[go: up one dir, main page]

WO2017150287A1 - Polymer production method and radical polymerization initiating group-containing compound - Google Patents

Polymer production method and radical polymerization initiating group-containing compound Download PDF

Info

Publication number
WO2017150287A1
WO2017150287A1 PCT/JP2017/006459 JP2017006459W WO2017150287A1 WO 2017150287 A1 WO2017150287 A1 WO 2017150287A1 JP 2017006459 W JP2017006459 W JP 2017006459W WO 2017150287 A1 WO2017150287 A1 WO 2017150287A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
general formula
polymerization
radical polymerization
Prior art date
Application number
PCT/JP2017/006459
Other languages
French (fr)
Japanese (ja)
Inventor
嶋中 博之
陽一 田儀
賀一 村上
Original Assignee
大日精化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016202901A external-priority patent/JP6254239B2/en
Application filed by 大日精化工業株式会社 filed Critical 大日精化工業株式会社
Priority to US16/066,972 priority Critical patent/US10982033B2/en
Priority to AU2017227194A priority patent/AU2017227194B2/en
Priority to CN201780014058.3A priority patent/CN108699176B/en
Priority to CA3011899A priority patent/CA3011899C/en
Priority to EP17759753.1A priority patent/EP3424960B1/en
Priority to KR1020187027550A priority patent/KR102054679B1/en
Publication of WO2017150287A1 publication Critical patent/WO2017150287A1/en
Priority to US17/206,489 priority patent/US11746178B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts

Definitions

  • the present invention relates to a method for producing a new polymer using a radically polymerizable monomer having an unsaturated bond, a method for producing a polymer capable of freely obtaining a polymer having a complicated structure, and a radical capable of realizing the production method.
  • the present invention relates to a polymerization start group-containing compound. More specifically, in addition to the industrially useful polymerization method, which is advantageous in terms of cost, can obtain a polymer without using a radical polymerization initiator, and can easily obtain a polymer having a complicated structure, In particular, the present invention relates to a technique that makes it possible to provide a polymer having a uniform molecular weight and a controlled structure in a desired state, which is difficult with conventional radical polymerization.
  • radical polymerization polymers obtained by polymerizing a radical polymerizable monomer having an unsaturated bond having a vinyl group, vinylidene group, vinylene group or the like
  • radical polymerization thermal polymerization using an azo radical polymerization initiator or peroxide polymerization initiator necessary for generating radicals, or photopolymerization using a photo radical polymerization initiator. To obtain the polymer.
  • a radical polymerization method using a radical polymerization initiator for example, a polymer having a complicated structure such as a block copolymer, a graft copolymer, or a star polymer can be obtained by a method in which a monomer is subjected to normal radical polymerization. I can't.
  • living radical polymerization although the above-described polymer having a complicated structure can be obtained, in that case, there are the following problems. That is, in living radical polymerization, a special compound is used, or a metal catalyst is used. Therefore, it is necessary to remove those compounds and catalysts, which is complicated industrially and requires a plurality of steps. In addition, the polymerization conditions have to be strict, such as requiring purification of the monomers used or in a nitrogen atmosphere.
  • the object of the present invention is to use a simple commercially available material without using a radical polymerization initiator, a special material used for living radical polymerization, or a metal-based catalyst, and requires strict polymerization conditions. It is possible to simply obtain a polymer with a controlled molecular weight or molecular weight distribution, or a polymer with a complicated structure such as a block copolymer, graft copolymer or star polymer as a polymer controlled to a desired structure by a simple method. Another object of the present invention is to provide a process for producing an industrially useful new polymer. Another object of the present invention is to provide a versatile radical polymerization initiating group-containing compound that makes it possible to realize the above-described innovative polymer production method. Furthermore, an object of the present invention is to find a method for producing such a polymer so that a useful polymer whose structure is controlled to a desired state can be stably provided industrially.
  • the present inventors have found that a monomer, an organic compound into which a group having a specific structure that functions as a polymerization initiation group defined in the present invention is introduced, and a compound having iodine ions And by mixing and heating (heating) them, a radical polymerization with a termination reaction starts from the group having the specific structure and proceeds to obtain a polymer.
  • the present invention has been accomplished by finding a polymerization method.
  • the present inventors further provide a novel polymerization capable of controlling the structure and molecular weight of the resulting polymer to a desired state very easily by using in combination with iodine or a compound capable of liberating iodine or an organic base. I found a way.
  • a polymer can be obtained simply by mixing and heating the necessary materials, and further, a polymer whose form and characteristics are controlled to a desired state can be obtained.
  • the “warming” defined in the present invention means that the temperature is set to room temperature or higher, for example, 40 ° C. or higher, and the temperature may be determined in consideration of the polymerization rate.
  • the present invention includes at least (1) a radical polymerizable monomer having an unsaturated bond, and (2) a group having a structure represented by the following general formula 1 and / or the following general formula 2 that functions as a polymerization initiating group of the monomer. Is selected from the group consisting of one or more organic compounds introduced into the molecule, and (3) metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide, and quaternary ammonium triiodide.
  • R 1 represents H or any alkyl group or acyl group
  • R 2 represents any alkyl group or aryl group
  • X represents Cl or Br
  • Y represents O or NH.
  • R 3 represents H or any alkyl group or aryl group
  • R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group
  • X represents Cl or Br.
  • Preferred forms of the polymer production method described above include the following. Do not use any of azo radical polymerization initiator, peroxide radical polymerization initiator and photo radical polymerization initiator in the polymerization step; and (4) liberate iodine and iodine in the polymerization step.
  • Preferred forms of the polymer production method described above include the following. And although it is the simple method, it is possible to change the constitution of the organic compound (2) to any of the following, for example, ABA block copolymer, star polymer, bottle brush polymer, concentrated polymer brush, Polymers having various desired structures such as block and multi-branched polymers can be obtained.
  • the organic compound (2) is a polymerization-initiating group-containing polymer in which two groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule. If it exists, the polymer obtained by the said polymerization process turns into a polymer which has a block structure or a comb-shaped structure.
  • the organic compound (2) is a compound in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in a molecule, a polymer obtained in the polymerization step is obtained. It becomes a branched structure type polymer, a star polymer or a graft copolymer.
  • the organic compound (2) is a vinyl polymer in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in a molecule
  • the polymer obtained in the polymerization step is The vinyl polymer is polymerized with the monomer (1) and grafted to form a polymer or bottle brush polymer.
  • the organic compound (2) has a monomer in which one or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule, and a reactive group that binds to the surface of the substrate.
  • a copolymer with a monomer the substrate is treated with the copolymer to modify the substrate surface, and then the monomer (1) and the (( When the iodine ion-containing compound 3) is mixed and heated, a polymer having a concentrated brush structure is produced on the surface of the substrate.
  • the present invention provides a radical polymerizable monomer having an unsaturated bond without using any of an azo radical polymerization initiator, a peroxide radical polymerization initiator, and a photo radical polymerization initiator.
  • a radical polymerization initiating group-containing compound for causing radical polymerization with termination reaction Used in combination with an iodine ion-containing compound which is one or more iodide salts or triiodide salts selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide and quaternary ammonium triiodide.
  • At least one group having a structure represented by the following general formula 1 and / or the following general formula 2 that functions as a polymerization initiating group of the radical polymerizable monomer is introduced into the molecule.
  • Initiating group-containing compounds for radical polymerization are provided.
  • R 1 represents H or any alkyl group or acyl group
  • R 2 represents any alkyl group or aryl group
  • X represents Cl or Br
  • Y represents O or NH.
  • R 3 represents H or any alkyl group or aryl group
  • R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group
  • X represents Cl or Br.
  • the group having a structure represented by the general formula 1 is a group having a structure represented by the following general formula 3;
  • (In general formula 3, Y is O or NH) A group in which two groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule;
  • the group having a structure represented by the general formula 1 and / or the general formula 2 is a copolymer of a monomer having at least one monomer introduced in the molecule and a monomer having a reactive group bonded to the surface of the substrate. ;
  • At least a general-purpose organic compound having a specific structure functioning as a polymerization initiation group for a monomer and capable of being in various forms, a monomer, and a compound having iodine ions are mixed.
  • radical polymerization accompanied by a termination reaction starts from a group having the above structure only by heating (heating) to obtain a polymer.
  • a method for producing a polymer that could not be achieved by radical polymerization is provided.
  • the production method of the present invention is environmentally useful and advantageous in terms of cost because the types of materials used for production are reduced as compared with conventional methods. Furthermore, the polymer production method of the present invention does not require the use of explosive compounds such as the conventionally used azo polymerization initiators and peroxide polymerization initiators. And the material does not need to be frozen and refrigerated as in the case of those initiators. In addition, since the production method of the present invention uses a compound in which a chlorine atom or a bromine atom is bonded to the polymerization initiating group, the bond is relatively stable, which is very useful for living radical polymerization. Although there is no need to use a polymerization initiating compound having an iodine atom that decomposes by heat or light, there is a great merit in storing materials. These mean that the polymer production method has extremely high practical value.
  • the method for producing a polymer capable of obtaining the above-described various excellent effects of the present invention can be realized for the first time by the radical polymerization initiator-containing compound of the present invention.
  • the radical polymerization initiation group-containing compound of the present invention is a general-purpose compound that is not limited as long as one or more groups having a simple structure defined by the present invention are introduced. Specifically, it can be used as a general-purpose low molecular weight compound, polymer or monomer by appropriately changing the number of groups to be introduced and the form of the organic compound into which the group has been introduced.
  • radical polymerization initiating group-containing compound of the present invention ABA block copolymer, star polymer, bottle brush polymer, concentrated polymer brush, heterogeneous graft / block / multi-branched polymer, etc. designed to the desired structure Various polymers can be obtained easily and economically.
  • FIG. 3 is a view showing an NMR chart of an initiating group polymer-1.
  • the present invention will be described in more detail with reference to preferred embodiments.
  • the present inventors have used complicated materials using simple commercially available materials without using conventional materials with problems of safety and storage.
  • the present invention has been accomplished by finding an unprecedented and completely new polymerization method which is extremely industrially useful and can easily obtain a polymer having a structure.
  • a radical polymerizable monomer, an organic compound having a specific structure group functioning as a polymerization initiating group defined in the present invention, and a compound having iodine ions are mixed.
  • radical polymerization with a termination reaction can easily start and proceed from a group having a specific structure to obtain a polymer.
  • the following configuration will be described in detail below.
  • At least (1) a radically polymerizable monomer and (2) a group having a structure represented by the following general formula 1 and / or general formula 2 that functions as a polymerization initiating group of the monomer are molecules One or more organic compounds introduced in the inside, and (3) one or more selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide, and quaternary ammonium triiodide It is characterized by having a specific polymerization step in which radical polymerization accompanied by a termination reaction starts from the group of the above structure by mixing and heating an iodine ion-containing compound which is an iodide salt or triiodide salt.
  • each material which comprises this invention is demonstrated in detail.
  • R 1 represents H or any alkyl group or acyl group
  • R 2 represents any alkyl group or aryl group
  • X represents Cl or Br
  • Y represents O or NH.
  • R 3 represents H or any alkyl group or aryl group
  • R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group
  • X represents Cl or Br.
  • a radically polymerizable monomer having an unsaturated bond which is a polymer forming component
  • the monomer having an unsaturated bond include conventionally known monomers having an unsaturated bond, such as a monomer having a vinyl group, a vinylidene group, or a vinylene group. That is, any of conventionally known monomers capable of radical polymerization can be used and is not particularly limited.
  • styrene vinyl toluene, vinyl hydroxybenzene, chloromethyl styrene, vinyl naphthalene, vinyl biphenyl, vinyl ethyl benzene, vinyl dimethyl benzene, ⁇ -methyl styrene, ethylene, propylene, isoprene, butene, butadiene, 1-hexene, cyclohexene, cyclodecene , Dichloroethylene, chloroethylene, fluoroethylene, tetrafluoroethylene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate, isocyanatodimethylmethane isopropenylbenzene, phenylmaleimide, cyclohexylmaleimide, hydroxymethylstyrene, styrenesulfonic acid, vinylsulfone Acid, vinylamine, allylamine, aminostyrene, vinylmethylamine,
  • (meth) acrylate type and (meth) acrylamide type monomers are mentioned. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, 2-methylpropane (meth) acrylate, t-butyl (meth) Acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) Acrylate, tetradecyl (meth) acrylate, octadecyl (meth) acrylate, behenyl
  • the monomers containing hydroxyl groups are 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl ( Examples thereof include mono (meth) acrylates of alkylene glycol such as (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, and cyclohexanediol mono (meth) acrylate.
  • a monomer having a glycol group, poly (n 2 or more, the same applies hereinafter) ethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polytetramethylene glycol mono (meth) acrylate, mono or polyethylene glycol mono or Examples include mono (meth) acrylates of polyalkylene glycols such as mono (meth) acrylates of polypropylene glycol random copolymers, mono (meth) acrylates of mono or polyethylene glycol mono or polypropylene glycol block copolymers.
  • ethylene glycol monomethyl ether (meth) acrylate (poly) ethylene glycol monooctyl ether (meth) acrylate, (poly) ethylene glycol monolauryl ether (meth) acrylate, (poly) ethylene glycol monostearyl ether ( (Meth) acrylate, (poly) ethylene glycol monooleyl ether (meth) acrylate, (poly) ethylene glycol monostearate (meth) acrylate, (poly) ethylene glycol monononylphenyl ether (meth) acrylate, (poly) propylene glycol Monomethyl ether (meth) acrylate, (poly) propylene glycol monoethyl ether (meth) acrylate, (poly) propylene glycol mono (Polyalkylene) glycol monoalkyl, alkylene, alkyne ether such as cutyl ether (meth) acrylate, (poly)
  • the following monomers which are monomers having an acid group can also be used.
  • the monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, acrylic acid dimer, itaconic acid, fumaric acid, crotonic acid, 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth).
  • examples thereof include monomers obtained by reacting a hydroxyalkyl (meth) acrylate such as acrylate with maleic anhydride, succinic anhydride, phthalic anhydride, and the like, and monoester monomers of maleic acid and itaconic acid.
  • Examples of the monomer having a sulfonic acid group include dimethylpropylsulfonic acid (meth) acrylamide, ethyl sulfonate (meth) acrylate, and ethyl (meth) acrylamide.
  • Examples of the monomer having a phosphoric acid group include (di, tri) methacryloyloxyethyl phosphate.
  • Oxygen atom-containing monomers such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, oxetanylmethyl (meth) acrylate, morpholino (meth) acrylate, methylmorpholino (meth) acrylate, methylmorpholinoethyl (meth) acrylate Etc.
  • Examples of monomers having amino groups include the following.
  • Examples of the monomer having a primary amino group include 2-aminoethyl (meth) acrylate and 2-aminopropyl (meth) acrylamide.
  • Examples of the monomer having a secondary amino group include t-butylaminoethyl (meth) acrylate. , Tetramethylpiperidyl (meth) acrylate, t-butylaminopropyl (meth) acrylamide and the like.
  • Examples of the monomer having a tertiary amino group include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, pentamethylpiperidyl (meth) acrylate, N-ethylmorpholino (meth) acrylate, dimethylpropyl (meth) acrylamide and the like. Can be mentioned.
  • Examples of monomers having a quaternary amino group include trimethylaminoethyl (meth) acrylate chloride, diethylmethylaminoethyl chloride (meth) acrylate, benzyldimethylaminoethyl chloride (meth) acrylate, and trimethylaminoethyl (meth) acrylate methyl sulfate. Is mentioned.
  • examples include monomers obtained by reacting primary and secondary amines with glycidyl group-containing monomers such as glycidyl (meth) acrylate.
  • Nitrogen atom-containing monomers for example, (meth) acryloyloxyethyl isocyanate, (meth) acryloyloxyethoxyethyl isocyanate, and blocked isocyanate-containing (meth) acrylates blocked with isocyanates such as caprolactone, Ethyleneiminoethyl (meth) acrylate, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc.
  • Amide monomers N-vinylpyrrolidone, N-vinylacetamide, N-vinylcaprolactam and the like.
  • polyester-based mono (meth) acrylic acid ester 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl succinate, etc.
  • ester-based (meth) acrylate obtained by reacting an alkylene glycol mono (meth) acrylic acid ester with a dibasic acid to form a half ester and then reacting the other carboxylic acid with an alcohol or an alkylene glycol;
  • Mono (meth) acrylates of polyfunctional hydroxyl compounds having three or more hydroxyl groups such as glycerol mono (meth) acrylate and dimethylolpropane mono (meth) acrylate; 3-chloro-2-hydroxypropyl (meth) acrylate, octafluoro Halogen atom-containing (meth) acrylates such as octyl (meth) acrylate and tetrafluoroethyl (meth) acrylate; silicon atom-containing monomers having a trimethoxysilyl group and a dimethylsilicone chain; 2- (4-benzoxy-3-hydroxyphenoxy ) UV-absorbing monomers such as ethyl (meth) acrylate, 2- (2′-hydroxy-5- (meth) acryloyloxyethylphenyl) -2H-benzotriazole; and ethyl- ⁇ -hydroxymethyl acrylate ⁇ -position hydroxyl-substituted acrylates
  • a cyclic vinyl monomer can be used, and a monomer having two or more addition polymerizable groups can be used as necessary.
  • divinylbenzene ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, (meth) acrylic acid ester of polyalkylene glycol adduct of trimethylolpropane, (meth) acrylic acid of alkylene oxide adduct of bisphenol A
  • esters include esters.
  • One or more kinds of the above-mentioned radical polymerizable monomers having an unsaturated bond can be used.
  • the present invention aims to easily obtain an ABA block copolymer, a star polymer, a bottle brush polymer, a concentrated polymer brush, a heterogeneous graft / block / multi-branched polymer, etc., it is usually used in two or more kinds.
  • these monomers may be referred to as “monomer of (1)”.
  • group of formula 1 or 2 a group having a structure represented by the following general formula 1 or 2 (hereinafter also referred to as “group of formula 1 or 2”), the monomer of (1) and When the mixture is heated with the iodine ion-containing compound of 3), as a result, radical polymerization accompanied by termination reaction is initiated from the group having the above-mentioned specific structure characterizing the present invention, and various structures with controlled structures are obtained. A polymer is obtained.
  • the organic compound (2) used in the present invention and characterizing the present invention only needs to have the following structure introduced into the molecule, and this structure serves as a polymerization initiating group for the monomer (1). Function.
  • the organic compound (2) is safer than conventional azo polymerization initiators and peroxide polymerization initiators, and the material is frozen and refrigerated like conventional initiators. There is no need to do.
  • a compound having a chlorine atom or bromine atom bonded thereto is used in the structure, the bond is relatively stable.
  • a polymerization initiating compound having an iodine atom bonded in living radical polymerization it can be heated or lighted. It won't break down.
  • R 1 represents H or any alkyl group or acyl group
  • R 2 represents any alkyl group or aryl group
  • X represents Cl or Br
  • Y represents O or NH.
  • R 3 represents H or any alkyl group or aryl group
  • R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group
  • X represents Cl or Br.
  • the “group of formula 1 or 2” defined in the present invention has a chlorine atom (also referred to as chloro) or a bromine atom (also referred to as bromo) bonded as X in the structure, and these atoms are reactive. Further, it is a group that can be eliminated or substituted, and furthermore, at least one or more electron withdrawing groups, carbon, to which these atoms are bonded, an ester group, an amide group, a cyano group, A carboxyl group or an aryl group is bonded.
  • any organic compound having a structure in which one or more such groups are introduced into the molecule can be used.
  • the organic compound (2) for example, any form such as a low molecular weight compound, a monomer, and a polymer can be used.
  • group of formula 1 and “group of formula 2” will be described.
  • group of formula 1 is specifically exemplified, but is not limited to the following.
  • Examples of the “group of formula 1” include those having an ester bond or an amide bond in the structure thereof as shown below.
  • an organic compound having one or more “groups of formula 1” used in the present invention introduced through an ester bond or an amide bond, as shown below, is a chlorine atom (Cl) or a bromine atom ( Br) is bound.
  • Examples thereof include groups having an ester bond or an amide bond of ⁇ -chloro or bromoalkanoic acid as described below.
  • Examples thereof include groups having an ester bond or an amide bond of ⁇ -chloro or bromoaryl-substituted alkanoic acid as described below.
  • Examples thereof include groups having an ester bond or an amide bond of chloro or bromo-substituted acetoalkanoic acid as described below.
  • the “group of formula 2” is specifically exemplified, but is not limited to the following.
  • Examples of the “group of formula 2” include the following groups, and those in which these groups are directly bonded to the organic compound can be used as the organic compound (2) defined in the present invention. .
  • Examples thereof include chloro- or bromo-substituted cyano group-containing alkyl groups as described below.
  • Examples thereof include chloro or bromo-substituted alkanoic acid amides, alkyl mono-substituted and di-substituted groups of the nitrogen thereof, and the like.
  • the introduction of the “group of formula 1 or 2” as exemplified above into the organic compound can be any method and is not particularly limited.
  • the “group of formula 1” when the “group of formula 1” is introduced, it can be obtained by esterifying or amidating the corresponding carboxylic acid group-containing compound. Further, it can be obtained by reacting a compound having an “epoxy group” with a compound having “group of formula 1”.
  • X in the structure of the above-mentioned “group of formula 1 or 2”, that is, a compound in which a hydroxyl group is bonded to a group to which chlorine or bromine is bonded, phosphorus halide, concentrated hydrochloric acid or bromide is used.
  • any organic compound may be used as long as the “group of formula 1 or 2” described above is introduced.
  • a group having a structure represented by the following general formula 3 can be used because the initiation polymerization reaction rate is high and the synthesis can be easily performed with a commercially available compound. It is preferable to use an organic compound into which (hereinafter referred to as “group of formula 3”) is introduced. (Y is O or NH)
  • group of formula 3 can be obtained by conventionally known materials and methods, and various forms of organic compounds into which “group of formula 3” is introduced can be easily obtained. It is not limited.
  • an organic compound having the “group of formula 3” introduced therein can be easily synthesized will be described.
  • an organic compound having a group capable of reacting with its carboxy group and its derivative is used as the organic compound into which the “group of formula 3” is introduced, and these are reacted.
  • the compound used in that case is not specifically limited.
  • 2-bromoisobutyric acid compounds include 2-bromoisobutyric acid, 2-bromoisobutyric acid bromide, and anhydrous 2-bromoisobutyric acid. And these compounds and organic compounds having a reactive group that can react with a carboxyl group-based compound such as a hydroxyl group, an amino group, an epoxy group, a carbodiimide group, an oxazoline group, an isocyanate group, and an ethyleneimine group Can be introduced into an organic compound through an ester bond or an amide bond.
  • a carboxyl group-based compound such as a hydroxyl group, an amino group, an epoxy group, a carbodiimide group, an oxazoline group, an isocyanate group, and an ethyleneimine group
  • the compound of (2) characterizing the present invention is the above-mentioned “group of formula 1 or 2” functioning as a polymerization initiating group of the monomer of (1), more preferably “group of formula 3” (these are (Sometimes collectively referred to as “groups of Formulas 1 to 3”) are organic compounds having one or more introduced in the molecule.
  • the organic compound to be used may be in any form, and conventionally known organic compounds are used. There are so many kinds of conventionally known organic compounds that cannot be exemplified.
  • an azo radical polymerization initiator a peroxide radical polymerization initiator, and a photo radical polymerization initiator that are conventionally used in polymerization are used. It will be described that the monomer (1) can be polymerized and polymers having various structures can be formed without using any of them.
  • the polymer when the form of the organic compound (2) used is a polymer component, if there are “groups of formulas 1 to 3” at both ends of the organic compound, the polymer is defined as B.
  • the monomer polymerization product is A, it can be an ABA block copolymer.
  • the polymer form of the organic compound (2) to be used has two “groups of formulas 1 to 3” hanging in the molecule, the resulting polymer is converted into two comb structures.
  • the polymer can be
  • a conventionally known polymer can be used and is not particularly limited.
  • examples thereof include polymers such as polyether, polyester, polyamide, polyurethane, polyolefin, polyimide, polyacryl, polymethacryl, polystyrene, polycarbonate, polysilicone, polyhalogenated olefin, and polyvinyl alcohol. These may be polymers having any structure of homopolymers, copolymers, graft copolymers, and block copolymers.
  • a branched structure type polymer Or a star polymer or a graft polymer can be obtained.
  • the above-mentioned vinyl polymer having the “groups of formulas 1 to 3” introduced therein may be obtained by polymerizing a monomer having the “groups of formulas 1 to 3” introduced therein, or a monomer having a hydroxyl group or the like in advance. After polymerization, “groups of formulas 1 to 3” may be introduced. Further, the copolymer may be obtained by copolymerizing a monomer having “groups of formulas 1 to 3” and the other monomer described above. In this case, the amount of the monomer into which the “group of formulas 1 to 3” is introduced is arbitrary and is not particularly limited.
  • the polymer introduced with the above-mentioned “groups of formulas 1 to 3” used as the organic compound (2) is more preferably obtained by living radical polymerization because the molecular weight distribution becomes narrow.
  • a living radical polymerization method a nitroxide method using a nitroxide radical (NMP method), a dithioester compound, or the like is used using a monomer in which “groups of formulas 1 to 3” are introduced.
  • a reversible addition-cleavage chain transfer polymerization (RAFT method), a reversible transfer catalyst polymerization using an iodine compound and an organic catalyst (RTCP method), and the like are used, and are not particularly limited.
  • RAFT method a reversible addition-cleavage chain transfer polymerization
  • RTCP method reversible transfer catalyst polymerization using an iodine compound and an organic catalyst
  • atom transfer radical polymerization utilizing redox is not preferred because it may cause gelation because of polymerization of mono
  • a monomer having the “groups of formulas 1 to 3” introduced therein and a reactive monomer as another monomer component, in particular, are copolymerized, and a copolymer having this reactive group is used.
  • the surface of the article is treated, and then the polymer of (1) is polymerized using the “groups of formulas 1 to 3” constituting the copolymer as a polymerization initiating group, thereby grafting the polymer onto the article surface.
  • the polymerization method using the monomer having the “groups of formulas 1 to 3” is living radical polymerization, the introduction rate of the specific monomer into the copolymer is constant and stopped. Since there is no reaction, it is possible to introduce a dense polymer brush structure in which the polymer is an extended chain and the molecular weight is uniform.
  • the organic compound (2) is used as a polymer component as described below.
  • a polymer in which a “group of formulas 1 to 3” is introduced and a vinyl monomer having an alkoxysilyl group is copolymerized with a vinyl monomer having an alkoxysilyl group and having an alkoxysilyl group As a component, this is applied to the surface of a substrate such as glass, metal, plastic and the like, surface-modified, and then the “groups of formulas 1 to 3” characterizing the present invention function as a polymerization initiating group.
  • radical polymerization of the monomer 1) By performing radical polymerization of the monomer 1), a rich brush structure can be easily introduced into the article.
  • an organic compound into which one or more “groups of formulas 1 to 3” are introduced can be used as the organic compound (2).
  • a compound having two or more “groups of the formulas 1 to 3” is used.
  • a linear polymer can be obtained by ordinary radical polymerization or living radical polymerization, it is compared with the production method of the present invention using an organic compound in which two or more “groups of formulas 1 to 3” are introduced. And the benefits are not so great.
  • the molecular weight of the resulting polymer may be controlled by adjusting the amount of the “group of formulas 1 to 3” introduced into the organic compound (2).
  • the polymerization is started from the “groups of formulas 1 to 3” introduced into the organic compound of (2). Therefore, with respect to 1 mol of the compound containing “groups of formulas 1 to 3”, The molecular weight of the polymer to be produced can be adjusted by adjusting the amount of the monomer 1).
  • this polymerization is accompanied by a termination reaction such as radical polymerization, and there are cases in which a high molecular weight can be obtained by coupling. In this case, adjustment cannot be made by the amount of the initiating group. In this case, it can be avoided by adding a catalyst described later.
  • Iodine ion-containing compound which is iodide salt or triiodide salt In the method for producing a polymer of the present invention, (3) one or more iodide salts selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide and quaternary ammonium triiodide. Alternatively, it is essential to use an iodine ion-containing compound that is a triiodide salt.
  • these compounds will be described. The details of the action of these compounds have not been elucidated.
  • bromine in the above-mentioned “groups of formulas 1 to 3” is replaced with iodine, and polymerization in which iodine moves occurs.
  • these compounds may act as a redox catalyst to promote polymerization.
  • iodination agent or (3) compound.
  • the compound (3) is a compound having iodine ions, and is selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide, and quaternary ammonium triiodide.
  • the compounds which are the above-described iodide salts or triiodide salts, and conventionally known compounds can be used, and are not particularly limited.
  • the metal iodide include lithium iodide, sodium iodide, potassium iodide, calcium iodide, magnesium iodide and the like.
  • Examples of the quaternary ammonium iodide include tetramethylammonium iodide, tetraethylammonium iodide, and tetrabutylammonium iodide.
  • Examples of the quaternary phosphonium iodide include tetrabutylphosphonium iodide, tributylmethylphosphonium iodide, triphenylmethylphosphonium iodide, and the like.
  • Examples of the quaternary ammonium triiodide include tributylmethylammonium triiodide. Any compound can be used as long as it has iodine ions.
  • the amount of the iodinating agent in (3) is preferably about equimolar to the “groups of formulas 1 to 3” in (2) to be used in combination, but the amount used may be determined according to the polymer to be produced. There is no particular limitation. For example, if the number of moles of “groups of formulas 1 to 3” to be substituted with iodine is added, iodinated, and subjected to the polymerization step specified in the present invention, polymerization is performed with the amount of the iodinating agent of (3). You can adjust the number of chains.
  • the radical polymerization termination reaction described above can be prevented, and high molecular weight and gelation can be prevented.
  • the present inventors believe that iodine or amino groups become radicals and contribute to the prevention of growth radical coupling.
  • the component (4) may be simply referred to as “catalyst (4)”.
  • the catalyst of (4) may be iodine, an organic iodide compound capable of liberating iodine and a compound having an organic base, and conventionally known compounds are used, and they are not particularly limited. Examples other than iodine are specifically exemplified. Any compound can be used as the iodinated organic compound capable of releasing iodine since iodine is released by heat or light as long as iodine is bonded. N-iodoimide-based compounds are preferable, and N-iodosuccinimide, N-iodophthalimide, N-iodocyclohexanilimide, and 1,3-diaiodo-5 which are easily available as commercial products are preferable.
  • the compound having an organic base conventionally known compounds such as triethylamine, tributylamine, diazabicycloundecene (DBU), diazabicyclooctane (DABCO), and phosphazene base can be used.
  • DBU diazabicycloundecene
  • DABCO diazabicyclooctane
  • phosphazene base phosphazene base
  • the amount of the catalyst (4) is arbitrary and is not particularly limited. Preferably, it is used in the range of 0.001 to 0.1 mol times the “group of formulas 1 to 3” of (2) which functions as a polymerization initiating group to be used in combination. If the amount used is too large, the effect as a catalyst is not sufficiently exhibited, and a side reaction or the like may occur.
  • the polymerization step of the method for producing a polymer of the present invention is preferably solution polymerization in which polymerization is performed using an organic solvent.
  • an ionic material such as (3) cannot be dissolved in the monomer material of (1), and chlorine in the structure of “groups of formulas 1 to 3” of (2)
  • the exchange of bromine and iodine ion of the iodinating agent of (3) must be performed by dissolving the iodinating agent as described above.
  • an organic solvent having a high polarity as listed below is used. It is preferable to use for part or all.
  • a solvent that is an alcohol, glycol, amide, sulfoxide, or ionic liquid it is preferable to use.
  • these solvents are not always necessary.
  • organic solvents include conventionally known nonpolar solvents such as hydrocarbons, halogens, ketones, esters, glycols, etc., in combination with these solvents, A high solvent may be used. In that case, the ratio of the solvent having high polarity is arbitrary, and the solvent is selected so as to dissolve the polymer of the present invention obtained by polymerizing the monomer.
  • solvents include alcohols, glycols, amides, sulfoxides, and ionic liquids.
  • alcohol solvents such as methanol, ethanol and isopropanol
  • glycol solvents such as ethylene glycol, propylene glycol, glycerin, diethylene glycol and propylene glycol monomethyl ether
  • dimethylformamide, dimethylacetamide, N-methylpyrrolidone 3- Amide solvents such as methoxy-N, N-dimethylpropanamide and 3-butoxy-N, N-dimethylpropanamide
  • sulfoxide solvents such as dimethyl sulfoxide
  • ionic liquids such as imidazolium salts and quaternary ammonium salts Can be used alone or in combination of two or more.
  • the amount of these solvents used during polymerization is not particularly limited as long as the iodinating agent (3) is dissolved. Preferably, it is 30% to 80% by mass. If it is less than 30%, the solid content may be too high, resulting in a high viscosity. If it is more than 80%, the monomer concentration may be too low to increase the polymerization rate. More preferably, it is 40% to 70%.
  • the polymer production method of the present invention is basically characterized in that it is not necessary to use a radical polymerization initiator that generates radicals.
  • a radical polymerization initiator that generates radicals.
  • the polymerization is performed using a compound that generates a radical such as azo, peroxide, or thiol.
  • the above-described materials (1) to (3) are mixed and polymerization proceeds easily by heat. In some cases, it is expected that a polymer by the polymerization method of the present invention can be obtained even if a radical polymerization initiator is used in combination.
  • radical polymerization starts from the structure of “groups of formulas 1 to 3”, as described above, the amount of the organic compound into which “groups of formulas 1 to 3” are introduced, and (3) Since the molecular weight can be controlled by the amount of the iodinating agent, and a polymer derived from a radical initiator cannot be produced, normal radical polymerization is controlled, and only a polymer using “groups of formulas 1 to 3” is obtained. Can do.
  • Polymerization process The above are the materials necessary for the production method of the polymer according to the present invention.
  • these materials are mixed and heated (heated), so that the radicals of the monomer can be converted from “groups of formulas 1 to 3”.
  • Polymerization starts and proceeds to obtain a polymer.
  • the polymerization conditions are not particularly limited, and conventionally known methods are used. When more preferable specific conditions are listed, in a nitrogen or argon atmosphere or bubbling, there is no influence of oxygen and the polymerization proceeds well.
  • the temperature may be room temperature or higher, for example, 40 ° C. or higher, but if it is about room temperature, it takes a lot of polymerization time. This is suitable in that a preferable production time can be realized in practical production.
  • the stirring speed does not particularly affect the polymerization, and light shielding is not always necessary.
  • the polymerization rate is also arbitrary, and the monomer may not be completely consumed.
  • polymer In the polymer production method of the present invention, the respective materials described above are prepared, mixed, and heated under the above conditions, whereby the polymer can be easily produced. Furthermore, by appropriately designing the form of the radical polymerization initiating group-containing compound (2) that characterizes the present invention, it is easier to use the catalyst (4) as required. A polymer having a desired specific (complex) structure can be obtained industrially. Specifically, by using the production method of the present invention, a desired polymer controlled in various forms as described below can be easily provided. Polymers provided include linear polymers, AB block polymers, ABA block polymers, branched polymers, graft polymers, star polymers, concentrated polymer brushes, bottle brush polymers, and the like.
  • a bottle brush polymer which is a dense graft polymer, can be synthesized using a conventionally known commercially available material without purification and in some cases in one pot. More specifically, first, glycidyl methacrylate and bromoisobutyric acid are reacted with tetraethylammonium bromide as a catalyst in an amide solvent to open an epoxy group and introduce an “ester of formula 3” as an ester. The obtained monomer is obtained.
  • radical polymerization with an azo initiator added to the system, or in addition, polymerization with reversible transfer catalyst polymerization using iodine, azo initiator, diphenylmethane as a catalyst, A polymer which is an organic compound of (2) in which “group 3” is introduced.
  • tributylammonium iodide as the iodinating agent of (3), the monomer of (1), and N-iodosuccinimide as the catalyst of (4) as a preferred form are added to this, and this is mixed and heated.
  • the polymer obtained as described above may be used as it is, or may be added to a poor solvent, precipitated, purified, and a polymer component may be used.
  • the use of the obtained polymer can be used for conventionally known applications and is not particularly limited.
  • the present invention can be applied to various fields such as inks, paints, coatings, plastics, inkjet inks, color filter materials, energy-related materials, mechanical component-related materials, medical devices, medical materials, and pharmaceuticals.
  • Example 1 To a reaction apparatus equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen introduction tube, 100.0 parts of 3-methoxy-N, N-dimethylpropanamide (hereinafter abbreviated as MDPA) as a solvent, 100.0 parts of 3-methoxy-N, N-dimethylpropanamide (hereinafter abbreviated as MDPA) as a solvent, As an organic compound, 4.0 parts of ethyl 2-bromoisobutyrate, 100.0 parts of methyl methacrylate (hereinafter abbreviated as MMA) as a monomer of (1), sodium iodide as an iodinating agent of (3) 3.0 parts was charged, heated to 75 ° C. while bubbling nitrogen, and polymerized for 7 hours.
  • MDPA 3-methoxy-N, N-dimethylpropanamide
  • MMA methyl methacrylate
  • the polymerization rate of the obtained polymer was 95%, the number average molecular weight (hereinafter abbreviated as Mn) was 7600, and the molecular weight distribution (weight average molecular weight / number average molecular weight, hereinafter abbreviated as PDI) was 1.87. From the above, it was confirmed that according to the production method of the present invention, a polymer can be obtained without using a conventionally used azo-based or peroxide-based radical generator.
  • the polymerization rate in the above was calculated by drying the solution at 180 ° C. and measuring the nonvolatile content. In the following examples, the same method was used. The molecular weight is measured by gel permeation chromatograph (GPC), and the solvent is tetrahydrofuran (THF) unless otherwise specified, and has a molecular weight in terms of polystyrene. In the following examples, the measurement was performed in the same manner.
  • Example 2 In the same manner as in Example 1, 0.2 part of N-iodosuccinimide (hereinafter abbreviated as NIS) was further added to the system of Example 1 as the component (4) defined in the present invention. Polymerized for 7 hours. When sampled at this time, the polymerization rate was 68%, Mn was 5200, and PDI was 1.43. Then, when further polymerizing for 5 hours under the same conditions, the polymerization rate reached 95%, Mn was 8700, and PDI was 1.47. From comparison with the polymer obtained in Example 1, it was confirmed that by adding an N-iodide compound as a catalyst in the system, the polymerization was controlled and the particle size distribution of the obtained polymer was narrowed.
  • NIS N-iodosuccinimide
  • Example 3 To the system of Example 2, 1.0 part of triethylamine was further added as a compound having an organic base as the component (4) defined in the present invention, and polymerization was carried out in the same manner. When sampled after 7 hours, the polymerization rate reached 91%, Mn was 7800, and PDI was 1.61. From the comparison with Example 2, it was confirmed that the polymerization rate was increased, and from the comparison with Example 1, it was confirmed that a polymer whose particle size distribution was controlled to some extent could be obtained.
  • Example 4 In the system of Example 2, when 2.8 parts of ethyl 2-chloroisopropionate was used instead of 4.0 parts of ethyl 2-bromoisobutyrate in (2) (Example 4), When 3.3 parts of ethyl onate were used (Example 5), a polymer was prepared in the same manner as in Example 2 except that the heating conditions were changed. Polymerization was carried out at 85 ° C. in Example 4 using ethyl 2-chloroisopropionate and 80 ° C. in Example 5 using ethyl 2-bromoisopropionate. Sampling was conducted after 7 hours, and the polymerization rate and molecular weight were measured.
  • Example 4 the polymerization rate was 82%, Mn was 7600, and PDI was 1.65. In the case of Example 5, the polymerization rate was Was 79%, Mn was 6900, and PDI was 1.56. From the above, it was confirmed that each compound used above also functions as a polymerization initiation group.
  • the polymerization rate of the obtained polymer was approximately 100%, and the molecular weight of the polymer was measured with a GPC apparatus using a dimethyl sulfoxide solvent.
  • Mn was 18500 and PDI was 1.35.
  • the polymer was collected, added to a large amount of water while stirring with a disper, washed, filtered, washed with water, and dried with a blow dryer at 50 ° C. until there was no volatile matter. As a result, a white powdery solid was obtained.
  • the white powdery solid obtained by the above operation becomes a polymer in which a group having the structure of the general formula 3 defined by the present invention (“group of formula 3”) is bonded to a side chain, as shown below.
  • group of formula 3 a group having the structure of the general formula 3 defined by the present invention
  • a powdered solid can be confirmed by identification with an infrared spectrophotometer (IR) or nuclear magnetic resonance apparatus (NMR) to be a polymer having a plurality of “groups of formula 3” introduced in the side chain. It was.
  • IR infrared spectrophotometer
  • NMR nuclear magnetic resonance apparatus
  • Example 6 Using the same reaction apparatus as in Example 1, 200 parts of MDPA as a solvent, 200 parts of MMA of (1), 6 parts of initiating group polymer-1 prepared in Synthesis Example 1 of (2), (3 ) was charged with 7.9 parts of tetrabutylammonium iodide (hereinafter abbreviated as TBAI), 0.3 parts of NIS as the component (4) was added, and polymerization was carried out at 75 ° C. for 8 hours. Since the polymerization progressed to become a highly viscous liquid, it was sampled and the polymerization rate was measured and found to be 87%. Moreover, Mn was 2970000 and PDI was 1.48.
  • TBAI tetrabutylammonium iodide
  • the resulting polymer has a structure in which the main chain has a side chain. It was confirmed that a high molecular weight polymer can be obtained.
  • Example 7 and 8 instead of the initiating group polymer-1 used in Example 6, initiating group polymer-2 was used in Example 7, initiating group polymer-3 was used in Example 8, and the others were the same as in Example 6. Each was polymerized. As a result, the polymer obtained using Initiator Polymer-2 having a molecular weight smaller than that of Initiator Polymer-1 used in Example 6 had a polymerization rate of 95%, Mn of 1870000, and PDI of 1.45. there were. On the other hand, the polymer obtained using Initiator Polymer-3 having a molecular weight larger than that of Initiator Polymer-1 used in Example 6 had a polymerization rate of 80%, Mn of 330000, and PDI of 1.72. Met. From this, it was confirmed that the molecular weight of the finally obtained polymer can be adjusted by the difference in the molecular weight of the starting group polymer used.
  • Example 9 Polymerization was carried out in the same manner as in Example 6 except that 6 parts of the used amount of the starting group polymer-1 was changed to 4 parts and 8 parts, respectively. As a result, when 4 parts of the starting group polymer-1 were used, the polymerization rate was 71%, Mn was 3210000, and PDI was 1.56. When 8 parts of the starting group polymer-1 were used, the polymerization rate was It was 89%, Mn was 190000, and PDI was 1.42. From the above results, it was found that the molecular weight of the finally obtained polymer can be adjusted also by the amount of the starting group polymer used, that is, the amount of the starting group.
  • the amount of MDPA was increased from 200 parts to 600 parts, and the polymerization was carried out by lowering the viscosity. Although the temperature reached 65 ° C., gelation did not occur and polymerization proceeded. After 7 hours, the viscosity became high, and when sampled, the polymerization rate was 45%. Further, in order to measure GPC, when dissolved in a THF solution and applied with a 0.45 ⁇ m filter, clogging occurred. And when the molecular weight of the filtration part was measured, the high molecular weight body had arisen, Mn was 5400000, and the particle size distribution was a 2 Cobb peak.
  • the polymerization has progressed, it has become a high molecular weight and is a step before gelation, and when this situation occurs industrially, it becomes difficult to use the reactor, accidents, etc. It cannot be used industrially because it may cause danger.
  • the production method of the present invention according to the production method of the present invention, it has a high solid content, a high molecular weight without gelation even at a high polymerization rate, and a multi-branched type. Since a polymer having a structure can be obtained, this is a useful method that can be used industrially to obtain various polymers.
  • Example 10 instead of the MMA (1) used in Example 6, Example 10 used lauryl methacrylate (hereinafter abbreviated as LMA) as the monomer (1), and Example 11 used cyclohexyl methacrylate (hereinafter CHMA). The abbreviation was used for the monomer of (1), and polymerization was carried out in the same manner as in Example 6 except that. As a result, in Example 10 using LMA, the polymerization rate of the obtained polymer was 95%, Mn was 350,000, and PDI was 1.32. The obtained polymer was precipitated in methanol, and the polymer content was collected and dried to remove methanol.
  • LMA lauryl methacrylate
  • CHMA cyclohexyl methacrylate
  • Example 11 using CHMA the polymerization rate of the obtained polymer was 70%, Mn was 181000, and PDI was 1.78. From these facts, it was confirmed that the production method of the present invention is not limited to MMA but can be applied to polymerization of other methacrylate monomers.
  • Example 12 Instead of the MMA (1) used in Example 6, butyl acrylate was used and the temperature was set to 120 ° C. to carry out the polymerization. As a result, at 7 hours, the polymerization rate was 57%, the molecular weight was 114,000, and the PDI was 1.89. From this, it was confirmed that the production method of the present invention can be applied to the polymerization of acrylate monomers.
  • reaction product is a methacrylate having a “group of formula 3” introduced by reacting an epoxy group of glycidyl methacrylate with a carboxylic acid.
  • this solution was cooled to 65 ° C., and in another container, 185.1 parts of benzyl methacrylate (BzMA), 2,2′-azobis (2,4-dimethylvaleronitrile) (hereinafter referred to as V-65). ) 5.6 parts were mixed and the homogenized one was charged into a dropping funnel, one third of the mixture was added, and then dropped over 1 hour. Furthermore, polymerization was continued for 7 hours at that temperature. When the polymerization rate was measured by sampling at that time, it was almost 100%, and the nonvolatile content was 50.3%. Moreover, Mn was 8900 and PDI was 2.31. The resulting polymer is referred to as initiator group polymer-4, and this solution is referred to as initiator group polymer-4 solution.
  • BzMA benzyl methacrylate
  • V-65 2,2′-azobis (2,4-dimethylvaleronitrile
  • Example 13 Using the same reactor as in Example 1, 194 parts of PGM as the solvent, 100 parts of MMA as the monomer of (1), 100 parts of butyl methacrylate (BMA), the start of (2) obtained above 12 parts of the base polymer-4 solution and 7.4 parts of (3) tributylmethylphosphonium iodide were added, and polymerization was carried out at 80 ° C. for 7 hours. When the solid content was measured after the completion of the polymerization, it was 96.1%, Mn was 198000, and PDI was 2.6. As a result, it was confirmed that a graft polymer could be formed without refining each material, and that the initiator polymer-4 could be used for polymerization even with a random copolymer.
  • BMA butyl methacrylate
  • Example 14 Using the same reactor as in Example 1, 200 parts of MDPA, 100 parts of MMA of (1), 6 parts of initiator group polymer-1 of (2) prepared in Synthesis Example 1, and TBAI of (3) was added as a component of (4), 0.3 parts of NIS and 1 part of triethylamine were added and polymerized at 75 ° C. for 5 hours. Polymerization progressed to become a highly viscous liquid. Sampling was performed at that time, and the polymerization rate was measured and found to be 68%. Moreover, Mn was 154000 and PDI was 1.59.
  • Example 15 10 parts of the initiator group polymer-5 solution having an alkoxysilyl group in the reactive group obtained in Synthesis Example 5, 10 parts of ethanol, and 2 g of 25% aqueous ammonia were mixed to obtain an initiator group polymer mixed solution.
  • a silicon substrate cut into 5 cm squares was prepared, and the above initiator group polymer mixed solution was spin-coated on one surface (hereinafter referred to as the front surface) of the substrate with a spin coater. Thereafter, it was dried and baked at 80 ° C. for 10 minutes and at 150 ° C. for 10 minutes. As a result, in the silicon substrate, the polymerization initiating group is surely introduced into the front surface of the substrate.
  • a group that initiates polymerization exists in the form of a polymer film in a high concentration state on the front surface of the substrate, and the alkoxysilyl group is firmly bonded to the silicon substrate. It will be in the state.
  • the polymer of ethyl 2-bromoisobutyrate that functions as the above polymerization initiating group has Mn of 28700 and PDI of 1.67, and this polymer is considered to be introduced on the surface of the silicon substrate. If the technique of this embodiment is utilized, it is possible to grow a polymer brush on the surface of a substrate made of various materials, and the material surface can be variously modified. Be expected.
  • Example 16 Synthesis of hyperbranched polymer-1
  • 100.0 parts of MDPA as a solvent
  • 100.0 parts of MMA of (1) and 4.1 parts of TBAI of (3) were charged and heated to 75 ° C. while bubbling nitrogen, and then 0.74 of triethylamine of (4) Part was added and polymerized for 7 hours.
  • the polymerization rate of the obtained polymer was 94.8%
  • Mn was 26000
  • PDI was 1.49. From this, it was confirmed that a 4-chain multi-branched polymer was obtained.
  • Example 17 Synthesis of hyperbranched polymer-2
  • the polymerization rate of the obtained polymer was 93.3%, Mn was 44500, and PDI was 1.46. From this, it was confirmed that a 6-chain multi-branched polymer was obtained.
  • Example 18 Synthesis of hyperbranched polymer-3
  • 100.0 parts of MDPA as a solvent, 3.1 parts of C8AMA having 8 polymerization initiation groups obtained in Synthesis Example 6 as an organic compound of (2) ( Charge 100.0 parts of MMA of 1) and 4.1 parts of TBAI of (3), warm to 75 ° C. while bubbling nitrogen, then add 0.74 part of triethylamine of (4).
  • the polymerization rate of the obtained polymer was 91.1%, Mn was 63600, and PDI was 1.49. From this, it was confirmed that an 8-chain multi-branched polymer was obtained.
  • radical polymerization initiator-containing compounds that can be formed in various forms
  • various radicals can be initiated and advanced without termination using conventional radical polymerization initiators.
  • polymer materials with specific properties such as adhesion, friction properties, wear resistance, wettability, barrier properties, adsorption / separation / transport properties of specific substances, and substrates with such specific properties of polymers
  • Various materials whose surfaces have been treated are provided and their use is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided are: a novel production technique of allowing production of a polymer of which the molecular weight or the molecular weight distribution is controlled or allowing production of a desirably controlled polymer having a complicated structure, using commercially available materials without using any radical polymerization initiator or any special materials for use in living radical polymerization and without the need of strict polymerization conditions; and a radical polymerization initiating group-containing compound for use in the technique. The present invention pertains to: a polymer production method comprising a polymerization step for mixing and heating (1) a radical polymerizable monomer, (2) an organic compound having introduced in a single molecule thereof at least one group having a structure that is represented by general formula 1 and/or general formula 2 (in the formulae, X represents Cl or Br) and that functions as a group for initiating polymerization of the monomer, and (3) an iodine ion-containing compound, so that radical polymerization accompanied by termination starts from the group having the structure; and said organic compound (2) for use in the method.

Description

ポリマーの製造方法及びラジカル重合の開始基含有化合物Polymer production method and radical polymerization-initiating group-containing compound
 本発明は、不飽和結合を有するラジカル重合性モノマーによる新たなポリマーの製造方法、複雑な構造のポリマーを自在に得ることを可能にできるポリマーの製造方法、該製造方法の実現を可能にするラジカル重合の開始基含有化合物に関する。より詳しくは、コスト的に優位で、ラジカル重合開始剤を使用せずにポリマーを得ることができ、しかも、容易に複雑な構造のポリマーを得ることもできる産業的に有用な重合法、それに加えて、従来のラジカル重合では困難な、分子量が揃っており、且つ、構造が所望の状態に制御されたポリマーの提供を可能にできる技術に関する。 The present invention relates to a method for producing a new polymer using a radically polymerizable monomer having an unsaturated bond, a method for producing a polymer capable of freely obtaining a polymer having a complicated structure, and a radical capable of realizing the production method. The present invention relates to a polymerization start group-containing compound. More specifically, in addition to the industrially useful polymerization method, which is advantageous in terms of cost, can obtain a polymer without using a radical polymerization initiator, and can easily obtain a polymer having a complicated structure, In particular, the present invention relates to a technique that makes it possible to provide a polymer having a uniform molecular weight and a controlled structure in a desired state, which is difficult with conventional radical polymerization.
 従来、ビニル基やビニリデン基やビニレン基等を有する不飽和結合を有するラジカル重合性モノマー(以下、単に「モノマー」と称す場合がある)を重合して得られるポリマーは、ラジカル重合、イオン重合などによって得られ、汎用性が高く、様々なところで使用されている。例えば、ラジカル重合に関しては、ラジカルを発生させるために必要なアゾ系ラジカル重合開始剤や過酸化物系重合開始剤を使用しての熱重合や、光ラジカル重合開始剤を使用しての光重合によってポリマーを得ている。 Conventionally, polymers obtained by polymerizing a radical polymerizable monomer having an unsaturated bond having a vinyl group, vinylidene group, vinylene group or the like (hereinafter sometimes simply referred to as “monomer”) are radical polymerization, ionic polymerization, etc. Is highly versatile and used in various places. For example, regarding radical polymerization, thermal polymerization using an azo radical polymerization initiator or peroxide polymerization initiator necessary for generating radicals, or photopolymerization using a photo radical polymerization initiator. To obtain the polymer.
 一方、これらのラジカル重合では、そのラジカルの寿命は非常に短いことと、ラジカル同士のカップリング反応や、ラジカルが他から水素を引き抜きラジカルが消滅してしまう不均化反応により、重合が停止してしまうという課題がある。この反応の停止によって、分子量が揃わず、例えば、ブロックコポリマー等の構造が制御されたポリマーを得ることができなかった。これに対し、ポリマーの分子量や構造を制御するために発明されたのが、リビングラジカル重合であり、様々な方法があり、検討されている(特許文献1~7)。その結果、分子量や、構造が所望の状態に制御されたポリマーを得ることができるようになり、工業的にも使用されている。 On the other hand, in these radical polymerizations, the lifetime of the radicals is very short, and the polymerization is stopped by a coupling reaction between radicals or a disproportionation reaction in which radicals draw hydrogen from others and the radicals disappear. There is a problem that it ends up. Due to the termination of this reaction, it was not possible to obtain a polymer having a controlled molecular structure such as a block copolymer because the molecular weight was not uniform. On the other hand, living radical polymerization was invented to control the molecular weight and structure of polymers, and various methods have been studied (Patent Documents 1 to 7). As a result, a polymer whose molecular weight and structure are controlled to a desired state can be obtained, and is used industrially.
特開平8-179111号公報JP-A-8-179111 特開2003-227921号公報Japanese Patent Laid-Open No. 2003-227921 特表2000-500516号公報Special Table 2000-500516 特表2000-514479号公報Special Table 2000-514479 特表2000-515181号公報Special Table 2000-515181 国際公開第1999/05099号International Publication No. 1999/05099 特開2007-277533号公報JP 2007-277533 A
 上記したように、ラジカル重合開始剤を用いたラジカル重合方法は有用であるものの、例えば、ブロックコポリマーやグラフトコポリマーやスターポリマーなど、構造が複雑なポリマーは、モノマーを通常のラジカル重合する方法では得ることができない。これに対し、リビングラジカル重合によれば、構造が複雑な上記したようなポリマーを得ることができるものの、その場合には、下記の課題があった。すなわち、リビングラジカル重合では、特殊な化合物を使用したり、金属触媒を使用したりするため、それらの化合物や触媒を除去する必要があり、工業的には煩雑で複数の工程が必要であり、また、その重合条件も、使用するモノマーの精製を必要としたり、窒素雰囲気下で行う必要があるなど、厳密にする必要があった。 As described above, although a radical polymerization method using a radical polymerization initiator is useful, for example, a polymer having a complicated structure such as a block copolymer, a graft copolymer, or a star polymer can be obtained by a method in which a monomer is subjected to normal radical polymerization. I can't. On the other hand, according to living radical polymerization, although the above-described polymer having a complicated structure can be obtained, in that case, there are the following problems. That is, in living radical polymerization, a special compound is used, or a metal catalyst is used. Therefore, it is necessary to remove those compounds and catalysts, which is complicated industrially and requires a plurality of steps. In addition, the polymerization conditions have to be strict, such as requiring purification of the monomers used or in a nitrogen atmosphere.
 したがって、本発明の目的は、ラジカル重合開始剤や、リビングラジカル重合に使用する特殊な材料や金属系の触媒を使用せずに、簡単な市販の材料を使用し、しかも厳密な重合条件を必要とせずに簡便な方法で、分子量や分子量分布を制御したポリマーや、ブロックコポリマーやグラフトコポリマーやスターポリマーなどの構造が複雑なポリマーを、所望の構造に制御されたポリマーとして簡便に得ることができる、工業的に有用な新規なポリマーの製造方法を提供することにある。また、本発明の目的は、上記した画期的なポリマーの製造方法の実現を可能にする、凡用性のあるラジカル重合の開始基含有化合物を提供することにある。さらに、本発明の目的は、このようなポリマーの製造方法を見出すことで、構造が所望の状態に制御された有用なポリマーを、工業的に安定して提供できるようにすることにある。 Therefore, the object of the present invention is to use a simple commercially available material without using a radical polymerization initiator, a special material used for living radical polymerization, or a metal-based catalyst, and requires strict polymerization conditions. It is possible to simply obtain a polymer with a controlled molecular weight or molecular weight distribution, or a polymer with a complicated structure such as a block copolymer, graft copolymer or star polymer as a polymer controlled to a desired structure by a simple method. Another object of the present invention is to provide a process for producing an industrially useful new polymer. Another object of the present invention is to provide a versatile radical polymerization initiating group-containing compound that makes it possible to realize the above-described innovative polymer production method. Furthermore, an object of the present invention is to find a method for producing such a polymer so that a useful polymer whose structure is controlled to a desired state can be stably provided industrially.
 本発明者らは、上記課題を解決するために鋭意検討の結果、モノマーと、本発明で規定する重合開始基として機能する特定の構造の基が導入された有機化合物と、ヨウ素イオンを有する化合物とを使用し、これらを混合、加温(加熱)するだけで、容易に、上記特定の構造の基から停止反応を伴うラジカル重合が始まって進行して、ポリマーを得ることができる、新規な重合方法を見出して本発明を達成した。本発明者らは、さらに、ヨウ素、或いはヨウ素を遊離することができる化合物や有機塩基を併用することによって、得られるポリマーの構造や分子量を、極めて簡便に、所望の状態に制御できる新規な重合方法を見出した。本発明者らが見出した新たな重合方法によれば、従来の重合方法に使用されているラジカル重合開始剤や、リビングラジカル重合に使用する特殊な材料や金属系の触媒を使用せずとも、必要な材料を混合及び加温するだけでポリマーを簡便に得られ、さらには、形態や特質が所望する状態に制御されたポリマーを得ることができるようになる。なお、本発明で規定する「加温」とは、室温以上にすることを意味しており、例えば、40℃以上であればよく、その温度は重合速度との兼ね合いで決定すればよい。 As a result of intensive studies to solve the above problems, the present inventors have found that a monomer, an organic compound into which a group having a specific structure that functions as a polymerization initiation group defined in the present invention is introduced, and a compound having iodine ions And by mixing and heating (heating) them, a radical polymerization with a termination reaction starts from the group having the specific structure and proceeds to obtain a polymer. The present invention has been accomplished by finding a polymerization method. The present inventors further provide a novel polymerization capable of controlling the structure and molecular weight of the resulting polymer to a desired state very easily by using in combination with iodine or a compound capable of liberating iodine or an organic base. I found a way. According to the new polymerization method found by the present inventors, without using a radical polymerization initiator used in the conventional polymerization method, a special material used for living radical polymerization or a metal-based catalyst, A polymer can be obtained simply by mixing and heating the necessary materials, and further, a polymer whose form and characteristics are controlled to a desired state can be obtained. The “warming” defined in the present invention means that the temperature is set to room temperature or higher, for example, 40 ° C. or higher, and the temperature may be determined in consideration of the polymerization rate.
 すなわち、本発明は、少なくとも、(1)不飽和結合を有するラジカル重合性モノマーと、(2)該モノマーの重合開始基として機能する下記一般式1及び/又は下記一般式2で表せる構造の基が、分子内に1個以上導入されている有機化合物と、(3)ヨウ化金属、第四級アンモニウムアイオダイド、第四級ホスホニウムアイオダイド及び第四級アンモニウムトリヨージドからなる群から選ばれる1種以上のヨウ化物塩又はトリヨージド塩であるヨウ素イオン含有化合物とを、混合及び加温することで、前記構造の基から、停止反応を伴うラジカル重合が始まる重合工程を有することを特徴とするポリマーの製造方法を提供する。
Figure JPOXMLDOC01-appb-I000007
(一般式1中、R1は、H又は任意のアルキル基又はアシル基、R2は、任意のアルキル基又はアリール基、Xは、Cl又はBr、Yは、O又はNHを表す。)
Figure JPOXMLDOC01-appb-I000008
(一般式2中、R3は、H又は任意のアルキル基又はアリール基、R4は、アリール基又はシアノ基又はカルボキシル基又はエステル基又はアミド基、Xは、Cl又はBrを表す。)
That is, the present invention includes at least (1) a radical polymerizable monomer having an unsaturated bond, and (2) a group having a structure represented by the following general formula 1 and / or the following general formula 2 that functions as a polymerization initiating group of the monomer. Is selected from the group consisting of one or more organic compounds introduced into the molecule, and (3) metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide, and quaternary ammonium triiodide. It has a polymerization step in which radical polymerization with termination reaction starts from a group of the above structure by mixing and heating one or more iodide salts or iodine compounds containing triiodide salts. A method for producing a polymer is provided.
Figure JPOXMLDOC01-appb-I000007
(In General Formula 1, R 1 represents H or any alkyl group or acyl group, R 2 represents any alkyl group or aryl group, X represents Cl or Br, and Y represents O or NH.)
Figure JPOXMLDOC01-appb-I000008
(In General Formula 2, R 3 represents H or any alkyl group or aryl group, R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group, and X represents Cl or Br.)
 上記したポリマーの製造方法の好ましい形態としては、下記のものが挙げられる。前記重合工程で、アゾ系ラジカル重合開始剤、過酸化物系ラジカル重合開始剤及び光ラジカル重合開始剤のいずれについても使用しないこと;前記重合工程で、さらに、(4)ヨウ素、ヨウ素を遊離することができるヨウ化有機化合物及び有機塩基を有する化合物からなる群から選ばれる少なくともいずれかを使用すること;前記重合工程の際に、さらに、有機溶媒を使用すること;前記有機溶媒が、アルコール系、グリコール系、アミド系、スルホキシド系及びイオン液体からなる群から選ばれる少なくともいずれかであること;前記ヨウ素を遊離することができるヨウ化有機化合物が、N-アイオドイミド系化合物であること;前記N-アイオドイミド系化合物が、N-アイオドスクシンイミド、N-アイオドフタルイミド、N-アイオドシクロヘキサニルイミド、1,3-ジアイオド-5,5-ジメチルヒダントイン及びN-アイオドサッカリンからなる群から選ばれる少なくともいずれかであること;前記一般式1で表せる構造の基が、下記一般式3で表せる構造の基であることが挙げられる。 Preferred forms of the polymer production method described above include the following. Do not use any of azo radical polymerization initiator, peroxide radical polymerization initiator and photo radical polymerization initiator in the polymerization step; and (4) liberate iodine and iodine in the polymerization step. Using at least one selected from the group consisting of an iodinated organic compound and a compound having an organic base; and further using an organic solvent in the polymerization step; , A glycol group, an amide group, a sulfoxide group and an ionic liquid; the iodine organic compound capable of liberating iodine is an N-iodimide compound; -Iodoimide compounds are N-iodosuccinimide, N-iodophthalimide, N-iodo It is at least one selected from the group consisting of cyclohexanilimide, 1,3-diaiodo-5,5-dimethylhydantoin and N-iodosaccharin; the group having the structure represented by the general formula 1 is represented by the following general formula And a group having a structure represented by 3.
Figure JPOXMLDOC01-appb-I000009
(一般式3中、Yは、O又はNH)
Figure JPOXMLDOC01-appb-I000009
(In general formula 3, Y is O or NH)
 上記したポリマーの製造方法の好ましい形態としては、下記のものが挙げられる。そして、その簡便な手法でありながら、(2)の有機化合物の構成を、下記に挙げるいずれかに変えるだけで、例えば、ABAブロックコポリマー、スターポリマー、ボトルブラシポリマー、濃厚ポリマーブラシ、異種グラフト・ブロック・多分岐ポリマーなどの所望する多様な構成のポリマーを得ることができる。 Preferred forms of the polymer production method described above include the following. And although it is the simple method, it is possible to change the constitution of the organic compound (2) to any of the following, for example, ABA block copolymer, star polymer, bottle brush polymer, concentrated polymer brush, Polymers having various desired structures such as block and multi-branched polymers can be obtained.
 すなわち、上記したポリマーの製造方法において、前記(2)の有機化合物が、前記一般式1及び/又は前記一般式2で表せる構造の基が分子内に2個導入された重合開始基含有ポリマーであると、前記重合工程で得られるポリマーが、ブロック構造或いは櫛形構造をもつポリマーとなる。また、前記(2)の有機化合物が、前記一般式1及び/又は前記一般式2で表せる構造の基が分子内に3個以上導入された化合物であると、前記重合工程で得られるポリマーが、分岐構造型ポリマー或いはスターポリマー或いはグラフトコポリマーとなる。また、前記(2)の有機化合物が、前記一般式1及び/又は一般式2で表せる構造の基が分子内に3個以上導入されたビニルポリマーであると、前記重合工程で得られるポリマーが、前記ビニルポリマーに前記(1)のモノマーが重合してグラフトした構造のポリマー或いはボトルブラシポリマーとなる。また、前記(2)の有機化合物が、前記一般式1及び/又は一般式2で表せる構造の基が分子内に1個以上導入されたモノマーと、基材表面に結合する反応性基を有するモノマーとの共重合体であり、該共重合体で基材を処理して基材表面を改質し、その後に、該改質した基材表面上で、前記(1)のモノマーと前記(3)のヨウ素イオン含有化合物とを混合及び加温すると、前記基材表面に濃厚ブラシ構造のポリマーが製造される。 That is, in the polymer production method described above, the organic compound (2) is a polymerization-initiating group-containing polymer in which two groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule. If it exists, the polymer obtained by the said polymerization process turns into a polymer which has a block structure or a comb-shaped structure. In addition, when the organic compound (2) is a compound in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in a molecule, a polymer obtained in the polymerization step is obtained. It becomes a branched structure type polymer, a star polymer or a graft copolymer. In addition, when the organic compound (2) is a vinyl polymer in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in a molecule, the polymer obtained in the polymerization step is The vinyl polymer is polymerized with the monomer (1) and grafted to form a polymer or bottle brush polymer. Further, the organic compound (2) has a monomer in which one or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule, and a reactive group that binds to the surface of the substrate. A copolymer with a monomer, the substrate is treated with the copolymer to modify the substrate surface, and then the monomer (1) and the (( When the iodine ion-containing compound 3) is mixed and heated, a polymer having a concentrated brush structure is produced on the surface of the substrate.
 本発明は、別の実施形態として、アゾ系ラジカル重合開始剤、過酸化物系ラジカル重合開始剤及び光ラジカル重合開始剤のいずれについても使用せずに、不飽和結合を有するラジカル重合性モノマーの、停止反応を伴うラジカル重合を行わせるためのラジカル重合の開始基含有化合物であって、
 ヨウ化金属、第四級アンモニウムアイオダイド、第四級ホスホニウムアイオダイド及び第四級アンモニウムトリヨージドからなる群から選ばれる1種以上のヨウ化物塩又はトリヨージド塩であるヨウ素イオン含有化合物と併用することで、前記ラジカル重合性モノマーの重合開始基として機能するものとなる下記一般式1及び/又は下記一般式2で表せる構造の基が、分子内に1個以上導入されていることを特徴とするラジカル重合の開始基含有化合物を提供する。
As another embodiment, the present invention provides a radical polymerizable monomer having an unsaturated bond without using any of an azo radical polymerization initiator, a peroxide radical polymerization initiator, and a photo radical polymerization initiator. A radical polymerization initiating group-containing compound for causing radical polymerization with termination reaction,
Used in combination with an iodine ion-containing compound which is one or more iodide salts or triiodide salts selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide and quaternary ammonium triiodide. Thus, at least one group having a structure represented by the following general formula 1 and / or the following general formula 2 that functions as a polymerization initiating group of the radical polymerizable monomer is introduced into the molecule. Initiating group-containing compounds for radical polymerization are provided.
Figure JPOXMLDOC01-appb-I000010
(一般式1中、R1は、H又は任意のアルキル基又はアシル基、R2は、任意のアルキル基又はアリール基、Xは、Cl又はBr、Yは、O又はNHを表す。)
Figure JPOXMLDOC01-appb-I000011
(一般式2中、R3は、H又は任意のアルキル基又はアリール基、R4は、アリール基又はシアノ基又はカルボキシル基又はエステル基又はアミド基、Xは、Cl又はBrを表す。)
Figure JPOXMLDOC01-appb-I000010
(In General Formula 1, R 1 represents H or any alkyl group or acyl group, R 2 represents any alkyl group or aryl group, X represents Cl or Br, and Y represents O or NH.)
Figure JPOXMLDOC01-appb-I000011
(In General Formula 2, R 3 represents H or any alkyl group or aryl group, R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group, and X represents Cl or Br.)
 上記したラジカル重合の開始基含有化合物の好ましい形態としては、下記のものが挙げられる。すなわち、上記ラジカル重合の開始基含有化合物において、前記一般式1で表せる構造の基が、下記一般式3で表せる構造の基であること;
Figure JPOXMLDOC01-appb-I000012
(一般式3中、Yは、O又はNH)
 前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に2個導入されたポリマーであること;
 前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に3個以上導入された化合物であること;
 前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に3個以上導入されたビニルポリマーであること;
 前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に1個以上導入されたモノマーと、基材表面に結合する反応性基を有するモノマーとの共重合体であること;が挙げられる。
The following are mentioned as a preferable form of the above-mentioned radical polymerization start group containing compound. That is, in the radical polymerization initiating group-containing compound, the group having a structure represented by the general formula 1 is a group having a structure represented by the following general formula 3;
Figure JPOXMLDOC01-appb-I000012
(In general formula 3, Y is O or NH)
A group in which two groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule;
A compound in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced into the molecule;
A vinyl polymer in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule;
The group having a structure represented by the general formula 1 and / or the general formula 2 is a copolymer of a monomer having at least one monomer introduced in the molecule and a monomer having a reactive group bonded to the surface of the substrate. ;
 本発明によれば、少なくとも、モノマーの重合開始基として機能する特定の構造の基を有する、汎用で多様な形態とすることが可能な有機化合物と、モノマーと、ヨウ素イオンを有する化合物を、混合、加温(加熱)するだけで、前記構造の基から、停止反応を伴うラジカル重合が始まってポリマーを得ることができる、非常に簡便なポリマーの製造方法が提供される。また、本発明によれば、上記の系にさらにヨウ素を遊離する化合物を添加するだけで、分子量や構造が所望するものに制御されたポリマーを容易に得ることができる、従来の停止反応を伴うラジカル重合では達成できなかったポリマーの製造方法が提供される。本発明によれば、上記した優れた製造方法を利用することで、例えば、ABAブロックコポリマー、スターポリマー、ボトルブラシポリマー、濃厚ポリマーブラシ、異種グラフト・ブロック・多分岐ポリマーなどの、工業的な製造が困難で、煩雑であった複雑な構造のポリマーを容易に得ることが可能になる。 According to the present invention, at least a general-purpose organic compound having a specific structure functioning as a polymerization initiation group for a monomer and capable of being in various forms, a monomer, and a compound having iodine ions are mixed. Thus, there is provided a very simple polymer production method in which radical polymerization accompanied by a termination reaction starts from a group having the above structure only by heating (heating) to obtain a polymer. In addition, according to the present invention, it is possible to easily obtain a polymer whose molecular weight or structure is controlled by simply adding a compound that liberates iodine to the above system, which involves a conventional termination reaction. Provided is a method for producing a polymer that could not be achieved by radical polymerization. According to the present invention, industrial production of, for example, ABA block copolymer, star polymer, bottle brush polymer, concentrated polymer brush, heterogeneous graft / block / multi-branched polymer, etc. by utilizing the above-described excellent production method. However, it is possible to easily obtain a polymer having a complicated structure which is difficult and complicated.
 本発明の製造方法は、従来の方法に比較し、製造に用いる材料の種類が低減されるため、環境的に有用であり、また、コスト的にも優位である。さらに、本発明のポリマーの製造方法は、従来から使用されているアゾ系の重合開始剤や過酸化物系の重合開始剤のような、爆発的な化合物を使用する必要がないので、安全性が高く、また、それらの開始剤の場合のように、材料を冷凍・冷蔵する必要もない。また、本発明の製造方法は、重合開始基に、塩素原子や臭素原子が結合した化合物を使用するので、その結合は比較的安定であり、リビングラジカル重合で用いられている、非常に有用であるものの、熱や光で分解してしまうようなヨウ素原子を持った重合開始化合物を使用しなくてもよいので、材料の保管などに大きなメリットがある。これらのことは、ポリマーの製造方法において、極めて高い実用価値をもつことを意味する。 The production method of the present invention is environmentally useful and advantageous in terms of cost because the types of materials used for production are reduced as compared with conventional methods. Furthermore, the polymer production method of the present invention does not require the use of explosive compounds such as the conventionally used azo polymerization initiators and peroxide polymerization initiators. And the material does not need to be frozen and refrigerated as in the case of those initiators. In addition, since the production method of the present invention uses a compound in which a chlorine atom or a bromine atom is bonded to the polymerization initiating group, the bond is relatively stable, which is very useful for living radical polymerization. Although there is no need to use a polymerization initiating compound having an iodine atom that decomposes by heat or light, there is a great merit in storing materials. These mean that the polymer production method has extremely high practical value.
 本発明の上記した種々の優れた効果が得られるポリマーの製造方法は、本発明のラジカル重合の開始基含有化合物によって初めて実現可能になる。本発明のラジカル重合の開始基含有化合物は、本発明が規定する簡単な構造の基が1個以上導入されているものであればよく、それ以外は限定されるものでない汎用の化合物である。具体的には、導入する基の数や、基が導入された有機化合物の形態を適宜に変化させて、汎用の、低分子量化合物やポリマーやモノマーにして使用できる。そのため、本発明のラジカル重合の開始基含有化合物を用いることで、所望する構造に設計された、ABAブロックコポリマー、スターポリマー、ボトルブラシポリマー、濃厚ポリマーブラシ、異種グラフト・ブロック・多分岐ポリマーなどの多様なポリマーを、簡易に且つ経済的に得ることが実現できる。 The method for producing a polymer capable of obtaining the above-described various excellent effects of the present invention can be realized for the first time by the radical polymerization initiator-containing compound of the present invention. The radical polymerization initiation group-containing compound of the present invention is a general-purpose compound that is not limited as long as one or more groups having a simple structure defined by the present invention are introduced. Specifically, it can be used as a general-purpose low molecular weight compound, polymer or monomer by appropriately changing the number of groups to be introduced and the form of the organic compound into which the group has been introduced. Therefore, by using the radical polymerization initiating group-containing compound of the present invention, ABA block copolymer, star polymer, bottle brush polymer, concentrated polymer brush, heterogeneous graft / block / multi-branched polymer, etc. designed to the desired structure Various polymers can be obtained easily and economically.
開始基ポリマー-1のIRチャートを示す図である。It is a figure which shows IR chart of the initiating group polymer-1. 開始基ポリマー-1のNMRチャートを示す図である。FIG. 3 is a view showing an NMR chart of an initiating group polymer-1.
 次に、好ましい実施の形態を挙げて本発明をさらに詳細に説明する。
 本発明者らは、本発明の目的を達成すべく鋭意研究を行った結果、従来の安全性や保存性に課題のある材料を用いることなく、簡単な市販の材料を使用して、複雑な構造のポリマーを容易に得ることができる、工業的に極めて有用な、従来にない全く新たな構成の重合方法を見出して本発明を達成した。本発明の製造方法では、ラジカル重合性モノマーと、本発明で規定する重合開始基として機能する特定の構造の基が導入された有機化合物と、ヨウ素イオンを有する化合物を使用して、これらを混合、加温(加熱)するだけで、特定の構造の基から、容易に停止反応を伴うラジカル重合が始まって進行し、ポリマーを得ることができる。下記により具体的に説明する以下のように構成される。
Next, the present invention will be described in more detail with reference to preferred embodiments.
As a result of intensive studies to achieve the object of the present invention, the present inventors have used complicated materials using simple commercially available materials without using conventional materials with problems of safety and storage. The present invention has been accomplished by finding an unprecedented and completely new polymerization method which is extremely industrially useful and can easily obtain a polymer having a structure. In the production method of the present invention, a radical polymerizable monomer, an organic compound having a specific structure group functioning as a polymerization initiating group defined in the present invention, and a compound having iodine ions are mixed. By simply heating (heating), radical polymerization with a termination reaction can easily start and proceed from a group having a specific structure to obtain a polymer. The following configuration will be described in detail below.
 本発明のポリマーの製造方法は、少なくとも、(1)ラジカル重合性モノマーと、(2)該モノマーの重合開始基として機能する下記一般式1及び/又は一般式2で表せる構造の基が、分子内に1個以上導入されている有機化合物と、(3)ヨウ化金属、第四級アンモニウムアイオダイド、第四級ホスホニウムアイオダイド及び第四級アンモニウムトリヨージドからなる群から選ばれる1種以上のヨウ化物塩又はトリヨージド塩であるヨウ素イオン含有化合物とを、混合及び加温することで、前記構造の基から、停止反応を伴うラジカル重合が始まる特有の重合工程を有することを特徴とする。以下、本発明を構成するそれぞれの材料について詳細に説明する。 In the method for producing a polymer of the present invention, at least (1) a radically polymerizable monomer and (2) a group having a structure represented by the following general formula 1 and / or general formula 2 that functions as a polymerization initiating group of the monomer are molecules One or more organic compounds introduced in the inside, and (3) one or more selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide, and quaternary ammonium triiodide It is characterized by having a specific polymerization step in which radical polymerization accompanied by a termination reaction starts from the group of the above structure by mixing and heating an iodine ion-containing compound which is an iodide salt or triiodide salt. Hereafter, each material which comprises this invention is demonstrated in detail.
Figure JPOXMLDOC01-appb-I000013
(一般式1中、R1は、H又は任意のアルキル基又はアシル基、R2は、任意のアルキル基又はアリール基、Xは、Cl又はBr、Yは、O又はNHを表す。)
Figure JPOXMLDOC01-appb-I000014
(一般式2中、R3は、H又は任意のアルキル基又はアリール基、R4は、アリール基又はシアノ基又はカルボキシル基又はエステル基又はアミド基、Xは、Cl又はBrを表す。)
Figure JPOXMLDOC01-appb-I000013
(In General Formula 1, R 1 represents H or any alkyl group or acyl group, R 2 represents any alkyl group or aryl group, X represents Cl or Br, and Y represents O or NH.)
Figure JPOXMLDOC01-appb-I000014
(In General Formula 2, R 3 represents H or any alkyl group or aryl group, R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group, and X represents Cl or Br.)
[(1)不飽和結合を有するラジカル重合性モノマー]
 本発明のポリマーの製造方法では、ポリマーの形成成分である、(1)不飽和結合を有するラジカル重合性モノマーを必須成分として使用する。不飽和結合を有するモノマーとしては、例えば、ビニル基、ビニリデン基、ビニレン基を有するモノマー等の、従来公知の不飽和結合を有するモノマーが挙げられる。すなわち、下記に挙げるような、従来公知のラジカル重合しうるモノマーであればいずれも使用でき、特に限定されない。
[(1) Radical polymerizable monomer having an unsaturated bond]
In the polymer production method of the present invention, (1) a radically polymerizable monomer having an unsaturated bond, which is a polymer forming component, is used as an essential component. Examples of the monomer having an unsaturated bond include conventionally known monomers having an unsaturated bond, such as a monomer having a vinyl group, a vinylidene group, or a vinylene group. That is, any of conventionally known monomers capable of radical polymerization can be used and is not particularly limited.
 例えば、スチレン、ビニルトルエン、ビニルヒドロキシベンゼン、クロロメチルスチレン、ビニルナフタレン、ビニルビフェニル、ビニルエチルベンゼン、ビニルジメチルベンゼン、α-メチルスチレン、エチレン、プロピレン、イソプレン、ブテン、ブタジエン、1-ヘキセン、シクロヘキセン、シクロデセン、ジクロロエチレン、クロロエチレン、フロロエチレン、テトラフロロエチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、プロピオン酸ビニル、イソシアナトジメチルメタンイソプロペニルベンゼン、フェニルマレイミド、シクロヘキシルマレイミド、ヒドロキシメチルスチレン、スチレンスルホン酸、ビニルスルホン酸、ビニルアミン、アリルアミン、アミノスチレン、ビニルメチルアミン、アリルメチルアミン、メチルアミノスチレン、ビニルピリジン、ビニルイミダゾール、ビニルベンゾトリアゾール、ビニルカルバゾール、ジメチルアミノスチレン、ジアリルメチルアミン、トリメチルアンモニウムスチレンクロライド、ジメチルラウリルアミノスチレンクロライド、ビニルメチルピリジニルクロライド、ジアリルジメチルアンモニウム塩クロライドなどのモノマーが挙げられる。 For example, styrene, vinyl toluene, vinyl hydroxybenzene, chloromethyl styrene, vinyl naphthalene, vinyl biphenyl, vinyl ethyl benzene, vinyl dimethyl benzene, α-methyl styrene, ethylene, propylene, isoprene, butene, butadiene, 1-hexene, cyclohexene, cyclodecene , Dichloroethylene, chloroethylene, fluoroethylene, tetrafluoroethylene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl propionate, isocyanatodimethylmethane isopropenylbenzene, phenylmaleimide, cyclohexylmaleimide, hydroxymethylstyrene, styrenesulfonic acid, vinylsulfone Acid, vinylamine, allylamine, aminostyrene, vinylmethylamine, allylmethylamido , Methylaminostyrene, vinylpyridine, vinylimidazole, vinylbenzotriazole, vinylcarbazole, dimethylaminostyrene, diallylmethylamine, trimethylammonium styrene chloride, dimethyllaurylaminostyrene chloride, vinylmethylpyridinyl chloride, diallyldimethylammonium chloride These monomers are mentioned.
 また、下記のような(メタ)アクリレート系や(メタ)アクリルアミド系モノマーが挙げられる。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-メチルプロパン(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、べへニル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシルメチル(メタ)アクリレート、イソボロニル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート、シクロデシル(メタ)アクリレート、シクロデシルメチル(メタ)アクリレート、ベンジル(メタ)アクリレート、t-ブチルベンゾトリアゾールフェニルエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、アリル(メタ)アクリレートなどの、脂肪族、脂環族、芳香族アルキル(メタ)アクリレートが挙げられる。 Moreover, the following (meth) acrylate type and (meth) acrylamide type monomers are mentioned. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, 2-methylpropane (meth) acrylate, t-butyl (meth) Acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) Acrylate, tetradecyl (meth) acrylate, octadecyl (meth) acrylate, behenyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, t-butylcyclo Xylmethyl (meth) acrylate, isobornyl (meth) acrylate, trimethylcyclohexyl (meth) acrylate, cyclodecyl (meth) acrylate, cyclodecylmethyl (meth) acrylate, benzyl (meth) acrylate, t-butylbenzotriazole phenylethyl (meth) acrylate , Phenyl (meth) acrylate, naphthyl (meth) acrylate, allyl (meth) acrylate, and the like, aliphatic, alicyclic, and aromatic alkyl (meth) acrylates.
 水酸基を含有するモノマーである、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシへキシル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、シクロヘキサンジオールモノ(メタ)アクリレートなどの、アルキレングリコールのモノ(メタ)アクリレートが挙げられる。 The monomers containing hydroxyl groups are 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl ( Examples thereof include mono (meth) acrylates of alkylene glycol such as (meth) acrylate, cyclohexanedimethanol mono (meth) acrylate, and cyclohexanediol mono (meth) acrylate.
 グリコール基を有するモノマーである、ポリ(n=2以上、以下同様)エチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリテトラメチレングリコールモノ(メタ)アクリレート、モノ又はポリエチレングリコールモノ又はポリプロピレングリコールランダムコポリマーのモノ(メタ)アクリレート、モノ又はポリエチレングリコールモノ又はポリプロピレングリコールブロックコポリマーのモノ(メタ)アクリレートなどのポリアルキレングリコールのモノ(メタ)アクリレートが挙げられる。 A monomer having a glycol group, poly (n = 2 or more, the same applies hereinafter) ethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polytetramethylene glycol mono (meth) acrylate, mono or polyethylene glycol mono or Examples include mono (meth) acrylates of polyalkylene glycols such as mono (meth) acrylates of polypropylene glycol random copolymers, mono (meth) acrylates of mono or polyethylene glycol mono or polypropylene glycol block copolymers.
 さらには、(ポリ)エチレングリコールモノメチルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノオクチルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノラウリルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノステアリルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノオレイルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノステアリン酸エステル(メタ)アクリレート、(ポリ)エチレングリコールモノノニルフェニルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノメチルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノエチルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノオクチルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノラウリルエーテル(メタ)アクリレート、(ポリ)エチレングリコール(ポリ)プロピレングリコールモノメチルエーテル(メタ)アクリレートなどの(ポリアルキレン)グリコールモノアルキル、アルキレン、アルキンエーテル又はエステルのモノ(メタ)アクリレートが挙げられる。 Furthermore, (poly) ethylene glycol monomethyl ether (meth) acrylate, (poly) ethylene glycol monooctyl ether (meth) acrylate, (poly) ethylene glycol monolauryl ether (meth) acrylate, (poly) ethylene glycol monostearyl ether ( (Meth) acrylate, (poly) ethylene glycol monooleyl ether (meth) acrylate, (poly) ethylene glycol monostearate (meth) acrylate, (poly) ethylene glycol monononylphenyl ether (meth) acrylate, (poly) propylene glycol Monomethyl ether (meth) acrylate, (poly) propylene glycol monoethyl ether (meth) acrylate, (poly) propylene glycol mono (Polyalkylene) glycol monoalkyl, alkylene, alkyne ether such as cutyl ether (meth) acrylate, (poly) propylene glycol monolauryl ether (meth) acrylate, (poly) ethylene glycol (poly) propylene glycol monomethyl ether (meth) acrylate Or the mono (meth) acrylate of ester is mentioned.
 酸基(カルボキシル基、スルホン酸、リン酸)を有するモノマーである、以下のようなモノマーも使用できる。カルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、アクリル酸二量体、イタコン酸、フマル酸、クロトン酸、2-ヒドロキシエチル(メタ)アクリレートや4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートに、無水マレイン酸、無水コハク酸、無水フタル酸などを反応させたモノマー、マレイン酸やイタコン酸のモノエステル系のモノマーが挙げられる。また、スルホン酸基を有するモノマーとしては、例えば、ジメチルプロピルスルホン酸(メタ)アクリルアミド、スルホン酸エチル(メタ)アクリレート、スルホン酸エチル(メタ)アクリルアミドなどが挙げられる。リン酸基を有するモノマーとしては、例えば、(ジ、トリ)メタクリロイロキシエチルリン酸エステルなどが挙げられる。 The following monomers which are monomers having an acid group (carboxyl group, sulfonic acid, phosphoric acid) can also be used. Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, acrylic acid dimer, itaconic acid, fumaric acid, crotonic acid, 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth). Examples thereof include monomers obtained by reacting a hydroxyalkyl (meth) acrylate such as acrylate with maleic anhydride, succinic anhydride, phthalic anhydride, and the like, and monoester monomers of maleic acid and itaconic acid. Examples of the monomer having a sulfonic acid group include dimethylpropylsulfonic acid (meth) acrylamide, ethyl sulfonate (meth) acrylate, and ethyl (meth) acrylamide. Examples of the monomer having a phosphoric acid group include (di, tri) methacryloyloxyethyl phosphate.
 酸素原子含有モノマーである、例えば、グリシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、オキセタニルメチル(メタ)アクリレート、モルホリノ(メタ)アクリレート、メチルモルホリノ(メタ)アクリレート、メチルモルホリノエチル(メタ)アクリレートなどが挙げられる。 Oxygen atom-containing monomers such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, oxetanylmethyl (meth) acrylate, morpholino (meth) acrylate, methylmorpholino (meth) acrylate, methylmorpholinoethyl (meth) acrylate Etc.
 アミノ基を有するモノマーである、例えば、以下のものが挙げられる。一級アミノ基を有するモノマーとしては、2-アミノエチル(メタ)アクリレート、2-アミノプロピル(メタ)アクリルアミドなどが挙げられ、2級アミノ基を有するモノマーとしては、t-ブチルアミノエチル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、t-ブチルアミノプロピル(メタ)アクリルアミドなどが挙げられる。3級アミノ基を有するモノマーとしては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ペンタメチルピペリジル(メタ)アクリレート、N-エチルモルホリノ(メタ)アクリレート、ジメチルプロピル(メタ)アクリルアミドなどが挙げられる。4級アミノ基を有するモノマーとしては、塩化トリメチルアミノエチル(メタ)アクリレート、塩化ジエチルメチルアミノエチル(メタ)アクリレート、塩化ベンジルジメチルアミノエチル(メタ)アクリレート、トリメチルアミノエチル(メタ)アクリレートメチル硫酸塩などが挙げられる。また、前記したグリシジル(メタ)アクリレートの如きグリシジル基含有モノマーに、1級、2級のアミンを反応させて得られるモノマーなどが挙げられる。 Examples of monomers having amino groups include the following. Examples of the monomer having a primary amino group include 2-aminoethyl (meth) acrylate and 2-aminopropyl (meth) acrylamide. Examples of the monomer having a secondary amino group include t-butylaminoethyl (meth) acrylate. , Tetramethylpiperidyl (meth) acrylate, t-butylaminopropyl (meth) acrylamide and the like. Examples of the monomer having a tertiary amino group include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, pentamethylpiperidyl (meth) acrylate, N-ethylmorpholino (meth) acrylate, dimethylpropyl (meth) acrylamide and the like. Can be mentioned. Examples of monomers having a quaternary amino group include trimethylaminoethyl (meth) acrylate chloride, diethylmethylaminoethyl chloride (meth) acrylate, benzyldimethylaminoethyl chloride (meth) acrylate, and trimethylaminoethyl (meth) acrylate methyl sulfate. Is mentioned. In addition, examples include monomers obtained by reacting primary and secondary amines with glycidyl group-containing monomers such as glycidyl (meth) acrylate.
 窒素原子含有モノマーである、例えば、(メタ)アクリロイロオキシエチルイソシアネート、(メタ)アクリロイロオキシエトキシエチルイソシアネート、及び、それらのカプロラクトンなどでイソシアネートをブロックしてあるブロック化イソシアネート含有(メタ)アクリレート、エチレンイミノエチル(メタ)アクリレートや(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミドなどのアミド系単量体、N-ビニルピロリドン、N-ビニルアセトアミド、N-ビニルカプロラクタムなどが挙げられる。 Nitrogen atom-containing monomers, for example, (meth) acryloyloxyethyl isocyanate, (meth) acryloyloxyethoxyethyl isocyanate, and blocked isocyanate-containing (meth) acrylates blocked with isocyanates such as caprolactone, Ethyleneiminoethyl (meth) acrylate, (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc. Amide monomers, N-vinylpyrrolidone, N-vinylacetamide, N-vinylcaprolactam and the like.
 さらに、その他のモノマーとして、下記のものも使用できる。(メタ)アクリロイロキシエチルモノ又はポリカプロラクトンなどの前記(ポリ)アルキレングリコールモノ(メタ)アクリル酸エステルを開始剤として、ε-カプロラクトンやγ-ブチロラクトンなどのラクトン類を開環重合して得られるポリエステル系モノ(メタ)アクリル酸エステル;2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレートや2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルスクシネートなどの前記した(ポリ)アルキレングリコールモノ(メタ)アクリル酸エステルに2塩基酸を反応させてハーフエステル化した後、もう一方のカルボン酸にアルコール、アルキレングリコールを反応させたエステル系(メタ)アクリレート; Furthermore, the following can be used as other monomers. Obtained by ring-opening polymerization of lactones such as ε-caprolactone and γ-butyrolactone using the (poly) alkylene glycol mono (meth) acrylic acid ester such as (meth) acryloyloxyethyl mono or polycaprolactone as an initiator. Polyester-based mono (meth) acrylic acid ester; 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl succinate, etc. (poly) An ester-based (meth) acrylate obtained by reacting an alkylene glycol mono (meth) acrylic acid ester with a dibasic acid to form a half ester and then reacting the other carboxylic acid with an alcohol or an alkylene glycol;
 グリセロールモノ(メタ)アクリレートやジメチロールプロパンモノ(メタ)アクリレートなどの3個以上の水酸基をもつ多官能水酸基化合物のモノ(メタ)アクリレート;3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、オクタフルオロオクチル(メタ)アクリレート、テトラフルオロエチル(メタ)アクリレートなどのハロゲン原子含有(メタ)アクリレート;トリメトキシシリル基やジメチルシリコーン鎖をもったケイ素原子含有モノマー;2-(4-ベンゾキシ-3-ヒドロキシフェノキシ)エチル(メタ)アクリレート、2-(2’-ヒドロキシ-5-(メタ)アクリロイロキシエチルフェニル)-2H-ベンゾトリアゾールの如き紫外線を吸収するモノマー;さらにエチル-α-ヒドロキシメチルアクリレートなどのα位水酸基メチル置換アクリレート類などである。 Mono (meth) acrylates of polyfunctional hydroxyl compounds having three or more hydroxyl groups such as glycerol mono (meth) acrylate and dimethylolpropane mono (meth) acrylate; 3-chloro-2-hydroxypropyl (meth) acrylate, octafluoro Halogen atom-containing (meth) acrylates such as octyl (meth) acrylate and tetrafluoroethyl (meth) acrylate; silicon atom-containing monomers having a trimethoxysilyl group and a dimethylsilicone chain; 2- (4-benzoxy-3-hydroxyphenoxy ) UV-absorbing monomers such as ethyl (meth) acrylate, 2- (2′-hydroxy-5- (meth) acryloyloxyethylphenyl) -2H-benzotriazole; and ethyl-α-hydroxymethyl acrylate α-position hydroxyl-substituted acrylates, and the like.
 さらに、環状のビニル系モノマーも使用できるし、2個以上の付加重合性基を有するモノマーも必要に応じて使用できる。例えば、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンのポリアルキレングリコール付加物の(メタ)アクリル酸エステル、ビスフェノールAのアルキレンオキサイド付加物の(メタ)アクリル酸エステルなどが挙げられる。上記した不飽和結合を有するラジカル重合性モノマーは、1種以上を使用することができる。本発明は、ABAブロックコポリマー、スターポリマー、ボトルブラシポリマー、濃厚ポリマーブラシ、異種グラフト・ブロック・多分岐ポリマーなどを簡便に得ることを目的としているため、通常は、2種以上で使用される。以下、これらのモノマーを、「(1)のモノマー」と記載する場合がある。 Furthermore, a cyclic vinyl monomer can be used, and a monomer having two or more addition polymerizable groups can be used as necessary. For example, divinylbenzene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, (meth) acrylic acid ester of polyalkylene glycol adduct of trimethylolpropane, (meth) acrylic acid of alkylene oxide adduct of bisphenol A Examples include esters. One or more kinds of the above-mentioned radical polymerizable monomers having an unsaturated bond can be used. Since the present invention aims to easily obtain an ABA block copolymer, a star polymer, a bottle brush polymer, a concentrated polymer brush, a heterogeneous graft / block / multi-branched polymer, etc., it is usually used in two or more kinds. Hereinafter, these monomers may be referred to as “monomer of (1)”.
[(2)一般式1及び/又は一般式2で表せる構造の基を分子内に1個以上有する有機化合物]
 次に、本発明を特徴づける、上記した(1)のモノマーの重合開始基として機能する、(2)の有機化合物(ラジカル重合の開始基含有化合物)について説明する。本発明者らの検討によれば、下記一般式1又は2で表せる構造を有する基(以下、「式1又は2の基」とも呼ぶ)の存在下、(1)のモノマーと、後述する(3)のヨウ素イオン含有化合物とを混合して加温すると、結果として、本発明を特徴づける上記特有の構造の基から、停止反応を伴うラジカル重合が開始して、構造が制御された種々のポリマーが得られる。
[(2) Organic compound having at least one group having a structure represented by general formula 1 and / or general formula 2 in the molecule]
Next, the organic compound (2) (radical polymerization initiating group-containing compound) that functions as a polymerization initiating group for the monomer (1), which characterizes the present invention, will be described. According to the study by the present inventors, in the presence of a group having a structure represented by the following general formula 1 or 2 (hereinafter also referred to as “group of formula 1 or 2”), the monomer of (1) and When the mixture is heated with the iodine ion-containing compound of 3), as a result, radical polymerization accompanied by termination reaction is initiated from the group having the above-mentioned specific structure characterizing the present invention, and various structures with controlled structures are obtained. A polymer is obtained.
 本発明で使用し、本発明を特徴づける(2)の有機化合物は、以下に示すような構造が分子内に導入されていればよく、この構造が、(1)のモノマーの重合開始基として機能する。(2)の有機化合物は、従来から使用されているアゾ系の重合開始剤や過酸化物系の重合開始剤と比較し、安全性が高く、従来の開始剤のように材料を冷凍・冷蔵する必要もない。また、その構造中に塩素原子や臭素原子が結合した化合物を使用するので、その結合は比較的安定であり、リビングラジカル重合で用いるヨウ素原子が結合した重合開始化合物のように、熱や光で分解してしまうこともない。 The organic compound (2) used in the present invention and characterizing the present invention only needs to have the following structure introduced into the molecule, and this structure serves as a polymerization initiating group for the monomer (1). Function. The organic compound (2) is safer than conventional azo polymerization initiators and peroxide polymerization initiators, and the material is frozen and refrigerated like conventional initiators. There is no need to do. In addition, since a compound having a chlorine atom or bromine atom bonded thereto is used in the structure, the bond is relatively stable. Like a polymerization initiating compound having an iodine atom bonded in living radical polymerization, it can be heated or lighted. It won't break down.
Figure JPOXMLDOC01-appb-I000015
(一般式1中、R1は、H又は任意のアルキル基又はアシル基、R2は、任意のアルキル基又はアリール基、Xは、Cl又はBr、Yは、O又はNHを表す。)
Figure JPOXMLDOC01-appb-I000016
(一般式2中、R3は、H又は任意のアルキル基又はアリール基、R4は、アリール基又はシアノ基又はカルボキシル基又はエステル基又はアミド基、Xは、Cl又はBrを表す。)
Figure JPOXMLDOC01-appb-I000015
(In General Formula 1, R 1 represents H or any alkyl group or acyl group, R 2 represents any alkyl group or aryl group, X represents Cl or Br, and Y represents O or NH.)
Figure JPOXMLDOC01-appb-I000016
(In General Formula 2, R 3 represents H or any alkyl group or aryl group, R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group, and X represents Cl or Br.)
 本発明で規定する「式1又は2の基」は、その構造中にXとして、塩素原子(クロロとも呼ぶ)又は臭素原子(ブロモとも呼ぶ)が結合しており、これらの原子が、反応的に、脱離や置換できる基であることが特徴であり、さらに、これらの原子が結合している炭素に、少なくとも1個以上の電子吸引性基である、エステル基、アミド基、シアノ基、カルボキシル基或いはアリール基などが結合しているものである。本発明では、このような基が分子内に1個以上導入されている構造を有する有機化合物であれば、どのようなものでも使用できる。(2)の有機化合物としては、例えば、低分子量化合物、モノマー、ポリマー等のいずれの形態ものも使用できる。以下、「式1の基」と「式2の基」について、それぞれ説明する。 The “group of formula 1 or 2” defined in the present invention has a chlorine atom (also referred to as chloro) or a bromine atom (also referred to as bromo) bonded as X in the structure, and these atoms are reactive. Further, it is a group that can be eliminated or substituted, and furthermore, at least one or more electron withdrawing groups, carbon, to which these atoms are bonded, an ester group, an amide group, a cyano group, A carboxyl group or an aryl group is bonded. In the present invention, any organic compound having a structure in which one or more such groups are introduced into the molecule can be used. As the organic compound (2), for example, any form such as a low molecular weight compound, a monomer, and a polymer can be used. Hereinafter, “group of formula 1” and “group of formula 2” will be described.
 まず、「式1の基」を具体的に例示するが、下記に限定されるものではない。「式1の基」としては、例えば、以下に示すような、その構造中にエステル結合やアミド結合を有するものが挙げられる。本発明で用いる「式1の基」が分子内に1個以上導入されている有機化合物は、下記に示したように、エステル結合やアミド結合を介して、塩素原子(Cl)又は臭素原子(Br)を結合させている。 First, “group of formula 1” is specifically exemplified, but is not limited to the following. Examples of the “group of formula 1” include those having an ester bond or an amide bond in the structure thereof as shown below. As shown below, an organic compound having one or more “groups of formula 1” used in the present invention introduced through an ester bond or an amide bond, as shown below, is a chlorine atom (Cl) or a bromine atom ( Br) is bound.
 例えば、下記のような、β-クロロ又はブロモアルカン酸の、エステル結合又はアミド結合を有する基などが挙げられる。
Figure JPOXMLDOC01-appb-I000017
Examples thereof include groups having an ester bond or an amide bond of β-chloro or bromoalkanoic acid as described below.
Figure JPOXMLDOC01-appb-I000017
 例えば、下記のような、β-クロロ又はブロモアリール置換アルカン酸の、エステル結合又はアミド結合を有する基などが挙げられる。
Figure JPOXMLDOC01-appb-I000018
Examples thereof include groups having an ester bond or an amide bond of β-chloro or bromoaryl-substituted alkanoic acid as described below.
Figure JPOXMLDOC01-appb-I000018
 例えば、下記のような、クロロ又はブロモ置換アセトアルカン酸の、エステル結合又はアミド結合を有する基などが挙げられる。
Figure JPOXMLDOC01-appb-I000019
Examples thereof include groups having an ester bond or an amide bond of chloro or bromo-substituted acetoalkanoic acid as described below.
Figure JPOXMLDOC01-appb-I000019
 次に、「式2の基」について具体的に例示するが、下記に限定されるものではない。「式2の基」としては、例えば、以下に示す基が挙げられ、これらの基が有機化合物に直接結合しているものは、本発明で規定する(2)の有機化合物としていずれも使用できる。 Next, the “group of formula 2” is specifically exemplified, but is not limited to the following. Examples of the “group of formula 2” include the following groups, and those in which these groups are directly bonded to the organic compound can be used as the organic compound (2) defined in the present invention. .
 例えば、下記のような、クロロ又はブロモ置換アリール置換アルキル基などが挙げられる。
Figure JPOXMLDOC01-appb-I000020
For example, the following chloro or bromo substituted aryl substituted alkyl groups and the like can be mentioned.
Figure JPOXMLDOC01-appb-I000020
 例えば、下記のような、クロロ又はブロモ置換シアノ基含有アルキル基などが挙げられる。
Figure JPOXMLDOC01-appb-I000021
Examples thereof include chloro- or bromo-substituted cyano group-containing alkyl groups as described below.
Figure JPOXMLDOC01-appb-I000021
 例えば、下記のような、クロロ又はブロモ置換アルカン酸基、それらのカルボン酸のエステル化物などが挙げられる。
Figure JPOXMLDOC01-appb-I000022
For example, the following chloro or bromo substituted alkanoic acid groups, esterified products of these carboxylic acids and the like can be mentioned.
Figure JPOXMLDOC01-appb-I000022
 例えば、下記のような、クロロ又はブロモ置換アルカン酸アミド、それらの窒素のアルキルモノ置換、ジ置換の基などが挙げられる。
Figure JPOXMLDOC01-appb-I000023
Examples thereof include chloro or bromo-substituted alkanoic acid amides, alkyl mono-substituted and di-substituted groups of the nitrogen thereof, and the like.
Figure JPOXMLDOC01-appb-I000023
 上記に例示したような「式1又は2の基」の、有機化合物への導入は、任意の方法とすることができ、特に限定されない。例えば、「式1の基」を導入する場合、対応するカルボン酸基含有化合物を、エステル化或いはアミド化することで得られる。また、エポキシ基を有する化合物に、「式1の基」をもつ化合物を反応させることで得られる。また、上記「式1又は2の基」の構造中のX、すなわち、塩素又は臭素が結合している基のところに水酸基が結合している化合物を用い、ハロゲン化リン、濃塩酸や臭化水素酸を使用して該化合物の水酸基部分を塩素や臭素へと置換することで導入してもよい。また、上記「式1又は2の基」の構造中のC-Xの部分に不飽和結合を有する化合物を用い、該不飽和結合に塩化水素や臭化水素を付加させてクロロやブロモを導入してもよい。上記した方法は、例示であり、特にこれらに限定されず、従来公知の化合物、有機反応が使用される。 The introduction of the “group of formula 1 or 2” as exemplified above into the organic compound can be any method and is not particularly limited. For example, when the “group of formula 1” is introduced, it can be obtained by esterifying or amidating the corresponding carboxylic acid group-containing compound. Further, it can be obtained by reacting a compound having an “epoxy group” with a compound having “group of formula 1”. Further, X in the structure of the above-mentioned “group of formula 1 or 2”, that is, a compound in which a hydroxyl group is bonded to a group to which chlorine or bromine is bonded, phosphorus halide, concentrated hydrochloric acid or bromide is used. You may introduce | transduce by substituting the hydroxyl part of this compound to chlorine and a bromine using a hydrogen acid. In addition, using a compound having an unsaturated bond at the C—X portion in the structure of the above “group of formula 1 or 2,” hydrogen chloride or hydrogen bromide is added to the unsaturated bond to introduce chloro or bromo. May be. The above-mentioned method is an illustration, and is not particularly limited thereto, and conventionally known compounds and organic reactions are used.
 本発明を特徴づける(2)の有機化合物としては、上記で説明した「式1又は2の基」が導入されていれば、どのような有機化合物を使用してもよい。本発明者らの検討によれば、「式1の基」の中でも特に、開始重合反応の速度が高く、しかも市販品の化合物で合成が容易にできることから、下記一般式3で表せる構造の基(以下、「式3の基」と呼ぶ)が導入されている有機化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-I000024
(Yは、O又はNH)
As the organic compound (2) characterizing the present invention, any organic compound may be used as long as the “group of formula 1 or 2” described above is introduced. According to the study by the present inventors, among the “groups of the formula 1,” a group having a structure represented by the following general formula 3 can be used because the initiation polymerization reaction rate is high and the synthesis can be easily performed with a commercially available compound. It is preferable to use an organic compound into which (hereinafter referred to as “group of formula 3”) is introduced.
Figure JPOXMLDOC01-appb-I000024
(Y is O or NH)
 上記「式3の基」は、従来公知の材料や方法で得ることができ、「式3の基」が導入された各種の形態の有機化合物も簡便に得ることができ、その方法は、特に限定されない。下記に、「式3の基」が導入された有機化合物が容易に合成できる一例について説明する。2-ブロモイソ酪酸系化合物を原料として、「式3の基」を導入する有機化合物に、そのカルボキシ基及びその誘導体と反応しうる基を有する有機化合物を用い、これらを反応させることによって得られる。その際に使用する化合物は特に限定されない。2-ブロモイソ酪酸系化合物としては、例えば、2-ブロモイソ酪酸、2-ブロモイソ酪酸ブロマイド、無水2-ブロモイソ酪酸が挙げられる。そして、これらの化合物と、水酸基、アミノ基、エポキシ基、カルボジイミド基、オキサゾリン基、イソシアネート基、エチレンイミン基などの、カルボキシル基系の化合物と反応しうる対となる反応性基を有する有機化合物とを反応させることで、エステル結合、アミド結合にて、「式3の基」を有機化合物に導入することができる。 The above-mentioned “group of formula 3” can be obtained by conventionally known materials and methods, and various forms of organic compounds into which “group of formula 3” is introduced can be easily obtained. It is not limited. Hereinafter, an example in which an organic compound having the “group of formula 3” introduced therein can be easily synthesized will be described. Using a 2-bromoisobutyric acid compound as a raw material, an organic compound having a group capable of reacting with its carboxy group and its derivative is used as the organic compound into which the “group of formula 3” is introduced, and these are reacted. The compound used in that case is not specifically limited. Examples of 2-bromoisobutyric acid compounds include 2-bromoisobutyric acid, 2-bromoisobutyric acid bromide, and anhydrous 2-bromoisobutyric acid. And these compounds and organic compounds having a reactive group that can react with a carboxyl group-based compound such as a hydroxyl group, an amino group, an epoxy group, a carbodiimide group, an oxazoline group, an isocyanate group, and an ethyleneimine group Can be introduced into an organic compound through an ester bond or an amide bond.
 本発明を特徴づける(2)の化合物は、前記(1)のモノマーの重合開始基として機能する、上記した「式1又は2の基」、中でもより好ましい「式3の基」(これらを、まとめて「式1~3の基」と呼ぶ場合がある)が、分子内に1個以上導入されている有機化合物である。先に述べたように、使用する有機化合物としては、どのような形態のものであってもよく、従来公知の有機化合物が使用される。従来公知の有機化合物は種類が非常に多く、例示することはできない。以下に、本発明を特徴づける(2)の有機化合物を使用することで、従来、重合に用いられているアゾ系ラジカル重合開始剤、過酸化物系ラジカル重合開始剤及び光ラジカル重合開始剤のいずれについても使用することなく、(1)のモノマーの重合が可能になり、様々な構造のポリマーの形成が可能になることについての説明をする。 The compound of (2) characterizing the present invention is the above-mentioned “group of formula 1 or 2” functioning as a polymerization initiating group of the monomer of (1), more preferably “group of formula 3” (these are (Sometimes collectively referred to as “groups of Formulas 1 to 3”) are organic compounds having one or more introduced in the molecule. As described above, the organic compound to be used may be in any form, and conventionally known organic compounds are used. There are so many kinds of conventionally known organic compounds that cannot be exemplified. In the following, by using the organic compound (2) that characterizes the present invention, an azo radical polymerization initiator, a peroxide radical polymerization initiator, and a photo radical polymerization initiator that are conventionally used in polymerization are used. It will be described that the monomer (1) can be polymerized and polymers having various structures can be formed without using any of them.
 本発明で規定する「式1~3の基」が1個分子内に導入されている(2)の有機化合物を使用し、後述する(3)のヨウ素イオン含有化合物を併用した状態で、(1)のモノマーを混合し、加温すると、(2)の有機化合物を開始基として重合が開始し、進行して、ラジカル重合性モノマーを構成成分とする直鎖状のポリマーを得ることができる。また、「式1~3の基」が2個分子内に導入されている(2)の有機化合物を使用した場合は、その有機化合物から2本の鎖が伸びる形で重合が開始する構造となる。このため、使用する(2)の有機化合物の形態がポリマー成分であった場合、当該有機化合物の両末端に「式1~3の基」があると、そのポリマーをBとし、(1)のモノマーの重合物をAとすると、A-B-Aブロックコポリマーとすることができる。また、この場合に、使用する(2)の有機化合物のポリマーの形態が、分子中に「式1~3の基」が2個ぶら下がっている場合は、得られるポリマーを、二本の櫛形構造のポリマーとすることができる。 Using the organic compound of (2) in which one “group of formulas 1 to 3” defined in the present invention is introduced into the molecule, in combination with the iodine ion-containing compound of (3) described later, When the monomer of 1) is mixed and heated, polymerization starts with the organic compound of (2) as an initiating group and proceeds to obtain a linear polymer having a radical polymerizable monomer as a constituent component. . In addition, when the organic compound of (2) in which two “groups of formulas 1 to 3” are introduced in the molecule, a structure in which polymerization starts in a form in which two chains extend from the organic compound, Become. For this reason, when the form of the organic compound (2) used is a polymer component, if there are “groups of formulas 1 to 3” at both ends of the organic compound, the polymer is defined as B. When the monomer polymerization product is A, it can be an ABA block copolymer. Further, in this case, when the polymer form of the organic compound (2) to be used has two “groups of formulas 1 to 3” hanging in the molecule, the resulting polymer is converted into two comb structures. The polymer can be
 (2)の有機化合物としてのポリマーには、従来公知のものが使用でき、特に限定されない。例えば、ポリエーテル、ポリエステル、ポリアミド、ポリウレタン、ポリオレフィン、ポリイミド、ポリアクリル、ポリメタクリル、ポリスチレン、ポリカーボネート、ポリシリコーン、ポリハロゲン化オレフィン、ポリビニルアルコールなどのポリマーが挙げられる。これらは、単独重合物、共重合物、グラフトコポリマー、ブロックコポリマーのいずれの構造を有するポリマーであってもよい。 (2) As the polymer as the organic compound, a conventionally known polymer can be used and is not particularly limited. Examples thereof include polymers such as polyether, polyester, polyamide, polyurethane, polyolefin, polyimide, polyacryl, polymethacryl, polystyrene, polycarbonate, polysilicone, polyhalogenated olefin, and polyvinyl alcohol. These may be polymers having any structure of homopolymers, copolymers, graft copolymers, and block copolymers.
 また、本発明の製造方法において、(2)の有機化合物として、3個以上の複数個の「式1~3の基」が導入されている有機化合物を使用した場合は、分岐構造型のポリマーや、スターポリマーや、グラフトポリマーを得ることができる。その中でも、(2)の有機化合物として、3個以上の「式1~3の基」が導入されているビニルモノマーの重合物を使用することが好ましい。すなわち、(2)の有機化合物に、「式1~3の基」が導入されているビニルポリマーを使用すると、(1)のモノマーが重合して得られるポリマーが、(2)の有機化合物であるビニルポリマーにグラフトした構造や、ボトル状の構造を有するボトルブラシポリマーになる。本発明の製造方法を上記のように構成することで、特異性質を有する有用なポリマーを、工業的に簡便に且つ安価に得ることが可能になる。 In the production method of the present invention, when an organic compound having three or more “groups of formulas 1 to 3” introduced therein is used as the organic compound (2), a branched structure type polymer Or a star polymer or a graft polymer can be obtained. Among them, it is preferable to use a polymer of a vinyl monomer into which three or more “groups of formulas 1 to 3” are introduced as the organic compound (2). That is, when a vinyl polymer having “groups of formulas 1 to 3” introduced into the organic compound of (2) is used, the polymer obtained by polymerizing the monomer of (1) becomes the organic compound of (2). It becomes a bottle brush polymer having a structure grafted to a certain vinyl polymer or a bottle-like structure. By configuring the production method of the present invention as described above, a useful polymer having specific properties can be obtained industrially simply and inexpensively.
 上記した「式1~3の基」が導入されているビニルポリマーは、「式1~3の基」が導入されているモノマーを重合して得てもよいし、予め、水酸基などを有するモノマーを重合した後、「式1~3の基」を導入してもよい。また、「式1~3の基」が導入されているモノマーと、前記した他のモノマーとを共重合させてコポリマーとしたものであってよい。この場合、「式1~3の基」が導入されているモノマーの配合量は任意であり、特に限定されない。 The above-mentioned vinyl polymer having the “groups of formulas 1 to 3” introduced therein may be obtained by polymerizing a monomer having the “groups of formulas 1 to 3” introduced therein, or a monomer having a hydroxyl group or the like in advance. After polymerization, “groups of formulas 1 to 3” may be introduced. Further, the copolymer may be obtained by copolymerizing a monomer having “groups of formulas 1 to 3” and the other monomer described above. In this case, the amount of the monomer into which the “group of formulas 1 to 3” is introduced is arbitrary and is not particularly limited.
 また、(2)の有機化合物として用いる、上記した「式1~3の基」が導入されているポリマーは、リビングラジカル重合で得たものであると、分子量分布が狭くなるので、より好ましい。リビングラジカル重合の方法の中では、「式1~3の基」が導入されているモノマーを使用して、ニトロキサイドラジカルを使用するニトロキサイド法(NMP法)や、ジチオエステル化合物などを使用する可逆的付加開裂型連鎖移動重合(RAFT法)や、ヨウ素化合物と有機触媒を使用する可逆的移動触媒重合(RTCP法)などが使用され、特に限定されない。しかし、酸化還元を利用する原子移動ラジカル重合では、モノマーの重合と、クロロ基又はブロモ基からの重合開始があるので、ゲル化してしまう可能性があるので好ましくない。 Further, the polymer introduced with the above-mentioned “groups of formulas 1 to 3” used as the organic compound (2) is more preferably obtained by living radical polymerization because the molecular weight distribution becomes narrow. In the living radical polymerization method, a nitroxide method using a nitroxide radical (NMP method), a dithioester compound, or the like is used using a monomer in which “groups of formulas 1 to 3” are introduced. A reversible addition-cleavage chain transfer polymerization (RAFT method), a reversible transfer catalyst polymerization using an iodine compound and an organic catalyst (RTCP method), and the like are used, and are not particularly limited. However, atom transfer radical polymerization utilizing redox is not preferred because it may cause gelation because of polymerization of monomers and initiation of polymerization from chloro or bromo groups.
 さらに、「式1~3の基」が導入されているモノマーと、他のモノマー成分として、特に反応性モノマーを用い、これらを共重合させて、この反応性基を有する共重合体を使用して物品の表面を処理し、その後に、共重合体を構成している「式1~3の基」を重合開始基として、(1)のモノマーを重合することで、物品表面にポリマーをグラフト的に導入することができる。すなわち、グラフト的に導入したポリマーによって物品を表面改質させることができる。さらには、その「式1~3の基」が導入されているモノマーを用いての重合方法がリビングラジカル重合であった場合、該特有のモノマーの共重合体への導入速度が一定で且つ停止反応がないので、ポリマーが伸び切り鎖であり且つ分子量の揃った、濃厚ポリマーブラシ構造を導入することができる。 Further, a monomer having the “groups of formulas 1 to 3” introduced therein and a reactive monomer as another monomer component, in particular, are copolymerized, and a copolymer having this reactive group is used. Then, the surface of the article is treated, and then the polymer of (1) is polymerized using the “groups of formulas 1 to 3” constituting the copolymer as a polymerization initiating group, thereby grafting the polymer onto the article surface. Can be introduced. That is, the surface of the article can be modified by the polymer introduced by grafting. Furthermore, when the polymerization method using the monomer having the “groups of formulas 1 to 3” is living radical polymerization, the introduction rate of the specific monomer into the copolymer is constant and stopped. Since there is no reaction, it is possible to introduce a dense polymer brush structure in which the polymer is an extended chain and the molecular weight is uniform.
 具体的には、この場合は、例えば、(2)の有機化合物を下記のようなポリマー成分にして用いる。まず、「式1~3の基」が導入されているモノマーと、アルコキシシリル基を有するビニルモノマーとを共重合させて、「式1~3の基」が導入され且つアルコキシシリル基を有するポリマー成分とし、これをガラス、金属、プラスチックなどの基材表面に塗布して、表面改質し、その後に、本発明を特徴づける「式1~3の基」を重合開始基として機能させ、(1)のモノマーのラジカル重合をすることで、物品に濃厚ブラシ構造を容易に導入することができる。 Specifically, in this case, for example, the organic compound (2) is used as a polymer component as described below. First, a polymer in which a “group of formulas 1 to 3” is introduced and a vinyl monomer having an alkoxysilyl group is copolymerized with a vinyl monomer having an alkoxysilyl group and having an alkoxysilyl group As a component, this is applied to the surface of a substrate such as glass, metal, plastic and the like, surface-modified, and then the “groups of formulas 1 to 3” characterizing the present invention function as a polymerization initiating group. By performing radical polymerization of the monomer 1), a rich brush structure can be easily introduced into the article.
 以上のように、本発明の製造方法では、(2)の有機化合物として、「式1~3の基」が1個以上導入されている有機化合物を使用することができる。しかし、より好ましくは、「式1~3の基」を2個以上有する化合物を使用する。このように構成することで、従来の技術では容易に得ることができなかった構造のポリマーを簡便に得ることができる。すなわち、「式1~3の基」が1個の場合は、先に述べたように、本発明の製造方法で得られるポリマーは、直鎖状のものになる。直鎖状のポリマーは、通常のラジカル重合やリビングラジカル重合でも得ることができるので、「式1~3の基」が2個以上導入されている有機化合物を使用する本発明の製造方法に比べると、そのメリットは、あまり大きくはない。 As described above, in the production method of the present invention, as the organic compound (2), an organic compound into which one or more “groups of formulas 1 to 3” are introduced can be used. However, more preferably, a compound having two or more “groups of the formulas 1 to 3” is used. By comprising in this way, the polymer of the structure which was not able to be obtained easily with the prior art can be obtained simply. That is, when the number of “groups of formulas 1 to 3” is 1, the polymer obtained by the production method of the present invention is linear as described above. Since a linear polymer can be obtained by ordinary radical polymerization or living radical polymerization, it is compared with the production method of the present invention using an organic compound in which two or more “groups of formulas 1 to 3” are introduced. And the benefits are not so great.
 また、(2)の有機化合物に、導入する「式1~3の基」の量を調整することで、得られるポリマーの分子量をコントロールできる場合があり、このことも、本発明の製造方法の特徴である。本発明の製造法では、(2)の有機化合物に導入された「式1~3の基」から重合が開始されるので、「式1~3の基」を含む化合物1molに対して、(1)のモノマーの量を調整することで、製造するポリマーの分子量が調整できる。しかし、この重合はラジカル重合のような停止反応を伴い、カップリングして高分子量ができる場合があり、その場合は開始基の量で調整はできなくなる。なお、その場合は、後述する触媒を添加することによって、回避することができる。 In addition, the molecular weight of the resulting polymer may be controlled by adjusting the amount of the “group of formulas 1 to 3” introduced into the organic compound (2). This is also the case with the production method of the present invention. It is a feature. In the production method of the present invention, the polymerization is started from the “groups of formulas 1 to 3” introduced into the organic compound of (2). Therefore, with respect to 1 mol of the compound containing “groups of formulas 1 to 3”, The molecular weight of the polymer to be produced can be adjusted by adjusting the amount of the monomer 1). However, this polymerization is accompanied by a termination reaction such as radical polymerization, and there are cases in which a high molecular weight can be obtained by coupling. In this case, adjustment cannot be made by the amount of the initiating group. In this case, it can be avoided by adding a catalyst described later.
[(3)ヨウ化物塩又はトリヨージド塩であるヨウ素イオン含有化合物]
 本発明のポリマーの製造方法では、(3)ヨウ化金属、第四級アンモニウムアイオダイド、第四級ホスホニウムアイオダイド及び第四級アンモニウムトリヨージドからなる群から選ばれる1種以上のヨウ化物塩又はトリヨージド塩であるヨウ素イオン含有化合物を使用することを必須とする。以下、これらの化合物について説明する。これらの化合物の作用については、詳細は解明されていない。本発明者らの検討によれば、これらの化合物を使用することによって、前記した「式1~3の基」の臭素がヨウ素に置き換わり、ヨウ素が移動する重合が起こると考えられる。また、これらの化合物が酸化還元の触媒として作用して重合を進行させる可能性もある。以下、上記したヨウ素イオン含有化合物を「ヨウ素化剤」或いは(3)の化合物と称す場合がある。
[(3) Iodine ion-containing compound which is iodide salt or triiodide salt]
In the method for producing a polymer of the present invention, (3) one or more iodide salts selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide and quaternary ammonium triiodide. Alternatively, it is essential to use an iodine ion-containing compound that is a triiodide salt. Hereinafter, these compounds will be described. The details of the action of these compounds have not been elucidated. According to the study by the present inventors, it is considered that by using these compounds, bromine in the above-mentioned “groups of formulas 1 to 3” is replaced with iodine, and polymerization in which iodine moves occurs. In addition, these compounds may act as a redox catalyst to promote polymerization. Hereinafter, the above-described iodine ion-containing compound may be referred to as “iodination agent” or (3) compound.
 (3)の化合物は、いずれもヨウ素イオンを有する化合物であって、ヨウ化金属、第四級アンモニウムアイオダイド、第四級ホスホニウムアイオダイド、第四級アンモニウムトリヨージドの群から選ばれる1種以上である、ヨウ化物塩又はトリヨージド塩である化合物であり、従来公知のものが使用でき、特に限定されない。具体的に例示すると、ヨウ化金属としては、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化カルシウム、ヨウ化マグネシウムなどが挙げられる。第四級アンモニウムアイオダイドとしては、テトラメチルアンモニウムアイオダイド、テトラエチルアンモニウムアイオダイド、テトラブチルアンモニウムアイオダイドなどが挙げられる。第四級ホスホニウムアイオダイドとしては、テトラブチルホスホニウムアイオダイド、トリブチルメチルホスホニウムアイオダイド、トリフェニルメチルホスホニウムアイオダイドなどが挙げられる。第四級アンモニウムトリヨージドとしては、トリブチルメチルアンモニウムトリヨージドなどが挙げられる。ヨウ素イオンを有していれば、どのような化合物でも使用できる。 The compound (3) is a compound having iodine ions, and is selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide, and quaternary ammonium triiodide. The compounds which are the above-described iodide salts or triiodide salts, and conventionally known compounds can be used, and are not particularly limited. Specifically, examples of the metal iodide include lithium iodide, sodium iodide, potassium iodide, calcium iodide, magnesium iodide and the like. Examples of the quaternary ammonium iodide include tetramethylammonium iodide, tetraethylammonium iodide, and tetrabutylammonium iodide. Examples of the quaternary phosphonium iodide include tetrabutylphosphonium iodide, tributylmethylphosphonium iodide, triphenylmethylphosphonium iodide, and the like. Examples of the quaternary ammonium triiodide include tributylmethylammonium triiodide. Any compound can be used as long as it has iodine ions.
 また、(3)のヨウ素化剤の使用量は、併用する(2)の「式1~3の基」と当モル程度が好ましいが、製造目的のポリマーに応じて使用量を決定すればよく、特に限定されない。例えば、このヨウ素に置換させたい「式1~3の基」のモル数だけ添加して、ヨウ素化し、本発明で規定する重合工程を行えば、(3)のヨウ素化剤の量で重合する鎖の数を調整できる。また、残った「式1~3の基」は、前記したように、酸化還元のリビングラジカル重合である原子移動ラジカル重合の開始基であるので、この原子移動ラジカル重合することで、他の重合方法でビニル系ポリマーを導入することができる。 The amount of the iodinating agent in (3) is preferably about equimolar to the “groups of formulas 1 to 3” in (2) to be used in combination, but the amount used may be determined according to the polymer to be produced. There is no particular limitation. For example, if the number of moles of “groups of formulas 1 to 3” to be substituted with iodine is added, iodinated, and subjected to the polymerization step specified in the present invention, polymerization is performed with the amount of the iodinating agent of (3). You can adjust the number of chains. Further, since the remaining “groups of formulas 1 to 3” are the starting groups of atom transfer radical polymerization which is redox living radical polymerization, as described above, by this atom transfer radical polymerization, other polymerization is performed. The vinyl polymer can be introduced by the method.
[(4)ヨウ素又はヨウ素を遊離することができるヨウ化有機化合物又は有機塩基を有する化合物]
 本発明のポリマーの製造方法では、以上で説明した(1)~(3)の材料を使用し、これらを混合及び加温すればラジカル重合が開始して進行し、ポリマーが得られる。本発明者らの検討によれば、上記の材料に加え、さらに、必要に応じて(4)のヨウ素、ヨウ素を遊離することができるヨウ化有機化合物及び有機アミン等の有機塩基を有する化合物から選ばれるいずれかを添加し、重合工程を行うことが好ましい。本発明者らの検討によれば、これらの成分をさらに添加することで、前記したラジカル重合の停止反応を防止することができ、高分子量化やゲル化を防止することができる。その作用は不明であるが、本発明者らは、ヨウ素やアミノ基がラジカルとなって、成長ラジカルのカップリング防止に寄与するのではないかと考えている。以下、(4)の成分を、簡易的に「(4)の触媒」と称す場合がある。
[(4) Iodine or an iodine iodide organic compound or organic base compound capable of liberating iodine]
In the method for producing a polymer of the present invention, the materials (1) to (3) described above are used, and when these are mixed and heated, radical polymerization starts and proceeds to obtain a polymer. According to the study by the present inventors, in addition to the above-mentioned materials, further, from the compound having an organic base such as an iodine iodide, an organic compound capable of liberating iodine, and an organic amine as described in (4). It is preferable to add any one selected and perform the polymerization step. According to the study by the present inventors, by further adding these components, the radical polymerization termination reaction described above can be prevented, and high molecular weight and gelation can be prevented. Although its action is unclear, the present inventors believe that iodine or amino groups become radicals and contribute to the prevention of growth radical coupling. Hereinafter, the component (4) may be simply referred to as “catalyst (4)”.
 (4)の触媒としては、ヨウ素、ヨウ素を遊離することができるヨウ化有機化合物及び有機塩基を有する化合物であればよく、従来公知の化合物が使用され、それらは特に限定されない。ヨウ素以外のものを具体的に例示する。ヨウ素を遊離することができるヨウ化有機化合物としては、ヨウ素が結合していれば熱や光でヨウ素を遊離するので、どのような化合物も使用できる。好ましくは、N-アイオドイミド系化合物であり、より好ましくは、市販品で入手しやすいN-アイオドスクシニルイミド、N-アイオドフタルイミド、N-アイオドシクロヘキサニルイミド、1,3-ジアイオド-5,5-ジメチルヒダントイン、N-アイオドサッカリンなどが挙げられる。また、有機塩基を有する化合物としては、トリエチルアミン、トリブチルアミン、ジアザビシクロウンデセン(DBU)、ジアザビシクロオクタン(DABCO)、ホスファゼン塩基などの従来公知のものが使用できる。 The catalyst of (4) may be iodine, an organic iodide compound capable of liberating iodine and a compound having an organic base, and conventionally known compounds are used, and they are not particularly limited. Examples other than iodine are specifically exemplified. Any compound can be used as the iodinated organic compound capable of releasing iodine since iodine is released by heat or light as long as iodine is bonded. N-iodoimide-based compounds are preferable, and N-iodosuccinimide, N-iodophthalimide, N-iodocyclohexanilimide, and 1,3-diaiodo-5 which are easily available as commercial products are preferable. , 5-dimethylhydantoin, N-iodosaccharin and the like. As the compound having an organic base, conventionally known compounds such as triethylamine, tributylamine, diazabicycloundecene (DBU), diazabicyclooctane (DABCO), and phosphazene base can be used.
 これら(4)の触媒の量は任意であり、特に限定されない。好ましくは、併用する重合開始基として機能する(2)の「式1~3の基」の0.001モル倍~0.1モル倍の範囲で使用される。使用量があまりに多いと、触媒としての作用が十分発揮されず、副反応などが生じる可能性があるので好ましくない。 The amount of the catalyst (4) is arbitrary and is not particularly limited. Preferably, it is used in the range of 0.001 to 0.1 mol times the “group of formulas 1 to 3” of (2) which functions as a polymerization initiating group to be used in combination. If the amount used is too large, the effect as a catalyst is not sufficiently exhibited, and a side reaction or the like may occur.
[溶媒]
 以下に、本発明のポリマーの製造方法に用いることができる他の材料について説明する。本発明のポリマーの製造方法の重合工程は、有機溶媒を使用して重合する溶液重合が好ましい。これは、(1)のモノマー材料に、(3)のようなイオン性の材料を溶解することができない場合があり、また、(2)の「式1~3の基」の構造中の塩素又は臭素と、(3)のヨウ素化剤のヨウ素イオンの交換は、前記したようなヨウ素化剤を溶解して行う必要があり、そのためには、下記に挙げるような極性が高い有機溶媒を一部又は全部に使用することが好ましい。具体的には、アルコール系、グリコール系、アミド系、スルホキシド系、イオン液体である溶媒を使用することが好ましい。しかし、これらの溶媒は必ずしも必要でなく、例えば、ヨウ素化剤を溶解するモノマーを使用した場合は、特に有機溶媒を使用せずとも重合できる。一般に使用される有機溶媒としては従来公知の、炭化水素系、ハロゲン系、ケトン系、エステル系、グリコール系などの非極性の溶媒があり、これらの溶媒と併用して、上記したような極性の高い溶媒を使用すればよい。その場合、極性が高い溶媒の比率は任意であり、モノマーを重合して得られる本発明のポリマーを溶解させるように溶媒が選択される。
[solvent]
Below, the other material which can be used for the manufacturing method of the polymer of this invention is demonstrated. The polymerization step of the method for producing a polymer of the present invention is preferably solution polymerization in which polymerization is performed using an organic solvent. This is because an ionic material such as (3) cannot be dissolved in the monomer material of (1), and chlorine in the structure of “groups of formulas 1 to 3” of (2) Alternatively, the exchange of bromine and iodine ion of the iodinating agent of (3) must be performed by dissolving the iodinating agent as described above. For this purpose, an organic solvent having a high polarity as listed below is used. It is preferable to use for part or all. Specifically, it is preferable to use a solvent that is an alcohol, glycol, amide, sulfoxide, or ionic liquid. However, these solvents are not always necessary. For example, when a monomer that dissolves an iodinating agent is used, polymerization can be performed without using an organic solvent. Commonly used organic solvents include conventionally known nonpolar solvents such as hydrocarbons, halogens, ketones, esters, glycols, etc., in combination with these solvents, A high solvent may be used. In that case, the ratio of the solvent having high polarity is arbitrary, and the solvent is selected so as to dissolve the polymer of the present invention obtained by polymerizing the monomer.
 上記したように、溶媒は従来公知のものが使用でき、好ましい溶媒として、アルコール系、グリコール系、アミド系、スルホキシド系、イオン液体が挙げられる。具体的に例示すると、メタノール、エタノール、イソプロパノールなどのアルコール系溶媒;エチレグリコール、プロピレングリコール、グリセリン、ジエチレングリコール、プロピレングリコールモノメチルエーテルなどのグリコール系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどのアミド系溶媒;ジメチルスルホキシドなどのスルホキシド系溶媒;イミダゾリウム塩や第四級アンモニウム塩等のイオン液体が挙げられ、単独又は2種以上で使用できる。 As described above, conventionally known solvents can be used, and preferable solvents include alcohols, glycols, amides, sulfoxides, and ionic liquids. Specific examples include alcohol solvents such as methanol, ethanol and isopropanol; glycol solvents such as ethylene glycol, propylene glycol, glycerin, diethylene glycol and propylene glycol monomethyl ether; dimethylformamide, dimethylacetamide, N-methylpyrrolidone, 3- Amide solvents such as methoxy-N, N-dimethylpropanamide and 3-butoxy-N, N-dimethylpropanamide; sulfoxide solvents such as dimethyl sulfoxide; ionic liquids such as imidazolium salts and quaternary ammonium salts Can be used alone or in combination of two or more.
 これらの溶媒の重合時の使用量は、(3)のヨウ素化剤を溶解させればよく、特に限定されない。好ましくは、質量基準で、30%~80%である。30%より少ないと固形分が高すぎて高粘度になってしまう場合があるし、80%より多いと、モノマー濃度が低すぎて重合率が上がらない場合がある。より好ましくは、40%~70%である。 The amount of these solvents used during polymerization is not particularly limited as long as the iodinating agent (3) is dissolved. Preferably, it is 30% to 80% by mass. If it is less than 30%, the solid content may be too high, resulting in a high viscosity. If it is more than 80%, the monomer concentration may be too low to increase the polymerization rate. More preferably, it is 40% to 70%.
 本発明のポリマーの製造方法は、基本的には、ラジカルが発生するラジカル重合開始剤を使用しないで済むことに大きな特徴がある。従来、不飽和結合を有するモノマーを重合する場合は、アゾ系や過酸化物系、さらにはチオールなどのラジカルを生成する化合物を使用して重合を行っていた。しかし、本発明の製造方法では、このようなラジカル重合開始剤を使用せずとも、上記した(1)~(3)の材料を混合して、熱にて容易に重合が進む。場合によっては、ラジカル重合開始剤を併用しても、本発明の重合方法によるポリマーが得られると予想される。しかし、その場合は、ラジカル重合開始剤からの重合も始まる場合があるので、所望する複雑な構造のポリマーを得る目的からは好ましくない。本発明の製造方法では、ラジカル重合開始剤を使用せず重合することが好ましい。すなわち、ラジカル重合が「式1~3の基」の構造から始まるので、前記したように、「式1~3の基」が導入されている有機化合物の量や、変換するための(3)のヨウ素化剤の量によって、分子量をコントロールすることができ、ラジカル開始剤由来のポリマーができないので、通常のラジカル重合が制御され、「式1~3の基」を使用したポリマーのみを得ることができる。 The polymer production method of the present invention is basically characterized in that it is not necessary to use a radical polymerization initiator that generates radicals. Conventionally, when a monomer having an unsaturated bond is polymerized, the polymerization is performed using a compound that generates a radical such as azo, peroxide, or thiol. However, in the production method of the present invention, without using such a radical polymerization initiator, the above-described materials (1) to (3) are mixed and polymerization proceeds easily by heat. In some cases, it is expected that a polymer by the polymerization method of the present invention can be obtained even if a radical polymerization initiator is used in combination. However, in that case, since polymerization from a radical polymerization initiator may also start, it is not preferable for the purpose of obtaining a polymer having a desired complicated structure. In the production method of the present invention, it is preferable to perform polymerization without using a radical polymerization initiator. That is, since radical polymerization starts from the structure of “groups of formulas 1 to 3”, as described above, the amount of the organic compound into which “groups of formulas 1 to 3” are introduced, and (3) Since the molecular weight can be controlled by the amount of the iodinating agent, and a polymer derived from a radical initiator cannot be produced, normal radical polymerization is controlled, and only a polymer using “groups of formulas 1 to 3” is obtained. Can do.
[重合工程]
 以上が本発明のポリマーの製造方法に必要な材料であって、本発明では、これらの材料を混合して、加温(加熱)することで、「式1~3の基」からモノマーのラジカル重合が開始して進行し、ポリマーを得ることができる。その重合条件としては特に限定はなく、従来公知の方法がとられる。より好ましい具体的な条件を列記すると、窒素やアルゴン雰囲気にしたり、バブリングしたりした方が、酸素の影響がなく、よく重合が進行する。また、温度としては、室温以上であればよく、例えば、40℃以上あればよいが、室温程度であると重合時間が多大にかかるので、好ましくは60℃以上、さらには70℃以上で重合させることが、実用の製造においての、好ましい製造時間を実現できる点で適している。また、撹拌速度は特に重合に影響はなく、また、遮光が必ずしも必要ではない。重合率も任意であり、完全にモノマーが消費されていなくてもよい。
[Polymerization process]
The above are the materials necessary for the production method of the polymer according to the present invention. In the present invention, these materials are mixed and heated (heated), so that the radicals of the monomer can be converted from “groups of formulas 1 to 3”. Polymerization starts and proceeds to obtain a polymer. The polymerization conditions are not particularly limited, and conventionally known methods are used. When more preferable specific conditions are listed, in a nitrogen or argon atmosphere or bubbling, there is no influence of oxygen and the polymerization proceeds well. Further, the temperature may be room temperature or higher, for example, 40 ° C. or higher, but if it is about room temperature, it takes a lot of polymerization time. This is suitable in that a preferable production time can be realized in practical production. Further, the stirring speed does not particularly affect the polymerization, and light shielding is not always necessary. The polymerization rate is also arbitrary, and the monomer may not be completely consumed.
[ポリマー]
 本発明のポリマーの製造方法では、以上のような条件の下、先に述べたそれぞれの材料を用意して、混合し、加温することで、ポリマーを簡便に作製することができる。さらには、本発明を特徴づける(2)のラジカル重合の開始基含有化合物の形態を適宜に設計することで、さらに、必要に応じて(4)の触媒を使用することで、より容易に、所望する特異(複雑)な構造のポリマーを工業的に得ることができる。具体的には、本発明の製造方法を利用することで、下記に挙げるような多様な形態に制御された所望のポリマーを容易に提供できる。提供されるポリマーとしては、直鎖状のポリマー、ABブロックポリマー、ABAブロックポリマー、分岐型ポリマー、グラフトポリマー、スターポリマー、濃厚ポリマーブラシ、ボトルブラシポリマーなどが挙げられる。
[polymer]
In the polymer production method of the present invention, the respective materials described above are prepared, mixed, and heated under the above conditions, whereby the polymer can be easily produced. Furthermore, by appropriately designing the form of the radical polymerization initiating group-containing compound (2) that characterizes the present invention, it is easier to use the catalyst (4) as required. A polymer having a desired specific (complex) structure can be obtained industrially. Specifically, by using the production method of the present invention, a desired polymer controlled in various forms as described below can be easily provided. Polymers provided include linear polymers, AB block polymers, ABA block polymers, branched polymers, graft polymers, star polymers, concentrated polymer brushes, bottle brush polymers, and the like.
 本発明を特徴づける(2)のラジカル重合の開始基含有化合物を用いた、本発明の製造方法によれば、今までになく簡易的に、上記に挙げたような多様なポリマーを合成することができる。具体例を記載すると、濃密なグラフトポリマーであるボトルブラシポリマーを、従来公知の市販の材料を使用して、精製が必要なく、場合によっては1ポットで合成することができる。さらに具体的に示すと、まず、グリシジルメタクリレートと、ブロモイソ酪酸を、テトラエチルアンモニウムブロマイドを触媒として、アミド系溶媒で反応させて、エポキシ基を開環させてエステルとして、「式3の基」が導入されたモノマーを得る。ついで、その系に、アゾ系開始剤を入れてラジカル重合したり、ほかに、ヨウ素、アゾ系開始剤、触媒としてジフェニルメタンを触媒として、可逆的移動触媒重合にて重合したりして、「式3の基」が導入された(2)の有機化合物であるポリマーとする。ついで、これに、(3)のヨウ素化剤としてトリブチルアンモニウムアイオダイド、(1)のモノマー、好ましい形態として(4)の触媒としてN-アイオドスクシンイミドを添加して、混合及び加温して本発明で規定する重合工程を実施することによって、各材料を精製せずとも、1ポットでボトルブラシを合成することができる。 According to the production method of the present invention using the radical polymerization initiating group-containing compound (2) that characterizes the present invention, it is possible to synthesize various polymers as described above in a simpler manner than ever before. Can do. To describe a specific example, a bottle brush polymer, which is a dense graft polymer, can be synthesized using a conventionally known commercially available material without purification and in some cases in one pot. More specifically, first, glycidyl methacrylate and bromoisobutyric acid are reacted with tetraethylammonium bromide as a catalyst in an amide solvent to open an epoxy group and introduce an “ester of formula 3” as an ester. The obtained monomer is obtained. Next, radical polymerization with an azo initiator added to the system, or in addition, polymerization with reversible transfer catalyst polymerization using iodine, azo initiator, diphenylmethane as a catalyst, A polymer which is an organic compound of (2) in which “group 3” is introduced. Next, tributylammonium iodide as the iodinating agent of (3), the monomer of (1), and N-iodosuccinimide as the catalyst of (4) as a preferred form are added to this, and this is mixed and heated. By carrying out the polymerization step defined in the invention, a bottle brush can be synthesized in one pot without purifying each material.
 以上のようにして得られたポリマーは、そのまま使用してもよいし、貧溶剤に添加して析出させて、精製してポリマー成分を使用してもよい。 The polymer obtained as described above may be used as it is, or may be added to a poor solvent, precipitated, purified, and a polymer component may be used.
 その得られるポリマーの使用は、従来公知の用途に使用でき、特に限定されない。例えば、インク、塗料、コーティング、プラスチック、インクジェットインク、カラーフィルター材料、エネルギー関係材料、機械部品関係材料、医療機器、医療材料或いは薬剤関係など、様々な分野に適用できる。 The use of the obtained polymer can be used for conventionally known applications and is not particularly limited. For example, the present invention can be applied to various fields such as inks, paints, coatings, plastics, inkjet inks, color filter materials, energy-related materials, mechanical component-related materials, medical devices, medical materials, and pharmaceuticals.
 以下、実施例、合成例及び比較例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下、文中の「部」及び「%」は、特に断りのない限り、質量基準である。以下、本発明のポリマーの製造方法についての例を実施例と呼び、本発明のラジカル重合の開始基含有化合物の例を合成例と呼ぶ。 Hereinafter, the present invention will be described in more detail with reference to Examples, Synthesis Examples and Comparative Examples, but the present invention is not limited to these Examples. Hereinafter, “parts” and “%” in the text are based on mass unless otherwise specified. Hereinafter, an example of the method for producing a polymer of the present invention is referred to as an example, and an example of a radical polymerization-initiating group-containing compound of the present invention is referred to as a synthesis example.
[実施例1]
 撹拌機、還流コンデンサー、温度計及び窒素導入管を取り付けた反応装置に、溶媒として、3-メトキシ-N,N-ジメチルプロパンアミド(以下、MDPAと略記)を100.0部、(2)の有機化合物として、2-ブロモイソ酪酸エチルを4.0部、(1)のモノマーとして、メタクリル酸メチル(以下、MMAと略記)を100.0部、(3)のヨウ素化剤として、ヨウ化ナトリウム3.0部を仕込んで、窒素をバブリングしながら75℃に加温し、7時間重合した。得られたポリマーの重合率は95%、数平均分子量(以下、Mnと略記)は7600、分子量分布(重量平均分子量/数平均分子量、以下、PDIと略記)は1.87であった。以上のことから、本発明の製造方法によれば、従来使用されていたアゾ系や過酸化物系のラジカル発生剤を使用せずに、ポリマーを得ることができることが確認された。
[Example 1]
To a reaction apparatus equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen introduction tube, 100.0 parts of 3-methoxy-N, N-dimethylpropanamide (hereinafter abbreviated as MDPA) as a solvent, As an organic compound, 4.0 parts of ethyl 2-bromoisobutyrate, 100.0 parts of methyl methacrylate (hereinafter abbreviated as MMA) as a monomer of (1), sodium iodide as an iodinating agent of (3) 3.0 parts was charged, heated to 75 ° C. while bubbling nitrogen, and polymerized for 7 hours. The polymerization rate of the obtained polymer was 95%, the number average molecular weight (hereinafter abbreviated as Mn) was 7600, and the molecular weight distribution (weight average molecular weight / number average molecular weight, hereinafter abbreviated as PDI) was 1.87. From the above, it was confirmed that according to the production method of the present invention, a polymer can be obtained without using a conventionally used azo-based or peroxide-based radical generator.
 上記における重合率は、180℃で溶液を乾燥して不揮発分を測定することで算出した。以下の例でも、同様の方法で算出した。また、分子量は、ゲルパーミエーションクロマトグラフ(GPC)にて測定し、溶媒は特に断りがない限りテトラヒドロフラン(THF)であり、ポリスチレン換算の分子量である。以下の例でも、同様にして測定した。 The polymerization rate in the above was calculated by drying the solution at 180 ° C. and measuring the nonvolatile content. In the following examples, the same method was used. The molecular weight is measured by gel permeation chromatograph (GPC), and the solvent is tetrahydrofuran (THF) unless otherwise specified, and has a molecular weight in terms of polystyrene. In the following examples, the measurement was performed in the same manner.
 上記で行った反応系において、(3)のヨウ化ナトリウムを使用しなかった場合と、(2)の2-ブロモ酪酸エチルを使用しなかった場合のそれぞれについて、上記と同様の操作を行った。しかし、いずれの場合も重合は進行せず、ポリマーを得ることができなかった。一方、(3)のヨウ化ナトリウムに替えて、テトラブチルアンモニウムアイオダイドを使用した場合、トリブチルメチルホスホニウムアイオダイドを使用した場合、テトラブチルアンモニウムトリヨージドを使用した場合のそれぞれについて、上記と同様の操作を行ったところ、いずれの場合も、ヨウ化ナトリウムを使用した場合と同様のポリマーを得ることができた。 In the reaction system carried out above, the same operation as above was carried out for each of the cases where (3) sodium iodide was not used and (2) ethyl 2-bromobutyrate was not used. . However, in either case, the polymerization did not proceed and a polymer could not be obtained. On the other hand, when tetrabutylammonium iodide is used instead of sodium iodide of (3), tributylmethylphosphonium iodide is used, and when tetrabutylammonium triiodide is used, the same as above. As a result, the same polymer as in the case where sodium iodide was used could be obtained.
[実施例2]
 実施例1の系に、さらに、本発明で規定する(4)の成分としてN-アイオドスクシンイミド(以下、NISと略記)を0.2部添加して、実施例1で行ったと同様にして7時間重合した。この時点でサンプリングしたところ、重合率は68%であり、Mnが5200、PDIが1.43であった。そこで、同様の条件でさらに5時間重合したところ、重合率は95%に達し、Mnが8700、PDIが1.47であった。実施例1で得られたポリマーとの比較から、系内に触媒としてN-アイオド系化合物を添加することで、重合が制御され、得られるポリマーの粒度分布が狭くなることが確認された。
[Example 2]
In the same manner as in Example 1, 0.2 part of N-iodosuccinimide (hereinafter abbreviated as NIS) was further added to the system of Example 1 as the component (4) defined in the present invention. Polymerized for 7 hours. When sampled at this time, the polymerization rate was 68%, Mn was 5200, and PDI was 1.43. Then, when further polymerizing for 5 hours under the same conditions, the polymerization rate reached 95%, Mn was 8700, and PDI was 1.47. From comparison with the polymer obtained in Example 1, it was confirmed that by adding an N-iodide compound as a catalyst in the system, the polymerization was controlled and the particle size distribution of the obtained polymer was narrowed.
[実施例3]
 実施例2の系に、さらに、本発明で規定する(4)の成分である有機塩基を有する化合物としてトリエチルアミン1.0部を加え、同様に重合を行った。7時間後にサンプリングしたところ、重合率は91%に達し、Mnが7800、PDIが1.61であった。実施例2との比較から、重合速度が速くなることが確認され、また、実施例1との比較から、その場合でもある程度、粒度分布が制御されたポリマーを得ることができることが確認された。
[Example 3]
To the system of Example 2, 1.0 part of triethylamine was further added as a compound having an organic base as the component (4) defined in the present invention, and polymerization was carried out in the same manner. When sampled after 7 hours, the polymerization rate reached 91%, Mn was 7800, and PDI was 1.61. From the comparison with Example 2, it was confirmed that the polymerization rate was increased, and from the comparison with Example 1, it was confirmed that a polymer whose particle size distribution was controlled to some extent could be obtained.
[実施例4、5]
 実施例2の系において、(2)の2-ブロモイソ酪酸エチル4.0部に替えて、2-クロロイソプロピオン酸エチル2.8部を使用した場合(実施例4)と、2-ブロモイソプロピオン酸エチル3.3部を使用した場合(実施例5)、のそれぞれについて、加温条件を替えた以外は実施例2で行ったと同様にしてポリマーを調製した。加温条件は、2-クロロイソプロピオン酸エチルを用いた実施例4では85℃とし、2-ブロモイソプロピオン酸エチルを用いた実施例5では80℃として重合を行った。7時間後にサンプリングし、重合率と分子量を測定したところ、実施例4の場合は、重合率が82%で、Mnが7600、PDIが1.65であり、実施例5の場合は、重合率が79%で、Mnが6900、PDIが1.56であった。以上のことから、上記で用いた各化合物も、重合の開始基として機能することが確認された。
[Examples 4 and 5]
In the system of Example 2, when 2.8 parts of ethyl 2-chloroisopropionate was used instead of 4.0 parts of ethyl 2-bromoisobutyrate in (2) (Example 4), When 3.3 parts of ethyl onate were used (Example 5), a polymer was prepared in the same manner as in Example 2 except that the heating conditions were changed. Polymerization was carried out at 85 ° C. in Example 4 using ethyl 2-chloroisopropionate and 80 ° C. in Example 5 using ethyl 2-bromoisopropionate. Sampling was conducted after 7 hours, and the polymerization rate and molecular weight were measured. In the case of Example 4, the polymerization rate was 82%, Mn was 7600, and PDI was 1.65. In the case of Example 5, the polymerization rate was Was 79%, Mn was 6900, and PDI was 1.56. From the above, it was confirmed that each compound used above also functions as a polymerization initiation group.
[合成例1-ラジカル重合の開始基含有ポリマーの調製]
 実施例1と同様の反応装置を使用し、溶媒としてMDPAを561.0部、ヨウ素を1.0部、アゾ系重合開始剤の2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)〔商品名:V-70(以下、V-70と略記)、和光純薬社製〕を3.7部、メタクリル酸2-ヒドロキシエチルを208.0部仕込み、NISを0.113部添加し、窒素をバブリングしながら、65℃で7時間重合した。その結果、得られた重合物の重合率はほぼ100%であり、また、ジメチルスルホキシド溶媒のGPC装置にて重合物の分子量を測定した結果、Mnが18500、PDIが1.35であった。
[Synthesis Example 1-Preparation of Initiating Group-Containing Polymer for Radical Polymerization]
Using the same reaction apparatus as in Example 1, 561.0 parts of MDPA and 1.0 part of iodine as solvents, 2,2′-azobis (4-methoxy-2,4-dimethyl) as an azo polymerization initiator Valeronitrile) [trade name: V-70 (hereinafter abbreviated as V-70), manufactured by Wako Pure Chemical Industries, Ltd.] 3.7 parts, 2-hydroxyethyl methacrylate 208.0 parts, and NIS 0.113. Then, polymerization was carried out at 65 ° C. for 7 hours while bubbling nitrogen. As a result, the polymerization rate of the obtained polymer was approximately 100%, and the molecular weight of the polymer was measured with a GPC apparatus using a dimethyl sulfoxide solvent. As a result, Mn was 18500 and PDI was 1.35.
 ついで、上記の反応系にピリジンを189.5部添加し、氷浴で5℃に冷却した。滴下ロートに2-ブロモイソ酪酸ブロマイド459.8部を仕込んで上記装置に滴下ロートを装着し、10℃を超えないように3時間で滴下した後、その温度で2時間放置した。その後、45℃に加温して1時間反応させた。そして室温まで冷却した後、メタノールを561部添加して撹拌した。ついで、別容器に5000gのメタノールを用意し、ディスパーで撹拌しながら、上記溶液を徐々に添加した。ポリマーが析出し、軟質のポリマーを得た。ポリマーを分取し、大量の水中にディスパーで撹拌しながら添加して洗浄し、濾過して、水洗し、50℃の送風乾燥機にて揮発分がなくなるまで乾燥した。その結果、白色の粉末状の固体が得られた。 Next, 189.5 parts of pyridine was added to the above reaction system and cooled to 5 ° C. in an ice bath. To the dropping funnel was charged 459.8 parts of 2-bromoisobutyric acid bromide, and the dropping funnel was attached to the above apparatus. The dropping funnel was dropped in 3 hours so as not to exceed 10 ° C., and left at that temperature for 2 hours. Then, it heated at 45 degreeC and made it react for 1 hour. And after cooling to room temperature, 561 parts of methanol was added and stirred. Next, 5000 g of methanol was prepared in a separate container, and the above solution was gradually added while stirring with a disper. The polymer precipitated and a soft polymer was obtained. The polymer was collected, added to a large amount of water while stirring with a disper, washed, filtered, washed with water, and dried with a blow dryer at 50 ° C. until there was no volatile matter. As a result, a white powdery solid was obtained.
 上記操作で得られた白色の粉末状固体は、下記に示すように、本発明で規定する一般式3の構造の基(「式3の基」)が側鎖に結合したポリマーとなる。粉末状固体が、その側鎖に「式3の基」が複数導入されたポリマーであることは、赤外分光光度計(IR)、核磁気共鳴装置(NMR)にて同定することで確認できた。以下、これを開始基ポリマー-1と称する。この開始基ポリマー-1のIRチャートを図1に、NMRチャートを図2に示した。また、開始基ポリマー-1の分子量をTHF溶媒GPCにて測定したところ、Mnが26000、PDIが1.41であった。
Figure JPOXMLDOC01-appb-I000025
The white powdery solid obtained by the above operation becomes a polymer in which a group having the structure of the general formula 3 defined by the present invention (“group of formula 3”) is bonded to a side chain, as shown below. A powdered solid can be confirmed by identification with an infrared spectrophotometer (IR) or nuclear magnetic resonance apparatus (NMR) to be a polymer having a plurality of “groups of formula 3” introduced in the side chain. It was. Hereinafter, this is referred to as initiating group polymer-1. The IR chart of this starting group polymer-1 is shown in FIG. 1, and the NMR chart is shown in FIG. Further, when the molecular weight of the initiating group polymer-1 was measured with a THF solvent GPC, Mn was 26000 and PDI was 1.41.
Figure JPOXMLDOC01-appb-I000025
[合成例2、3-ラジカル重合の開始基含有ポリマーの調製]
 合成例1で用いたヨウ素とV-70の量をそれぞれ変化させて、それ以外は合成例1と同様にして分子量の違う開始基ポリマーを2種類合成した。具体的には、ヨウ素の量を1.2部とし、V-70の量を4.4部にしたものを合成例2とし、ヨウ素の量を0.75部にし、V-70を2.8部にしたものを合成例3とし、得られた白色の粉末状固体を、それぞれ開始基ポリマー-2、-3とした。合成物の構造は、合成例1と同様にIRとNMRを用いて確認した。その結果、いずれも、その側鎖に「式3の基」が導入されたポリマーであった。また、合成例1と同様にして分子量を測定した結果、開始基ポリマー-2は、Mnが14500、PDIが1.38であり、開始基ポリマー-3は、Mnが31400、PDIが1.55であった。
[Synthesis Example 2, 3-Preparation of radical-containing polymerization initiator group-containing polymer]
Two types of initiator polymers having different molecular weights were synthesized in the same manner as in Synthesis Example 1 except that the amounts of iodine and V-70 used in Synthesis Example 1 were changed. Specifically, the amount of iodine was 1.2 parts, the amount of V-70 was 4.4 parts, and Synthesis Example 2 was obtained, the amount of iodine was 0.75 parts, and V-70 was 2. 8 parts were used as Synthesis Example 3, and the resulting white powdery solids were used as initiator group polymers-2 and -3, respectively. The structure of the synthesized product was confirmed using IR and NMR as in Synthesis Example 1. As a result, all were polymers in which the “group of formula 3” was introduced into the side chain. As a result of measuring the molecular weight in the same manner as in Synthesis Example 1, the initiating group polymer-2 had Mn of 14500 and PDI of 1.38, and the initiating group polymer-3 had Mn of 31400 and PDI of 1.55. Met.
[実施例6]
 実施例1と同様の反応装置を使用して、溶媒のMDPAを200部、(1)のMMAを200部、(2)の合成例1で調製した開始基ポリマー-1を6部、(3)の化合物としてテトラブチルアンモニウムアイオダイド(以下、TBAIと略記)7.9部を仕込み、(4)の成分であるNISを0.3部添加し、75℃で8時間重合した。重合が進行し、高粘度の液体となったのでサンプリングし、重合率を測定したところ87%であった。また、Mnが2970000、PDIが1.48であった。このことから、上記のようにして、側鎖に「式3の基」が導入された開始基ポリマー-1の存在下で重合すると、得られるポリマーは、主鎖に、側鎖がある構造をもつグラフトコポリマーとなり、さらに、高分子量のポリマーを得ることができることが確認された。
[Example 6]
Using the same reaction apparatus as in Example 1, 200 parts of MDPA as a solvent, 200 parts of MMA of (1), 6 parts of initiating group polymer-1 prepared in Synthesis Example 1 of (2), (3 ) Was charged with 7.9 parts of tetrabutylammonium iodide (hereinafter abbreviated as TBAI), 0.3 parts of NIS as the component (4) was added, and polymerization was carried out at 75 ° C. for 8 hours. Since the polymerization progressed to become a highly viscous liquid, it was sampled and the polymerization rate was measured and found to be 87%. Moreover, Mn was 2970000 and PDI was 1.48. From this, as described above, when polymerizing in the presence of the initiator polymer-1 in which the “group of formula 3” is introduced into the side chain, the resulting polymer has a structure in which the main chain has a side chain. It was confirmed that a high molecular weight polymer can be obtained.
[実施例7、8]
 実施例6で用いた開始基ポリマー-1に替えて、実施例7では開始基ポリマー-2を用い、実施例8では開始基ポリマー-3を使用し、それ以外は実施例6と同様にして、それぞれ重合を行った。その結果、実施例6で用いた開始基ポリマー-1よりも分子量が小さい開始基ポリマー-2を使用して得たポリマーは、重合率が95%で、Mnが1870000、PDIが1.45であった。一方、実施例6で用いた開始基ポリマー-1よりも分子量が大きい開始基ポリマー-3を使用して得たポリマーは、重合率が80%であって、Mnが330000、PDIが1.72であった。このことから、使用する開始基ポリマーの分子量の違いによって、最終的に得られるポリマーの分子量を調整することができることが確認された。
[Examples 7 and 8]
Instead of the initiating group polymer-1 used in Example 6, initiating group polymer-2 was used in Example 7, initiating group polymer-3 was used in Example 8, and the others were the same as in Example 6. Each was polymerized. As a result, the polymer obtained using Initiator Polymer-2 having a molecular weight smaller than that of Initiator Polymer-1 used in Example 6 had a polymerization rate of 95%, Mn of 1870000, and PDI of 1.45. there were. On the other hand, the polymer obtained using Initiator Polymer-3 having a molecular weight larger than that of Initiator Polymer-1 used in Example 6 had a polymerization rate of 80%, Mn of 330000, and PDI of 1.72. Met. From this, it was confirmed that the molecular weight of the finally obtained polymer can be adjusted by the difference in the molecular weight of the starting group polymer used.
[実施例9]
 実施例6において、開始基ポリマー-1の使用量の6部を、4部と、8部にそれぞれ替えた以外は同様にして重合を行った。その結果、開始基ポリマー-1を4部使用した場合は、重合率71%で、Mnが3210000、PDIが1.56であり、開始基ポリマー-1を8部使用した場合は、重合率が89%であり、Mnが190000、PDIが1.42であった。以上の結果から、開始基ポリマーの使用量、すなわち、開始基の量によっても、最終的に得られるポリマーの分子量を調整できることが分かった。
[Example 9]
Polymerization was carried out in the same manner as in Example 6 except that 6 parts of the used amount of the starting group polymer-1 was changed to 4 parts and 8 parts, respectively. As a result, when 4 parts of the starting group polymer-1 were used, the polymerization rate was 71%, Mn was 3210000, and PDI was 1.56. When 8 parts of the starting group polymer-1 were used, the polymerization rate was It was 89%, Mn was 190000, and PDI was 1.42. From the above results, it was found that the molecular weight of the finally obtained polymer can be adjusted also by the amount of the starting group polymer used, that is, the amount of the starting group.
[比較例1]
 実施例1と同様の反応装置を使用して、溶媒のMDPAを200部、第1臭化銅を0.29部、ペンタメチルジエチレントリアミンを0.52部、合成例1で得た(2)の開始基ポリマー-1を6部、(1)のMMAを200部、ジオクタン酸錫0.22部を添加し、窒素をバブリングしながらよく混合した。ついで、65℃に昇温した。その結果、加温中に増粘し、ゲル化を起こしてしまい、重合が停止した。その理由は、この場合の反応は原子移動ラジカル重合であり、酸化還元で重合は進行するが、副反応の停止反応が起こってしまい、且つ、固形分濃度が高いので、多官能性の開始基ポリマー-1による重合物のゲル化が著しかったためと考えられる。
[Comparative Example 1]
Using the same reaction apparatus as in Example 1, 200 parts of MDPA as a solvent, 0.29 parts of first copper bromide, 0.52 parts of pentamethyldiethylenetriamine, obtained in Synthesis Example 1 (2) 6 parts of the initiating group polymer-1, 200 parts of MMA of (1) and 0.22 part of tin dioctanoate were added and mixed well while bubbling nitrogen. The temperature was then raised to 65 ° C. As a result, the viscosity increased during heating, causing gelation, and the polymerization was stopped. The reason is that the reaction in this case is atom transfer radical polymerization, and the polymerization proceeds by oxidation-reduction, but the side reaction is terminated, and the solid content concentration is high. This is probably because the gelation of the polymer by Polymer-1 was remarkable.
 そこで、MDPAを200部から600部に増量し、粘度を下げて重合を行った。65℃に達したが、ゲル化は起こらず、重合は進行した。7時間後、高粘度となり、サンプリングすると、重合率は45%であった。また、GPCを測定するため、THF溶液に溶解し、0.45μmのフィルターをかけたところ、詰まりが生じていた。そして、その濾過分の分子量を測定すると、高分子量体が生じており、Mnが5400000であり、粒度分布は2コブのピークであった。以上のことから、重合は進行したものの高分子量化してしまい、ゲル化する一歩手前であり、工業的にこのような事態になった場合は、反応装置の使用が困難になったり、事故などの危険性を生じたりする恐れがあるので、工業的に利用することはできない。これに対し、先の実施例6~8で示したように、本発明の製造方法によれば、高固形分で、高重合率でもゲル化することなく、高分子量で、且つ、多分岐型構造のポリマーを得ることができるので、工業的に、多様なポリマーを得るために利用できる有用な方法である。 Therefore, the amount of MDPA was increased from 200 parts to 600 parts, and the polymerization was carried out by lowering the viscosity. Although the temperature reached 65 ° C., gelation did not occur and polymerization proceeded. After 7 hours, the viscosity became high, and when sampled, the polymerization rate was 45%. Further, in order to measure GPC, when dissolved in a THF solution and applied with a 0.45 μm filter, clogging occurred. And when the molecular weight of the filtration part was measured, the high molecular weight body had arisen, Mn was 5400000, and the particle size distribution was a 2 Cobb peak. From the above, although the polymerization has progressed, it has become a high molecular weight and is a step before gelation, and when this situation occurs industrially, it becomes difficult to use the reactor, accidents, etc. It cannot be used industrially because it may cause danger. On the other hand, as shown in the previous Examples 6 to 8, according to the production method of the present invention, it has a high solid content, a high molecular weight without gelation even at a high polymerization rate, and a multi-branched type. Since a polymer having a structure can be obtained, this is a useful method that can be used industrially to obtain various polymers.
[実施例10、11]
 実施例6で使用した(1)のMMAに替えて、実施例10ではメタクリル酸ラウリル(以下、LMAと略記)を(1)のモノマーに用い、実施例11は、メタクリル酸シクロヘキシル(以下、CHMAと略記)を(1)のモノマーに使用して、それ以外は実施例6と同様にして重合を行った。その結果、LMAを使用した実施例10では、得られたポリマーの重合率は95%であり、Mnが350000、PDIが1.32であった。得られたポリマーをメタノールに析出させて、ポリマー分を採取し、乾燥してメタノールを除去したところ、粘調な液体であり、高分子量であるにも関わらず、液状であった。また、CHMAを使用した実施例11では、得られたポリマーの重合率は70%であり、Mnが181000、PDIが1.78であった。これらのことから、本発明の製造方法は、MMAに限られず、他のメタクリレート系モノマーの重合に適用できることが確認された。
[Examples 10 and 11]
Instead of the MMA (1) used in Example 6, Example 10 used lauryl methacrylate (hereinafter abbreviated as LMA) as the monomer (1), and Example 11 used cyclohexyl methacrylate (hereinafter CHMA). The abbreviation was used for the monomer of (1), and polymerization was carried out in the same manner as in Example 6 except that. As a result, in Example 10 using LMA, the polymerization rate of the obtained polymer was 95%, Mn was 350,000, and PDI was 1.32. The obtained polymer was precipitated in methanol, and the polymer content was collected and dried to remove methanol. As a result, it was a viscous liquid and was a liquid despite having a high molecular weight. In Example 11 using CHMA, the polymerization rate of the obtained polymer was 70%, Mn was 181000, and PDI was 1.78. From these facts, it was confirmed that the production method of the present invention is not limited to MMA but can be applied to polymerization of other methacrylate monomers.
[実施例12]
 実施例6で使用した(1)のMMAに替えて、アクリル酸ブチルを使用して、温度を120℃にして重合を行った。その結果、7時間の時点で重合率は57%であり、分子量が114000、PDIが1.89であった。このことから、本発明の製造方法は、アクリレート系モノマーの重合への適用が可能であることが確認された。
[Example 12]
Instead of the MMA (1) used in Example 6, butyl acrylate was used and the temperature was set to 120 ° C. to carry out the polymerization. As a result, at 7 hours, the polymerization rate was 57%, the molecular weight was 114,000, and the PDI was 1.89. From this, it was confirmed that the production method of the present invention can be applied to the polymerization of acrylate monomers.
[合成例4-ラジカル重合の開始基含有ポリマーの調製]
 実施例1と同様の反応装置を使用し、溶媒のプロピレングリコールモノメチルエーテル(以下、PGMと略記)を370.2部、メタクリル酸グリシジルを85.1部、2-ブロモイソ酪酸を100部、メトキシフェノール1.0部、テトラエチルアンモニウムブロマイド4.6部を混合して、90℃、8時間反応させた。得られた反応物の酸価を測定したところ、0.4mgKOH/gであり、ほとんどの2-ブロモイソ酪酸が反応していた。また、IRにて水酸基の生成、エポキシ基の消滅を確認した。このことから、得られた反応物は、メタクリル酸グリシジルのエポキシ基とカルボン酸を反応させて得られた、「式3の基」が導入されたメタクリレートであることがわかる。
[Synthesis Example 4-Preparation of Polymer Initiating Group for Radical Polymerization]
Using the same reaction apparatus as in Example 1, 370.2 parts of solvent propylene glycol monomethyl ether (hereinafter abbreviated as PGM), 85.1 parts of glycidyl methacrylate, 100 parts of 2-bromoisobutyric acid, methoxyphenol 1.0 part and 4.6 parts of tetraethylammonium bromide were mixed and reacted at 90 ° C. for 8 hours. When the acid value of the obtained reaction product was measured, it was 0.4 mgKOH / g, and most of 2-bromoisobutyric acid was reacted. Further, the generation of hydroxyl groups and the disappearance of epoxy groups were confirmed by IR. From this, it can be seen that the obtained reaction product is a methacrylate having a “group of formula 3” introduced by reacting an epoxy group of glycidyl methacrylate with a carboxylic acid.
 ついで、この溶液を65℃に冷却し、別容器に、メタクリル酸ベンジル(BzMA)を185.1部、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(以下、V-65と称す)5.6部を混合して、均一化したものを滴下ロートに仕込み、その3分の1を添加し、ついで、1時間かけて滴下した。さらに、続けて、その温度で7時間重合した。その時点でサンプリングして重合率を測定したところ、ほぼ100%であり、不揮発分は50.3%であった。また、Mnは8900、PDIは2.31であった。得られたポリマーを開始基ポリマー-4と称し、この溶液を開始基ポリマー-4溶液と称す。 Next, this solution was cooled to 65 ° C., and in another container, 185.1 parts of benzyl methacrylate (BzMA), 2,2′-azobis (2,4-dimethylvaleronitrile) (hereinafter referred to as V-65). ) 5.6 parts were mixed and the homogenized one was charged into a dropping funnel, one third of the mixture was added, and then dropped over 1 hour. Furthermore, polymerization was continued for 7 hours at that temperature. When the polymerization rate was measured by sampling at that time, it was almost 100%, and the nonvolatile content was 50.3%. Moreover, Mn was 8900 and PDI was 2.31. The resulting polymer is referred to as initiator group polymer-4, and this solution is referred to as initiator group polymer-4 solution.
[実施例13]
 実施例1と同様の反応装置を使用し、溶媒としてPGMを194部、(1)のモノマーとして、MMAを100部、メタクリル酸ブチル(BMA)を100部、上記で得た(2)の開始基ポリマー-4溶液を12部、(3)のトリブチルメチルホスホニウムアイオダイドを7.4部添加し、80℃で7時間重合した。重合終了後、固形分を測定したところ、96.1%であり、Mnは198000、PDIは2.6であった。これによって、それぞれの材料を精製せずともグラフトポリマーができ、且つ、開始基ポリマー-4がランダムコポリマーでも重合に使用できることが確認できた。
[Example 13]
Using the same reactor as in Example 1, 194 parts of PGM as the solvent, 100 parts of MMA as the monomer of (1), 100 parts of butyl methacrylate (BMA), the start of (2) obtained above 12 parts of the base polymer-4 solution and 7.4 parts of (3) tributylmethylphosphonium iodide were added, and polymerization was carried out at 80 ° C. for 7 hours. When the solid content was measured after the completion of the polymerization, it was 96.1%, Mn was 198000, and PDI was 2.6. As a result, it was confirmed that a graft polymer could be formed without refining each material, and that the initiator polymer-4 could be used for polymerization even with a random copolymer.
[実施例14]
 実施例1と同様の反応装置を使用し、MDPAを200部、(1)のMMAを100部、合成例1で調製した(2)の開始基ポリマー-1を6部、(3)のTBAIを7.9部仕込み、(4)の成分として、NISを0.3部と、トリエチルアミンを1部添加し、75℃で5時間重合した。重合が進行し、高粘度の液体となった。その時点でサンプリングし、重合率を測定したところ、68%であった。また、Mnが154000、PDIが1.59であった。ついで、(1)のポリエチレングリコールモノメチルエーテルメタクリレート(分子量約400、以下、PMEと称す)を100部添加し、さらに6時間重合した。重合後、分子量を測定したところ、Mnが387000、PDIが2.45であり、先に測定した時点から高分子量化していることが確認された。このことから、重合率が68%であった時点のMMAの重合から、その後に、添加したPMEと残留モノマーのMMAが重合してブロックコポリマーとなったと推測され、多分岐構造のブロックコポリマーを得ることができた。これを水に析出させたところ、スライム状のぶよぶよしたポリマーとなった。
[Example 14]
Using the same reactor as in Example 1, 200 parts of MDPA, 100 parts of MMA of (1), 6 parts of initiator group polymer-1 of (2) prepared in Synthesis Example 1, and TBAI of (3) Was added as a component of (4), 0.3 parts of NIS and 1 part of triethylamine were added and polymerized at 75 ° C. for 5 hours. Polymerization progressed to become a highly viscous liquid. Sampling was performed at that time, and the polymerization rate was measured and found to be 68%. Moreover, Mn was 154000 and PDI was 1.59. Subsequently, 100 parts of polyethylene glycol monomethyl ether methacrylate (1) (molecular weight of about 400, hereinafter referred to as PME) was added, and polymerization was further performed for 6 hours. When the molecular weight was measured after the polymerization, Mn was 387000 and PDI was 2.45, and it was confirmed that the molecular weight was increased from the time point measured previously. From this, from the polymerization of MMA at the time when the polymerization rate was 68%, it was presumed that the added PME and the residual monomer MMA were polymerized into a block copolymer to obtain a block copolymer having a multi-branched structure. I was able to. When this was precipitated in water, it became a slimy sloppy polymer.
[合成例5-反応性基にアルコキシシリル基を有するラジカル重合の開始基含有ポリマーの調製]
 下記の処方にて、開始基ポリマーを得た。実施例1と同様の反応装置に、MDPAを50.0部、メタクリル酸2-ヒドロキシエチルを20.8部、ピリジンを18.9部添加し、氷浴で5℃に冷却した。滴下ロートに2-ブロモイソ酪酸ブロマイド45.9部を仕込んで装置に装着し、10℃を超えないように3時間で滴下した。ついで、滴下後その温度で2時間放置し、その後、45℃に加温して1時間反応させた。室温まで冷却した後、酢酸エチルを200部加え、ついで、大量の水を添加し、分液ロートにて得られたモノマーを抽出した。ついで、大量の水で数回洗浄し、無水塩化マグネシウムにて乾燥した後、エバポレーターにて溶媒を除去した後、分留装置にて目的生成物である、2-メタクリル酸2-(2-ブロモ-2メチルプロピオニルオキシ)エチルエステル(以下、BMPMAと略記)を得た。
[Synthesis Example 5-Preparation of radical-initiating group-containing polymer having alkoxysilyl group as reactive group]
An initiating group polymer was obtained according to the following formulation. In the same reactor as in Example 1, 50.0 parts of MDPA, 20.8 parts of 2-hydroxyethyl methacrylate, and 18.9 parts of pyridine were added and cooled to 5 ° C. in an ice bath. The dropping funnel was charged with 45.9 parts of 2-bromoisobutyric acid bromide and attached to the apparatus, and dropped in 3 hours so as not to exceed 10 ° C. Then, after dropping, the mixture was allowed to stand at that temperature for 2 hours, and then heated to 45 ° C. and reacted for 1 hour. After cooling to room temperature, 200 parts of ethyl acetate was added, then a large amount of water was added, and the monomer obtained in a separatory funnel was extracted. Next, after washing several times with a large amount of water and drying with anhydrous magnesium chloride, the solvent was removed with an evaporator, and the target product 2- (2-bromomethacrylate), which was the target product, was obtained with a fractionator. -2methylpropionyloxy) ethyl ester (hereinafter abbreviated as BMPMA).
 ついで、実施例1と同様の反応装置を使用し、プロピレングリコールモノメチルエーテルアセテート(以下、PGMAcと略記)を100部仕込んで、85℃に加温した。別容器に、上記で得たBMPMAを80部、3-メタクリロキシプロピルトリエトキシシランを20部、2,2’-アゾビス(イソ酪酸)ジメチル(V-601)を3部、PGMAcを100部のモノマー混合溶液を用意した。そして、PGMAcを仕込んだ反応装置内に、滴下装置を使用して上記のモノマー混合溶液の1/3を添加し、ついで、3時間かけて残りの溶液を滴下した。ついで、85℃の温度で7時間重合したところ、重合率がほぼ100%で、Mnが12000、PDIが2.21の重合物を得た。ついで、得られた重合物を冷却して、PGMAcを添加し、固形分濃度5%のポリマー溶液を得た。これは、重合開始基として機能する「式3の基」を有し、且つ、反応性基にアルコキシシリル基を有する開始基ポリマー-5である。この溶液を開始基ポリマー-5溶液と称す。 Next, using the same reaction apparatus as in Example 1, 100 parts of propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMAc) was charged and heated to 85 ° C. In a separate container, 80 parts of BMPMA obtained above, 20 parts of 3-methacryloxypropyltriethoxysilane, 3 parts of 2,2′-azobis (isobutyric acid) dimethyl (V-601), and 100 parts of PGMAc A monomer mixed solution was prepared. And 1/3 of said monomer mixed solution was added into the reaction apparatus which prepared PGMAc using the dripping apparatus, and the remaining solution was dripped over 3 hours then. Subsequently, polymerization was carried out at a temperature of 85 ° C. for 7 hours. As a result, a polymer having a polymerization rate of almost 100%, Mn of 12000, and PDI of 2.21 was obtained. Subsequently, the obtained polymer was cooled, and PGMAc was added to obtain a polymer solution having a solid content concentration of 5%. This is an initiating group polymer-5 having a “group of formula 3” functioning as a polymerization initiating group and having an alkoxysilyl group as a reactive group. This solution is referred to as initiator group polymer-5 solution.
[実施例15]
 合成例5で得た反応性基にアルコキシシリル基を有する開始基ポリマー-5溶液を10部、エタノール10部、25%アンモニア水2gを混合して開始基ポリマー混合溶液とした。ついで、5センチ角に切ったシリコン基板を用意し、基板の一方の面(以下、正面と称す)に、スピンコーターにて、上記の開始基ポリマー混合溶液をスピンコートした。その後、80℃で10分、150℃で10分乾燥して焼き付けた。この結果、シリコン基板は、基板の正面に重合開始基が確実に導入されたものになる。すなわち、上記のようにして得られた基板は、基板正面に重合を開始する基が、濃度の高い状態でポリマー膜状となって存在し、且つ、アルコキシシリル基がシリコン基板と強固に結合した状態のものになる。
[Example 15]
10 parts of the initiator group polymer-5 solution having an alkoxysilyl group in the reactive group obtained in Synthesis Example 5, 10 parts of ethanol, and 2 g of 25% aqueous ammonia were mixed to obtain an initiator group polymer mixed solution. Next, a silicon substrate cut into 5 cm squares was prepared, and the above initiator group polymer mixed solution was spin-coated on one surface (hereinafter referred to as the front surface) of the substrate with a spin coater. Thereafter, it was dried and baked at 80 ° C. for 10 minutes and at 150 ° C. for 10 minutes. As a result, in the silicon substrate, the polymerization initiating group is surely introduced into the front surface of the substrate. That is, in the substrate obtained as described above, a group that initiates polymerization exists in the form of a polymer film in a high concentration state on the front surface of the substrate, and the alkoxysilyl group is firmly bonded to the silicon substrate. It will be in the state.
 ついで、実施例1で使用したと同様の反応装置に、上記で得たシリコン基板と、溶媒のMDPAを100.0部、(2)の2-ブロモイソ酪酸エチルを0.04部、(1)のMMAを100.0部、(3)のTBAIを1部仕込み、窒素をバブリングしながら75℃に加温し、14時間重合した。反応後、シリコン基板を取り出すことにより、重合開始基が導入されていた基板の正面に、ポリメチルメタクリレート(PMMA)がグラフトしたポリマー処理シリコン基板を得ることができた。上記の重合開始基として機能する2-ブロモイソ酪酸エチルによるポリマーは、Mnが28700、PDIが1.67であり、このポリマーが、シリコン基板の表面に導入されていると考えられる。本実施例の手法を活用すれば、種々の材料からなる基板表面に、極めて簡便にポリマーブラシを生やすことが可能であり、材料表面を種々に改質することが可能になるので、その利用が期待される。 Next, in the same reaction apparatus as used in Example 1, 100.0 parts of the above-obtained silicon substrate and MDPA as a solvent, 0.04 part of (2-) ethyl 2-bromoisobutyrate, (1) 100.0 parts of MMA and 1 part of TBAI of (3) were charged, heated to 75 ° C. while bubbling nitrogen, and polymerized for 14 hours. After the reaction, the silicon substrate was taken out to obtain a polymer-treated silicon substrate in which polymethyl methacrylate (PMMA) was grafted on the front surface of the substrate into which the polymerization initiating group had been introduced. The polymer of ethyl 2-bromoisobutyrate that functions as the above polymerization initiating group has Mn of 28700 and PDI of 1.67, and this polymer is considered to be introduced on the surface of the silicon substrate. If the technique of this embodiment is utilized, it is possible to grow a polymer brush on the surface of a substrate made of various materials, and the material surface can be variously modified. Be expected.
[実施例16:多分岐ポリマーの合成-1]
 実施例1と同様の反応装置を使用し、溶媒としてMDPAを100.0部、(2)の有機化合物として、重合開始基を4個有するペンタエリスリトールテトラキス(2-ブロモイソブチレート)を1.83部、(1)のMMAを100.0部、(3)のTBAIを4.1部、仕込んで、窒素をバブリングしながら75℃に加温し、ついで、(4)のトリエチルアミン0.74部を添加し、7時間重合した。得られたポリマーの重合率は94.8%、Mnは26000、PDIは1.49であった。このことから、4本鎖の多分岐ポリマーが得られることが確認できた。
[Example 16: Synthesis of hyperbranched polymer-1]
Using the same reaction apparatus as in Example 1, 100.0 parts of MDPA as a solvent, and 1. pentaerythritol tetrakis (2-bromoisobutyrate) having 4 polymerization initiating groups as an organic compound of (2) 83 parts, 100.0 parts of MMA of (1) and 4.1 parts of TBAI of (3) were charged and heated to 75 ° C. while bubbling nitrogen, and then 0.74 of triethylamine of (4) Part was added and polymerized for 7 hours. The polymerization rate of the obtained polymer was 94.8%, Mn was 26000, and PDI was 1.49. From this, it was confirmed that a 4-chain multi-branched polymer was obtained.
[実施例17:多分岐ポリマーの合成-2]
 実施例1と同様の反応装置を使用し、溶媒としてMDPAを100.0部、(2)の有機化合物として、重合開始基を6個有するジペンタエリスリトールヘキサキス(2-ブロモイソブチレート)を1.91部、(1)のMMAを100.0部、(3)のTBAIを4.1部、仕込んで、窒素をバブリングしながら75℃に加温し、ついで、(4)のトリエチルアミン0.74部を添加し、7時間重合した。得られたポリマーの重合率は93.3%、Mnは44500、PDIは1.46であった。このことから、6本鎖の多分岐ポリマーが得られることが確認できた。
[Example 17: Synthesis of hyperbranched polymer-2]
Using the same reaction apparatus as in Example 1, 100.0 parts of MDPA as a solvent and dipentaerythritol hexakis (2-bromoisobutyrate) having 6 polymerization initiating groups as an organic compound of (2) 1.91 parts, 100.0 parts of MMA of (1), 4.1 parts of TBAI of (3), were charged, heated to 75 ° C. while bubbling nitrogen, then triethylamine 0 of (4) .74 parts were added and polymerized for 7 hours. The polymerization rate of the obtained polymer was 93.3%, Mn was 44500, and PDI was 1.46. From this, it was confirmed that a 6-chain multi-branched polymer was obtained.
[合成例6-ラジカル重合の開始基含有ポリマーの調製]
 下記の処方にて、開始基ポリマーを得た。実施例1と同様の反応装置に、溶媒のMDPAを50.0部、4-tert-ブチルカリックス[8]アレーンを25.9部、ピリジンを18.9部添加し、氷浴で5℃に冷却した。滴下ロートに、2-ブロモイソ酪酸ブロマイド45.9部を仕込んで装置に装着し、10℃を超えないように3時間で滴下した。ついで、滴下後その温度で2時間放置し、その後、45℃に加温して1時間反応させた。室温まで冷却した後、酢酸エチルを200部加え、ついで、大量の水を添加し、分液ロートにて得られたモノマーを抽出した。ついで、大量の水で数回洗浄し、無水塩化マグネシウムにて乾燥した後、エバポレーターにて溶媒を除去した後、分留装置にて目的生成物である、4-tert-ブチルカリックス[8]アレーンのヒドロキシル基が全て2-ブロモイソブチリル基で置換された重合開始基を8個有する化合物を得た。これをC8AMAと称す。
[Synthesis Example 6-Preparation of Initiating Group-Containing Polymer for Radical Polymerization]
An initiating group polymer was obtained according to the following formulation. In the same reactor as in Example 1, 50.0 parts of MDPA as a solvent, 25.9 parts of 4-tert-butylcalix [8] arene, and 18.9 parts of pyridine were added, and the temperature was adjusted to 5 ° C. with an ice bath. Cooled down. A dropping funnel was charged with 45.9 parts of 2-bromoisobutyric acid bromide and mounted on the apparatus, and dropped in 3 hours so as not to exceed 10 ° C. Then, after dropping, the mixture was allowed to stand at that temperature for 2 hours, and then heated to 45 ° C. and reacted for 1 hour. After cooling to room temperature, 200 parts of ethyl acetate was added, then a large amount of water was added, and the monomer obtained in a separatory funnel was extracted. Next, after washing with a large amount of water several times and drying with anhydrous magnesium chloride, the solvent was removed with an evaporator, and then 4-tert-butylcalix [8] arene, the target product, was obtained with a fractionator. A compound having 8 polymerization initiating groups in which all of the hydroxyl groups were substituted with 2-bromoisobutyryl groups was obtained. This is referred to as C8AMA.
[実施例18:多分岐ポリマーの合成-3]
 実施例1と同様の反応装置を使用し、溶媒としてMDPAを100.0部、(2)の有機化合物として、合成例6で得た重合開始基を8個有するC8AMAを3.1部、(1)のMMAを100.0部、(3)のTBAIを4.1部、仕込んで、窒素をバブリングしながら75℃に加温し、ついで、(4)のトリエチルアミン0.74部を添加し、7時間重合した。得られたポリマーの重合率は91.1%、Mnは63600、PDIは1.49であった。このことから、8本鎖の多分岐ポリマーが得られることが確認できた。
[Example 18: Synthesis of hyperbranched polymer-3]
Using the same reaction apparatus as in Example 1, 100.0 parts of MDPA as a solvent, 3.1 parts of C8AMA having 8 polymerization initiation groups obtained in Synthesis Example 6 as an organic compound of (2), ( Charge 100.0 parts of MMA of 1) and 4.1 parts of TBAI of (3), warm to 75 ° C. while bubbling nitrogen, then add 0.74 part of triethylamine of (4). For 7 hours. The polymerization rate of the obtained polymer was 91.1%, Mn was 63600, and PDI was 1.49. From this, it was confirmed that an 8-chain multi-branched polymer was obtained.
 本発明の活用例としては、多様な形態にできるラジカル重合の開始基含有化合物を使用することで、従来のラジカル重合開始剤を用いずに、停止反応を伴うラジカル重合を開始させ進行させて様々な構造のポリマーを工業的に簡便に製造することができる新たな重合方法が提供されることから、今までに使用することができなかった分野への材料としての提供による革新的な技術発展が期待できる。具体的には、接着性、摩擦特性、耐摩耗性、ぬれ性、バリヤー性、特定物質の吸着・分離・輸送特性などの特異性質を有するポリマー材料や、このような特異性質のポリマーで基材表面が処理された各種材料の提供がなされ、その利用が期待される。 As an application example of the present invention, by using radical polymerization initiator-containing compounds that can be formed in various forms, various radicals can be initiated and advanced without termination using conventional radical polymerization initiators. As a new polymerization method capable of industrially and easily producing a polymer with a simple structure is provided, innovative technological development has been achieved by providing it as a material to fields that could not be used so far. I can expect. Specifically, polymer materials with specific properties such as adhesion, friction properties, wear resistance, wettability, barrier properties, adsorption / separation / transport properties of specific substances, and substrates with such specific properties of polymers Various materials whose surfaces have been treated are provided and their use is expected.

Claims (18)

  1.  少なくとも、(1)不飽和結合を有するラジカル重合性モノマーと、(2)該モノマーの重合開始基として機能する下記一般式1及び/又は下記一般式2で表せる構造の基が、分子内に1個以上導入されている有機化合物と、(3)ヨウ化金属、第四級アンモニウムアイオダイド、第四級ホスホニウムアイオダイド及び第四級アンモニウムトリヨージドからなる群から選ばれる1種以上のヨウ化物塩又はトリヨージド塩であるヨウ素イオン含有化合物とを、混合及び加温することで、前記構造の基から、停止反応を伴うラジカル重合が始まる重合工程を有することを特徴とするポリマーの製造方法。
    Figure JPOXMLDOC01-appb-I000001
    (一般式1中、R1は、H又は任意のアルキル基又はアシル基、R2は、任意のアルキル基又はアリール基、Xは、Cl又はBr、Yは、O又はNHを表す。)
    Figure JPOXMLDOC01-appb-I000002
    (一般式2中、R3は、H又は任意のアルキル基又はアリール基、R4は、アリール基又はシアノ基又はカルボキシル基又はエステル基又はアミド基、Xは、Cl又はBrを表す。)
    At least (1) a radically polymerizable monomer having an unsaturated bond, and (2) a group having a structure represented by the following general formula 1 and / or the following general formula 2 that functions as a polymerization initiating group of the monomer is 1 in the molecule. At least one organic compound, and (3) one or more iodides selected from the group consisting of (3) metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide, and quaternary ammonium triiodide. A method for producing a polymer comprising a polymerization step in which radical polymerization with termination reaction starts from a group of the above structure by mixing and heating an iodine ion-containing compound that is a salt or a triiodide salt.
    Figure JPOXMLDOC01-appb-I000001
    (In General Formula 1, R 1 represents H or any alkyl group or acyl group, R 2 represents any alkyl group or aryl group, X represents Cl or Br, and Y represents O or NH.)
    Figure JPOXMLDOC01-appb-I000002
    (In General Formula 2, R 3 represents H or any alkyl group or aryl group, R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group, and X represents Cl or Br.)
  2.  前記重合工程で、アゾ系ラジカル重合開始剤、過酸化物系ラジカル重合開始剤及び光ラジカル重合開始剤のいずれについても使用しない請求項1に記載のポリマーの製造方法。 The method for producing a polymer according to claim 1, wherein none of the azo radical polymerization initiator, the peroxide radical polymerization initiator, and the photo radical polymerization initiator is used in the polymerization step.
  3.  前記重合工程で、さらに、(4)ヨウ素、ヨウ素を遊離することができるヨウ化有機化合物及び有機塩基を有する化合物からなる群から選ばれる少なくともいずれかを使用する請求項1又は2に記載のポリマーの製造方法。 The polymer according to claim 1 or 2, wherein at least one selected from the group consisting of (4) iodine, an iodine iodide organic compound capable of liberating iodine and a compound having an organic base is used in the polymerization step. Manufacturing method.
  4.  前記重合工程の際に、さらに有機溶媒を使用する請求項1~3のいずれか1項に記載のポリマーの製造方法。 The method for producing a polymer according to any one of claims 1 to 3, wherein an organic solvent is further used in the polymerization step.
  5.  前記有機溶媒が、アルコール系、グリコール系、アミド系、スルホキシド系及びイオン液体からなる群から選ばれる少なくともいずれかである請求項4に記載のポリマーの製造方法。 The method for producing a polymer according to claim 4, wherein the organic solvent is at least one selected from the group consisting of alcohols, glycols, amides, sulfoxides and ionic liquids.
  6.  前記ヨウ素を遊離することができるヨウ化有機化合物が、N-アイオドイミド系化合物である請求項3~5のいずれか1項に記載のポリマーの製造方法。 The method for producing a polymer according to any one of claims 3 to 5, wherein the organic iodide compound capable of liberating iodine is an N-iodimide compound.
  7.  前記N-アイオドイミド系化合物が、N-アイオドスクシンイミド、N-アイオドフタルイミド、N-アイオドシクロヘキサニルイミド、1,3-ジアイオド-5,5-ジメチルヒダントイン及びN-アイオドサッカリンからなる群から選ばれる少なくともいずれかである請求項6に記載のポリマーの製造方法。 The N-iodoimide compound is a group consisting of N-iodosuccinimide, N-iodophthalimide, N-iodocyclohexanilimide, 1,3-diaiodo-5,5-dimethylhydantoin and N-iodosaccharin. The method for producing a polymer according to claim 6, which is at least one selected from the group consisting of:
  8.  前記一般式1で表せる構造の基が、下記一般式3で表せる構造の基である請求項1~7のいずれか1項に記載のポリマーの製造方法。
    Figure JPOXMLDOC01-appb-I000003
    (一般式3中、Yは、O又はNH)
    The method for producing a polymer according to any one of claims 1 to 7, wherein the group represented by the general formula 1 is a group represented by the following general formula 3.
    Figure JPOXMLDOC01-appb-I000003
    (In general formula 3, Y is O or NH)
  9.  前記(2)の有機化合物が、前記一般式1及び/又は前記一般式2で表せる構造の基が分子内に2個導入された重合開始基含有ポリマーであり、前記重合工程で得られるポリマーが、ブロック構造或いは櫛形構造をもつポリマーとなる請求項1~8のいずれか1項に記載のポリマーの製造方法。 The organic compound (2) is a polymerization initiating group-containing polymer in which two groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule, and the polymer obtained in the polymerization step is The method for producing a polymer according to any one of claims 1 to 8, wherein the polymer has a block structure or a comb structure.
  10.  前記(2)の有機化合物が、前記一般式1及び/又は前記一般式2で表せる構造の基が分子内に3個以上導入された化合物であり、前記重合工程で得られるポリマーが、分岐構造型ポリマー或いはスターポリマー或いはグラフトコポリマーとなる請求項1~8のいずれか1項に記載のポリマーの製造方法。 The organic compound (2) is a compound in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in a molecule, and the polymer obtained in the polymerization step has a branched structure. The method for producing a polymer according to any one of claims 1 to 8, which is a mold polymer, a star polymer or a graft copolymer.
  11.  前記(2)の有機化合物が、前記一般式1及び/又は前記一般式2で表せる構造の基が分子内に3個以上導入されたビニルポリマーであり、前記重合工程で得られるポリマーが、前記ビニルポリマーに前記(1)のモノマーが重合してグラフトした構造のポリマー或いはボトルブラシポリマーとなる請求項1~8のいずれか1項に記載のポリマーの製造方法。 The organic compound (2) is a vinyl polymer in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in the molecule, and the polymer obtained in the polymerization step is The method for producing a polymer according to any one of claims 1 to 8, wherein the monomer (1) is polymerized and grafted onto a vinyl polymer to form a polymer or a bottle brush polymer.
  12.  前記(2)の有機化合物が、前記一般式1及び/又は前記一般式2で表せる構造の基が分子内に1個以上導入されたモノマーと、基材表面に結合する反応性基を有するモノマーとの共重合体であり、該共重合体で基材を処理して基材表面を改質し、その後に、該改質した基材表面上で、前記(1)のモノマーと前記(3)のヨウ素イオン含有化合物とを混合及び加温して、前記基材表面に濃厚ブラシ構造のポリマーを製造する請求項1~8のいずれか1項に記載のポリマーの製造方法。 The organic compound (2) is a monomer having at least one group having a structure represented by the general formula 1 and / or the general formula 2 and a reactive group that binds to the surface of the substrate. The substrate is treated with the copolymer to modify the surface of the substrate, and then the monomer (1) and the (3) are formed on the modified substrate surface. The method for producing a polymer according to any one of claims 1 to 8, wherein a polymer having a concentrated brush structure is produced on the surface of the substrate by mixing and heating with an iodine ion-containing compound.
  13.  アゾ系ラジカル重合開始剤、過酸化物系ラジカル重合開始剤及び光ラジカル重合開始剤のいずれについても使用せずに、不飽和結合を有するラジカル重合性モノマーの、停止反応を伴うラジカル重合を行わせるためのラジカル重合の開始基含有化合物であって、
     ヨウ化金属、第四級アンモニウムアイオダイド、第四級ホスホニウムアイオダイド及び第四級アンモニウムトリヨージドからなる群から選ばれる1種以上のヨウ化物塩又はトリヨージド塩であるヨウ素イオン含有化合物と併用することで、前記ラジカル重合性モノマーの重合開始基として機能するものとなる下記一般式1及び/又は下記一般式2で表せる構造の基が、分子内に1個以上導入されていることを特徴とするラジカル重合の開始基含有化合物。
    Figure JPOXMLDOC01-appb-I000004
    (一般式1中、R1は、H又は任意のアルキル基又はアシル基、R2は、任意のアルキル基又はアリール基、Xは、Cl又はBr、Yは、O又はNHを表す。)
    Figure JPOXMLDOC01-appb-I000005
    (一般式2中、R3は、H又は任意のアルキル基又はアリール基、R4は、アリール基又はシアノ基又はカルボキシル基又はエステル基又はアミド基、Xは、Cl又はBrを表す。)
    Without using any of azo radical polymerization initiator, peroxide radical polymerization initiator and photo radical polymerization initiator, radical polymerization with termination reaction of radical polymerizable monomer having unsaturated bond A radical polymerization initiating group-containing compound for
    Used in combination with an iodine ion-containing compound which is one or more iodide salts or triiodide salts selected from the group consisting of metal iodide, quaternary ammonium iodide, quaternary phosphonium iodide and quaternary ammonium triiodide. Thus, at least one group having a structure represented by the following general formula 1 and / or the following general formula 2 that functions as a polymerization initiating group of the radical polymerizable monomer is introduced into the molecule. Initiating group-containing compound for radical polymerization.
    Figure JPOXMLDOC01-appb-I000004
    (In General Formula 1, R 1 represents H or any alkyl group or acyl group, R 2 represents any alkyl group or aryl group, X represents Cl or Br, and Y represents O or NH.)
    Figure JPOXMLDOC01-appb-I000005
    (In General Formula 2, R 3 represents H or any alkyl group or aryl group, R 4 represents an aryl group, cyano group, carboxyl group, ester group or amide group, and X represents Cl or Br.)
  14.  前記一般式1で表せる構造の基が、下記一般式3で表せる構造の基である請求項13に記載のラジカル重合の開始基含有化合物。
    Figure JPOXMLDOC01-appb-I000006
    (一般式3中、Yは、O又はNH)
    The radical polymerization initiating group-containing compound according to claim 13, wherein the group having a structure represented by the general formula 1 is a group having a structure represented by the following general formula 3.
    Figure JPOXMLDOC01-appb-I000006
    (In general formula 3, Y is O or NH)
  15.  前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に2個導入されたポリマーである請求項13に記載のラジカル重合の開始基含有化合物。 14. The radical polymerization initiating group-containing compound according to claim 13, which is a polymer in which two groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced into a molecule.
  16.  前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に3個以上導入された化合物である請求項13に記載のラジカル重合の開始基含有化合物。 14. The radical polymerization initiating group-containing compound according to claim 13, which is a compound in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in a molecule.
  17.  前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に3個以上導入されたビニルポリマーである請求項13に記載のラジカル重合の開始基含有化合物。 14. The radical polymerization initiating group-containing compound according to claim 13, which is a vinyl polymer in which three or more groups having a structure represented by the general formula 1 and / or the general formula 2 are introduced in a molecule.
  18.  前記一般式1及び/又は前記一般式2で表せる構造の基が、分子内に1個以上導入されたモノマーと、基材表面に結合する反応性基を有するモノマーとの共重合体である請求項13に記載のラジカル重合の開始基含有化合物。 A copolymer of a monomer having a structure represented by the general formula 1 and / or the general formula 2 and one or more monomers introduced into the molecule and a monomer having a reactive group bonded to the substrate surface. Item 14. A radical polymerization initiating group-containing compound according to Item 13.
PCT/JP2017/006459 2016-02-29 2017-02-22 Polymer production method and radical polymerization initiating group-containing compound WO2017150287A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/066,972 US10982033B2 (en) 2016-02-29 2017-02-22 Polymer production method and radical polymerization initiating group-containing compound
AU2017227194A AU2017227194B2 (en) 2016-02-29 2017-02-22 Polymer production method and radical polymerization initiating group-containing compound
CN201780014058.3A CN108699176B (en) 2016-02-29 2017-02-22 Method for producing polymer and compound containing radical polymerization initiating group
CA3011899A CA3011899C (en) 2016-02-29 2017-02-22 Polymer production method and radical polymerization initiating group-containing compound
EP17759753.1A EP3424960B1 (en) 2016-02-29 2017-02-22 Polymer production method and radical polymerization initiating group-containing compound
KR1020187027550A KR102054679B1 (en) 2016-02-29 2017-02-22 Process for producing polymer and initiator-containing compound of radical polymerization
US17/206,489 US11746178B2 (en) 2016-02-29 2021-03-19 Polymer production method and radical polymerization initiating group-containing compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016037274 2016-02-29
JP2016-037274 2016-02-29
JP2016-202901 2016-10-14
JP2016202901A JP6254239B2 (en) 2016-02-29 2016-10-14 Polymer production method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/066,972 A-371-Of-International US10982033B2 (en) 2016-02-29 2017-02-22 Polymer production method and radical polymerization initiating group-containing compound
US17/206,489 Division US11746178B2 (en) 2016-02-29 2021-03-19 Polymer production method and radical polymerization initiating group-containing compound

Publications (1)

Publication Number Publication Date
WO2017150287A1 true WO2017150287A1 (en) 2017-09-08

Family

ID=59742899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006459 WO2017150287A1 (en) 2016-02-29 2017-02-22 Polymer production method and radical polymerization initiating group-containing compound

Country Status (1)

Country Link
WO (1) WO2017150287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590982A4 (en) * 2017-03-02 2020-11-25 Kyoto University METHOD OF MANUFACTURING GRAFT POLYMER, GRAFT POLYMER AND INITIATOR FOR GRAFT POLYMER

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246511A (en) * 2010-05-24 2011-12-08 Tosoh Corp Method for manufacturing vinyl chloride-based polymer
WO2013027419A1 (en) * 2011-08-25 2013-02-28 国立大学法人京都大学 Living radical polymerization catalyst and polymerization method
JP2013072069A (en) * 2011-09-29 2013-04-22 Hitachi Chemical Co Ltd Living radical polymerization initiator, star copolymer, resin composition, and die bonding film
WO2015122404A1 (en) * 2014-02-13 2015-08-20 国立大学法人京都大学 Living radical polymerization catalyst, and polymer production method using same
JP2015199834A (en) * 2014-04-08 2015-11-12 東洋ゴム工業株式会社 Copolymer and manufacturing method therefor, rubber composition and pneumatic tire
JP2015227407A (en) * 2014-05-30 2015-12-17 住友化学株式会社 acrylic resin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246511A (en) * 2010-05-24 2011-12-08 Tosoh Corp Method for manufacturing vinyl chloride-based polymer
WO2013027419A1 (en) * 2011-08-25 2013-02-28 国立大学法人京都大学 Living radical polymerization catalyst and polymerization method
JP2013072069A (en) * 2011-09-29 2013-04-22 Hitachi Chemical Co Ltd Living radical polymerization initiator, star copolymer, resin composition, and die bonding film
WO2015122404A1 (en) * 2014-02-13 2015-08-20 国立大学法人京都大学 Living radical polymerization catalyst, and polymer production method using same
JP2015199834A (en) * 2014-04-08 2015-11-12 東洋ゴム工業株式会社 Copolymer and manufacturing method therefor, rubber composition and pneumatic tire
JP2015227407A (en) * 2014-05-30 2015-12-17 住友化学株式会社 acrylic resin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3424960A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3590982A4 (en) * 2017-03-02 2020-11-25 Kyoto University METHOD OF MANUFACTURING GRAFT POLYMER, GRAFT POLYMER AND INITIATOR FOR GRAFT POLYMER
US11407849B2 (en) 2017-03-02 2022-08-09 Kyoto University Ltd. Method for manufacturing graft polymer, graft polymer, and initiator of graft polymer

Similar Documents

Publication Publication Date Title
JP6254239B2 (en) Polymer production method
JP6245719B1 (en) Polymer production method
KR100796053B1 (en) Microgel Synthesis Method and Products Produced therefrom
WO2003027155A1 (en) Copolymers comprising low surface tension (meth)acrylates
WO2017150287A1 (en) Polymer production method and radical polymerization initiating group-containing compound
JP6836242B2 (en) A method for producing a polymer and a polymer obtained by the method for producing the polymer.
JP6717462B2 (en) Graft type copolymer, method for producing graft type copolymer, and coating agent
JP2010254850A (en) Method for producing (meth)acrylic block copolymer
JP2025092428A (en) Method for producing amphiphilic polymer aqueous solution
McBride Synthesis of high molecular weight polymers as low-viscosity latex particles by RAFT aqueous dispersion polymerisation
Mao Synthesis of functional polymers via oxyanion and iodide catalyzed living radical polymerizations in emulsion, solution and bulk systems and their applications
US20040014919A1 (en) Novel polymerization process
Wang Application of Controlled Radical Polymerization in the Development of Polymers with Branched Architectures
JP2006199728A (en) Method for producing radically polymerized polymer
Piaoran Synthesis of Polymers and Polymer Brushes through RAFT Polymerization via Flow Chemistry
VIA İSTANBUL TECHNICAL UNIVERSITY★ INSTITUTE OF SCIENCE AND TECHNOLOGY

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017227194

Country of ref document: AU

Date of ref document: 20170222

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3011899

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187027550

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017759753

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759753

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759753

Country of ref document: EP

Kind code of ref document: A1