WO2017148625A1 - Method and device for rotor position diagnosis in an electric-motor drive - Google Patents
Method and device for rotor position diagnosis in an electric-motor drive Download PDFInfo
- Publication number
- WO2017148625A1 WO2017148625A1 PCT/EP2017/051532 EP2017051532W WO2017148625A1 WO 2017148625 A1 WO2017148625 A1 WO 2017148625A1 EP 2017051532 W EP2017051532 W EP 2017051532W WO 2017148625 A1 WO2017148625 A1 WO 2017148625A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bridge
- signals
- cosn
- cosp
- signal processing
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
- G01D5/145—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D3/00—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
- G01D3/08—Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for safeguarding the apparatus, e.g. against abnormal operation, against breakdown
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24457—Failure detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/24471—Error correction
- G01D5/2448—Correction of gain, threshold, offset or phase control
Definitions
- the invention relates to a method for rotor position diagnosis in an electric motor drive according to the preamble of claim 1 and an apparatus for performing the method according to the preamble of the independent claim.
- the knowledge of the absolute angular position of the rotor, the rotor position, is required.
- the rotor position can by means of suitable sensors, such as. B. absolute or incremental resolution encoders are detected.
- a method and a device for detecting the rotor position of an electrical machine are known.
- a sensor unit which has a plurality of magnetoresistive sensor elements, which are connected to form two Wheatstone bridges.
- Each bridge supplies sinusoidal measurement signals, with the measurement signals of one bridge being 90 degrees out of phase with the measurement signals of the other bridge. Therefore, one bridge is called a sine bridge and the other bridge a cosine bridge.
- sensor elements in particular AMR (Anisotropic Magneto Resistance) or GMR (Giant Magneto Resistance) elements are used.
- a method and a device for rotor position determination in an electric motor drive wherein for determining the rotor position, one on the rotor or on an associated Shaft-mounted sensor unit is provided which has a plurality of magnetoresistive sensor elements (eg GMR), which are interconnected to form at least two full-bridge measuring bridge circuits, the full bridges provide at least two mutually phase-shifted measurement signals (cos, sin) for signal processing.
- GMR magnetoresistive sensor elements
- the invention is based on the object to provide a method and apparatus for rotor position diagnosis, which allows a clear and timely error detection.
- the object is achieved by a method having the features of claim 1 and by a device having the features of the independent claim.
- the invention is based on the recognition that through the differentiation a clear and timely fault diagnosis, e.g. is made difficult or even impossible by means of radius diagnosis, which is explained with reference to the attached FIGS.
- FIG. 1 shows a conventional arrangement of two measuring bridge circuits designed as full bridges VB and VB ', each full bridge having four magnetoresistive sensor elements TMR, here in the form of four TMRs each. Sensor elements.
- FIG. 1 shows the course of the generated sensor signals via the rotation of a magnet, that is to say the angle-dependent signal characteristics.
- the two half bridges H1 and H2 of the first (upper) full bridge VB supply two cosine half-bridge signals cos1 and cos2.
- the two half bridges of the second (lower) full bridge VB ' provide two sine half-bridge signals sin' and sin2 '.
- a normalized cosine signal cos # is generated by the usual differentiation or signal processing for signal processing (area II) for the first full bridge VB and a normalized sine signal sin # for the second full bridge VB '. generated.
- the invention is based on the finding that in each case two half-bridge signals are lost and this in turn makes it more difficult to identify errors clearly and in good time via a radius diagnosis. Because in traditional systems, certain errors can only be detected using additional hardware (HW) patterns and / or software (SW) patterns.
- HW patterns are obtained e.g. by shorting a half-bridge signal to ground (GND) or to the supply voltage by means of transistors.
- SW patterns are obtained, for example, in the case of RPS (Rotor Position Sensor) by e.g. an engine torque reduction according to a specific comparison logic with subsequent RPS signal evaluation.
- the radius can also be determined, for example, in the context of the application of the so-called Cordic algorithm. Ideally, the radius R should be constant and move in a circular orbit concentric with the zero point. However, since the analog signals change slightly due to the sensors, the system and environmental conditions (temperature, humidity, aging ...), the radius R is not always on the ideal circular path (dashed line), but deviates slightly from it. Therefore, in practice, tolerance limits are set, namely, a lower limit LL for the inner limit circle and an upper limit HL for the outer limit circle. The radius R should always be within this tolerance range (band).
- a method for rotor position diagnosis in an electromotive drive is now provided, which can be realized effectively and inexpensively.
- a rotor position diagnosis is made possible without relying on the help of HW pattern and / or SW pattern.
- an apparatus for carrying out the method is proposed.
- the invention can be used in all areas of electric motor drives, but especially in electric motor driven steering systems for vehicles, i. in so-called electric power steering systems.
- the invention is defined by a method having the features of claim 1 and by a device having the features of the independent claim.
- a method and a device for rotor position diagnosis in an electromotive drive are further developed or supplemented such that for the detection of errors occurring in the measurement signals those two half-bridge signals supplied by the two half bridges of the same full bridge (sine bridge or cosine bridge) be combined and evaluated in the signal processing.
- the two half-bridge signals are combined by summation into a sum signal, preferably one of the following formulas, to determine an offset value:
- sinOFF is the offset value
- sinP is the positive half-bridge signal
- sinN is the negative half-bridge signal
- X and Y are weighting factors.
- the offset values cosOFF and sinOFF are calculated for both bridges, whereby a complex error detection can then be carried out, which makes it possible to calculate the displacements both with respect to the cos component and the sin component, e.g. in the circle, to recognize immediately.
- TMR sensor elements or AMR sensor elements are preferably used as magnetoresistive sensor elements.
- exactly two measuring bridge circuits serving as full bridges are formed, which supply at least two measuring signals (cos, sin) phase-shifted by 90 degrees to one another as full-bridge signals for the signal processing.
- the device according to the invention has the sensor unit S and a signal processing unit connected thereto, which processes the sensor signals according to the method.
- Fig. 1 illustrates the known structure of a sensor unit with two full bridges and the sensor signals generated therefrom;
- Fig. 2 illustrates meaning and purpose of a radius diagnosis
- Fig. 3 illustrates the problem of an occurring offset error
- Fig. 4 illustrates the combination of
- Half-bridge signals for determining an offset value.
- the behavior shown in Fig. 3 may e.g. occur when a half-bridge signal changes in offset, e.g. may occur due to a shunt after the supply voltage or coming from the measuring or sensor element itself. Points A and B, where the vertex intersects the upper limit HL of the tolerance band.
- the respective half-bridge signals e.g. of the
- Half bridges HB1 and HB2 of the upper full bridge VB (in this case the cosine bridge in FIG. 1), compared or calculated with one another:
- CosOFF is the offset value.
- the values X and Y can be variable and, for example, each have the value "1".
- FIG. 4 illustrates the advantageous methodology of the invention
- the hitherto customary radius diagnosis can be extended by an offset diagnosis as described above.
- specific error cases as set out above, can then be recognized immediately and reliably.
- the invention can be used in diagnosis and control units for any type of electric drives, in which a sensor, such as TRM sensor, sine and cosine signals as measurement signals for the position and movement of the rotor determined.
- a preferred one Field of application of the invention is the automotive sector and in particular the control of electric drives in power steering systems (electric steering).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
The invention relates to a method and to a device for rotor position diagnosis in an electric-motor drive, which drive has a sensor unit (S) arranged on the rotor or on a shaft connected to the rotor for determining the rotor position, which sensor unit has a plurality of magnetoresistive sensor elements (TMR), which are interconnected to each other in order to form at least two measuring bridge circuits, which serve as full bridges (VB, VB') and provide at least two measurement signals (cos, sin), which are phase-shifted with respect to each other, for signal processing. In order to detect errors occurring in the measurement signals, two half bridge signals (cosP, cosN), which are provided by the half bridges (HB1, HB2) of the same full bridge (VB), are combined with each other and evaluated in the signal processing.
Description
Verfahren und Vorrichtung zur Rotorlagediagnose in einem elektromotorischen Antrieb Method and device for rotor position diagnosis in an electric motor drive
Die Erfindung betrifft ein Verfahren zur Rotorlagediagnose in einem elektromotorischen Antrieb gemäß dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens gemäß dem Oberbegriff des nebengeordneten Anspruchs. The invention relates to a method for rotor position diagnosis in an electric motor drive according to the preamble of claim 1 and an apparatus for performing the method according to the preamble of the independent claim.
Zur Messung und Steuerung, insbesondere zur elektronischen Kommutierung, elektromotorischer Antriebe, ist die Kenntnis der absoluten Winkellage des Rotors, die Rotorlage, erforderlich. Die Rotorlage kann mithilfe geeigneter Sensoren, wie z. B. absolut oder inkremental auflösende Drehgeber, erfasst werden. For measurement and control, in particular for electronic commutation, electric motor drives, the knowledge of the absolute angular position of the rotor, the rotor position, is required. The rotor position can by means of suitable sensors, such as. B. absolute or incremental resolution encoders are detected.
Aus der DE 102 50 319 A1 sind ein Verfahren und eine Vorrichtung zur Erfassung der Rotorlage einer elektrischen Maschine bekannt. Wie dort anhand der Figuren 6 und 7 beschrieben wird, wird eine Sensoreinheit verwendet, die mehrere magnetoresistive Sensorelemente aufweist, welche zu zwei Wheatstone-Brücken verschaltet sind. Jede Brücke liefer sinusförmige Messsignale, wobei die Messsignale der eine Brücke um 90 Grad phasenverschoben zu den Messignalen der anderen Brücke sind. Daher wird die eine Brücke als Sinus-Brücke und die andere Brücke als Kosinus-Brücke bezeichnet. Als Sensorelemente werden insbesondere AMR- (Anisotrope Magneto Resistance") oder GMR- (Giant Magneto Resistance") Elemente verwendet. Es ist im Bereich der Sensorik bekannt, auch weiterentwickelte magneto-resistive Sensorelemente, wie z.B. TMR-Sensoren (Tunnel Magneto-Resistance) einzusetzen. Die von der Sensoreinheit erzeugten Messsignale stellen also Sinus- und Kosinus-Signale dar, die üblicherweise differenziert werden. Somit sind ein Verfahren und eine Vorrichtung zur Rotorlagebestimmung in einem elektromotorischen Antrieb bekannt, wobei zur Bestimmung der Rotorlage eine an dem Rotor oder an einer damit verbundenen
Welle angeordnete Sensoreinheit vorgesehen ist, die mehrere magnetoresistive Sensorelemente (z.B. GMR) aufweist, die miteinander verschaltet sind, um mindestens zwei als Vollbrücken dienende Messbrückenschaltungen zu bilden, wobei die Vollbrücken mindestens zwei zueinander phasenverschobene Messsignale (cos, sin) für eine Signalverarbeitung liefern. Im Fall von zwei Vollbrücken bzw. vier Halbbrücken werden vier Messignale erzeugt, die üblicherweise einer Differenzierung unterzogen werden. Das bedeutet, dass durch Signalaufbereitung aus jeweils zwei Halbbrückensignalen (z.B. cos1 und cos2) ein einziges Signal (cos#l) gebildet wird (z.B. cos# = cos1 - cos2; siehe auch Fig. 1 )Durch die Differenzierung, z.B. mit Hilfe von Operations- Verstärkern, können zwar hohe Amplituden erzielt werden, die gut für eine nachfolgende Analog-Digital- Wandlung und/oder zur Verarbeitung in einem ASIC (Application-Specific Integrated Circuit) geeignet sind; allerdings wird nur eine Rotorlagebestimmung sowie einfache Radiusdiagnose ermöglicht. Eine Rotorlagediagnose, die auch eine eindeutige und rechtzeitige Fehlererkennung ermöglicht, ist nicht durchführbar. From DE 102 50 319 A1 a method and a device for detecting the rotor position of an electrical machine are known. As described there with reference to Figures 6 and 7, a sensor unit is used which has a plurality of magnetoresistive sensor elements, which are connected to form two Wheatstone bridges. Each bridge supplies sinusoidal measurement signals, with the measurement signals of one bridge being 90 degrees out of phase with the measurement signals of the other bridge. Therefore, one bridge is called a sine bridge and the other bridge a cosine bridge. As sensor elements in particular AMR (Anisotropic Magneto Resistance) or GMR (Giant Magneto Resistance) elements are used. It is known in the field of sensor technology, even more advanced magneto-resistive sensor elements, such as TMR sensors (Tunnel Magneto-Resistance) use. The measurement signals generated by the sensor unit thus represent sine and cosine signals, which are usually differentiated. Thus, a method and a device for rotor position determination in an electric motor drive are known, wherein for determining the rotor position, one on the rotor or on an associated Shaft-mounted sensor unit is provided which has a plurality of magnetoresistive sensor elements (eg GMR), which are interconnected to form at least two full-bridge measuring bridge circuits, the full bridges provide at least two mutually phase-shifted measurement signals (cos, sin) for signal processing. In the case of two full bridges or four half bridges, four measurement signals are generated, which are usually subjected to differentiation. This means that a single signal (cos # 1) is formed by signal processing from two half-bridge signals (eg cos1 and cos2) (eg cos # = cos1 - cos2, see also Fig. 1) By differentiation, eg with the aid of operations Amplifiers, high amplitudes can be achieved which are well suited for subsequent analog-to-digital conversion and / or processing in an application-specific integrated circuit (ASIC); However, only a rotor position determination and simple radius diagnosis is possible. A rotor position diagnosis, which also allows a clear and timely error detection, is not feasible.
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren und Vorrichtung zur Rotorlagediagnose bereitzustellen, die eine eindeutige und rechtzeitige Fehlererkennung ermöglicht. The invention is based on the object to provide a method and apparatus for rotor position diagnosis, which allows a clear and timely error detection.
Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Vorrichtung mit den Merkmalen des nebengeordneten Anspruchs. The object is achieved by a method having the features of claim 1 and by a device having the features of the independent claim.
Dabei geht die Erfindung von der Erkenntnis aus, dass durch die Differenzierung eine eindeutige und rechtzeitige Fehlerdiagnose, z.B. mittels Radius-Diagnose, erschwert oder gar unmöglich gemacht wird, was anhand der beiliegenden Figuren 1 -3 erläutert wird: The invention is based on the recognition that through the differentiation a clear and timely fault diagnosis, e.g. is made difficult or even impossible by means of radius diagnosis, which is explained with reference to the attached FIGS.
Die Fig. 1 zeigt eine übliche Anordnung von zwei als Vollbrücken VB und VB' ausgebildete Messbrückenschaltungen, wobei jede Vollbrücke vier magnetoresistive Sensorelemente TMR aufweist, hier in Form von jeweils vier TMR-
Sensorelemente. Außerdem zeigt die Fig. 1 den Verlauf der erzeugten Sensorsignale über die Rotation eines Magneten, also den winkelabhängige Signalverläufe. Die beiden Halbbrücken H1 und H2 der ersten (oberen) Vollbrücke VB liefern zwei Kosinus-Halbbrückensignale cos1 und cos2. Die beiden Halbbrücken der zweiten (unteren) Vollbrücke VB' liefern zwei Sinus- Halbbrückensignale sin ' und sin2'. Ausgehend von der Sensorik (Bereich I) wird durch die übliche Differenzierung bzw. Signalaufbereitung für die Signalverarbeitung (Bereich II) für die erste Vollbrücke VB ein normiertes Kosinus-Signal cos# erzeugt und für die zweite Vollbrücke VB' ein normiertes Sinus-Signal sin# erzeugt. 1 shows a conventional arrangement of two measuring bridge circuits designed as full bridges VB and VB ', each full bridge having four magnetoresistive sensor elements TMR, here in the form of four TMRs each. Sensor elements. In addition, FIG. 1 shows the course of the generated sensor signals via the rotation of a magnet, that is to say the angle-dependent signal characteristics. The two half bridges H1 and H2 of the first (upper) full bridge VB supply two cosine half-bridge signals cos1 and cos2. The two half bridges of the second (lower) full bridge VB 'provide two sine half-bridge signals sin' and sin2 '. Starting from the sensor system (area I), a normalized cosine signal cos # is generated by the usual differentiation or signal processing for signal processing (area II) for the first full bridge VB and a normalized sine signal sin # for the second full bridge VB '. generated.
Der Erfindung liegt die Erkenntnis zu Grunde, dass somit jeweils zwei Halbbrücken- Signale verloren gehen und dies wiederum eine eindeutige und rechtzeitige Fehlererkennung über eine Radiusdiagnose erschwert. Denn in herkömmlichen Systemen können bestimmte Fehlerfälle nur mit Hilfe zusätzlicher Hardware-(HW) Patterns und/oder Software-(SW) Patterns erkannt werden. Die HW-Patterns erhält man z.B. durch Kurzschließen eines Halbbrückensignals gegen Masse (GND) oder gegen die Versorgungsspannung mittels Transistoren. Die SW-Patterns erhält man etwa im Fall von RPS (Rotor Position Sensor) durch z.B. eine Motormomenten- Reduktion nach einer bestimmten Vergleichslogik mit anschließender RPS- Signalbewertung. The invention is based on the finding that in each case two half-bridge signals are lost and this in turn makes it more difficult to identify errors clearly and in good time via a radius diagnosis. Because in traditional systems, certain errors can only be detected using additional hardware (HW) patterns and / or software (SW) patterns. The HW patterns are obtained e.g. by shorting a half-bridge signal to ground (GND) or to the supply voltage by means of transistors. The SW patterns are obtained, for example, in the case of RPS (Rotor Position Sensor) by e.g. an engine torque reduction according to a specific comparison logic with subsequent RPS signal evaluation.
Anhand der Fig. 2 wird die Radiusdiagnose nun erläutert: Wird das Sinus-Signal über dem Kosinus-Signal (siehe sin# und cos# in Fig. 1 ) aufgetragen, so ergibt sich aufgrund der Rotation des Magneten ein Signalkreis K (gestrichelte Darstellung) mit dem Radius R, welcher sich durch die folgende Kreisformel berechnet:The radius diagnosis will now be explained with reference to FIG. 2: If the sine signal is plotted against the cosine signal (see sin # and cos # in FIG. 1), the result is a signal circle K (dashed representation) due to the rotation of the magnet. with the radius R, which is calculated by the following circular formula:
R = Vsin2 + cos2 . Der Radius kann z.B. auch im Rahmen der Anwendung des sog. Cordic-Algorithmus ermittelt werden. Im Idealfall sollte der Radius R konstant sein und sich auf einer Kreisbahn bewegen, die konzentrisch zum Nullpunkt liegt. Da sich jedoch die analogen Signale aufgrund der Sensoren, des Systems und durch Umgebungsbedingungen (Temperatur, Feuchte, Alterung...) sich leicht ändern, befindet sich der Radius R nicht immer auf der idealen Kreisbahn
(gestrichelte Linie), sondern weicht etwas davon ab. Deshalb werden in der praktischen Anwendung Toleranzgrenzen vorgegeben, nämlich eine untere Grenze LL (low level) für den inneren Grenzkreis und eine obere Grenze HL (high level) für den äußeren Grenzkreis. Der Radius R sollte sich möglichst immer in diesem Toleranzbereich (Band) bewegen. R = Vsin 2 + cos 2 . The radius can also be determined, for example, in the context of the application of the so-called Cordic algorithm. Ideally, the radius R should be constant and move in a circular orbit concentric with the zero point. However, since the analog signals change slightly due to the sensors, the system and environmental conditions (temperature, humidity, aging ...), the radius R is not always on the ideal circular path (dashed line), but deviates slightly from it. Therefore, in practice, tolerance limits are set, namely, a lower limit LL for the inner limit circle and an upper limit HL for the outer limit circle. The radius R should always be within this tolerance range (band).
Mit der vorliegenden Erfindung wird nun ausgehend von der eingangs erläuterten Erkenntnis, ein Verfahren zur Rotorlagediagnose in einem elektromotorischen Antrieb bereitgestellt, das effektiv und kostengünstig realisiert werden kann. Insbesondere wird eine Rotorlagediagnose ermöglicht, ohne auf die Hilfe von HW- Pattern und/oder SW-Pattern angewiesen zu sein. Des Weiteren wirdl eine Vorrichtung zur Durchführung des Verfahrens vorgeschlagen. Die Erfindung ist in allen Bereich der elektromotorischen Antriebe einsetzbar, insbesondere aber in elektromotorisch angetriebenen Lenksystemen für Fahrzeuge, d.h. in sogenannten elektrischen Hilfskraftlenksystemen. With the present invention, based on the above-explained realization, a method for rotor position diagnosis in an electromotive drive is now provided, which can be realized effectively and inexpensively. In particular, a rotor position diagnosis is made possible without relying on the help of HW pattern and / or SW pattern. Furthermore, an apparatus for carrying out the method is proposed. The invention can be used in all areas of electric motor drives, but especially in electric motor driven steering systems for vehicles, i. in so-called electric power steering systems.
Die Erfindung wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 sowie durch eine Vorrichtung mit den Merkmalen des nebengeordneten Anspruchs definiert. The invention is defined by a method having the features of claim 1 and by a device having the features of the independent claim.
Demnach werden ein Verfahren und eine Vorrichtung zur Rotorlagediagnose in einem elektromotorischen Antrieb so weiter entwickelt bzw. ergänzt, dass zur Erkennung von in den Messsignalen auftretenden Fehlern diejenigen zwei Halbbrückensignale, die von den beiden Halbbrücken derselben Vollbrücke (Sinus- Brücke oder Kosinus-Brücke) geliefert werden, in der Signalverarbeitung miteinander kombiniert und ausgewertet werden. Insbesondere werden die zwei Halbbrückensignale durch Summenbildung zu einem Summensignal kombiniert, vorzugsweise anhand einer der folgenden Formeln, um einen Offset-Wert zu bestimmen: Accordingly, a method and a device for rotor position diagnosis in an electromotive drive are further developed or supplemented such that for the detection of errors occurring in the measurement signals those two half-bridge signals supplied by the two half bridges of the same full bridge (sine bridge or cosine bridge) be combined and evaluated in the signal processing. In particular, the two half-bridge signals are combined by summation into a sum signal, preferably one of the following formulas, to determine an offset value:
(cosP+cosN (+ Cosp cosN
( VI) I Für die Kosinus-Brücke: cosOFF = X * γ
wobei: cosOFF der Offset-Wert ist; cosP das positive Halbbrückensignal ist; cosN das negative Halbbrückensignal ist; und X und Y Wichtungsfaktoren sind; (VI) I For the cosine bridge: cosOFF = X * γ where: cosOFF is the offset value; cosP is the positive half-bridge signal; cosN is the negative half-bridge signal; and X and Y are weighting factors;
. _, (sinP+sinN) , _, (sinP + sinN)
Für die Sinus-Brücke: sinOFF = X * For the sine bridge: sinOFF = X *
Y Y
wobei: sinOFF der Offset-Wert ist; sinP das positive Halbbrückensignal ist; sinN das negative Halbbrückensignal ist; und X und Y Wichtungsfaktoren sind. where: sinOFF is the offset value; sinP is the positive half-bridge signal; sinN is the negative half-bridge signal; and X and Y are weighting factors.
Vorzugsweise werden für beide Brücken die Offset-Werte cosOFF und sinOFF berechnet, wodurch dann eine komplexe Fehlererkennung durchgeführt werden kann, welche es ermöglicht, die Verschiebungen sowohl bezüglich der cos- Komponente wie auch der sin-Komponete, z.B. in der Kreisdarstellung, sofort zu erkennen. Preferably, the offset values cosOFF and sinOFF are calculated for both bridges, whereby a complex error detection can then be carried out, which makes it possible to calculate the displacements both with respect to the cos component and the sin component, e.g. in the circle, to recognize immediately.
Diese und weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen. These and other advantageous embodiments will become apparent from the dependent claims.
Demnach werden als magnetoresistive Sensorelemente vorzugsweise TMR- Sensorelemente oder AMR-Sensorelemente verwendet. Insbesondere werden genau zwei als Vollbrücken dienende Messbrückenschaltungen gebildet, die mindestens zwei um 90 Grad zueinander phasenverschobene Messsignale (cos, sin) als Vollbrückensignale für die Signalverarbeitung liefern. Accordingly, TMR sensor elements or AMR sensor elements are preferably used as magnetoresistive sensor elements. In particular, exactly two measuring bridge circuits serving as full bridges are formed, which supply at least two measuring signals (cos, sin) phase-shifted by 90 degrees to one another as full-bridge signals for the signal processing.
Die erfindungsgemäße Vorrichtung weist die Sensoreinheit S auf sowie eine damit verbundene Signalverarbeitungseinheit, welche die Sensorsignale gemäß dem Verfahren verarbeitet. The device according to the invention has the sensor unit S and a signal processing unit connected thereto, which processes the sensor signals according to the method.
Die Erfindung und die sich daraus ergebenden Vorteile werden nachfolgend im Detail anhand eines Ausführungsbeispiels unter Bezugnahme auf die beiliegenden Figuren beschrieben. Die Figuren zeigen folgende schematische Darstellungen:
Fig. 1 veranschaulicht den an sich bekannten Aufbau einer Sensoreinheit mit zwei Vollbrücken und die davon erzeugten Sensorsignale; The invention and the resulting advantages will be described in detail below with reference to an embodiment with reference to the accompanying figures. The figures show the following schematic representations: Fig. 1 illustrates the known structure of a sensor unit with two full bridges and the sensor signals generated therefrom;
Fig. 2 veranschaulicht Bedeutung und Zweck einer Radiusdiagnose; Fig. 2 illustrates meaning and purpose of a radius diagnosis;
Fig. 3 veranschaulicht das Problem eines auftretenden Off set- Fehlers; und Fig. 3 illustrates the problem of an occurring offset error; and
Fig. 4 veranschaulicht die erfindungsgemäße Kombination von Fig. 4 illustrates the combination of
Halbbrückensignalen zur Bestimmung eines Offset-Wertes. Half-bridge signals for determining an offset value.
Ausgehend von den Figuren 1 und 2, die oben schon beschrieben wurden und die erfindungsgemäße Erkenntnis erläutern, dass die üblicherweise durchgeführte Differenzierung eine eindeutige und rechtzeitige Fehlererkennung, z.B. mittels Radiusdiagnose, erschwert, wird nun anhand der Figur 3 dieses Defizit weiter erläutert. Starting from the figures 1 and 2, which have already been described above and explain the knowledge according to the invention that the differentiation usually carried out a clear and timely error detection, e.g. By means of radius diagnosis, difficult, this deficit will now be explained further with reference to FIG.
In der Fig. 3 ist neben dem bereits beschriebenen Idealkreis K (vergl. auch Fig. 2) ein verschobener Signalkreis K* eingezeichnet, der sich im folgenden Fehlerfall ergeben kann: 3, in addition to the ideal circle K already described (see also FIG. 2), a shifted signal circle K * is drawn, which can result in the following error case:
Das in der Fig. 3 dargestellte Verhalten kann z.B. auftreten, wenn sich ein Halbbrücken-Signal im Offset ändert, was z.B. aufgrund eines Nebenschlusses nach der Versorgungsspannung oder vom Mess- bzw. Sensorelement selbst kommend auftreten kann. Die Punkte A und B, bei dem der Scheitelpunkt die obere Grenze HL des Toleranzbandes schneidet. The behavior shown in Fig. 3 may e.g. occur when a half-bridge signal changes in offset, e.g. may occur due to a shunt after the supply voltage or coming from the measuring or sensor element itself. Points A and B, where the vertex intersects the upper limit HL of the tolerance band.
Durch die Erfindung werden nun die jeweiligen Halbbrücken-Signale, z.B. von denBy the invention, the respective half-bridge signals, e.g. of the
Halbbrücken HB1 und HB2 der oberen Vollbrücke VB (also hier die Kosinus-Brücke in Fig. 1 ), miteinander verglichen bzw. verrechnet: Half bridges HB1 and HB2 of the upper full bridge VB (in this case the cosine bridge in FIG. 1), compared or calculated with one another:
(cosP+cosN) (Cosp cosN +)
cosOFF = X * cosOFF = X *
Dabei entspricht cosOFF dem Offset-Wert ist. Und cosP ist das positive
Halbbrückensignal; cosN ist das negative Halbbrückensignal. Die Werte X und Y können variabel sein und z.B. jeweils den Wert„1 " haben. Where cosOFF is the offset value. And Cos is the positive Half bridge signal; cosN is the negative half-bridge signal. The values X and Y can be variable and, for example, each have the value "1".
Wenn nun ein Offset-Fehler (s. Fig. 3) auftreten sollte, so kann dies früher erkannt werden. Es müssen keine HW-Patterns oder SW-Patterns ermittelt und ausgewertet werden, wie dies der Fall wäre, wenn nur differenzierte Signalen allein verfügbar wären. If an offset error (see Fig. 3) should occur, this can be detected earlier. No HW patterns or SW patterns need to be detected and evaluated, as would be the case if only differentiated signals were available alone.
Die Figur 4 veranschaulicht die vorteilhafte Methodik der Erfindung: Figure 4 illustrates the advantageous methodology of the invention:
Links in der Figur ist beispielhaft der Verlauf der beiden Halbbrücken-Signale cosP (=cos+) und cosN (=cos-) dargestellt. Die gestrichelte Linie soll anzeigen, dass ein Fehler OFF in Form eines Offsetdrifts auftritt. Durch die Kombination (hier Summierung) der beiden Halbbrücken-Signale cosP und cosN und evtl. Wichtung (X und Y) wird sofort der aktuelle Offset-Wert cosOFF berechnet. In der zweiten Darstellung der Fig. 4 wird dies anhand der gestrichelten Linie dargestellt, wobei zu sehen ist, dass der Fehler OFF über den gesamten Winkelbereich von 0-360 Grad konstant ist. In der dritten Darstellung, welche als Kreisdarstellung gezeichnet ist, macht sicher der Fehler im Normkreis als eine Verschiebung der cos-Komponente bemerkbar. Ein Fehler in der sin-Komponente könnte ebenfalss schnell anhand einer entsprechenden Summenbildung der anderen Halbbrücken-Signale sinP und sinN festgestellt werden (sinOFF = sinP + sinN), wobei ebenfalls evtl. Wichtungsfaktoren berücksichtigt werden können. On the left in the figure, the course of the two half-bridge signals cosP (= cos +) and cosN (= cos-) is shown by way of example. The dashed line indicates that an error OFF occurs in the form of offset drift. The combination (here summation) of the two half-bridge signals cosP and cosN and possibly weighting (X and Y) immediately calculates the current offset value cosOFF. In the second illustration of FIG. 4, this is illustrated by the dashed line, wherein it can be seen that the error OFF is constant over the entire angular range of 0-360 degrees. In the third representation, which is drawn as a circular representation, the error in the standard circle certainly makes itself noticeable as a shift in the cos component. An error in the sin component could also be detected quickly by means of a corresponding summation of the other half-bridge signals sinP and sinN (sinOFF = sinP + sinN), whereby also possibly weighting factors can be taken into account.
Mit Hilfe der hier vorgeschlagenen Erfindung kann die bislang übliche Radiusdiagnose um eine wie oben beschriebene Offsetdiagnose erweitert werden. Hierdurch können dann auch spezifische Fehlerfälle, wie oben dargelegt wurde, sofort und zuverlässig erkannt werden. Die Erfindung kann in Diagnose und Steuerungseinheiten für jede Art von elektrischen Antrieben eingesetzt werden, bei denen eine Sensorik, wie z.B. TRM-Sensorik, Sinus- und Kosinus-Signale als Messsignale für die Lage und Bewegung des Rotors ermittelt. Ein bevorzugtes
Anwendungsgebiet der Erfindung ist der Automotive-Bereich und hier insbesondere die Ansteuerung von elektrischen Antrieben in Hilfskraftlenkungen (Elektrolenkungen).
With the aid of the invention proposed here, the hitherto customary radius diagnosis can be extended by an offset diagnosis as described above. As a result, specific error cases, as set out above, can then be recognized immediately and reliably. The invention can be used in diagnosis and control units for any type of electric drives, in which a sensor, such as TRM sensor, sine and cosine signals as measurement signals for the position and movement of the rotor determined. A preferred one Field of application of the invention is the automotive sector and in particular the control of electric drives in power steering systems (electric steering).
Claims
1 . Verfahren zur Rotorlagediagnose in einem elektromotorischen Antrieb, der zur Bestimmung der Rotorlage eine an dem Rotor oder an einer damit verbundenen Welle angeordnete Sensoreinheit (S) aufweist, die mehrere magnetoresistive Sensorelemente (TMR) aufweist, die miteinander verschalten sind, um mindestens zwei als Vollbrücken (VB, VB') dienende Messbrückenschaltungen zu bilden, die mindestens zwei zueinander phasenverschobene Messsignale (cos, sin) für eine Signalverarbeitung zu liefern, 1 . Method for rotor position diagnosis in an electromotive drive which has a sensor unit (S) arranged on the rotor or on a shaft connected to it for determining the rotor position, which has a plurality of magnetoresistive sensor elements (TMR) which are interconnected to form at least two full bridges ( VB, VB ') serving measuring bridge circuits which provide at least two mutually phase-shifted measuring signals (cos, sin) for signal processing,
dadurch gekennzeichnet, dass characterized in that
zur Erkennung von in den Messsignalen auftretenden Fehlern zwei for detecting errors occurring in the measuring signals two
Halbbrückensignale (cosP, cosN), die von den Halbbrücken (HB1 , HB2) derselben Vollbrücke (VB) geliefert werden, in der Signalverarbeitung miteinander kombiniert und ausgewertet werden. Half-bridge signals (cosP, cosN), which are supplied by the half-bridges (HB1, HB2) of the same full bridge (VB), are combined and evaluated in the signal processing.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als 2. The method according to claim 1, characterized in that as
magnetoresistive Sensorelemente TMR-Sensorelemente (TMR) oder AMR- Sensorelemente oder GMR-Sensorelemente verwendet werden. Magnetoresistive sensor elements TMR sensor elements (TMR) or AMR sensor elements or GMR sensor elements can be used.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass genau zwei als Vollbrücken (VB, VB') dienende Messbrückenschaltungen gebildet werden, die mindestens zwei um 90 Grad zueinander phasenverschobene Messsignale (cos, sin) als Vollbrückensignale für die Signalverarbeitung liefern. 3. The method according to claim 1 or 2, characterized in that exactly two full bridges (VB, VB ') serving measuring bridge circuits are formed which provide at least two by 90 degrees mutually phase-shifted measurement signals (cos, sin) as full bridge signals for the signal processing.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch 4. The method according to any one of the preceding claims, characterized
gekennzeichnet, dass die zwei Halbbrückensignale (cosP, cosN) durch Summenbildung zu einem Summensignal (cosP + cosN) kombiniert werden. characterized in that the two half-bridge signals (cosP, cosN) are combined by summation into a sum signal (cosP + cosN).
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die zwei Halbbrückensignale (cosP, cosN) anhand der folgenden Formel kombiniert werden, um einen Offset-Wert (cosOFF) zu bestimmen: 5. The method according to any one of the preceding claims, characterized characterized in that the two half-bridge signals (cosP, cosN) are combined using the following formula to determine an offset value (cosOFF):
(cosP+cosN) (Cosp cosN +)
cosOFF = X * cosOFF = X *
Y Y
wobei X und Y Wichtungsfaktoren sind. where X and Y are weighting factors.
6. Verfahren nach einem der Ansprüche 1 -4, dadurch gekennzeichnet, dass die zwei Halbbrückensignale (sinP, sinN) anhand der folgenden Formel kombiniert werden, um einen Offset-Wert (sinOFF) zu bestimmen: 6. The method according to any one of claims 1 -4, characterized in that the two half-bridge signals (sinP, sinN) are combined using the following formula to determine an offset value (sinOFF):
. (sinP+sinN) , (SINP + sense)
sinOFF = X * sinOFF = X *
Y Y
wobei X und Y Wichtungsfaktoren sind. where X and Y are weighting factors.
7. Verfahren nach einem der Ansprüche 3-5, dadurch gekennzeichnet, dass bezüglich der zwei um 90 Grad zueinander phasenverschobenen 7. The method according to any one of claims 3-5, characterized in that respect to the two phase-shifted by 90 degrees to each other
Messsignale (cos, sin) die jeweils zwei Halbbrückensignale (cosP, cosN; sinP, sinN) miteinander kombiniert werden, um somit die zwei entsprechende Offset-Werte (cosOFF; sinOFF) zu bestimmen. Measuring signals (cos, sin) the two half-bridge signals (cosP, cosN, sinP, sinN) are combined with each other, so as to determine the two corresponding offset values (cosOFF, sinOFF).
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ein erster Satz von zwei Halbbrückensignalen (cosP, cosN) anhand der folgenden Formel kombiniert werden, um einen ersten Offset-Wert (cosOFF) zu bestimmen: A method according to claim 7, characterized in that a first set of two half-bridge signals (cosP, cosN) are combined using the following formula to determine a first offset value (cosOFF):
(cosP+cosN) (Cosp cosN +)
cosOFF = X * cosOFF = X *
Y Y
und dass ein zweiter Satz von zwei Halbbrückensignalen (sinP, sinN) anhand der folgenden Formel kombiniert werden, um einen zweiten Offset-Wert (sinOFF) zu bestimmen: and in that a second set of two half-bridge signals (sinP, sinN) are combined using the following formula to determine a second offset value (sinOFF):
. , (sinP+sinN) , , (sinP + sinN)
sinOFF = X * wobei X, X' und Y, Y' Wichtungsfaktoren sind,
und wobei insbesondere X und X' gleich sind sowie Y und Y gleich sind. sinOFF = X * where X, X 'and Y, Y' are weighting factors, and in particular X and X 'are the same and Y and Y are the same.
9. Vorrichtung zur Rotorlagediagnose in einem elektromotorischen Antrieb, wobei die Vorrichtung eine an dem Rotor oder an einer damit verbundenen Welle angeordnete Sensoreinheit (S) aufweist, die mehrere magnetoresistive Sensorelemente (TMR) aufweist, die miteinander verschalten sind, um mindestens zwei als Vollbrücken (VB, VB') dienende 9. Device for rotor position diagnosis in an electromotive drive, wherein the device has a sensor unit (S) arranged on the rotor or on a shaft connected thereto, which has a plurality of magnetoresistive sensor elements (TMR) which are interconnected by at least two full bridges ( VB, VB ')
Messbrückenschaltungen zu bilden, die mindestens zwei zueinander phasenverschobene Messsignale (cos, sin) für eine Signalverarbeitung zu liefern, wobei die Vorrichtung eine mit der Sensoreinheit (S) verbundene Signalverarbeitungseinheit für die Signalverarbeitung aufweist, To form measuring bridge circuits which provide at least two mutually phase-shifted measuring signals (cos, sin) for signal processing, the device having a signal processing unit connected to the sensor unit (S),
dadurch gekennzeichnet, dass characterized in that
zur Erkennung von in den Messsignalen auftretenden Fehlern die for detecting errors occurring in the measuring signals the
Signalverarbeitungseinheit zwei Halbbrückensignale (cosP, cosN), welche die Halbbrücken (HB1 , HB2) derselben Vollbrücke (VB) liefern, miteinander kombiniert und auswertet. Signal processing unit two half-bridge signals (cosP, cosN), which provide the half-bridges (HB1, HB2) of the same full bridge (VB) combined and evaluated.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die 10. Apparatus according to claim 9, characterized in that the
Sensoreinheit (S) als magnetoresistive Sensorelemente, GMR-, AMR- oder TMR Sensorelemente (TMR) aufweist. Sensor unit (S) as magnetoresistive sensor elements, GMR, AMR or TMR sensor elements (TMR).
11 . Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass genau zwei als Vollbrücken (VB, VB') dienende Messbrückenschaltungen gebildet sind, die mindestens zwei um 90 Grad zueinander phasenverschobene Messsignale (cos, sin) als Vollbrückensignale für die 11. Method according to claim 9 or 10, characterized in that exactly two measuring bridge circuits serving as full bridges (VB, VB ') are formed which comprise at least two measuring signals (cos, sin) phase-shifted by 90 degrees to each other as full-bridge signals for the
Signalverarbeitungseinheit liefern. Deliver signal processing unit.
12. Verfahren nach einem der Ansprüche 9-11 , dadurch gekennzeichnet, dass die Signalverarbeitungseinheit die zwei Halbbrückensignale (cosP, cosN) durch Summenbildung zu einem Summensignal (cosP + cosN) kombiniert.
12. The method according to any one of claims 9-11, characterized in that the signal processing unit combines the two half-bridge signals (cosP, cosN) by summation to a sum signal (cosP + cosN).
13. Vorrichtung nach einem der Ansprüche 9-12, dadurch gekennzeichnet, dass die Signalverarbeitungseinheit die zwei Halbbrückensignale (cosP, cosN) anhand der folgenden Formel kombiniert, um einen Offset-Wert (cosOFF) zu bestimmen: 13. Device according to one of claims 9-12, characterized in that the signal processing unit combines the two half-bridge signals (cosP, cosN) using the following formula to determine an offset value (cosOFF):
(cosP+cosN) (Cosp cosN +)
cosOFF = X * cosOFF = X *
Y Y
wobei X und Y Wichtungsfaktoren sind. where X and Y are weighting factors.
14. Vorrichtung nach einem der Ansprüche 9-12, dadurch gekennzeichnet, dass die Signalverarbeitungseinheit die zwei Halbbrückensignale (sinP, sinN) anhand der folgenden Formel kombiniert, um einen Offset-Wert (sinOFF) zu bestimmen: 14. Device according to one of claims 9-12, characterized in that the signal processing unit combines the two half-bridge signals (sinP, sinN) using the following formula to determine an offset value (sinOFF):
. (sinP+sinN) , (SINP + sense)
sinOFF = X * sinOFF = X *
Y Y
wobei X und Y Wichtungsfaktoren sind. where X and Y are weighting factors.
15. Elektromotorischer Antrieb, insbesondere für eine Hilfskraftlenkung, mit einer Vorrichtung nach einem der Ansprüche 9-14.
15. Electromotive drive, in particular for a power steering system, with a device according to one of claims 9-14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016103518.1A DE102016103518B4 (en) | 2016-02-29 | 2016-02-29 | Method and device for rotor position diagnosis in an electric motor drive |
DE102016103518.1 | 2016-02-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017148625A1 true WO2017148625A1 (en) | 2017-09-08 |
Family
ID=57890823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/051532 WO2017148625A1 (en) | 2016-02-29 | 2017-01-25 | Method and device for rotor position diagnosis in an electric-motor drive |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102016103518B4 (en) |
WO (1) | WO2017148625A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11231297B2 (en) | 2020-01-09 | 2022-01-25 | Robert Bosch Gmbh | Providing availability of rotary position sensor information after hardware failures |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021205125A1 (en) | 2021-05-20 | 2022-11-24 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for monitoring a condition of a sensor magnet of a steering device |
CN113295881A (en) * | 2021-06-17 | 2021-08-24 | 工业互联网创新中心(上海)有限公司 | High-precision wire feeding speed measuring device and method for general industrial welding machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1271093A2 (en) * | 2001-06-27 | 2003-01-02 | Philips Corporate Intellectual Property GmbH | Adjustment of a magnetoresistive angle sensor |
DE10250319A1 (en) | 2002-10-29 | 2003-10-30 | Bosch Gmbh Robert | Device for determining the rotation of a shaft comprises a shaft, a transmitting magnet arranged on the surface of a front side of the shaft or integrated in the region of the surface of the front side, and a GMR sensor element |
US20110087456A1 (en) * | 2009-10-09 | 2011-04-14 | Denso Corporation | Rotation angle detection device and electric power steering system |
US20130264915A1 (en) * | 2010-12-28 | 2013-10-10 | Hitachi Automotive Systems, Ltd. | Magnetic Field Angle Measurement Apparatus, Rotation Angle Measurement Apparatus, and Rotation Machine, System, Vehicle, and Vehicle Drive Apparatus Each Using Same Rotation Angle Measurement Apparatus |
EP2752645A2 (en) * | 2013-01-08 | 2014-07-09 | Jtekt Corporation | Abnormality detection system for rotation angle sensor |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4292571B2 (en) * | 2003-03-31 | 2009-07-08 | 株式会社デンソー | Magnetic sensor adjustment method and magnetic sensor adjustment device |
JP5156671B2 (en) * | 2009-02-27 | 2013-03-06 | 株式会社日立製作所 | Magnetic field detection device and measurement device |
JP5375796B2 (en) * | 2010-11-05 | 2013-12-25 | 株式会社デンソー | Rotation angle detection device and electric power steering device using the same |
JP6083428B2 (en) * | 2014-12-16 | 2017-02-22 | トヨタ自動車株式会社 | Electric power steering device for vehicle |
DE102014119531B4 (en) * | 2014-12-23 | 2019-06-27 | Infineon Technologies Ag | sensor circuit |
US9625281B2 (en) * | 2014-12-23 | 2017-04-18 | Infineon Technologies Ag | Fail-safe operation of an angle sensor with mixed bridges having separate power supplies |
-
2016
- 2016-02-29 DE DE102016103518.1A patent/DE102016103518B4/en active Active
-
2017
- 2017-01-25 WO PCT/EP2017/051532 patent/WO2017148625A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1271093A2 (en) * | 2001-06-27 | 2003-01-02 | Philips Corporate Intellectual Property GmbH | Adjustment of a magnetoresistive angle sensor |
DE10250319A1 (en) | 2002-10-29 | 2003-10-30 | Bosch Gmbh Robert | Device for determining the rotation of a shaft comprises a shaft, a transmitting magnet arranged on the surface of a front side of the shaft or integrated in the region of the surface of the front side, and a GMR sensor element |
US20110087456A1 (en) * | 2009-10-09 | 2011-04-14 | Denso Corporation | Rotation angle detection device and electric power steering system |
US20130264915A1 (en) * | 2010-12-28 | 2013-10-10 | Hitachi Automotive Systems, Ltd. | Magnetic Field Angle Measurement Apparatus, Rotation Angle Measurement Apparatus, and Rotation Machine, System, Vehicle, and Vehicle Drive Apparatus Each Using Same Rotation Angle Measurement Apparatus |
EP2752645A2 (en) * | 2013-01-08 | 2014-07-09 | Jtekt Corporation | Abnormality detection system for rotation angle sensor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11231297B2 (en) | 2020-01-09 | 2022-01-25 | Robert Bosch Gmbh | Providing availability of rotary position sensor information after hardware failures |
Also Published As
Publication number | Publication date |
---|---|
DE102016103518B4 (en) | 2024-10-24 |
DE102016103518A1 (en) | 2017-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102016102927B4 (en) | Sensor error detection | |
DE102011081389B4 (en) | Rotating field sensor | |
DE102009042473B4 (en) | Method for evaluating signals of an angle sensor | |
DE10048911C1 (en) | Method and device for determining the absolute position in position and angle encoders | |
DE68917191T2 (en) | Torque detection device with error signal. | |
DE102011083249A1 (en) | Rotating field sensor | |
DE102016102929B4 (en) | Sensor error detection | |
DE112017001473T5 (en) | Rotation detection device | |
EP3884239B1 (en) | Angle sensor with multipole magnet for motor vehicle steering | |
DE102011055000A1 (en) | A rotation angle detecting device and an electric power steering device using the same | |
WO2009068695A1 (en) | Absolute measurement steering angle sensor arrangement | |
EP3721175B1 (en) | Sensor system for determining at least one rotational property of an element rotating around at least one rotation axis | |
DE102017116297A1 (en) | Angle sensor and angle sensor system | |
DE102017111979A1 (en) | Angle sensor, correction method for use with the angle sensor and angle sensor system | |
DE112017005343T5 (en) | Electric power steering system | |
EP1853927B1 (en) | Motion sensor equipped with encoder monitoring circuit and corresponding encoder monitoring method | |
WO2017148625A1 (en) | Method and device for rotor position diagnosis in an electric-motor drive | |
DE102009055275A1 (en) | Sensor arrangement for combined speed-torque detection | |
DE102013225930A1 (en) | Method for detecting a torque applied to a shaft | |
EP3833936B1 (en) | Sensor system for determining at least one rotation characteristic of a rotating element | |
EP1511973B1 (en) | Method and device for detection of the movement of an element | |
DE19947761A1 (en) | Method and circuit arrangement for determining a direction of an external magnetic field | |
DE102012223581A1 (en) | Apparatus and method for monitoring signal levels | |
DE102013218954A1 (en) | Method and device for detecting a rotation angle of a rotor in an electric motor by means of counters with opposite count directions. | |
DE102021105352A1 (en) | Sensor, in particular torque or angle of rotation sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17701488 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17701488 Country of ref document: EP Kind code of ref document: A1 |