[go: up one dir, main page]

WO2017150513A1 - 内燃機関の排ガス浄化装置 - Google Patents

内燃機関の排ガス浄化装置 Download PDF

Info

Publication number
WO2017150513A1
WO2017150513A1 PCT/JP2017/007727 JP2017007727W WO2017150513A1 WO 2017150513 A1 WO2017150513 A1 WO 2017150513A1 JP 2017007727 W JP2017007727 W JP 2017007727W WO 2017150513 A1 WO2017150513 A1 WO 2017150513A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
casing
pipe
inlet
outlet
Prior art date
Application number
PCT/JP2017/007727
Other languages
English (en)
French (fr)
Inventor
幸博 川島
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201780014359.6A priority Critical patent/CN108884740A/zh
Publication of WO2017150513A1 publication Critical patent/WO2017150513A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present disclosure relates to an exhaust gas purification device for an internal combustion engine including an aftertreatment unit.
  • an exhaust gas purification device including an aftertreatment unit provided in the middle of an exhaust pipe and having a plurality of catalysts for purifying harmful substances in exhaust gas is known.
  • the post-treatment unit is accommodated in a casing in order to keep the temperature of the catalyst at a high temperature.
  • the casing is provided with an inlet hole through which the exhaust gas inlet pipe of the aftertreatment unit is inserted and an outlet hole through which the exhaust gas outlet pipe of the aftertreatment unit is inserted.
  • an object of the present disclosure is an internal combustion engine that can suppress the heat of the post-processing unit from being taken away by the casing and suppress the temperature decrease of the catalyst of the post-processing unit.
  • An object is to provide an exhaust gas purification device.
  • An exhaust gas purification apparatus for an internal combustion engine includes an exhaust pipe, an aftertreatment unit provided in the middle of the exhaust pipe and having a plurality of catalysts for purifying exhaust gas, and a casing that houses the aftertreatment unit.
  • an outlet side heat insulating seal member provided in a gap between the exhaust gas outlet pipe and the outlet hole.
  • the exhaust gas purification apparatus for an internal combustion engine it is possible to suppress the heat of the aftertreatment unit from being taken away by the casing, and to exhibit an excellent effect that the temperature decrease of the catalyst of the aftertreatment unit can be suppressed.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust gas purification apparatus according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged view of a main part of FIG.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present disclosure
  • FIG. 2 is an enlarged view of a main part thereof.
  • an exhaust gas purification apparatus 100 is an aftertreatment unit having an exhaust pipe 2 through which exhaust gas from an internal combustion engine 1 passes and a plurality of catalysts 10 provided in the middle of the exhaust pipe 2 for purifying exhaust gas. 3 and a casing 4 that houses the post-processing unit 3.
  • the internal combustion engine 1 is a multi-cylinder compression ignition internal combustion engine mounted on a vehicle (not shown), that is, a diesel engine.
  • the internal combustion engine 1 is provided with an exhaust manifold 12 that collects exhaust gas discharged from each cylinder 11.
  • the exhaust pipe 2 is a pipe that is connected to the exhaust manifold 12 and discharges the exhaust gas from the exhaust manifold 12 in the downstream direction (direction indicated by the arrow G) and releases it to the atmosphere.
  • the exhaust pipe 2 includes an upstream exhaust pipe 21 positioned upstream of the post-processing unit 3 and a downstream exhaust pipe 22 positioned downstream of the post-processing unit 3.
  • the upstream exhaust pipe 21 has a flange 21a at its downstream end
  • the downstream exhaust pipe 22 has a flange 22a at its upstream end.
  • the front-rear and left-right directions of the post-processing unit 3 are shown in FIG. Note that the front-rear and left-right directions of the illustrated post-processing unit 3 are irrelevant to the front-rear and left-right directions of the vehicle, and are merely determined for convenience of explanation.
  • the internal combustion engine 1 is placed vertically on the vehicle, and the left direction of the post-processing unit 3 coincides with the front direction of the vehicle.
  • the aftertreatment unit 3 includes an exhaust gas inlet pipe 31, an exhaust gas outlet pipe 32, a first catalyst casing 33 in which at least one catalyst 10 is provided, a second catalyst casing 34 in which at least one catalyst 10 is provided, A connecting pipe 35 connecting the first catalyst casing 33 and the second catalyst casing 34 and an addition valve 36 for adding urea water are provided. Further, the post-processing unit 3 has a substantially symmetrical structure.
  • the exhaust gas inlet pipe 31 is arranged at the front end and the left side of the post-processing unit 3 and extends from the front to the rear, and the front end is connected to the downstream end of the upstream exhaust pipe 21. Further, the exhaust gas outlet pipe 32 is disposed at the front end and the right side of the post-processing unit 3, extends from the front to the rear, and the front end is connected to the upstream end of the downstream exhaust pipe 22.
  • a flange 31a is provided at the upstream end of the exhaust gas inlet pipe 31, and the flange 21a of the upstream exhaust pipe 21 is connected to the flange 31a.
  • a flange 32a is provided at the downstream end of the exhaust gas outlet pipe 32, and the flange 22a of the downstream exhaust pipe 22 is connected to the flange 32a.
  • the flanges connected to each other are detachably fixed by fastening means such as bolts (not shown).
  • the first catalyst casing 33 is formed in a tubular shape, extends rearward from the exhaust gas inlet pipe 31, and has a first side hole 33b on the right side surface of the downstream end 33a located at the rear end. Further, the first catalyst casing 33 is formed with a first enlarged-diameter portion 33c having a diameter larger than that of the exhaust gas inlet pipe 31 located on the upstream side and the connecting pipe 35 located on the downstream side.
  • the first catalyst casing 33 has an oxidation catalyst (DOC: Diesel Oxidation Catalyst) 10a and a particulate filter (hereinafter referred to as “the catalyst”) from the upstream side through the first heat insulating buffer member (mat) 37 at the position of the first enlarged diameter portion 33c. (Referred to as “DPF”) 10b.
  • DOC Diesel Oxidation Catalyst
  • the catalyst a particulate filter
  • the oxidation catalyst 10a oxidizes and purifies unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas.
  • the oxidation catalyst 10a has a function of heating and raising the temperature of exhaust gas with heat generated during oxidation of HC and CO.
  • the oxidation catalyst 10a oxidizes NO in the exhaust gas to NO 2, also has a function of increasing the NO 2 concentration in the exhaust gas.
  • the DPF 10b collects and removes particulate matter (PM) contained in the exhaust gas.
  • a so-called wall flow type DPF 10b is used in which openings at both ends of a honeycomb-shaped heat-resistant substrate are alternately closed in a checkered pattern.
  • any type of filter that physically captures PM can be used, such as a mesh-shaped foam shape.
  • the DPF 10b is a so-called continuous regeneration type DPF with a catalyst in which a noble metal (catalyst) such as Pt is supported on the inner wall thereof.
  • a noble metal such as Pt
  • HC in the exhaust gas supplied to the DPF 10b is oxidized and burned by the catalytic action, and at this time, PM accumulated in the DPF 10b is simultaneously burned and removed.
  • DPF10b since DPF10b has a catalyst, DPF10b shall also be included in the catalyst 10 said to this indication here.
  • the second catalyst casing 34 is formed in a tubular shape, extends rearward from the exhaust gas outlet pipe 32, and has a second side hole 34b on the left side surface of the upstream end 34a located at the rear end. Further, the second catalyst casing 34 is formed with a second diameter-expanded portion 34c having a diameter larger than that of the connecting pipe 35 positioned on the upstream side and the exhaust gas outlet pipe 32 positioned on the downstream side.
  • the NOx catalyst 10c and the ammonia oxidation catalyst 10d are installed from the upstream side through the second heat insulating buffer member (mat) 38 at the position of the second enlarged diameter portion 34c.
  • the NOx catalyst 10c is a catalyst for purifying nitrogen oxides NOx in the exhaust gas.
  • the NOx catalyst 10c is composed of a selective reduction type NOx catalyst (SCR: Selective Catalytic Reduction), and can continuously reduce NOx by ammonia (NH 3 ) generated by hydrolysis from urea water.
  • SCR selective reduction type NOx catalyst
  • the ammonia oxidation catalyst 10d is a catalyst that generates N 2 by oxidizing excess ammonia (NH 3 ) that has not been consumed in the reduction of NOx by the NOx catalyst 10c.
  • the first catalyst casing 33 and the second catalyst casing 34 are arranged on the left and right in parallel with each other. Further, the first side hole 33b and the second side hole 34d are disposed at positions facing each other.
  • the connecting pipe 35 is disposed at a position between the first catalyst casing 33 and the second catalyst casing 34 in the left-right direction, and connects the first side hole 33b and the second side hole 34b.
  • the connecting pipe 35 extends from the first side hole 33b toward the second side hole 34b (the right side in the figure) and bends forward, and the second side hole 34b extends to the first side hole 33b.
  • a second portion 35b extending toward the side (the left side in the figure) and bent forward.
  • the first portion 35a indicates a portion from X1 to X2 in the drawing
  • the second portion 35b indicates a portion from Y1 to Y2 in the drawing.
  • the connecting pipe 35 has a third portion 35c that extends forward from the downstream end X2 of the first portion 35a, is folded back in a U-shape and extends rearward, and is connected to the upstream end Y2 of the second portion 35b. . That is, the connection pipe 35 is formed in such a manner that it is folded in a U-shape, so that the pipe length of the connection pipe 35 becomes longer than linearly connecting the first side hole 33b and the second side hole 34d.
  • the addition valve 36 is arranged so as to add urea water from the rear to the front from the bent part L of the first part 35a toward the folded part U of the third part 35c.
  • the casing 4 is made of a box-type casing using a heat-resistant material such as stainless steel, and covers the entire post-processing unit 3 in a substantially airtight manner.
  • a heat insulating material 5 such as glass wool is laid on almost the entire inner peripheral surface of the casing 4 to keep the post-processing unit 3 warm.
  • an attachment portion 42 for attaching the addition valve 36 is formed at a portion located behind the bent portion L of the post-processing unit 3.
  • the attachment portion 42 is formed to be recessed forward, and an outer insertion hole 43 extending in the front-rear direction is formed at the front end thereof.
  • an inner insertion hole 35 d is formed coaxially with the outer insertion hole 43 on the rear end surface of the bent portion L of the post-processing unit 3.
  • the addition valve 36 is inserted into both the outer insertion hole 43 and the inner insertion hole 35 d from the outside (rear) of the casing 4, and is fixed to the casing 4 by a boss portion 44 provided in the attachment portion 42.
  • An inlet hole 46 through which the exhaust gas inlet pipe 31 is inserted with a gap S1 is formed in the front surface 45 of the casing 4 so that the exhaust gas inlet pipe 31 of the post-processing unit 3 protrudes to the outside (front) of the casing 4.
  • an outlet hole 47 through which the exhaust gas outlet pipe 32 is inserted with a gap S2 is formed in the front surface 45 of the casing 4 so that the exhaust gas outlet pipe 32 of the post-processing unit 3 protrudes to the outside (front) of the casing 4.
  • the inlet side heat insulating seal member 6 is provided in the gap S1 between the exhaust gas inlet pipe 31 and the inlet hole 46
  • the outlet side heat insulating seal member 7 is provided in the gap S2 between the exhaust gas outlet pipe 32 and the outlet hole 47.
  • the inlet side heat insulating seal member 6 is made of a ring-shaped seal member through which the exhaust gas inlet pipe 31 can be inserted, and is made of a material having a low heat transfer coefficient, for example, heat resistant rubber.
  • a support member 48 for attaching the inlet side heat insulating seal member 6 to the casing 4 is formed so as to protrude from the back surface of the front surface 45 of the casing 4 and around the inlet hole 46.
  • a support member 49 similar to the support member 48 is formed on the back surface of the front surface 45 of the casing 4 and around the outlet hole 47.
  • the support member 48 is formed in a ring shape, and has an inner diameter that is larger than the inlet hole 46 and slightly smaller than the outer diameter of the inlet-side heat insulating seal member 6.
  • the inlet side heat insulating seal member 6 is press-fitted into the support member 48 from behind.
  • the exhaust gas of the internal combustion engine 1 passes through the upstream exhaust pipe 21 from the exhaust manifold 12 and flows into the first catalyst casing 33 through the exhaust gas inlet pipe 31.
  • the exhaust gas flowing into the first catalyst casing 33 passes through the oxidation catalyst 10a, whereby unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas are oxidized and purified.
  • the exhaust gas that has passed through the oxidation catalyst 10a flows into the DPF 10b, and particulate matter (PM) contained in the exhaust gas is collected and removed by the DPF 10b.
  • PM particulate matter
  • the exhaust gas that has passed through the DPF 10b flows from the first side hole 33b located at the rear end of the first catalyst casing 33 to the first portion 35a of the connecting pipe 35, and moves forward 90 ° along the bent shape of the first portion 35a. The direction is changed to flow to the third portion 35c.
  • the exhaust gas that has flowed to the third portion 35c turns 180 ° backward at the turn-up portion U, flows to the second portion 35b behind, and turns 90 ° along the bent shape of the second portion 35b. It flows into the second catalyst casing 34 through the side hole 34b.
  • the addition valve 36 disposed in the bent portion L of the first portion 35a adds urea water from the rear to the front toward the folded portion U of the third portion 35c.
  • the added urea water is turned 180 ° rearward at the folded portion U, flows to the second rear portion 35b, is turned 90 ° along the bent shape of the second portion 35b, and the second side hole 34b.
  • the second catalyst casing 34 Through the second catalyst casing 34.
  • the exhaust gas containing at least one of urea water and ammonia passes through the NOx catalyst 10c.
  • the NOx catalyst 10c reduces NOx with ammonia generated by hydrolysis of urea water.
  • the surplus ammonia that has not been consumed in the reduction of NOx by the NOx catalyst 10c comes into contact with the ammonia oxidation catalyst 10d and is oxidized, and release to the atmosphere is suppressed.
  • the exhaust gas that has passed through the ammonia oxidation catalyst 10d is discharged to the downstream exhaust pipe 22 through the exhaust gas outlet pipe 32 and is released from the downstream exhaust pipe 22 to the atmosphere.
  • the oxidation catalyst 10a, the DPF 10b, the NOx catalyst 10c, and the ammonia oxidation catalyst 10d effectively exhibit the exhaust gas purification action when the catalyst temperature (catalyst bed temperature) is in the active temperature range. To do. Therefore, it is effective to keep the temperature of each catalyst 10 as high as possible.
  • the post-processing unit 3 is accommodated in the casing 4 in which the heat insulating material 5 is laid on the inner peripheral surface, thereby suppressing the post-processing unit 3 from being cooled by outside air or traveling wind,
  • the temperature of the catalyst 10 can be kept high.
  • the inlet-side heat insulating seal member 6 is provided in the gap S1 between the exhaust gas inlet pipe 31 and the inlet hole 46 and the exhaust gas outlet pipe 32 is provided.
  • the outlet side heat insulating seal member 7 is provided in the gap S2 between the outlet hole 47 and the outlet hole 47.
  • the inlet side heat insulating seal member 6 and the outlet side heat insulating seal member 7 seal the gaps S1 and S2 between the exhaust gas outlet pipe 32 and the outlet hole 47, respectively, thereby corroding the post-processing unit 3 due to water intrusion from the gap. Can be prevented.
  • the connecting pipe 35 is formed in a U-shape, it is connected rather than connecting the first side hole 33b and the second side hole 34d linearly.
  • the length of the tube 35 can be increased, and the post-processing unit 3 can be made compact, which is advantageous for in-vehicle use.
  • the urea water added from the addition valve 36 passes through this long and folded connection pipe 35.
  • the urea water can be sufficiently stirred and mixed with the exhaust gas, and the hydrolysis of the urea water is further promoted.
  • ammonia is efficiently generated, which is advantageous for improving the NOx purification rate in the NOx catalyst 10c.
  • the exhaust gas purifying apparatus for an internal combustion engine according to the present disclosure is useful in that the heat of the aftertreatment unit is suppressed from being taken away by the casing, and the temperature decrease of the catalyst of the aftertreatment unit can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

内燃機関1の排ガス浄化装置100に関し、排気管2と、排ガスを浄化するための複数の触媒10を有する後処理ユニット3と、後処理ユニット3を収容するケーシング4と、ケーシング4に設けられ、後処理ユニット3の排ガス入口管31が隙間S1をもって挿通される入口孔46と、後処理ユニット3の排ガス出口管32が隙間S2をもって挿通される出口孔47と、ケーシング4の内周面上に設けられた断熱材5と、隙間S1,S2に設けられた断熱シール部材6,7と、を備える。

Description

内燃機関の排ガス浄化装置
 本開示は、後処理ユニットを備えた内燃機関の排ガス浄化装置に関する。
 一般的に、内燃機関を搭載した車両においては、排気管の途中に設けられ、排ガス中の有害物質を浄化するための複数の触媒を有する後処理ユニットを備えた排ガス浄化装置が知られている。
日本国特開2008-240525号公報
 上記の排ガス浄化装置においては、触媒の温度を高温に保持するために、後処理ユニットをケーシングに収容することが考えられる。このケーシングには、後処理ユニットの排ガス入口管が挿通される入口孔と、後処理ユニットの排ガス出口管が挿通される出口孔とが設けられる。
 しかしながら、これらの挿通部分にて入口管(または出口管)と入口孔(または出口孔)が接触していると、例えば、暖機時には、この接触部分から後処理ユニットの熱がケーシングに奪われてしまい、触媒の温度が低下してしまう。
 そこで、本開示は、かかる事情に鑑みて創案され、その目的は、後処理ユニットの熱がケーシングに奪われることを抑制し、後処理ユニットの触媒の温度低下を抑制することができる内燃機関の排ガス浄化装置を提供することにある。
 本開示に係る内燃機関の排ガス浄化装置は、排気管と、前記排気管の途中に設けられ、排ガスを浄化するための複数の触媒を有する後処理ユニットと、前記後処理ユニットを収容するケーシングと、前記ケーシングに設けられ、前記後処理ユニットの排ガス入口管を外部に突出させるように前記排ガス入口管が隙間をもって挿通される入口孔と、前記ケーシングに設けられ、前記後処理ユニットの排ガス出口管を外部に突出させるように前記排ガス出口管が隙間をもって挿通される出口孔と、前記ケーシングの内周面上に設けられた断熱材と、前記排ガス入口管と前記入口孔との隙間に設けられた入口側断熱シール部材と、前記排ガス出口管と前記出口孔との隙間に設けられた出口側断熱シール部材と、を備えたことを特徴とする。
 本開示に係る内燃機関の排ガス浄化装置では、後処理ユニットの熱がケーシングに奪われることを抑制し、後処理ユニットの触媒の温度低下を抑制することができるという優れた効果を発揮する。
図1は、本開示の一実施形態に係る排ガス浄化装置を示す概略構成図である。 図2は、図1の要部拡大図である。
 以下、添付図面に基づいて、本開示の一実施形態を説明する。図1は、本開示の一実施形態に係る内燃機関の排ガス浄化装置を示す概略構成図であり、図2は、その要部拡大図である。
 図1に示すように、排ガス浄化装置100は、内燃機関1の排ガスを通過させる排気管2と、排気管2の途中に設けられ、排ガスを浄化するための複数の触媒10を有する後処理ユニット3と、後処理ユニット3を収容するケーシング4と、を含む。
 内燃機関1は、図示しない車両に搭載された多気筒の圧縮着火式内燃機関、すなわちディーゼルエンジンである。内燃機関1には、各気筒11から排出される排ガスを集合させる排気マニホールド12が設けられる。
 排気管2は、排気マニホールド12に接続され、排気マニホールド12からの排ガスを下流方向(矢印Gで示す方向)に流して大気に放出する管である。
 より詳しくは、この排気管2は、後処理ユニット3の上流側に位置する上流側排気管21と、後処理ユニット3の下流側に位置する下流側排気管22とからなる。上流側排気管21は、その下流側端部にフランジ21aを有し、下流側排気管22は、その上流側端部にフランジ22aを有する。
 次に、後処理ユニット3について説明する。後処理ユニット3の前後左右方向を図1に示す。なお、図示する後処理ユニット3の前後左右方向は、車両の前後左右方向とは無関係であり、説明の便宜上定められたものに過ぎない。本実施形態では、内燃機関1が車両に縦置きされており、後処理ユニット3の左方向が車両の前方向に一致する。
 後処理ユニット3は、排ガス入口管31と、排ガス出口管32と、少なくとも一つの触媒10を内設する第1触媒ケーシング33と、少なくとも一つの触媒10を内設する第2触媒ケーシング34と、第1触媒ケーシング33と第2触媒ケーシング34とを連結する連結管35と、尿素水を添加する添加弁36を備える。また、後処理ユニット3は、概ね左右対称の構造を有する。
 排ガス入口管31は、後処理ユニット3の前端部且つ左側に配置され、前方から後方に延び、その前端は、上流側排気管21の下流端に接続される。また、排ガス出口管32は、後処理ユニット3の前端部且つ右側に配置され、前方から後方に延び、その前端は、下流側排気管22の上流端に接続される。
 より詳しくは、排ガス入口管31の上流側端部には、フランジ31aが設けられ、このフランジ31aに上流側排気管21のフランジ21aが接続される。また同様に、排ガス出口管32の下流側端部には、フランジ32aが設けられ、このフランジ32aに下流側排気管22のフランジ22aが接続される。互いに接続されるフランジ同士は、ボルト(不図示)等の締結手段で取り外し可能に固定される。
 第1触媒ケーシング33は、管状に形成され、排ガス入口管31から後方に向けて延在すると共に、後端部に位置する下流側端部33aの右側面に第1側孔33bを有する。また、第1触媒ケーシング33には、上流側に位置する排ガス入口管31および下流側に位置する連結管35よりも拡径された第1拡径部33cが形成される。
 第1触媒ケーシング33は、第1拡径部33cの位置にて、第1断熱緩衝部材(マット)37を介して、上流側から酸化触媒(DOC:Diesel Oxidation Catalyst)10aおよびパティキュレートフィルタ(以下「DPF」という)10bを内設する。
 酸化触媒10aは、排ガス中の未燃成分(炭化水素HCおよび一酸化炭素CO)を酸化して浄化する。酸化触媒10aは、HC,COの酸化時に生じた熱で排ガスを加熱、昇温する機能を有する。また酸化触媒10aは、排ガス中のNOをNOに酸化し、排ガス中のNO濃度を高める機能をも有する。
 DPF10bは、排ガス中に含まれる粒子状物質(PM:Particulate Matter)を捕集して除去するものである。DPF10bは、本実施形態では、ハニカム形状の耐熱性基材の両端開口を互い違いに市松状に閉塞した所謂ウォールフロータイプのものが用いられている。しかしながら、網の目構造のフォーム形状のもの等、PMを物理的に捕集するあらゆるタイプのフィルタを用いることができる。
 DPF10bは、その内壁にPt等の貴金属(触媒)を担持させた所謂連続再生式の触媒付きDPFからなる。この場合、エンジンの通常運転中、DPF10bに供給された排ガス中のHCが触媒作用で酸化、燃焼し、このとき同時にDPF10b内部に堆積しているPMが燃焼除去される。なお、DPF10bが触媒を有するため、ここではDPF10bも本開示にいう触媒10に含ませるものとする。
 第2触媒ケーシング34は、管状に形成され、排ガス出口管32から後方に向けて延在すると共に、後端部に位置する上流側端部34aの左側面に第2側孔34bを有する。また、第2触媒ケーシング34には、上流側に位置する連結管35および下流側に位置する排ガス出口管32よりも拡径された第2拡径部34cが形成される。
 第2触媒ケーシング34は、第2拡径部34cの位置にて、第2断熱緩衝部材(マット)38を介して、上流側からNOx触媒10cおよびアンモニア酸化触媒10dを内設する。
 NOx触媒10cは、排ガス中の窒素酸化物NOxを浄化するための触媒である。NOx触媒10cは、選択還元型NOx触媒(SCR:Selective Catalytic Reduction)からなり、尿素水から加水分解されて生成されたアンモニア(NH)によって、NOxを連続的に還元し得る。
 アンモニア酸化触媒10dは、NOx触媒10cでNOxの還元に消費されなかった余剰のアンモニア(NH)を酸化して、Nを生成する触媒である。
 本実施形態においては、第1触媒ケーシング33と第2触媒ケーシング34とは、互いに並列して左右に配置される。また、第1側孔33bと第2側孔34dとは、互いに対向する位置に配置される。
 連結管35は、左右方向における第1触媒ケーシング33と第2触媒ケーシング34との間の位置に配置され、第1側孔33bと第2側孔34bとを連結する。
 より詳しくは、連結管35は、第1側孔33bから第2側孔34b側(図示右側)に向かって延び、前方に折れ曲がる第1部分35aと、第2側孔34bから第1側孔33b側(図示左側)に向かって延び、前方に折れ曲がる第2部分35bとを有する。具体的には、第1部分35aは、図中のX1からX2までの部分を示し、第2部分35bは、図中のY1からY2までの部分を示す。
 また、連結管35は、第1部分35aの下流端X2から前方に延びると共に、U字状に折り返されて後方に延び、第2部分35bの上流端Y2に接続される第3部分35cを有する。すなわち、連結管35がこのようにU字状に折り返されて形成されることで、第1側孔33bと第2側孔34dを直線的に結ぶよりも、連結管35の管長が長くなる。
 添加弁36は、第1部分35aの折れ曲がり部分Lから第3部分35cの折り返し部分Uに向かって、後方から前方に尿素水を添加するように配置される。
 ケーシング4は、ステンレス等の耐熱材料を用いた箱型ケーシングからなり、後処理ユニット3全体を略気密に覆う。ケーシング4の内周面上ほぼ全体には、後処理ユニット3の保温のため、グラスウール等の断熱材5が敷設される。
 ケーシング4の後面41には、後処理ユニット3の折れ曲がり部分Lの後方に位置する部分に、添加弁36を取り付ける取付部42が形成される。取付部42は、前方に凹んで形成され、その前端には、前後方向に延びる外側挿通孔43が形成される。また、後処理ユニット3の折れ曲がり部分Lの後端面には、外側挿通孔43と同軸に内側挿通孔35dが形成されている。添加弁36は、ケーシング4の外部(後方)から外側挿通孔43と内側挿通孔35dの両方に挿通され、取付部42に設けられたボス部44によって、ケーシング4に固定される。
 ケーシング4の前面45には、後処理ユニット3の排ガス入口管31をケーシング4の外部(前方)に突出させるように、排ガス入口管31が隙間S1をもって挿通される入口孔46が形成される。また、ケーシング4の前面45には、後処理ユニット3の排ガス出口管32をケーシング4の外部(前方)に突出させるように、排ガス出口管32が隙間S2をもって挿通される出口孔47が形成される。
 本実施形態においては、排ガス入口管31と入口孔46との隙間S1に、入口側断熱シール部材6が設けられ、排ガス出口管32と出口孔47との隙間S2に、出口側断熱シール部材7が設けられる。これらの構造は、入口孔46側と出口孔47側で、ほぼ同様に構成される。よって、これらの詳細な構造については、入口孔46側のみを説明し、出口孔47側の説明を省略する。
 図2にも詳細に示すように、入口側断熱シール部材6は、排ガス入口管31が挿通可能なリング状のシール部材からなり、熱伝達率の低い材料、例えば耐熱性ゴムで形成される。
 ケーシング4の前面45の裏面で且つ入口孔46の周囲には、入口側断熱シール部材6をケーシング4に取り付けるための支持部材48が突出して形成される。なお、ケーシング4の前面45の裏面で且つ出口孔47の周囲には、支持部材48と同様の支持部材49が形成されている。
 より詳しくは、支持部材48は、リング状に形成され、入口孔46より大きく、且つ、入口側断熱シール部材6の外径より僅かに小さい内径を有する。入口側断熱シール部材6は、支持部材48に後方から圧入される。
 この状態において、組み立て時に、排ガス入口管31が入口孔46に後方から前方に向けて挿入されると、排ガス入口管31の外周面が入口側断熱シール部材6の内周面に密着した状態で固定される(圧入される)。この結果、入口側断熱シール部材6によって、排ガス入口管31と入口孔46との隙間S1がシールされると共に、入口管31からケーシング4への熱伝達が大幅に抑制される。
 次に、図1に基づいて、本実施形態に係る排ガス浄化装置100の作用効果を説明する。
 内燃機関1の排ガスは、排気マニホールド12から上流側排気管21を通過し、排ガス入口管31を通じて、第1触媒ケーシング33内へ流入する。
 第1触媒ケーシング33内へ流入した排ガスは、酸化触媒10aを通過し、これにより、排ガス中の未燃成分(炭化水素HCおよび一酸化炭素CO)が酸化して浄化される。
 次に、酸化触媒10aを通過した排ガスは、DPF10bに流入し、DPF10bによって排ガス中に含まれる粒子状物質(PM)が捕集除去される。
 DPF10bを通過した排ガスは、第1触媒ケーシング33の後端部に位置する第1側孔33bから連結管35の第1部分35aに流れ、第1部分35aの折れ曲がり形状に沿って前方へ90°方向転換して、第3部分35cへ流れる。
 第3部分35cへ流れた排ガスは、折り返し部分Uにて後方へ180°方向転換し、後方の第2部分35bへ流れ、第2部分35bの折れ曲がり形状に沿って90°方向転換し、第2側孔34bを通じて第2触媒ケーシング34内へ流入する。
 ここで、第1部分35aの折れ曲がり部分Lに配置された添加弁36は、第3部分35cの折り返し部分Uに向かって、後方から前方に尿素水を添加する。添加された尿素水は、折り返し部分Uにて後方へ180°方向転換し、後方の第2部分35bへ流れ、第2部分35bの折れ曲がり形状に沿って90°方向転換し、第2側孔34bを通じて第2触媒ケーシング34内へ流入する。
 次に、第2触媒ケーシング34内において、尿素水とアンモニアの少なくとも一方を含む排ガスは、NOx触媒10cを通過する。このとき、NOx触媒10cは、尿素水が加水分解されて生成されたアンモニアによって、NOxを還元する。
 NOx触媒10cでNOxの還元に消費されなかった余剰のアンモニアは、アンモニア酸化触媒10dと接触して酸化され、大気への放出が抑制される。
 アンモニア酸化触媒10dを通過した排ガスは、排ガス出口管32を通じて下流側排気管22へ排出されて、下流側排気管22から大気に放出される。
 以上の作用のうち、上記の酸化触媒10a、DPF10b、NOx触媒10c、およびアンモニア酸化触媒10dについては、その触媒温度(触媒床温)が活性温度域にあるときに、排ガス浄化作用を有効に発揮する。よって、各触媒10の温度をできるだけ高温に保持するのが有効である。
 本実施形態においては、内周面に断熱材5を敷設したケーシング4内に、後処理ユニット3を収容することで、後処理ユニット3が外気や走行風で冷却されるのを抑制し、各触媒10の温度を高温に保持することができる。
 一方、仮に、後処理ユニット3の排ガス入口管31(または排ガス出口管32)が、ケーシング4の前面45に形成された入口孔46(または出口孔47)と、接触していると、この接触部分から後処理ユニット3の熱がケーシング4に奪われて、各触媒10の温度が低下してしまう。これにより、例えば暖機時には、各触媒10の活性化が遅れてしまう。
 そこで、本実施形態の排ガス浄化装置100においては、図1および図2に示す通り、排ガス入口管31と入口孔46との隙間S1に、入口側断熱シール部材6を設けると共に、排ガス出口管32と出口孔47との隙間S2に、出口側断熱シール部材7を設ける。
 これにより、後処理ユニット3の熱がケーシング4に奪われることを抑制し、後処理ユニット3の各触媒10の温度低下を抑制することが可能になる。
 また、入口側断熱シール部材6と出口側断熱シール部材7は、それぞれ排ガス出口管32と出口孔47との隙間S1,S2をシールすることで、隙間からの水侵入による後処理ユニット3の腐食を防止することができる。
 また、本実施形態の後処理ユニット3においては、連結管35がU字状に折り返されて形成されているため、第1側孔33bと第2側孔34dを直線的に結ぶよりも、連結管35の管長を長くし、その一方で、後処理ユニット3をコンパクトに構成することが可能となるので、車載に有利である。
 本実施形態の後処理ユニット3においては、添加弁36から添加された尿素水が、この長く且つ折り返されて形成された連結管35を通過する。これにより、尿素水が排ガスとの間で十分に攪拌混合されることが可能になり、尿素水の加水分解が更に促進される。この結果、アンモニアが効率よく生成されて、NOx触媒10cにおけるNOx浄化率の向上に有利となる。
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 本出願は、2016年3月3日付で出願された日本国特許出願(特願2016-041293)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の内燃機関の排ガス浄化装置は、後処理ユニットの熱がケーシングに奪われることを抑制し、後処理ユニットの触媒の温度低下を抑制することができるという点において有用である。
1 内燃機関
2 排気管
3 後処理ユニット
4 ケーシング
5 断熱材
6 入口側断熱シール部材
7 出口側断熱シール部材
31 排ガス入口管
32 排ガス出口管
46 入口孔
47 出口孔
100 排ガス浄化装置
S1,S2 隙間

Claims (3)

  1.  排気管と、
     前記排気管の途中に設けられ、排ガスを浄化するための複数の触媒を有する後処理ユニットと、
     前記後処理ユニットを収容するケーシングと、
     前記ケーシングに設けられ、前記後処理ユニットの排ガス入口管を外部に突出させるように前記排ガス入口管が隙間をもって挿通される入口孔と、
     前記ケーシングに設けられ、前記後処理ユニットの排ガス出口管を外部に突出させるように前記排ガス出口管が隙間をもって挿通される出口孔と、
     前記ケーシングの内周面上に設けられた断熱材と、
     前記排ガス入口管と前記入口孔との隙間に設けられた入口側断熱シール部材と、
     前記排ガス出口管と前記出口孔との隙間に設けられた出口側断熱シール部材と、を備える
     内燃機関の排ガス浄化装置。
  2.  前記ケーシングの内周面のうち前記入口孔の周囲の部分には、前記ケーシングの内部に向かって突出し、前記入口側断熱シール部材を前記ケーシングに取り付けるための入口側支持部材が形成されており、
     前記ケーシングの内周面のうち前記出口孔の周囲の部分には、前記ケーシングの内部に向かって突出し、前記出口側断熱シール部材を前記ケーシングに取り付けるための出口側支持部材が形成されている、
     請求項1に記載の内燃機関の排ガス浄化装置。
  3.  前記入口側支持部材は、リング状に形成され、前記入口孔より大きく、且つ、
    前記入口側断熱シール部材の外径より僅かに小さい内径を有し、
     前記出口側支持部材は、リング状に形成され、前記出口孔より大きく、且つ、
    前記出口側断熱シール部材の外径より僅かに小さい内径を有する、
     請求項2に記載の内燃機関の排ガス浄化装置。
PCT/JP2017/007727 2016-03-03 2017-02-28 内燃機関の排ガス浄化装置 WO2017150513A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780014359.6A CN108884740A (zh) 2016-03-03 2017-02-28 内燃机的排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-041293 2016-03-03
JP2016041293A JP2017155693A (ja) 2016-03-03 2016-03-03 内燃機関の排ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2017150513A1 true WO2017150513A1 (ja) 2017-09-08

Family

ID=59742903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007727 WO2017150513A1 (ja) 2016-03-03 2017-02-28 内燃機関の排ガス浄化装置

Country Status (3)

Country Link
JP (1) JP2017155693A (ja)
CN (1) CN108884740A (ja)
WO (1) WO2017150513A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042115U (ja) * 1973-08-20 1975-04-28
JPS5258308U (ja) * 1975-10-24 1977-04-27
JPS5351505U (ja) * 1976-10-05 1978-05-02
JPH074825U (ja) * 1993-06-17 1995-01-24 ダイハツ工業株式会社 触媒コンバータの支持構造
JPH07259545A (ja) * 1994-03-23 1995-10-09 Toyota Motor Corp 触媒コンバータ
JP2003531994A (ja) * 2000-04-26 2003-10-28 ヨット エーバーシュペッヘル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 排ガス設備の排ガス装置、特にモジュール構成形式の自動車触媒装置
JP2004525777A (ja) * 2001-05-18 2004-08-26 ヘス エンジニアリング,インコーポレーテッド. 触媒変換機の製造方法および装置
JP2014088878A (ja) * 2013-12-25 2014-05-15 Yanmar Co Ltd 作業車両搭載用のエンジン装置
JP2014194204A (ja) * 2013-03-29 2014-10-09 Yanmar Co Ltd 排気ガス浄化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233886C3 (de) * 1972-07-10 1985-04-18 Kali-Chemie Ag, 3000 Hannover Vorrichtung zur katalytischen Reinigung der Abgase von Brennkraftmaschinen
JPH072971Y2 (ja) * 1988-01-29 1995-01-30 本田技研工業株式会社 消音器
US7774936B2 (en) * 2004-08-02 2010-08-17 Emcon Technologies Llc Catalytic converter and associated method of assembly
JP2008240525A (ja) * 2007-03-23 2008-10-09 Toyota Motor Corp 排気浄化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042115U (ja) * 1973-08-20 1975-04-28
JPS5258308U (ja) * 1975-10-24 1977-04-27
JPS5351505U (ja) * 1976-10-05 1978-05-02
JPH074825U (ja) * 1993-06-17 1995-01-24 ダイハツ工業株式会社 触媒コンバータの支持構造
JPH07259545A (ja) * 1994-03-23 1995-10-09 Toyota Motor Corp 触媒コンバータ
JP2003531994A (ja) * 2000-04-26 2003-10-28 ヨット エーバーシュペッヘル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 排ガス設備の排ガス装置、特にモジュール構成形式の自動車触媒装置
JP2004525777A (ja) * 2001-05-18 2004-08-26 ヘス エンジニアリング,インコーポレーテッド. 触媒変換機の製造方法および装置
JP2014194204A (ja) * 2013-03-29 2014-10-09 Yanmar Co Ltd 排気ガス浄化装置
JP2014088878A (ja) * 2013-12-25 2014-05-15 Yanmar Co Ltd 作業車両搭載用のエンジン装置

Also Published As

Publication number Publication date
JP2017155693A (ja) 2017-09-07
CN108884740A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
JP4886636B2 (ja) インジェクタの取付構造
JP4496226B2 (ja) 内燃機関の排気ガス浄化装置
JP5114219B2 (ja) 内燃機関用の排ガス浄化装置
JP5266439B2 (ja) 排ガス中のNOxの還元機構
JP2009085065A (ja) 排気浄化装置
JP2008274851A (ja) 排気浄化装置
JP2008138654A (ja) 排気ガス浄化装置
JP5737618B2 (ja) 内燃機関の排ガス浄化装置
JP6558993B2 (ja) 排気浄化装置の連結構造
WO2017150582A1 (ja) 内燃機関の排ガス浄化装置
WO2017150513A1 (ja) 内燃機関の排ガス浄化装置
KR101150325B1 (ko) 다층촉매담체부가 구비된 차량용 매연저감촉매조립체
WO2017150538A1 (ja) 内燃機関の排ガス浄化装置
JP2012092746A (ja) 排気浄化装置
JP2007009718A (ja) 排気浄化装置
JP6919478B2 (ja) 内燃機関の排気浄化装置
JP5504719B2 (ja) 自動車用排気浄化装置
JP5188477B2 (ja) 排気浄化装置
US9140172B2 (en) Gas flow distributing flexible coupling
JP7354976B2 (ja) 内燃機関の排気浄化システム
KR200447315Y1 (ko) 차량용 매연저감촉매조립체
JP7211174B2 (ja) 排気管構造および車両
JP2018062882A (ja) 排気浄化システム
JP2021134762A (ja) 排気浄化装置
JP2016200114A (ja) 排出ガス浄化装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759979

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759979

Country of ref document: EP

Kind code of ref document: A1