[go: up one dir, main page]

WO2017154560A1 - 近赤外線吸収フィルター用ガラス - Google Patents

近赤外線吸収フィルター用ガラス Download PDF

Info

Publication number
WO2017154560A1
WO2017154560A1 PCT/JP2017/006418 JP2017006418W WO2017154560A1 WO 2017154560 A1 WO2017154560 A1 WO 2017154560A1 JP 2017006418 W JP2017006418 W JP 2017006418W WO 2017154560 A1 WO2017154560 A1 WO 2017154560A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared absorption
glass
absorption filter
content
filter glass
Prior art date
Application number
PCT/JP2017/006418
Other languages
English (en)
French (fr)
Inventor
此下聡子
永野雄太
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016233830A external-priority patent/JP2017165641A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2017154560A1 publication Critical patent/WO2017154560A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to a near infrared absorption filter glass capable of selectively absorbing near infrared rays.
  • Near-infrared absorption filters are used in camera parts in digital cameras and smartphones to correct the visibility of solid-state imaging devices such as CCD (charge coupled device) and CMOS (complementary metal oxide semiconductor).
  • CCD charge coupled device
  • CMOS complementary metal oxide semiconductor
  • As glass used as a near-infrared absorption filter what consists of phosphate type glass containing CuO is known, for example (for example, refer to cited reference 1).
  • the above glass contains a predetermined amount of CuO, so that it is possible to sharply cut near-infrared light having a wavelength of about 700 to 1000 nm.
  • near-infrared absorption filter glass is obtained by melting raw material powder, clarification and homogenization, casting, and slowly cooling and processing into a predetermined shape by cutting and polishing.
  • the thermal expansion coefficient of phosphate glass is high, and cracks and cracks are likely to occur in the slow cooling process after molding. Further, such cracks and cracks are also likely to occur during so-called redraw molding in which a base glass plate is heated to form a thin plate during heat processing. Further, phosphate glass has a problem that weather resistance (particularly water resistance) is low. On the other hand, when component adjustment is performed to improve weather resistance, vitrification may become unstable.
  • the present invention has the desired near-infrared absorption characteristics, is excellent in weather resistance and vitrification stability, and is unlikely to generate cracks or cracks during the slow cooling step after molding or thermal processing. It aims at providing the glass for near-infrared absorption filters.
  • the near-infrared absorption filter glass of the present invention is, by mass%, P 2 O 5 65-80%, SiO 2 1-10%, Al 2 O 3 7-25%, R 2 O 0.1-14% ( R is at least one selected from Li, Na and K), R′O 1.5-20% (R is at least one selected from Mg, Ca, Sr, Ba and Zn), MgO 1.5 It is characterized by containing ⁇ 20%, CuO 1 ⁇ 15%, and P 2 O 5 / SiO 2 10 ⁇ 80 by mass ratio.
  • near-infrared absorption filter glass comprising a phosphate glass having the above composition.
  • near-infrared absorption filter glass of the present invention to contain a relatively large amount of P 2 O 5, it has a characteristic that higher near infrared absorption by CuO ions.
  • the content of P 2 O 5 increases, the weather resistance tends to decrease, but in the glass of the present invention, by controlling the ratio of P 2 O 5 / SiO 2 as described above, the decrease in weather resistance is suppressed.
  • P 2 O 5 / SiO 2 means the ratio of P 2 O 5 content to SiO 2 content.
  • the near infrared absorption filter glass of the present invention preferably has a mass ratio of P 2 O 5 / R 2 O of 9.2 or more. If it does in this way, it will become possible to improve vitrification stability.
  • the near-infrared absorption filter glass of the present invention is preferably% by mass, and Cr 2 O 3 1% or less and NiO 1% or less.
  • Cr 2 O 3 and NiO are components that reduce the light transmittance in the visible range. Therefore, by regulating these contents as described above, it becomes easy to obtain a glass excellent in light transmittance in the visible region.
  • the near-infrared absorption filter glass of the present invention preferably has a thermal expansion coefficient of 110 ⁇ 10 ⁇ 7 / ° C. or less in the range of 30 to 300 ° C. If it does in this way, generation
  • the near infrared absorption filter glass of the present invention preferably has a crystal precipitation temperature of 1300 ° C. or lower. If it does in this way, it will become the glass excellent in vitrification stability. If the crystal precipitation temperature is low, the melting temperature can be lowered accordingly. When the melting temperature is increased, Cu ions are reduced, the near-infrared absorption characteristics (spectral characteristics) are lowered, and the light transmittance in the visible range is easily lowered. Therefore, the occurrence of the problem can be suppressed by lowering the melting temperature.
  • crystal precipitation temperature refers to the temperature at which crystals begin to precipitate when the temperature of the homogeneous molten glass is lowered and held for 18 hours.
  • the near-infrared absorption filter glass of the present invention has a light transmittance of 30% or less at a wavelength of 1200 nm and a light transmittance at a wavelength of 500 nm at a thickness where the wavelength ⁇ 50 is 50% and the wavelength ⁇ 50 is 615 nm. It is preferably 84% or more.
  • the near-infrared absorption filter of the present invention is characterized by comprising the above glass for near-infrared absorption filter.
  • the near infrared absorption filter of the present invention preferably has a thickness of 0.1 to 1 mm.
  • the glass for near-infrared absorption filter of the present invention has excellent weather resistance and vitrification stability while having desired near-infrared absorption characteristics. In addition, since it is difficult for cracks and cracks to occur in the slow cooling step after molding, it is possible to stably produce a sheet glass.
  • No. in Table 1 3 is a graph showing a light transmittance curve of a sample of 3.
  • the near-infrared absorption filter glass of the present invention is, by mass%, P 2 O 5 65-80%, SiO 2 1-10%, Al 2 O 3 7-25%, R 2 O 0.1-14% ( R is at least one selected from Li, Na and K), R′O 1.5-20% (R is at least one selected from Mg, Ca, Sr, Ba and Zn), MgO 1.5 It is characterized by containing ⁇ 20%, CuO 1 ⁇ 15%, and P 2 O 5 / SiO 2 10 ⁇ 80 by mass ratio. The reason why the content range of each component is defined in this way will be described below.
  • P 2 O 5 is an essential component for forming a glass skeleton, and has an effect of lowering the crystal precipitation temperature.
  • the content of P 2 O 5 is 65 to 80%, preferably 68 to 80%, 70 to 80% (however, not including 70%), 71 to 78%, particularly 71 to 76%.
  • the content of P 2 O 5 is too small, there is a tendency for vitrification tends to be unstable.
  • the weather resistance is lowered, there is a tendency that the coefficient of thermal expansion is increased.
  • SiO 2 is a component that reinforces the glass skeleton. Moreover, it has the effect of reducing the thermal expansion coefficient and improving the weather resistance.
  • the content of SiO 2 is 1 to 10%, preferably 1.8 to 10%, 2.2 to 10%, 2.2 to 8%, particularly preferably 2.5 to 6%. If the content of SiO 2 is too small, the above effect is difficult to obtain. On the other hand, if the content of SiO 2 is too large, rather weather resistance tends to lower. Also, vitrification tends to be unstable.
  • P 2 O 5 / SiO 2 (mass ratio) is 10 to 80, preferably 10 to 70, 10 to 50, 10 to 31, and particularly preferably 10 to 29. If it does in this way, it will become easy to acquire the effect of the improvement of a weather resistance, and the fall of crystal precipitation temperature.
  • Al 2 O 3 is a component that improves weather resistance and lowers the thermal expansion coefficient.
  • the content of Al 2 O 3 is 7 to 25%, preferably 8 to 23%, particularly preferably 10 to 20%.
  • the content of Al 2 O 3 is too small, the effect is difficult to obtain.
  • the content of Al 2 O 3 is too large, vitrification tends to be unstable.
  • R 2 O (R is at least one selected from Li, Na, and K) is a component that enhances the stability of vitrification.
  • the chain P 2 O 5 network is cut to increase the oxygen coordination number of Cu ions. Since the near-infrared absorption characteristics of Cu ions increase according to the oxygen coordination number, the light transmittance in the near-infrared region can be easily reduced by containing R 2 O.
  • R 2 O is a component that remarkably increases the thermal expansion coefficient and lowers the weather resistance. Furthermore, when there is too much the content, an alkali phosphoric acid type crystal
  • the content of R 2 O is 0.1 to 14%, preferably 1 to 14%, 1.5 to 12%, 2 to 10%, particularly preferably 2 to 8%.
  • the preferable range of the content of each component of R 2 O is as follows.
  • Na 2 O is a particularly effective component for vitrification stability.
  • the content of Na 2 O is preferably 0.1 to 14%, 1 to 14%, 2 to 12%, particularly 5 to 9%. If the Na 2 O content is too small, the above effect is difficult to obtain. On the other hand, when the content of Na 2 O is too large, sodium phosphate crystals are precipitated, rather tends to vitrification tends to be unstable. In addition, the weather resistance tends to decrease.
  • Li 2 O and K 2 O have the effect of increasing the meltability and lowering the melting temperature, but on the other hand, they are components that destabilize vitrification and greatly reduce the weather resistance. Accordingly, it is preferable that the contents of Li 2 O and K 2 O are 0 to 7% each, 0 to 5% each, and particularly not substantially contained.
  • substantially not containing means not intentionally containing as a raw material, and does not exclude inevitable impurities. More objectively, it means less than 0.1%.
  • P 2 O 5 / R 2 O mass ratio 9.2 or more, and particularly preferably 10 or more. In this way, precipitation of alkali phosphate crystals can be suppressed.
  • R′O (R ′ is at least one selected from Mg, Ca, Sr, Ba and Zn) is a component that stabilizes vitrification and suppresses phase separation. It also has the effect of improving weather resistance.
  • the content of R′O is 1.5 to 20%, and particularly preferably 2 to 12%. If the content of R′O is too small, it is difficult to obtain the above effect. On the other hand, when the content of R′O is too large, vitrification tends to be unstable.
  • the preferable range of the content of each component of R′O is as follows.
  • MgO is a particularly effective component for improving weather resistance.
  • the MgO content is preferably 1.5 to 20%, 2 to 15%, particularly 4 to 9%. If the MgO content is too small, the above effect is difficult to obtain. On the other hand, if the content of MgO is too large, magnesium phosphate crystals are precipitated and the vitrification tends to be unstable.
  • CaO, SrO, BaO and ZnO are effective in stabilizing vitrification, but if the content is too large, vitrification tends to become unstable. Therefore, the content of these components is preferably 0 to 10%, particularly 0 to 5%.
  • CuO is an essential component for absorbing near infrared rays.
  • the CuO content is 1 to 15%, preferably 1 to 10%, particularly preferably 3 to 9%.
  • the CuO content is too large, the light transmittance in the ultraviolet to visible range tends to decrease. Also, vitrification tends to be unstable.
  • the near-infrared absorption amount of the near-infrared absorption filter glass depends on the CuO content and the glass thickness. Therefore, it is preferable to appropriately adjust the CuO content in accordance with the thickness of the near infrared absorption filter glass. For example, in order to achieve a desired near infrared absorption characteristic while reducing the thickness of the glass, it is preferable to increase the content of CuO.
  • the glass for near infrared absorption filter of the present invention may contain the following components.
  • CeO 2 and Sb 2 O 3 have the effect of suppressing the reduction of Cu 2+ ions and improving the near-infrared absorption characteristics.
  • the total content of CeO 2 and Sb 2 O 3 is preferably 0 to 0.5%, 0 to 0.3%, particularly not substantially contained.
  • Nb 2 O 5 is a component that improves weather resistance.
  • the content of Nb 2 O 5 is preferably 0 to 3%, particularly preferably 0 to 2%.
  • the melting temperature becomes higher meltability decreases.
  • Cu 2+ ions are easily reduced, making it difficult to obtain desired spectral characteristics.
  • Y 2 O 3 , La 2 O 3 and Ta 2 O 5 are components that stabilize vitrification.
  • the contents of Y 2 O 3 , La 2 O 3 and Ta 2 O 5 are each preferably 0 to 3%, particularly preferably 0 to 2%.
  • Y 2 O 3 the content of La 2 O 3 and Ta 2 O 5 is too large, it tends to be devitrified during molding.
  • the refractive index increases, surface reflection increases, and the light transmittance in the visible range tends to decrease.
  • B 2 O 3 is a component that makes vitrification unstable, and in order to reduce the visible transmittance, its content is preferably 3% or less, 2% or less, and particularly preferably 0.5% or less.
  • TiO 2 , WO 3 , MnO 2 , CeO 2 , Cr 2 O 3 and NiO are components that significantly reduce the light transmittance in the visible range. Therefore, it is preferable that the content of these components is 1% or less, particularly not substantially contained.
  • Bi 2 O 3 is preferably not substantially contained since Bi 2 O 3 reduces Cu ions so that the glass exhibits a metallic color and as a result tends to adversely affect the spectral characteristics.
  • Nd 2 O 3 and V 2 O 5 are preferably not substantially contained because they adversely affect the spectral characteristics. Considering the influence on the human body, the Cl component is preferably not substantially contained. Further, SnO, since SnO 2, Ag 2 O is capable of affecting the valence of Cu element is preferably not substantially contained.
  • Fe 2 O 3 absorbs visible light (for example, 500 nm), its content is preferably 0.01% or less.
  • the contents of U and Th in the near-infrared absorption filter glass of the present invention are 1 ppm or less, 100 ppb or less, particularly 20 ppb or less, respectively.
  • the ⁇ dose emitted from the near infrared absorption filter glass of the present invention is preferably 1.0 c / cm 2 ⁇ h or less.
  • the thermal expansion coefficient in the range of 30 to 300 ° C. of the near infrared absorption filter glass of the present invention is 110 ⁇ 10 ⁇ 7 / ° C. or less, 105 ⁇ 10 ⁇ 7 / ° C. or less, particularly 100 ⁇ 10 ⁇ 7 / ° C. or less. It is preferable. If the thermal expansion coefficient is too large, cracks and cracks are likely to occur during molding.
  • the crystal precipitation temperature of the near infrared absorption filter glass of the present invention is preferably 1300 ° C. or lower, particularly 1250 ° C. or lower. If the crystal precipitation temperature is too high, the stability of vitrification tends to decrease. In addition, since the melting temperature needs to be increased, Cu ions are reduced, the near-infrared absorption characteristics are lowered, and the light transmittance in the visible region is easily lowered.
  • the near-infrared absorption filter glass of the present invention can sufficiently cut light in the near-infrared region while maintaining high light transmittance in the visible region.
  • the light transmittance at a wavelength of 1200 nm is 30% or less (further 18% or less) and the light transmittance at a wavelength of 500 nm in a thickness at which the wavelength ⁇ 50 having a light transmittance of 50% is 615 nm. Is preferably 84% or more (more preferably 86% or more).
  • the thickness of the near-infrared absorbing filter made of the near-infrared absorbing filter glass of the present invention is preferably 0.1 to 1 mm, particularly 0.3 to 0.9 mm. If the thickness is too small, it tends to break. On the other hand, if the thickness is too large, it tends to be difficult to reduce the thickness and weight of the optical device.
  • the near infrared absorption filter glass of the present invention can be produced as follows.
  • a raw material batch is prepared so as to have a desired composition.
  • the raw material batch is heated to obtain molten glass.
  • the melting temperature is preferably 1100 to 1350 ° C., more preferably 1100 to 1300 ° C., and even more preferably 1100 to 1250 ° C. If the melting temperature is too low, it is difficult to obtain a homogeneous glass. On the other hand, if the melting temperature is too high, Cu 2+ ions are easily reduced, making it difficult to obtain desired spectral characteristics.
  • the glass for near infrared absorption filter of the present invention is obtained by performing post-processing such as cutting and polishing as necessary.
  • post-processing such as cutting and polishing as necessary.
  • a method of directly forming molten glass for example, a downdraw method, a rollout method, a direct press method, a float method, etc.
  • redraw method a method of stretching a base glass while heating
  • Tables 1 and 2 show examples (Nos. 1 to 10) and comparative examples (Nos. 11 to 14) of the present invention.
  • Each sample was prepared as follows. First, a raw material batch prepared so as to have the glass composition shown in the table was put into a platinum crucible and melted at 1200 to 1300 ° C. to be homogeneous. As the raw material, metaphosphate, oxide, sulfate, nitrate, carbonate and the like were used. Next, the molten glass was poured out on the carbon plate, cooled and solidified, and then annealed to prepare a sample.
  • the obtained sample was measured or evaluated for crystal precipitation temperature, light transmittance, thermal expansion coefficient, and weather resistance. The results are shown in Tables 1 and 2. No. The light transmittance curve of the sample No. 3 is shown in FIG.
  • the crystal precipitation temperature was measured as follows. A 50 g sample was heated in a platinum crucible to form a melt, and held in the range of 1000 to 1350 ° C. in increments of 50 ° C. for 18 hours. Thereafter, the glass melt was poured onto the carbon plate, and the temperature at which crystals were observed was defined as the crystal precipitation temperature.
  • the light transmittance was measured as follows. The sample was cut into a size of 25 mm ⁇ 30 mm, and both surfaces were mirror-polished so as to have the thickness shown in the table. About the sample after a process, the light transmittance in each wavelength was measured using the spectroscopic analyzer (Shimadzu UV3100).
  • the coefficient of thermal expansion was measured in the range of 30 to 300 ° C. using a dilatometer.
  • Weather resistance was determined by an unsaturated pressure cooker test. Specifically, a sample surface having a size of 25 mm ⁇ 30 mm ⁇ 0.5 mm and mirror-polished on both sides is prepared, and the sample surface is left in an environment of a temperature of 120 ° C. and a humidity of 80% for 8 hours. Was observed. “A” indicates that no change was observed on the sample surface by visual observation and microscopic observation ( ⁇ 100), “B” indicates that no change was observed in the sample surface by visual observation, but no change was observed by microscopic observation. The sample whose change on the surface of the sample was confirmed visually was evaluated as “C”.
  • Samples 1 to 10 had desired spectral characteristics, and had a low coefficient of thermal expansion of 100 ⁇ 10 ⁇ 7 / ° C. or less and good weather resistance.
  • the comparative example No. Samples 11 and 13 had a heterogeneous layer formed on the surface in the weather resistance test, and were evaluated as C.
  • No. Sample No. 11 had a high thermal expansion coefficient of 150 ⁇ 10 ⁇ 7 / ° C.
  • Samples 12 and 14 did not vitrify.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

所望の近赤外吸収特性を有しつつ、耐候性及びガラス化安定性に優れており、しかも成形後の徐冷工程でクラックや割れが発生しにくい近赤外線吸収フィルター用ガラスを提供する。 質量%で、P 65~80%、SiO 1~10%、 Al 7~25%、RO 0.1~14%(RはLi、Na及びKから選択される少なくとも1種)、R'O 1.5~20%(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)、MgO 1.5~20%、CuO 1~15%を含有し、質量比でP/SiO 10~80であることを特徴とする近赤外線吸収フィルター用ガラス。

Description

近赤外線吸収フィルター用ガラス
 本発明は、近赤外線を選択的に吸収することが可能な近赤外線吸収フィルター用ガラスに関するものである。
 デジタルカメラやスマートフォン内のカメラ部分には、CCD(電荷結合素子)やCMOS(相補性金属酸化膜半導体)等の固体撮像素子の視感度補正のため、近赤外線吸収フィルターが用いられている。近赤外線吸収フィルターとして使用されるガラスとしては、例えばCuOを含有するリン酸塩系ガラスからなるものが知られている(例えば引用文献1参照)。上記のガラスは、CuOを所定量含有することにより、波長700~1000nm付近の近赤外域の光をシャープにカットすることが可能となる。
 一般に、近赤外線吸収フィルター用ガラスは、原料粉末を溶融し、清澄、均質化を経た後に鋳込み成形され、徐冷後に切断及び研磨により所定形状に加工することにより得られる。
特開2011-121792号公報
 一般的にリン酸塩系ガラスの熱膨張係数は高く、成形後の徐冷工程でクラックや割れが発生しやすい。また、このクラックや割れは、熱加工時、例えば母材ガラス板を加熱して薄板成形するいわゆるリドロー成形時にも発生しやすい。また、リン酸塩ガラスは耐候性(特に耐水性)が低いという問題がある。一方、耐候性を向上させるために成分調整を行うと、ガラス化が不安定になる場合がある。
 以上に鑑み、本発明は、所望の近赤外吸収特性を有しつつ、耐候性及びガラス化安定性に優れており、しかも成形後の徐冷工程や熱加工時にクラックや割れが発生しにくい近赤外線吸収フィルター用ガラスを提供することを目的とする。
 本発明の近赤外線吸収フィルター用ガラスは、質量%で、P 65~80%、SiO 1~10%、 Al 7~25%、RO 0.1~14%(RはLi、Na及びKから選択される少なくとも1種)、R’O 1.5~20%(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)、MgO 1.5~20%、CuO 1~15%を含有し、質量比でP/SiO 10~80であることを特徴とする。
 本発明者が鋭意検討した結果、上記組成を有するリン酸塩ガラスからなる近赤外線吸収フィルター用ガラスにより既述の課題を解消できることを見出した。なお、本発明の近赤外線吸収フィルター用ガラスはPを比較的多く含有するため、CuOイオンによる近赤外線吸収が高いという特徴を有する。Pの含有量が多くなると耐候性が低下しやすくなるが、本発明のガラスにおいてはP/SiOの割合を上記の通り規制することで、耐候性の低下を抑制している。なお、「P/SiO」はP含有量とSiO含有量の比を意味する。
 本発明の近赤外線吸収フィルター用ガラスは、質量比で、P/ROが9.2以上であることが好ましい。このようにすれば、ガラス化安定性を向上させることが可能となる。
 本発明の近赤外線吸収フィルター用ガラスは、質量%で、Cr 1%以下、及びNiO 1%以下であることが好ましい。Cr及びNiOは可視域の光透過率を低下させる成分である。よって、これらの含有量を上記の通り規制することで、可視域における光透過率に優れたガラスが得やすくなる。
 本発明の近赤外線吸収フィルター用ガラスは、30~300℃の範囲における熱膨張係数が110×10-7/℃以下であることが好ましい。このようにすれば、成形時におけるクラックや割れの発生を抑制することができる。
 本発明の近赤外線吸収フィルター用ガラスは、結晶析出温度が1300℃以下であることが好ましい。このようにすれば、ガラス化安定性に優れたガラスとなる。なお、結晶析出温度が低いと、それに応じて溶融温度を低下させることが可能となる。溶融温度が高温化するとCuイオンが還元されて近赤外吸収特性(分光特性)が低下するとともに、可視域における光透過率が低下しやすくなる。よって、溶融温度を低下させることにより、当該問題の発生を抑制することができる。本発明において、「結晶析出温度」は均質な溶融ガラスの温度を低下させ18時間保持した際に結晶が析出し始める温度をいう。
 本発明の近赤外線吸収フィルター用ガラスは、光透過率が50%の波長λ50が615nmとなる厚みにおいて、波長1200nmでの光透過率が30%以下、かつ、波長500nmでの光透過率が84%以上であることが好ましい。
 本発明の近赤外線吸収フィルターは、上記の近赤外線吸収フィルター用ガラスからなることを特徴とする。
 本発明の近赤外線吸収フィルターは、厚みが0.1~1mmであることが好ましい。
 本発明の近赤外線吸収フィルター用ガラスは、所望の近赤外吸収特性を有しつつ、耐候性及びガラス化安定性に優れている。また、成形後の徐冷工程でクラックや割れが発生しにくいため、安定して薄板状ガラスを生産することが可能である。
表1におけるNo.3の試料の光透過率曲線を示すグラフである。
 本発明の近赤外線吸収フィルター用ガラスは、質量%で、P 65~80%、SiO 1~10%、 Al 7~25%、RO 0.1~14%(RはLi、Na及びKから選択される少なくとも1種)、R’O 1.5~20%(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)、MgO 1.5~20%、CuO 1~15%を含有し、質量比でP/SiO 10~80であることを特徴とする。各成分の含有量範囲をこのように規定した理由を以下に説明する。
 Pはガラス骨格を形成するための必須成分であり、結晶析出温度を低下させる効果がある。Pの含有量は65~80%であり、68~80%、70~80%(ただし、70%は含まない)、71~78%、特に71~76%であることが好ましい。Pの含有量が少なすぎると、ガラス化が不安定になる傾向がある。一方、Pの含有量が多すぎると、耐候性が低下したり、熱膨張係数が大きくなる傾向がある。
 SiOはガラス骨格を強化する成分である。また、熱膨張係数を低下させたり、耐候性を向上させる効果がある。SiOの含有量は1~10%であり、1.8~10%、2.2~10%、2.2~8%、特に2.5~6%であることが好ましい。SiOの含有量が少なすぎると、上記効果が得にくくなる。一方、SiOの含有量が多すぎると、かえって耐候性が低下しやすくなる。また、ガラス化が不安定になる傾向がある。
 P/SiO(質量比)は10~80であり、10~70、10~50、10~31、特に10~29であることが好ましい。このようにすれば、耐候性の向上と結晶析出温度の低下の効果が得やすくなる。
 Alは耐候性を向上させ、また熱膨張係数を低下させる成分である。Alの含有量は7~25%であり、8~23%、特に10~20%であることが好ましい。Alの含有量が少なすぎると、上記効果が得にくくなる。一方、Alの含有量が多すぎると、ガラス化が不安定になりやすい。また、可視域透過率が低下する傾向がある。
 RO(RはLi、Na及びKから選択される少なくとも1種)はガラス化の安定性を高める成分である。また、鎖状のPネットワークを切断してCuイオンの酸素配位数を増加させる効果がある。Cuイオンの近赤外線吸収特性は酸素配位数に応じて高まるため、ROを含有させることにより近赤外領域における光透過率を低下させやすくなる。ただし、ROは熱膨張係数を顕著に高め、また耐候性を低下させる成分でもある。さらに、その含有量が多すぎると、アルカリリン酸系結晶が析出しやすくなる。以上に鑑み、ROの含有量は0.1~14%であり、1~14%、1.5~12%、2~10%、特に2~8%であることが好ましい。
 ROの各成分の含有量の好ましい範囲は以下の通りである。
 ROの中でもNaOはガラス化の安定に特に有効な成分である。NaOの含有量は0.1~14%、1~14%、2~12%、特に5~9%であることが好ましい。NaO含有量が少なすぎると、上記効果が得にくくなる。一方、NaOの含有量が多すぎると、ナトリウムリン酸系結晶が析出し、かえってガラス化が不安定になる傾向がある。また、耐候性が低下しやすくなる。
 LiO及びKOは溶融性を高めて溶融温度を低下させる効果があるが、一方で、ガラス化を不安定にし、耐候性も大きく低下させる成分である。従って、LiO及びKOの含有量は各々0~7%、各々0~5%、特に実質的に含有しないことが好ましい。なお、本明細書において、「実質的に含有しない」とは意図的に原料として含有させないことを意味し、不可避的不純物を排除するものではない。より客観的には、0.1%未満であることを意味する。
 なお、P/RO(質量比)は9.2以上、特に10以上であることが好ましい。このようにすれば、アルカリリン酸系結晶の析出を抑制することができる。
 R’O(R’はMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)はガラス化を安定にしたり、分相を抑制する成分である。また、耐候性を向上させる効果もある。R’Oの含有量は1.5~20%であり、特に2~12%であることが好ましい。R’Oの含有量が少なすぎると、上記効果が得にくくなる。一方、R’Oの含有量が多すぎると、かえってガラス化が不安定になる傾向がある。
 なお、R’Oの各成分の含有量の好ましい範囲は以下の通りである。
 R’Oの中でもMgOは耐候性の向上に特に有効な成分である。MgOの含有量は1.5~20%、2~15%、特に4~9%であることが好ましい。MgO含有量が少なすぎると、上記効果が得にくくなる。一方、MgOの含有量が多すぎると、マグネシウムリン酸系結晶が析出し、かえってガラス化が不安定になる傾向がある。
 CaO、SrO、BaO、ZnOはガラス化の安定に有効であるが、その含有量が多すぎるとかえってガラス化が不安定になる傾向がある。よって、これらの成分の含有量は各々0~10%、特に各々0~5%であることが好ましい。
 CuOは近赤外線を吸収するための必須成分である。CuOの含有量は1~15%であり、1~10%、特に3~9%であることが好ましい。CuOの含有量が少なすぎると、所望の近赤外線吸収特性が得にくくなる。一方、CuOの含有量が多すぎると、紫外~可視域の光透過率が低下する傾向にある。また、ガラス化が不安定になる傾向がある。なお、近赤外線吸収フィルター用ガラスの近赤外線吸収量は、CuO含有量とガラスの厚みに依存する。よって、近赤外線吸収フィルター用ガラスの厚みに応じてCuO含有量を適宜調整することが好ましい。例えば、ガラスを薄型化しつつ所望の近赤外線吸収特性を達成するためには、CuOの含有量を多くすることが好ましい。
 本発明の近赤外線吸収フィルター用ガラスには、上記成分以外にも下記の成分を含有させることができる。
 CeO及びSbはCu2+イオンの還元を抑制し、近赤外線吸収特性を向上させる効果がある。ただし、これらの成分の含有量が多すぎると、ガラス化が不安定になる傾向がある。したがって、CeO及びSbの含有量は合量で0~0.5%、0~0.3%、特に実質的に含有しないことが好ましい。
 Nbは耐候性を向上させる成分である。Nbの含有量は0~3%、特に0~2%であることが好ましい。Nbの含有量が多すぎると、溶融性が低下して溶融温度が高くなる傾向がある。その結果、Cu2+イオンが還元されやすく、所望の分光特性が得にくくなる。
 Y、La及びTaはガラス化を安定にする成分である。Y、La及びTaの含有量は各々0~3%、特に各々0~2%であることが好ましい。Y、La及びTaの含有量が多すぎると、成形時に失透しやすくなる。また、屈折率が高くなって表面反射が大きくなり、可視域の光透過率が低下する傾向がある。
 Bはガラス化を不安定にする成分であり、また可視の透過率を低下させるため、その含有量は3%以下、2%以下、特に0.5%以下であることが好ましい。
 TiO、WO、MnO、CeO、Cr及びNiOは可視域の光透過率を顕著に低下させる成分である。そのため、これらの成分の含有量は各々1%以下、特に実質的に含有しないことが好ましい。
 BiはCuイオンを還元してガラスが金属色を呈するようになり、結果として分光特性に悪影響を与える傾向があるため、実質的に含有しないことが好ましい。
 Nd、Vは分光特性に悪影響を与えるため、実質的に含有しないことが好ましい。Cl成分は人体に対する影響を考慮し、実質的に含有しないことが好ましい。また、SnO、SnO、AgOはCu元素の価数に影響を及ぼし得るため、実質的に含有しないことが好ましい。
 Feは可視光(例えば500nm)を吸収するため、その含有量は0.01%以下にすることが好ましい。
 Dy及びHoは原料コストの高騰につながるため、実質的に含有しないことが好ましい。
 なお、原料中にU成分やTh成分が不純物として多く含まれていると、ガラスからα線が放出される。そのため、視感度補正フィルターや色調整フィルターの用途においては、α線によりCCDやCMOSの信号に不具合をきたすおそれがある。従って、本発明の近赤外線吸収フィルター用ガラスにおけるU及びThの含有量は各々1ppm以下、100ppb以下、特に20ppb以下であることが好ましい。また、本発明の近赤外線吸収フィルター用ガラスから放出されるα線量は1.0c/cm・h以下であることが好ましい。
 本発明の近赤外線吸収フィルター用ガラスの30~300℃の範囲における熱膨張係数は110×10-7/℃以下、105×10-7/℃以下、特に100×10-7/℃以下であることが好ましい。熱膨張係数が大きすぎると、成形時にクラックや割れが発生しやすくなる。
 本発明の近赤外線吸収フィルター用ガラスの結晶析出温度は1300℃以下、特に1250℃以下であることが好ましい。結晶析出温度が高すぎると、ガラス化の安定性が低下しやすくなる。また、溶融温度を高くする必要があることから、Cuイオンが還元されて近赤外吸収特性が低下するとともに、可視域における光透過率が低下しやすくなる。
 本発明の近赤外線吸収フィルター用ガラスは、可視域での高い光透過率を維持しつつ、近赤外域の光を十分カットすることができる。具体的には、光透過率が50%の波長λ50が615nmとなる厚みにおいて、波長1200nmでの光透過率が30%以下(さらには18%以下)、かつ、波長500nmでの光透過率が84%以上(さらには86%以上)であることが好ましい。
 本発明の近赤外線吸収フィルター用ガラスからなる近赤外線吸収フィルターの厚みは0.1~1mm、特に0.3~0.9mmであることが好ましい。厚みが小さすぎると、破損しやすくなる。一方、厚みが大きすぎると、光学デバイスの薄型化や軽量化が困難になる傾向がある。
 本発明の近赤外線吸収フィルター用ガラスは以下のようにして製造することができる。
 まず所望の組成となるように原料バッチを調製する。次に、原料バッチを加熱して溶融ガラスを得る。溶融温度は1100~1350℃であることが好ましく、1100~1300℃であることがより好ましく、1100~1250℃であることがさらに好ましい。溶融温度が低すぎると、均質なガラスが得にくい。一方、溶融温度が高すぎると、Cu2+イオンが還元されやすく、所望の分光特性が得にくくなる。
 溶融ガラスを成形して、徐冷した後、必要に応じて切削、研磨等の後加工を施すことにより、本発明の近赤外線吸収フィルター用ガラスを得る。ここで、溶融ガラスを直接成形する方法(例えば、ダウンドロー法、ロールアウト法、ダイレクトプレス法、フロート法等)または母材ガラスを加熱しながら延伸する方法(リドロー法)を採用することにより、厚みの小さい近赤外線吸収フィルター用ガラスを効率良く作製することが可能になる。なお、上記の通り、本発明の近赤外線吸収フィルター用ガラスは熱膨張係数が低いため、上記の方法で成形してもクラックや割れを抑制することが可能である。
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1及び2は、本発明の実施例(No.1~10)及び比較例(No.11~14)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 各試料は、以下のようにして作製した。まず、表に記載のガラス組成となるように調合した原料バッチを白金ルツボに投入し、1200~1300℃で均質になるように溶融した。原料としては、メタリン酸塩、酸化物、硫酸塩、硝酸塩、炭酸塩等を用いた。次に、溶融ガラスをカーボン板上に流し出し、冷却固化した後、アニールを行って試料を作製した。
 得られた試料について、結晶析出温度、光透過率、熱膨張係数、耐候性を測定または評価した。結果を表1及び2に示す。また、No.3の試料の光透過率曲線を図1に示す。
 結晶析出温度は以下のようにして測定した。試料50gを白金るつぼ中で加熱して融液とし、1000~1350℃の範囲で50℃刻みでそれぞれ18時間保持した。その後、ガラス融液をカーボン板上に流し出し、結晶が認められた温度を結晶析出温度とした。
 光透過率は以下のようにして測定した。試料を25mm×30mmの大きさに切断し、表に記載の厚みとなるように両面を鏡面研磨加工した。加工後の試料について、分光分析装置(島津製作所製UV3100)を用いて各波長における光透過率を測定した。
 熱膨張係数は、ディラトメーターを用いて30~300℃の範囲における値を測定した。
 耐候性は不飽和プレッシャークッカー試験により行った。具体的には、25mm×30mm×0.5mmの大きさの両面が鏡面研磨された試料を作製し、当該試料を温度120℃、湿度80%の環境下に8時間静置した後の試料表面を観察した。目視及び顕微鏡観察(×100)で試料表面に変化が認められなかったものを「A」、目視では試料表面の変化は認められないが、顕微鏡観察では変化が認められたものを「B」、目視で試料表面の変化が確認できたものを「C」として評価とした。
 表1及び図1から明らかなように、実施例であるNo.1~10の試料は所望の分光特性を有しつつ、熱膨張係数が100×10-7/℃以下と低く、耐候性が良好であった。一方、表2から明らかなように、比較例であるNo.11及び13の試料は耐候性試験で表面に異質層が形成され、C評価であった。またNo.11の試料は熱膨張係数が150×10-7/℃と高かった。No.12及び14の試料はガラス化しなかった。

Claims (8)

  1.  質量%で、P 65~80%、SiO 1~10%、 Al 7~25%、RO 0.1~14%(RはLi、Na及びKから選択される少なくとも1種)、R’O 1.5~20%(RはMg、Ca、Sr、Ba及びZnから選択される少なくとも1種)、MgO 1.5~20%、CuO 1~15%を含有し、質量比でP/SiO 10~80であることを特徴とする近赤外線吸収フィルター用ガラス。
  2.  質量比で、P/ROが9.2以上であることを特徴とする請求項1に記載の近赤外線吸収フィルター用ガラス。
  3.  質量%で、Cr 1%以下、及びNiO 1%以下であることを特徴とする請求項1または2に記載の近赤外線吸収フィルター用ガラス。
  4.  30~300℃の範囲における熱膨張係数が110×10-7/℃以下であることを特徴とする請求項1~3のいずれか一項に記載の近赤外線吸収フィルター用ガラス。
  5.  結晶析出温度が1300℃以下であることを特徴とする請求項1~4のいずれかに記載の近赤外線吸収フィルター用ガラス。
  6.  光透過率が50%の波長λ50が615nmとなる厚みにおいて、波長1200nmでの光透過率が30%以下、かつ、波長500nmでの光透過率が84%以上であることを特徴とする請求項1~6のいずれかに記載の近赤外線吸収フィルター用ガラス。
  7.  請求項1~6のいずれか一項に記載の近赤外線吸収フィルター用ガラスからなることを特徴とする近赤外線吸収フィルター。
  8.  厚みが0.1~1mmであることを特徴とする請求項7に記載の近赤外線吸収フィルター。
PCT/JP2017/006418 2016-03-09 2017-02-21 近赤外線吸収フィルター用ガラス WO2017154560A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-045168 2016-03-09
JP2016045168 2016-03-09
JP2016-233830 2016-12-01
JP2016233830A JP2017165641A (ja) 2016-03-09 2016-12-01 近赤外線吸収フィルター用ガラス

Publications (1)

Publication Number Publication Date
WO2017154560A1 true WO2017154560A1 (ja) 2017-09-14

Family

ID=59789451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006418 WO2017154560A1 (ja) 2016-03-09 2017-02-21 近赤外線吸収フィルター用ガラス

Country Status (1)

Country Link
WO (1) WO2017154560A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044286A1 (ja) * 2020-08-28 2022-03-03 Hoya株式会社 近赤外線カットフィルタ及びそれを備える撮像装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569242A (en) * 1979-07-03 1981-01-30 Jenaer Glaswerk Schott & Gen Optically colored filter glass
JPS6325245A (ja) * 1986-07-17 1988-02-02 Toshiba Glass Co Ltd 近赤外カツトフイルタガラス
JPH01167257A (ja) * 1987-12-24 1989-06-30 Toshiba Glass Co Ltd 近赤外カットフイルタガラス
JPH01242440A (ja) * 1988-03-23 1989-09-27 Toshiba Glass Co Ltd 近赤外カットフィルタガラス
JPH02263730A (ja) * 1989-04-04 1990-10-26 Toshiba Glass Co Ltd 近赤外カットフィルタガラス
JPH0365521A (ja) * 1989-08-03 1991-03-20 Asahi Glass Co Ltd 近赤外吸収ガラス
JPH04104918A (ja) * 1990-08-23 1992-04-07 Asahi Glass Co Ltd 近赤外吸収ガラス
US5234871A (en) * 1991-11-27 1993-08-10 Schott Glass Technologies, Inc. Vanadium- and copper-containing glasses for use as filters for light sources intended for use with night vision devices
JPH06107428A (ja) * 1990-10-05 1994-04-19 Carl Zeiss:Fa 酸化銅(ii)含有アルモホスファートガラス
JP2000511868A (ja) * 1996-06-08 2000-09-12 アヴィモ・リミテッド 赤外線フィルタ
JP2010008908A (ja) * 2008-06-30 2010-01-14 Asahi Glass Co Ltd 近赤外吸収フィルタ用ガラスおよびそれを用いた赤外カットフィルタ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569242A (en) * 1979-07-03 1981-01-30 Jenaer Glaswerk Schott & Gen Optically colored filter glass
JPS6325245A (ja) * 1986-07-17 1988-02-02 Toshiba Glass Co Ltd 近赤外カツトフイルタガラス
JPH01167257A (ja) * 1987-12-24 1989-06-30 Toshiba Glass Co Ltd 近赤外カットフイルタガラス
JPH01242440A (ja) * 1988-03-23 1989-09-27 Toshiba Glass Co Ltd 近赤外カットフィルタガラス
JPH02263730A (ja) * 1989-04-04 1990-10-26 Toshiba Glass Co Ltd 近赤外カットフィルタガラス
JPH0365521A (ja) * 1989-08-03 1991-03-20 Asahi Glass Co Ltd 近赤外吸収ガラス
JPH04104918A (ja) * 1990-08-23 1992-04-07 Asahi Glass Co Ltd 近赤外吸収ガラス
JPH06107428A (ja) * 1990-10-05 1994-04-19 Carl Zeiss:Fa 酸化銅(ii)含有アルモホスファートガラス
US5234871A (en) * 1991-11-27 1993-08-10 Schott Glass Technologies, Inc. Vanadium- and copper-containing glasses for use as filters for light sources intended for use with night vision devices
JP2000511868A (ja) * 1996-06-08 2000-09-12 アヴィモ・リミテッド 赤外線フィルタ
JP2010008908A (ja) * 2008-06-30 2010-01-14 Asahi Glass Co Ltd 近赤外吸収フィルタ用ガラスおよびそれを用いた赤外カットフィルタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044286A1 (ja) * 2020-08-28 2022-03-03 Hoya株式会社 近赤外線カットフィルタ及びそれを備える撮像装置

Similar Documents

Publication Publication Date Title
JP6256857B2 (ja) 近赤外線吸収ガラス
KR102100995B1 (ko) 조절된 투과 곡선 및 높은 함량의 산화철과 산화주석을 갖는 베타-석영 유리-세라믹, 상기 유리-세라믹 제품, 전구체 유리
JP7549300B2 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
KR20110065490A (ko) 광학 유리 및 분광 투과율의 열화 억제 방법
JP6826332B2 (ja) Li2O−Al2O3−SiO2系結晶化ガラス
US10106455B2 (en) Near infrared absorbing glass
WO2016098554A1 (ja) 近赤外線吸収フィルター用ガラス
TWI704117B (zh) 近紅外線吸收玻璃
CN110325483B (zh) 光学玻璃
JP2017165641A (ja) 近赤外線吸収フィルター用ガラス
WO2017208679A1 (ja) 近赤外線吸収ガラスの製造方法及び製造装置
US20160083290A1 (en) Glass for ir-cut filter
KR20230066267A (ko) Li2O-Al2O3-SiO2계 결정화 유리
WO2019044324A1 (ja) 近赤外線吸収ガラス
WO2017154560A1 (ja) 近赤外線吸収フィルター用ガラス
CN107850711B (zh) 近红外线截止滤光片玻璃
WO2015194456A1 (ja) 近赤外線吸収ガラス板
JP2017109887A (ja) 近赤外線吸収ガラス
JP7022369B2 (ja) 近赤外線吸収ガラス
JP2018049250A (ja) 近赤外線吸収ガラスの製造方法及び製造装置
JP2017178632A (ja) 近赤外線吸収ガラス
WO2018138990A1 (ja) 近赤外線吸収ガラス
CN108129019A (zh) 一种硅酸盐蓝玻璃
TW201442974A (zh) 光學玻璃、預形體及光學元件
JP2016108206A (ja) 近赤外吸収フィルタ用ガラス

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762902

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762902

Country of ref document: EP

Kind code of ref document: A1