WO2017152297A1 - Recombinant vanillyl alcohol oxidase protein (vaor) - Google Patents
Recombinant vanillyl alcohol oxidase protein (vaor) Download PDFInfo
- Publication number
- WO2017152297A1 WO2017152297A1 PCT/CL2017/050012 CL2017050012W WO2017152297A1 WO 2017152297 A1 WO2017152297 A1 WO 2017152297A1 CL 2017050012 W CL2017050012 W CL 2017050012W WO 2017152297 A1 WO2017152297 A1 WO 2017152297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- enzyme
- alcohol oxidase
- recombinant
- vao
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K19/00—Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
Definitions
- Vanillin is the most abundant component in vanilla aroma, and is therefore one of the most used molecules in the food industry. Additionally, this important molecule is also used as an intermediate compound in the chemical and pharmaceutical industry.
- Vanillin is obtained naturally from tropical climbing orchid pods, mainly Vanilla planifolia, however, less than 1% of the vanillin currently consumed in the world is obtained from these natural sources, the other 99% is obtained from chemical or biotechnological synthesis of the molecule.
- the labeling "natural vanilla" includes both the extraction from plants and their obtaining by logical biotech processes such as fermentation with microorganisms, transformed cells or enzymatic digestion.
- soy lipoxidase Markus et al., 1994
- lignostilbeno-a ⁇ -dioxygenase from Pseudomonas sp.
- enzyme preparations containing beta-glucosidases, pectinases, xylanases and cellulases mainly to improve the purification of vanillin from orchid pods (Ruiz-Terán et al., 2001).
- VAO vanillyl alcohol oxidase
- VAO enzyme exists in nature as a 520 KDa homo octameric enzyme capable of catalyzing a broad spectrum of oxidations (Fraaije et al., 1995). Apart from the octameric form of VAO, which is very difficult to keep active, the existence of a dimeric form of the enzyme has also been demonstrated, but it exists in a much smaller proportion than the octameric form (Tahallah et al., 2002) .
- VAO flavin adenine dinucleotide
- FAD flavin adenine dinucleotide
- This enzyme is found naturally in the fungus Penicillium simplicissimum (de Jong et al., 1992), and has been cloned from this fungus and expressed heterologously in Aspergillus niger and Escherichia coli as a flavinated and catalytically active enzyme, however , with low yields (Benen et al., 1998).
- VAO vanillyl alcohol oxidase enzyme which fuses VAO and maltose binding protein (MBP), where this new enzyme is not derived from the prior art and surprisingly has a stability improved and is high performance, which allows to obtain vanillin in an efficient way.
- MBP maltose binding protein
- VAO proteins are known, for example in US2010028963 Al (MANE FILS V [FR]; 2010-02-04), they clone the VAO enzyme in yeasts for the production of vanilla, despite the cloned protein It is not chimeric nor has it been modified to improve the stability of the enzyme obtained, so this document does not affect the novelty of the invention.
- document CN103820375 A (UNIV ANHUI NORMAL; 2014-05-28), discloses a strain transformed with a vector that expresses vanillyl alcohol oxidase associated with other enzymes for the production of feluric acid, the document does not propose the modification of this enzyme, so this document does not affect the novelty of the invention.
- VAO mutants with modifications in an amino acid are studied, the document does not include fusion proteins. As can be seen, the recombinant VAO protein of the invention is not anticipated in the state of the art.
- FIGURE 1 Construction and purification of VAO recombinants.
- A Representation of the transport vector constructed to express VAO with MBP. Plasmid pMGWA was used to express a recombinant VAO enzyme bound to MBP at the N-terminal end and a His-tag at the C-terminal end (Hisox). Theoretical molecular weight is also shown for each peptide and for the VAOr protein.
- B Coomassie blue staining of SDS-PAGE of total cell extracts expressing pMGWA BL21-VAO.
- Lane 1 Uninduced cells
- lane 2 induced cells
- lane 3 Proteins eluted after the amylose resin purification step
- lane 4 MBP-VAO-His after a second nickel resin purification. In each lane 15 g of total protein were loaded.
- FIGURE 2 Enzymatic activity curve of the VAOr enzyme of the invention.
- the catalytic activity was determined using vanillyl alcohol as a substrate. The test was performed at pH 9.0 in 50 mM of carbonate buffer at room temperature (23-25 ° C) using 0.5 g of purified VAO in 500 (corresponding to 8 nM of VAO) and ethanol no more than 0 ,5%. Each point represents the average of four independent trials.
- FIGURE 3 Maintaining the catalytic activity of MBP-VAO-His under different conditions, using vanillyl alcohol as a substrate, the tests were performed at pH 9 in 50 mM carbonate buffer using 0.5 g of VAO purified in 500 (corresponding to 8 nM of VAO) and ethanol not more than 0.5%; after keeping the enzyme for 1 hour at room temperature (23-25 ° C; RT), after 48 hours at room temperature (23-25 ° C; RT), and after keeping the enzyme for 1 hour at 40, 50 and 60 ° C. Each bar represents the average of four independent trials.
- VAO vanillyl alcohol oxidase
- the VAO enzyme is also fused at its C-terminal end with a molecule that facilitates its purification, an affinity tail or tag, such as a histidine tail, AviTag, Calmoduling-tag, Myc-tag, Xpress-tag or Flag-tag, among others, in a preferred embodiment hexahistidine (His) is chosen.
- an affinity tail or tag such as a histidine tail, AviTag, Calmoduling-tag, Myc-tag, Xpress-tag or Flag-tag, among others, in a preferred embodiment hexahistidine (His) is chosen.
- the MBP-VAO-Hise recombinant protein was expressed by the inventors in E. coli, finding that the resulting protein is characterized by being soluble, with high yields, with very similar enzyme kinetics and improved stability in comparison with the parameters already described for wild VAO.
- This VAOr protein of the invention forms dimeros in buffer solution, which are more stable than the majority octameric conformation of wild VAO, and therefore this greater stability of the quaternary structure allows a better efficiency of the enzyme of the invention in processes.
- the invention is directed to a recombinant vanillyl alcohol oxidase protein comprising the enzyme vanillyl alcohol oxidase (VAO) fused with maltose binding protein (MBP) at its N-terminal end, where the enzyme has at least 80% of Homology with SEQ ID No. 1 and where the vanillyl alcohol oxidase enzyme maintains its activity.
- this fusion protein has a molecule at its C-terminus that facilitates its purification; such as a histidine polypeptide.
- VAOr of the invention is highly stable, it forms dimeros in solution, and has a high enzymatic activity.
- the invention in a second aspect relates to an isolated polynucleotide, which: a. encodes the protein of SEQ ID No. 1; or
- a sequence encoding a molecule that facilitates the purification of said protein or a polypeptide that anchors the protein to the cell membrane is included at the end encoding the C-terminus of the protein.
- a polypeptide is especially preferred to facilitate purification.
- the invention is also directed to an expression cassette comprising the isolated polynucleotide, as described in the previous point, where the polynucleotide sequence is operably linked to at least one regulatory sequence that allows the expression of the polynucleotide sequence in an expression cell or organism, where this expression cassette can be inserted into an expression vector.
- the fourth aspect also protects the transformed cell with the cassette and / or vector described in the previous paragraph; where preferably the transformed cell is a bacterium, especially Escherichia coli.
- the invention relates to the method of obtaining vanillin, in which vanillyl alcohol is contacted with the recombinant vanillyl alcohol oxidase enzyme of the invention or with a transformed cell expressing this enzyme of the invention.
- the stability of the new recombinant enzyme of the invention is given by the fusion of the vanillyl alcohol oxidase (VAO) enzyme with the maltose binding protein (MBP), at its N-terminal end.
- VAO vanillyl alcohol oxidase
- MBP maltose binding protein
- the invention comprises the protein as defined in SEQ ID No. 1, and all modifications in its sequence that do not modify the tertiary structure thereof, this includes all possible modifications, up to 70% homology with the sequence, secondly up to 80% homology is preferred, and if necessary only up to 90% homology, with the condition that the catalytic activity of the enzyme VAO is maintained.
- tail or tag that facilitates the purification of the recombinant protein.
- a tail or tag that facilitates the purification of the recombinant protein.
- these peptides are: poly histidine, AviTag, Calmoduling-tag, Myc-tag, Xpress-tag, Flag-tag, among others.
- the isolated polynucleotide of the invention is one that codes for the recombinant protein of the invention MBP-VAO, as we indicated, the VAO and MBP proteins can have modifications in their sequence that do not modify their activity or their conformation, all those modifications in the sequence they fall within the scope of the present invention, the fundamental parameter being that the VAO enzyme maintains its catalytic activity. Additionally, all nucleotide sequences encoding all possible sequences of the fused proteins, and their complementary reverse sequences are within the scope of the invention.
- the VAOr protein of the invention In order to obtain the VAOr protein of the invention, it must be cloned and expressed within a cell.
- a polynucleotide that has at least 80% homology with the sequence SEQ ID No. 2 must first be operatively inserted into a plasmid or expression vector.
- This vector must have a regulatory sequence that allows the expression of said polynucleotide sequence in a host cell.
- any of those available may be used, since the nature of the vector is not relevant for the realization of the invention. Notwithstanding the foregoing, the vector comprising a polynucleotide that has at least 80% homology with the sequence SEQ ID No. 2 is considered one of the products of the invention and is itself protected.
- the vector expressing the VAOr protein of the invention Once the vector expressing the VAOr protein of the invention has been obtained, it must be transfected into a host cell by any transformation method available in the art.
- the transformed cell is also a product of the present invention. Once the transformed cell is obtained, it is incubated and if necessary the expression of the protein of the invention is stimulated according to the conditions required by the regulatory sequence of the vector. Subsequently, the cells are broken and the VAOr protein of the invention is recovered from the soluble fraction of the supernatant.
- the protein is expressed within a bacterium, especially in E. coli, however, the person skilled in the art knows that proteins can be expressed in any cloning model available in the art, that is, yeasts, microalgae. , plants, plant cells, insect cells, animal cells or in vitro expression systems, developing in each case an expression vector and a nucleotide sequence suitable to the chosen host cell. If necessary, it is also possible that the tail of the C-terminal end is a transmembrane liposoluble protein or polypeptide, in which case the protein could be expressed in the host cell membrane, and the whole cell can be used in the process of obtaining the vanillin In the Preferred embodiment of the invention the enzyme is purified to be used in the production of vanillin.
- Penicillium simplicissimum naturally produces an intracellular VAO when grown with veratryl alcohol as the sole source of carbon and energy, producing 14.7 mg / L of enzyme every two days (de Jong et al., 1992).
- Prior to this invention recombinant VAOs had been produced in Aspergillus niger, where yields were not clearly reported, and E. coli with yields below 5 mg / L, even after optimization of the cloned sequence (Benen et al., 1998 ).
- the inventors previously tried to obtain VAO as a Spanish protein, but found difficulties in expressing and purifying this recombinant protein.
- the MBP-VAO protein of the invention was expressed and easily purified from the soluble fraction of all E. coli extract with high yields (from 40-80 mg / 1) and purity (90%). No fermenter or optimization of culture conditions were required to achieve these enzyme production levels, suggesting that productivity can be easily increased even above these values.
- MBP-VAO-His To express MBP-VAO-His, we have cloned exactly the same cDNA described previously (Benen et al., 1998). However we have been able to produce and purify 10-15 times more protein.
- the P. simplicissimum vaoA gene was chosen, the gene sequence was obtained from the GenBank database (accession number Y15627) and was synthesized by GeneScript Inc (USA). The CACC sequence was added just before the 5'ATG of the original gene, to allow a correct insertion of the ORF vaoA into the pENTR / D-TOPO vector. After cloning into the pENTR vector, vaoA-pENTR was amplified and subsequently cloned, using clone reaction LR, into pMGWA where maltose binding protein was added to the N-terminal end and a 6 Histidine tail at the end C-terminal of the wild type vaoA.
- the expression of the enzyme of the invention was subsequently induced with 0.5 mM isopropyl-l-thio-D-galactopyranoside (IPTG) overnight at 18 ° C.
- the cells were collected by centrifugation at 4 ° C and resuspended in 40 ml of 20 mM Tris buffer, pH 7.4, 0.2 M NaCl, 1 mM EDTA, and 1 protease inhibitor cocktail tablet (Roche Diagnostics GmbH, Germany). The cells were broken by sonication at 4 ° C, and subjected to centrifugation for 30 min at 15000g and 4 ° C, to remove cell debris. The crude extracts were loaded in 15 ml of a column of amylose (New England Biolabs, United Kingdom) prebalanced in the same rupture buffer.
- the column was washed with 150 ml of the same loading buffer and eluted with 50 ml of 20 mM Tris buffer, pH 7.4, 0.2 M NaCl, 1 mM EDTA and 10 mM maltose.
- the protein of the invention is found in this eluate.
- the preparation obtained from the elution with amylose was chromatographed on a pre-equilibrated HisPur Ni-NTA resin with a 20 mM Tris buffer, pH 7.4, 0.2 M NaCl, 1 mM EDTA .
- the enzyme eluted from the Ni-NTA column was dialyzed 3 times against 10 mM potassium phosphate buffer, pH 8.0, 0.2 M NaCl. Finally, the eluted fractions containing VAOr were pooled and stored. in 50% glycerol at -20 ° C.
- a representative reaction of VAO activity is the synthesis of vanillin from its vanillyl alcohol precursor, and since it is also the most important commercially, the enzyme evaluation was studied in the catalysis of this reaction. .
- the reaction was performed by adding vanillyl alcohol at different concentrations.
- the tests were performed at room temperature (RT), at pH 9.0, in 50 mM carbonate buffer and in triplicate.
- the reaction was monitored on an Optizen Pop UV / VIS spectrophotometer.
- the substrate concentration was varied gradually (0, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 6 and 8 mM), while the enzyme concentration is kept constant at 0.001 mg / mL.
- the experimental curve was adjusted to the Michaelis-Menten equation and the non-linear regression was performed using the Sigmaplot 11.0 program (Systat Software, Inc)
- Figure 2 shows the Michaelis-Menten kinetics of the enzyme of the invention under the conditions described, where the VAOr of the invention reaches its Vmax at 12.8 U / mg enzyme, corresponding to about 4 mM of vanillyl alcohol (8 nM VAO concentration).
- the Km obtained was 239 ⁇ and the Kcat was 2.4 s-1.
- VAO fusion protein showed similar kinetic parameters to those reported for the native enzyme (de Jong et al., 1992; Fraaije et al., 1995; Van den Heuvel et al, 2004).
- the enzyme activity of the enzyme of the invention was evaluated using vanillyl alcohol as a substrate, the tests were performed at pH 9 in 50 mM carbonate buffer using 0.5 g of purified VAO in 500 (corresponding to 8 nM of VAO) and ethanol no more than 0.5%; after keeping the enzyme for 1 hour at room temperature (23-25 ° C; RT), after 48 hours at room temperature (23-25 ° C; RT), and after keeping the enzyme for 1 hour at 40, 50 and 60 ° C.
- the results are expressed in relative activity with respect to the 1 hour condition at room temperature and are shown in Figure 3, where each bar represents the average of 4 independent studies.
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The invention is directed to a recombinant vanillyl alcohol oxidase protein (VAOr) which results from the fusion of VAO and MBP (maltose binding protein), wherein the VAO used is the vaoA gene of the fungus Penicillium simplicissimum. This recombinant protein is expressed in E. coli, is functional, has a high yield, a high enzymatic activity, is stable in a dimeric configuration, the histidine tail making it easier to purify the resultant enzyme. This enzyme can be used in natural processes for producing vanilla on a large scale.
Description
PROTEÍNA VAINILLIL ALCOHOL OXIDASA RECOMBINANTE Q/AOr) PROTEIN VAINILLIL ALCOHOL OXIDASE RECOMBINANT Q / AOr)
MEMORIA DESCRIPTIVA DESCRIPTIVE MEMORY
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La vainillina es el componente más abundante en el aroma a vainilla, y es por lo mismo una de las moléculas más utilizadas en la industria alimentaria. Adicionalmente, esta importante molécula también es utilizada como compuesto intermediario en la industria química y farmacéutica. Vanillin is the most abundant component in vanilla aroma, and is therefore one of the most used molecules in the food industry. Additionally, this important molecule is also used as an intermediate compound in the chemical and pharmaceutical industry.
La vainillina se obtiene naturalmente desde Vainas de orquídeas trepadoras tropicales, principalmente Vanilla planifolia, sin embargo, menos del 1% de la vainillina actualmente consumida en el mundo se obtiene de estas fuentes naturales, el otro 99% se obtiene de la síntesis química o biotecnológica de la molécula. No obstante, en Estados Unidos y Europa el etiquetado "vainilla natural" incluye tanto la extracción desde las plantas como su obtención por procesos biotecno lógicos como fermentación con microorganismos, células transformadas o digestión enzimática. Vanillin is obtained naturally from tropical climbing orchid pods, mainly Vanilla planifolia, however, less than 1% of the vanillin currently consumed in the world is obtained from these natural sources, the other 99% is obtained from chemical or biotechnological synthesis of the molecule. However, in the United States and Europe the labeling "natural vanilla" includes both the extraction from plants and their obtaining by logical biotech processes such as fermentation with microorganisms, transformed cells or enzymatic digestion.
Al mismo tiempo, los consumidores están cada día más preocupados por el origen de los productos, siendo más positiva a la producción de moléculas "naturales", especialmente a lo largo del uso de alternativas ambientalmente amigables, y al contrario de síntesis química. At the same time, consumers are increasingly concerned about the origin of the products, being more positive to the production of "natural" molecules, especially throughout the use of environmentally friendly alternatives, and unlike chemical synthesis.
La técnica biotecnológica más ampliamente descrita para obtener la vainillina es todo el uso de cultivo microbiológico, en el que los organismos modificados han sido seleccionados para hacerlos resistentes a la citotoxicidad de los sustratos preferidos, como el ácido ferúlico, eugenol y el isoeugenol, así como a los subproductos de la reacción (Rabenhorst y Hopp, 1991, 2000; Lambert et al., 2014). En una medida mucho menor, se han propuesto también enzimas puras para el proceso de bioconversión que conduce a la vainillina. Entre estas enzimas es posible encontrar lipoxidasa de soya (Markus et al., 1994), lignostilbeno-a, β-dioxigenasa de Pseudomonas sp. (Kamoda et al., 1989) y preparaciones enzimáticas que contienen beta-glucosidasas, pectinasas, xilanasas y celulasas principalmente para mejorar la purificación de la vainillina de vainas de orquídeas (Ruiz- Terán et al., 2001). The most widely described biotechnological technique for obtaining vanillin is all the use of microbiological culture, in which the modified organisms have been selected to make them resistant to the cytotoxicity of the preferred substrates, such as ferulic acid, eugenol and isoeugenol, as well as to reaction byproducts (Rabenhorst and Hopp, 1991, 2000; Lambert et al., 2014). To a much lesser extent, pure enzymes have also been proposed for the bioconversion process that leads to vanillin. Among these enzymes it is possible to find soy lipoxidase (Markus et al., 1994), lignostilbeno-a, β-dioxygenase from Pseudomonas sp. (Kamoda et al., 1989) and enzyme preparations containing beta-glucosidases, pectinases, xylanases and cellulases mainly to improve the purification of vanillin from orchid pods (Ruiz-Terán et al., 2001).
En el estado del arte también se ha descrito el uso de la enzima vanillil alcohol oxidasa (VAO, EC: 1.1.3.38) para producir vainillina (4-hidroxi-3-metoxibenzaldehído) a través de la oxidación del alcohol vainillilo (alcohol 4-hidroxi-3-metoxibencil), la desmetilación oxidativa de 2-metoxi-4-
(metoximetil) fenol, y la desanimación oxidativa de vanillilamina (4-hidroxi-3-metoxibencilamina) (Fraaije et al., 1995; van den Heuvel et al., 2001). The use of the enzyme vanillyl alcohol oxidase (VAO, EC: 1.1.3.38) to produce vanillin (4-hydroxy-3-methoxybenzaldehyde) through the oxidation of vanillyl alcohol (alcohol 4-) has also been described in the state of the art hydroxy-3-methoxybenzyl), the oxidative demethylation of 2-methoxy-4- (methoxymethyl) phenol, and the oxidative discouragement of vanillylamine (4-hydroxy-3-methoxybenzylamine) (Fraaije et al., 1995; van den Heuvel et al., 2001).
Esta enzima VAO existe en la naturaleza como una enzima homo octamérica de 520 KDa capaz de catalizar un amplio espectro de oxidaciones (Fraaije et al., 1995). Aparte de la forma octamérica de VAO, que es muy difícil de mantener activa, también se ha demostrado la existencia de una forma dimérica de la enzima, pero existe en una proporción mucho más pequeña que la forma octamérica (Tahallah et al., 2002). This VAO enzyme exists in nature as a 520 KDa homo octameric enzyme capable of catalyzing a broad spectrum of oxidations (Fraaije et al., 1995). Apart from the octameric form of VAO, which is very difficult to keep active, the existence of a dimeric form of the enzyme has also been demonstrated, but it exists in a much smaller proportion than the octameric form (Tahallah et al., 2002) .
Para catalizar la oxidación del sustrato, VAO se basa en un grupo prostético de flavina adenina dinucleótido (FAD), unido covalentemente a cada subunidad (de Jong et al., 1992; Fraaije et al, 1999). Esta enzima se encuentra de forma natural en el hongo Penicillium simplicissimum (de Jong et al., 1992), y ha sido clonada a partir de este hongo y expresada heterólogamente en Aspergillus niger y Escherichia coli como una enzima flavinada y catalíticamente activa, sin embargo, con bajos rendimientos (Benen et al., 1998). To catalyze substrate oxidation, VAO relies on a prosthetic group of flavin adenine dinucleotide (FAD), covalently bound to each subunit (de Jong et al., 1992; Fraaije et al, 1999). This enzyme is found naturally in the fungus Penicillium simplicissimum (de Jong et al., 1992), and has been cloned from this fungus and expressed heterologously in Aspergillus niger and Escherichia coli as a flavinated and catalytically active enzyme, however , with low yields (Benen et al., 1998).
De este modo, obtener una enzima capaz de producir vainillina de forma eficiente y estable, es un objetivo deseable en el estado de la técnica. Thus, obtaining an enzyme capable of producing vanillin efficiently and stably is a desirable goal in the state of the art.
Para solucionar este problema técnico los inventores han desarrollado una nueva enzima vainillil alcohol oxidasa VAO recombinante, que fusiona VAO y la proteína de unión a maltosa (MBP), donde esta nueva enzima no se deriva del estado de la técnica anterior y sorprendentemente tiene una estabilidad mejorada y es de alto rendimiento, lo que permite obtener vainillina en una forma eficiente. To solve this technical problem, the inventors have developed a new recombinant VAO vanillyl alcohol oxidase enzyme, which fuses VAO and maltose binding protein (MBP), where this new enzyme is not derived from the prior art and surprisingly has a stability improved and is high performance, which allows to obtain vanillin in an efficient way.
En el arte previo se conocen algunas proteínas VAO clonadas, por ejemplo en el documento US2010028963 Al (MANE FILS V [FR]; 2010-02-04), clonan la enzima VAO en levaduras para la producción de vainilla, no obstante la proteína clonada no es quimérica ni ha sido modificada para mejorar la estabilidad de la enzima obtenida, por lo que este documento no afecta la novedad de la invención. In the prior art some cloned VAO proteins are known, for example in US2010028963 Al (MANE FILS V [FR]; 2010-02-04), they clone the VAO enzyme in yeasts for the production of vanilla, despite the cloned protein It is not chimeric nor has it been modified to improve the stability of the enzyme obtained, so this document does not affect the novelty of the invention.
Por otra parte el documento CN103820375 A (UNIV ANHUI NORMAL; 2014-05-28), divulga una cepa transformada con un vector que expresa vainillil alcohol oxidasa asociada a otras enzimas para la producción de ácido felúrico, en el documento no se plantea la modificación de esta enzima, por lo que este documento no afecta la novedad de la invención.
Finalmente, en la publicación científica de Van den Heuvel RH, (2004), se estudian mutantes de VAO con modificaciones en un aminoácido, el documento no incluye proteínas de fusión. Como puede observarse, en el estado del arte no se anticipa la proteína VAO recombinante de la invención. On the other hand, document CN103820375 A (UNIV ANHUI NORMAL; 2014-05-28), discloses a strain transformed with a vector that expresses vanillyl alcohol oxidase associated with other enzymes for the production of feluric acid, the document does not propose the modification of this enzyme, so this document does not affect the novelty of the invention. Finally, in the scientific publication of Van den Heuvel RH, (2004), VAO mutants with modifications in an amino acid are studied, the document does not include fusion proteins. As can be seen, the recombinant VAO protein of the invention is not anticipated in the state of the art.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
FIGURA 1. Construcción y purificación de recombinantes VAO. (A) Representación del vector transportador construido para expresar VAO con MBP. Se utilizó el plásmido pMGWA para expresar una enzima VAO recombinante unido a MBP en el extremo N-terminal y un His-tag en el extremo C-terminal (Hisóx). También se muestran peso molecular teórico tanto para cada péptido y para la proteína VAOr. (B) tinción con azul de Coomassie de SDS-PAGE de los extractos totales de células que expresan pMGWA BL21-VAO. Carril 1 : Las células no inducidas, carril 2: células inducida, carril 3: Proteínas eluidas después de la etapa de purificación en resina de amilosa y el carril 4: MBP-VAO-His después de una segunda purificación en resina de níquel. En cada carril se cargaron 15 g de proteína total. FIGURE 1. Construction and purification of VAO recombinants. (A) Representation of the transport vector constructed to express VAO with MBP. Plasmid pMGWA was used to express a recombinant VAO enzyme bound to MBP at the N-terminal end and a His-tag at the C-terminal end (Hisox). Theoretical molecular weight is also shown for each peptide and for the VAOr protein. (B) Coomassie blue staining of SDS-PAGE of total cell extracts expressing pMGWA BL21-VAO. Lane 1: Uninduced cells, lane 2: induced cells, lane 3: Proteins eluted after the amylose resin purification step and lane 4: MBP-VAO-His after a second nickel resin purification. In each lane 15 g of total protein were loaded.
FIGURA 2. Curva de actividad enzimática de la enzima VAOr de la invención. La actividad catalítica se determinó usando alcohol vainillilo como sustrato. El ensayo se realizó a pH 9,0 en 50 mM de tampón de carbonato a temperatura ambiente (23-25 °C) usando 0,5 g de VAO purificada en 500 (correspondiente a 8 nM de VAO) y etanol no más del 0,5%. Cada punto representa la media de cuatro ensayos independientes. FIGURE 2. Enzymatic activity curve of the VAOr enzyme of the invention. The catalytic activity was determined using vanillyl alcohol as a substrate. The test was performed at pH 9.0 in 50 mM of carbonate buffer at room temperature (23-25 ° C) using 0.5 g of purified VAO in 500 (corresponding to 8 nM of VAO) and ethanol no more than 0 ,5%. Each point represents the average of four independent trials.
FIGURA 3. Mantención de la Actividad catalítica de MBP-VAO-His en distintas condiciones, usando alcohol vainillilo como sustrato, los ensayos se realizaron a pH 9 en 50 mM de tampón carbonato usando 0,5 g de VAO purificada en 500 (correspondiente a 8 nM de VAO) y etanol no más del 0,5%; después de mantener la enzima durante 1 hora a temperatura ambiente (23-25 °C; RT), después de 48 horas a temperatura ambiente (23-25 °C; RT), y después de mantener la enzima durante 1 hora a 40, 50 y 60°C. Cada barra representa la media de cuatro ensayos independientes.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN FIGURE 3. Maintaining the catalytic activity of MBP-VAO-His under different conditions, using vanillyl alcohol as a substrate, the tests were performed at pH 9 in 50 mM carbonate buffer using 0.5 g of VAO purified in 500 (corresponding to 8 nM of VAO) and ethanol not more than 0.5%; after keeping the enzyme for 1 hour at room temperature (23-25 ° C; RT), after 48 hours at room temperature (23-25 ° C; RT), and after keeping the enzyme for 1 hour at 40, 50 and 60 ° C. Each bar represents the average of four independent trials. DETAILED DESCRIPTION OF THE INVENTION
En la presente invención se ha desarrollado una nueva forma recombinante de la enzima vainillil alcohol oxidasa (VAO) donde esta enzima está fusionada con la proteína de unión a maltosa (MBP), en su extremo N-terminal. In the present invention, a new recombinant form of the enzyme vanillyl alcohol oxidase (VAO) has been developed where this enzyme is fused with the maltose binding protein (MBP), at its N-terminal end.
Opcionalmente, la enzima VAO se fusiona además en su extremo C -terminal con una molécula que facilite su purificación, una cola o tag de afinidad, tal como una cola de histidina, AviTag, Calmoduling-tag, Myc-tag, Xpress-tag o Flag-tag, entre otros, en una realización preferida se escoge hexahistidina (His). Optionally, the VAO enzyme is also fused at its C-terminal end with a molecule that facilitates its purification, an affinity tail or tag, such as a histidine tail, AviTag, Calmoduling-tag, Myc-tag, Xpress-tag or Flag-tag, among others, in a preferred embodiment hexahistidine (His) is chosen.
La realización preferida de la invención, la proteína recombinante MBP-VAO-Hise fue expresada por los inventores en E. coli encontrándose que la proteína resultante se caracteriza por ser soluble, con altos rendimientos, con la cinética enzimática muy similares y estabilidad mejorada en comparación con los parámetros ya descritos para VAO silvestre. Esta proteína VAOr de la invención forma dimeros en solución tampón, los que son más estables que la conformación octamérica mayoritaria de la VAO silvestre, y por lo tanto esta mayor estabilidad de la estructura cuaternaria permite una mejor eficiencia de la enzima de la invención en procesos industriales. The preferred embodiment of the invention, the MBP-VAO-Hise recombinant protein was expressed by the inventors in E. coli, finding that the resulting protein is characterized by being soluble, with high yields, with very similar enzyme kinetics and improved stability in comparison with the parameters already described for wild VAO. This VAOr protein of the invention forms dimeros in buffer solution, which are more stable than the majority octameric conformation of wild VAO, and therefore this greater stability of the quaternary structure allows a better efficiency of the enzyme of the invention in processes. Industrial
De este modo la invención está dirigida a una proteina vainillil alcohol oxidasa recombinante que comprende la enzima vainillil alcohol oxidasa (VAO) fusionada con proteína de unión a maltosa (MBP) en su extremo N terminal, donde la enzima tiene al menos un 80% de homología con la SEQ ID No. 1 y donde la enzima vainillil alcohol oxidasa mantiene su actividad. Opcionalmente, está proteína de fusión tiene en su extremo C terminal una molécula que facilita su purificación; tal como un polipéptido de histidina. Thus the invention is directed to a recombinant vanillyl alcohol oxidase protein comprising the enzyme vanillyl alcohol oxidase (VAO) fused with maltose binding protein (MBP) at its N-terminal end, where the enzyme has at least 80% of Homology with SEQ ID No. 1 and where the vanillyl alcohol oxidase enzyme maintains its activity. Optionally, this fusion protein has a molecule at its C-terminus that facilitates its purification; such as a histidine polypeptide.
Donde la VAOr de la invención es altamente estable, forma dimeros en solución, y tiene una alta actividad enzimática. Where the VAOr of the invention is highly stable, it forms dimeros in solution, and has a high enzymatic activity.
En un segundo aspecto la invención se relaciona con un polinucleótido aislado, el que: a. codifica la proteína de la SEQ ID No. 1 ; o In a second aspect the invention relates to an isolated polynucleotide, which: a. encodes the protein of SEQ ID No. 1; or
b. tiene al menos un 80% de homología con la secuencia SEQ ID No. 2; b. It has at least 80% homology with the sequence SEQ ID No. 2;
c. tiene una secuencia que está degenerada como resultado de la degeneración del código genético respecto de las secuencias definidas en (a) o (b); o C. it has a sequence that is degenerated as a result of the degeneracy of the genetic code with respect to the sequences defined in (a) or (b); or
d. es la secuencia reversa complementaria de las secuencias definidas en (a), (b) o (c);
donde la proteína vainillil alcohol oxidasa codificada por este polinucleótido mantiene su actividad. d. it is the complementary reverse sequence of the sequences defined in (a), (b) or (c); where the vanillyl alcohol oxidase protein encoded by this polynucleotide maintains its activity.
Opcionalmente, en el extremo que codifica extremo C terminal de la proteína se incluye una secuencia que codifica una molécula que facilita la purificación de dicha proteína o un poli péptido que ancle la proteína a la membrana celular. Especialmente se prefiere un polipéptido para facilitar la purificación. Optionally, a sequence encoding a molecule that facilitates the purification of said protein or a polypeptide that anchors the protein to the cell membrane is included at the end encoding the C-terminus of the protein. A polypeptide is especially preferred to facilitate purification.
En un tercer aspecto la invención también está dirigida a un cassette de expresión que comprende el polinucleótido aislado, según se describe en el punto anterior, donde la secuencia polinucleotídica está operablemente unida a al menos una secuencia regulatoria que permite la expresión de la secuencia polinucleotídica en una célula u organismo de expresión, donde este cassette de expresión puede estar insertado en un vector de expresión. In a third aspect the invention is also directed to an expression cassette comprising the isolated polynucleotide, as described in the previous point, where the polynucleotide sequence is operably linked to at least one regulatory sequence that allows the expression of the polynucleotide sequence in an expression cell or organism, where this expression cassette can be inserted into an expression vector.
El un cuarto aspecto también se protege la célula transformada con el cassette y/o vector descrito en el párrafo anterior; donde preferentemente la célula transformada es una bacteria, en especial Escherichia coli. The fourth aspect also protects the transformed cell with the cassette and / or vector described in the previous paragraph; where preferably the transformed cell is a bacterium, especially Escherichia coli.
Finalmente, en un quinto aspecto, la invención se refiere a método de obtención de vainillina, en el que se contacta vainillil alcohol con la enzima vainillil alcohol oxidasa recombinante de la invención o con una célula transformada que expresa esta enzima de la invención. Finally, in a fifth aspect, the invention relates to the method of obtaining vanillin, in which vanillyl alcohol is contacted with the recombinant vanillyl alcohol oxidase enzyme of the invention or with a transformed cell expressing this enzyme of the invention.
La estabilidad de la nueva enzima recombinante de la invención está dada por la fusión de la enzima vainillil alcohol oxidasa (VAO) con la proteína de unión a maltosa (MBP), en su extremo N-terminal. El experto en la técnica sabe que las proteínas pueden tener modificaciones en su secuencia que no interfieren con su actividad, por esta razón la invención comprende la proteína según se define en la SEQ ID No. 1, y todas las modificaciones en su secuencia que no modifiquen la estructura terciaria de la misma, esto incluye todas las modificaciones posibles, hasta un 70% de homología con la secuencia, en segundo lugar se prefiere hasta un 80% de homología, y caso dado sólo hasta un 90% de homología, con la condición de que se mantiene la actividad catalítica de la enzima VAO. The stability of the new recombinant enzyme of the invention is given by the fusion of the vanillyl alcohol oxidase (VAO) enzyme with the maltose binding protein (MBP), at its N-terminal end. The person skilled in the art knows that proteins can have modifications in their sequence that do not interfere with their activity, for this reason the invention comprises the protein as defined in SEQ ID No. 1, and all modifications in its sequence that do not modify the tertiary structure thereof, this includes all possible modifications, up to 70% homology with the sequence, secondly up to 80% homology is preferred, and if necessary only up to 90% homology, with the condition that the catalytic activity of the enzyme VAO is maintained.
Al mismo tiempo, y de forma opcional, pero preferente, en el extremo C terminal es posible incluir una cola o tag que facilite la purificación de la proteína recombinante. Para el experto en la técnica será evidente que existen muchas moléculas o péptido que cumplen esa función, donde la naturaleza de esta cola no es determinante para la proteína de la invención, y puede utilizarse cualquier molécula que permita la purificación de la proteína de la invención. Ejemplos de estos péptidos son: poli histidina, AviTag, Calmoduling-tag, Myc-tag, Xpress-tag, Flag-tag, entre otros.
El polinucleótido aislado de la invención es aquel que codifica para la proteína recombinante de la invención MBP-VAO, como indicamos, las proteínas VAO y MBP pueden tener modificaciones en su secuencia que no modifican su actividad ni su conformación, todas esas modificaciones en la secuencia están comprendidas en el alcance de la presente invención, siendo el parámetro fundamental el que la enzima VAO mantenga su actividad catalítica. Adicionalmente, se encuentran dentro del alcance de la invención todas las secuencias nucleotídicas que codifiquen todas las posibles secuencias de las proteínas fusionadas, y sus secuencias reversas complementarias. At the same time, and optionally, but preferably, at the C-terminal end it is possible to include a tail or tag that facilitates the purification of the recombinant protein. It will be clear to the person skilled in the art that there are many molecules or peptides that fulfill that function, where the nature of this tail is not decisive for the protein of the invention, and any molecule that allows the purification of the protein of the invention can be used . Examples of these peptides are: poly histidine, AviTag, Calmoduling-tag, Myc-tag, Xpress-tag, Flag-tag, among others. The isolated polynucleotide of the invention is one that codes for the recombinant protein of the invention MBP-VAO, as we indicated, the VAO and MBP proteins can have modifications in their sequence that do not modify their activity or their conformation, all those modifications in the sequence they fall within the scope of the present invention, the fundamental parameter being that the VAO enzyme maintains its catalytic activity. Additionally, all nucleotide sequences encoding all possible sequences of the fused proteins, and their complementary reverse sequences are within the scope of the invention.
De modo de obtener la proteína VAOr de la invención, esta debe ser clonada y expresada dentro de una célula. Para esto, en primer lugar se debe insertar operativamente un polinucleótido que tiene al menos un 80% de homología con la secuencia SEQ ID No. 2 dentro de un plásmido o vector de expresión. Este vector debe tener una secuencia regulatoria que permita la expresión de dicha secuencia polinucleotídica en una célula hospedera. En el estado del arte existen muchos vectores de expresión, en esta invención puede utilizarse cualquiera de los que se encuentren disponibles, ya que la naturaleza del vector no es relevante para la realización de la invención. Sin perjuicio de lo anterior, el vector que comprende un polinucleótido que tiene al menos un 80% de homología con la secuencia SEQ ID No. 2 se considera uno de los productos de la invención y se encuentra protegido en sí mismo. In order to obtain the VAOr protein of the invention, it must be cloned and expressed within a cell. For this, a polynucleotide that has at least 80% homology with the sequence SEQ ID No. 2 must first be operatively inserted into a plasmid or expression vector. This vector must have a regulatory sequence that allows the expression of said polynucleotide sequence in a host cell. In the state of the art there are many expression vectors, in this invention any of those available may be used, since the nature of the vector is not relevant for the realization of the invention. Notwithstanding the foregoing, the vector comprising a polynucleotide that has at least 80% homology with the sequence SEQ ID No. 2 is considered one of the products of the invention and is itself protected.
Una vez obtenido el vector que expresa la proteína VAOr de la invención este debe ser transfectado en una célula hospedera por cualquier método de transformación disponible en la técnica. La célula transformada, también es un producto de la presente invención. Una vez obtenida la célula transformada, esta se incuba y en caso dado se estimula la expresión de la proteína de la invención de acuerdo con las condiciones requeridas por la secuencia regulatoria del vector. Posteriormente, las células se rompen y se recupera la proteína VAOr de la invención desde la fracción soluble del sobrenadante. Once the vector expressing the VAOr protein of the invention has been obtained, it must be transfected into a host cell by any transformation method available in the art. The transformed cell is also a product of the present invention. Once the transformed cell is obtained, it is incubated and if necessary the expression of the protein of the invention is stimulated according to the conditions required by the regulatory sequence of the vector. Subsequently, the cells are broken and the VAOr protein of the invention is recovered from the soluble fraction of the supernatant.
En una realización preferida la proteína se expresa dentro de una bacteria, en especial en E. coli, no obstante, el experto en la técnica sabe que las proteínas pueden expresarse en cualquier modelo de clonamiento disponible en la técnica, es decir, levaduras, microalgas, plantas, células vegetales, células de insectos, células de animales o en sistemas de expresión in vitro, desarrollando en cada caso un vector de expresión y una secuencia nucleotídica adecuado a la célula hospedera escogida. En caso dado también es posible que la cola del extremo C terminal sea una proteína o polipéptido liposoluble, de transmembrana, en cuyo caso la proteína podría expresarse en la membrana de la célula hospedera, y emplearse la célula completa en el proceso de obtención de la vainillina. En la
realización preferida de la invención la enzima se purifica para emplearse en la producción de vainillina. In a preferred embodiment the protein is expressed within a bacterium, especially in E. coli, however, the person skilled in the art knows that proteins can be expressed in any cloning model available in the art, that is, yeasts, microalgae. , plants, plant cells, insect cells, animal cells or in vitro expression systems, developing in each case an expression vector and a nucleotide sequence suitable to the chosen host cell. If necessary, it is also possible that the tail of the C-terminal end is a transmembrane liposoluble protein or polypeptide, in which case the protein could be expressed in the host cell membrane, and the whole cell can be used in the process of obtaining the vanillin In the Preferred embodiment of the invention the enzyme is purified to be used in the production of vanillin.
Penicillium simplicissimum produce naturalmente una VAO intracelular cuando se cultiva con alcohol veratrílico como única fuente de carbono y energía, produciendo 14,7 mg / L de enzima cada dos días (de Jong et al., 1992). Anteriormente a esta invención se habían producido VAO recombinantes en Aspergillus niger, donde los rendimientos no se informaron claramente, y E. coli con rendimientos inferiores a 5 mg / L, incluso después de la optimización de la secuencia clonada (Benen et al., 1998). Los inventores intentaron previamente obtener VAO como una proteína His- tag, pero encontraron dificultades para expresar y purificar esta proteína recombinante. Por el contrario, la proteína de la invención MBP-VAO se expresó y se purificó fácilmente de la fracción soluble de todo extracto de E. coli con altos rendimientos (de 40-80 mg / 1) y pureza (90%). No se requirieron fermentador o la optimización de condiciones de cultivo para lograr estos niveles de producción de la enzima, lo que sugiere que la productividad se puede incrementar fácilmente incluso por encima de estos valores. Penicillium simplicissimum naturally produces an intracellular VAO when grown with veratryl alcohol as the sole source of carbon and energy, producing 14.7 mg / L of enzyme every two days (de Jong et al., 1992). Prior to this invention, recombinant VAOs had been produced in Aspergillus niger, where yields were not clearly reported, and E. coli with yields below 5 mg / L, even after optimization of the cloned sequence (Benen et al., 1998 ). The inventors previously tried to obtain VAO as a Spanish protein, but found difficulties in expressing and purifying this recombinant protein. In contrast, the MBP-VAO protein of the invention was expressed and easily purified from the soluble fraction of all E. coli extract with high yields (from 40-80 mg / 1) and purity (90%). No fermenter or optimization of culture conditions were required to achieve these enzyme production levels, suggesting that productivity can be easily increased even above these values.
Para expresar MBP-VAO-His, hemos clonado exactamente el mismo cDNA descrito previamente (Benen et al., 1998). Sin embargo hemos sido capaces de producir y purificar 10-15 veces más proteína. To express MBP-VAO-His, we have cloned exactly the same cDNA described previously (Benen et al., 1998). However we have been able to produce and purify 10-15 times more protein.
Si bien se ha reportado el uso de MBP en proteínas recombinantes, de modo de mejorar la solubilidad de la proteína, también se ha demostrado que la capacidad de MBP para promover la solubilidad de proteínas quiméricas puede resultar en la inducción de plegamiento incorrecto de la proteína a la que está unida (Raran-Kurussi y Waugh, 2012). Por lo que no era obvio que la unión de MBP y VAO resultara en una VAO activa, y ese es el aporte de esta invención, donde se demuestra que la proteína recombinante es activa y estable y soluciona un problema técnico en la utilización de esta enzima en la industria. While the use of MBP in recombinant proteins has been reported, in order to improve the solubility of the protein, it has also been demonstrated that the ability of MBP to promote the solubility of chimeric proteins can result in the induction of incorrect protein folding to which it is attached (Raran-Kurussi and Waugh, 2012). So it was not obvious that the binding of MBP and VAO resulted in an active VAO, and that is the contribution of this invention, where it is demonstrated that the recombinant protein is active and stable and solves a technical problem in the use of this enzyme in the industry.
Al estudiar los parámetros cinéticos de la enzima VAOr de la invención se obtuvo una Km de 239 μΜ y la Kcat fue de 2,4 s-1, mientras que para la enzima VAO silvestre, Van den Heuvel y sus colaboradores (2004) informaron de una Km de 189 μΜ, mientras Kcat fue 2,4 s-1 utilizando alcohol vanillilo como sustrato a pH 10,0, mientras Fraaije y sus colaboradores (1995) estimaron un valor Km de 290 μΜ y Kcat de 5,4 s-1 a pH 10,0. Es decir, la enzima de la invención tiene cinéticas similares a la de la enzima nativa, por lo que la unión a MBP no afectó su actividad.
La invención podrá ser mejor entendida a la luz de los ejemplos incluidos a continuación, los que son ilustrativos y no limitativos de una de las realizaciones de esta. When studying the kinetic parameters of the VAOr enzyme of the invention, a Km of 239 μΜ was obtained and the Kcat was 2.4 s-1, while for the wild VAO enzyme, Van den Heuvel and his collaborators (2004) reported a Km of 189 μΜ, while Kcat was 2.4 s-1 using vanillyl alcohol as a substrate at pH 10.0, while Fraaije and his collaborators (1995) estimated a Km value of 290 μΜ and Kcat of 5.4 s-1 at pH 10.0. That is, the enzyme of the invention has kinetics similar to that of the native enzyme, so binding to MBP did not affect its activity. The invention may be better understood in the light of the examples included below, which are illustrative and not limiting of one of the embodiments thereof.
Ejemplo 1. Example 1.
Clonamiento de VAO VAO cloning
Se escogió el gen de vaoA de P. simplicissimum, la secuencia del gen se obtuvo de la base de datos GenBank (número de acceso Y15627) y se sintetizó mediante GeneScript Inc (EE.UU.). Se añadió la secuencia CACC justo antes de la 5'ATG del gen original, para permitir una inserción correcta de la vaoA ORF en el vector pENTR / D-TOPO. Después de clonar en el vector pENTR, vaoA - pENTR fue amplificada y se clonó posteriormente, mediante el uso de reacción clonasa LR, en pMGWA donde se añadió proteína de unión a maltosa al extremo N-terminal y una cola de 6 Histidinas en el extremo C-terminal de la vaoA tipo silvestre. La correcta inserción y marco de lectura del gen vaoA clonado en el nuevo vector pMGWA se verificó mediante secuenciación (Macrogen EE.UU.). Como muestra la Figura 1A, la adición de estos péptidos aumentó en un 52% el peso molecular de VAO. Sin embargo, como se verá más adelante, estas modificaciones no afectaron la enzima de una manera negativa. The P. simplicissimum vaoA gene was chosen, the gene sequence was obtained from the GenBank database (accession number Y15627) and was synthesized by GeneScript Inc (USA). The CACC sequence was added just before the 5'ATG of the original gene, to allow a correct insertion of the ORF vaoA into the pENTR / D-TOPO vector. After cloning into the pENTR vector, vaoA-pENTR was amplified and subsequently cloned, using clone reaction LR, into pMGWA where maltose binding protein was added to the N-terminal end and a 6 Histidine tail at the end C-terminal of the wild type vaoA. The correct insertion and reading frame of the vaoA gene cloned into the new pMGWA vector was verified by sequencing (Macrogen USA). As Figure 1A shows, the addition of these peptides increased the molecular weight of VAO by 52%. However, as will be seen later, these modifications did not affect the enzyme in a negative way.
Expresión y purificación de VAOr VAOr expression and purification
E coli BL21 (DE3) pLysS transformada con el plásmido obtenido en la etapa anterior, que lleva pMGWA- vaoA, se cultivó a 37°C en 1 L de caldo Terrific suplementado con 100 mg de ampicilina hasta que alcanzó DOeoo de 0,8. Posteriormente se indujo la expresión de la enzima de la invención con 0,5 mM isopropil-l-tio- -D -galactopiranosido (IPTG) durante toda la noche a 18 °C. E coli BL21 (DE3) pLysS transformed with the plasmid obtained in the previous stage, which carries pMGWAvaoA, was grown at 37 ° C in 1 L of Terrific broth supplemented with 100 mg of ampicillin until it reached DOeoo of 0.8. The expression of the enzyme of the invention was subsequently induced with 0.5 mM isopropyl-l-thio-D-galactopyranoside (IPTG) overnight at 18 ° C.
Las células se recogieron por centrifugación a 4°C y se resuspendieron en 40 mi de tampón 20 mM Tris, pH 7,4, NaCl 0,2 M, EDTA 1 mM, y 1 tableta de cóctel inhibidor de proteasa (Roche Diagnostics GmbH, Alemania). Las células se rompieron por sonicación a 4°C, y se sometieron a centrifugación durante 30 min a 15000g y 4°C, para eliminar los restos celulares. Los extractos brutos se cargaron en 15 mi de una columna de amilosa (New England Biolabs, Reino Unido) pre- equilibrada en el mismo tampón de ruptura. A continuación, la columna se lavó con 150 mi del mismo tampón de carga y se eluyó con 50 mi de tampón Tris 20 mM, pH 7,4, NaCl 0,2 M, EDTA 1 mM y maltosa 10 mM. La proteína de la invención se encuentra en este eluido.
En una etapa de purificación adicional, la preparación obtenida de la elución con amilosa se sometió a cromatografía en una resina Ni-NTA HisPur pre-equilibrada con un tampón Tris 20 mM, pH 7,4, NaCl 0,2 M, EDTA 1 mM. Posteriormente, la enzima eluida desde la columna Ni-NTA, se dializó 3 veces frente a tampón de fosfato de potasio 10 mM, pH 8,0, NaCl 0,2 M. Finalmente, las fracciones eluidas que contienen VAOr se agruparon y se almacenan en 50% de glicerol a -20°C. The cells were collected by centrifugation at 4 ° C and resuspended in 40 ml of 20 mM Tris buffer, pH 7.4, 0.2 M NaCl, 1 mM EDTA, and 1 protease inhibitor cocktail tablet (Roche Diagnostics GmbH, Germany). The cells were broken by sonication at 4 ° C, and subjected to centrifugation for 30 min at 15000g and 4 ° C, to remove cell debris. The crude extracts were loaded in 15 ml of a column of amylose (New England Biolabs, United Kingdom) prebalanced in the same rupture buffer. Next, the column was washed with 150 ml of the same loading buffer and eluted with 50 ml of 20 mM Tris buffer, pH 7.4, 0.2 M NaCl, 1 mM EDTA and 10 mM maltose. The protein of the invention is found in this eluate. In an additional purification step, the preparation obtained from the elution with amylose was chromatographed on a pre-equilibrated HisPur Ni-NTA resin with a 20 mM Tris buffer, pH 7.4, 0.2 M NaCl, 1 mM EDTA . Subsequently, the enzyme eluted from the Ni-NTA column was dialyzed 3 times against 10 mM potassium phosphate buffer, pH 8.0, 0.2 M NaCl. Finally, the eluted fractions containing VAOr were pooled and stored. in 50% glycerol at -20 ° C.
La pureza de la enzima fue verificada por 12% SDS-PAGE, donde se utilizó Coomassie Blue R-250 para la tinción de proteínas. La Proteína VAO recombinante pura de la invención se obtuvo activa, con un alto rendimiento, de entre 40 a 80 mg / L, con una pureza de al menos 90% (Figura IB, carriles 3 y 4). Estos resultados son significativamente superiores a lo reportado en el arte previo, donde Benen (Benen, et al, 1998. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase. J. Biol. Chem. 273, 7865-72. doi:10.1074/jbc.273.14.7865) informaron de la primera clonación de ADNc VAO en un sistema de E. coli con a un rendimiento final inferior a 5 mg / L, es decir la expresión de la proteína de la invención tiene rendimientos entre 10 a 15 veces superiores a lo reportado anteriormente. The purity of the enzyme was verified by 12% SDS-PAGE, where Coomassie Blue R-250 was used for protein staining. The pure recombinant VAO Protein of the invention was obtained active, with a high yield, between 40 to 80 mg / L, with a purity of at least 90% (Figure IB, lanes 3 and 4). These results are significantly superior to those reported in the prior art, where Benen (Benen, et al, 1998. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase. J. Biol. Chem. 273, 7865-72. Doi: 10.1074 / jbc.273.14.7865) reported the first cloning of VAO cDNA in an E. coli system with a final yield of less than 5 mg / L, ie the expression of The protein of the invention has yields 10 to 15 times higher than previously reported.
Ejemplo 2. Example 2
Caracterización de VAOr VAOr characterization
Una reacción representativa de la actividad de VAO es la síntesis de la vainillina a partir de su precursor alcohol vainillilo, y dado que es también la más importante desde el punto de vista comercial, la evaluación de la enzima se estudió en la catálisis de esta reacción. A representative reaction of VAO activity is the synthesis of vanillin from its vanillyl alcohol precursor, and since it is also the most important commercially, the enzyme evaluation was studied in the catalysis of this reaction. .
La actividad de la enzima de la invención obtenida en el ejemplo 1, MBP-VAO-His, se estimó espectrofotométricamente a 340 nm ya que el producto de la reacción, vainillina, puede ser detectado a esa longitud de onda. La proteína VAOr de la invención, como se obtuvo en el ejemplo 1, se diluyó a una concentración final de 0,001 mg / mi (aproximadamente 8 nM), a partir de una solución madre a 0,37 mg / mi. La reacción se realizó agregando alcohol vainillilo a distintas concentraciones. Los ensayos se realizaron a temperatura ambiente (RT), a pH 9,0, en 50 mM de tampón de carbonato y en triplicado. La reacción se monitoreó en un espectrofotómetro UV / VIS Optizen Pop. Para determinar la Km de la reacción la concentración de sustrato se varió gradualmente (0, 0,05, 0,1, 0,25, 0,5, 1, 2, 4, 6 y 8 mM), mientras que la concentración de enzima se
mantuvo constante a 0,001 mg / mL. La curva experimental se ajustó a la ecuación de Michaelis- Menten y la regresión no lineal se realizó usando el programa Sigmaplot 11.0 (Systat Software, Inc) The enzyme activity of the invention obtained in example 1, MBP-VAO-His, was estimated spectrophotometrically at 340 nm since the reaction product, vanillin, can be detected at that wavelength. The VAOr protein of the invention, as obtained in example 1, was diluted to a final concentration of 0.001 mg / ml (approximately 8 nM), from a stock solution at 0.37 mg / ml. The reaction was performed by adding vanillyl alcohol at different concentrations. The tests were performed at room temperature (RT), at pH 9.0, in 50 mM carbonate buffer and in triplicate. The reaction was monitored on an Optizen Pop UV / VIS spectrophotometer. To determine the Km of the reaction the substrate concentration was varied gradually (0, 0.05, 0.1, 0.25, 0.5, 1, 2, 4, 6 and 8 mM), while the enzyme concentration is kept constant at 0.001 mg / mL. The experimental curve was adjusted to the Michaelis-Menten equation and the non-linear regression was performed using the Sigmaplot 11.0 program (Systat Software, Inc)
La Figura 2 muestra la cinética de Michaelis-Menten de la enzima de la invención en las condiciones descritas, donde la VAOr de la invención alcanza su Vmáx a 12,8 U / mg de enzima, que corresponde a alrededor de 4 mM de alcohol vainillilo (8 nM concentración VAO). Por otra parte, la Km obtenida fue de 239 μΜ y la Kcat fue de 2,4 s-1. Figure 2 shows the Michaelis-Menten kinetics of the enzyme of the invention under the conditions described, where the VAOr of the invention reaches its Vmax at 12.8 U / mg enzyme, corresponding to about 4 mM of vanillyl alcohol (8 nM VAO concentration). On the other hand, the Km obtained was 239 μΜ and the Kcat was 2.4 s-1.
Bajo nuestras condiciones, la proteína de fusión VAO mostró parámetros cinéticos similares a los reportados para la enzima nativa (de Jong et al., 1992;. Fraaije et al., 1995; Van den Heuvel et al, 2004). Under our conditions, the VAO fusion protein showed similar kinetic parameters to those reported for the native enzyme (de Jong et al., 1992; Fraaije et al., 1995; Van den Heuvel et al, 2004).
Ejemplo 3 Example 3
Estabilidad de VAO VAO Stability
Se evaluó la actividad enzimática de la enzima de la invención usando alcohol vainillilo como sustrato, los ensayos se realizaron a pH 9 en 50 mM de tampón carbonato usando 0,5 g de VAO purificada en 500 (correspondiente a 8 nM de VAO) y etanol no más del 0,5%; después de mantener la enzima durante 1 hora a temperatura ambiente (23-25 °C; RT), después de 48 horas a temperatura ambiente (23-25 °C; RT), y después de mantener la enzima durante 1 hora a 40, 50 y 60°C. Los resultados se expresan en actividad relativa respecto a la condición de 1 hora a temperatura ambiente y se muestran en la Figura 3, donde cada barra representa el promedio de 4 estudios independientes. Se observa que la actividad de MBP- VAO -His tratada a 40 °C o 50 °C durante 1 horas permaneció casi la misma que la muestra que se mantuvo a temperatura ambiente durante 1 hora, disminuyendo la actividad sólo después de tratamiento a 60°C por una hora (Figura 3). Sorprendentemente, la enzima recombinante MBP- VAO -His mantuvo su actividad casi completa después de 2 días a temperatura ambiente sin ningún tipo de protección (Figura 3). Esto demuestra la estabilidad de la enzima de la invención. The enzyme activity of the enzyme of the invention was evaluated using vanillyl alcohol as a substrate, the tests were performed at pH 9 in 50 mM carbonate buffer using 0.5 g of purified VAO in 500 (corresponding to 8 nM of VAO) and ethanol no more than 0.5%; after keeping the enzyme for 1 hour at room temperature (23-25 ° C; RT), after 48 hours at room temperature (23-25 ° C; RT), and after keeping the enzyme for 1 hour at 40, 50 and 60 ° C. The results are expressed in relative activity with respect to the 1 hour condition at room temperature and are shown in Figure 3, where each bar represents the average of 4 independent studies. It is observed that the activity of MBP-VAO -His treated at 40 ° C or 50 ° C for 1 hour remained almost the same as the sample that was kept at room temperature for 1 hour, decreasing the activity only after treatment at 60 ° C for one hour (Figure 3). Surprisingly, the recombinant enzyme MBP-VAO-His maintained its almost complete activity after 2 days at room temperature without any protection (Figure 3). This demonstrates the stability of the enzyme of the invention.
Benen, J.A., Sánchez-Torres, P., Wagemaker, M.J.M., Fraaije, M.W., van Berkel, W.J.H., Visser, J., 1998. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase. J. Biol. Chem. 273, 7865-72. doi:10.1074/jbc.273.14.7865
De Jong, E., van Berkel, W.J.H., van der Zwan, R.P., de Bont, J.A.M., 1992. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208, 651-7. doi:10.1111/j. l432-1033.1992.tbl7231.x Benen, JA, Sánchez-Torres, P., Wagemaker, MJM, Fraaije, MW, van Berkel, WJH, Visser, J., 1998. Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl -alcohol oxidize. J. Biol. Chem. 273, 7865-72. doi: 10.1074 / jbc.273.14.7865 De Jong, E., van Berkel, WJH, van der Zwan, RP, de Bont, JAM, 1992. Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. Eur. J. Biochem. 208, 651-7. doi: 10.1111 / j. l432-1033.1992.tbl7231.x
Fraaije, M.W., Veeger, C, van Berkel, W.J.H., 1995. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4- hydroxycinnamyl alcohols from 4-allylphenols. Eur. J. Biochem. 234, 271-7. doi: 10.1111/j.1432- 1033.1995.271_c.x Fraaije, M.W., Veeger, C, van Berkel, W.J.H., 1995. Substrate specificity of flavin-dependent vanillyl-alcohol oxidase from Penicillium simplicissimum. Evidence for the production of 4- hydroxycinnamyl alcohols from 4-allylphenols. Eur. J. Biochem. 234, 271-7. doi: 10.1111 / j.1432-1033.1995.271_c.x
Fraaije, M.W., van den Heuvel, R.H.H., van Berkel, W.J.H., Mattevi, A., 1999. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J. Biol. Chem. 274, 35514-20. doi: 10.1074/jbc.274.50.35514 Fraaije, M.W., van den Heuvel, R.H.H., van Berkel, W.J.H., Mattevi, A., 1999. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase. J. Biol. Chem. 274, 35514-20. doi: 10.1074 / jbc.274.50.35514
Kamoda, S., Habu, N., Samejima, M., Yoshimoto, T., 1989. Purification and some properties of lignostilbene-a, -dioxygenase responsible for the Ca-C|¾ cleavage of a diarylpropane type lignin model compound from Pseudomonas sp. TMY1009. Agrie. Biol. Chem. 53, 2757-2761. Kamoda, S., Habu, N., Samejima, M., Yoshimoto, T., 1989. Purification and some properties of lignostilbene-a, -dioxygenase responsible for the C a -C | ¾ cleavage of a diarylpropane type lignin model compound from Pseudomonas sp. TMY1009. Agrie Biol. Chem. 53, 2757-2761.
Lambert, F., Zueca, J., Ness, F., Aigle, M., 2014. Production of ferulic acid and coniferyl alcohol by conversión of eugenol using a recombinant strain of Saccharomyces cerevisiae. Flavour Fragr. J. 29, 14-21. doi: 10.1002/ffj.3173 Lambert, F., Zueca, J., Ness, F., Aigle, M., 2014. Production of ferulic acid and coniferyl alcohol by conversion of eugenol using a recombinant strain of Saccharomyces cerevisiae. Flavor Fragr. J. 29, 14-21. doi: 10.1002 / ffj.3173
Markus, P.H., Peters, A.L., Roos, R., 1994. Process for the preparation of phenylaldehydes. US Pat. 5,358,861. Markus, P.H., Peters, A.L., Roos, R., 1994. Process for the preparation of phenylaldehydes. US Pat. 5,358,861.
Rabenhorst, J., Hopp, R., 1991. Process for the preparation of vanillin. US Pat. 5,017,388. Rabenhorst, J., Hopp, R., 1991. Process for the preparation of vanillin. US Pat. 5,017,388.
Rabenhorst, J., Hopp, R., 2000. Process for the preparation of vanillin and microorganisms suitable therefor. US Pat. 6, 133,003. Rabenhorst, J., Hopp, R., 2000. Process for the preparation of vanillin and microorganisms suitable therefor. US Pat. 6, 133,003.
Raran-Kurussi, S., Waugh, D.S., 2012. The ability to enhance the solubility of its fusión partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 7, e49589. doi: 10.1371/journal.pone.0049589 Raran-Kurussi, S., Waugh, D.S., 2012. The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 7, e49589. doi: 10.1371 / journal.pone.0049589
Ruiz-Terán, F., Pérez- Amador, I., López-Munguia, A., 2001. Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. J. Agrie. Food Chem. 49, 5207- 5209. doi: 10.1021/jf010723h Ruiz-Terán, F., Pérez-Amador, I., López-Munguia, A., 2001. Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. J. Agrie. Food Chem. 49, 5207- 5209. doi: 10.1021 / jf010723h
Tahallah, N., van den Heuvel, R.H.H., van den Berg, W.A.M., Maier, C.S., van Berkel, W.J.H., Heck, A.J.R., 2002. Cofactor-dependent assembly of the flavoenzyme vanillyl-alcohol oxidase. J. Biol. Chem. 277, 36425-32. doi: 10.1074/jbc.M205841200 Tahallah, N., van den Heuvel, R.H.H., van den Berg, W.A.M., Maier, C.S., van Berkel, W.J.H., Heck, A.J.R., 2002. Cofactor-dependent assembly of the flavoenzyme vanillyl-alcohol oxidase. J. Biol. Chem. 277, 36425-32. doi: 10.1074 / jbc.M205841200
Van den Heuvel, R.H.H., Fraaije, M.W., Laane, C, van Berkel, W.J.H., 2001. Enzymatic synthesis of vanillin. J. Agrie. Food Chem. 49, 2954-8. doi: 10.1021/jf010093j Van den Heuvel, R.H.H., Fraaije, M.W., Laane, C, van Berkel, W.J.H., 2001. Enzymatic synthesis of vanillin. J. Agrie. Food Chem. 49, 2954-8. doi: 10.1021 / jf010093j
Van den Heuvel, R.H.H., van den Berg, W.A.M., Rovida, S., van Berkel, W.J.H., 2004. Laboratory- evolved vanillyl-alcohol oxidase produces natural vanillin. J. Biol. Chem. 279, 33492-500. doi:10.1074/jbc.M312968200
Van den Heuvel, R.H.H., van den Berg, W.A.M., Rovida, S., van Berkel, W.J.H., 2004. Laboratory- evolved vanillyl-alcohol oxidase produces natural vanillin. J. Biol. Chem. 279, 33492-500. doi: 10.1074 / jbc.M312968200
Claims
1. Proteína vainillil alcohol oxidasa recombinante CARACTERIZADA porque comprende enzima vainillil alcohol oxidasa (VAO) fusionada con proteína de unión a maltosa (MBP) en su extremo N terminal, donde la enzima tiene al menos un 80% de homología con la SEQ ID No. 1 y donde la enzima vainillil alcohol oxidasa mantiene su actividad. 1. Recombinant vanillin alcohol oxidase protein CHARACTERIZED because it comprises vanillyl alcohol oxidase (VAO) enzyme fused with maltose binding protein (MBP) at its N-terminal end, where the enzyme has at least 80% homology with SEQ ID No. 1 and where the vanillyl alcohol oxidase enzyme maintains its activity.
2. Proteína vainillil alcohol oxidasa recombinante, de acuerdo a la reivindicación 1 CARACTERIZADA porque tiene en su extremo C terminal una molécula que facilita su purificación. 2. Recombinant vanillyl alcohol oxidase protein according to claim 1 CHARACTERIZED because it has a molecule at its C-terminal end that facilitates its purification.
3. Proteína vainillil alcohol oxidasa recombinante, de acuerdo a la reivindicación 2 CARACTERIZADA porque la molécula que facilita su purificación es un polipéptido de histidina. 3. Recombinant vanillyl alcohol oxidase protein according to claim 2 CHARACTERIZED because the molecule that facilitates its purification is a histidine polypeptide.
4. Proteína vainillil alcohol oxidasa recombinante, de acuerdo a cualquiera de las reivindicaciones anteriores CARACTERIZADA porque la VAOr es altamente estable, formando dímeros en solución, y tiene una alta actividad enzimática. 4. Recombinant vanillyl alcohol oxidase protein, according to any of the preceding claims CHARACTERIZED because the VAOr is highly stable, forming dimers in solution, and has a high enzymatic activity.
5. Polinucleótido aislado CARACTERIZADO porque: 5. Isolated polynucleotide CHARACTERIZED because:
a. codifica la proteína de la SEQ ID No. 1 ; o to. encodes the protein of SEQ ID No. 1; or
b. tiene al menos un 80% de homología con la secuencia SEQ ID No. 2; b. It has at least 80% homology with the sequence SEQ ID No. 2;
c. tiene una secuencia que está degenerada como resultado de la degeneración del código genético respecto de las secuencias definidas en (a) o (b); o C. it has a sequence that is degenerated as a result of the degeneracy of the genetic code with respect to the sequences defined in (a) or (b); or
d. es la secuencia reversa complementaria de las secuencias definidas en (a), (b) o (c); donde la proteína vainillil alcohol oxidasa codificada por este polinucleótido mantiene su actividad. d. it is the complementary reverse sequence of the sequences defined in (a), (b) or (c); where the vanillyl alcohol oxidase protein encoded by this polynucleotide maintains its activity.
6. Polinucleótido aislado de acuerdo a la reivindicación 5 CARACTERIZADO porque en el extremo que codifica extremo C terminal de la proteína codifica una molécula que facilita la purificación de dicha proteína. 6. Isolated polynucleotide according to claim 5 CHARACTERIZED in that at the end encoding the C-terminus of the protein encodes a molecule that facilitates the purification of said protein.
7. Polinucleótido aislado de acuerdo a la reivindicación 5 CARACTERIZADO porque en el extremo que codifica extremo C terminal de la proteína codifica polipéptido de histidina.
7. Isolated polynucleotide according to claim 5 CHARACTERIZED in that at the end encoding C-terminus of the protein encodes histidine polypeptide.
8. Vector CARACTERIZADO porque contiene el polinucleótido de la reivindicación 4. 8. CHARACTERIZED vector because it contains the polynucleotide of claim 4.
9. Vector de acuerdo a la reivindicación 8 CARACTERIZADO porque es un vector de expresión donde la secuencia polinucleotídica está operablemente unida a al menos una secuencia regulatoria que permite la expresión de la secuencia polinucleotídica en una célula hospedera. 9. Vector according to claim 8 CHARACTERIZED because it is an expression vector where the polynucleotide sequence is operably linked to at least one regulatory sequence that allows the expression of the polynucleotide sequence in a host cell.
10. Célula transformada CARACTERIZADA porque comprende el vector de acuerdo a las reivindicaciones 8 ó 9. 10. Transformed cell CHARACTERIZED because it comprises the vector according to claims 8 or 9.
11. Célula transformada de acuerdo a la reivindicación 10 CARACTERIZADA porque es una bacteria. 11. Transformed cell according to claim 10 CHARACTERIZED because it is a bacterium.
12. Célula transformada de acuerdo a la reivindicación 11 CARACTERIZADA porque es Escherichia coli. 12. Transformed cell according to claim 11 CHARACTERIZED because it is Escherichia coli.
13. Método de obtención de vainilla CARACTERIZADO porque se contacta vainillil alcohol con la enzima vainillil alcohol oxidasa recombinante de cualquiera de las reivindicaciones 1 a 4, o con la célula transformada que expresa esta enzima, de acuerdo con cualquiera de las reivindicaciones 10 a 12.
13. Method for obtaining CHARACTERIZED vanilla because vanillin alcohol is contacted with the recombinant vanillyl alcohol oxidase enzyme of any of claims 1 to 4, or with the transformed cell expressing this enzyme, according to any of claims 10 to 12.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CL2016000572A CL2016000572A1 (en) | 2016-03-10 | 2016-03-10 | Recombinant vanillyl alcohol oxidase protein (vaor) |
CL572-2016 | 2016-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017152297A1 true WO2017152297A1 (en) | 2017-09-14 |
Family
ID=59788885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CL2017/050012 WO2017152297A1 (en) | 2016-03-10 | 2017-03-10 | Recombinant vanillyl alcohol oxidase protein (vaor) |
Country Status (2)
Country | Link |
---|---|
CL (1) | CL2016000572A1 (en) |
WO (1) | WO2017152297A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0286239A1 (en) * | 1987-03-10 | 1988-10-12 | New England Biolabs, Inc. | Production and purification of a protein fused to a binding protein |
WO2015066722A1 (en) * | 2013-11-04 | 2015-05-07 | Bgn Tech Llc | Methods of making vanillin via the microbial fermentation of ferulic acid from eugenol using a plant dehydrogenase. |
-
2016
- 2016-03-10 CL CL2016000572A patent/CL2016000572A1/en unknown
-
2017
- 2017-03-10 WO PCT/CL2017/050012 patent/WO2017152297A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0286239A1 (en) * | 1987-03-10 | 1988-10-12 | New England Biolabs, Inc. | Production and purification of a protein fused to a binding protein |
WO2015066722A1 (en) * | 2013-11-04 | 2015-05-07 | Bgn Tech Llc | Methods of making vanillin via the microbial fermentation of ferulic acid from eugenol using a plant dehydrogenase. |
Non-Patent Citations (7)
Title |
---|
BENEN,J.A. ET AL.: "Molecular cloning, sequencing, and heterologous expression of the vaoA gene from Penicillium simplicissimum CBS 170.90 encoding vanillyl-alcohol oxidase", J. BIOL. CHEM., vol. 273, no. 14, 1998, pages 7865 - 7872, XP002410834 * |
DATABASE GenBank 14 November 2006 (2006-11-14), "Aryl-alcohol oxidase [Penicillium simplicissimum", XP055423847, Database accession no. CAA75722.1 * |
DATABASE GenBank 16 December 2002 (2002-12-16), "Periplasmic maltose-binding protein [Escherichia col", XP055423868, Database accession no. AAB59056.1 * |
DATABASE UniProtKB/ Swiss -Prot 11 November 2015 (2015-11-11), "Vanillyl-alcohol oxidase [Penicillium simplicissimum", XP055423863, Database accession no. P56216.1 * |
KAPUST, R. B. ET AL.: "Escherichia coli Maltose-Binding Protein Is Uncommonly Effective at Promoting the Solubility of Polypeptides to Which It Is Fused", PROTEIN SCIENCE : OA PUBLICATION OF THE PROTEIN SOCIETY, vol. 8.8, 1999, pages 1668 - 1674, XP001026839 * |
OVERHAGE, J. ET AL.: "Highly Efficient Biotransformation of Eugenol to Ferulic Acid and Further Conversion to Vanillin in Recombinant Strains of Escherichia coli", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 69, no. 11, November 2003 (2003-11-01), pages 6569 - 6576, XP002410833 * |
RARAN-KURUSSI, S. ET AL.: "The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated", PLOS ONE, vol. 7, no. 11, 2012, pages e49589, XP055423842 * |
Also Published As
Publication number | Publication date |
---|---|
CL2016000572A1 (en) | 2016-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102176506B1 (en) | Recombinant Strain Producing PETase, Recombinant Strain Producing MHETase and Composition for Degrading of PET Comprising Thereof | |
Linde et al. | Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae | |
US11306331B2 (en) | Processes for the production of hydroxycinnamic acids using polypeptides having tyrosine ammonia lyase activity | |
EP3216862B1 (en) | Co hydratase and method for preparing formic acid by using same | |
Nasoohi et al. | Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement | |
ES2562791T3 (en) | Improvements in immobilized microbial nitrilase for the production of glycolic acid | |
López‐Torrejón et al. | Biosynthesis of cofactor‐activatable iron‐only nitrogenase in Saccharomyces cerevisiae | |
US20220112525A1 (en) | Biosynthesis of vanillin from isoeugenol | |
Mohorčič et al. | Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli | |
US8945887B2 (en) | Whole cell biocatalyst | |
US20220325290A1 (en) | Biosynthesis of eriodictyol | |
CN105002192B (en) | A kind of malic enzyme gene RKME1 and its recombinant expression carrier | |
WO2017152297A1 (en) | Recombinant vanillyl alcohol oxidase protein (vaor) | |
CN105349557B (en) | A kind of malic enzyme gene RKME2 and its recombinant expression carrier | |
Klimov et al. | Stabilization of the oxygen-evolving complex of photosystem II by bicarbonate and glycinebetaine in thylakoid and subthylakoid preparations | |
KR102126928B1 (en) | Transformed microorganism producing 4-hydroxyvaleric acid | |
KR20180093391A (en) | A Novel Peptide capable of improving protein expression and solubility, and use thereof | |
WO2017077320A1 (en) | Genetically modified microorganisms | |
ES2843780T3 (en) | Catalyst and its use | |
Fan et al. | Maize uroporphyrinogen III methyltransferase: overexpression of the functional gene fragments in Escherichia coli and one-step purification | |
ES2370216B1 (en) | REDOX HIGH POTENTIAL LACASA. | |
US7241611B2 (en) | Methods for synthesis of holo-photoactive yellow protein | |
KR20150093557A (en) | Mutant 3-Hydroxybutyrate Dehydrogenase | |
ES2903263T3 (en) | Method for producing mutant enzyme and mutant alcohol acyltransferase | |
JP4726196B2 (en) | Mutant ascorbate peroxidase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17762390 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17762390 Country of ref document: EP Kind code of ref document: A1 |