WO2017159359A1 - 自動分析装置 - Google Patents
自動分析装置 Download PDFInfo
- Publication number
- WO2017159359A1 WO2017159359A1 PCT/JP2017/008046 JP2017008046W WO2017159359A1 WO 2017159359 A1 WO2017159359 A1 WO 2017159359A1 JP 2017008046 W JP2017008046 W JP 2017008046W WO 2017159359 A1 WO2017159359 A1 WO 2017159359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- measurement
- unit
- automatic analyzer
- reagent
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5302—Apparatus specially adapted for immunological test procedures
- G01N33/5304—Reaction vessels, e.g. agglutination plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/86—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1002—Reagent dispensers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0401—Sample carriers, cuvettes or reaction vessels
- G01N2035/0437—Cleaning cuvettes or reaction vessels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0441—Rotary sample carriers, i.e. carousels for samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0443—Rotary sample carriers, i.e. carousels for reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0453—Multiple carousels working in parallel
Definitions
- the present invention is an automatic analyzer for analyzing the amount of components contained in a sample such as blood or urine, and particularly includes a first measurement item including a biochemical analysis item and a blood coagulation time item (hemostatic function test item).
- the present invention relates to an automatic analyzer capable of measuring a second measurement item.
- Specimen tests that handle specimens such as blood and urine collected from patients are categorized into multiple test fields such as biochemical tests, immunological tests, and blood coagulation tests, and these multiple test results are combined to confirm diagnosis and treatment effects. Do.
- a test that analyzes components such as blood and urine is made when a reagent and a sample are reacted, and a biochemical test that measures components such as sugar, lipid, protein, and enzyme, and when bacteria or viruses enter the body.
- Immunoassays that measure antibodies, hormones, tumor markers, etc. by antigen-antibody reaction are known.
- Biochemical tests are performed using a biochemical automatic analyzer that mixes samples and reagents and measures color changes due to chemical reactions using transmitted light. Immunoassays are performed by binding a phosphor to the antigen contained in the sample.
- an antigen-antibody reaction is caused to occur by adding an antibody, and an unbound antibody is washed, and then measured by an immunoassay device that measures the amount of light emitted by the bound antibody.
- biochemical automatic analyzers can measure measuring methods such as immunoturbidimetry and latex agglutination with high sensitivity using transmitted or scattered light. With the fact that markers, hormones, and the like can be measured, there are cases where inspection items that conventionally required separate devices can be handled by a single device, and the difference between the two is becoming smaller.
- Blood coagulation tests include tests of blood coagulation fibrinolysis markers that measure blood coagulation reaction regulators such as ATIII, enzymes working at the fibrinolysis stage such as PIC, and by-products from fibrinolysis reactions such as D-dimer and FDP. , Which activates the blood coagulation factor contained in the specimen to advance the blood coagulation reaction and measures the hemostasis function such as PT, APTT, fibrinogen and the like, and measures the blood coagulation time.
- blood coagulation reaction regulators such as ATIII
- enzymes working at the fibrinolysis stage such as PIC
- by-products from fibrinolysis reactions such as D-dimer and FDP.
- the former blood coagulation / fibrinolysis marker test is a method in which the sample and reagent are reacted and the color change due to the chemical reaction is measured, so measurement with a biochemical automatic analyzer is possible, but the latter hemostatic function test However, since it is necessary to measure the blood coagulation time and the detection method is different, a dedicated blood coagulation automatic analyzer is required.
- an automatic analyzer using a method of optically measuring a change in turbidity associated with fibrin deposition or a method of physically measuring a change in viscosity associated with fibrin deposition is known.
- one device with a photometer that measures blood coagulation fibrinolysis marker and a blood coagulation time measurement unit that measures hemostasis test items
- a blood coagulation analyzer mounted on a computer is known.
- specimens that can be used vary depending on the examination field in the examination described above.
- serum or heparin sodium plasma is generally used for biochemical tests and immunoassays
- citrated plasma is used for blood coagulation test equipment. It is measured using a different inspection device. Samples transported to different devices cannot grasp the measurement status of each other, so if the measurement is stagnant on one device, the results will be available on a patient-by-patient basis even if the measurement on another device is completed. However, there was a problem that reporting to the clinical side was delayed.
- Patent Document 1 the analysis results of urinary sediment components and urinary biochemical components of the same patient are displayed, printed, and transferred together without newly using an external computer for the urine sediment inspection device and the urinary biochemical analysis device.
- a method is disclosed. However, with this method, the measurement status of different specimens is not grasped. Therefore, if the measurement of one sample is stagnant, the measurement results are available for each patient even if the measurement with another testing device is completed. In the end, the problem of not being able to report the measurement results to the clinical side was not solved.
- a reaction cell that contains a mixed solution of a specimen and a reagent, a reaction disk that holds a plurality of the reaction cells on the circumference, and a mixed solution that is contained in the reaction cell
- a first measurement unit comprising a light source for irradiating light, a light receiving unit for detecting the irradiated light, a disposable reaction container for storing a mixed liquid of a specimen and a reagent, and the disposable reaction container are held
- a second measurement unit comprising a plurality of measurement channels, a light source that irradiates light to a disposable reaction container held in each of the plurality of measurement channels, and a light receiving unit that detects the irradiated light;
- a reading unit that reads identification information attached to a sample container that contains a sample, and a control unit that controls analysis conditions of the sample based on the read information.
- the timing at which the measurement by the first measurement unit is performed on the plurality of samples having identification information indicating the same patient Based on the identification information of the plurality of samples read by the reading unit, the timing at which the measurement by the first measurement unit is performed on the plurality of samples having identification information indicating the same patient, and the second An automatic analyzer having a measurement management unit that determines the measurement order of the plurality of samples so that the timing at which the measurement by the measurement unit is performed is included within a predetermined time, and uses the device Provided automatic analysis system and analysis method.
- wrist in the automatic analyzer which concerns on this Embodiment The figure which shows an example of the analysis plan which concerns on this Embodiment.
- FIG. 1 shows a basic configuration of an automatic analyzer according to the present embodiment.
- an example of a composite automatic analyzer that performs biochemical analysis and blood coagulation analysis blood coagulation / fibrinolysis marker, blood coagulation time measurement
- the automatic analyzer 1 mainly includes a reaction disk 10, a sample disk 20, a first reagent disk 30-1, a second reagent disk 30-2b, a photometer 40, a blood coagulation time measuring unit 50, And a computer-60 or the like.
- the reaction disk 10 serving as a reaction vessel holding unit is a disk-shaped unit that can be intermittently rotated in the left-right direction.
- a plurality of reaction cells 11 made of a light-transmitting material are provided on the reaction disk 10 along the circumferential direction. Can be placed.
- the reaction cell 11 is maintained at a predetermined temperature (for example, 37 ° C.) by a constant temperature bath 12.
- sample disk 20 which is a specimen container holding part
- specimen containers 21 for storing biological samples such as blood and urine are respectively arranged around two inner and outer circles in the example shown in the figure. Can be arranged along the direction.
- a sample dispensing mechanism 22 is arranged in the vicinity of the sample disk 20.
- the sample dispensing mechanism 22 sucks a predetermined amount of sample from the specimen container 21 located at the dispensing (suction) position on the sample disk 20, and reacts the sample at the dispensing (discharge) position on the reaction disk 10. Discharge into the cell 11.
- the reagent identification information includes a barcode and RFID. Here, a case where a barcode is used will be described as an example.
- reagent solutions corresponding to analysis items analyzed by the automatic analyzer 1 are stored.
- the first reagent barcode reading device 32-1 and the second reagent barcode reading device 32-2 are reagent bars attached to the outer walls of the first reagent bottle 31-1 and the second reagent bottle 31-2 at the time of reagent registration. Read the code.
- the read reagent information is registered in the memory 64 together with position information on the first reagent disk 30-1 and the second reagent disk 30-2.
- a first reagent dispensing mechanism 33-1 and a second reagent dispensing mechanism 32-2 are arranged in the vicinity of the first reagent disk 30-1 and the second reagent disk 30-2, respectively.
- the photometer 40 is disposed on the outer peripheral side of the reaction disk 10.
- the light emitted from the light source 41 disposed near the center on the inner peripheral side of the reaction disk 10 is measured by being received by the photometer 40 through the reaction cell 11.
- the measurement unit composed of the photometer 40 and the light source 41 disposed so as to face each other with the reaction disk 10 therebetween is defined as a first measurement unit.
- Each reaction cell 11 containing a reaction solution that is a mixed solution of a sample and a reagent is measured each time it crosses the front of the photometer 40 while the reaction disk 10 is rotating.
- the scattered light analog signal measured for each sample is input to an A / D (analog / digital) converter 62.
- the used reaction cell 11 is internally cleaned by a reaction cell cleaning mechanism 34 disposed in the vicinity of the reaction disk 10 to enable repeated use.
- the computer 60 is connected to an A / D converter 62 and a control computer 63 via an interface 61.
- the computer 60 controls the operation of each mechanism such as the sample dispensing mechanism 22, the first reagent dispensing mechanism 33-1 and the second reagent dispensing mechanism 33-2 with respect to the control computer 63.
- the photometric value converted into a digital signal by the A / D converter 62 is taken into the computer 60.
- the interface 61 is connected to a memory 64 as a storage device, and stores information such as reagent identification information, sample identification information, analysis parameters, analysis item request contents, calibration results, and analysis results.
- control computer 63 is connected to each component and controls the entire automatic analyzer.
- each component may be configured to have an independent controller. .
- Analysis parameters relating to items that can be analyzed by the automatic analyzer 1 are input in advance by the operator via the operation screen 65 and stored in the memory 64.
- the sample dispensing mechanism 22 dispenses a predetermined amount of sample from the specimen container 21 to the reaction cell 11 at the dispensing position 10 according to the analysis parameters. To do.
- the reaction cell 11 into which the sample has been dispensed is transferred by the rotation of the reaction disk 10 and stops at the dispensing (reagent receiving) position 10b or 10c.
- the first reagent dispensing mechanism 33-1 and the second reagent dispensing mechanism 33-2 dispense a predetermined amount of reagent solution into the reaction cell 11 according to the analysis parameter of the corresponding inspection item.
- the dispensing order of the sample and the reagent may be earlier than the sample, contrary to the example described above.
- the reaction cell 11 crosses the photometry position, photometry is performed by the photometer 40, and the A / D converter 62 converts it into a numerical value that is a signal value proportional to the light quantity. Thereafter, the converted data is taken into the computer 60 via the interface 61.
- the specimen can be continuously dispensed by the rotating operation of the disk, so that a high processing capacity can be obtained.
- the computer 60 calculates concentration data based on the numerical data converted into the signal values as described above and the calibration curve data measured and stored in advance by the analysis method specified for each inspection item. Calculate and output to the operation screen 65.
- the reaction container (disposable reaction container) 52 accommodated in the reaction container accommodating portion 53 is transferred to the sample dispensing station 54 by the reaction container transfer mechanism 55.
- the sample dispensing mechanism 22 sucks the sample from the specimen container 21 and dispenses it into the disposable reaction container 52 that has been transferred to the sample dispensing station 54 as described above.
- the disposable reaction container 52 into which the sample has been dispensed is transported to the blood coagulation time measurement unit 50 by the reaction container transfer mechanism 55 and heated to 37 ° C.
- the reagent kept cold in the first reagent disk 30-1 is sucked from the first reagent bottle 32-1 corresponding to the inspection item by the first reagent dispensing mechanism 33-1 to Is discharged into the corresponding empty reaction cell 11 installed at, and the temperature is raised to about 37 ° C.
- the reagent in the first reagent bottle 32-1 arranged on the first reagent disk 30-1 is used for analysis has been described.
- the second reagent disk 30- The reagent in the second reagent bottle 32-2 arranged at 2 can also be used for measuring the blood coagulation time.
- the reagent accommodated in the reaction cell 11 whose temperature has been increased as described above is sucked by the reagent dispensing mechanism 56 with a reagent temperature increasing function, and then further increased in temperature (for example, 40 ° C).
- the reaction container (disposable reaction container) 52 containing the sample heated to 37 ° C. as described above is transferred to the measurement channel 51 in the blood coagulation time measurement unit 50 described later by the reaction container transfer mechanism 55.
- the reagent dispensing mechanism 56 with a reagent temperature raising function discharges the temperature-raised reagent to the reaction container (disposable reaction container) 52.
- a blood coagulation reaction between the sample and the reagent is started in the reaction container 52.
- the blood coagulation time measurement unit 50 which is the second measurement unit, includes a plurality of measurement channels 51 each composed of a light source and a light receiving unit. After the reagent is ejected as described above, the light receiving unit is a predetermined unit. Measurement data is collected every short measurement time interval (for example, 0.1 second). The collected measurement data is converted into a numerical value proportional to the amount of light by the A / D converter 62 and then taken into the computer 60 via the interface 61.
- the computer 60 obtains the blood clotting time using the numerical data thus converted. Thereafter, based on the obtained blood coagulation time and the calibration curve data created and stored in advance by the test item, the concentration data of the target test item is obtained and output to the operation screen 65 of the computer 60.
- the used reaction container (disposable reaction container) 52 is transferred by the reaction container transfer mechanism 55 and discarded to the reaction container discarding unit 57.
- the blood coagulation time and concentration data described above can also be calculated by the control computer 63.
- measurement data must be collected at a predetermined short measurement time interval (for example, every 0.1 second) as described above. Only the reaction can be analyzed.
- the blood coagulation time measurement unit 50 having six measurement channels 51 is shown as an example. However, when there is no space in any of the measurement channels 51, the automatic analyzer 1 measures the blood coagulation time. For the item, the next measurement cannot be accepted and a standby state is entered. Therefore, as a matter of course, a configuration having a larger number of measurement channels 51 can be used depending on analysis conditions.
- FIG. 2 is a diagram illustrating an example of a sample container installed in the automatic analyzer according to the present embodiment.
- a sample identifier 24 is affixed to the sample container 21, and individual identification is possible.
- a barcode, RFID, or the like is used as the specimen identifier 24.
- a case where a barcode is used will be described as an example.
- the sample disk 20 rotates clockwise or counterclockwise.
- the sample barcode reader 23 designates the specimen identifier attached to the specimen container 21. 24, the bar code information is read.
- the read barcode information is stored in the memory 64 of the computer 60 via the interface 61 and managed as information for individually recognizing the specimen.
- the barcode information includes the ID number of the specimen. Alternatively, it may be at least one piece of information among a unique identifier for each patient, blood collection date, age, sex, date of birth.
- the barcode information may be a unique identifier for each inspection order.
- the unique identifier for each examination order is an ID given in common to items ordered at the same time for the same patient.
- FIG. 3 is a flowchart showing an operation procedure of sample recognition in the automatic analysis system according to the present embodiment.
- the test information system 70 collates with the sample information stored and managed in advance in the test information system 70 (step 302). ).
- the specimen information stored and managed in the examination information system 70 includes information such as specimen identification information, measurement order, and patient identification information, which will be described later. These pieces of information can be set in advance by the user, and are stored and managed by inputting the correspondence relationship between the specimen identification information, the measurement order, and the patient identification information.
- the information managed in the examination information system 70 matches the barcode information received by the computer 60 in step 301 as a result of the collation (step 303), the information is attached to the managed sample information. Part or all of the specimen identification information, measurement order, and patient identification information is transmitted to the computer 60 (step 304).
- the specimen identification information includes ID information and measurement positions uniquely determined for each specimen
- the patient identification information includes the ID given to each patient, as well as the patient's sex, age, blood sampling date and time. , At least one of a plurality of pieces of information such as date of birth is included.
- an error of communication abnormality is output (step 305).
- FIG. 4 is a diagram showing a basic configuration of a control computer of the automatic analyzer according to the present embodiment.
- the control computer 63 includes a mechanism control unit 631 (631a to e) that controls the operation of various mechanisms, a measurement management unit 632 (632a to 632c) that controls the measurement order, and a measurement that performs data processing. It comprises a data management unit 633 and an overall control unit 630 that controls them.
- the computer 60 that has received the sample measurement order and patient information from the sample information system 70 issues a command to the control computer 63 and determines the measurement order in the measurement management unit 632.
- a measurement sample progress list 632a for grasping and managing the progress status of the sample currently being measured
- a measurement waiting sample list for grasping and managing the measurement order of samples to be analyzed after the next measurement 632b has a reserved sample list 632c that holds samples that cannot be analyzed immediately, that is, that cannot be stored in the measurement waiting sample list, and stores and manages samples to be sequentially stored in the measurement waiting list.
- the mechanism control unit 631 controls the operation of each mechanism based on the measurement sample progress list 632a.
- the measurement management unit 632 performs a calculation process in real time, and the obtained calculation result is immediately measured. This is reflected in the progress list 632a.
- the blood coagulation and fibrinolysis marker such as D-dimer and FDP that can be measured using the photometer 40 and the blood coagulation time measurement are performed.
- hemostatic function tests such as PT, APTT, and fibrinogen that are measured using the unit 50.
- the reaction cell 11 is measured by irradiating the reaction cell 11 with light from the light source when passing through the front of the photometer 40 by the rotation of the reaction disk 10. The specimen can be continuously measured without interrupting the measurement by the rotating operation of the disk 10.
- the blood coagulation time measurement unit 50 needs to perform measurement continuously at a predetermined short measurement time interval (for example, every 0.1 second), and if the number of measurement channels 51 is small, it depends on the analysis conditions. Measurement may stagnate.
- fibrin deposition is determined as an indicator of the end of the blood coagulation reaction.
- fibrin deposition is determined as an indicator of the end of the blood coagulation reaction.
- the analysis operation of various mechanisms can be stored and managed by the control computer 63. Specifically, after the operation that the reaction vessel (disposable reaction vessel) 52 is installed in the measurement channel 51 by the reaction vessel transfer mechanism 55 is stored, the operation that the operation is discarded is stored. Indicates that the corresponding measurement channel 51 is not free. On the other hand, when the operation of transferring the reaction vessel (disposable reaction vessel) 52 from the corresponding measurement channel 51 by the reaction vessel transfer mechanism 55 after the end of the analysis and starting the disposal is started, it is understood that the measurement channel 51 is vacant. .
- the biochemical analysis and the blood coagulation / fibrinolysis marker are measured in the first measurement unit and the blood coagulation time is measured in the second measurement unit.
- the first measurement unit in addition to the above, an immunity inspection can be performed, and the first measurement unit can be applied to various modes.
- FIG. 5 is a flowchart showing an operation procedure for determining the analysis order in the automatic analyzer according to the present embodiment.
- the measurement management unit 632 determines whether or not the examination field is a blood coagulation test item (step 502).
- information for determining the examination field information indicating that the blood coagulation test is performed can be directly added to the measurement order information, and the ordered test item and the type of specimen (citrate plasma) Etc.).
- the following processing is executed.
- the measurement ordered item is a blood coagulation test
- a blood coagulation time measurement that is, a hemostatic function test item
- the analysis can be performed using the photometer 40 in the first measurement unit. Analyzes can be performed independently. Therefore, in this case, the samples can be stored in the measurement waiting list in the order in which the barcodes are read (step 505).
- FIG. 13 is a diagram showing an example of a measurement waiting list according to the present embodiment.
- the blood coagulation test item ordered for measurement includes a hemostasis function test item
- the availability of the blood coagulation time measurement unit 50 is confirmed (step 504).
- the blood coagulation time measuring unit 50 has a free space, it can be stored in the measurement waiting list (step 505). If there is no free space, the blood coagulation time measuring unit 50 has a free measurement channel 51. have to wait.
- the timing at which an empty measurement channel 51 is formed in the blood coagulation time measurement unit 50 means that the measurement of the previous sample is completed, and the used reaction container 52 is discarded by the reaction container transfer mechanism 55 to the reaction container disposal unit 57. Is the timing.
- the measurement time varies depending on the sample, and the analysis is performed by predicting the timing when the measurement of the previous sample is completed. I can't make a plan. Therefore, if there is no vacancy in the measurement channel 51, it is temporarily stored in the reserved sample list (step 506).
- a sample for blood coagulation test in the same patient (hereinafter sometimes simply referred to as a blood coagulation sample) is already measured or waiting for measurement (step 507, step 508)
- a sample for biochemical test (Hereinafter, it may be simply referred to as a biochemical sample) waits for the measurement result and cannot report to the patient, and is stored in the measurement wait list in the order of reading the barcode (step 511).
- the blood coagulation sample of the same patient is in the reserved sample list (step 509), even if the measurement of the biochemical sample is completed, the patient cannot be reported unless the result of the target blood coagulation sample is waited for.
- the sample is reserved in the reserved sample list after being synchronized with the target blood coagulation sample stored in the reserved sample list (step 510).
- synchronization means, for example, storing in the reserved sample list in a sequential order so that the samples of the same patient are preferentially continuously analyzed.
- step 601 the availability of other measurement channels is also checked, and the number of items ordered at the top of the reserved sample list is greater than the number of measurable measurement channels.
- step 602 it is determined whether the number of empty measurement channels is large. Here, when the number of vacant measurement channels is smaller, it is not possible to carry out all the measurement of the sample. Therefore, the process returns to step 601, and the measurement waiting sample list is finished and waits until another measurement channel 51 is free. .
- the measurement waiting sample list is interrupted at the top (Step 604).
- the blood coagulation test in the measurement waiting sample list has priority, so the process returns to step 601 to measure the measurement waiting sample list. And wait until the measurement channel 51 becomes empty again.
- an analysis plan for analyzing a blood coagulation sample (number of samples: 5 samples) and a biochemical sample (number of samples: 15 samples).
- the formulating method will be described more specifically with reference to FIGS. 5, 6, and 7 described above.
- FIG. 7 shows an example of an analysis plan according to the present embodiment.
- the sampling interval in the automatic analyzer 1 is set to 10 seconds, and the blood coagulation measurement unit 50 simulates the analysis plan on the assumption that it takes 5 minutes from the sampling to the end of the measurement, and 701 to 704 in FIG. It was shown to.
- 701 is a diagram showing a state before the start of measurement in the measurement sample progress list according to the present embodiment.
- Reference numeral 702 denotes a measurement sample progress list and a measurement waiting sample list according to the present embodiment, and includes those whose measurement status is “accepted” or “under analysis”.
- Reference numeral 703 denotes a measurement sample progress list, a measurement waiting sample list, and a reserved sample list according to the present embodiment, and shows an aspect in which the measurement state is “measured”.
- Reference numeral 704 denotes a measurement sample progress list, a measurement waiting sample list, and a reserved sample list when the present embodiment is not applied, and shows an aspect in which the measurement status is “measured”.
- the barcode reader 23 reads the information of the specimen identifier 24 attached to the specimen container 21 and determines the measurement order in order from the sample number (hereinafter sometimes simply referred to as S.No.) 1.
- S.M. the examination field is a blood coagulation test item (step 502), and includes a hemostatic function test item (step 503). Since the measurement channel 51 of the blood coagulation measurement unit 50 is vacant immediately after the start of the test (step 504), it is stored in the measurement waiting list (step 505), and the analysis is started.
- the blood coagulation time measurement unit 50 has six measurement channels 51. No. 2 can be similarly analyzed.
- the measurement channel 51 of the blood coagulation time measurement unit 50 is empty (step 504). No. 3 to S.E. Since the analysis plan of No. 5 cannot be confirmed, it is stored in the reserved sample list (step 506).
- sampling for all 20 samples can be completed in 44 minutes and 30 seconds from the start of all analysis as indicated by 703.
- the efficiency of the entire examination is improved, and the measurement time (measurement timing) and the output of the measurement result are the same as much as possible for the same patient for which different types of examinations are requested.
- the report to the clinical side can be performed smoothly.
- FIG. 801 is a diagram showing a state before starting measurement in the measurement sample progress list according to the present embodiment.
- Reference numeral 802 denotes a measurement sample progress list and a measurement awaiting sample list according to the present embodiment, including those whose measurement status is “accepted” or “under analysis”.
- Reference numeral 803 denotes a measurement sample progress list, a measurement waiting sample list, and a reserved sample list according to the present embodiment, and shows an aspect in which the measurement status is “measured”.
- Reference numeral 804 denotes a measurement sample progress list, a measurement waiting sample list, and a reserved sample list when the present embodiment is not applied, and shows an aspect in which the measurement status is “measured”.
- the examination field is a blood coagulation test item (step 502) and includes a hemostatic function test (step 503). Since the measurement channel 51 is empty immediately after the start of the inspection (step 504), it is stored in the measurement waiting list (step 505), and the analysis is started. At this time (when S.No. 2 is analyzed), the blood coagulation time measurement unit 50 is empty. No. 3 to S.M. No. Since ten analysis plans cannot be determined, they are stored in the reserved sample list (step 506).
- sampling for all 20 samples can be completed in 31 minutes from the start of all analysis as indicated by 803.
- a waiting time is generated according to the availability of the measurement channel 51 of the blood coagulation measurement unit 50, and sampling for all 20 samples is completed. It takes 48 minutes and 30 seconds from the start of analysis.
- the difference between the sampling time in the blood coagulation time measurement unit 50 and the sampling time in the photometer 40 is 1 minute at the maximum, At 804, the maximum was 22 minutes 30 seconds.
- FIG. 7 and FIG. 8 the method of determining the measurement order while reading the barcode attached to the sample after starting the analysis at the same time is described. This can also be applied to other specimens. Further, in FIGS. 7 and 8, the case where the patient ID is the same has been described as an example. However, instead of the patient ID, the case where the examination ID is the same may be applied.
- FIG. 14 is a diagram illustrating an example of an analysis plan when a new sample measurement is additionally ordered following the measured sample according to the present embodiment.
- a new specimen that has been additionally ordered is assigned the same test ID as a measured specimen will be described.
- an additional sample Nos. 9 to 25
- 8 samples No. 1 to 8
- specimen IDs S00009, S00011, S00013, S00017, and S00025 have the same test IDs as the measured specimens S00001, S00003, S00005, S00010, and S00018.
- patient sample information can be managed using the sample identifier 24 and the examination information system 70.
- the display of the measured results can be classified for each sample type, or the results for the same patient can be displayed together.
- the operator can check the measurement status and results for each patient at any time.
- FIG. 9 shows an example of a patient ID as patient specimen information, but as described above, an examination ID can be used instead of the patient ID.
- the main difference in configuration between the automatic analyzer (rack type) 100 and the automatic analyzer 1 shown in FIG. 1 in the first embodiment is that the sample is used as a sample container holding unit instead of the sample disk 20.
- the sample rack 101 can hold one or a plurality of sample containers.
- FIG. 10 shows a sample rack 101 that holds five sample containers as an example.
- the automatic analyzer (rack type) 100 mainly transports the sample rack 101 in the opposite direction to the rack supply unit 102, the rack storage unit 103, the transport line 104 for transporting the sample rack 101 to the analysis unit 110, and the transport line 104.
- the return line 105, the rack standby unit 106, the transport line 104, the standby unit handling mechanism 107 that pulls the sample rack 101 from the return line 105 to the rack standby unit 106, the rack return mechanism 108, and the sample rack 101 of the transport line 104 are attached.
- a reading unit (conveyance line) 109 that reads identification information such as a bar code and an analysis unit 110 are included.
- a description overlapping the above-described content in the first embodiment is omitted, and a sample supply method unique to the configuration of the automatic analyzer (rack type) 100 will be described in detail.
- the line type which consists of the conveyance line 104 and the return line 105 is demonstrated here as a conveyance part, it can apply to various aspects, such as a handling mechanism which can be moved bidirectionally.
- the transport system of the analysis unit 110 arranged along the transport line 104 is a reading unit (analysis unit) 111 for collating analysis request information for a sample.
- the sample racks 101 arranged in the rack supply unit 102 are transferred to the transport line 104 (FIG. 11A).
- the sample rack 101 on the transport line 104 and the individual identification medium attached to the sample container 21 accommodated in the sample rack are read by the reading unit (transport line) 109, and the sample rack number and the sample container number are read. Is recognized (FIG. 11B).
- the sample read by the reading unit (conveyance line) 109 is accommodated in the rack standby unit 106 and waits for analysis (FIG. 11 (c)).
- the sample rack 101 waiting at the stage where the dispensing of the sample on the dispensing line 113 is completed is sent to the analysis unit 110, and the reading unit (analysis unit) 111 recognizes the sample rack number and the sample container number ( FIG. 11 (d)).
- the sample is delivered to the dispensing line 113 (FIG. 11E) via the rack handling mechanism (1) 112, and the specimen is dispensed by the specimen dispensing mechanism 22.
- the sample rack 101 can be directly transported to the dispensing line 113 without being stored in the rack standby unit 106.
- the sample for which dispensing has been completed is transported to the return line 105 via the rack handling mechanism (2) 114 (FIG. 11 (f)) and via the standby part handling mechanism 107 (FIG. 11 (g)) to the rack standby part. 106.
- this rack standby unit 106 a plurality of sample racks 101 can be accommodated, and the necessary sample racks 101 are transferred to the transport line 104 each time the order of measurement is changed, so that it is possible to respond to the occasion.
- the sample is transported to the rack storage unit 103 via the standby unit handling mechanism 107 (FIG. 11 (h)) (FIG. 11 (i)).
- the method of enabling measurement progress management and display of measurement results for each patient by receiving patient information from the examination information system 70 has been described.
- the same processing can be performed even when the automatic analyzer 1 is not connected to the examination information system 70.
- the configuration and operation of the automatic analyzer 1, control and signal processing, determination of the measurement order, and display of the results are the same as those in the first embodiment, so that the description thereof will be omitted, and there will be no particular explanation for specimen identification and measurement order reception. Will be explained.
- FIG. 12 is a diagram showing an example of a measurement order screen according to the present embodiment.
- the specimen is individually identified by selecting the sample container installation position and the measurement item on the sample disk 20.
- alphanumeric characters that can be individually identified can be input to the patient ID column using the keyboard 66 as additional information.
- the apparatus can identify the specimen. Since the specimen can be recognized by the above method, it is possible to search for the same patient ID described in the first embodiment, determine the measurement order, and collectively display the measurement results.
- FIG. 15 shows an example of application to a configuration of a complex automatic analyzer (module type) 200 including a blood coagulation time measurement unit 201 and a turntable biochemical analysis unit 202. It explains using.
- the main difference in configuration between the automatic analyzer (module type) 200 and the automatic analyzers 1 and 100 shown in FIGS. 1 and 10 in the first and second embodiments is the blood coagulation time measurement unit.
- the sample probe 22 is individually provided in each of the unit 201 and the turntable biochemical analysis unit 202.
- a specimen supply method and a blood coagulation time measurement unit that are specific to the configuration of the automatic analyzer (module type) 200 201 will be described in particular detail.
- a line type including a conveyance line 104 and a return line 105 will be described as a conveyance unit, but the present invention can be applied to various conveyance modes such as a handling mechanism that can move in both directions.
- the transport system of the analysis units (blood coagulation time measurement unit 201, biochemical analysis unit 202) arranged along the transport line 104 is an analysis request for a sample.
- the dispensing line 113 for transporting the sample rack 101 to the sampling areas 113a-1 and 113a-2 in which the sample can be dispensed in the sample container of the sample rack 101 can be made to stand by, and the sample after dispensing
- a rack handling mechanism (2) 114-1, 114-2 for transporting the sample rack 101 to the return line 105 is provided for each unit.
- the sample rack 101 shows a structure that can hold a plurality of sample containers 21 as an example, but one sample container 21 may be accommodated.
- the specimen container 21 transported to the sampling area 113a-1 in the vicinity of the blood coagulation time measurement unit 201 is loaded with the sample into the reaction container 52 installed in the movable sample dispensing station 254 by the sample dispensing mechanism 22-1. Dispense.
- the movable sample dispensing station 254 has a structure accessible by the reaction container transfer mechanism 55, and the reaction container is transferred by installing an empty reaction container 52 from the reaction container storage unit 53.
- the reaction container 52 into which the sample has been dispensed is transported to the measurement channel 51 of the blood coagulation time measurement unit 50, heated up, and waits for reagent dispensing.
- the reagent is dispensed by the reagent dispensing mechanism 56 with a temperature raising function, and measurement is started.
- the analysis operation in the biochemical analysis unit 202 from the sample container 21 transported to the sampling area 113a-2 in the vicinity of the biochemical analysis unit 201 is substantially the same as that in the first embodiment described above. The description is omitted here.
- Control Computer 64 ... memory 65 ... operation screen 66 ... keyboard 70 ... inspection information system 100 ... automatic analyzer (rack type) DESCRIPTION OF SYMBOLS 101 ... Sample rack 102 ... Rack supply part 103 ... Rack storage part 104 ... Conveyance line 105 ... Return line 106 ... Rack standby part 107 ... Standby part handling mechanism 108 ... Rack return mechanism 109 ... Reading part (conveyance line) 110: Analysis unit 111: Reading unit (analysis unit) 112 ... Rack handling mechanism (1) 113 ... Dispensing line 113a ... Sampling area 114 ... Rack handling mechanism (2) 200 ... Automatic analyzer (module type) 201 ... Blood coagulation time measurement unit 202 ... Biochemical analysis unit 254 ... Movable sample dispensing station
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
〈装置の全体構成〉
図1は、本実施の形態に係る自動分析装置の基本構成を示す。ここでは、自動分析装置の一態様として、生化学分析と、血液凝固分析(血液凝固線溶マーカー、血液凝固時間測定)を行う複合型の自動分析装置の例について説明する。
バーコードの情報としては、また、検査オーダー毎に固有の識別子であっても良い。ここで検査オーダー毎に固有の識別子は、同一患者に対して同一時刻にオーダーした項目に対して共通に付されるIDのことである。
ここで、図9では患者検体情報として患者IDの例を示しているが、上述の通り、患者IDに代えて検査IDを用いることもできる。
自動分析装置(モジュールタイプ)200と、第1、第2の実施の形態にて図1、図10に示した自動分析装置1、100との構成上の主な違いは、血液凝固時間測定ユニット201と、ターンテーブル方式の生化学分析ユニット202と、のそれぞれのユニットにおいて個別にサンプルプローブ22を備えている点である。ここでは、第1および第2の実施の形態にて上述した内容と重複する説明は省略し、自動分析装置(モジュールタイプ)200の構成に特有である検体の供給方法、および血液凝固時間測定ユニット201について特に詳細に説明する。なお、ここでは搬送部として搬送ライン104と帰還ライン105からなるラインタイプについて説明するが、双方向に移動可能なハンドリング機構等、種々の搬送の態様に適用することができる。
これにより、血液凝固時間測定ユニット201と、ターンテーブル方式の生化学分析ユニット202のそれぞれのユニットに必要な検体を必要なタイミングで供給する。ここで、検体ラック101は、一例として検体容器21を複数保持できる構造について示しているが、収容可能な検体容器21は1つでも良い。
サンプルが分注された反応容器52は、血液凝固時間測定ユニット50の測定チャンネル51に搬送され、昇温され、試薬の分注を待つ。ここに、昇温機能付き試薬分注機構56により試薬が分注され、測定が開始される。
なお、生化学分析ユニット201の近傍でサンプリングエリア113a-2に搬送された検体容器21からの生化学分析ユニット202における分析動作は、上述した第一の実施の形態と実質的に同じであるため、ここでは説明を省略する。
10…反応ディスク
10a…分注(吐出)位置
11…反応セル
12…恒温槽
20…サンプルディスク(検体ディスク)
20a…分注(吸引)位置
21…検体容器
22…サンプル分注機構
23…サンプルバーコード読み取り装置(サンプルバーコードリーダー)
24…検体識別子
30…試薬ディスク
30-1…第1試薬ディスク
30-2…第2試薬ディスク
30-1a…分注(吸引)位置
30-2a…分注(吸引)位置
31…試薬ボトル
31-1…第1試薬ボトル
31-2…第2試薬ボトル
32…試薬バーコード読み取り装置(試薬バーコードリーダー)
32-1…第1試薬バーコード読み取り装置
32-2…第2試薬バーコード読み取り装置
33-1…第1試薬分注機構
33-2…第2試薬分注機構
40…光度計
41…光源
50…血液凝固時間測定ユニット
51…測定チャンネル
52…反応容器(ディスポーザブル反応容器)
53…反応容器収納部
54…サンプル分注ステーション
55…反応容器移送機構
56…昇温機能付き試薬分注機構
57…反応容器廃棄部
60…コンピューター
61…インターフェイス
62…A/D変換器
63…制御用コンピューター
64…メモリー
65…操作画面
66…キーボード
70…検査情報システム
100…自動分析装置(ラックタイプ)
101…検体ラック
102…ラック供給部
103…ラック収納部
104…搬送ライン
105…帰還ライン
106…ラック待機部
107…待機部ハンドリング機構
108…ラック戻し機構
109…読取部(搬送ライン)
110…分析部
111…読取部(分析部)
112…ラックハンドリング機構(1)
113…分注ライン
113a…サンプリングエリア
114…ラックハンドリング機構(2)
200…自動分析装置(モジュールタイプ)
201…血液凝固時間測定ユニット
202…生化学分析ユニット
254…可動式サンプル分注ステーション
Claims (18)
- 検体を収容する検体容器を保持する検体容器保持部と、
試薬を収容する試薬容器を保持する試薬ディスクと、
検体を分注するサンプル分注機構と、
試薬を分注する試薬分注機構と、
当該検体と試薬との混合液を収容する反応セルを円周上に複数保持する反応ディスクと、
当該反応セルに収容された混合液に光を照射する光源と、当該照射された光を検出する受光部と、からなる第1の測定部と、
当該検体と試薬との混合液を収容するディスポーザブル反応容器を保持する測定チャンネルを複数有し、
当該複数の測定チャンネルの各々に保持されたディスポーザブル反応容器に光を照射する光源と、当該照射された光を検出する受光部と、からなる第2の測定部と、
検体を収容する検体容器に付された識別情報を読み取る読取部と、
当該読み取られた情報に基づいて前記検体の分析条件を制御する制御部と、
を備えた自動分析装置であって、
前記制御部は、
当該読取部によって読み取られた複数の検体の識別情報に基づいて、検体の測定順序を決定する測定管理部を有し、
前記測定管理部は、
同一患者であることを示す識別情報を有する複数の検体について、前記第1の測定部によって測定すべき検査項目がオーダーされた第1の検体と、前記第2の測定部によって測定すべき検査項目がオーダーされた第2の検体とが、さらに検査に関する同一の識別情報を有する場合、
前記第1の検体または前記第2の検体のうちの一方の検体の測定が行われるタイミングあるいは測定が完了するタイミングに基づいて、他方の検体の測定が行われるタイミングを決定し、
前記検体容器保持部は、当該決定された測定順序に基づいて、当該保持された検体容器を搬送することを特徴とする自動分析装置。 - 請求項1に記載の自動分析装置において、
前記測定管理部は、前記第一の検体または前記第二の検体のうちの一方の検体の測定が行われるタイミングあるいは測定が完了するタイミングと、他方の検体の測定が行われるタイミングとが、所定の時間内に含まれるように、検体の測定順序を決定することを特徴とする自動分析装置。 - 請求項1に記載の自動分析装置において、
前記検体容器保持部は、時計回りまたは反時計回りに回転する検体ディスクであることを特徴とする自動分析装置。 - 請求項1に記載の自動分析装置において、
前記検体容器保持部は、前記検体容器を1本または複数本保持する検体ラックを供給する検体ラック供給部と、当該供給された検体ラックを搬送する検体ラック搬送部と、分析待ちの検体ラックを待機する検体ラック待機部と、分析が終了した検体ラックを収容する検体ラック収容部と、を備えることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記第1の測定部における前記光源と前記受光部は、当該反応ディスクに保持された反応容器を間に介して対向するように配置されることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
当該第1の測定部にて測定された反応セルを洗浄する洗浄機構を備えることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記第1の測定部は、生化学検査、免疫検査、または、血液凝固検査における血液凝固線溶マーカーのうちの少なくとも1つの分析を行い、
前記第2の測定部は、血液凝固検査における血液凝固時間測定を行うことを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記検体容器に付された識別情報は、検体毎に固有に定められたID情報または測定ポジションであることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記検体容器に付された識別情報は、患者毎に固有の識別子、採血日時、年齢、性別、生年月日、のうちの少なくとも一つ以上の情報であることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記検体容器に付された識別情報は、検査オーダー毎に固有の識別子、採血日時、年齢、性別、生年月日、のうちの少なくとも一つ以上の情報であることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記測定管理部は、
現在測定中の検体の進捗状況を管理する測定検体進捗リスト、次回以降に測定する検体の測定順序を管理する測定待ち検体リスト、待機が必要であるために前記測定待ち検体リストに格納できない検体を管理する予約検体リスト、から構成されることを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記測定管理部は、
前記第2の測定部に空きがない場合に、前記第2の検体を待機させ、
前記第2の測定部に空きができたことを検出したのちに、前記第2の検体を前記第2の測定部において測定するように、検体の測定順序を決定することを特徴とする自動分析装置。 - 請求項11に記載された自動分析装置であって、
前記測定管理部は、
前記第2の測定部の空き状態に基づいて、検体を、前記測定待ち検体リストに格納するか、前記予約検体リストに格納するか、を決定することを特徴とする自動分析装置。 - 請求項13に記載された自動分析装置であって、
前記測定管理部は、
前記第2の測定部に空きがない場合には、前記検体を前記予約検体リストに一旦格納し、
前記第2の測定部に空きができたことを検出したのちに、当該予約検体リストに格納された検体を、前記予約検体リストから、前記測定待ち検体リストに格納することを特徴とする自動分析装置。 - 請求項11に記載された自動分析装置であって、
前記測定管理部は、
前記第1の測定部における測定を依頼された検体の識別情報に基づいて、同一患者における前記第2の測定部における測定を依頼された別の検体が、前記予約検体リストに格納されている場合には、当該別の検体の情報と同期させて前記第1の測定部における測定を依頼された検体を前記予約検体リストに格納することを特徴とする自動分析装置。 - 請求項1に記載された自動分析装置であって、
前記制御部は、
当該読取部によって読み取られた複数の検体の識別情報に基づいて、
検体種別毎、患者ID毎、検査ID毎の少なくともいずれかに分類した測定結果を表示部に表示させることを特徴とする自動分析装置。 - 検体を収容する検体容器を保持する検体容器保持部と、
試薬を収容する試薬容器を保持する試薬ディスクと、
検体を分注するサンプル分注機構と、
試薬を分注する試薬分注機構と、
検体と試薬との混合液を収容する反応セルを円周上に複数保持する反応ディスクと、
当該反応セルに収容された混合液に光を照射する光源と、当該照射された光を検出する受光部と、からなる第1の測定部と、
当該第1の測定部にて測定された反応セルを洗浄する洗浄機構と、
検体と試薬との混合液を収容するディスポーザブル反応容器と、当該ディスポーザブル反応容器を保持する測定チャンネルを複数有し、
当該複数の測定チャンネルの各々に保持されたディスポーザブル反応容器に光を照射する光源と、当該照射された光を検出する受光部と、からなる第2の測定部と、
検体を収容する検体容器に付された識別情報を読み取る読取部と、
当該読み取られた情報に基づいて前記検体の分析条件を制御する制御部と、
を備えた自動分析装置と、前記自動分析装置と通信可能に接続される検査情報システムからなる自動分析システムであって、
前記制御部は、
当該読取部によって読み取られた複数の検体の識別情報に基づいて、検体の測定順序を決定する測定管理部を有し、
前記測定管理部は、
同一患者であることを示す識別情報を有する複数の検体について、前記第1の測定部によって測定すべき検査項目がオーダーされた第1の検体と、前記第2の測定部すべき検査項目がオーダーされた第2の検体とが、さらに検査に関する同一の識別情報を有する場合、
前記第1の検体または前記第2の検体のうちの一方の検体の測定が行われるタイミングあるいは測定が完了するタイミングに基づいて、他方の検体の測定が行われるタイミングを決定し、
前記検体容器保持部は、当該決定された測定順序に基づいて、当該保持された検体容器を搬送することを特徴とする自動分析システム。 - 検体を収容する検体容器を保持する検体容器保持部と、
試薬を収容する試薬容器を保持する試薬ディスクと、
検体を分注するサンプル分注機構と、
試薬を分注する試薬分注機構と、
検体と試薬との混合液を収容する反応セルを円周上に複数保持する反応ディスクと、
当該反応セルに収容された混合液に光を照射する光源と、当該照射された光を検出する受光部と、からなる第1の測定部と、
当該第1の測定部にて測定された反応セルを洗浄する洗浄機構と、
検体と試薬との混合液を収容するディスポーザブル反応容器と、当該ディスポーザブル反応容器を保持する測定チャンネルを複数有し、
当該複数の測定チャンネルの各々に保持されたディスポーザブル反応容器に光を照射する光源と、当該照射された光を検出する受光部と、からなる第2の測定部と、
検体を収容する検体容器に付された識別情報を読み取る読取部と、
当該読み取られた情報に基づいて前記検体の分析条件を制御する制御部と、
を備える自動分析装置を用いた分析方法であって、
前記制御部は、
当該読取部によって読み取られた複数の検体の識別情報に基づいて、検体の測定順序を決定する測定管理部を有し、
前記測定管理部は、
同一患者であることを示す識別情報を有する複数の検体について、前記第1の測定部によって測定すべき検査項目がオーダーされた第1の検体と、前記第2の測定部すべき検査項目がオーダーされた第2の検体とが、さらに検査に関する同一の識別情報を有する場合、
前記第1の検体または前記第2の検体のうちの一方の検体の測定が行われるタイミングあるいは測定が完了するタイミングに基づいて、他方の検体の測定が行われるタイミングを決定し、
前記検体容器保持部は、当該決定された測定順序に基づいて、当該保持された検体容器を搬送することを特徴とする分析方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17766362.2A EP3432003B1 (en) | 2016-03-16 | 2017-03-01 | Automated analysis device |
CN201780013147.6A CN108700603B (zh) | 2016-03-16 | 2017-03-01 | 自动分析装置 |
US16/076,340 US10989708B2 (en) | 2016-03-16 | 2017-03-01 | Automated analysis device |
JP2018505796A JP6653375B2 (ja) | 2016-03-16 | 2017-03-01 | 自動分析装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016051814 | 2016-03-16 | ||
JP2016-051814 | 2016-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159359A1 true WO2017159359A1 (ja) | 2017-09-21 |
Family
ID=59850417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008046 WO2017159359A1 (ja) | 2016-03-16 | 2017-03-01 | 自動分析装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10989708B2 (ja) |
EP (1) | EP3432003B1 (ja) |
JP (1) | JP6653375B2 (ja) |
CN (1) | CN108700603B (ja) |
WO (1) | WO2017159359A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019120510A (ja) * | 2017-12-28 | 2019-07-22 | シスメックス株式会社 | 検体測定方法および検体測定装置 |
JP2020060525A (ja) * | 2018-10-12 | 2020-04-16 | 株式会社島津製作所 | 自動分析装置 |
JPWO2020129537A1 (ja) * | 2018-12-19 | 2020-06-25 | ||
CN113219193A (zh) * | 2020-01-21 | 2021-08-06 | 深圳迎凯生物科技有限公司 | 样本分析方法和样本分析装置 |
JP2021143994A (ja) * | 2020-03-13 | 2021-09-24 | 株式会社日立ハイテク | 自動分析装置及び分析方法 |
JPWO2020085271A1 (ja) * | 2018-10-23 | 2021-09-24 | 積水メディカル株式会社 | オートサンプラ、自動分析装置、サンプリング方法、及び、自動検査方法 |
JPWO2020085272A1 (ja) * | 2018-10-23 | 2021-10-07 | 積水メディカル株式会社 | オートサンプラ、自動分析装置、サンプリング方法、及び、自動検査方法 |
CN116048752A (zh) * | 2022-12-29 | 2023-05-02 | 上海太阳生物技术有限公司 | 一种凝血分析仪的检测任务调度方法及凝血分析仪 |
WO2025004481A1 (ja) * | 2023-06-30 | 2025-01-02 | 株式会社日立ハイテク | 検体処理装置及び検体処理方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112997081B (zh) * | 2018-12-11 | 2024-02-20 | 株式会社日立高新技术 | 自动分析装置 |
CN113330317B (zh) * | 2019-02-08 | 2024-01-02 | 株式会社日立高新技术 | 自动分析装置 |
JP7171506B2 (ja) * | 2019-04-24 | 2022-11-15 | 株式会社日立ハイテク | 自動分析装置、及び方法 |
CN112782411B (zh) * | 2019-11-01 | 2024-01-02 | 深圳迈瑞生物医疗电子股份有限公司 | 一种样本重测策略的设置方法、重测方法和样本分析系统 |
CN112881344B (zh) * | 2019-11-29 | 2022-01-28 | 深圳市帝迈生物技术有限公司 | 样本检测方法、装置、样本分析仪及存储介质 |
CN116893273B (zh) * | 2023-09-11 | 2024-01-05 | 广州伊创科技股份有限公司 | 一种自动检测系统及方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63256859A (ja) * | 1987-04-15 | 1988-10-24 | Hitachi Ltd | 自動分析装置 |
JPH04256855A (ja) * | 1991-02-08 | 1992-09-11 | Nittec Co Ltd | 検体の処理経過記録装置 |
JPH04329359A (ja) * | 1991-04-30 | 1992-11-18 | Shimadzu Corp | 自動分析装置 |
JPH052024A (ja) * | 1990-11-28 | 1993-01-08 | Hitachi Ltd | 液体サンプル用分析方法および分析装置 |
JPH0651870U (ja) * | 1992-12-21 | 1994-07-15 | 株式会社ニッテク | 血液容器の仕分け指示装置 |
JP2007057321A (ja) * | 2005-08-23 | 2007-03-08 | A & T Corp | 臨床検査装置、臨床検査方法、臨床検査プログラムおよび記録媒体 |
JP2011047920A (ja) * | 2009-07-31 | 2011-03-10 | Hitachi High-Technologies Corp | 核酸分析装置 |
JP2011209004A (ja) * | 2010-03-29 | 2011-10-20 | Fujifilm Corp | 分析装置および方法 |
WO2013187210A1 (ja) * | 2012-06-11 | 2013-12-19 | 株式会社 日立ハイテクノロジーズ | 自動分析装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0749346A (ja) | 1993-08-06 | 1995-02-21 | Hitachi Ltd | 尿沈渣検査装置 |
CA2603209A1 (en) * | 2005-04-01 | 2006-10-12 | Mitsubishi Kagaku Iatron, Inc. | Biosample multiple autoanalyzer, method of autoanalysis and reaction cuvette |
JP4876010B2 (ja) * | 2007-03-29 | 2012-02-15 | シスメックス株式会社 | 検体分析装置および試薬吸引方法 |
JP2010181197A (ja) * | 2009-02-03 | 2010-08-19 | Beckman Coulter Inc | 自動分析装置およびラック搬送方法 |
JP5476389B2 (ja) * | 2009-09-28 | 2014-04-23 | 株式会社日立ハイテクノロジーズ | 自動分析装置、その情報表示方法、および情報表示システム |
JP5216051B2 (ja) * | 2010-06-23 | 2013-06-19 | 株式会社日立ハイテクノロジーズ | 自動分析装置および自動分析方法 |
JP5727219B2 (ja) * | 2010-12-28 | 2015-06-03 | シスメックス株式会社 | 検体分析装置及び検体分析システム |
CN106461693B (zh) * | 2014-05-15 | 2018-01-30 | 株式会社日立高新技术 | 自动分析装置 |
-
2017
- 2017-03-01 WO PCT/JP2017/008046 patent/WO2017159359A1/ja active Application Filing
- 2017-03-01 CN CN201780013147.6A patent/CN108700603B/zh active Active
- 2017-03-01 JP JP2018505796A patent/JP6653375B2/ja active Active
- 2017-03-01 US US16/076,340 patent/US10989708B2/en active Active
- 2017-03-01 EP EP17766362.2A patent/EP3432003B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63256859A (ja) * | 1987-04-15 | 1988-10-24 | Hitachi Ltd | 自動分析装置 |
JPH052024A (ja) * | 1990-11-28 | 1993-01-08 | Hitachi Ltd | 液体サンプル用分析方法および分析装置 |
JPH04256855A (ja) * | 1991-02-08 | 1992-09-11 | Nittec Co Ltd | 検体の処理経過記録装置 |
JPH04329359A (ja) * | 1991-04-30 | 1992-11-18 | Shimadzu Corp | 自動分析装置 |
JPH0651870U (ja) * | 1992-12-21 | 1994-07-15 | 株式会社ニッテク | 血液容器の仕分け指示装置 |
JP2007057321A (ja) * | 2005-08-23 | 2007-03-08 | A & T Corp | 臨床検査装置、臨床検査方法、臨床検査プログラムおよび記録媒体 |
JP2011047920A (ja) * | 2009-07-31 | 2011-03-10 | Hitachi High-Technologies Corp | 核酸分析装置 |
JP2011209004A (ja) * | 2010-03-29 | 2011-10-20 | Fujifilm Corp | 分析装置および方法 |
WO2013187210A1 (ja) * | 2012-06-11 | 2013-12-19 | 株式会社 日立ハイテクノロジーズ | 自動分析装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3432003A4 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7075213B2 (ja) | 2017-12-28 | 2022-05-25 | シスメックス株式会社 | 検体測定方法および検体測定装置 |
US11754580B2 (en) | 2017-12-28 | 2023-09-12 | Sysmex Corporation | Sample measurement method and sample measurement device |
JP2019120510A (ja) * | 2017-12-28 | 2019-07-22 | シスメックス株式会社 | 検体測定方法および検体測定装置 |
JP2020060525A (ja) * | 2018-10-12 | 2020-04-16 | 株式会社島津製作所 | 自動分析装置 |
CN111044744A (zh) * | 2018-10-12 | 2020-04-21 | 株式会社岛津制作所 | 自动分析装置 |
CN111044744B (zh) * | 2018-10-12 | 2024-07-23 | 株式会社岛津制作所 | 自动分析装置 |
US11761934B2 (en) | 2018-10-12 | 2023-09-19 | Shimadzu Corporation | Automatic analysis device |
JP7103144B2 (ja) | 2018-10-12 | 2022-07-20 | 株式会社島津製作所 | 自動分析装置 |
EP3872498A4 (en) * | 2018-10-23 | 2022-07-13 | Sekisui Medical Co., Ltd. | Autosampler, automatic analysis device, sampling method, and automatic inspection method |
JPWO2020085271A1 (ja) * | 2018-10-23 | 2021-09-24 | 積水メディカル株式会社 | オートサンプラ、自動分析装置、サンプリング方法、及び、自動検査方法 |
JPWO2020085272A1 (ja) * | 2018-10-23 | 2021-10-07 | 積水メディカル株式会社 | オートサンプラ、自動分析装置、サンプリング方法、及び、自動検査方法 |
CN113196065B (zh) * | 2018-12-19 | 2023-09-29 | 株式会社日立高新技术 | 自动分析装置以及分析方法 |
US20220011330A1 (en) * | 2018-12-19 | 2022-01-13 | Hitachi High-Tech Corporation | Automated Analysis Device, and Analysis Method |
US12203951B2 (en) * | 2018-12-19 | 2025-01-21 | Hitachi High-Tech Corporation | Automated analysis device, and analysis method |
JP7124119B2 (ja) | 2018-12-19 | 2022-08-23 | 株式会社日立ハイテク | 自動分析装置、及び分析方法 |
EP3901632A4 (en) * | 2018-12-19 | 2022-08-24 | Hitachi High-Tech Corporation | Automated analysis device, and analysis method |
JPWO2020129537A1 (ja) * | 2018-12-19 | 2020-06-25 | ||
CN113196065A (zh) * | 2018-12-19 | 2021-07-30 | 株式会社日立高新技术 | 自动分析装置以及分析方法 |
WO2020129537A1 (ja) | 2018-12-19 | 2020-06-25 | 株式会社日立ハイテク | 自動分析装置、及び分析方法 |
CN113219193A (zh) * | 2020-01-21 | 2021-08-06 | 深圳迎凯生物科技有限公司 | 样本分析方法和样本分析装置 |
CN113219193B (zh) * | 2020-01-21 | 2024-03-19 | 深圳迎凯生物科技有限公司 | 样本分析方法和样本分析装置 |
JP7395392B2 (ja) | 2020-03-13 | 2023-12-11 | 株式会社日立ハイテク | 自動分析装置及び分析方法 |
JP2021143994A (ja) * | 2020-03-13 | 2021-09-24 | 株式会社日立ハイテク | 自動分析装置及び分析方法 |
CN116048752B (zh) * | 2022-12-29 | 2024-06-04 | 上海太阳生物技术有限公司 | 一种凝血分析仪的检测任务调度方法及凝血分析仪 |
CN116048752A (zh) * | 2022-12-29 | 2023-05-02 | 上海太阳生物技术有限公司 | 一种凝血分析仪的检测任务调度方法及凝血分析仪 |
WO2025004481A1 (ja) * | 2023-06-30 | 2025-01-02 | 株式会社日立ハイテク | 検体処理装置及び検体処理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6653375B2 (ja) | 2020-02-26 |
US20190041386A1 (en) | 2019-02-07 |
CN108700603B (zh) | 2021-09-28 |
EP3432003A1 (en) | 2019-01-23 |
EP3432003B1 (en) | 2022-12-07 |
JPWO2017159359A1 (ja) | 2018-11-29 |
US10989708B2 (en) | 2021-04-27 |
EP3432003A4 (en) | 2019-12-11 |
CN108700603A (zh) | 2018-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017159359A1 (ja) | 自動分析装置 | |
JP7315749B2 (ja) | 自動分析装置 | |
JP6564849B2 (ja) | 自動分析装置及び自動分析方法 | |
JP6602873B2 (ja) | 自動分析装置 | |
CN110058030A (zh) | 自动分析装置 | |
WO2007139212A1 (ja) | 自動分析装置 | |
JP2000105248A (ja) | 生体サンプルの取扱い方法及び分析装置 | |
JP5174629B2 (ja) | 自動分析装置 | |
JP4153171B2 (ja) | 生体サンプルの分析方法 | |
JP4101466B2 (ja) | 生体サンプルの分析装置 | |
JPH0694729A (ja) | 臨床用複合分析装置 | |
US12203951B2 (en) | Automated analysis device, and analysis method | |
Caragher et al. | Analysis: clinical laboratory automation | |
JP4537472B2 (ja) | 分析装置 | |
JP3906781B2 (ja) | 検体分析システム及びその取り扱い方法 | |
JP2001208762A (ja) | 生体サンプルの分析方法 | |
CN116136543A (zh) | 实验室仪器 | |
JP2019120572A (ja) | 自動分析装置及び再検指示システム | |
JP2001264343A (ja) | 生体サンプルの分析装置 | |
JP2014074696A (ja) | 分析器のキャリブレーションまたはコントロール測定を行う検体自動搬送システムおよびその方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018505796 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017766362 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017766362 Country of ref document: EP Effective date: 20181016 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766362 Country of ref document: EP Kind code of ref document: A1 |