[go: up one dir, main page]

WO2017164650A1 - Anode active material for secondary battery, and secondary battery comprising same - Google Patents

Anode active material for secondary battery, and secondary battery comprising same Download PDF

Info

Publication number
WO2017164650A1
WO2017164650A1 PCT/KR2017/003088 KR2017003088W WO2017164650A1 WO 2017164650 A1 WO2017164650 A1 WO 2017164650A1 KR 2017003088 W KR2017003088 W KR 2017003088W WO 2017164650 A1 WO2017164650 A1 WO 2017164650A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
lithium
electrode active
secondary battery
Prior art date
Application number
PCT/KR2017/003088
Other languages
French (fr)
Korean (ko)
Inventor
박성빈
이동훈
전혜림
정왕모
강성훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17770620.7A priority Critical patent/EP3312914B1/en
Priority to US15/746,910 priority patent/US10665859B2/en
Priority to CN201780002684.0A priority patent/CN107925069B/en
Priority to PL17770620T priority patent/PL3312914T3/en
Priority claimed from KR1020170036235A external-priority patent/KR101908222B1/en
Publication of WO2017164650A1 publication Critical patent/WO2017164650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a secondary battery and a lithium secondary battery including the same, which exhibits an output characteristic together with an excellent capacity recovery rate when applied to a battery, can prevent the decomposition of an electrolyte and reduce gas generation.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • high capacity and high output technology of negative electrode active materials is required.
  • a carbon-based material especially graphite, which is capable of reversible intercalation and desorption of lithium ions while maintaining structural and electrical properties, is mainly used as a negative electrode active material, but in recent years, there is a demand for a high capacity battery.
  • lithium oxide-based negative electrode materials such as a lithium alloy (alloy) anode material using silicon (Si), tin (Sn), and lithium titanium oxide, which have a larger theoretical capacity than graphite, have been conducted.
  • lithium titanium oxide is a zero-strain material having extremely low structural changes during charging and discharging.
  • the lithium titanium oxide has excellent life characteristics, forms a relatively high voltage band, and does not generate dendrite.
  • the safety and stability are very good.
  • lithium titanium oxide does not form a solid electrolyte interface (SEI) layer because the operating voltage is higher than the electrolyte decomposition voltage. Therefore, in the case of a lithium secondary battery to which lithium titanium oxide is applied, electrolyte decomposition is continuously generated as charging and discharging proceeds, which causes a problem of depletion of electrolyte and deterioration of life characteristics. In addition, in the case of a lithium secondary battery to which lithium titanium oxide is applied, a large amount of gas is generated when left at a high temperature.
  • SEI solid electrolyte interface
  • the first technical problem to be solved by the present invention is to provide an anode active material for a secondary battery and a method of manufacturing the same, which exhibit an output characteristic with excellent capacity recovery rate when applied to a battery, and can prevent the decomposition of electrolyte and reduce the generation of gas. .
  • a second technical problem to be solved by the present invention is to provide a secondary battery negative electrode, a lithium secondary battery, a battery module and a battery pack including the negative electrode active material.
  • the surface treatment layer is boron-containing Lithium oxide is contained in an amount such that the boron content is in a molar ratio of 0.002 to 0.02 per 1 mol of lithium titanium oxide, and a titration amount of 0.9 to 1.5 ml when titrating 2 g of the negative electrode active material to pH 5 or less using 0.1 M HCl
  • a negative electrode active material for phosphorus secondary batteries is provided.
  • the boron-containing lithium oxide on the surface of the core Provided is a method for producing a negative electrode active material for a secondary battery, comprising the step of forming a surface treatment layer comprising an amount such that the boron content is a molar ratio of 0.002 to 0.02 with respect to 1 mol of lithium titanium oxide.
  • a negative electrode for a secondary battery and a lithium secondary battery including the negative electrode active material are provided.
  • the negative electrode active material for a secondary battery according to the present invention may exhibit excellent capacity recovery.
  • the negative electrode active material can improve the output characteristics by preventing a decrease in resistance caused by lithium by-products generated in the manufacturing process of the core, the surface treatment layer can reduce the generation of gas by preventing the decomposition of the electrolyte, in particular low SOC In the state of charge, electrolyte decomposition and gas generation due to elution of titanium ions (Ti 4 + ) may be reduced.
  • FIG. 1 is a schematic diagram schematically showing a mechanism of generating a lithium ion mobile energy barrier.
  • FIG. 2 is a schematic diagram schematically showing a migration path of lithium ions in the crystal structure of Li 2 B 4 O 7.
  • FIG. 2 is a schematic diagram schematically showing a migration path of lithium ions in the crystal structure of Li 2 B 4 O 7.
  • FIG 3 is a schematic diagram schematically showing a migration path of lithium ions in the crystal structure of Al 2 O 3 .
  • Figure 4 is a photograph of the negative electrode active material prepared in Example 1 observed with a scanning electron microscope.
  • Example 7 is a graph measuring the initial discharge capacity at 0.2C for the negative electrode active materials of Example 1 and Comparative Example 1.
  • Example 8 is a graph measuring the discharge capacity at 10C for the negative electrode active materials of Example 1 and Comparative Example 1.
  • Example 9 is a graph measuring the amount of gas generated in the lithium secondary battery including the negative electrode active material of Example 1 and Comparative Example 1, respectively.
  • Example 10 is a graph measuring the amount of gas generation in a lithium secondary battery including the negative electrode active materials of Example 4, Comparative Examples 9 and 10.
  • Example 11 is a graph showing the normal capacity of the lithium secondary battery including the negative electrode active material of Example 1 and Comparative Example 11.
  • the electrical conductivity in the surface treatment layer is related to the surface resistance of the negative electrode active material and the side reactivity with the electrolyte solution. Specifically, when the electrical conductivity in the surface treatment layer is low, the surface resistance is increased while the side reaction with the electrolyte may be reduced. Boron (B) usually has a low electrical conductivity as an insulator. Accordingly, it is preferable to appropriately control the content of boron included in the surface treatment layer in order to reduce the surface resistance of the negative electrode active material and thereby improve output characteristics and to prevent side reactions with the electrolyte.
  • a surface treatment layer of boron-containing lithium oxide is formed on the core surface containing lithium titanium oxide, but in consideration of the electrical conductivity in the surface treatment layer and the suppression of side reaction with the electrolyte solution.
  • the negative electrode active material for a secondary battery including a lithium titanium oxide, and a surface treatment layer located on the surface of the core, the surface treatment layer is boron-containing lithium oxide To 1 mol of lithium titanium oxide, the boron content is contained in an amount such that the molar ratio of 0.002 to 0.02, the titration amount is 0.9 to 1.5ml when titrating 2g of the negative electrode active material to pH 5 or less using 0.1M HCl.
  • the surface treatment layer including the boron-containing lithium oxide is formed through reaction with a lithium impurity in which a precursor of boron-containing lithium oxide such as boric acid is present on the core surface, and a lithium raw material additionally added in the manufacturing process,
  • a lithium impurity in which a precursor of boron-containing lithium oxide such as boric acid is present on the core surface, and a lithium raw material additionally added in the manufacturing process.
  • the content of lithium impurities in the core may be reduced, and at the same time, the lithium ion conductivity and the electrical conductivity in the surface treatment layer may be improved by optimizing the boron content.
  • electrolyte decomposition may be prevented from the core surface including lithium titanium oxide, thereby exhibiting excellent capacity recovery.
  • the decomposition of the electrolyte may be prevented by the surface treatment layer, so that the amount of gas generated may be reduced, and in particular, electrolyte decomposition and gas generation due to the dissolution of titanium ions (Ti 4 + ) may be reduced at low SOC (state of charge).
  • the surface treatment layer uniformly covers the entire surface of the core without recrystallization, thereby preventing a decrease in resistance caused by lithium by-products generated in the manufacturing process of the core, thereby improving output characteristics.
  • the capacity recovery rate means the average discharge capacity during two and three cycles except for the initial discharge capacity when the battery is stored for one week at 80 ° C. after full charge, discharged, and charged and discharged under the same charge and discharge conditions. do.
  • the surface treatment layer containing boron-containing lithium oxide is an amount such that the boron content is a molar ratio of 0.002 to 0.02 with respect to 1 mol of lithium titanium oxide constituting the core. It may include a boron-containing lithium oxide as described above. If the content of boron is less than 0.002 molar ratio compared to lithium titanium oxide, the improvement effect due to the formation of the surface treatment layer is insignificant. If the content of boron exceeds 0.02 molar ratio, the surface resistance is increased due to the decrease in the electrical conductivity in the surface treatment layer and the output characteristics of the battery. May cause degradation. More specifically, the surface treatment layer may include boron-containing lithium oxide in an amount of 5000 to 7000 ppm with respect to the total weight of lithium titanium oxide.
  • the content of boron included in the surface treatment layer may be analyzed using an inductively coupled plasma optical emission spectrometer (ICP).
  • ICP inductively coupled plasma optical emission spectrometer
  • the lithium ion migration energy barrier (E barrier ) can be predicted from the diffusion path of lithium ions in the material forming the surface treatment layer.
  • FIG. 1 is a schematic diagram showing a mechanism of generating a lithium ion mobile energy barrier
  • FIGS. 2 and 3 are schematic diagrams showing crystal structures of Li 2 B 4 O 7 and Al 2 O 3 , respectively. 1 to 3 are only examples for describing the present invention, but the present invention is not limited thereto.
  • both boron and aluminum have low electrical conductivity as an insulator, and as a result, side reaction with the electrolyte solution can be suppressed, and the resistance at the negative electrode interface can be increased to improve the safety of the active material, thereby providing a surface treatment agent for the active material.
  • Mainly used Li 2 B 4 O 7 is a representative example of the boron-containing lithium oxide, and the movement path of lithium ions in the crystal structure is lower than that of Al 2 O 3 , which is usually used for forming a surface treatment layer. long. Accordingly, relatively large lithium ion is Al 2 O 3 the movement of lithium ions between the crystal and easier than, as a result, can exhibit a lower lithium ion migration barrier energy values and more excellent lithium ion conductivity.
  • the E barrier value of boron-containing lithium oxide is usually about 0.05 eV to 0.45 eV.
  • the value of the E barrier of the boron-containing lithium oxide is due to the difference in the lithium ion migration path in the crystal structure, which can be controlled according to the heat treatment temperature during manufacture. In this case, when the heat treatment temperature is too high and the E barrier value is too large, the gas reduction effect and the output characteristic improvement effect may be reduced due to the decrease in the surface coverage ratio due to the recrystallization of the boron-containing lithium oxide.
  • the E barrier value is increased as the heat treatment is performed at a high temperature when forming the surface treatment layer. At this time, the recrystallization occurs, and as a result, the surface coverage is decreased, thereby decreasing the output characteristics and reducing the gas generation effect.
  • the surface treatment layer may be made of a single boron-containing lithium oxide, or may be made of a mixture of two or more boron-containing lithium oxides.
  • the present invention by controlling the type or mixing ratio of the boron-containing lithium oxide forming the surface treatment layer under the conditions that satisfy the above content range of boron in the surface treatment layer, it is possible to improve the lithium ion conductivity in the surface treatment layer. .
  • the surface treatment layer may have an E barrier value of 0.05 eV to 0.3 eV, more specifically 0.05 eV to 0.2 eV. If the E barrier value in the surface treatment layer is less than 0.05 eV, it is difficult to manufacture itself, and if it exceeds 0.3 eV, gas reduction effect and output characteristic improvement effect may be deteriorated due to the decrease of the surface coverage due to the recrystallization of boron-containing lithium oxide. have.
  • the E barrier value can be obtained through first principle calculation using the VIenna Ab initio simulation package (VASP) program.
  • VASP VIenna Ab initio simulation package
  • the boron-containing lithium oxide constituting the surface treatment layer may be a compound of Formula 1 below:
  • Li 2 B 4 O 7 LiB 3 O 5 , LiB 8 O 13 , Li 4 B 2 O 5 , Li 3 BO 3 , Li 2 B 2 O 4 , or Li 2 B 6 O 10 . And any one or a mixture of two or more thereof.
  • the boron-containing lithium oxide may have an E barrier value of 0.05 eV to 0.3 eV, and more specifically, may satisfy the above E barrier value and at the same time, a band gap of 8.5 eV to 10.5 eV. .
  • the band gap may be 8.9 eV to 10.1 eV.
  • the band gap of the boron-containing lithium oxide can be measured using cyclic voltammetry.
  • the surface treatment layer is preferably formed to an appropriate thickness in consideration of the particle diameter of the core for determining the capacity of the negative electrode active material. Specifically, it may be formed in an average thickness ratio of 0.01 to 0.1 with respect to the radius of the core under the conditions satisfying the boron content. If the thickness ratio of the surface treatment layer is less than 0.01, the thickness of the surface treatment layer may be too thin, so that the effect of suppressing side reactions between the negative electrode active material and the electrolyte during charging and discharging may be insignificant. If the thickness ratio of the surface treatment layer exceeds 0.1, the surface treatment layer may be too thick. Due to this, there is a risk of deterioration of output characteristics due to an increase in resistance.
  • the particle diameter of the core and the thickness of the surface treatment layer can be measured through particle cross-sectional analysis using a focused ion beam (fib).
  • the surface treatment layer may be formed on the entire surface of the core, or may be partially formed. More specifically, the surface treatment layer may be formed at least 80% of the total surface area of the core under the conditions satisfying the above-described boron content range, and more specifically, the surface treatment when considering the effect of preventing electrolyte decomposition at the core surface
  • the layer can be formed over 100% of the total surface area of the core, ie over the core surface.
  • the core includes lithium titanium oxide.
  • the lithium titanium oxide may be a compound of Formula 2 below:
  • M includes at least one element selected from the group consisting of metals of Groups 2 to 13 on the periodic table, specifically, Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and May be one or more selected from the group consisting of Mo,
  • A is a nonmetallic element having a -monovalent oxidation number, and specifically, may be at least one selected from the group consisting of F, Cl, Br, and I.
  • composition of lithium titanium oxide of Formula 2 is the average composition of the entire core.
  • the lithium titanium oxide is Li 4 Ti 5 O 12 , Li 0 . 8 Ti 2 . 2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1 . 33 Ti 1 . 67 O 4 or Li 1 . 14 Ti 1 . 71 O 4 , and any one or a mixture of two or more thereof may be used.
  • the lithium titanium oxide may be a single particle having an average particle diameter (D 50 ) of 0.1 ⁇ m to 5 ⁇ m, or fine primary particles having an average particle diameter of 200 nm to 1000 nm are aggregated, and an average particle diameter (D 50 )
  • the secondary particles may be 3 ⁇ m to 20 ⁇ m.
  • the lithium titanium oxide is a single particle, if the average particle diameter is less than 0.1 ⁇ m, there is a fear of lowering structural stability and capacity characteristics. If the average particle diameter exceeds 5 ⁇ m, output characteristics of the secondary battery may be reduced. .
  • the average particle diameter (D 50 ) of the core particles can be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the core particles can be measured using, for example, a laser diffraction method. More specifically, when measured by the laser diffraction method, the core particles were dispersed in a solvent, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to irradiate an ultrasonic wave of about 28 kHz at an output of 60 W. after that, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a laser diffraction particle size measuring apparatus for example, Microtrac MT 3000
  • the core is from the surface side of the particle, specifically the interface in contact with the surface treatment layer, and from the interface in contact with the surface treatment layer from more than 0% to less than 100% with respect to the core particle radius in the direction of the core particle center.
  • Some boron (B) elements of the boron-containing lithium oxide may be doped in an area corresponding to a distance of 0% to 30%.
  • the content of the B element may have a concentration gradient that decreases from the surface of the core toward the core center.
  • the negative electrode active material according to an embodiment of the present invention having the structure and configuration as described above is much lower than the prior art due to the decrease in the lithium impurity content, such as lithium carbonate, lithium hydroxide, and the increase of boron content on the surface of the active material Initial pH value is shown.
  • the lithium impurity content such as lithium carbonate, lithium hydroxide
  • the increase of boron content on the surface of the active material Initial pH value is shown.
  • side reactions between the negative electrode active material and the electrolyte can be suppressed, and at the same time, the lithium ion conductivity and the electrical conductivity in the surface treatment layer can be improved with good balance.
  • the negative electrode active material has an initial pH value of 9 to 10, more specifically, 9.3 to 9.7, and the appropriate amount when titrating 2 g of the negative electrode active material to pH 5 or less, specifically pH 5 using 0.1M HCl, is 0.9 To 1.5 ml, and more specifically 0.9 to 1.4 ml. As the titration amount is smaller, side reactions between the negative electrode active material and the electrolyte are suppressed, and at the same time, an effect of improving the balance of the lithium ion conductivity and the electrical conductivity in the surface treatment layer can be achieved.
  • the pH of the negative electrode active material may be measured by mixing 2 g of the negative electrode active material in 100 ml of distilled water, stirring for 5 to 10 minutes, filtration, and titrating to pH 5 or less with an acid such as HCl. At this time, by-products such as lithium carbonate and lithium hydroxide included in the active material may be repeatedly soaked and decanted to be included in distilled water. At this time, it is not particularly affected by variables such as time to add the negative electrode active material to distilled water.
  • the negative electrode active material may be one having a BET specific surface area of 0.5m 2 / g to 10.0m 2 / g.
  • the BET specific surface area of the negative electrode active material exceeds 10.0 m 2 / g, the dispersibility of the negative electrode active material in the active material layer and the resistance in the electrode may increase due to aggregation between the negative electrode active materials, and the BET specific surface area is 0.5 m 2 / g.
  • the negative electrode active material according to an embodiment of the present invention may exhibit excellent capacity and charge / discharge characteristics by accelerating the BET specific surface conditions. More specifically, the negative electrode active material may have a BET specific surface area of 3.0m 2 / g to 6.0m 2 / g.
  • the specific surface area of the negative electrode active material is measured by the Brunauer-Emmett-Teller (BET) method, specifically, nitrogen gas at liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan It can calculate from adsorption amount.
  • BET Brunauer-Emmett-Teller
  • the negative electrode active material according to the embodiment of the present invention having the structure as described above, after the surface treatment of the precursor of the boron-containing lithium oxide to the core containing lithium titanium oxide, heat treatment at 350 °C to 450 °C, the core It can be prepared by a manufacturing method comprising the step of forming a surface treatment layer comprising a boron-containing lithium oxide on the surface of the amount of boron content relative to 1 mol of lithium titanium oxide in a molar ratio of 0.002 to 0.02. Accordingly, according to another embodiment of the present invention is provided a method for producing the negative electrode active material.
  • the core including the lithium titanium oxide is the same as described above, and may be manufactured according to a conventional manufacturing method.
  • the precursor of the boron-containing lithium oxide may be a material capable of forming boron-containing lithium oxide by reacting by boron-containing lithium oxide or a subsequent heat treatment process.
  • the precursor of the boron-containing lithium oxide is boric acid of H 3 BO 3 ; Boron oxides such as B 2 O 3 or B 2 O 5 ; LiBO 3, Li 2 B 4 O 7, LiB 3 O 5, LiB 8 O 13, Li 4 B 2 O 5, Li 3 BO 3, Li 2 B 2 O 4, or Li 2 lithium borate such as B 6 O 10 And boron-containing lithium oxides such as salts. Any one or a mixture of two or more thereof may be used.
  • the surface treatment step for the lithium titanium oxide may be a dry mixing of the core containing the lithium titanium oxide and the precursor of the boron-containing lithium oxide, or the boron-containing lithium to the core containing the lithium titanium oxide.
  • the composition for forming a surface treatment layer including a precursor of an oxide may be performed according to a conventional surface treatment process such as spraying, coating, or dipping.
  • a precursor of boron-containing lithium oxide is dissolved or dispersed in a solvent to prepare a composition for forming a surface treatment layer, and then includes lithium titanium oxide using a conventional spraying apparatus.
  • a polar solvent may be used as the solvent, and specifically, water or an alcohol having 1 to 8 carbon atoms (for example, methanol, ethanol, or isopropyl alcohol), or dimethyl sulfoxide (DMSO), N- Polar organic solvents such as methylpyrrolidone (NMP), acetone, and the like, and any one or a mixture of two or more thereof may be used.
  • the solvent may be included in an amount that can exhibit a suitable coating property when the surface treatment of the composition, and can be easily removed during the subsequent heat treatment.
  • the mixing ratio of the core containing the lithium titanium oxide and the precursor of the boron-containing lithium oxide, the execution time of the surface treatment process, and the like, the content of boron in the final negative electrode active material It can be mutually adjusted as appropriate within the range to satisfy the range.
  • a lithium raw material capable of reacting with the precursor of the boron-containing lithium oxide in the surface treatment process to form a boron-containing lithium oxide may optionally be further used.
  • the lithium raw material is specifically lithium hydroxide such as LiOH; Carbonates such as Li 2 CO 3 , etc., and any one or a mixture of two or more thereof may be used.
  • the lithium raw material may be used so that the boron-containing lithium oxide in the surface treatment layer is formed in an amount such that the boron content is a molar ratio of 0.002 to 0.02 with respect to 1 mol of lithium titanium oxide.
  • a heat treatment process is performed at 350 ° C to 450 ° C for the cores surface-treated by the surface treatment process.
  • the E barrier value of the boron-containing lithium oxide forming the surface treatment layer may be controlled by the heat treatment temperature for the surface-treated core.
  • the heat treatment temperature for the surface-treated core When the heat treatment is performed within the above temperature range, boron-containing lithium oxide that satisfies the above E barrier value condition may be formed, and at the same time, the coverage of the core surface may be improved. If the temperature during the heat treatment is less than 350 °C, the formation of boron-containing lithium oxide that satisfies the above E barrier value conditions and the control of the E barrier value is not easy, and the side reaction occurs due to the unreacted precursor material and the residual solvent component There is a fear of deterioration of the characteristics of the active material and battery characteristics.
  • the heat treatment process may be performed at 400 °C to 450 °C.
  • the heat treatment process may be carried out in a multi-step within the above temperature range, in this case it may be carried out by increasing the temperature according to the progress of each step.
  • the heat treatment process may be performed in an air atmosphere or an oxygen atmosphere (for example, O 2 ), and more specifically, may be performed in an oxygen atmosphere having an oxygen partial pressure of 20% by volume or more.
  • the heat treatment process may be performed for 5 hours to 48 hours, or 10 hours to 20 hours under the above conditions.
  • a surface treatment layer including boron-containing lithium oxide satisfying the above E barrier value range is formed on the core including lithium titanium oxide in an optimal content.
  • the prepared negative electrode active material may exhibit excellent capacity recovery due to its unique structure and constituent characteristics.
  • the negative electrode active material can improve the output characteristics by preventing a decrease in resistance caused by lithium by-products generated in the manufacturing process of the core, and can also reduce the generation of gas by preventing the decomposition of the electrolyte solution by the surface treatment layer, especially low In the SOC (state of charge), it is possible to reduce electrolyte decomposition and gas generation due to elution of titanium ions Ti 4+ .
  • a negative electrode and a lithium secondary battery including the negative electrode active material provide a negative electrode and a lithium secondary battery including the negative electrode active material.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface of the steel, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of about 3 to 500 ⁇ m, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer may further include a binder and a conductive material optionally together with the negative electrode active material, and may be prepared according to a conventional negative electrode manufacturing method except using the negative electrode active material. Can be.
  • the negative electrode is coated with a negative electrode active material, and optionally a composition for forming a negative electrode comprising a binder and a conductive material on the negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support,
  • a composition for forming a negative electrode comprising a binder and a conductive material on the negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support,
  • the film obtained by peeling from this support may be produced by laminating on a negative electrode current collector.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the negative electrode active material layer.
  • the binder serves to improve adhesion between the negative electrode active material particles and the adhesion between the negative electrode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the negative electrode active material layer.
  • the solvent usable in the preparation of the negative electrode composition may include a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol, N- Methyl pyrrolidone (NMP), acetone (acetone) or water, and the like, and one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the negative electrode active material, the conductive material and the binder in consideration of the coating thickness and the production yield of the slurry, and to have a viscosity that can exhibit excellent thickness uniformity during the coating for the negative electrode production. Do.
  • the coating of the composition for forming a negative electrode on the negative electrode current collector may be performed by a conventional slurry coating method.
  • the slurry coating method may include bar coating, spin coating, roll coating, slot die coating, or spray coating, and any one or two or more of these methods may be mixed.
  • it may be preferable to apply the composition for forming the negative electrode to an appropriate thickness in consideration of the loading amount and the thickness of the active material in the negative electrode active material layer to be finally prepared.
  • the drying process for the coating film of the composition for forming a negative electrode formed on the negative electrode current collector carried out after the coating process, as well as the evaporation of the solvent in the composition for forming a negative electrode to remove the moisture contained in the negative electrode to the maximum, and at the same time can increase the binding strength of the binder It may be carried out by a method such as heat treatment at a temperature, hot air injection and the like. Specifically, the drying process may be carried out at a temperature below the boiling point of the solvent or less than the melting point of the binder, more specifically, may be carried out at 100 °C to 150 °C. More preferably, it may be carried out for 1 to 50 hours at a temperature of 100 °C to 120 °C and a pressure of 10torr or less.
  • the negative electrode as described above may exhibit excellent output characteristics by including the negative electrode active material in the negative electrode active material layer, and gas generation may be reduced by preventing decomposition of the electrolyte.
  • an electrochemical device including the cathode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the negative electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium on a surface of aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the cathode active material.
  • the lithium transition metal oxide may be a lithium transition metal oxide including lithium and a transition metal such as cobalt, manganese, nickel or aluminum.
  • the lithium transition metal oxide is specifically a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 (where, 0 ⁇ Z ⁇ 2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1 - Y Co Y O 2 (where, 0 ⁇ Y ⁇ 1) and the like), lithium-manganese-cobalt oxide (e.g., LiCo 1-Y M
  • LiNi 0.8 Mn 0.1 Co 0.1 O 2 or the like, or lithium nickel cobalt aluminum oxide (eg, LiNi 0.8 Co 0.15 Al 0.05 O 2, etc.), and any one or a mixture of two or more thereof may be used. Can be used.
  • the positive electrode as described above may be manufactured according to a conventional positive electrode manufacturing method. Specifically, the composition for forming a cathode prepared by dissolving a conductive material and a binder in a solvent together with the cathode active material may be coated on a cathode current collector, followed by drying and rolling.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular for ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate
  • portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Li 2 B 4 O 7 isopropyl alcohol for Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 ⁇ m) on secondary particles.
  • Surface treatment using a composition prepared by mixing in, and heat treatment was performed for 5 hours at 400 °C under an atmosphere (wherein Li 2 B 4 O 7 is Li 4 Ti 5 O 12 Used in such a way that the molar ratio of B per mole is 0.005).
  • a negative electrode active material having a surface treatment layer including LiBO 2 and Li 2 B 4 O 7 formed on the surface of Li 4 Ti 5 O 12 was prepared.
  • An anode active material having a treatment layer was prepared.
  • Li 4 Ti 5 O 12 was carried out in the same manner as in Example 1, except that Li 2 B 4 O 7 was used in an amount such that the molar ratio of B was 0.01 with respect to 1 mol of Li 4 Ti 5 O 12.
  • a negative electrode active material having a surface treatment layer including LiBO 2 and Li 2 B 4 O 7 formed on its surface was prepared.
  • Li 2 B 4 O 7 5000 ppm isotropic to Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 ⁇ m) on secondary particles.
  • Surface treatment was carried out using a composition prepared by mixing in propyl alcohol, and heat treatment was performed at 400 ° C. for 5 hours under an atmospheric atmosphere.
  • a negative electrode active material including 5,000 ppm of B was added to the total weight of Li 4 Ti 5 O 12 on the surface of Li 4 Ti 5 O 12 .
  • Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 ⁇ m) on secondary particles without surface treatment was used as a negative electrode active material.
  • the Li 2 B 4 O Al 2 O 3 to 7 instead of the Li 4 Ti 5 O 12 A surface treatment layer including Al 2 O 3 on the surface of Li 4 Ti 5 O 12 by the same method as in Example 1, except that the molar ratio of Al to 0.005 was used per 1 mole. This formed negative electrode active material was prepared.
  • AlF 3 is Li 4 Ti 5 O 12 instead of Li 2 B 4 O 7
  • a surface treatment layer including AlF 3 was formed on the surface of Li 4 Ti 5 O 12 in the same manner as in Example 1 except that the molar ratio of Al was set to 0.005 per 1 mole.
  • a negative electrode active material was prepared.
  • Li 2 B 4 O 7 to Li 4 Ti 5 O 12 LiBO 2 and Li 2 B 4 O 7 were applied to the surface of Li 4 Ti 5 O 12 in the same manner as in Example 1, except that the molar ratio of B to 0.001 per mole was used.
  • a negative electrode active material including a surface treatment layer was prepared.
  • the Li 2 B 4 O Al 2 O 3 to 7 instead of the Li 4 Ti 5 O 12 A surface treatment layer including Al 2 O 3 on the surface of Li 4 Ti 5 O 12 by performing the same method as in Example 1 except that the molar ratio of Al was set to 0.003 per 1 mole. This formed negative electrode active material was prepared.
  • the Li 2 B 4 O Al 2 O 3 to 7 instead of the Li 4 Ti 5 O 12 A surface treatment layer including Al 2 O 3 on the surface of Li 4 Ti 5 O 12 by the same method as in Example 1, except that the molar ratio of Al was set to 0.004 per 1 mole. This formed negative electrode active material was prepared.
  • the negative electrode active material prepared in Comparative Example 1 was put into 100 ml of water, washed by stirring for 5 minutes, and used as a negative electrode active material.
  • Li 2 B 4 O 7 for Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 ⁇ m) on secondary particles.
  • Surface treatment was carried out using a composition prepared by mixing 300 ppm in isopropyl alcohol, and heat treatment was performed at 400 ° C. for 5 hours under an atmospheric atmosphere.
  • a negative electrode active material comprising a.
  • Li 2 B 4 O 7 for Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 ⁇ m) on secondary particles.
  • the surface treatment was carried out using a composition prepared by adding 500 ppm of the mixture to isopropyl alcohol and performing heat treatment at 400 ° C. for 5 hours under an atmospheric atmosphere.
  • the negative electrode active material having a surface treatment layer including LiBO 2 and Li 2 B 4 O 7 was formed on the surface of Li 4 Ti 5 O 12 by the above method, and 500 ppm of B was added based on the total weight of Li 4 Ti 5 O 12.
  • a negative electrode active material comprising a.
  • Example 2 Li 0. In the same manner as in Example 1 except that the heat treatment was performed at 500 ° C. for 5 hours . 8 Ti 2 . An anode active material having a surface treatment layer including LiBO 2 and LiB 4 O 7 formed on the surface of 2 O 4 was prepared.
  • a lithium secondary battery was prepared using the negative electrode active materials prepared in Examples 1 to 4, respectively.
  • the negative electrode active material, the carbon black conductive material, and the PVdF binder prepared in Examples 1 to 4 were mixed in a ratio of 85: 10: 5 by weight in an N-methylpyrrolidone solvent in a composition for forming a negative electrode.
  • Viscosity: 5000 mPa ⁇ s was prepared, coated on Cu foil with a loading amount of 2.6 mAh / cm 3 , dried by heat treatment at 120 ° C., and rolled to prepare a negative electrode.
  • Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 A positive electrode active material, a carbon black conductive material, and a PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 90: 5: 5 to prepare a composition for forming a positive electrode (viscosity: 5000 cps), which was applied to an aluminum current collector. After that, dry rolling was performed to prepare a positive electrode.
  • An electrode assembly was manufactured by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • the negative electrode active material of Comparative Examples 1 to 11 was carried out in the same manner as above to prepare a negative electrode and a lithium secondary battery including the same.
  • the E barrier value was obtained by first principle calculation using The vienna Ab initio simulation package (VASP) program.
  • the band gap was measured using cyclic voltammetry.
  • the content of element B contained in the surface treatment layer of the negative electrode active material was analyzed by the ICP-AES method (Inductively Coupled Plasma-Atomic Emission Spectroscophy).
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscometer
  • the surface treatment layer of the cathode active materials of Examples 1 and 2 had a significantly lower E barrier value than the surface treatment layers of Comparative Examples 2 to 5 and 11, and from this it was confirmed that it has a better lithium ion conductivity. Can be.
  • Example 1 The negative electrode active materials prepared in Example 1 and Comparative Example 2 were processed using ion milling, and then observed by scanning electron microscopy (SEM). The results are shown in FIGS. 4 and 5, respectively.
  • the surface treatment layer containing B was uniformly formed on the core surface, whereas in the negative electrode active material prepared in Comparative Example 2, the Al-containing coating layer was partially formed on the core surface. It can be confirmed that the formed.
  • pH titration was performed to determine the change in the amount of lithium impurities according to the amount of B contained in the surface treatment layer.
  • the pH meter (metrohm 794) for 2g of the negative electrode active material of Examples 1 and 3 varying in the molar ratio of B contained in the surface treatment layer with respect to 1 mol of Li 4 Ti 5 O 12 was 0.005 and 0.01, respectively.
  • 0.1M HCl was titrated in 0.02ml increments and the pH change was recorded.
  • the pH was recorded by performing the same method for the negative active material of Comparative Examples 1 and 5-8 for comparison. The results are shown in FIG.
  • the negative electrode active materials of Examples 1 and 3 had a pH of 9 to 10, and the initial pH was lower than that of Comparative Examples 1 and 5-8.
  • the coin cell (using a negative electrode of Li metal) prepared using the negative electrode active material prepared in Example 1 was charged at 25 ° C. until a constant current (CC) of 4.25V was reached, followed by a constant voltage of 4.25V (CV). ), And the first charge was performed until the charging current became 0.05 mAh. After 20 minutes, the battery was discharged to a constant current of 0.2C until 3.0V, and the initial discharge capacity of the first cycle was measured. After that, the charge and discharge capacity, charge and discharge efficiency and rate characteristics were evaluated by varying the discharge conditions at 10C. The results are shown in Table 3 below and FIGS. 7 and 8.
  • Example 1 having a surface treatment layer of boron-containing lithium oxide was better in initial discharge capacity and rate characteristics than Comparative Example 1, which is a negative electrode active material of lithium titanium oxide having no surface treatment layer. The effect was shown.
  • the resultant was stored at 80 ° C. for 1 week to measure the type of gas and the amount of gas generated.
  • the negative electrode active material of Example 1 compared with the negative electrode active material of Comparative Example 1 having no surface treatment layer, the amount of gas generated in the case of H 2 , CH 4 , while CO, CO 2 and C 2 H In the case of 4 , gas generation was significantly reduced.
  • the lithium secondary battery containing the negative electrode active material of Example 4 and Comparative Examples 9, 10 was also impregnated with the electrolyte in the same manner as described above, and stored for one week at 80 °C to measure the type of gas and the amount of gas generated. The results are shown in FIG.
  • the negative electrode active material of Example 4 is less than 10 to 20 times the content of boron in comparison with the negative electrode active material of Comparative Examples 9, 10, CH 4 and C 2 H 4 showed the same level of gas generation, while H 2 , In the case of CO and CO 2 , the amount of gas generated was significantly reduced.
  • the B content is 300 ppm and 500 ppm, respectively, with respect to the total weight of the negative electrode active material, so that the content of B is less than the total weight of the negative electrode active material, and lithium is formed according to the formation of the surface treatment layer including B. It is considered that the effect of preventing the decomposition of the electrolyte on the surface of the titanium oxide has not been achieved.
  • Example 4 After charging the lithium secondary battery each containing the negative electrode active material in Example 1 and Comparative Example 1 to 2.5V at a constant current of 0.1C, and stored at 80 °C for 21 days, two and three cycles excluding the initial discharge capacity The average discharge capacity of the first was measured. The results are shown in Table 4 below.
  • Example 1 having a surface treatment layer of boron-containing lithium oxide showed a significantly better capacity recovery than Comparative Example 1.
  • C-rate of Figure 11 shows the amount of current required when charging and discharging for 1 hour at 1C conditions, it was confirmed that the resistance is also increased as the current amount is increased, and as a result, the normal capacity is also lowered.
  • the capacity decreases as the C-rate increases, and the gap widens to charge at 20C.
  • the lithium secondary battery containing the negative electrode active material prepared in Example 1 during discharge showed a capacity of 85% or more, and the lithium secondary battery containing the negative electrode active material prepared in Comparative Example 11 showed a capacity of less than 80%.
  • the boron source includes LiBO 2 and Li 2 B 4 O 7 generated by reacting with lithium by-products such as Li 2 CO 3 , LiOH at 400 °C E barrier value of the surface treatment layer is adjusted to about 0.3 eV, Li 4 Ti 5 O 12 The conductivity of Li ions at the surface is improved, resulting in improved output characteristics.
  • the heat treatment at 500 °C Li 4 Ti 5 O 12 The higher the E barrier value for Li ion transport of the LiBO 2 and LiB 4 O 7 surface treatment layers formed on the surface, the lower the Li ion conductivity and the higher the resistance. .
  • due to the heat treatment at a high temperature it is difficult to cover the entire surface of Li 4 Ti 5 O 12 due to the recrystallization of the boron-containing lithium oxide, thereby increasing the amount of gas generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides an anode active material for a secondary battery, and a secondary battery comprising the same, the anode active material comprising: a core containing lithium titanium oxide; and a surface treatment layer located on the surface of the core, wherein the surface treatment layer comprises boron-containing lithium oxide in an amount such that a boron content becomes a molar ratio of 0.002 to 0.02 per 1 mole of lithium titanium oxide, and upon titrating 2 g of the anode active material with 0.1 M HCl at a pH of 5 or less, a titration amount is 0.9 to 1.5 ml. The anode active material may exhibit an excellent capacity recovery rate and output characteristics when applied to a battery, and can prevent the decomposition of an electrolyte, thereby reducing gas generation.

Description

이차전지용 음극활물질 및 이를 포함하는 이차전지Anode active material for secondary battery and secondary battery comprising same
관련출원과의 상호인용Citation with Related Applications
본 출원은 2016년 3월 22일자 한국특허출원 제2016-0034164호 및 2017년 3월 22일자 제2017-0036235호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. This application claims the benefit of priority based on Korean Patent Application No. 2016-0034164 dated March 22, 2016 and 2017-0036235 dated March 22, 2017, and all contents disclosed in the literature of the Korean Patent Application are It is included as part of the specification.
기술분야Technical Field
본 발명은 전지에 적용시 우수한 용량 회복율과 함께 출력 특성을 나타내며, 전해액 분해를 방지하여 가스 발생을 저감시킬 수 있는 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a negative electrode active material for a secondary battery and a lithium secondary battery including the same, which exhibits an output characteristic together with an excellent capacity recovery rate when applied to a battery, can prevent the decomposition of an electrolyte and reduce gas generation.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. 특히 최근 휴대기기에 사용하는 소형 리튬 이차전지부터 자동차에 사용되는 대형 이차전지까지 시장이 확대됨에 따라 음극활물질의 고용량 및 고출력화 기술이 요구되고 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as a source of energy is rapidly increasing. Among such secondary batteries, lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used. In particular, as the market expands from small lithium secondary batteries used in portable devices to large secondary batteries used in automobiles, high capacity and high output technology of negative electrode active materials is required.
종래의 리튬 이차전지의 음극은 음극 활물질로 구조적, 전기적 성질을 유지하면서 가역적인 리튬 이온의 삽입(intercalation) 및 탈리가 가능한 탄소계 물질, 특히 흑연이 주로 사용되었으나, 최근에는 고용량화 전지에 대한 요구가 증가함에 따라 흑연에 비해 이론적 용량이 큰 실리콘(Si), 주석(Sn)을 이용한 Li 합금계(alloy) 음극재 및 리튬 티타늄 산화물 등의 리튬 산화물계 음극재에 대한 연구가 많이 진행되고 있다.In the negative electrode of the conventional lithium secondary battery, a carbon-based material, especially graphite, which is capable of reversible intercalation and desorption of lithium ions while maintaining structural and electrical properties, is mainly used as a negative electrode active material, but in recent years, there is a demand for a high capacity battery. Increasingly, researches on lithium oxide-based negative electrode materials, such as a lithium alloy (alloy) anode material using silicon (Si), tin (Sn), and lithium titanium oxide, which have a larger theoretical capacity than graphite, have been conducted.
이중에서도 리튬 티타늄 산화물은 충방전 동안 구조적 변화가 극히 낮은 제로 변형률(zero-strain) 물질로, 수명특성이 매우 우수하고, 상대적으로 높은 전압대를 형성하며, 수지상 결정(dendrite)의 발생이 없어, 안전성(safety) 및 안정성(stability)이 매우 우수하다.Among them, lithium titanium oxide is a zero-strain material having extremely low structural changes during charging and discharging. The lithium titanium oxide has excellent life characteristics, forms a relatively high voltage band, and does not generate dendrite. The safety and stability are very good.
그러나, 리튬 티타늄 산화물은 작동 전압이 전해액 분해 전압보다 높기 때문에 고체 전해질 계면층(Solid Electrolyte Interface(SEI) layer)이 형성되지 않는다. 따라서, 리튬 티타늄 산화물을 적용한 리튬 이차전지의 경우, 충방전이 진행됨에 따라 전해액 분해 현상이 계속해서 발생하고, 이로 인해 전해액이 고갈되어 수명 특성이 악화되는 문제가 있다. 또, 리튬 티타늄 산화물을 적용한 리튬 이차전지의 경우, 고온 방치 시 다량의 가스가 발생하는 문제가 있다.However, lithium titanium oxide does not form a solid electrolyte interface (SEI) layer because the operating voltage is higher than the electrolyte decomposition voltage. Therefore, in the case of a lithium secondary battery to which lithium titanium oxide is applied, electrolyte decomposition is continuously generated as charging and discharging proceeds, which causes a problem of depletion of electrolyte and deterioration of life characteristics. In addition, in the case of a lithium secondary battery to which lithium titanium oxide is applied, a large amount of gas is generated when left at a high temperature.
본 발명이 해결하고자 하는 제1기술적 과제는, 전지에 적용시 우수한 용량 회복율과 함께 출력 특성을 나타내며, 전해액 분해를 방지하여 가스 발생을 저감시킬 수 있는 이차전지용 음극활물질 및 그 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION The first technical problem to be solved by the present invention is to provide an anode active material for a secondary battery and a method of manufacturing the same, which exhibit an output characteristic with excellent capacity recovery rate when applied to a battery, and can prevent the decomposition of electrolyte and reduce the generation of gas. .
또, 본 발명이 해결하고자 하는 제2기술적 과제는, 상기 음극활물질을 포함하는 이차전지용 음극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.In addition, a second technical problem to be solved by the present invention is to provide a secondary battery negative electrode, a lithium secondary battery, a battery module and a battery pack including the negative electrode active material.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 리튬 티타늄 산화물을 포함하는 코어, 및 상기 코어의 표면 상에 위치하는 표면처리층을 포함하는 음극활물질에 있어서, 상기 표면처리층은 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 포함하고, 음극활물질 2g을 0.1M HCl을 이용하여 pH 5 이하로 적정시 적정량이 0.9 내지 1.5ml인 것인 이차전지용 음극활물질이 제공된다.According to an embodiment of the present invention to solve the above problems, in the negative electrode active material comprising a core comprising a lithium titanium oxide, and a surface treatment layer located on the surface of the core, the surface treatment layer is boron-containing Lithium oxide is contained in an amount such that the boron content is in a molar ratio of 0.002 to 0.02 per 1 mol of lithium titanium oxide, and a titration amount of 0.9 to 1.5 ml when titrating 2 g of the negative electrode active material to pH 5 or less using 0.1 M HCl A negative electrode active material for phosphorus secondary batteries is provided.
본 발명의 다른 일 실시예에 따르면, 리튬 티타늄 산화물을 포함하는 코어에 대해 붕소 함유 리튬 산화물의 전구체를 표면처리한 후, 350℃ 내지 450℃에서 열처리하여, 코어의 표면 상에 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 포함하는 표면처리층을 형성하는 단계를 포함하는, 상기한 이차전지용 음극활물질의 제조방법이 제공된다.According to another embodiment of the present invention, after the surface treatment of the precursor of the boron-containing lithium oxide to the core containing the lithium titanium oxide, heat treatment at 350 ℃ to 450 ℃, the boron-containing lithium oxide on the surface of the core Provided is a method for producing a negative electrode active material for a secondary battery, comprising the step of forming a surface treatment layer comprising an amount such that the boron content is a molar ratio of 0.002 to 0.02 with respect to 1 mol of lithium titanium oxide.
본 발명의 또 다른 일 실시예에 따르면, 상기한 음극활물질을 포함하는 이차전지용 음극 및 리튬 이차전지가 제공된다.According to another embodiment of the present invention, a negative electrode for a secondary battery and a lithium secondary battery including the negative electrode active material are provided.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of the embodiments of the present invention are included in the following detailed description.
본 발명에 따른 이차전지용 음극활물질은 우수한 용량 회복율(capacity recovery)을 나타낼 수 있다. 또 상기 음극활물질은 코어의 제조 과정에서 생성된 리튬 부산물에 의한 저항 감소를 방지하여 출력 특성을 향상시킬 수 있으며, 또 표면처리층이 전해액 분해를 방지함으로써 가스 발생을 감소시킬 수 있고, 특히 낮은 SOC(state of charge)에서 티타늄 이온(Ti4 +)의 용출에 따른 전해액 분해 및 가스 발생을 감소시킬 수 있다. The negative electrode active material for a secondary battery according to the present invention may exhibit excellent capacity recovery. In addition, the negative electrode active material can improve the output characteristics by preventing a decrease in resistance caused by lithium by-products generated in the manufacturing process of the core, the surface treatment layer can reduce the generation of gas by preventing the decomposition of the electrolyte, in particular low SOC In the state of charge, electrolyte decomposition and gas generation due to elution of titanium ions (Ti 4 + ) may be reduced.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 리튬 이온 이동 에너지 장벽의 발생 메커니즘을 개략적으로 나타낸 모식도이다.1 is a schematic diagram schematically showing a mechanism of generating a lithium ion mobile energy barrier.
도 2는 Li2B4O7의 결정 구조 내에서의 리튬 이온의 이동 경로를 개략적으로 나타낸 모식도이다.FIG. 2 is a schematic diagram schematically showing a migration path of lithium ions in the crystal structure of Li 2 B 4 O 7. FIG.
도 3은 Al2O3의 결정 구조 내에서의 리튬 이온의 이동 경로를 개략적으로 나타낸 모식도이다.3 is a schematic diagram schematically showing a migration path of lithium ions in the crystal structure of Al 2 O 3 .
도 4는 실시예 1에서 제조한 음극활물질을 주사전자 현미경으로 관찰한 사진이다.Figure 4 is a photograph of the negative electrode active material prepared in Example 1 observed with a scanning electron microscope.
도 5는 비교예 2에서 제조한 음극활물질을 주사전자 현미경으로 관찰한 사진이다. 5 is a photograph of a negative electrode active material prepared in Comparative Example 2 observed with a scanning electron microscope.
도 6은 실시예 1, 3 및 비교예 1, 5-8의 음극활물질에서의 리튬 불순물의 감소량을 비교한 그래프이다.6 is a graph comparing reduction amounts of lithium impurities in the negative electrode active materials of Examples 1 and 3 and Comparative Examples 1 and 5-8.
도 7은 실시예 1 및 비교예 1의 음극활물질에 대한 0.2C에서의 초기방전용량을 측정한 그래프이다. 7 is a graph measuring the initial discharge capacity at 0.2C for the negative electrode active materials of Example 1 and Comparative Example 1.
도 8은 실시예 1 및 비교예 1의 음극활물질에 대한 10C에서의 방전용량을 측정한 그래프이다.8 is a graph measuring the discharge capacity at 10C for the negative electrode active materials of Example 1 and Comparative Example 1.
도 9는 실시예 1 및 비교예 1의 음극활물질을 각각 포함하는 리튬 이차전지에서의 가스발생량을 측정한 그래프이다.9 is a graph measuring the amount of gas generated in the lithium secondary battery including the negative electrode active material of Example 1 and Comparative Example 1, respectively.
도 10은 실시예 4, 비교예 9 및 10의 음극활물질을 포함하는 리튬 이차전지에서의 가스발생량을 측정한 그래프이다. 10 is a graph measuring the amount of gas generation in a lithium secondary battery including the negative electrode active materials of Example 4, Comparative Examples 9 and 10.
도 11은 실시예 1 및 비교예 11의 음극활물질을 포함하는 리튬 이차전지의 정상 용량을 나타낸 그래프이다. 11 is a graph showing the normal capacity of the lithium secondary battery including the negative electrode active material of Example 1 and Comparative Example 11.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
표면처리층을 갖는 음극활물질에 있어서, 표면처리층에서의 전기전도성은 음극활물질의 표면저항 및 전해액과의 부반응성과 관련된다. 구체적으로 표면처리층에서의 전기전도성이 낮으면 표면저항이 증가하게 되는 반면 전해액과의 부반응은 감소될 수 있다. 통상 붕소(B)는 절연체(insulator)로서 낮은 전기전도성을 갖는다. 이에 따라 음극활물질의 표면 저항 감소 및 이에 따른 출력 특성 개선과 함께 전해액과의 부반응 방지를 위해서는 표면처리층 내 포함되는 붕소의 함량을 적절히 제어하는 것이 바람직하다. In the negative electrode active material having the surface treatment layer, the electrical conductivity in the surface treatment layer is related to the surface resistance of the negative electrode active material and the side reactivity with the electrolyte solution. Specifically, when the electrical conductivity in the surface treatment layer is low, the surface resistance is increased while the side reaction with the electrolyte may be reduced. Boron (B) usually has a low electrical conductivity as an insulator. Accordingly, it is preferable to appropriately control the content of boron included in the surface treatment layer in order to reduce the surface resistance of the negative electrode active material and thereby improve output characteristics and to prevent side reactions with the electrolyte.
이에 대해, 본 발명에서는 음극활물질의 제조시 리튬 티타늄 산화물을 포함하는 코어 표면 상에, 붕소 함유 리튬 산화물의 표면처리층을 형성하되 표면처리층 내 전기전도성 및 전해액과의 부반응 억제 효과를 함께 고려하여 그 함량을 코어를 이루는 리튬 티타늄 복합 산화물의 총 중량을 기준으로 하여 제어함으로써, 표면처리층 내 리튬 이온 전도성 및 전기 전도성을 발란스 좋게 개선할 수 있다. In the present invention, in the preparation of the negative electrode active material, a surface treatment layer of boron-containing lithium oxide is formed on the core surface containing lithium titanium oxide, but in consideration of the electrical conductivity in the surface treatment layer and the suppression of side reaction with the electrolyte solution. By controlling the content based on the total weight of the lithium titanium composite oxide constituting the core, it is possible to improve the balance of the lithium ion conductivity and electrical conductivity in the surface treatment layer.
구체적으로, 본 발명의 일 실시예에 따른 이차전지용 음극활물질은, 리튬 티타늄 산화물을 포함하는 코어, 및 상기 코어의 표면 상에 위치하는 표면처리층을 포함하고, 상기 표면처리층은 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 포함하며, 음극활물질 2g을 0.1M HCl을 이용하여 pH 5 이하로 적정시 적정량이 0.9 내지 1.5ml이다.Specifically, the negative electrode active material for a secondary battery according to an embodiment of the present invention, the core including a lithium titanium oxide, and a surface treatment layer located on the surface of the core, the surface treatment layer is boron-containing lithium oxide To 1 mol of lithium titanium oxide, the boron content is contained in an amount such that the molar ratio of 0.002 to 0.02, the titration amount is 0.9 to 1.5ml when titrating 2g of the negative electrode active material to pH 5 or less using 0.1M HCl.
상기 붕소 함유 리튬 산화물을 포함하는 표면처리층은, 붕산 등과 같은 붕소 함유 리튬 산화물의 전구체가 코어 표면에 존재하는 리튬 불순물, 및 제조과정에서 추가적으로 첨가되는 리튬 원료물질과의 반응을 통해 형성되는 것으로, 상기 표면처리층의 형성에 의해 코어 내 리튬 불순물의 함량을 감소시킬 수 있는 동시에 붕소 함량의 최적화로 표면처리층 내 리튬 이온 전도성 및 전기 전도성을 발란스 좋게 향상시킬 수 있다. 또, 상기한 구성을 갖는 표면처리층의 형성으로 인해 리튬 티타늄 산화물을 포함하는 코어 표면에서의 전해액 분해가 방지되어 우수한 용량 회복율(capacity recovery)을 나타낼 수 있다. 또 상기 표면처리층에 의해 전해액 분해가 방지되어 가스 발생량이 감소할 수 있으며, 특히 낮은 SOC(state of charge)에서 티타늄 이온(Ti4 +)의 용출에 따른 전해액 분해 및 가스 발생이 감소될 수 있다. 또, 상기 표면처리층이 재결정 발생 없이 코어 표면 전체를 균일하게 커버함으로써, 코어의 제조 과정에서 생성된 리튬 부산물에 의한 저항 감소를 방지하여 출력 특성을 향상시킬 수 있다. The surface treatment layer including the boron-containing lithium oxide is formed through reaction with a lithium impurity in which a precursor of boron-containing lithium oxide such as boric acid is present on the core surface, and a lithium raw material additionally added in the manufacturing process, By forming the surface treatment layer, the content of lithium impurities in the core may be reduced, and at the same time, the lithium ion conductivity and the electrical conductivity in the surface treatment layer may be improved by optimizing the boron content. In addition, due to the formation of the surface treatment layer having the above-described configuration, electrolyte decomposition may be prevented from the core surface including lithium titanium oxide, thereby exhibiting excellent capacity recovery. In addition, the decomposition of the electrolyte may be prevented by the surface treatment layer, so that the amount of gas generated may be reduced, and in particular, electrolyte decomposition and gas generation due to the dissolution of titanium ions (Ti 4 + ) may be reduced at low SOC (state of charge). . In addition, the surface treatment layer uniformly covers the entire surface of the core without recrystallization, thereby preventing a decrease in resistance caused by lithium by-products generated in the manufacturing process of the core, thereby improving output characteristics.
본 발명에 있어서 용량 회복율은 만충전 후 80℃에서 1주일 동안 저장하고, 방전하고, 다시 동일 충방전 조건으로 충방전할 경우 초기 방전 용량을 제외하고 2회 및 3회 사이클시 평균 방전 용량을 의미한다. In the present invention, the capacity recovery rate means the average discharge capacity during two and three cycles except for the initial discharge capacity when the battery is stored for one week at 80 ° C. after full charge, discharged, and charged and discharged under the same charge and discharge conditions. do.
구체적으로, 본 발명의 일 실시예에 따른 음극활물질에 있어서, 붕소 함유 리튬 산화물을 포함하는 표면처리층은 코어를 구성하는 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 상기한 붕소 함유 리튬 산화물을 포함할 수 있다. 리튬 티타늄 산화물 대비 붕소의 함량이 0.002몰비 미만이면, 표면처리층 형성에 따른 개선효과가 미미하고, 붕소 함량이 0.02몰비를 초과하면 표면처리층 내 전기전도성의 저하로 표면저항 증가 및 전지의 출력 특성 저하를 초래할 수 있다. 보다 구체적으로 상기 표면처리층은 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 총 중량에 대하여 5000 내지 7000ppm이 되도록 하는 양으로 포함할 수 있다.Specifically, in the negative electrode active material according to an embodiment of the present invention, the surface treatment layer containing boron-containing lithium oxide is an amount such that the boron content is a molar ratio of 0.002 to 0.02 with respect to 1 mol of lithium titanium oxide constituting the core. It may include a boron-containing lithium oxide as described above. If the content of boron is less than 0.002 molar ratio compared to lithium titanium oxide, the improvement effect due to the formation of the surface treatment layer is insignificant. If the content of boron exceeds 0.02 molar ratio, the surface resistance is increased due to the decrease in the electrical conductivity in the surface treatment layer and the output characteristics of the battery. May cause degradation. More specifically, the surface treatment layer may include boron-containing lithium oxide in an amount of 5000 to 7000 ppm with respect to the total weight of lithium titanium oxide.
본 발명에 있어서 표면처리층 내 포함되는 붕소의 함량은 유도결합플라즈마 분광분석기(Inductively Coupled Plasma Optical Emission Spectrometer, ICP)를 이용하여 분석할 수 있다.In the present invention, the content of boron included in the surface treatment layer may be analyzed using an inductively coupled plasma optical emission spectrometer (ICP).
또, 표면처리층을 형성하는 물질에서의 리튬 이온의 확산 경로로부터 리튬 이온 이동 에너지 장벽(lithium ion migration energy barrier, Ebarrier)을 예측할 수 있다.In addition, the lithium ion migration energy barrier (E barrier ) can be predicted from the diffusion path of lithium ions in the material forming the surface treatment layer.
도 1은 리튬 이온 이동 에너지 장벽의 발생 메커니즘을 개략적으로 나타낸 모식도이고, 도 2 및 3은 각각 Li2B4O7 및 Al2O3의 결정 구조를 개략적으로 나타낸 모식도이다. 도 1 내지 도 3은 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다.FIG. 1 is a schematic diagram showing a mechanism of generating a lithium ion mobile energy barrier, and FIGS. 2 and 3 are schematic diagrams showing crystal structures of Li 2 B 4 O 7 and Al 2 O 3 , respectively. 1 to 3 are only examples for describing the present invention, but the present invention is not limited thereto.
도 1에 나타난 바와 같이, 리튬 이온 이동 에너지 장벽 값이 낮을수록 리튬 이온의 이동이 수월하며, 리튬 이온 전도성이 우수함을 의미한다. 한편, 붕소와 알루미늄은 모두 절연체로서 전기 전도성이 낮으며, 그 결과 전해액과의 부반응을 억제할 수 있고, 또 음극 계면에서의 저항을 증가시켜 활물질의 안전성을 향상시킬 수 있어 활물질에 대한 표면처리제로서 주로 사용된다. 그러나, 도 2 및 3에 나타난 바와 같이, 붕소 함유 리튬 산화물의 대표적인 예로서 Li2B4O7는, 통상 표면처리층 형성에 사용되는 Al2O3에 비해 결정 구조 내 리튬 이온의 이동 경로가 길다. 이에 따라 상대적으로 결정간 리튬 이온이 많은 Al2O3에 비해 리튬 이온의 이동이 수월하며, 그 결과 더 낮은 리튬 이온 이동 에너지 장벽 값 및 더 우수한 리튬 이온 전도성을 나타낼 수 있다. As shown in FIG. 1, the lower the lithium ion mobility energy barrier value, the easier the movement of lithium ions, and the better the lithium ion conductivity. On the other hand, both boron and aluminum have low electrical conductivity as an insulator, and as a result, side reaction with the electrolyte solution can be suppressed, and the resistance at the negative electrode interface can be increased to improve the safety of the active material, thereby providing a surface treatment agent for the active material. Mainly used. However, as shown in FIGS. 2 and 3, Li 2 B 4 O 7 is a representative example of the boron-containing lithium oxide, and the movement path of lithium ions in the crystal structure is lower than that of Al 2 O 3 , which is usually used for forming a surface treatment layer. long. Accordingly, relatively large lithium ion is Al 2 O 3 the movement of lithium ions between the crystal and easier than, as a result, can exhibit a lower lithium ion migration barrier energy values and more excellent lithium ion conductivity.
또, 통상 붕소 함유 리튬 산화물의 Ebarrier 값은 0.05eV 내지 0.45eV 정도이다. 이 같은 붕소 함유 리튬 산화물의 Ebarrier 값은 결정구조 내 리튬 이온 이동 경로의 차이로 인한 것으로, 이는 제조시 열처리 온도에 따라 제어될 수 있다. 이때 열처리 온도가 지나치게 높아 Ebarrier 값이 지나치게 클 경우, 붕소 함유 리튬 산화물의 재결정으로 인한 표면 커버율 감소로 인해 가스 저감 효과 및 출력 특성 개선 효과가 저하될 수 있다. 특히 표면처리층 형성시 고온에서의 열처리를 수행할수록 Ebarrier 값이 증가되게 되는데, 이때 재결정이 일어나고 그 결과 표면 커버율이 저하됨으로써 출력 특성의 저하 및 가스 발생 저감 효과의 감소가 증가될 수 있다. In addition, the E barrier value of boron-containing lithium oxide is usually about 0.05 eV to 0.45 eV. The value of the E barrier of the boron-containing lithium oxide is due to the difference in the lithium ion migration path in the crystal structure, which can be controlled according to the heat treatment temperature during manufacture. In this case, when the heat treatment temperature is too high and the E barrier value is too large, the gas reduction effect and the output characteristic improvement effect may be reduced due to the decrease in the surface coverage ratio due to the recrystallization of the boron-containing lithium oxide. In particular, the E barrier value is increased as the heat treatment is performed at a high temperature when forming the surface treatment layer. At this time, the recrystallization occurs, and as a result, the surface coverage is decreased, thereby decreasing the output characteristics and reducing the gas generation effect.
본 발명의 일 실시예에 따른 음극활물질에 있어서 상기 표면처리층은 단일한 붕소 함유 리튬 산화물로 이루어질 수도 있고, 또는 2종 이상의 붕소 함유 리튬 산화물의 혼합물로 이루어질 수도 있다. 본 발명에서는 상기한 표면처리층 내 붕소의 함량 범위를 충족하는 조건 하에서, 상기 표면처리층을 형성하는 붕소 함유 리튬 산화물의 종류 또는 혼합비를 제어함으로서, 표면처리층 내 리튬 이온 전도성을 향상시킬 수 있다.In the negative electrode active material according to an embodiment of the present invention, the surface treatment layer may be made of a single boron-containing lithium oxide, or may be made of a mixture of two or more boron-containing lithium oxides. In the present invention, by controlling the type or mixing ratio of the boron-containing lithium oxide forming the surface treatment layer under the conditions that satisfy the above content range of boron in the surface treatment layer, it is possible to improve the lithium ion conductivity in the surface treatment layer. .
구체적으로, 본 발명의 일 실시예에 따른 음극활물질에 있어서, 상기 표면처리층은 Ebarrier 값이 0.05eV 내지 0.3eV일 수 있으며, 보다 구체적으로는 0.05eV 내지 0.2eV일 수 있다. 표면처리층 내 Ebarrier 값이 0.05eV 미만인 경우는 제조 자체가 어렵고, 또 0.3eV를 초과할 경우 붕소 함유 리튬 산화물의 재결정으로 인한 표면 커버율 감소로 인해 가스 저감 효과 및 출력 특성 개선 효과가 저하될 수 있다.Specifically, in the negative electrode active material according to an embodiment of the present invention, the surface treatment layer may have an E barrier value of 0.05 eV to 0.3 eV, more specifically 0.05 eV to 0.2 eV. If the E barrier value in the surface treatment layer is less than 0.05 eV, it is difficult to manufacture itself, and if it exceeds 0.3 eV, gas reduction effect and output characteristic improvement effect may be deteriorated due to the decrease of the surface coverage due to the recrystallization of boron-containing lithium oxide. have.
본 발명에 있어서, Ebarrier 값은 The vienna Ab initio simulation package (VASP) 프로그램을 이용하여 제1계산(first principle calculation)을 통해 구할 수 있다.In the present invention, the E barrier value can be obtained through first principle calculation using the VIenna Ab initio simulation package (VASP) program.
구체적으로 상기 표면처리층을 구성하는 붕소 함유 리튬 산화물은 하기 화학식 1의 화합물일 수 있다:Specifically, the boron-containing lithium oxide constituting the surface treatment layer may be a compound of Formula 1 below:
[화학식 1][Formula 1]
LiaBbO(a+3b)/2 Li a B b O (a + 3b) / 2
상기 화학식 1에서, 1≤a≤4, 1≤b≤8이다.In Formula 1, 1 ≦ a ≦ 4 and 1 ≦ b ≦ 8.
구체적인 예로는 Li2B4O7, LiB3O5, LiB8O13, Li4B2O5, Li3BO3, Li2B2O4, 또는 Li2B6O10 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다. Specific examples include Li 2 B 4 O 7 , LiB 3 O 5 , LiB 8 O 13 , Li 4 B 2 O 5 , Li 3 BO 3 , Li 2 B 2 O 4 , or Li 2 B 6 O 10 . And any one or a mixture of two or more thereof.
보다 구체적으로, 상기 붕소 함유 리튬 산화물은 Ebarrier 값이 0.05eV 내지 0.3eV인 것일 수 있고, 보다 더 구체적으로는 상기한 Ebarrier 값을 충족하는 동시에 밴드 갭이 8.5eV 내지 10.5eV인 것일 수 있다. 이와 같이 Ebarrier 값과 밴드 갭 값의 조건을 동시에 충족함으로써 이온전도성과 전기전도성의 발란스가 우수한 표면처리층을 보다 높은 커버율로 형성할 수 있다. 보다 구체적으로는 밴드 갭이 8.9eV 내지 10.1eV인 것일 수 있다.In more detail, the boron-containing lithium oxide may have an E barrier value of 0.05 eV to 0.3 eV, and more specifically, may satisfy the above E barrier value and at the same time, a band gap of 8.5 eV to 10.5 eV. . As such, by satisfying the conditions of the E barrier value and the band gap value, a surface treatment layer having excellent balance of ion conductivity and electric conductivity can be formed with a higher coverage. More specifically, the band gap may be 8.9 eV to 10.1 eV.
본 발명에 있어서, 붕소 함유 리튬 산화물의 밴드 갭은 전압전류계(Cyclic voltammetry)를 이용하여 측정할 수 있다. In the present invention, the band gap of the boron-containing lithium oxide can be measured using cyclic voltammetry.
또, 상기 표면처리층은 음극활물질의 용량을 결정하는 코어의 입경을 고려하여 적절한 두께로 형성되는 것이 바람직하다. 구체적으로는 상기한 붕소 함량을 충족하는 조건 하에서 코어의 반지름에 대해 0.01 내지 0.1의 평균 두께비로 형성될 수 있다. 표면처리층의 두께비가 0.01 미만이면 표면처리층의 두께가 지나치게 얇아 충방전시 음극활물질과 전해액과의 부반응 억제 효과가 미미할 수 있고, 또 표면처리층의 두께비가 0.1을 초과하면 지나치게 두꺼운 표면처리층으로 인해 저항 증가에 따른 출력특성 저하의 우려가 있다.In addition, the surface treatment layer is preferably formed to an appropriate thickness in consideration of the particle diameter of the core for determining the capacity of the negative electrode active material. Specifically, it may be formed in an average thickness ratio of 0.01 to 0.1 with respect to the radius of the core under the conditions satisfying the boron content. If the thickness ratio of the surface treatment layer is less than 0.01, the thickness of the surface treatment layer may be too thin, so that the effect of suppressing side reactions between the negative electrode active material and the electrolyte during charging and discharging may be insignificant. If the thickness ratio of the surface treatment layer exceeds 0.1, the surface treatment layer may be too thick. Due to this, there is a risk of deterioration of output characteristics due to an increase in resistance.
본 발명에 있어서, 코어의 입경 및 표면처리층의 두께는 집속 이온빔(forced ion beam, fib)를 이용한 입자 단면 분석을 통해 측정할 수 있다.In the present invention, the particle diameter of the core and the thickness of the surface treatment layer can be measured through particle cross-sectional analysis using a focused ion beam (fib).
또, 상기 표면처리층은 코어의 표면 전체에 형성될 수도 있고, 부분적으로 형성될 수도 있다. 보다 구체적으로, 상기 표면처리층은 상기한 붕소 함량 범위를 충족하는 조건하에서 코어 전체 표면적 중 80% 이상 형성될 수 있으며, 보다 더 구체적으로는 코어 표면에서의 전해액 분해 방지 효과를 고려할 때 상기 표면처리층은 코어 전체 표면적 100%, 즉 코어 표면 전체에 걸쳐 형성될 수 있다.In addition, the surface treatment layer may be formed on the entire surface of the core, or may be partially formed. More specifically, the surface treatment layer may be formed at least 80% of the total surface area of the core under the conditions satisfying the above-described boron content range, and more specifically, the surface treatment when considering the effect of preventing electrolyte decomposition at the core surface The layer can be formed over 100% of the total surface area of the core, ie over the core surface.
한편, 본 발명의 일 실시예에 따른 이차전지용 음극활물질에 있어서 코어는 리튬 티타늄 산화물을 포함한다. Meanwhile, in the negative electrode active material for a secondary battery according to an embodiment of the present invention, the core includes lithium titanium oxide.
구체적으로 상기 리튬 티타늄 산화물은 하기 화학식 2의 화합물일 수 있다:Specifically, the lithium titanium oxide may be a compound of Formula 2 below:
[화학식 2][Formula 2]
LixTiyMwO12 - zAz Li x Ti y M w O 12 - z A z
상기 화학식 2에서, In Chemical Formula 2,
0.5≤x≤4, 1≤y≤5, 0≤w≤0.17, 0≤z≤0.17이고, 0.5≤x≤4, 1≤y≤5, 0≤w≤0.17, 0≤z≤0.17,
M은 주기율표 상의 2족 내지 13족의 금속으로 이루어진 군에서 선택되는 1종 이상의 원소를 포함하며, 구체적으로는 Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군에서 선택된 하나 이상일 수 있고,M includes at least one element selected from the group consisting of metals of Groups 2 to 13 on the periodic table, specifically, Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and May be one or more selected from the group consisting of Mo,
A는 -1가의 산화수를 가지는 비금속 원소이며, 구체적으로는 F, Cl, Br 및 I로 이루어진 군에서 선택된 하나 이상일 수 있다.A is a nonmetallic element having a -monovalent oxidation number, and specifically, may be at least one selected from the group consisting of F, Cl, Br, and I.
상기 화학식 2의 리튬 티타늄 산화물의 조성은 코어 전체의 평균 조성이다.The composition of lithium titanium oxide of Formula 2 is the average composition of the entire core.
보다 구체적으로 상기 리튬 티타늄 산화물은 Li4Ti5O12, Li0 . 8Ti2 . 2O4, Li2.67Ti1.33O4, LiTi2O4, Li1 . 33Ti1 . 67O4 또는 Li1 . 14Ti1 . 71O4 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.More specifically, the lithium titanium oxide is Li 4 Ti 5 O 12 , Li 0 . 8 Ti 2 . 2 O 4 , Li 2.67 Ti 1.33 O 4 , LiTi 2 O 4 , Li 1 . 33 Ti 1 . 67 O 4 or Li 1 . 14 Ti 1 . 71 O 4 , and any one or a mixture of two or more thereof may be used.
또, 상기 리튬 티타늄 산화물은 평균 입경(D50)이 0.1㎛ 내지 5㎛인 단일 입자일 수도 있고, 또는 평균입자 직경 200nm 내지 1000nm의 미세한 1차 입자가 응집되어 이루어지며, 평균 입경(D50)이 3㎛ 내지 20㎛인 2차 입자일 수도 있다. 상기 리튬 티타늄 산화물이 단일 입자인 경우, 그 평균 입경이 0.1㎛ 미만이면 구조 안정성 저하 및 용량 특성 저하의 우려가 있고, 평균 입경이 5㎛를 초과하는 경우에는 이차전지의 출력 특성이 저하될 수 있다. In addition, the lithium titanium oxide may be a single particle having an average particle diameter (D 50 ) of 0.1 μm to 5 μm, or fine primary particles having an average particle diameter of 200 nm to 1000 nm are aggregated, and an average particle diameter (D 50 ) The secondary particles may be 3 µm to 20 µm. In the case where the lithium titanium oxide is a single particle, if the average particle diameter is less than 0.1 μm, there is a fear of lowering structural stability and capacity characteristics. If the average particle diameter exceeds 5 μm, output characteristics of the secondary battery may be reduced. .
본 발명에 있어서, 코어 입자의 평균 입경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 상기 코어 입자의 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 보다 구체적으로 레이저 회절법에 의해 측정시, 코어 입자를 용매에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입경(D50)을 산출할 수 있다.In the present invention, the average particle diameter (D 50 ) of the core particles can be defined as the particle size at 50% of the particle size distribution. The average particle diameter (D 50 ) of the core particles can be measured using, for example, a laser diffraction method. More specifically, when measured by the laser diffraction method, the core particles were dispersed in a solvent, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to irradiate an ultrasonic wave of about 28 kHz at an output of 60 W. after that, it is possible to calculate the average particle diameter (D 50) of from 50% based on the particle size distribution of the measuring device.
또, 상기 코어는 입자의 표면 측, 구체적으로 표면처리층과 접하는 계면, 및 계면에서부터 코어 입자 중심 방향으로 코어 입자 반지름에 대해 0% 초과 100% 미만, 보다 구체적으로는 표면처리층과 접하는 계면에서부터 0% 내지 30%의 거리에 해당하는 영역 내에 붕소 함유 리튬 산화물의 일부 붕소(B) 원소가 도핑될 수도 있다. 또, 상기 B 원소의 함량은 코어의 표면에서부터 코어 중심으로 갈수록 감소하는 농도 구배를 가질 수 있다.In addition, the core is from the surface side of the particle, specifically the interface in contact with the surface treatment layer, and from the interface in contact with the surface treatment layer from more than 0% to less than 100% with respect to the core particle radius in the direction of the core particle center. Some boron (B) elements of the boron-containing lithium oxide may be doped in an area corresponding to a distance of 0% to 30%. In addition, the content of the B element may have a concentration gradient that decreases from the surface of the core toward the core center.
상기한 바와 같은 구조 및 구성을 갖는 본 발명의 일 실시예에 따른 상기 음극활물질은, 활물질 표면에서의 탄산리튬, 리튬 수산화물 등의 리튬 불순물 함량의 감소 및 붕소 함량의 증가로 인해 종래에 비해 훨씬 낮은 초기 pH값을 나타낸다. 그 결과, 음극활물질과 전해액간의 부반응이 억제되고, 동시에 표면처리층 내 리튬 이온 전도성 및 전기 전도성을 발란스 좋게 개선할 수 있다. The negative electrode active material according to an embodiment of the present invention having the structure and configuration as described above is much lower than the prior art due to the decrease in the lithium impurity content, such as lithium carbonate, lithium hydroxide, and the increase of boron content on the surface of the active material Initial pH value is shown. As a result, side reactions between the negative electrode active material and the electrolyte can be suppressed, and at the same time, the lithium ion conductivity and the electrical conductivity in the surface treatment layer can be improved with good balance.
구체적으로 상기 음극활물질은 9 내지 10, 보다 구체적으로는 9.3 내지 9.7의 초기 pH 값을 나타내며, 상기 음극활물질 2g을 0.1M HCl을 이용하여 pH 5 이하, 구체적으로는 pH 5로 적정시 적정량이 0.9 내지 1.5ml, 보다 더 구체적으로는 0.9 내지 1.4ml인 것일 수 있다. 상기 적정량이 적을수록 음극활물질과 전해액간의 부반응이 억제되고, 동시에 표면처리층 내 리튬 이온 전도성 및 전기 전도성을 발란스 좋게 개선할 수 있는 효과를 달성할 수 있다.  Specifically, the negative electrode active material has an initial pH value of 9 to 10, more specifically, 9.3 to 9.7, and the appropriate amount when titrating 2 g of the negative electrode active material to pH 5 or less, specifically pH 5 using 0.1M HCl, is 0.9 To 1.5 ml, and more specifically 0.9 to 1.4 ml. As the titration amount is smaller, side reactions between the negative electrode active material and the electrolyte are suppressed, and at the same time, an effect of improving the balance of the lithium ion conductivity and the electrical conductivity in the surface treatment layer can be achieved.
본 발명에 있어서 상기 음극활물질의 pH는 음극활물질 2g을 100ml 증류수에 혼합한 후, 5 내지 10분간 교반하고 여과한 후 HCl 등과 같은 산으로 pH 5 이하로 적정함으로써 측정할 수 있다. 이때 활물질 내 포함된 탄산리튬, 리튬 수산화물 등의 부산물이 증류수에 포함될 수 있도록 반복적인 소킹(soaking)과 디켄팅(decanting)을 수행할 수 있다. 이때 음극활물질을 증류수에 넣는 시간 등과 같은 변수들에는 특별히 크게 영향을 받지 않는다.In the present invention, the pH of the negative electrode active material may be measured by mixing 2 g of the negative electrode active material in 100 ml of distilled water, stirring for 5 to 10 minutes, filtration, and titrating to pH 5 or less with an acid such as HCl. At this time, by-products such as lithium carbonate and lithium hydroxide included in the active material may be repeatedly soaked and decanted to be included in distilled water. At this time, it is not particularly affected by variables such as time to add the negative electrode active material to distilled water.
또, 상기 음극활물질은 BET 비표면적이 0.5m2/g 내지 10.0m2/g인 것일 수 있다.In addition, the negative electrode active material may be one having a BET specific surface area of 0.5m 2 / g to 10.0m 2 / g.
음극활물질의 BET 비표면적이 10.0m2/g를 초과하면 음극활물질간 응집으로 인한 활물질층 내 음극활물질의 분산성 저하 및 전극 내 저항 증가의 우려가 있고, 또 BET 비표면적이 0.5m2/g 미만일 경우, 음극활물질 자체의 분산성 저하 및 용량 저하의 우려가 있다. 또, 본 발명의 일 실시예에 따른 상기 음극활물질은 상기한 BET 비표면적 조건을 중촉함으로써 우수한 용량 및 충방전 특성을 나타낼 수 있다. 보다 구체적으로, 상기 음극활물질은 3.0m2/g 내지 6.0m2/g의 BET 비표면적을 가질 수 있다.If the BET specific surface area of the negative electrode active material exceeds 10.0 m 2 / g, the dispersibility of the negative electrode active material in the active material layer and the resistance in the electrode may increase due to aggregation between the negative electrode active materials, and the BET specific surface area is 0.5 m 2 / g. When less than this, there exists a possibility of the dispersibility fall of a negative electrode active material itself, and a capacity fall. In addition, the negative electrode active material according to an embodiment of the present invention may exhibit excellent capacity and charge / discharge characteristics by accelerating the BET specific surface conditions. More specifically, the negative electrode active material may have a BET specific surface area of 3.0m 2 / g to 6.0m 2 / g.
본 발명에 있어서, 음극활물질의 비표면적은 BET(Brunauer-Emmett-Teller) 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.In the present invention, the specific surface area of the negative electrode active material is measured by the Brunauer-Emmett-Teller (BET) method, specifically, nitrogen gas at liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan It can calculate from adsorption amount.
상기와 같은 구조를 갖는 본 발명의 일 실시예에 따른 음극활물질은, 리튬 티타늄 산화물을 포함하는 코어에 대해, 붕소 함유 리튬 산화물의 전구체를 표면처리한 후, 350℃ 내지 450℃에서 열처리 하여, 코어의 표면 상에 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 포함하는 표면처리층을 형성하는 단계를 포함하는 제조방법에 의해 제조될 수 있다. 이에 따라 본 발명의 다른 일 실시예에 따르면 상기한 음극활물질의 제조방법이 제공된다.The negative electrode active material according to the embodiment of the present invention having the structure as described above, after the surface treatment of the precursor of the boron-containing lithium oxide to the core containing lithium titanium oxide, heat treatment at 350 ℃ to 450 ℃, the core It can be prepared by a manufacturing method comprising the step of forming a surface treatment layer comprising a boron-containing lithium oxide on the surface of the amount of boron content relative to 1 mol of lithium titanium oxide in a molar ratio of 0.002 to 0.02. Accordingly, according to another embodiment of the present invention is provided a method for producing the negative electrode active material.
구체적으로, 상기 제조방법에 있어서 상기 리튬 티타늄 산화물을 포함하는 코어는 앞서 설명한 바와 동일하며, 통상의 제조방법에 따라 제조될 수 있다. Specifically, in the manufacturing method, the core including the lithium titanium oxide is the same as described above, and may be manufactured according to a conventional manufacturing method.
또, 상기 붕소 함유 리튬 산화물의 전구체로는 붕소 함유 리튬 산화물 또는 후속의 열처리 공정에 의해 반응하여 붕소 함유 리튬 산화물을 형성할 수 있는 물질일 수 있다. In addition, the precursor of the boron-containing lithium oxide may be a material capable of forming boron-containing lithium oxide by reacting by boron-containing lithium oxide or a subsequent heat treatment process.
구체적으로, 상기 붕소 함유 리튬 산화물의 전구체로는 H3BO3의 붕산; B2O3 또는 B2O5와 같은 산화붕소; LiBO3, Li2B4O7, LiB3O5, LiB8O13, Li4B2O5, Li3BO3, Li2B2O4, 또는 Li2B6O10와 같은 붕산리튬염 등의 붕소 함유 리튬 산화물을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Specifically, the precursor of the boron-containing lithium oxide is boric acid of H 3 BO 3 ; Boron oxides such as B 2 O 3 or B 2 O 5 ; LiBO 3, Li 2 B 4 O 7, LiB 3 O 5, LiB 8 O 13, Li 4 B 2 O 5, Li 3 BO 3, Li 2 B 2 O 4, or Li 2 lithium borate such as B 6 O 10 And boron-containing lithium oxides such as salts. Any one or a mixture of two or more thereof may be used.
또, 상기 제조방법에 있어서 상기 리튬 티타늄 산화물에 대한 표면처리 공정은 상기 리튬 티타늄 산화물을 포함하는 코어와 붕소 함유 리튬 산화물의 전구체를 건식 혼합하거나, 또는 리튬 티타늄 산화물을 포함하는 코어에 대해 붕소 함유 리튬 산화물의 전구체를 포함하는 표면처리층 형성용 조성물을 분무, 도포, 또는 침지 등 통상의 표면처리 공정에 따라 수행될 수 있다. In the above manufacturing method, the surface treatment step for the lithium titanium oxide may be a dry mixing of the core containing the lithium titanium oxide and the precursor of the boron-containing lithium oxide, or the boron-containing lithium to the core containing the lithium titanium oxide. The composition for forming a surface treatment layer including a precursor of an oxide may be performed according to a conventional surface treatment process such as spraying, coating, or dipping.
일례로 분무 공정에 의해 표면처리를 수행하는 경우, 붕소 함유 리튬 산화물의 전구체를 용매 중에 용해 또는 분산시켜 표면처리층 형성용 조성물을 제조한 후, 통상의 분사 장치를 이용하여 리튬 티타늄 산화물을 포함하는 코어에 대해 분사함으로써 수행될 수 있다. 이때 용매로는 극성 용매가 사용될 수 있으며, 구체적으로는 물 또는 탄소수 1 내지 8의 알코올(예를 들면, 메탄올, 에탄올 또는 이소프로필 알코올 등), 또는 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), N-메틸피롤리돈(NMP), 아세톤(acetone) 등의 극성 유기 용매를 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또, 상기한 용매는 상기 조성물의 표면처리시 적절한 도포성을 나타낼 수 있고, 또 이후 열처리시 용이하게 제거될 수 있는 양으로 포함될 수 있다.For example, when the surface treatment is performed by a spraying process, a precursor of boron-containing lithium oxide is dissolved or dispersed in a solvent to prepare a composition for forming a surface treatment layer, and then includes lithium titanium oxide using a conventional spraying apparatus. By spraying on the core. In this case, a polar solvent may be used as the solvent, and specifically, water or an alcohol having 1 to 8 carbon atoms (for example, methanol, ethanol, or isopropyl alcohol), or dimethyl sulfoxide (DMSO), N- Polar organic solvents such as methylpyrrolidone (NMP), acetone, and the like, and any one or a mixture of two or more thereof may be used. In addition, the solvent may be included in an amount that can exhibit a suitable coating property when the surface treatment of the composition, and can be easily removed during the subsequent heat treatment.
또, 상기 표면처리 공정시, 상기 리튬 티타늄 산화물을 포함하는 코어와 붕소 함유 리튬 산화물의 전구체와의 혼합비, 및 표면처리 공정의 수행 시간 등은 최종 제조되는 음극활물질에서의 붕소의 함량이 상기한 함량 범위를 충족하도록 하는 범위 내에서 적절히 상호 조절될 수 있다.In addition, in the surface treatment process, the mixing ratio of the core containing the lithium titanium oxide and the precursor of the boron-containing lithium oxide, the execution time of the surface treatment process, and the like, the content of boron in the final negative electrode active material It can be mutually adjusted as appropriate within the range to satisfy the range.
또, 상기 표면처리 공정시 상기 붕소 함유 리튬 산화물의 전구체와 반응하여 붕소 함유 리튬 산화물을 형성할 수 있는 리튬 원료물질이 선택적으로 더 사용될 수 있다.In addition, a lithium raw material capable of reacting with the precursor of the boron-containing lithium oxide in the surface treatment process to form a boron-containing lithium oxide may optionally be further used.
상기 리튬 원료물질은 구체적으로 LiOH와 같은 리튬 수산화물; Li2CO3와 같은 탄산염 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또 상기 리튬 원료물질은 표면처리층 내 붕소 함유 리튬 산화물이 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 형성되도록 사용될 수 있다. The lithium raw material is specifically lithium hydroxide such as LiOH; Carbonates such as Li 2 CO 3 , etc., and any one or a mixture of two or more thereof may be used. In addition, the lithium raw material may be used so that the boron-containing lithium oxide in the surface treatment layer is formed in an amount such that the boron content is a molar ratio of 0.002 to 0.02 with respect to 1 mol of lithium titanium oxide.
또, 상기 표면처리 공정에 의해 표면처리된 코어에 대해 350℃ 내지 450℃에서 열처리 공정을 수행한다. In addition, a heat treatment process is performed at 350 ° C to 450 ° C for the cores surface-treated by the surface treatment process.
표면처리층을 형성하는 붕소 함유 리튬 산화물의 Ebarrier 값은 표면처리된 코어에 대한 열처리 온도에 의해 조절될 수 있다. 상기한 온도 범위 내에서 열처리가 수행될 경우, 상기한 Ebarrier 값 조건을 충족하는 붕소 함유 리튬 산화물이 형성되는 동시에 코어 표면에 대한 커버율이 향상될 수 있다. 만약 열처리시 온도가 350℃ 미만일 경우, 상기한 Ebarrier 값 조건을 충족하는 붕소 함유 리튬 산화물의 형성 및 Ebarrier 값 제어가 용이하지 않고, 또 미반응 전구체 물질 및 잔류 용매 성분으로 인해 부반응 발생 및 이로 인한 활물질의 특성 및 전지 특성 저하의 우려가 있다. 또, 열처리시 온도가 450℃를 초과할 경우 생성된 붕소 함유 리튬 산화물의 재결정화로 코어 입자에 대한 표면처리층의 커버율이 감소하여 전해액 분해 방지 효과가 저하될 우려가 있고, 또 고온의 열에 의한 부반응 발생의 우려가 있다. 보다 구체적으로, 상기 열처리 공정은 400℃ 내지 450℃에서 수행될 수 있다.The E barrier value of the boron-containing lithium oxide forming the surface treatment layer may be controlled by the heat treatment temperature for the surface-treated core. When the heat treatment is performed within the above temperature range, boron-containing lithium oxide that satisfies the above E barrier value condition may be formed, and at the same time, the coverage of the core surface may be improved. If the temperature during the heat treatment is less than 350 ℃, the formation of boron-containing lithium oxide that satisfies the above E barrier value conditions and the control of the E barrier value is not easy, and the side reaction occurs due to the unreacted precursor material and the residual solvent component There is a fear of deterioration of the characteristics of the active material and battery characteristics. In addition, if the temperature during the heat treatment exceeds 450 ° C., the coverage of the surface treatment layer with respect to the core particles may be reduced due to the recrystallization of the produced boron-containing lithium oxide, and the effect of preventing the decomposition of the electrolyte solution may be lowered. There is a risk of occurrence. More specifically, the heat treatment process may be performed at 400 ℃ to 450 ℃.
또, 상기 열처리 공정은 상기한 온도 범위 내에서 다단계로 수행될 수도 있으며, 이때 각 단계 진행에 따라 온도를 상승시키며 수행될 수 있다.In addition, the heat treatment process may be carried out in a multi-step within the above temperature range, in this case it may be carried out by increasing the temperature according to the progress of each step.
또, 상기 열처리 공정은 공기 분위기 또는 산소 분위기(예를 들면, O2 등)에서 가능하며, 보다 구체적으로는 산소 분압 20부피% 이상의 산소 분위기 하에서 수행될 수 있다. 또, 상기 열처리 공정은 상기한 조건에서 5시간 내지 48시간, 혹은 10시간 내지 20시간 실시될 수 있다.In addition, the heat treatment process may be performed in an air atmosphere or an oxygen atmosphere (for example, O 2 ), and more specifically, may be performed in an oxygen atmosphere having an oxygen partial pressure of 20% by volume or more. In addition, the heat treatment process may be performed for 5 hours to 48 hours, or 10 hours to 20 hours under the above conditions.
상기 열처리 공정에 의해 리튬 티타늄 산화물을 포함하는 코어 상에, 상기한 Ebarrier 값 범위를 충족하는 붕소 함유 리튬 산화물을 최적 함량으로 포함하는 표면처리층이 형성되게 된다. 제조된 음극활물질은 그 특유의 구조 및 구성적 특징으로 인하여 우수한 용량 회복율(capacity recovery)을 나타낼 수 있다. 또 상기 음극활물질은 코어의 제조 과정에서 생성된 리튬 부산물에 의한 저항 감소를 방지하여 출력 특성을 향상시킬 수 있으며, 또 표면처리층에 의해 전해액 분해를 방지함으로써 가스 발생을 감소시킬 수 있고, 특히 낮은 SOC(state of charge)에서 티타늄 이온(Ti4+)의 용출에 따른 전해액 분해 및 가스 발생을 감소시킬 수 있다.By the heat treatment process, a surface treatment layer including boron-containing lithium oxide satisfying the above E barrier value range is formed on the core including lithium titanium oxide in an optimal content. The prepared negative electrode active material may exhibit excellent capacity recovery due to its unique structure and constituent characteristics. In addition, the negative electrode active material can improve the output characteristics by preventing a decrease in resistance caused by lithium by-products generated in the manufacturing process of the core, and can also reduce the generation of gas by preventing the decomposition of the electrolyte solution by the surface treatment layer, especially low In the SOC (state of charge), it is possible to reduce electrolyte decomposition and gas generation due to elution of titanium ions Ti 4+ .
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 음극활물질을 포함하는 음극 및 리튬 이차전지를 제공한다.Accordingly, according to another embodiment of the present invention provides a negative electrode and a lithium secondary battery including the negative electrode active material.
상기 리튬 이차전지에 있어서, 상기 음극은 음극집전체 및 상기 음극집전체 상에 위치하는 음극활물질층을 포함한다.In the lithium secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
상기 음극에 있어서, 음극집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.In the negative electrode, the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like on the surface of the steel, aluminum-cadmium alloy and the like can be used. In addition, the negative electrode current collector may have a thickness of about 3 to 500 μm, and like the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
또, 상기 음극에 있어서, 음극활물질층은 상기한 음극활물질과 함께 선택적으로 바인더 및 도전재를 더 포함할 수 있으며, 상기한 음극활물질을 사용하는 것을 제외하고는 통상의 음극 제조방법에 따라 제조될 수 있다.In addition, in the negative electrode, the negative electrode active material layer may further include a binder and a conductive material optionally together with the negative electrode active material, and may be prepared according to a conventional negative electrode manufacturing method except using the negative electrode active material. Can be.
구체적으로, 상기 음극은 음극집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극집전체 상에 라미네이션함으로써 제조될 수도 있다.Specifically, the negative electrode is coated with a negative electrode active material, and optionally a composition for forming a negative electrode comprising a binder and a conductive material on the negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support, The film obtained by peeling from this support may be produced by laminating on a negative electrode current collector.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 음극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.In this case, the conductive material is used to impart conductivity to the electrode. In the battery constituted, the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used. The conductive material may be included in an amount of 1 to 30% by weight based on the total weight of the negative electrode active material layer.
또, 상기 바인더는 음극활물질 입자들 간의 부착, 및 음극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 음극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.In addition, the binder serves to improve adhesion between the negative electrode active material particles and the adhesion between the negative electrode active material and the current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC). ), Starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubbers, or various copolymers thereof, and the like, and one or a mixture of two or more thereof may be used. The binder may be included in an amount of 1 to 30% by weight based on the total weight of the negative electrode active material layer.
또, 상기 음극 형성용 조성물의 제조시 사용가능한 상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매를 들 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 음극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 음극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.In addition, the solvent usable in the preparation of the negative electrode composition may include a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol, N- Methyl pyrrolidone (NMP), acetone (acetone) or water, and the like, and one of these alone or a mixture of two or more thereof may be used. The amount of the solvent is sufficient to dissolve or disperse the negative electrode active material, the conductive material and the binder in consideration of the coating thickness and the production yield of the slurry, and to have a viscosity that can exhibit excellent thickness uniformity during the coating for the negative electrode production. Do.
또, 상기 음극집전체에 대한 음극 형성용 조성물의 도포는 통상의 슬러리 코팅법에 의해 수행될 수 있다. 구체적으로 상기 슬러리 코팅법로는 바 코팅, 스핀코팅, 롤 코팅, 슬롯다이 코팅, 또는 스프레이 코팅 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 방법이 혼합 실시될 수 있다. 또, 상기 음극 형성용 조성물의 도포시, 최종 제조되는 음극활물질층에서의 활물질의 로딩량 및 두께를 고려하여 적절한 두께로 음극 형성용 조성물을 도포하는 것이 바람직할 수 있다.In addition, the coating of the composition for forming a negative electrode on the negative electrode current collector may be performed by a conventional slurry coating method. Specifically, the slurry coating method may include bar coating, spin coating, roll coating, slot die coating, or spray coating, and any one or two or more of these methods may be mixed. In addition, when applying the composition for forming the negative electrode, it may be preferable to apply the composition for forming the negative electrode to an appropriate thickness in consideration of the loading amount and the thickness of the active material in the negative electrode active material layer to be finally prepared.
상기 도포 공정 후 수행되는 음극집전체 상에 형성된 음극 형성용 조성물의 도막에 대한 건조 공정은, 음극 형성용 조성물 중의 용매증발과 함께 음극 내 포함된 수분을 최대한 제거하고, 동시에 바인더의 결착력을 높일 수 있는 온도에서의 가열처리, 열풍 주입 등의 방법으로 수행될 수 있다. 구체적으로 상기 건조공정은 용매의 비점 이상 바인더의 융점 이하의 온도에서 실시될 수 있으며, 보다 구체적으로는 100℃ 내지 150℃에서 실시될 수 있다. 보다 바람직하게는 100℃ 내지 120℃의 온도 및 10torr 이하의 압력 하에서 1 내지 50시간 동안 실시될 수 있다. The drying process for the coating film of the composition for forming a negative electrode formed on the negative electrode current collector carried out after the coating process, as well as the evaporation of the solvent in the composition for forming a negative electrode to remove the moisture contained in the negative electrode to the maximum, and at the same time can increase the binding strength of the binder It may be carried out by a method such as heat treatment at a temperature, hot air injection and the like. Specifically, the drying process may be carried out at a temperature below the boiling point of the solvent or less than the melting point of the binder, more specifically, may be carried out at 100 ℃ to 150 ℃. More preferably, it may be carried out for 1 to 50 hours at a temperature of 100 ℃ to 120 ℃ and a pressure of 10torr or less.
그리고 상기 건조공정 후 수행되는 압연공정은 통상의 방법에 따라 수행될 수 있다.And the rolling process performed after the drying process may be performed according to a conventional method.
상기와 같은 음극은, 음극활물질층 내 상기한 음극활물질을 포함함으로써, 우수한 출력 특성을 나타낼 수 있으며, 전해액 분해의 방지로 가스 발생이 감소될 수 있다.The negative electrode as described above may exhibit excellent output characteristics by including the negative electrode active material in the negative electrode active material layer, and gas generation may be reduced by preventing decomposition of the electrolyte.
본 발명의 또 다른 일 실시예에 따르면, 상기 음극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.According to another embodiment of the present invention, an electrochemical device including the cathode is provided. The electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 음극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다. The lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the negative electrode is as described above. The lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
구체적으로, 상기 양극은 양극집전체 및 상기 양극집전체 위에 형성되며, 상기한 양극 활물질을 포함하는 양극활물질층을 포함한다.Specifically, the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing the positive electrode active material.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery. For example, carbon, nickel, titanium on a surface of aluminum or stainless steel Surface treated with silver, silver or the like can be used. In addition, the positive electrode current collector may have a thickness of about 3 to 500 μm, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material. For example, it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
또, 상기 양극활물질층에 있어서, 상기 양극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)이 사용될 수 있다. In the cathode active material layer, a compound capable of reversible intercalation and deintercalation of lithium (lithiated intercalation compound) may be used as the cathode active material.
구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 전이금속과 리튬을 포함하는 리튬 전이금속 산화물일 수 있다. 또 상기 리튬전이금속 산화물은 구체적으로 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1 - YCoYO2(여기에서, 0<Y<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1 - YMnYO2(여기에서, 0<Y<1), LiMn2 - zCozO4(여기에서, 0<Z<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NiPCoQMnR)O2(여기에서, 0<P<1, 0<Q<1, 0<R<1, P+Q+R=1) 또는 Li(NiPCoQMnR)O4(여기에서, 0<P<2, 0<Q<2, 0<R<2, P+Q+R=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(NiPCoQMnRMS)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, P, Q, R 및 S는 각각 독립적인 원소들의 원자분율로서, 0<P<1, 0<Q<1, 0<R<1, 0<S<1, P+Q+R+S=1이다) 등일 수 있으며, 이들 리튬전이금속 산화물은 텅스텐(W) 또는 니오븀(Nb)에 의해 도핑될 수도 있다. 보다 구체적으로 상기 리튬전이금속 산화물은 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 LiCoO2, LiMnO2, LiNiO2, 리튬니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, LiNi0 . 5Mn0 . 3Co0 . 2O2, 또는 LiNi0.8Mn0.1Co0.1O2 등), 또는 리튬니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등)일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.Specifically, it may be a lithium transition metal oxide including lithium and a transition metal such as cobalt, manganese, nickel or aluminum. In addition, the lithium transition metal oxide is specifically a lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O Etc.), lithium-cobalt-based oxides (e.g., LiCoO 2, etc.), lithium-nickel-based oxides (e.g., LiNiO 2, etc.), lithium-nickel-manganese-based oxides (e.g., LiNi 1 - Y Mn Y O 2 (where, 0 <Y <1), LiMn 2-z Ni z O 4 (where, 0 <Z <2) and the like), lithium-nickel-cobalt-based oxide (for example, LiNi 1 - Y Co Y O 2 (where, 0 <Y <1) and the like), lithium-manganese-cobalt oxide (e.g., LiCo 1-Y Mn Y O 2 (where, 0 <Y <1), LiMn 2 - z Co z O 4 (here, 0 <Z <2) and the like, lithium-nickel-manganese-cobalt-based oxides (eg, Li (Ni P Co Q Mn R ) O 2 (here, 0 <P <1, 0 <Q <1, 0 <R <1, P + Q + R = 1) or Li (Ni P Co Q Mn R ) O 4 (where 0 <P <2, 0 <Q <2, 0 <R <2, P + Q + R = 2) or the like, or lithium-nickel-cobalt-transition metal (M) oxide (for example, Li (Ni P Co Q Mn R M S ) O 2 (here, M is a source of Al, Fe, V, Cr, Ti, Ta, is selected from the group consisting of Mg, Mo, P, Q, R and S are each independently selected from the elements As a fraction, it may be 0 <P <1, 0 <Q <1, 0 <R <1, 0 <S <1, P + Q + R + S = 1), and these lithium transition metal oxides may be tungsten ( W) or niobium (Nb) More specifically, the lithium transition metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide ( For example, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , LiNi 0 . 5 Mn 0 . 3 Co 0 . 2 O 2 , or LiNi 0.8 Mn 0.1 Co 0.1 O 2 , or the like, or lithium nickel cobalt aluminum oxide (eg, LiNi 0.8 Co 0.15 Al 0.05 O 2, etc.), and any one or a mixture of two or more thereof may be used. Can be used.
상기와 같은 양극은 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질과 함께 도전재 및 바인더를 용매에 용해시켜 제조한 양극 형성용 조성물을 양극집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다.The positive electrode as described above may be manufactured according to a conventional positive electrode manufacturing method. Specifically, the composition for forming a cathode prepared by dissolving a conductive material and a binder in a solvent together with the cathode active material may be coated on a cathode current collector, followed by drying and rolling.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.On the other hand, in the lithium secondary battery, the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular for ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used. In addition, a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. In addition, examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, γ-butyrolactone or ε-caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a double bond aromatic ring or an ether bond); Amides such as dimethylformamide; Dioxolanes such as 1,3-dioxolane; Or sulfolanes may be used. Of these, carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable. In this case, the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 . LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used. The concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다. In addition to the electrolyte components, the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery. Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다. As described above, since the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful for electric vehicle fields such as hybrid electric vehicle (HEV).
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다. Accordingly, according to another embodiment of the present invention, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
[[ 실시예Example 1:  One: 음극활물질의Of cathode active material 제조]  Produce]
2차 입자상의 Li4Ti5O12(1차 입자 평균 입경(D50): 500nm, 2차 입자의 평균 입경(D50): 8㎛)에 대해, Li2B4O7를 이소프로필 알코올 중에 혼합하여 제조한 조성물을 이용하여 표면처리하고, 대기 분위기 하에서 400℃에서 5시간 동안 열처리를 수행하였다(이때, Li2B4O7는 Li4Ti5O12 1몰에 대해 B의 몰비가 0.005가 되도록 하는 함량으로 사용됨). 상기 방법에 의해 Li4Ti5O12의 표면에 LiBO2 및 Li2B4O7을 포함하는 표면처리층이 형성된 음극활물질을 제조하였다. Li 2 B 4 O 7 isopropyl alcohol for Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 μm) on secondary particles. Surface treatment using a composition prepared by mixing in, and heat treatment was performed for 5 hours at 400 ℃ under an atmosphere (wherein Li 2 B 4 O 7 is Li 4 Ti 5 O 12 Used in such a way that the molar ratio of B per mole is 0.005). By the above method, a negative electrode active material having a surface treatment layer including LiBO 2 and Li 2 B 4 O 7 formed on the surface of Li 4 Ti 5 O 12 was prepared.
[[ 실시예Example 2:  2: 음극활물질의Of cathode active material 제조]  Produce]
Li2B4O7 대신에 LiB3O5를 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 Li4Ti5O12의 표면에 LiBO2 및 LiB3O5를 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.A surface including LiBO 2 and LiB 3 O 5 on the surface of Li 4 Ti 5 O 12 by the same method as in Example 1 except for using LiB 3 O 5 instead of Li 2 B 4 O 7 An anode active material having a treatment layer was prepared.
[[ 실시예Example 3:  3: 음극활물질의Of cathode active material 제조]  Produce]
Li2B4O7를 Li4Ti5O12 1몰에 대해 B의 몰비가 0.01가 되도록 하는 함량으로 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 Li4Ti5O12의 표면에 LiBO2 및 Li2B4O7을 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.Li 4 Ti 5 O 12 was carried out in the same manner as in Example 1, except that Li 2 B 4 O 7 was used in an amount such that the molar ratio of B was 0.01 with respect to 1 mol of Li 4 Ti 5 O 12. A negative electrode active material having a surface treatment layer including LiBO 2 and Li 2 B 4 O 7 formed on its surface was prepared.
[[ 실시예Example 4:  4: 음극활물질의Of cathode active material 제조]  Produce]
2차 입자상의 Li4Ti5O12(1차 입자 평균 입경(D50): 500nm, 2차 입자의 평균 입경(D50): 8㎛)에 대해, Li2B4O7 5000 ppm을 이소프로필 알코올 중에 혼합하여 제조한 조성물을 이용하여 표면처리하고, 대기 분위기 하에서 400℃에서 5시간 동안 열처리를 수행하였다. 상기 방법에 의해 Li4Ti5O12의 표면에 Li4Ti5O12 총 중량에 대하여 5,000 ppm의 B를 포함하는 음극활물질을 제조하였다. Li 2 B 4 O 7 5000 ppm isotropic to Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 μm) on secondary particles. Surface treatment was carried out using a composition prepared by mixing in propyl alcohol, and heat treatment was performed at 400 ° C. for 5 hours under an atmospheric atmosphere. By the above method, a negative electrode active material including 5,000 ppm of B was added to the total weight of Li 4 Ti 5 O 12 on the surface of Li 4 Ti 5 O 12 .
[[ 비교예Comparative example 1:  One: 음극활물질의Of cathode active material 제조] Produce]
표면처리하지 않은 2차 입자상의 Li4Ti5O12 (1차 입자 평균 입경(D50): 500nm, 2차 입자의 평균 입경(D50): 8㎛)를 음극활물질로 사용하였다.Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 μm) on secondary particles without surface treatment was used as a negative electrode active material.
[[ 비교예Comparative example 2:  2: 음극활물질의Of cathode active material 제조] Produce]
Li2B4O7 대신에 Al2O3를 Li4Ti5O12 1몰에 대해 Al의 몰비가 0.005가 되도록 하는 함량으로 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 Li4Ti5O12의 표면에 Al2O3를 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.The Li 2 B 4 O Al 2 O 3 to 7 instead of the Li 4 Ti 5 O 12 A surface treatment layer including Al 2 O 3 on the surface of Li 4 Ti 5 O 12 by the same method as in Example 1, except that the molar ratio of Al to 0.005 was used per 1 mole. This formed negative electrode active material was prepared.
[[ 비교예Comparative example 3:  3: 음극활물질의Of cathode active material 제조] Produce]
Li2B4O7 대신에 AlF3를 Li4Ti5O12 1몰에 대해 Al의 몰비가 0.005가 되도록 하는 함량으로 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 Li4Ti5O12의 표면에 AlF3를 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.AlF 3 is Li 4 Ti 5 O 12 instead of Li 2 B 4 O 7 A surface treatment layer including AlF 3 was formed on the surface of Li 4 Ti 5 O 12 in the same manner as in Example 1 except that the molar ratio of Al was set to 0.005 per 1 mole. A negative electrode active material was prepared.
[[ 비교예Comparative example 4:  4: 음극활물질의Of cathode active material 제조] Produce]
Li2B4O7 대신에 LiBO2를 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 Li4Ti5O12의 표면에 LiBO2를 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.Except for using LiBO 2 instead of Li 2 B 4 O 7 It was carried out in the same manner as in Example 1 to provide a cathode active material having a surface treatment layer containing LiBO 2 on the surface of Li 4 Ti 5 O 12 Prepared.
[ [ 비교예Comparative example 5:  5: 음극활물질의Of cathode active material 제조] Produce]
Li2B4O7를 Li4Ti5O12 1몰에 대해 B의 몰비가 0.001가 되도록 하는 함량으로 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 Li4Ti5O12의 표면에 LiBO2 및 Li2B4O7을 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.Li 2 B 4 O 7 to Li 4 Ti 5 O 12 LiBO 2 and Li 2 B 4 O 7 were applied to the surface of Li 4 Ti 5 O 12 in the same manner as in Example 1, except that the molar ratio of B to 0.001 per mole was used. A negative electrode active material including a surface treatment layer was prepared.
[[ 비교예Comparative example 6:  6: 음극활물질의Of cathode active material 제조] Produce]
Li2B4O7 대신에 Al2O3를 Li4Ti5O12 1몰에 대해 Al의 몰비가 0.003가 되도록 하는 함량으로 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 Li4Ti5O12의 표면에 Al2O3를 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.The Li 2 B 4 O Al 2 O 3 to 7 instead of the Li 4 Ti 5 O 12 A surface treatment layer including Al 2 O 3 on the surface of Li 4 Ti 5 O 12 by performing the same method as in Example 1 except that the molar ratio of Al was set to 0.003 per 1 mole. This formed negative electrode active material was prepared.
[[ 비교예Comparative example 7:  7: 음극활물질의Of cathode active material 제조] Produce]
Li2B4O7 대신에 Al2O3를 Li4Ti5O12 1몰에 대해 Al의 몰비가 0.004가 되도록 하는 함량으로 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 Li4Ti5O12의 표면에 Al2O3를 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.The Li 2 B 4 O Al 2 O 3 to 7 instead of the Li 4 Ti 5 O 12 A surface treatment layer including Al 2 O 3 on the surface of Li 4 Ti 5 O 12 by the same method as in Example 1, except that the molar ratio of Al was set to 0.004 per 1 mole. This formed negative electrode active material was prepared.
[[ 비교예Comparative example 8:  8: 음극활물질의Of cathode active material 제조] Produce]
상기 비교예 1에서 제조한 음극활물질을 물 100ml에 넣고 5분간 교반하여 세척 하여 음극활물질로 사용하였다.The negative electrode active material prepared in Comparative Example 1 was put into 100 ml of water, washed by stirring for 5 minutes, and used as a negative electrode active material.
[[ 비교예Comparative example 9:  9: 음극활물질의Of cathode active material 제조] Produce]
2차 입자상의 Li4Ti5O12 (1차 입자 평균 입경(D50): 500nm, 2차 입자의 평균 입경(D50): 8㎛)에 대해, Li2B4O7 300 ppm을 이소프로필 알코올 중에 혼합하여 제조한 조성물을 이용하여 표면처리하고, 대기 분위기 하에서 400℃에서 5 시간 동안 열처리를 수행하였다. 상기 방법에 의해 Li4Ti5O12의 표면에 LiBO2 및 Li2B4O7을 포함하는 표면처리층이 형성된 음극활물질을 제조하였고, Li4Ti5O12 총 중량에 대하여 300 ppm의 B를 포함하는 음극활물질을 제조하였다. Li 2 B 4 O 7 for Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 μm) on secondary particles. Surface treatment was carried out using a composition prepared by mixing 300 ppm in isopropyl alcohol, and heat treatment was performed at 400 ° C. for 5 hours under an atmospheric atmosphere. Was prepared LiBO 2 and Li 2 B 4 O 7 cathode active material having a surface treated layer containing the surface of the Li 4 Ti 5 O 12 by the method described above, Li 4 Ti 5 O 12 of 300 ppm based on the total weight B To prepare a negative electrode active material comprising a.
[[ 비교예Comparative example 10:  10: 음극활물질의Of cathode active material 제조] Produce]
2차 입자상의 Li4Ti5O12 (1차 입자 평균 입경(D50): 500nm, 2차 입자의 평균 입경(D50): 8㎛)에 대해, Li2B4O7 를 500 ppm 첨가하여 이소프로필 알코올 중에 혼합하여 제조한 조성물을 이용하여 표면처리하고, 대기 분위기 하에서 400℃에서 5 시간 동안 열처리를 수행하였다. 상기 방법에 의해 Li4Ti5O12의 표면에 LiBO2 및 Li2B4O7을 포함하는 표면처리층이 형성된 음극활물질을 제조하였고, Li4Ti5O12 총 중량에 대하여 500 ppm의 B를 포함하는 음극활물질을 제조하였다.Li 2 B 4 O 7 for Li 4 Ti 5 O 12 (primary particle average particle diameter (D 50 ): 500 nm, secondary particle average particle diameter (D 50 ): 8 μm) on secondary particles. The surface treatment was carried out using a composition prepared by adding 500 ppm of the mixture to isopropyl alcohol and performing heat treatment at 400 ° C. for 5 hours under an atmospheric atmosphere. The negative electrode active material having a surface treatment layer including LiBO 2 and Li 2 B 4 O 7 was formed on the surface of Li 4 Ti 5 O 12 by the above method, and 500 ppm of B was added based on the total weight of Li 4 Ti 5 O 12. To prepare a negative electrode active material comprising a.
[[ 비교예Comparative example 11:  11: 음극활물질의Of cathode active material 제조] Produce]
500℃에서 5 시간 동안 열처리를 수행하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 Li0 . 8Ti2 . 2O4의 표면에 LiBO2 및 LiB4O7을 포함하는 표면처리층이 형성된 음극활물질을 제조하였다.Li 0. In the same manner as in Example 1 except that the heat treatment was performed at 500 ° C. for 5 hours . 8 Ti 2 . An anode active material having a surface treatment layer including LiBO 2 and LiB 4 O 7 formed on the surface of 2 O 4 was prepared.
[ [ 제조예Production Example : 리튬 이차전지의 제조] : Fabrication of Lithium Secondary Battery]
상기 실시예 1~4에서 제조한 음극활물질을 각각 이용하여 리튬 이차전지를 제조하였다.A lithium secondary battery was prepared using the negative electrode active materials prepared in Examples 1 to 4, respectively.
상세하게는, 상기 실시예 1~4에서 제조한 각각의 음극활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물(점도: 5000mPa·s)을 제조하고, 2.6mAh/cm3의 로딩량으로 Cu 포일에 코팅한 후 120℃에서의 열처리로 건조하고, 압연하여 음극을 제조하였다.In detail, the negative electrode active material, the carbon black conductive material, and the PVdF binder prepared in Examples 1 to 4 were mixed in a ratio of 85: 10: 5 by weight in an N-methylpyrrolidone solvent in a composition for forming a negative electrode. (Viscosity: 5000 mPa · s) was prepared, coated on Cu foil with a loading amount of 2.6 mAh / cm 3 , dried by heat treatment at 120 ° C., and rolled to prepare a negative electrode.
또, Li(Ni0.6Mn0.2Co0.2)O2 양극활물질, 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 90:5:5의 비율로 혼합하여 양극 형성용 조성물(점도: 5000cps)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 건조 압연하여 양극을 제조하였다.In addition, Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 A positive electrode active material, a carbon black conductive material, and a PVdF binder were mixed in an N-methylpyrrolidone solvent in a weight ratio of 90: 5: 5 to prepare a composition for forming a positive electrode (viscosity: 5000 cps), which was applied to an aluminum current collector. After that, dry rolling was performed to prepare a positive electrode.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다. An electrode assembly was manufactured by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery. At this time, the electrolyte is prepared by dissolving 1.0M concentration of lithium hexafluorophosphate (LiPF 6 ) in an organic solvent consisting of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixing volume ratio of EC / DMC / EMC = 3/4/3). It was.
비교예 1~11의 음극활물질에 대해서도 상기와 동일한 방법으로 실시하여 음극 및 이를 포함하는 리튬 이차전지를 제조하였다.The negative electrode active material of Comparative Examples 1 to 11 was carried out in the same manner as above to prepare a negative electrode and a lithium secondary battery including the same.
[[ 실험예Experimental Example 1:  One: 음극활물질Cathode active material 분석] analysis]
상기 실시예 1, 2 및 비교예 2~5, 11에서 제조한 음극활물질에 대해 표면처리층 형성 물질의 Ebarrier 값 및 밴드 갭(band gap), 그리고 표면처리층의 Ebarrier 및 형성 금속 원소(B 또는 Al)의 함량을 각각 측정하였다. E barrier values and band gaps of the surface treatment layer forming material and the E barrier and the forming metal elements of the surface treatment layer for the negative electrode active materials prepared in Examples 1, 2 and Comparative Examples 2 to 5 and 11 ( The content of B or Al) was measured respectively.
상세하게는 Ebarrier 값은 The vienna Ab initio simulation package (VASP) 프로그램을 이용하여 제1계산(first principle calculation)을 통해 구하였다.In detail, the E barrier value was obtained by first principle calculation using The vienna Ab initio simulation package (VASP) program.
밴드 갭은 전압전류계(Cyclic voltammetry)를 이용하여 측정하였다. The band gap was measured using cyclic voltammetry.
음극활물질의 표면처리층에 포함되는 원소 B의 함량은 ICP-AES법(Inductively Coupled Plasma-Atomic Emission Spectroscophy)으로 분석하였다. The content of element B contained in the surface treatment layer of the negative electrode active material was analyzed by the ICP-AES method (Inductively Coupled Plasma-Atomic Emission Spectroscophy).
구체적으로, 측정하고자 하는 음극활물질 0.1g을 취하고 여기에 증류수 2㎖와 진한 질산 3㎖를 첨가하여 뚜껑을 닫고 시료를 용해시켰다. 그 후, 시료가 완전히 용해되면, 초순수 50 ㎖를 첨가하여 희석하였다. 그 후, 상기 희석된 용액을 다시 10배 희석한 다음에 ICPAES(Inductively Coupled Plasma-Atomic Emission Spectroscometer)로 분석하였다. 이때 ICP-AES(ICP 5300DV,Perkinelemer)은 다음과 같은 조건으로 운전하였다: Specifically, 0.1 g of the negative electrode active material to be measured was taken, and 2 ml of distilled water and 3 ml of concentrated nitric acid were added thereto, the lid was closed, and the sample was dissolved. Thereafter, when the sample was completely dissolved, 50 ml of ultrapure water was added and diluted. Thereafter, the diluted solution was diluted 10 times again and analyzed by ICPAES (Inductively Coupled Plasma-Atomic Emission Spectroscometer). ICP-AES (ICP 5300DV, Perkinelemer) was operated under the following conditions:
순방향 전력(Forward Power) 1300 W; 토치 높이(Torch Height) 15㎜; 플라즈마 가스 흐름 15.00 L/min; 시료 가스 흐름 0.8 L/min; 보조가스 흐름 0.20 L/min 및 펌프 속도 1.5 ㎖/min.Forward Power 1300 W; Torch Height 15 mm; Plasma gas flow 15.00 L / min; Sample gas flow 0.8 L / min; Assist gas flow 0.20 L / min and pump speed 1.5 mL / min.
하기 표 1 및 2에 그 결과를 나타내었다.The results are shown in Tables 1 and 2 below.
Ebarrier 값(eV)E barrier value (eV) 밴드 갭(eV)Band gap (eV)
Li2B4O7 Li 2 B 4 O 7 0.150.15 8.9~10.18.9-10.1
LiB3O5 LiB 3 O 5 0.050.05 --
Al2O3 Al 2 O 3 5.445.44 ~8.8~ 8.8
AlF3 AlF 3 0.340.34 ~10.8~ 10.8
LiBO2 LiBO 2 0.450.45 --
Li2B4O7 Li 2 B 4 O 7 0.150.15 8.9~10.18.9-10.1
표면처리층 형성 물질Surface treatment layer forming material Ebarrier 값(eV)E barrier value (eV) B 함량(LTO 1몰 대비 몰비)B content (molar ratio to 1 mole of LTO)
실시예1Example 1 LiBO2, Li2B4O7 LiBO 2 , Li 2 B 4 O 7 0.300.30 0.0050.005
실시예2Example 2 LiBO2, LiB3O5 LiBO 2 , LiB 3 O 5 0.250.25 0.0050.005
비교예2Comparative Example 2 Al2O3 Al 2 O 3 5.445.44 0.0050.005
비교예3Comparative Example 3 AlF3 AlF 3 0.340.34 0.0050.005
비교예4Comparative Example 4 LiBO2 LiBO 2 0.450.45 0.0050.005
비교예5Comparative Example 5 Li2B4O7 Li 2 B 4 O 7 0.150.15 0.0010.001
비교예 11Comparative Example 11 LiBO2, Li2B4O7 LiBO 2 , Li 2 B 4 O 7 0.400.40 0.0050.005
실험결과, 실시예 1 및 2의 음극활물질에서의 표면처리층은 비교예 2 내지 5, 11의 표면처리층에 비해 현저히 낮은 Ebarrier 값을 가졌으며, 이로부터 보다 우수한 리튬 이온 전도도를 가짐을 확인할 수 있다. As a result, the surface treatment layer of the cathode active materials of Examples 1 and 2 had a significantly lower E barrier value than the surface treatment layers of Comparative Examples 2 to 5 and 11, and from this it was confirmed that it has a better lithium ion conductivity. Can be.
[[ 실험예Experimental Example 2:  2: 음극활물질의Of cathode active material 구조 관찰] Structure observation]
상기 실시예 1 및 비교예 2에서 제조한 음극활물질에 대하여 이온 밀링(ion milling)을 이용하여 가공한 후, 주사 전자 현미경(SEM)으로 관찰하였다. 그 결과를 도 4 및 도 5에 각각 나타내었다.The negative electrode active materials prepared in Example 1 and Comparative Example 2 were processed using ion milling, and then observed by scanning electron microscopy (SEM). The results are shown in FIGS. 4 and 5, respectively.
실험결과, 실시예 1에서 제조한 음극활물질의 경우, B 포함 표면처리층이 코어 표면 상에 균일하게 형성되어 있는 반면, 비교예 2에서 제조한 음극활물질의 경우 Al 포함 코팅층이 코어 표면상에 부분적으로 형성되어 있음을 확인할 수 있다.As a result, in the case of the negative electrode active material prepared in Example 1, the surface treatment layer containing B was uniformly formed on the core surface, whereas in the negative electrode active material prepared in Comparative Example 2, the Al-containing coating layer was partially formed on the core surface. It can be confirmed that the formed.
[[ 실험예Experimental Example 3: pH 적정 실험] 3: pH titration experiment]
본 발명에 따른 표면처리층을 포함하는 음극활물질의 제조시, 표면처리층 내 포함되는 B의 함량에 따른 리튬 불순물 양의 변화를 알아보기 위해 pH 적정을 수행하였다. In the preparation of the anode active material including the surface treatment layer according to the present invention, pH titration was performed to determine the change in the amount of lithium impurities according to the amount of B contained in the surface treatment layer.
상세하게는, Li4Ti5O12 1몰에 대해 표면처리층 내 포함되는 B의 몰비가 각각 0.005 및 0.01로 다양한 상기 실시예 1 및 3의 음극활물질 2g에 대해, pH meter(metrohm 794)를 이용하여 0.1M의 HCl을 0.02ml씩 적정하며 pH 변화를 기록하였다. 이때, 비교를 위하여 비교예 1, 5-8의 음극활물질에 대해서도 동일한 방법으로 수행하여 pH를 기록하였다. 그 결과를 도 6에 나타내었다.Specifically, the pH meter (metrohm 794) for 2g of the negative electrode active material of Examples 1 and 3 varying in the molar ratio of B contained in the surface treatment layer with respect to 1 mol of Li 4 Ti 5 O 12 was 0.005 and 0.01, respectively. 0.1M HCl was titrated in 0.02ml increments and the pH change was recorded. At this time, the pH was recorded by performing the same method for the negative active material of Comparative Examples 1 and 5-8 for comparison. The results are shown in FIG.
도 6은 실시예 1, 3 및 비교예 1, 5-8의 음극활물질 각각에 대해 리튬 불순물의 감소량을 비교한 그래프이다.6 is a graph comparing reduction amounts of lithium impurities with respect to the negative electrode active materials of Examples 1 and 3 and Comparative Examples 1 and 5-8, respectively.
실험결과, 실시예 1, 3의 음극활물질은 pH가 9 내지 10으로 비교예 1, 5-8 대비 초기 pH가 작고, 또 종래 부산물에 의한 개형이 나타나지 않음을 확인할 수 있다.As a result of the experiment, the negative electrode active materials of Examples 1 and 3 had a pH of 9 to 10, and the initial pH was lower than that of Comparative Examples 1 and 5-8.
[[ 실험예Experimental Example 4:  4: 음극활물질의Of cathode active material 전기화학적 특성 평가] Electrochemical properties evaluation]
상기 실시예 1에서 제조한 음극활물질을 이용하여 제조한 코인셀(Li 금속의 음극 사용)을 25℃에서 0.2C의 정전류(CC) 4.25V가 될 때까지 충전하고, 이후 4.25V의 정전압(CV)으로 충전하여 충전 전류가 0.05mAh가 될 때까지 1회째 충전을 행하였다. 이후 20분간 방치한 다음 0.2C의 정전류로 3.0V가 될 때까지 방전하여 1사이클째의 초기방전용량을 측정하였다. 이후 10C로 방전 조건을 달리하여 충/방전 용량, 충방전 효율 및 율 특성을 각각 평가하였다. 그 결과를 하기 표 3 및 도 7, 8에 나타내었다.The coin cell (using a negative electrode of Li metal) prepared using the negative electrode active material prepared in Example 1 was charged at 25 ° C. until a constant current (CC) of 4.25V was reached, followed by a constant voltage of 4.25V (CV). ), And the first charge was performed until the charging current became 0.05 mAh. After 20 minutes, the battery was discharged to a constant current of 0.2C until 3.0V, and the initial discharge capacity of the first cycle was measured. After that, the charge and discharge capacity, charge and discharge efficiency and rate characteristics were evaluated by varying the discharge conditions at 10C. The results are shown in Table 3 below and FIGS. 7 and 8.
제1충방전First charge and discharge 제2충방전Second charge and discharge
초기방전용량 (mAh/g, 0.2C)Initial discharge capacity (mAh / g, 0.2C) 효율 (%)efficiency (%) 10C/0.2C (%)10C / 0.2C (%)
실시예 1Example 1 174174 98.598.5 87.987.9
비교예 1Comparative Example 1 168168 98.598.5 76.376.3
실험결과, 붕소 함유 리튬 산화물의 표면처리층을 갖는 실시예 1의 음극활물질은, 표면처리층을 갖지 않는 리튬 티타늄 산화물의 음극활물질인 비교예 1에 비해 초기방전용량, 및 율특성 면에서 보다 우수한 효과를 나타내었다.As a result of the experiment, the negative electrode active material of Example 1 having a surface treatment layer of boron-containing lithium oxide was better in initial discharge capacity and rate characteristics than Comparative Example 1, which is a negative electrode active material of lithium titanium oxide having no surface treatment layer. The effect was shown.
[[ 실험예Experimental Example 5: 리튬 이차전지의 가스 발생량 측정] 5: Measurement of Gas Generation of Lithium Secondary Battery]
상기 실시예 1 및 비교예 1에서의 음극활물질을 전해액에 함침 후, 80℃에서 1주일간 보관하여 발생한 가스 종류 및 가스량을 각각 측정하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다. 그 결과를 하기 도 9에 나타내었다. After impregnating the negative electrode active material in Example 1 and Comparative Example 1 with the electrolyte, the resultant was stored at 80 ° C. for 1 week to measure the type of gas and the amount of gas generated. At this time, the electrolyte is prepared by dissolving 1.0M concentration of lithium hexafluorophosphate (LiPF 6 ) in an organic solvent consisting of ethylene carbonate / dimethyl carbonate / ethyl methyl carbonate (mixing volume ratio of EC / DMC / EMC = 3/4/3). It was. The results are shown in FIG. 9.
실험결과, 실시예 1의 음극활물질은 표면처리층을 갖지 않는 비교예 1의 음극활물질과 비교하여, H2, CH4의 경우 동등 수준의 가스발생량을 나타낸 반면, CO, CO2 및 C2H4의 경우 가스발생량이 현저히 감소되었다. As a result, the negative electrode active material of Example 1 compared with the negative electrode active material of Comparative Example 1 having no surface treatment layer, the amount of gas generated in the case of H 2 , CH 4 , while CO, CO 2 and C 2 H In the case of 4 , gas generation was significantly reduced.
한편, 상기 실시예 4 및 비교예 9, 10의 음극활물질을 포함하는 리튬 이차전지 또한 상기와 동일한 방법으로 전해액에 함침 후, 80℃에서 1주일간 보관하여 발생한 가스 종류 및 가스량을 각각 측정하였다. 그 결과를 도 10에 나타내었다.On the other hand, the lithium secondary battery containing the negative electrode active material of Example 4 and Comparative Examples 9, 10 was also impregnated with the electrolyte in the same manner as described above, and stored for one week at 80 ℃ to measure the type of gas and the amount of gas generated. The results are shown in FIG.
실험결과, 실시예 4의 음극활물질은 붕소의 함량이 10배 내지 20배 적은비교예 9, 10의 음극활물질과 비교하여, CH4 C2H4의 경우 동등 수준의 가스발생량을 나타낸 반면, H2, CO, 및 CO2의 경우 가스발생량이 현저히 감소되었다.As a result of the experiment, the negative electrode active material of Example 4 is less than 10 to 20 times the content of boron in comparison with the negative electrode active material of Comparative Examples 9, 10, CH 4 and C 2 H 4 showed the same level of gas generation, while H 2 , In the case of CO and CO 2 , the amount of gas generated was significantly reduced.
이는 상기 비교예 9 및 10의 경우, 음극활물질 총 중량에 대하여 각각 B를 300 ppm 및 500 ppm 포함함으로써 음극활물질의 총 중량 대비 B의 함량이 적어, B를 포함하는 표면처리층의 형성에 따른 리튬 티타늄 산화물의 표면에서의 전해액 분해 방지 효과를 달성하지 못한 것으로 생각된다. In the case of Comparative Examples 9 and 10, the B content is 300 ppm and 500 ppm, respectively, with respect to the total weight of the negative electrode active material, so that the content of B is less than the total weight of the negative electrode active material, and lithium is formed according to the formation of the surface treatment layer including B. It is considered that the effect of preventing the decomposition of the electrolyte on the surface of the titanium oxide has not been achieved.
[[ 실험예Experimental Example 6: 리튬 이차전지의 용량  6: capacity of lithium secondary battery 회복율Recovery rate 평가] evaluation]
상기 실시예 1 및 비교예 1에서의 음극활물질을 각각 포함하는 리튬 이차전지를 정전류 0.1C로 2.5V까지 충전한 후, 80℃에서 21일간 보관하고, 초기 방전 용량을 제외한 2회 및 3회 사이클째의 평균 방전 용량을 측정하였다. 그 결과를 하기 표 4에 나타내었다.After charging the lithium secondary battery each containing the negative electrode active material in Example 1 and Comparative Example 1 to 2.5V at a constant current of 0.1C, and stored at 80 ℃ for 21 days, two and three cycles excluding the initial discharge capacity The average discharge capacity of the first was measured. The results are shown in Table 4 below.
용량 회복율(%)Capacity recovery rate (%)
실시예 1Example 1 9595
비교예 1Comparative Example 1 8888
실험결과, 붕소 포함 리튬 산화물의 표면처리층을 갖는 실시예 1의 음극활물질은 비교예 1에 비해 현저히 우수한 용량 회복율을 나타내었다.As a result, the negative electrode active material of Example 1 having a surface treatment layer of boron-containing lithium oxide showed a significantly better capacity recovery than Comparative Example 1.
[[ 실험예Experimental Example 7: 리튬 이차전지의 정상 용량 평가]  7: Evaluation of normal capacity of lithium secondary battery]
상기 실시예 1 및 비교예 11에서의 음극활물질의 C-rate에 따른 정상 용량을 관찰하였고, 그 결과를 도 11에 나타내었다.Normal capacity according to C-rate of the negative electrode active materials in Example 1 and Comparative Example 11 was observed, and the results are shown in FIG. 11.
도 11의 C-rate는 1C 조건에서 1시간 동안 충방전시킬 때 필요한 전류량을 나타내는 것으로, 전류량이 높아짐에 따라 저항 또한 높아져 결과적으로 정상 용량 또한 낮아지는 것을 확인할 수 있었다.C-rate of Figure 11 shows the amount of current required when charging and discharging for 1 hour at 1C conditions, it was confirmed that the resistance is also increased as the current amount is increased, and as a result, the normal capacity is also lowered.
도 11을 참조하면, 실시예 1 및 비교예 11에서 제조된 리튬 이차전지의0.2C에서 충방전시 용량을 기준으로, C-rate를 증가시킬수록 용량이 적어지며, 그 격차가 벌어져 20C에서 충방전시 실시예 1에서 제조한 음극활물질을 포함하는 리튬 이차전지의 경우 85% 이상의 용량을 나타내었고, 비교예 11에서 제조한 음극활물질을 포함하는 리튬 이차전지는 80% 미만의 용량을 나타내는 것을 확인할 수 있었다. Referring to FIG. 11, based on the capacity during charging and discharging at 0.2C of the lithium secondary batteries manufactured in Example 1 and Comparative Example 11, the capacity decreases as the C-rate increases, and the gap widens to charge at 20C. The lithium secondary battery containing the negative electrode active material prepared in Example 1 during discharge showed a capacity of 85% or more, and the lithium secondary battery containing the negative electrode active material prepared in Comparative Example 11 showed a capacity of less than 80%. Could.
이는, 실시예 1의 음극활물질을 포함하는 리튬 이차전지의 경우, 보론 소스가 Li2CO3, LiOH 등의 리튬 부산물과 400℃에서 반응하여 생성된 LiBO2 및 Li2B4O7을 포함하는 표면처리층의 Ebarrier 값이 0.3 eV 정도로 조절되어, Li4Ti5O12 표면에서 Li 이온에 대한 전도도가 향상되어 출력 특성이 향상된 것이다. 반면, 비교예 11의 경우, 500℃에서 열처리하여 Li4Ti5O12 표면에 형성된 LiBO2 및 LiB4O7 표면처리층의 Li 이온 이동에 대한 Ebarrier 값이 높아짐으로써 Li 이온 전도도가 낮아져, 저항이 높아지기 때문에 높은 C-rate에서 용량 구현이 용이하지 않음을 확인할 수 있었다. 또한, 고온에서 열처리되기 때문에 붕소 함유 리튬 산화물의 재결정으로 인해 Li4Ti5O12의 표면 전체를 커버하기 어려워지며, 이에 따라 가스 발생량 또한 증가할 수 있다. This, in the case of the lithium secondary battery including the negative electrode active material of Example 1, the boron source includes LiBO 2 and Li 2 B 4 O 7 generated by reacting with lithium by-products such as Li 2 CO 3 , LiOH at 400 ℃ E barrier value of the surface treatment layer is adjusted to about 0.3 eV, Li 4 Ti 5 O 12 The conductivity of Li ions at the surface is improved, resulting in improved output characteristics. On the other hand, in Comparative Example 11, the heat treatment at 500 ℃ Li 4 Ti 5 O 12 The higher the E barrier value for Li ion transport of the LiBO 2 and LiB 4 O 7 surface treatment layers formed on the surface, the lower the Li ion conductivity and the higher the resistance. . In addition, due to the heat treatment at a high temperature, it is difficult to cover the entire surface of Li 4 Ti 5 O 12 due to the recrystallization of the boron-containing lithium oxide, thereby increasing the amount of gas generated.

Claims (11)

  1. 리튬 티타늄 산화물을 포함하는 코어, 및 상기 코어의 표면 상에 위치하는 표면처리층을 포함하고, A core comprising lithium titanium oxide, and a surface treatment layer located on the surface of the core,
    상기 표면처리층은 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 포함하며,The surface treatment layer includes a boron-containing lithium oxide in an amount such that the boron content is a molar ratio of 0.002 to 0.02 with respect to 1 mol of lithium titanium oxide,
    음극활물질 2g을 0.1M HCl을 이용하여 pH 5 이하로 적정시 적정량이 0.9 내지 1.5ml인 것인 이차전지용 음극활물질.When the titration of 2g of the negative electrode active material to pH 5 or less using 0.1M HCl, the appropriate amount of the negative electrode active material for secondary batteries.
  2. 제1항에 있어서,The method of claim 1,
    상기 표면처리층은 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 총 중량에 대하여 5000 내지 7000 ppm이 되도록 포함하는 것인 이차전지용 음극활물질.The surface treatment layer is a negative electrode active material for a secondary battery comprising a boron-containing lithium oxide to 5000 to 7000 ppm relative to the total weight of lithium titanium oxide.
  3. 제1항에 있어서,The method of claim 1,
    상기 표면처리층은 리튬 이온 이동 에너지 장벽 값이 0.05eV 내지 0.3eV인 것인 이차전지용 음극활물질.The surface treatment layer has a lithium ion mobile energy barrier value of 0.05eV to 0.3eV secondary battery anode active material.
  4. 제1항에 있어서,The method of claim 1,
    상기 붕소 함유 리튬 산화물은 밴드 갭 값이 8.5eV 내지 10.5eV인 것인 이차전지용 음극활물질. The boron-containing lithium oxide has a band gap value of 8.5eV to 10.5eV secondary battery anode active material.
  5. 제1항에 있어서,The method of claim 1,
    상기 붕소 함유 리튬 산화물은 Li2B4O7, LiB3O5, LiB8O13, Li4B2O5, Li3BO3, Li2B2O4, 및 Li2B6O10로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 이차전지용 음극활물질.The boron-containing lithium oxide is Li 2 B 4 O 7 , LiB 3 O 5 , LiB 8 O 13 , Li 4 B 2 O 5 , Li 3 BO 3 , Li 2 B 2 O 4 , and Li 2 B 6 O 10 A negative active material for a secondary battery comprising any one or two selected from the group consisting of.
  6. 제1항에 있어서,The method of claim 1,
    상기 표면처리층은 코어 전체 표면적에 대해 80면적% 이상 형성되는 것인 이차전지용 음극활물질.The surface treatment layer is a negative electrode active material for secondary battery is formed more than 80 area% of the total surface area of the core.
  7. 제1항에 있어서,The method of claim 1,
    상기 리튬 티타늄 산화물은 하기 화학식 2의 화합물을 포함하는 것인 이차전지용 음극활물질:The lithium titanium oxide is a negative electrode active material for a secondary battery comprising a compound of formula 2:
    [화학식 2][Formula 2]
    LixTiyMwO12 - zAz Li x Ti y M w O 12 - z A z
    상기 화학식 2에서, In Chemical Formula 2,
    0.5≤x≤4, 1≤y≤5, 0≤w≤0.17, 0≤z≤0.17이고, 0.5≤x≤4, 1≤y≤5, 0≤w≤0.17, 0≤z≤0.17,
    M은 주기율표 상의 2족 내지 13족의 금속으로 이루어진 군에서 선택되는 1종 이상의 원소를 포함하며, M comprises one or more elements selected from the group consisting of metals of Groups 2 to 13 on the periodic table,
    A는 -1가의 산화수를 가지는 비금속 원소이다.A is a nonmetallic element having a -monovalent oxidation number.
  8. 제1항에 있어서,The method of claim 1,
    상기 리튬 티타늄 산화물은 Li4Ti5O12, Li0 . 8Ti2 . 2O4, Li2 . 67Ti1 . 33O4, LiTi2O4, Li1.33Ti1.67O4 및 Li1 . 14Ti1 . 71O4로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 이차전지용 음극활물질.The lithium titanium oxide is Li 4 Ti 5 O 12 , Li 0 . 8 Ti 2 . 2 O 4 , Li 2 . 67 Ti 1 . 33 O 4 , LiTi 2 O 4 , Li 1.33 Ti 1.67 O 4 and Li 1 . 14 Ti 1 . A negative electrode active material for a secondary battery comprising any one or two selected from the group consisting of 71 O 4 .
  9. 리튬 티타늄 산화물을 포함하는 코어에 대해, 붕소 함유 리튬 산화물의 전구체를 표면처리한 후, 350℃ 내지 450℃에서 열처리 하여, 코어의 표면 상에 붕소 함유 리튬 산화물을 리튬 티타늄 산화물 1몰에 대하여 붕소 함량이 0.002 내지 0.02의 몰비가 되도록 하는 양으로 포함하는 표면처리층을 형성하는 단계를 포함하는, 제1항에 따른 이차전지용 음극활물질의 제조방법.For the core containing lithium titanium oxide, the precursor of the boron-containing lithium oxide was surface treated, followed by heat treatment at 350 ° C. to 450 ° C., so that the boron-containing lithium oxide on the surface of the core was reduced to 1 mol of lithium titanium oxide. A method for producing a negative electrode active material for a secondary battery according to claim 1, comprising the step of forming a surface treatment layer comprising an amount such that the molar ratio of 0.002 to 0.02.
  10. 제1항 내지 제8항 중 어느 한 항에 따른 음극활물질을 포함하는 이차전지용 음극.A negative electrode for a secondary battery comprising the negative electrode active material according to any one of claims 1 to 8.
  11. 제10항에 따른 음극을 포함하는 리튬 이차전지.Lithium secondary battery comprising a negative electrode according to claim 10.
PCT/KR2017/003088 2016-03-22 2017-03-22 Anode active material for secondary battery, and secondary battery comprising same WO2017164650A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17770620.7A EP3312914B1 (en) 2016-03-22 2017-03-22 Anode active material for secondary battery, and secondary battery comprising same
US15/746,910 US10665859B2 (en) 2016-03-22 2017-03-22 Negative electrode active material for secondary battery and secondary battery including the same
CN201780002684.0A CN107925069B (en) 2016-03-22 2017-03-22 Negative electrode active material for secondary battery and secondary battery containing the same
PL17770620T PL3312914T3 (en) 2016-03-22 2017-03-22 Anode active material for secondary battery, and secondary battery comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160034164 2016-03-22
KR10-2016-0034164 2016-03-22
KR1020170036235A KR101908222B1 (en) 2016-03-22 2017-03-22 Negative electrode active material for secondary battery and secondary battery comprising the same
KR10-2017-0036235 2017-03-22

Publications (1)

Publication Number Publication Date
WO2017164650A1 true WO2017164650A1 (en) 2017-09-28

Family

ID=59899615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003088 WO2017164650A1 (en) 2016-03-22 2017-03-22 Anode active material for secondary battery, and secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2017164650A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734716A4 (en) * 2017-12-26 2021-02-17 Posco Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087559A (en) * 2000-03-07 2001-09-21 김순택 Negative active material for lithium secondary battery and method of preparing same
KR20080112809A (en) * 2007-06-22 2008-12-26 주식회사 엘지화학 Lithium Titanium Oxide with Enhanced Electroconductivity
KR20110040478A (en) * 2009-10-14 2011-04-20 삼성에스디아이 주식회사 Anode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising same
KR101140866B1 (en) * 2009-04-30 2012-05-03 (주)포스코켐텍 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR20140098152A (en) * 2011-11-24 2014-08-07 도요타지도샤가부시키가이샤 Method for manufacturing nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010087559A (en) * 2000-03-07 2001-09-21 김순택 Negative active material for lithium secondary battery and method of preparing same
KR20080112809A (en) * 2007-06-22 2008-12-26 주식회사 엘지화학 Lithium Titanium Oxide with Enhanced Electroconductivity
KR101140866B1 (en) * 2009-04-30 2012-05-03 (주)포스코켐텍 Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
KR20110040478A (en) * 2009-10-14 2011-04-20 삼성에스디아이 주식회사 Anode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising same
KR20140098152A (en) * 2011-11-24 2014-08-07 도요타지도샤가부시키가이샤 Method for manufacturing nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734716A4 (en) * 2017-12-26 2021-02-17 Posco Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
US11611074B2 (en) 2017-12-26 2023-03-21 Posco Holdings Inc. Cathode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
WO2019147017A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019194433A1 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery including same
WO2023063778A1 (en) Cathode active material for lithium secondary battery and method for manufacturing same
WO2019103363A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019059552A2 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019083221A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2020145639A1 (en) Positive electrode active material, method for manufacturing positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2019143047A1 (en) Cathode active material for lithium secondary battery, production method therefor, cathode for lithium secondary battery comprising same, and lithium secondary battery comprising same
WO2021187907A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2018143733A1 (en) Method for manufacturing lithium secondary battery with improved high-temperature storage properties
WO2019117531A1 (en) Cathode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery cathode and lithium secondary battery which comprise same
WO2019098541A1 (en) Cathode active material for secondary battery, fabrication method therefor, and lithium secondary battery comprising same
WO2020111545A1 (en) Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
WO2021101281A1 (en) Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by same method
WO2019045399A2 (en) Lithium secondary battery
WO2021015511A1 (en) Method for preparing cathode active material for lithium secondary battery, and cathode active material prepared by preparation method
WO2022092906A1 (en) Cathode active material and preparation method therefor
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2022039576A1 (en) Cathode active material preparation method
WO2019245286A1 (en) Cathode active material for lithium secondary battery and lithium secondary battery
WO2016052881A1 (en) Lithium secondary battery manufacturing method
WO2020091428A1 (en) Lithium secondary battery
WO2023277309A1 (en) Lithium secondary battery having improved lifespan characteristics, driving method therefor, battery module comprising same, and battery pack comprising battery module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017770620

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE