離Lでの画像に対する撮像距離をδ’ずらした距離での画像のX、Y方向の変位も算出する。 The displacement calculation unit 2 calculates the displacement in the X and Y directions of the image after the load application with respect to the image before the load application as a reference in time series. Further, in the frame image before applying the load, the displacement in the X and Y directions of the image at a distance obtained by shifting the imaging distance with respect to the image at the initial imaging distance L by δ ′ is also calculated.
 変位算出部2は、算出した変位の2次元分布をX-Y平面に表示した変位分布図(変位の等高線)としてもよい。さらに、変位算出部2は、算出した変位もしくは変位分布図を、奥行移動量算出部3と変位分離部4に入力する。 The displacement calculation unit 2 may be a displacement distribution diagram (contour lines of displacement) in which the calculated two-dimensional distribution of displacement is displayed on an XY plane. Further, the displacement calculation unit 2 inputs the calculated displacement or displacement distribution diagram to the depth movement amount calculation unit 3 and the displacement separation unit 4.
 ステップS2で、奥行移動量算出部3は、当初の撮像距離Lでの画像に対する撮像距離をδ’ずらした距離での画像のX、Y方向の変位から、当初の撮像距離Lを算出する。さらに、奥行移動量算出部3は、変位算出部2が算出した時系列画像の変位から、荷重により構造物20がたわむなどして構造物20表面がその法線方向へ移動する移動量を、算出された撮像距離Lを用いて算出する。このとき、奥行移動量算出部3は、撮像装置11の光軸と構造物20の表面の法線との成す傾斜角度を推定し、この傾斜角度を考慮した移動量を算出する。奥行移動量算出部3は、算出した移動量を、変位分離部4と微分変位算出部5と異常判定部6とに入力する。 In step S2, the depth movement amount calculation unit 3 calculates the initial imaging distance L from the displacement in the X and Y directions of the image at a distance shifted by δ 'with respect to the image at the initial imaging distance L. Further, the depth movement amount calculation unit 3 determines the movement amount by which the structure 20 surface moves in the normal direction due to the deflection of the structure 20 due to a load from the displacement of the time-series image calculated by the displacement calculation unit 2. Calculation is performed using the calculated imaging distance L. At this time, the depth movement amount calculation unit 3 estimates the inclination angle formed by the optical axis of the imaging device 11 and the normal line of the surface of the structure 20, and calculates the movement amount in consideration of this inclination angle. The depth movement amount calculation unit 3 inputs the calculated movement amount to the displacement separation unit 4, the differential displacement calculation unit 5, and the abnormality determination unit 6.
 ステップS3で、変位分離部4は、奥行移動量算出部3が算出した移動量を用いて、面外変位を算出する。 In step S3, the displacement separation unit 4 calculates the out-of-plane displacement using the movement amount calculated by the depth movement amount calculation unit 3.
 ステップS4で、変位分離部4は、変位算出部2で得られた変位から面外変位を減算して面内変位を分離する。すなわち、変位分離部4は、基準となる荷重印加前に対する、荷重印加後の構造物20の表面のX-Y方向の面内変位を算出する。さらに、算出した面内変位の2次元分布をX-Y平面に表示した変位分布図(変位の等高線)としてもよい。変位分離部4は、算出した結果を微分変位算出部5と異常判定部6に入力する。 In step S4, the displacement separating unit 4 subtracts the out-of-plane displacement from the displacement obtained by the displacement calculating unit 2 to separate the in-plane displacement. That is, the displacement separation unit 4 calculates the in-plane displacement in the XY direction of the surface of the structure 20 after the load is applied with respect to the reference before the load is applied. Further, the calculated two-dimensional distribution of in-plane displacement may be a displacement distribution diagram (contour lines of displacement) displayed on the XY plane. The displacement separation unit 4 inputs the calculated result to the differential displacement calculation unit 5 and the abnormality determination unit 6.
 ステップS5で、微分変位算出部5は、変位分離部4から入力された面内変位もしくは変位分布図を空間微分して、微分変位(応力値)もしくは微分変位分布図(応力場)を算出する。また、微分変位算出部5は、奥行移動量算出部3で得られた移動量の微分変位(応力値)もしくは微分変位分布図(応力場)を算出する。微分変位算出部5は、算出した結果を異常判定部6に入力する。 In step S5, the differential displacement calculation unit 5 spatially differentiates the in-plane displacement or displacement distribution diagram input from the displacement separation unit 4 to calculate a differential displacement (stress value) or differential displacement distribution diagram (stress field). . Further, the differential displacement calculation unit 5 calculates a differential displacement (stress value) or a differential displacement distribution diagram (stress field) of the movement amount obtained by the depth movement amount calculation unit 3. The differential displacement calculation unit 5 inputs the calculated result to the abnormality determination unit 6.
 以下のステップS6、ステップS7、ステップS8、ステップS9は、異常判定部6の3次元空間分布情報解析部7が構造体の欠陥であるひび割れ、剥離、内部空洞、劣化を判定するステップである。判定方法としては、前述したパタンマッチングによる方法と、閾値による方法を挙げて説明する。 The following steps S6, S7, S8, and S9 are steps in which the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines cracks, delamination, internal cavities, and deterioration that are defects in the structure. The determination method will be described with reference to the above-described pattern matching method and threshold value method.
 ステップS6で、異常判定部6の3次元空間分布情報解析部7は、入力されたX方向の変位もしくは変位分布図から、ひび割れ、剥離、内部空洞の状態を判定する。 In step S6, the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the state of cracks, separation, and internal cavities from the input displacement or displacement distribution diagram in the X direction.
 まず、パタンマッチングによる判定方法を説明する。3次元空間分布情報解析部7は、図18A、図20A、図22Aに示すような、ひび割れや内部空洞や剥離の幅や深さなどに対応して予め作成された変位分布パタンをデータベースとして備えている。3次元空間分布情報解析部7は、変位分離部4から入力されたX方向の変位分布図に対して、これらの変位分布パタンを回転、拡大縮小してパタンマッチングし、X-Y平面における欠陥の位置や種類を判定することができる。 First, the determination method by pattern matching will be described. The three-dimensional spatial distribution information analysis unit 7 includes, as a database, displacement distribution patterns created in advance corresponding to cracks, internal cavities, widths and depths of separation as shown in FIGS. 18A, 20A, and 22A. ing. The three-dimensional spatial distribution information analysis unit 7 performs pattern matching by rotating and enlarging / reducing these displacement distribution patterns with respect to the displacement distribution diagram in the X direction input from the displacement separation unit 4 to detect defects in the XY plane. Can be determined.
 次に、変位の閾値による判定方法を説明する。3次元空間分布情報解析部7は、入力されたX方向の変位に基づいて、例えば、変位の連続性を判定する。すなわち、図11Aに示したように、変位の閾値以上の急峻な変化の有無により、連続性の無し有りを判定する。3次元空間分布情報解析部7は、X-Y平面上のいずれかの箇所に連続性が無い急峻な変化がある場合、当該箇所にひび割れや剥離が存在する可能性があると判定し、不連続フラグDisC(x,y,t)に1をセットするとともに、急峻な変化がある箇所の変位データを数値情報として記録する。ここでtは、ステップS1で取り込んだフレーム画像の時系列画像上の時刻である。 Next, a determination method based on a displacement threshold will be described. The three-dimensional spatial distribution information analysis unit 7 determines, for example, the continuity of the displacement based on the input displacement in the X direction. That is, as shown in FIG. 11A, the presence or absence of continuity is determined based on the presence or absence of a steep change equal to or greater than the displacement threshold. The three-dimensional spatial distribution information analysis unit 7 determines that there is a possibility that a crack or separation may exist in any part of the XY plane when there is a steep change without continuity. While the continuous flag DisC (x, y, t) is set to 1, the displacement data at a place where there is a steep change is recorded as numerical information. Here, t is the time on the time-series image of the frame image captured in step S1.
 異常判定部6は、パタンマッチングにより判定した欠陥の情報、もしくは、変位の閾値により判定した不連続フラグDisC(x,y,t)や数値情報を、異常マップ作成部9に入力する。 The abnormality determination unit 6 inputs the defect information determined by pattern matching, or the discontinuity flag DisC (x, y, t) and numerical information determined by the displacement threshold to the abnormality map creation unit 9.
 ステップS7で、異常判定部6の3次元空間分布情報解析部7は、入力されたY方向の変位もしくは変位分布図から、ひび割れ、剥離、内部空洞の状態を判定する。 In step S7, the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the state of cracks, separation, and internal cavities from the input displacement or displacement distribution diagram in the Y direction.
 まず、パタンマッチングによる判定方法を説明する。2次元空間分布情報解析部7は、図18B、図20B、図22Bに示すような、ひび割れや内部空洞や剥離の幅や深さなどに対応して予め作成された変位分布パタンをデータベースとして備えている。3次元空間分布情報解析部7は、変位分離部4から入力されたY方向の変位分布図に対して、これらの変位分布パタンを回転、拡大縮小することによってパタンマッチングし、X-Y平面における欠陥の位置や種類を判定する。 First, the determination method by pattern matching will be described. The two-dimensional spatial distribution information analysis unit 7 includes, as a database, displacement distribution patterns created in advance corresponding to cracks, internal cavities, widths and depths of separation, as shown in FIGS. 18B, 20B, and 22B. ing. The three-dimensional spatial distribution information analysis unit 7 performs pattern matching on the displacement distribution diagram in the Y direction input from the displacement separation unit 4 by rotating and enlarging / reducing these displacement distribution patterns, and in the XY plane. Determine the position and type of the defect.
 次に、変位の閾値による判定方法を説明する。ひび割れ、剥離、内部空洞の欠陥がある場合、Y方向にも変位が発生する。よって、3次元空間分布情報解析部7は、予め定められた閾値より大きい変位を検知した場合、当該箇所に欠陥があると判定して、直交フラグortho(x,y,t)に1をセットするとともに、閾値より大きい変位を検知した箇所の変位データを数値情報として記録する。 Next, a determination method based on a displacement threshold will be described. If there are cracks, delamination and internal cavity defects, displacement also occurs in the Y direction. Therefore, if the three-dimensional spatial distribution information analysis unit 7 detects a displacement greater than a predetermined threshold value, it determines that the location is defective and sets the orthogonal flag ortho (x, y, t) to 1. At the same time, the displacement data of the location where the displacement greater than the threshold is detected is recorded as numerical information.
 異常判定部6は、パタンマッチングにより判定した欠陥の情報、もしくは、変位により判定した直交フラグortho(x,y,t)や数値情報を、異常マップ作成部9に入力する。 The abnormality determination unit 6 inputs the defect information determined by pattern matching, or the orthogonal flag ortho (x, y, t) and numerical information determined by displacement to the abnormality map creation unit 9.
 ステップS8で、異常判定部6の3次元空間分布情報解析部7は、入力されたZ方向の移動量から、構造物の劣化や欠陥の状態を判定する。異常判定部6は、判定した劣化や欠陥の情報を、異常マップ作成部9に入力する。 In step S8, the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the deterioration of the structure and the state of the defect from the input movement amount in the Z direction. The abnormality determination unit 6 inputs the determined deterioration and defect information to the abnormality map creation unit 9.
 ステップS9で、異常判定部6の3次元空間分布情報解析部7は、入力された微分変位(応力値)もしくは微分変位分布図(応力場)から、ひび割れ、剥離、内部空洞の状態を判定する。 In step S9, the three-dimensional spatial distribution information analysis unit 7 of the abnormality determination unit 6 determines the state of cracks, separation, and internal cavities from the input differential displacement (stress value) or differential displacement distribution diagram (stress field). .
 まず、パタンマッチングによる判定方法を説明する。3次元空間分布情報解析部7は、図18C、図20C、図22Cに示すような、ひび割れや内部空洞や剥離の幅や深さなどに対応して予め作成された変位分布パタンをデータベースとして備えている。3次元空間分布情報解析部7は、微分変位算出部5から入力された微分変位分布図に対して、これらの変位分布パタンを回転、拡大縮小することによってパタンマッチングし、X-Y平面における欠陥の位置や種類を判定する。 First, the determination method by pattern matching will be described. The three-dimensional spatial distribution information analysis unit 7 includes, as a database, displacement distribution patterns created in advance corresponding to cracks, internal cavities, widths and depths of separation as shown in FIGS. 18C, 20C, and 22C. ing. The three-dimensional spatial distribution information analysis unit 7 performs pattern matching on the differential displacement distribution diagram input from the differential displacement calculation unit 5 by rotating and enlarging / reducing these displacement distribution patterns, so that defects in the XY plane are detected. Determine the position and type.
 次に、微分変位の閾値による判定方法を説明する。例えば、X方向の歪は、ひび割れ部では変位の微分値が発散するため、急増する。このことから、歪の値に閾値を予め設けておくことで、閾値を上回る歪が検出された箇所にひび割れがあると判定することができる。3次元空間分布情報解析部7は、入力された微分変位に基づいて、当該箇所にひび割れが存在すると判定し、微分値フラグDiff(x,y,t)に1をセットするとともに、欠陥箇所の微分変位データを数値情報として記録する。 Next, the determination method based on the differential displacement threshold will be described. For example, the strain in the X direction increases rapidly because the differential value of the displacement diverges at the cracked portion. From this, it is possible to determine that there is a crack at a location where a strain exceeding the threshold is detected by providing a threshold value in advance for the strain value. Based on the input differential displacement, the three-dimensional spatial distribution information analysis unit 7 determines that there is a crack at the location, sets 1 to the differential value flag Diff (x, y, t), and sets the defect location. Record differential displacement data as numerical information.
 異常判定部6は、パタンマッチングにより判定した欠陥の情報、もしくは、微分変位により判定した微分値フラグDiff(x,y,t)や数値情報を、異常マップ作成部9に入力する。 The abnormality determination unit 6 inputs the defect information determined by pattern matching, or the differential value flag Diff (x, y, t) and numerical information determined by differential displacement to the abnormality map creation unit 9.
 ステップS10で、変位算出部2は、時系列画像の各フレーム画像の処理が完了したかを判定する。すなわち、時系列画像のフレーム数がn枚であった場合、n枚目の処理が終わったか否かを判定する。処理がn枚に満たない場合(NO)、ステップS1からの処理を繰り返す。これをn枚が終了するまで繰り返す。なお、nは全フレーム数には限定されず、任意の数に設定することができる。処理がn枚を終了した場合(YES)、ステップS11に進む。 In step S10, the displacement calculation unit 2 determines whether the processing of each frame image of the time series image has been completed. That is, when the number of frames of the time-series image is n, it is determined whether or not the n-th process is finished. If the number of processes is less than n (NO), the processes from step S1 are repeated. This is repeated until n sheets are completed. Note that n is not limited to the total number of frames, and can be set to an arbitrary number. When the process has finished n sheets (YES), the process proceeds to step S11.
 ステップS11で、異常判定部6の時間変化情報解析部8は、n枚のフレーム画像に対応した時系列の変位もしくは変位分布図から、図21Bや図23に示したような変位の時間応答を解析する。すなわち、n枚の変位分布図I(x,y,n)から、時間周波数分布(時間周波数をfとする)が振幅A(x,y,z,f)、位相P(x,y,z,f)として算出される。時間変化情報解析部8は、時間周波数分布が図21Bのように場所によって位相が異なる特徴を有する場合、位相ずれを生じている箇所に内部空洞があると判定する。また、図23のように変位の極性が反転している場合、その間の箇所に剥離があると判定する。また、時間変化情報解析部8は、Z方向の移動量の変化の周期や、移動量の微分値の変化の周期を、予め設けられた周期の閾値と比較することにより、構造物の老朽化を判定する。時間変化情報解析部8は、以上の時間周波数分布の算出結果と欠陥の判定結果を、異常マップ作成部9に入力する。 In step S11, the time change information analysis unit 8 of the abnormality determination unit 6 generates a displacement time response as shown in FIG. 21B or FIG. 23 from the time-series displacement or displacement distribution diagram corresponding to the n frame images. To analyze. That is, from the n displacement distribution diagrams I (x, y, n), the time frequency distribution (the time frequency is assumed to be f) is the amplitude A (x, y, z, f) and the phase P (x, y, z). , F). The time change information analysis unit 8 determines that there is an internal cavity at a position where a phase shift occurs when the time frequency distribution has a characteristic in which the phase differs depending on the location as shown in FIG. 21B. Moreover, when the polarity of displacement is reversed as shown in FIG. In addition, the time change information analysis unit 8 compares the period of change in the movement amount in the Z direction and the period of change in the differential value of the movement amount with a predetermined threshold of the period, thereby aging the structure. Determine. The time change information analysis unit 8 inputs the above time frequency distribution calculation result and defect determination result to the abnormality map creation unit 9.
 ステップ12で、異常マップ作成部9は、以上のステップで入力された情報に基づいて、異常マップ(x,y,z)を作成する。3次元空間分布情報解析部7および時間変化情報解析部8から送られた結果は、X-Y-Z座標上の点(x,y,z)に関与するデータ群である。これらのデータは、異常判定部6内の3次元空間分布情報解析部7および時間変化情報解析部8にて、構造物の状態が判定されている。 In step 12, the abnormality map creation unit 9 creates an abnormality map (x, y, z) based on the information input in the above steps. The results sent from the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 are data groups related to the point (x, y, z) on the XYZ coordinates. The state of the structure of these data is determined by the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 in the abnormality determination unit 6.
 これらの判定は、X方向の変位もしくは変位分布図、Y方向の変位もしくは変位分布図、Z方向の移動量、微分変位もしくは微分変位分布図、さらには変位や微分変位の時間応答についてなされている。そのため、異常マップ作成部9は、例えば、Y方向の変位での判定が付かないなどのデータの欠落を生じたとしても、X方向の変位と微分変位での判定が付いていることによって、X-Y座標中の当該の箇所の状態を決定できる。そして、この決定に基づいて、異常マップ(x,y,z)を作成することができる。 These determinations are made on the displacement or displacement distribution diagram in the X direction, the displacement or displacement distribution diagram in the Y direction, the movement amount in the Z direction, the differential displacement or differential displacement distribution diagram, and the time response of the displacement or differential displacement. . For this reason, the abnormality map creation unit 9 can determine whether the displacement in the X direction and the differential displacement are attached, even if data loss occurs, for example, the determination in the displacement in the Y direction cannot be made. -The state of the location in the Y coordinate can be determined. Based on this determination, an abnormality map (x, y, z) can be created.
 また、欠陥状態の判定に際しては、X方向変位、Y方向変位、Z方向変位、微分変位の判定が喰い違った場合、多数決により決定しても良い。また、判定基準である閾値と最も差の大きい項目に決定しても良い。 Further, when determining the defect state, if the determination of the displacement in the X direction, the displacement in the Y direction, the displacement in the Z direction, and the differential displacement is different, it may be determined by majority vote. Alternatively, the item having the largest difference from the threshold value that is the criterion may be determined.
 また、異常マップ作成部9は、前述の各種数値情報に基づいて、欠陥の程度を表現することができる。例えば、ひび割れの幅や深さ、剥離の寸法、内部空洞の寸法や表面からの深さなどを表現することができる。 Also, the abnormality map creation unit 9 can express the degree of defects based on the various numerical information described above. For example, the width and depth of a crack, the dimension of peeling, the dimension of an internal cavity, the depth from the surface, and the like can be expressed.
 また、異常判定部6内の3次元空間分布情報解析部7および時間変化情報解析部8で行う構造物の欠陥状態の判定を、異常マップ作成部9が異常マップ(x,y,z)を作成する際に行うようにすることもできる。すなわち、3次元空間分布情報解析部7および時間変化情報解析部8からは解析データを入手し、解析データに基づく欠陥状態の判定を、異常マップ作成部9が行うようにしても良い。 In addition, the abnormality map creation unit 9 uses the abnormality map (x, y, z) to determine the defect state of the structure performed by the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8 in the abnormality determination unit 6. It can also be done when creating. That is, analysis data may be obtained from the three-dimensional spatial distribution information analysis unit 7 and the time change information analysis unit 8, and the defect map generation unit 9 may determine the defect state based on the analysis data.
 また、異常マップ作成部9の結果出力は、人が表示装置で直接可視化できる形態の情報でもよいし、機械が読み込むための形態の情報でもよい。 Also, the result output of the abnormality map creation unit 9 may be information in a form that can be directly visualized by a person with a display device, or information in a form that is read by a machine.
 本実施形態において、例えば、撮像装置11のレンズ焦点距離は50mm、画素ピッチは5μmとして、撮像距離5mにおいて500μmの画素分解能が得られるようにすることができる。撮像装置11の撮像素子は、モノクロで水平2000画素、垂直2000画素の画素数のものを使用し、撮像距離5mにおいて、1m×1mの範囲が撮像できるようにすることができる。撮像素子のフレームレートは60Hzとすることができる。 In the present embodiment, for example, the lens focal length of the imaging device 11 is 50 mm, the pixel pitch is 5 μm, and a pixel resolution of 500 μm can be obtained at an imaging distance of 5 m. The image pickup device 11 has a monochrome image pickup device with horizontal 2000 pixels and vertical 2000 pixels, and can capture a 1 m × 1 m range at an image pickup distance of 5 m. The frame rate of the image sensor can be 60 Hz.
 また、変位算出部2における画像相関では、2次曲線補間によるサブピクセル変位推定を使用し、1/100画素まで変位推定ができるようにし、5μmの変位分解能が得られるようにすることができる。画像相関におけるサブピクセル変位推定には、以下の各種方法を用いることができる。また、変位微分において微分時のノイズ削減のために平滑フィルタを使用することができる。 Also, in the image correlation in the displacement calculation unit 2, sub-pixel displacement estimation by quadratic curve interpolation can be used so that displacement can be estimated up to 1/100 pixels and a displacement resolution of 5 μm can be obtained. The following various methods can be used for subpixel displacement estimation in image correlation. In addition, a smoothing filter can be used to reduce noise during differentiation in displacement differentiation.
 サブピクセル変位推定には、2次曲面、等角直線などによる補間を使用してもよい。また、画像相関演算には、SAD(Sum of Absolute Difference)法、SSD(Sum of Squared Difference)法、NCC(Normalized Cross Correlation)法、ZNCC(Zero-mean Normalized Cross Correlation)法などの各種方法を用いてもよい。また、これらの方法と前述のサブピクセル変位推定法とのいかなる組み合わせを用いてもよい。 補 間 Interpolation by quadratic surface, equiangular line, etc. may be used for subpixel displacement estimation. In addition, for image correlation calculation, SAD (Sum of Absolute Difference) method, SSD (Sum of Squared Difference) method, NCC (Normalized Cross Correlation) method, ZNCC (Zero-mean Normalized) method, etc. May be. Any combination of these methods and the above-described subpixel displacement estimation method may be used.
 変位推定には、画像相関演算以外に、勾配法によるオプティカルフロー算出を用いてもよい。 In addition to image correlation calculation, optical flow calculation by the gradient method may be used for displacement estimation.
 奥行移動量算出部3で得られた撮像距離Lとたわみ量δを出力して、他の計測器等に参照値として入力してもよい。 The imaging distance L and the deflection amount δ obtained by the depth movement amount calculation unit 3 may be output and input as reference values to other measuring instruments or the like.
 撮像装置11のレンズ焦点距離、撮像素子の画素ピッチ、画素数、フレームレートは、測定対象に応じて適宜変更してもよい。 The lens focal length of the imaging device 11, the pixel pitch of the imaging element, the number of pixels, and the frame rate may be appropriately changed according to the measurement target.
 本実施形態において、例えば、梁状構造物は橋梁に、荷重は走行車両に相当するとすることができる。以上の説明では、梁状構造物上に荷重をかけて説明したが、荷重が走行車両のように橋梁上を移動する場合でも、同様に、ひび割れ、内部空洞、剥離、劣化の検出が可能である。また、材料力学的に以上の説明と同様の挙動を呈するものであれば、他の材料やサイズや形状を有する構造物、構造物に荷重を載せるのとは異なる荷重方法、例えば、荷重を吊り下げるなどの荷重方法によるものにも適用することができる。 In the present embodiment, for example, a beam-like structure can correspond to a bridge, and a load can correspond to a traveling vehicle. In the above explanation, a load is applied to the beam-like structure. However, even when the load moves on the bridge like a traveling vehicle, it is possible to detect cracks, internal cavities, separation, and deterioration. is there. In addition, if the material exhibits the same behavior as described above in terms of material mechanics, a structure having other materials, sizes and shapes, or a load method different from loading the structure, for example, a load is suspended. It can also be applied to a load method such as lowering.
 また、構造物の表面変位の空間2次元分布の時系列信号を計測できるものであれば、時系列画像に限らず、アレイ状のレーザドップラセンサや、アレイ状の歪ゲージ、アレイ状の振動センサ、アレイ状の加速度センサ等を用いてもよい。これらアレイ状のセンサから得られる空間2次元の時系列信号を画像情報として扱ってもよい。 Moreover, as long as it can measure a time-series signal of a spatial two-dimensional distribution of the surface displacement of a structure, it is not limited to a time-series image, but an array-shaped laser Doppler sensor, an array-shaped strain gauge, an array-shaped vibration sensor. An array-type acceleration sensor or the like may be used. Spatial two-dimensional time-series signals obtained from these array sensors may be handled as image information.
 本実施形態では、構造物表面の法線方向への移動による面外変位を算出するための距離情報や傾斜情報を、荷重印加前後での構造物表面を撮像した画像から取得することができる。構造物表面の法線方向への移動量は、構造物の側面方向から、荷重によるたわみ量を測定することによって得ることが原理的には可能である。しかしながら、例えば、構造物が橋梁などの場合、橋梁の側面からの測定は作業をする上で極めて困難であり、そのため、測定精度も低くなる。本実施形態は、この作業上の問題も解決できるので、構造物表面の画像の変位を高い精度で補正することができる。また、本実施形態では、側面方向からたわみ量を測定するための装置や設備も必要ないことから、コストの増大を抑制できる。 In this embodiment, distance information and inclination information for calculating out-of-plane displacement due to movement of the structure surface in the normal direction can be acquired from images obtained by imaging the structure surface before and after applying a load. In principle, the amount of movement of the structure surface in the normal direction can be obtained by measuring the amount of deflection due to the load from the side surface direction of the structure. However, for example, when the structure is a bridge or the like, measurement from the side surface of the bridge is extremely difficult in work, and therefore the measurement accuracy is also lowered. Since this embodiment can also solve this problem in work, the displacement of the image on the structure surface can be corrected with high accuracy. Moreover, in this embodiment, since the apparatus and facility for measuring the amount of deflection | deviation from a side surface direction are also unnecessary, the increase in cost can be suppressed.
 以上のように状態判定システム10によれば、構造物表面の撮像距離と、荷重印加による構造物表面の法線方向の移動量とが得られる。さらに、移動量を用いて、構造物表面の法線方向への移動による面外変位が得られる。この面外変位を構造物表面の画像の荷重による変位から差し引くことによって、構造物表面の面内変位を分離することができる。状態判定装置100によれば、以上の処理を作業性良く簡便に行うことができるため、構造物のひび割れや剥離や内部空洞などの欠陥を区別した検出を、遠隔から非接触で精度良く行うことが可能となる。 As described above, according to the state determination system 10, the imaging distance on the surface of the structure and the amount of movement in the normal direction of the surface of the structure due to the load application can be obtained. Furthermore, an out-of-plane displacement due to the movement of the surface of the structure in the normal direction can be obtained using the movement amount. By subtracting this out-of-plane displacement from the displacement caused by the load on the image of the structure surface, the in-plane displacement of the structure surface can be separated. According to the state determination apparatus 100, the above processing can be easily performed with good workability, and therefore, detection that distinguishes defects such as cracks, peeling, and internal cavities of the structure can be performed remotely and accurately with no contact. Is possible.
 以上のように、本実施形態によれば、遠隔から非接触で構造物のひび割れや剥離や内部空洞などの欠陥を、コストを抑制しつつ精度良く検出することが可能となる。 As described above, according to the present embodiment, it is possible to accurately detect defects such as cracks, peeling, and internal cavities of a structure from a remote location in a non-contact manner while suppressing costs.
 本発明は上記実施形態に限定されることなく、請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれるものである。 The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention.
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出部と、
 前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出部と、
 前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離する変位分離部と、
 前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する異常判定部と、を有する状態判定装置。
(付記2)
 前記奥行移動量算出部は、前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、付記1記載の状態判定装置。
(付記3)
 前記構造物表面の変位の2次元空間分布から2次元微分空間分布を算出する微分変位算出部を有し、前記異常判定部は、前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、付記1または2記載の状態判定装置。
(付記4)
 前記異常判定部は、前記構造物表面の変位の2次元空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、付記1から3の内の1項記載の状態判定装置。
(付記5)
 前記異常判定部は、前記2次元微分空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、付記3または4記載の状態判定装置。
(付記6)
 前記異常判定部は、前記構造物表面の変位の変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、付記1から5の内の1項記載の状態判定装置。
(付記7)
 前記異常判定部は、前記構造物表面の変位の微分変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、付記3から6の内の1項記載の状態判定装置。
(付記8)
 前記異常判定部の判定結果に基づいて、前記欠陥の場所と種類を示す異常マップを作成する異常マップ作成部を有する、付記1から7の内の1項記載の状態判定装置。
(付記9)
 前記欠陥の種類は、ひび割れ、剥離、内部空洞を含む、付記1から8の内の1項記載の状態判定装置。
(付記10)
 前記予め備えられた変位の空間分布と前記予め備えられた微分変位の微分空間分布は、前記ひび割れ、前記剥離、前記内部空洞の情報に基づく、付記9記載の状態判定装置。
(付記11)
 前記2次元空間分布は、前記変位のX-Y平面におけるX方向の変位の分布とY方向の変位の分布とを含む、付記1から10の内の1項記載の状態判定装置。
(付記12)
 付記1から11の内の1項記載の状態判定装置と、
 前記時系列画像と前記画像を撮像し前記状態判定装置に提供する撮像装置と、を有する、状態判定システム。
(付記13)
 前記撮像装置は、前記第1と第2の撮像距離を設定する光路長制御部を有する、付記12記載の状態判定システム。
(付記14)
 前記光路長制御部は、光路中の屈折率の変化、もしくは光路の切り替えにより前記第1と第2の撮像距離を設定する、付記13記載の状態判定システム。
(付記15)
 第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、
 前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出し、
 前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、
 前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出し、
 前記移動量に基づいて補正量を算出し、
 前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離し、
 前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する、状態判定方法。
(付記16)
 前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、付記15記載の状態判定方法。
(付記17)
 前記2次元空間分布から前記2次元空間分布の2次元微分空間分布を算出し、
 前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、付記15または16記載の状態判定方法。
(付記18)
 前記2次元空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、付記15から17の内の1項記載の状態判定方法。
(付記19)
 前記2次元微分空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、付記17または18記載の状態判定方法。
(付記20)
 前記構造物表面の変位の変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、付記15から19の内の1項記載の状態判定方法。
(付記21)
 前記構造物表面の変位の微分変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、付記17から20の内の1項記載の状態判定方法。
(付記22)
 前記判定結果に基づいて、前記欠陥の場所と種類を示す異常マップを作成する、付記15から21の内の1項記載の状態判定方法。
(付記23)
 前記欠陥の種類は、ひび割れ、剥離、内部空洞を含む、付記15から22の内の1項記載の状態判定方法。
(付記24)
 前記予め備えられた変位の空間分布と前記予め備えられた微分変位の微分空間分布は、前記ひび割れ、前記剥離、前記内部空洞の情報に基づく、付記23記載の状態判定方法。
(付記25)
 前記2次元空間分布は、前記変位のX-Y平面におけるX方向の変位の分布とY方向の変位の分布とを含む、付記15から24の内の1項項記載の状態判定方法。
(付記26)
 第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出部と、
 前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出部と、
 前記移動量と、予め備えられた前記移動量に関する閾値との比較に基づいて、前記構造物の欠陥を特定する異常判定部と、を有する状態判定装置。
(付記27)
 前記奥行移動量算出部は、前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、付記26記載の状態判定装置。
(付記28)
 前記移動量の微分変位を算出する微分変位算出部を有し、前記異常判定部は、前記移動量の微分変位と、予め備えられた微分変位との比較に基づいて、前記構造物の欠陥を特定する、付記26または27記載の状態判定装置。
(付記29)
 前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離する変位分離部を有し、前記異常判定部は、前記構造物表面の変位の2次元空間分布と、予め備えられた変位の空間分布との比較に基づいて、前記構造物の欠陥を特定する、付記26から28の内の1項記載の状態判定装置。
(付記30)
 前記微分変位算出部は、前記構造物表面の変位の2次元空間分布から2次元微分空間分布を算出し、前記異常判定部は、前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、付記28または29記載の状態判定装置。
(付記31)
 前記異常判定部は、前記移動量もしくは前記構造物表面の変位の2次元空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、付記26から30の内の1項記載の状態判定装置。
(付記32)
 前記異常判定部は、前記移動量の微分変位もしくは前記2次元微分空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、付記28から31の内の1項記載の状態判定装置。
(付記33)
 前記異常判定部の判定結果に基づいて、前記欠陥の場所と種類を示す異常マップを作成する異常マップ作成部を有する、付記26から32の内の1項記載の状態判定装置。
(付記34)
 第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、
 前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出し、
 前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、
 前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出し、
 前記移動量と、予め備えられた前記移動量に関する閾値との比較に基づいて、前記構造物の欠陥を特定する、状態判定方法。
(付記35)
 前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、付記34記載の状態判定方法。
(付記36)
 前記移動量の微分変位を算出し、
 前記移動量の微分変位と、予め備えられた微分変位との比較に基づいて、前記構造物の欠陥を特定する、付記34または35記載の状態判定方法。
(付記37)
 前記移動量に基づく補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離し、
 前記構造物表面の変位の2次元空間分布と、予め備えられた変位の空間分布との比較に基づいて、前記構造物の欠陥を特定する、付記34から36の内の1項記載の状態判定方法。
(付記38)
 前記構造物表面の変位の2次元空間分布から2次元微分空間分布を算出し、
 前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、付記37記載の状態判定方法。
(付記39)
 前記移動量もしくは前記構造物表面の変位の2次元空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、付記34から38の内の1項記載の状態判定方法。
(付記40)
 前記移動量の微分変位もしくは前記2次元微分空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、付記36から39の内の1項記載の状態判定方法。
(付記41)
 前記欠陥の場所と種類を示す異常マップを作成する、付記44から40の内の1項記載の状態判定方法。
 この出願は、2016年4月15日に出願された日本出願特願2016-081837を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Moreover, although a part or all of said embodiment may be described also as the following additional remarks, it is not restricted to the following.
(Appendix 1)
A two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and the image of the structure surface before the load application at the first imaging distance and A displacement calculation unit that calculates a two-dimensional spatial distribution of displacement of the time-series image from a difference between the time-series images of the surface of the structure by applying a load;
The first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image, and the movement amount in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image. A depth movement amount calculation unit that calculates using an imaging distance of 1;
A displacement separation unit that calculates a correction amount based on the movement amount, subtracts the correction amount from the two-dimensional spatial distribution of displacement of the time-series image, and separates the two-dimensional spatial distribution of displacement of the structure surface;
An abnormality determination unit that identifies a defect in the structure based on a comparison between a two-dimensional spatial distribution of the displacement of the structure surface and the amount of movement, and a spatial distribution of the displacement provided in advance and a threshold relating to the amount of movement. And a state determination device.
(Appendix 2)
The state determination apparatus according to claim 1, wherein the depth movement amount calculation unit estimates an inclination angle of the structure from the time series image and calculates the movement amount corrected by the inclination angle.
(Appendix 3)
A differential displacement calculating unit that calculates a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface, wherein the abnormality determining unit is configured to differentiate the two-dimensional differential spatial distribution and a differential displacement provided in advance; The state determination device according to appendix 1 or 2, wherein a defect of the structure is specified based on a comparison with a spatial distribution.
(Appendix 4)
The state determination apparatus according to any one of appendices 1 to 3, wherein the abnormality determination unit identifies a defect of the structure based on a temporal change in a two-dimensional spatial distribution of displacement of the structure surface.
(Appendix 5)
The state determination apparatus according to appendix 3 or 4, wherein the abnormality determination unit specifies a defect of the structure based on a time change of the two-dimensional differential space distribution.
(Appendix 6)
The state determination according to any one of appendices 1 to 5, wherein the abnormality determination unit identifies a defect of the structure based on a comparison between a displacement of the surface of the structure and a predetermined threshold value. apparatus.
(Appendix 7)
The state according to any one of appendices 3 to 6, wherein the abnormality determination unit identifies a defect of the structure based on a comparison between a differential displacement of a displacement of the structure surface and a threshold value provided in advance. Judgment device.
(Appendix 8)
The state determination apparatus according to one of appendices 1 to 7, further including an abnormality map creation unit that creates an abnormality map indicating the location and type of the defect based on a determination result of the abnormality determination unit.
(Appendix 9)
9. The state determination device according to claim 1, wherein the type of the defect includes cracks, peeling, and internal cavities.
(Appendix 10)
The state determination device according to appendix 9, wherein the spatial distribution of the displacement provided in advance and the differential spatial distribution of the differential displacement provided in advance are based on information on the crack, the separation, and the internal cavity.
(Appendix 11)
11. The state determination device according to claim 1, wherein the two-dimensional spatial distribution includes an X-direction displacement distribution and a Y-direction displacement distribution on an XY plane of the displacement.
(Appendix 12)
The state determination device according to one of the supplementary notes 1 to 11,
A state determination system comprising: the time-series image; and an imaging device that captures the image and provides the image to the state determination device.
(Appendix 13)
The state determination system according to appendix 12, wherein the imaging apparatus includes an optical path length control unit that sets the first and second imaging distances.
(Appendix 14)
The state determination system according to appendix 13, wherein the optical path length control unit sets the first and second imaging distances by changing a refractive index in the optical path or switching an optical path.
(Appendix 15)
Calculating the two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances;
Calculating a two-dimensional spatial distribution of the displacement of the time-series image from the difference between the image of the structure surface before the load application at the first imaging distance and the time-series image of the structure surface by the load application;
Calculating the first imaging distance from a two-dimensional spatial distribution of the displacement of the image;
The amount of movement in the normal direction of the surface of the structure due to the application of the load is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance,
A correction amount is calculated based on the movement amount,
Subtracting the correction amount from the two-dimensional spatial distribution of the displacement of the time series image to separate the two-dimensional spatial distribution of the displacement of the structure surface;
State determination that identifies a defect in the structure based on a comparison between a two-dimensional spatial distribution of the displacement of the structure surface and the amount of movement, and a spatial distribution of displacement provided in advance and a threshold value related to the amount of movement. Method.
(Appendix 16)
The state determination method according to claim 15, wherein an inclination angle of the structure is estimated from the time series image, and the movement amount corrected by the inclination angle is calculated.
(Appendix 17)
Calculating a two-dimensional differential spatial distribution of the two-dimensional spatial distribution from the two-dimensional spatial distribution;
The state determination method according to appendix 15 or 16, wherein a defect of the structure is specified based on a comparison between the two-dimensional differential space distribution and a differential space distribution of differential displacement provided in advance.
(Appendix 18)
18. The state determination method according to one of appendices 15 to 17, wherein a defect of the structure is specified based on a temporal change in the two-dimensional spatial distribution.
(Appendix 19)
The state determination method according to appendix 17 or 18, wherein a defect of the structure is specified based on a time change of the two-dimensional differential space distribution.
(Appendix 20)
20. The state determination method according to any one of appendices 15 to 19, wherein a defect of the structure is specified based on a comparison between a displacement of the structure surface displacement and a predetermined threshold.
(Appendix 21)
21. The state determination method according to any one of appendices 17 to 20, wherein a defect of the structure is specified based on a comparison between a differential displacement of the displacement of the structure surface and a threshold provided in advance.
(Appendix 22)
The state determination method according to any one of supplementary notes 15 to 21, wherein an abnormality map indicating the location and type of the defect is created based on the determination result.
(Appendix 23)
23. The state determination method according to one of appendices 15 to 22, wherein the type of the defect includes cracks, peeling, and internal cavities.
(Appendix 24)
The state determination method according to appendix 23, wherein the spatial distribution of the displacement provided in advance and the differential spatial distribution of the differential displacement provided in advance are based on information on the crack, the separation, and the internal cavity.
(Appendix 25)
25. The state determination method according to any one of appendices 15 to 24, wherein the two-dimensional spatial distribution includes an X-direction displacement distribution and a Y-direction displacement distribution on an XY plane of the displacement.
(Appendix 26)
A two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and the image of the structure surface before the load application at the first imaging distance and A displacement calculation unit that calculates a two-dimensional spatial distribution of displacement of the time-series image from a difference between the time-series images of the surface of the structure by applying a load;
The first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image, and the movement amount in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image. A depth movement amount calculation unit that calculates using an imaging distance of 1;
The state determination apparatus which has an abnormality determination part which specifies the defect of the said structure based on the comparison with the threshold value regarding the said movement amount with which the said movement amount was equipped previously.
(Appendix 27)
27. The state determination device according to appendix 26, wherein the depth movement amount calculation unit estimates an inclination angle of the structure from the time series image and calculates the movement amount corrected by the inclination angle.
(Appendix 28)
A differential displacement calculating unit configured to calculate a differential displacement of the movement amount, and the abnormality determination unit detects defects in the structure based on a comparison between the differential displacement of the movement amount and a differential displacement provided in advance. The state determination device according to appendix 26 or 27, which is specified.
(Appendix 29)
A displacement separation unit is provided that calculates a correction amount based on the movement amount, subtracts the correction amount from the two-dimensional spatial distribution of the displacement of the time-series image, and separates the two-dimensional spatial distribution of the displacement of the structure surface. The abnormality determining unit identifies defects of the structure based on a comparison between a two-dimensional spatial distribution of the displacement of the structure surface and a spatial distribution of the displacement provided in advance. The state determination apparatus according to claim 1.
(Appendix 30)
The differential displacement calculation unit calculates a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface, and the abnormality determination unit calculates the differential displacement of the differential displacement provided in advance and the two-dimensional differential spatial distribution. The state determination apparatus according to appendix 28 or 29, wherein a defect of the structure is specified based on a comparison with a spatial distribution.
(Appendix 31)
The state determination according to any one of appendices 26 to 30, wherein the abnormality determination unit identifies a defect of the structure based on a time change of the two-dimensional spatial distribution of the movement amount or the displacement of the structure surface. apparatus.
(Appendix 32)
32. The state determination device according to any one of appendices 28 to 31, wherein the abnormality determination unit specifies a defect of the structure based on a temporal change in the differential displacement of the movement amount or the two-dimensional differential space distribution.
(Appendix 33)
33. The state determination device according to any one of appendices 26 to 32, further including an abnormality map creation unit that creates an abnormality map indicating the location and type of the defect based on a determination result of the abnormality determination unit.
(Appendix 34)
Calculating the two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances;
Calculating a two-dimensional spatial distribution of the displacement of the time-series image from the difference between the image of the structure surface before the load application at the first imaging distance and the time-series image of the structure surface by the load application;
Calculating the first imaging distance from a two-dimensional spatial distribution of the displacement of the image;
The amount of movement in the normal direction of the surface of the structure due to the application of the load is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance,
A state determination method for identifying a defect in the structure based on a comparison between the movement amount and a threshold value relating to the movement amount provided in advance.
(Appendix 35)
35. The state determination method according to appendix 34, wherein an inclination angle of the structure is estimated from the time series image, and the movement amount corrected by the inclination angle is calculated.
(Appendix 36)
Calculating a differential displacement of the amount of movement;
36. The state determination method according to appendix 34 or 35, wherein a defect of the structure is specified based on a comparison between the differential displacement of the movement amount and a differential displacement provided in advance.
(Appendix 37)
Calculating a correction amount based on the movement amount, subtracting the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image, and separating a two-dimensional spatial distribution of the displacement of the structure surface;
37. The state determination according to any one of appendices 34 to 36, wherein a defect of the structure is specified based on a comparison between a two-dimensional spatial distribution of displacement of the structure surface and a spatial distribution of displacement provided in advance. Method.
(Appendix 38)
Calculating a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface;
38. The state determination method according to appendix 37, wherein a defect of the structure is specified based on a comparison between the two-dimensional differential space distribution and a differential space distribution of differential displacement provided in advance.
(Appendix 39)
39. A state determination method according to any one of appendices 34 to 38, wherein a defect of the structure is specified based on a temporal change in the two-dimensional spatial distribution of the movement amount or the displacement of the structure surface.
(Appendix 40)
40. The state determination method according to any one of appendices 36 to 39, wherein a defect of the structure is specified based on a temporal change in the differential displacement of the movement amount or the two-dimensional differential space distribution.
(Appendix 41)
41. The state determination method according to any one of appendices 44 to 40, wherein an abnormality map indicating the location and type of the defect is created.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2016-081837 for which it applied on April 15, 2016, and takes in those the indications of all here.
 1、100  状態判定装置
 2、101  変位算出部
 3、102  奥行移動量算出部
 4、103  変位分離部
 5  微分変位算出部
 6、104  異常判定部
 7  3次元空間分布情報解析部
 8  時間変化情報解析部
 9  異常マップ作成部
 10  状態判定システム
 11、11a、11b、11c  撮像装置
 12、12a、12b、12c  光路長制御部
 12a1  平行平板ガラス
 12a2  可動機構
 12b1  ミラー
 12b2  可動機構
 12c1  ハーフミラー
 12c2  ミラー
 13  レンズ
 14  撮像素子
 15  処理回路
 20  構造物
 21  欠陥
DESCRIPTION OF SYMBOLS 1,100 State determination apparatus 2,101 Displacement calculation part 3,102 Depth movement amount calculation part 4,103 Displacement separation part 5 Differential displacement calculation part 6,104 Abnormality determination part 7 Three-dimensional spatial distribution information analysis part 8 Time change information analysis Unit 9 Abnormal map creation unit 10 State determination system 11, 11a, 11b, 11c Imaging device 12, 12a, 12b, 12c Optical path length control unit 12a1 Parallel plate glass 12a2 Movable mechanism 12b1 Mirror 12b2 Movable mechanism 12c1 Half mirror 12c2 Mirror 13 Lens 14 Image sensor 15 Processing circuit 20 Structure 21 Defect

Claims (41)

  1.  第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出手段と、
     前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出手段と、
     前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離する変位分離手段と、
     前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する異常判定手段と、を有する状態判定装置。
    A two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and the image of the structure surface before the load application at the first imaging distance and A displacement calculating means for calculating a two-dimensional spatial distribution of the displacement of the time-series image from a difference between the time-series images of the surface of the structure by applying a load;
    The first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image, and the movement amount in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image. Depth movement amount calculating means for calculating using the imaging distance of 1;
    Displacement separation means for calculating a correction amount based on the movement amount, subtracting the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image, and separating the two-dimensional spatial distribution of the displacement of the structure surface;
    Abnormality determination means for identifying a defect in the structure based on a comparison between a two-dimensional spatial distribution of displacement of the structure surface and the amount of movement, and a spatial distribution of displacement provided in advance and a threshold value related to the amount of movement. And a state determination device.
  2.  前記奥行移動量算出手段は、前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、請求項1記載の状態判定装置。 The state determination apparatus according to claim 1, wherein the depth movement amount calculation means estimates an inclination angle of the structure from the time-series image and calculates the movement amount corrected by the inclination angle.
  3.  前記構造物表面の変位の2次元空間分布から2次元微分空間分布を算出する微分変位算出手段を有し、前記異常判定手段は、前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、請求項1または2記載の状態判定装置。 Differential displacement calculating means for calculating a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface, and the abnormality determining means includes the two-dimensional differential spatial distribution and a differential displacement derivative provided in advance. The state determination apparatus according to claim 1 or 2, wherein a defect of the structure is specified based on a comparison with a spatial distribution.
  4.  前記異常判定手段は、前記構造物表面の変位の2次元空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、請求項1から3の内の1項記載の状態判定装置。 4. The state determination apparatus according to claim 1, wherein the abnormality determination unit specifies a defect of the structure based on a temporal change of a two-dimensional spatial distribution of a displacement of the structure surface.
  5.  前記異常判定手段は、前記2次元微分空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、請求項3または4記載の状態判定装置。 The state determination device according to claim 3 or 4, wherein the abnormality determination unit specifies a defect of the structure based on a time change of the two-dimensional differential space distribution.
  6.  前記異常判定手段は、前記構造物表面の変位の変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、請求項1から5の内の1項記載の状態判定装置。 The state according to claim 1, wherein the abnormality determination unit specifies a defect of the structure based on a comparison between a displacement of the surface of the structure and a threshold value provided in advance. Judgment device.
  7.  前記異常判定手段は、前記構造物表面の変位の微分変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、請求項3から6の内の1項記載の状態判定装置。 The said abnormality determination means specifies the defect of the said structure based on the comparison with the differential displacement of the displacement of the said structure surface, and the threshold value provided beforehand, The one of Claim 3-6 State determination device.
  8.  前記異常判定手段の判定結果に基づいて、前記欠陥の場所と種類を示す異常マップを作成する異常マップ作成手段を有する、請求項1から7の内の1項記載の状態判定装置。 8. The state determination apparatus according to claim 1, further comprising an abnormality map creating unit that creates an abnormality map indicating the location and type of the defect based on a determination result of the abnormality determination unit.
  9.  前記欠陥の種類は、ひび割れ、剥離、内部空洞を含む、請求項1から8の内の1項記載の状態判定装置。 9. The state determination device according to claim 1, wherein the type of the defect includes cracking, peeling, and internal cavity.
  10.  前記予め備えられた変位の空間分布と前記予め備えられた微分変位の微分空間分布は、前記ひび割れ、前記剥離、前記内部空洞の情報に基づく、請求項9記載の状態判定装置。 The state determination device according to claim 9, wherein the spatial distribution of the displacement provided in advance and the differential spatial distribution of the differential displacement provided in advance are based on information on the crack, the separation, and the internal cavity.
  11.  前記2次元空間分布は、前記変位のX-Y平面におけるX方向の変位の分布とY方向の変位の分布とを含む、請求項1から10の内の1項記載の状態判定装置。 11. The state determination apparatus according to claim 1, wherein the two-dimensional spatial distribution includes an X-direction displacement distribution and a Y-direction displacement distribution on the XY plane of the displacement.
  12.  請求項1から11の内の1項記載の状態判定装置と、
     前記時系列画像と前記画像を撮像し前記状態判定装置に提供する撮像装置と、を有する、状態判定システム。
    A state determination device according to one of claims 1 to 11, and
    A state determination system comprising: the time-series image; and an imaging device that captures the image and provides the image to the state determination device.
  13.  前記撮像装置は、前記第1と第2の撮像距離を設定する光路長制御手段を有する、請求項12記載の状態判定システム。 The state determination system according to claim 12, wherein the imaging apparatus includes an optical path length control unit that sets the first and second imaging distances.
  14.  前記光路長制御手段は、光路中の屈折率の変化、もしくは光路の切り替えにより前記第1と第2の撮像距離を設定する、請求項13記載の状態判定システム。 14. The state determination system according to claim 13, wherein the optical path length control means sets the first and second imaging distances by changing the refractive index in the optical path or switching the optical path.
  15.  第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、
     前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出し、
     前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、
     前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出し、
     前記移動量に基づいて補正量を算出し、
     前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離し、
     前記構造物表面の変位の2次元空間分布と前記移動量と、予め備えられた変位の空間分布と前記移動量に関する閾値と、の比較に基づいて、前記構造物の欠陥を特定する、状態判定方法。
    Calculating the two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances;
    Calculating a two-dimensional spatial distribution of the displacement of the time-series image from the difference between the image of the structure surface before the load application at the first imaging distance and the time-series image of the structure surface by the load application;
    Calculating the first imaging distance from a two-dimensional spatial distribution of the displacement of the image;
    The amount of movement in the normal direction of the surface of the structure due to the application of the load is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance,
    A correction amount is calculated based on the movement amount,
    Subtracting the correction amount from the two-dimensional spatial distribution of the displacement of the time series image to separate the two-dimensional spatial distribution of the displacement of the structure surface;
    State determination that identifies a defect in the structure based on a comparison between a two-dimensional spatial distribution of the displacement of the structure surface and the amount of movement, and a spatial distribution of displacement provided in advance and a threshold value related to the amount of movement. Method.
  16.  前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、請求項15記載の状態判定方法。 The state determination method according to claim 15, wherein an inclination angle of the structure is estimated from the time-series image, and the movement amount corrected by the inclination angle is calculated.
  17.  前記2次元空間分布から前記2次元空間分布の2次元微分空間分布を算出し、
     前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、請求項15または16記載の状態判定方法。
    Calculating a two-dimensional differential spatial distribution of the two-dimensional spatial distribution from the two-dimensional spatial distribution;
    The state determination method according to claim 15 or 16, wherein a defect of the structure is specified based on a comparison between the two-dimensional differential space distribution and a differential space distribution of differential displacement provided in advance.
  18.  前記2次元空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、請求項15から17の内の1項記載の状態判定方法。 The state determination method according to claim 15, wherein a defect of the structure is specified based on a time change of the two-dimensional spatial distribution.
  19.  前記2次元微分空間分布の時間変化に基づいて、前記構造物の欠陥を特定する、請求項17または18記載の状態判定方法。 The state determination method according to claim 17 or 18, wherein a defect of the structure is specified based on a time change of the two-dimensional differential space distribution.
  20.  前記構造物表面の変位の変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、請求項15から19の内の1項記載の状態判定方法。 20. The state determination method according to claim 15, wherein a defect of the structure is specified based on a comparison between a displacement of the surface of the structure and a predetermined threshold value.
  21.  前記構造物表面の変位の微分変位と、予め備えられた閾値との比較に基づいて、前記構造物の欠陥を特定する、請求項17から20の内の1項記載の状態判定方法。 21. The state determination method according to claim 17, wherein a defect of the structure is specified based on a comparison between a differential displacement of a displacement of the structure surface and a threshold value provided in advance.
  22.  前記判定結果に基づいて、前記欠陥の場所と種類を示す異常マップを作成する、請求項15から21の内の1項記載の状態判定方法。 The state determination method according to any one of claims 15 to 21, wherein an abnormality map indicating the location and type of the defect is created based on the determination result.
  23.  前記欠陥の種類は、ひび割れ、剥離、内部空洞を含む、請求項15から22の内の1項記載の状態判定方法。 23. The state determination method according to claim 15, wherein the types of defects include cracks, peeling, and internal cavities.
  24.  前記予め備えられた変位の空間分布と前記予め備えられた微分変位の微分空間分布は、前記ひび割れ、前記剥離、前記内部空洞の情報に基づく、請求項23記載の状態判定方法。 The state determination method according to claim 23, wherein the spatial distribution of the displacement provided in advance and the differential spatial distribution of the differential displacement provided in advance are based on information on the crack, the separation, and the internal cavity.
  25.  前記2次元空間分布は、前記変位のX-Y平面におけるX方向の変位の分布とY方向の変位の分布とを含む、請求項15から24の内の1項項記載の状態判定方法。 25. The state determination method according to claim 15, wherein the two-dimensional spatial distribution includes an X-direction displacement distribution and a Y-direction displacement distribution on an XY plane of the displacement.
  26.  第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出する変位算出手段と、
     前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出する奥行移動量算出手段と、
     前記移動量と、予め備えられた前記移動量に関する閾値との比較に基づいて、前記構造物の欠陥を特定する異常判定手段と、を有する状態判定装置。
    A two-dimensional spatial distribution of the displacement of the image is calculated from the difference between the images of the structure surface at the first and second imaging distances, and the image of the structure surface before the load application at the first imaging distance and A displacement calculating means for calculating a two-dimensional spatial distribution of the displacement of the time-series image from a difference between the time-series images of the surface of the structure by applying a load;
    The first imaging distance is calculated from the two-dimensional spatial distribution of the displacement of the image, and the movement amount in the normal direction of the structure surface due to the load application is calculated from the two-dimensional spatial distribution of the displacement of the time-series image. Depth movement amount calculating means for calculating using the imaging distance of 1;
    The state determination apparatus which has the abnormality determination means which specifies the defect of the said structure based on the comparison with the threshold value regarding the said movement amount with which the said movement amount was equipped previously.
  27.  前記奥行移動量算出手段は、前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、請求項26記載の状態判定装置。 27. The state determination device according to claim 26, wherein the depth movement amount calculation means estimates an inclination angle of the structure from the time-series image and calculates the movement amount corrected by the inclination angle.
  28.  前記移動量の微分変位を算出する微分変位算出手段を有し、前記異常判定手段は、前記移動量の微分変位と、予め備えられた微分変位との比較に基づいて、前記構造物の欠陥を特定する、請求項26または27記載の状態判定装置。 Differential displacement calculating means for calculating a differential displacement of the movement amount, and the abnormality determining means detects defects in the structure based on a comparison between the differential displacement of the movement amount and a differential displacement provided in advance. The state determination device according to claim 26 or 27, wherein the state determination device is specified.
  29.  前記移動量に基づいて補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離する変位分離手段を有し、前記異常判定手段は、前記構造物表面の変位の2次元空間分布と、予め備えられた変位の空間分布との比較に基づいて、前記構造物の欠陥を特定する、請求項26から28の内の1項記載の状態判定装置。 Displacement means for calculating a correction amount based on the movement amount and subtracting the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image to separate the two-dimensional spatial distribution of the displacement of the structure surface is provided. The abnormality determination means identifies a defect of the structure based on a comparison between a two-dimensional spatial distribution of displacement of the structure surface and a spatial distribution of displacement provided in advance. The state determination apparatus according to claim 1.
  30.  前記微分変位算出手段は、前記構造物表面の変位の2次元空間分布から2次元微分空間分布を算出し、前記異常判定手段は、前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、請求項28または29記載の状態判定装置。 The differential displacement calculating means calculates a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface, and the abnormality determining means calculates the two-dimensional differential spatial distribution and a differential displacement provided in advance. 30. The state determination device according to claim 28 or 29, wherein a defect of the structure is specified based on a comparison with a spatial distribution.
  31.  前記異常判定手段は、前記移動量もしくは前記構造物表面の変位の2次元空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、請求項26から30の内の1項記載の状態判定装置。 The state according to any one of claims 26 to 30, wherein the abnormality determination unit specifies a defect in the structure based on a temporal change in the two-dimensional spatial distribution of the movement amount or the displacement of the structure surface. Judgment device.
  32.  前記異常判定手段は、前記移動量の微分変位もしくは前記2次元微分空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、請求項28から31の内の1項記載の状態判定装置。 32. The state determination device according to claim 28, wherein the abnormality determination unit specifies a defect of the structure based on a temporal change in the differential displacement of the movement amount or the two-dimensional differential space distribution. .
  33.  前記異常判定手段の判定結果に基づいて、前記欠陥の場所と種類を示す異常マップを作成する異常マップ作成手段を有する、請求項26から32の内の1項記載の状態判定装置。 33. The state determination device according to claim 26, further comprising an abnormality map creation unit that creates an abnormality map indicating the location and type of the defect based on a determination result of the abnormality determination unit.
  34.  第1と第2の撮像距離での構造物表面の画像の差分から前記画像の変位の2次元空間分布を算出し、
     前記第1の撮像距離での荷重印加前の前記構造物表面の画像と荷重印加による前記構造物表面の時系列画像の差分から前記時系列画像の変位の2次元空間分布を算出し、
     前記画像の変位の2次元空間分布から前記第1の撮像距離を算出し、
     前記時系列画像の変位の2次元空間分布から前記荷重印加による前記構造物表面の法線方向の移動量を前記第1の撮像距離を用いて算出し、
     前記移動量と、予め備えられた前記移動量に関する閾値との比較に基づいて、前記構造物の欠陥を特定する、状態判定方法。
    Calculating the two-dimensional spatial distribution of the displacement of the image from the difference between the images of the structure surface at the first and second imaging distances;
    Calculating a two-dimensional spatial distribution of the displacement of the time-series image from the difference between the image of the structure surface before the load application at the first imaging distance and the time-series image of the structure surface by the load application;
    Calculating the first imaging distance from a two-dimensional spatial distribution of the displacement of the image;
    The amount of movement in the normal direction of the surface of the structure due to the application of the load is calculated from the two-dimensional spatial distribution of the displacement of the time series image using the first imaging distance,
    A state determination method for identifying a defect in the structure based on a comparison between the movement amount and a threshold value relating to the movement amount provided in advance.
  35.  前記時系列画像から前記構造物の傾斜角度を推定し、前記傾斜角度で補正した前記移動量を算出する、請求項34記載の状態判定方法。 The state determination method according to claim 34, wherein an inclination angle of the structure is estimated from the time-series image, and the movement amount corrected by the inclination angle is calculated.
  36.  前記移動量の微分変位を算出し、
     前記移動量の微分変位と、予め備えられた微分変位との比較に基づいて、前記構造物の欠陥を特定する、請求項34または35記載の状態判定方法。
    Calculating a differential displacement of the amount of movement;
    36. The state determination method according to claim 34, wherein a defect of the structure is specified based on a comparison between a differential displacement of the movement amount and a differential displacement provided in advance.
  37.  前記移動量に基づく補正量を算出し、前記時系列画像の変位の2次元空間分布から前記補正量を差し引いて、前記構造物表面の変位の2次元空間分布を分離し、
     前記構造物表面の変位の2次元空間分布と、予め備えられた変位の空間分布との比較に基づいて、前記構造物の欠陥を特定する、請求項34から36の内の1項記載の状態判定方法。
    Calculating a correction amount based on the movement amount, subtracting the correction amount from a two-dimensional spatial distribution of the displacement of the time-series image, and separating a two-dimensional spatial distribution of the displacement of the structure surface;
    37. The state according to claim 34, wherein a defect of the structure is identified based on a comparison between a two-dimensional spatial distribution of displacement of the structure surface and a spatial distribution of displacement provided in advance. Judgment method.
  38.  前記構造物表面の変位の2次元空間分布から2次元微分空間分布を算出し、
     前記2次元微分空間分布と、予め備えられた微分変位の微分空間分布との比較に基づいて、前記構造物の欠陥を特定する、請求項37記載の状態判定方法。
    Calculating a two-dimensional differential spatial distribution from the two-dimensional spatial distribution of the displacement of the structure surface;
    38. The state determination method according to claim 37, wherein a defect of the structure is specified based on a comparison between the two-dimensional differential space distribution and a differential space distribution of differential displacement provided in advance.
  39.  前記移動量もしくは前記構造物表面の変位の2次元空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、請求項34から38の内の1項記載の状態判定方法。 The state determination method according to any one of claims 34 to 38, wherein a defect of the structure is specified based on a time change of the two-dimensional spatial distribution of the movement amount or the displacement of the structure surface.
  40.  前記移動量の微分変位もしくは前記2次元微分空間分布の、時間変化に基づいて前記構造物の欠陥を特定する、請求項36から39の内の1項記載の状態判定方法。 40. The state determination method according to claim 36, wherein a defect of the structure is specified based on a temporal change in the differential displacement of the movement amount or the two-dimensional differential space distribution.
  41.  前記欠陥の場所と種類を示す異常マップを作成する、請求項44から40の内の1項記載の状態判定方法。 41. The state determination method according to claim 44, wherein an abnormality map indicating the location and type of the defect is created.
PCT/JP2017/014667 2016-04-15 2017-04-10 Structure condition assessing device, condition assessing system, and condition assessing method WO2017179535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-081837 2016-04-15
JP2016081837 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017179535A1 true WO2017179535A1 (en) 2017-10-19

Family

ID=60042526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014667 WO2017179535A1 (en) 2016-04-15 2017-04-10 Structure condition assessing device, condition assessing system, and condition assessing method

Country Status (1)

Country Link
WO (1) WO2017179535A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097577A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Measurement system, correction processing device, correction processing method, and computer readable recording medium
WO2019097578A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Displacement component detection device, displacement component detection method, and computer-readable recording medium
WO2019097579A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Vibration measurement device, vibration measurement method and computer-readable recording medium
WO2019097576A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Measurement system, correction processing device, correction processing method and computer-readable recording medium
WO2019145992A1 (en) * 2018-01-23 2019-08-01 日本電気株式会社 Vibration reliability calculation device, vibration reliability calculation method, and computer-readable recording medium
WO2019235409A1 (en) * 2018-06-05 2019-12-12 日本電気株式会社 Displacement amount measuring device, displacement amount measuring method, and recording medium
WO2020157973A1 (en) * 2019-02-01 2020-08-06 日本電気株式会社 Image processing device
CN113227781A (en) * 2018-12-20 2021-08-06 株式会社岛津制作所 Defect inspection apparatus and defect inspection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057386A (en) * 2005-08-24 2007-03-08 Osaka Univ Inline three-dimensional measuring apparatus and measuring method using one camera
JP2007240218A (en) * 2006-03-07 2007-09-20 Hitachi Zosen Corp Correction method for displacement measurement using captured images
CN102359966A (en) * 2011-07-29 2012-02-22 河海大学 Positioning system for micro-cracks on concrete surfaces
WO2016047093A1 (en) * 2014-09-25 2016-03-31 日本電気株式会社 Status determination device and status determination method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057386A (en) * 2005-08-24 2007-03-08 Osaka Univ Inline three-dimensional measuring apparatus and measuring method using one camera
JP2007240218A (en) * 2006-03-07 2007-09-20 Hitachi Zosen Corp Correction method for displacement measurement using captured images
CN102359966A (en) * 2011-07-29 2012-02-22 河海大学 Positioning system for micro-cracks on concrete surfaces
WO2016047093A1 (en) * 2014-09-25 2016-03-31 日本電気株式会社 Status determination device and status determination method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI IMAI ET AL.: "In-plane/out-of-plane displacement separation in structural internal deterioration detection with monocular motion vector field analysis", T HE INSTITUTE OF ELECTRONICS , INFORMATION AND COMMUNICATION ENGINEERS 2015 NEN ENGINEERING SCIENCES SOCIETY/NOLTA SOCIETY TAIKAI KOEN RONBUNSHU, 25 August 2015 (2015-08-25) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11585721B2 (en) 2017-11-14 2023-02-21 Nec Corporation Displacement component detection apparatus, displacement component detection method, and computer-readable recording medium
JPWO2019097577A1 (en) * 2017-11-14 2020-11-26 日本電気株式会社 Measurement system, correction processing device, correction processing method, and program
WO2019097579A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Vibration measurement device, vibration measurement method and computer-readable recording medium
WO2019097576A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Measurement system, correction processing device, correction processing method and computer-readable recording medium
US11391621B2 (en) 2017-11-14 2022-07-19 Nec Corporation Vibration measurement apparatus, vibration measurement method, and computer-readable recording medium
WO2019097577A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Measurement system, correction processing device, correction processing method, and computer readable recording medium
WO2019097578A1 (en) * 2017-11-14 2019-05-23 日本電気株式会社 Displacement component detection device, displacement component detection method, and computer-readable recording medium
JPWO2019097578A1 (en) * 2017-11-14 2020-12-03 日本電気株式会社 Displacement component detection device, displacement component detection method, and program
JP6996569B2 (en) 2017-11-14 2022-02-04 日本電気株式会社 Measurement system, correction processing device, correction processing method, and program
JPWO2019097579A1 (en) * 2017-11-14 2020-11-26 日本電気株式会社 Vibration measuring device, vibration measuring method, and program
JPWO2019097576A1 (en) * 2017-11-14 2020-11-26 日本電気株式会社 Measurement system, correction processing device, correction processing method, and program
US11519780B2 (en) 2017-11-14 2022-12-06 Nec Corporation Measurement system, correction processing apparatus, correction processing method, and computer-readable recording medium
JPWO2019145992A1 (en) * 2018-01-23 2021-01-28 日本電気株式会社 Vibration reliability calculation device, vibration reliability calculation method, and program
US11509827B2 (en) 2018-01-23 2022-11-22 Nec Corporation Vibration reliability calculation apparatus, vibration reliability calculation method, and computer readable recording medium
WO2019145992A1 (en) * 2018-01-23 2019-08-01 日本電気株式会社 Vibration reliability calculation device, vibration reliability calculation method, and computer-readable recording medium
WO2019235409A1 (en) * 2018-06-05 2019-12-12 日本電気株式会社 Displacement amount measuring device, displacement amount measuring method, and recording medium
US20210239458A1 (en) * 2018-06-05 2021-08-05 Nec Corporation Displacement amount measuring device, displacement amount measuring method, and recording medium
JPWO2019235409A1 (en) * 2018-06-05 2021-06-10 日本電気株式会社 Displacement amount measuring device, displacement amount measuring method, and program
US11846498B2 (en) 2018-06-05 2023-12-19 Nec Corporation Displacement amount measuring device, displacement amount measuring method, and recording medium
CN113227781A (en) * 2018-12-20 2021-08-06 株式会社岛津制作所 Defect inspection apparatus and defect inspection method
CN113227781B (en) * 2018-12-20 2024-02-13 株式会社岛津制作所 Defect inspection apparatus and defect inspection method
JPWO2020157973A1 (en) * 2019-02-01 2021-11-25 日本電気株式会社 Image processing device
WO2020157973A1 (en) * 2019-02-01 2020-08-06 日本電気株式会社 Image processing device

Similar Documents

Publication Publication Date Title
WO2016152076A1 (en) Structure condition assessing device, condition assessing system, and condition assessing method
WO2017179535A1 (en) Structure condition assessing device, condition assessing system, and condition assessing method
WO2016152075A1 (en) Structure status determination device, status determination system, and status determination method
JP6652060B2 (en) State determination device and state determination method
Chen et al. Video camera–based vibration measurement for civil infrastructure applications
JP6485454B2 (en) Information processing device
JP6954368B2 (en) Displacement component detection device, displacement component detection method, and program
CN110108348A (en) Thin-wall part micro breadth oscillation measurement method and system based on motion amplification optical flow tracking
Zhu et al. A robust structural vibration recognition system based on computer vision
JP6813025B2 (en) Status determination device, status determination method, and program
Al‐Salih et al. Application of a digital image correlation bridge inspection methodology on geometrically complex bifurcated distortion‐induced fatigue cracking
WO2019054419A1 (en) State determining device, state determining method, and computer-readable recording medium
JP6984747B2 (en) Displacement measuring device, displacement measuring method, and program
JP6511892B2 (en) State determination apparatus for a structure, state determination system, and state determination method
Su et al. Tension force estimation of short cable employing axis-shift imaging and multiple mode shapes
Shang et al. Multi-point vibration measurement for mode identification of bridge structures using video-based motion magnification
US20210304417A1 (en) Observation device and observation method
Besharatian et al. Benchmarking dynamic properties of structures using non-contact sensing
JP4820998B2 (en) Phase singularity detection method, phase singularity detection apparatus, and program
WO2020255231A1 (en) Displacement measurement device, displacement measurement method, and computer-readable recording medium
WO2021181441A1 (en) Abnormality determination system, imaging device and abnormality determination method
Dowling Three Dimensional Digital Image Correlation for Dynamic Measurements
Yeow et al. Nonlinear Seismic Response and Residual Drift Determination Combining Ground Acceleration Data with Recorded Videos
Kim et al. Dynamic characteristics of multi-degree-of-freedom frame systems derived from vision-based displacement measurement using consumer-grade camera video
Boroschek et al. Nonlinear seismic response and residual drift determination combining ground acceleration data with recorded videos

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782348

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP