WO2017141614A1 - Tsunami observation device, tsunami observation system, and tsunami observation method - Google Patents
Tsunami observation device, tsunami observation system, and tsunami observation method Download PDFInfo
- Publication number
- WO2017141614A1 WO2017141614A1 PCT/JP2017/001681 JP2017001681W WO2017141614A1 WO 2017141614 A1 WO2017141614 A1 WO 2017141614A1 JP 2017001681 W JP2017001681 W JP 2017001681W WO 2017141614 A1 WO2017141614 A1 WO 2017141614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tsunami
- observation
- unit
- tsunami observation
- gnss
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 32
- 238000004891 communication Methods 0.000 claims description 29
- 238000000605 extraction Methods 0.000 claims description 22
- 239000000284 extract Substances 0.000 claims description 7
- 230000002123 temporal effect Effects 0.000 abstract 1
- 230000001133 acceleration Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 18
- 238000012937 correction Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004880 explosion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C13/00—Surveying specially adapted to open water, e.g. sea, lake, river or canal
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/14—Receivers specially adapted for specific applications
- G01S19/17—Emergency applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/52—Determining velocity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/53—Determining attitude
- G01S19/54—Determining attitude using carrier phase measurements; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/08—Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Definitions
- the present invention relates to a tsunami observation apparatus, a tsunami observation system, and a tsunami observation method for observing a tsunami using a GNSS signal.
- the position observation system of Patent Document 1 includes a target position observation station installed on a buoy at sea and a reference station installed on the ground.
- the target position observation station is located at the position where you want to observe the tide level and wave height.
- a plurality of intermediate position observation stations are arranged between the target position observation station and the reference station.
- the three-dimensional observation positions of all the observation stations are calculated in the order closer to the reference station.
- RTK real-time kinematic positioning is used when calculating the three-dimensional observation position of each observation station.
- the position measuring device of Patent Document 4 includes a reference station installed on the ground and an observation GPS receiver installed on a maritime buoy.
- the observation GPS receiver receives a GPS signal, calculates observation distance measurement data, and transmits it to the reference station.
- the reference station calculates the buoy displacement by RTK positioning using the observation distance measurement data.
- JP 2006-71561 A Japanese Patent No. 4588065 Patent No. 5008430 Japanese Patent No. 5253667
- the tsunami observation apparatus of the present invention includes a plurality of GNSS antennas, a sensor unit, an attitude angle calculation unit, and an observation unit.
- the plurality of GNSS antennas respectively receive a plurality of GNSS signals.
- the sensor unit holds a plurality of GNSS antennas in a predetermined positional relationship.
- the attitude angle calculation unit calculates the attitude angle of the sensor unit using the carrier phase of the plurality of GNSS signals.
- the observation unit observes the tsunami using the time change of the attitude angle.
- the attitude angle is calculated with high accuracy from the carrier wave phase. Therefore, the time change of the attitude angle is calculated with high accuracy, and the tsunami is accurately observed.
- FIG. 1 is a functional block diagram of a tsunami observation apparatus according to the first embodiment of the present invention.
- FIG. 2 is a functional block diagram of the observation unit according to the first embodiment of the present invention.
- FIG. 3 is a diagram illustrating an example of parameters that can be measured by the sensor unit of the tsunami observation apparatus according to the first embodiment of the present invention.
- the tsunami observation apparatus 10 includes a sensor unit 20 and an observation unit 40.
- the sensor unit 20 includes GNSS antennas 211 and 212, GNSS receivers 221 and 222, an acceleration sensor 23, and an attitude angle calculator 30.
- the GNSS antennas 211 and 212, the GNSS receivers 221 and 222, the acceleration sensor 23, and the attitude angle calculator 30 are housed in the sensor unit 20. Note that the attitude angle calculation unit 30 may not be accommodated in the sensor unit 20.
- the tsunami observation apparatus 10 is installed in a ship 100.
- the GNSS antennas 211 and 212 of the sensor unit 20 are arranged in an open sky environment (see FIG. 3) in the ship 100.
- the GNSS antenna 211 and the GNSS antenna 212 are held in the sensor unit 20 in a predetermined positional relationship in advance.
- the sensor unit 20 is fixed to the ship 100 in a predetermined posture in advance.
- the relationship between the direction connecting the GNSS antenna 211 and the GNSS antenna 212 and the direction connecting the bow and stern of the ship 100 becomes known.
- the direction connecting the GNSS antenna 211 and the GNSS antenna 212 and the direction connecting the bow and stern of the ship 100 are parallel.
- the GNSS antenna 211 is connected to the GNSS receiving unit 221.
- the GNSS antenna 211 receives the GNSS signal and outputs it to the GNSS receiving unit 221.
- the GNSS antenna 212 is connected to the GNSS receiving unit 222.
- the GNSS antenna 212 receives the GNSS signal and outputs it to the GNSS receiving unit 222.
- the GNSS signal is transmitted from the GNSS satellite SAT. 1 and 3, only one GNSS satellite SAT is shown, but there are a plurality of GNSS satellites, and the GNSS antennas 211 and 212 receive GNSS signals from the plurality of GNSS satellites. is doing.
- the acceleration sensor 23 detects at least one-axis acceleration and outputs it to the attitude angle calculation unit 30.
- the acceleration sensor 23 detects the acceleration at least at the same timing as the carrier phase calculation timing of the GNSS receivers 221 and 222.
- the observation unit 40 observes the tsunami using the time change of the posture angle.
- the observation unit 40 can output the tsunami observation result to the outside.
- the observation unit 40 observes the tsunami by specifically performing the following processing.
- the 1st frequency component extraction part 42 extracts the 1st frequency component of the tsunami in a posture angle change using the concept shown next.
- the period of the tsunami is, for example, 2 minutes or more, and the period of the wave is about 10 seconds at the longest. That is, the period of the tsunami is longer than the period of the wave.
- the first frequency component extraction unit 42 performs a Fourier transform process on the posture angle change.
- the first frequency component extraction unit 42 extracts the first frequency component from the frequency spectrum obtained by the Fourier transform.
- the first frequency component extraction unit 42 may extract the first frequency component using a low-pass filter, a band-pass filter, or the like.
- the first frequency component extraction unit 42 outputs the first frequency component to the determination unit 43.
- the determination part 43 determines the presence or absence of a tsunami using the first frequency component. Specifically, the determination unit 43 stores a tsunami determination threshold value in advance. If the level (amplitude) of the first frequency component is equal to or greater than the threshold value, the determination unit 43 determines that a tsunami has occurred. The determination unit 43 determines that it is not a tsunami if the level of the first frequency component is less than the threshold value. Thereby, the observation part 40 can obtain the observation result of the tsunami. The determination unit 43 can determine the presence / absence of a tsunami using at least one posture angle component in a three-dimensional posture angle. However, by using all the posture angle components of the three-dimensional posture angle, it is possible to more accurately determine the presence or absence of a tsunami.
- the observation result output by the observation unit 40 includes the determination result of the presence or absence of this tsunami.
- the attitude angle can be calculated with high accuracy using the carrier wave phase.
- the posture angle change can be calculated with high accuracy. Therefore, the tsunami can be observed accurately.
- the determination unit 43 can also calculate the height of the tsunami using the amount of change in the carrier phase and the detection value of the acceleration sensor. As a result, not only the presence / absence of the tsunami but also the height of the tsunami can be calculated with high accuracy as the tsunami observation result.
- FIG. 4 is a flowchart of the tsunami observation method according to the first embodiment of the present invention.
- the processing device calculates the attitude angle using the GNSS signals received by the plurality of GNSS antennas 211 and 212 (S101).
- the processing device calculates a change in posture angle over time (a change in posture angle) from a plurality of posture angles (S102).
- the processing device extracts the first frequency component of the tsunami in the posture angle change (S103).
- the processing device determines the presence or absence of a tsunami using the first frequency component (S104).
- FIG. 5 is a functional block diagram of a tsunami observation apparatus according to the second embodiment of the present invention.
- the tsunami observation apparatus 10A according to the second embodiment of the present invention is provided with a radio communication unit 50 and a radio communication antenna 60, and thus the tsunami observation apparatus 10 according to the first embodiment. And different.
- the other configuration of the tsunami observation apparatus 10A is the same as that of the tsunami observation apparatus 10 according to the first embodiment, and the description of the same points is omitted.
- the tsunami observation apparatus 10A includes a wireless communication unit 50 and a wireless communication antenna 60. Tsunami observation results are input from the observation unit 40 to the wireless communication unit 50.
- the tsunami observation result includes the above-described tsunami determination result (a determination result indicating that there is at least a tsunami).
- the wireless communication unit 50 generates tsunami observation data for external transmission from the tsunami observation result.
- the wireless communication unit 50 transmits the tsunami observation data to the outside via the wireless communication antenna 60. With this configuration, the tsunami observation apparatus 10A can notify the observation result of the tsunami to the outside.
- FIG. 6 is a flowchart of the tsunami observation method according to the second embodiment of the present invention.
- Steps S101 to S104 shown in FIG. 6 are the same as steps S101 to S104 shown in FIG.
- the processing device generates tsunami observation data for external transmission from the tsunami observation result including the tsunami determination result (S105).
- the processing device transmits tsunami observation data to the outside (S106).
- FIG. 7 is a diagram illustrating a configuration of a tsunami observation system according to the second embodiment.
- the tsunami observation system 1 includes a ship 100 to which a tsunami observation apparatus 10A is attached and a base station 110.
- the ship 100 is navigating or stopping on the sea.
- Base station 110 is located on the ground.
- the base station 110 is preferably arranged at a position that is not affected by the tsunami.
- the base station 110 does not need to transmit the correction information for positioning to the tsunami observation apparatus 10A. Therefore, in order to improve the accuracy of the correction information, it is not necessary to arrange on the coast near the tsunami observation apparatus 10A. Therefore, the base station 110 may be arranged at a position where it can receive tsunami observation data even if an earthquake or the like occurs.
- Tsunami observation data is transmitted from the radio communication antenna 60 of the tsunami observation apparatus 10 and received by the base station 110 via the communication satellite TSAT.
- the tsunami observation apparatus 10A can accurately observe the tsunami. Therefore, the tsunami observation system 1 can notify accurate tsunami information to the outside.
- FIG. 8 is a functional block diagram of a tsunami observation apparatus according to the third embodiment of the present invention.
- the observation unit 40B includes an attitude angle change calculation unit 41, a first frequency component extraction unit 42, a determination unit 43B, a speed calculation unit 44, and a second frequency component extraction unit 45.
- the posture angle change calculation unit 41 and the first frequency component extraction unit 42 are the same as the posture angle change calculation unit 41 and the first frequency component extraction unit 42 of the observation unit 40 according to the first embodiment, respectively.
- the velocity calculation unit 44 calculates the height direction velocity using the carrier wave phase. Specifically, the speed calculation unit 44 acquires the carrier wave phase from the GNSS reception units 221 and 222. The speed calculation unit 44 calculates the amount of change in the position of the GNSS antenna in the height direction (z-axis direction in FIG. 3) from the amount of change in the carrier phase. The speed calculation unit 44 calculates the height direction speed by dividing the amount of change in position by time. The speed calculation unit 44 outputs the height direction speed to the second frequency component extraction unit 45.
- the second frequency component extraction unit 45 extracts the second frequency component of the tsunami at the height direction speed.
- the second frequency component extraction method in the second frequency component extraction unit 45 is the same as the first frequency component extraction method in the first frequency component extraction unit 42.
- the second frequency component extraction unit 45 outputs the second frequency component to the determination unit 43B.
- the determination unit 43B determines the presence or absence of a tsunami from the first frequency component and the second frequency component.
- the method for determining the presence / absence of a tsunami from the second frequency component is the same as the method for determining the presence / absence of a tsunami from the first frequency component.
- Steps S101 to S103 shown in FIG. 9 are the same as steps S101 to S103 shown in FIG.
- the processing device calculates the height direction velocity from the carrier phase (S112).
- the processing device extracts the second frequency component of the tsunami at the height direction speed (S113).
- the processing apparatus determines a tsunami using the first frequency component and the second frequency component (S114).
- FIG. 10 is a functional block diagram of another configuration of the tsunami observation apparatus according to the third embodiment of the present invention.
- the acceleration is input from the acceleration sensor 23 to the velocity calculation unit 44 of the observation unit 40B ′.
- This acceleration should just include the acceleration of a height direction.
- the speed calculation unit 44 calculates the height direction speed by integrating (integrating) the acceleration in the height direction. At this time, the speed calculation unit 44 may estimate the detection error of the acceleration sensor 23 using the posture angle and use the acceleration corrected by the detection error.
- FIG. 11 is a functional block diagram of an observation unit of a tsunami observation apparatus according to the fourth embodiment of the present invention.
- the tsunami observation apparatus 10C according to the present embodiment is different from the tsunami observation apparatus 10B according to the third embodiment in the configuration of the observation unit 40C.
- Other configurations of the tsunami observation apparatus 10C according to the present embodiment are the same as those of the tsunami observation apparatus 10B according to the third embodiment, and the description of the same portions is omitted.
- the observation unit 40C is different from the observation unit 40B in that it further includes a direction calculation unit 46.
- the determination unit 43C is the same as the determination unit 43B, and the description of the determination unit 43C is omitted.
- the direction calculation unit 46 calculates the traveling direction of the tsunami from the frequency component of the tsunami in the posture angle change. For example, it is assumed that a tsunami has progressed from an oblique forward of the bow to a ship to which the tsunami observation device 10C is attached. In this case, all of yaw angle ⁇ (psi), pitch angle ⁇ (theta), and roll angle ⁇ (phi) change. On the other hand, it is assumed that the tsunami has progressed straight from the bow direction. In this case, the yaw angle ⁇ (psi) and the pitch angle ⁇ (theta) change, but the roll angle ⁇ (phi) hardly changes. Thus, the traveling direction of the tsunami can be calculated by calculating the posture angle change.
- the direction calculation unit 46 calculates the traveling direction of the tsunami when the determination unit 43C determines that there is a tsunami.
- the direction calculation unit 46 calculates a direction related to an external force such as a wave from the posture angle change.
- the direction calculation part 46 may calculate the advancing direction of a tsunami from the direction which external force when it determines with the determination part 43C having a tsunami.
- the configuration of the present embodiment it is possible to calculate not only the presence / absence of a tsunami but also the traveling direction of the tsunami.
- the presence / absence of the tsunami and the traveling direction of the tsunami can be used as observation results.
- the traveling direction of the tsunami is calculated based on a highly accurate change in the baseline vector using the carrier phase, the traveling direction of the tsunami can be calculated with high accuracy.
- the tsunami speed can also be calculated from the posture angle change.
- the force received by the ship can be calculated from the attitude angle change, and the acceleration and speed can be calculated from the force. Thereby, more information about the tsunami can be obtained as an observation result.
- each tsunami observation process has been performed by a plurality of functional units shown in FIG.
- each of the above-described processes may be programmed, the program may be stored in a storage unit, and the program may be executed by a processing device (processor) such as a computer.
- the process may be performed according to the flow shown in FIG.
- FIG. 12 is a flowchart of the tsunami observation method according to the fourth embodiment of the present invention.
- Steps S101 to S103 and S112 to S114 shown in FIG. 12 are the same as steps S101 to S103 and S112 to S114 shown in FIG.
- the processing device detects the traveling direction of the tsunami from the frequency component of the tsunami in the posture angle change (S121).
- the tsunami observation apparatus 10D according to the present embodiment is different from the tsunami observation apparatus 10 according to the first embodiment in that it includes a position calculation unit 70 and a time calculation unit 80.
- the GNSS receiving unit 221 outputs the code phase of the GNSS signal and the navigation message obtained by tracking the GNSS signal to the position calculating unit 70 and the time calculating unit 80.
- the position calculation unit 70 calculates a code pseudo distance from the code phase.
- the position calculation unit 70 acquires the satellite position from the navigation message.
- the position calculation unit 70 calculates the position of the tsunami observation apparatus 10D using the code pseudorange and the satellite position.
- the position calculation unit 70 outputs the position of the tsunami observation device 10D to the determination unit 43D of the observation unit 40D.
- the determination unit 43D determines the tsunami by the same method as the observation unit 40 according to the first embodiment, and detects the position and time when it is determined that there is a tsunami.
- the determination unit 43D sets the detected position as the tsunami observation position, and sets the detected time as the tsunami observation time. Thereby, the observation position and the observation time can be included in the observation result.
- FIG. 14 is a diagram showing a configuration of a tsunami observation system according to the sixth embodiment of the present invention.
- FIG. 15 is a diagram showing a configuration of a tsunami observation system according to the seventh embodiment of the present invention.
- a tsunami observation apparatus 10A ′ is attached to each ship 101, 102, 103.
- the tsunami observation apparatus 10A ′ includes a combination of the tsunami observation apparatuses 10A, 10B, 10C, and 10D shown in the second, third, and fourth embodiments.
- the tsunami observation data generated by the tsunami observation apparatus 10A ′ includes the presence / absence of the tsunami, the observation position, the observation time, and the traveling direction of the tsunami.
- Each tsunami observation device 10A ′ transmits tsunami observation data to the base station 110.
- the tsunami observation data of the ship 103 close to the base station 110 uses terrestrial radio communication and is far from the base station 110 (at a distance where terrestrial radio communication cannot reach).
- the tsunami observation data of the ships 101 and 102 may use the communication satellite TSAT. All ships may use the communication satellite TSAT. Conversely, all ships can use terrestrial wireless communication. However, tsunami observation data can be obtained from a greater distance by using the communication satellite TSAT, which is effective.
- the ships 101, 102, and 103 may be anchored at a predetermined position in advance, and the current position of the ships 101, 102, and 103 that are in navigation may be set as the tsunami observation position.
- Each tsunami observation apparatus 10A ′ generates tsunami observation data at predetermined time intervals (S202). Each tsunami observation apparatus 10A ′ transmits tsunami observation data to the base station 110, and the base station 110 receives these tsunami observation data (S203). The base station 110 estimates the behavior of the tsunami using the received tsunami observation data (S204).
- the sensor unit of the tsunami observation device can be used as a ship attitude sensor in normal times, and can be used as a part of the tsunami observation device when tsunami observation is necessary. This eliminates the need for a new tsunami observation device.
- the ship is equipped with a power supply, the power supply of the tsunami observation device can be secured stably by using the ship.
- ships that are sailing or anchored at sea are less likely to be out of power due to the tsunami. Therefore, it is possible to prevent the tsunami observation apparatus from stopping during the tsunami observation, and to reliably obtain the tsunami observation data when necessary.
- buoys must be maintained frequently. For this reason, buoys are troublesome to maintain, and in particular, when buoys are arranged at positions far from the coast for early detection of tsunami, the maintenance becomes even more troublesome and the practicality is greatly reduced.
- this problem can be solved by using an attitude angle sensor attached to the ship. Specifically, since it is attached to a ship, it is not necessary to move on the sea for maintenance.
- the carrier phase of the GNSS signal since the carrier phase of the GNSS signal is used, a mechanical component that physically operates in accordance with the posture, such as a gyrocompass, is not used. Therefore, the frequency of performing maintenance can be greatly reduced, and the work load related to maintenance can be greatly reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Networks & Wireless Communication (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Acoustics & Sound (AREA)
- Hydrology & Water Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
[Problem] To accurately observe a tsunami without using a reference station. [Solution] A tsunami observation device (10) is provided with the following: a plurality of GNSS antennas (211, 212); a sensor unit (20); an attitude-angle calculation unit (30); and an observation unit (40). The plurality of GNSS antennas (211, 212) receive a plurality of GNSS signals respectively. The sensor unit (20) maintains the plurality of GNSS antennas (211, 212) in a prescribed positional relationship. The attitude-angle calculation unit (30) calculates the attitude angle of the sensor unit (20) using the carrier wave phase of a plurality of GNSS signals. The observation unit (40) observes a tsunami using the temporal change of the attitude angle.
Description
本発明は、GNSS信号を利用して津波を観測する津波観測装置、津波観測システム、津波観測方法に関する。
The present invention relates to a tsunami observation apparatus, a tsunami observation system, and a tsunami observation method for observing a tsunami using a GNSS signal.
従来、潮位や波高等の海面変位を観測する装置およびシステムが各種考案されている。
Conventionally, various devices and systems for observing sea level displacement such as tide level and wave height have been devised.
特許文献1の位置観測システムは、海上のブイに設置された目標位置観測局と、地上に設置された基準局とを備える。目標位置観測局は、潮位や波高を観測したい位置に配置されている。この位置観測システムでは、目的位置観測局と基準局との間に、複数の中間位置観測局が配置されている。この位置観測システムでは、全ての観測局の三次元の観測位置を、基準局から近い順に算出する。この位置観測システムでは、各観測局の三次元の観測位置を算出する際にRTK(リアルタイムキネマティック)測位が用いられている。
The position observation system of Patent Document 1 includes a target position observation station installed on a buoy at sea and a reference station installed on the ground. The target position observation station is located at the position where you want to observe the tide level and wave height. In this position observation system, a plurality of intermediate position observation stations are arranged between the target position observation station and the reference station. In this position observation system, the three-dimensional observation positions of all the observation stations are calculated in the order closer to the reference station. In this position observation system, RTK (real-time kinematic) positioning is used when calculating the three-dimensional observation position of each observation station.
特許文献2の津波検知システムは、地上に設置された基準局と、海上のブイに設置された移動局とを備える。移動局は、測位データを観測し、基準局に送信する。基準局は、RTK測位を用いて、移動局の水平位置の変化を算出し、津波を検知する。
The tsunami detection system of Patent Document 2 includes a reference station installed on the ground and a mobile station installed on a maritime buoy. The mobile station observes the positioning data and transmits it to the reference station. The reference station calculates a change in the horizontal position of the mobile station using RTK positioning and detects a tsunami.
特許文献3の津波・波浪観測設備は、海上の係留ブイに設置されたGPS受信機と、地上に設置された基地局とを備える。係留ブイに設置されたGPS受信機は、GPS信号を受信して計測データを取得し、基地局に送信する。基地局は、受信した計測データを用いてRTK測位によって、係留ブイの変位を算出する。
The tsunami / wave observation facility described in Patent Document 3 includes a GPS receiver installed on a mooring buoy at sea and a base station installed on the ground. A GPS receiver installed in the mooring buoy receives a GPS signal, acquires measurement data, and transmits it to the base station. The base station calculates the displacement of the mooring buoy by RTK positioning using the received measurement data.
特許文献4の位置計測装置は、地上に設置された基準局と、海上のブイに設置された観測GPS受信機とを備える。観測GPS受信機は、GPS信号を受信して観測測距データを算出し、基準局に送信する。基準局は、観測測距データを用いてRTK測位によって、ブイの変位を算出する。
The position measuring device of Patent Document 4 includes a reference station installed on the ground and an observation GPS receiver installed on a maritime buoy. The observation GPS receiver receives a GPS signal, calculates observation distance measurement data, and transmits it to the reference station. The reference station calculates the buoy displacement by RTK positioning using the observation distance measurement data.
しかしながら、上述の各特許文献に記載の装置やシステムでは、RTK測位によって、海上の観測位置での変位、潮位、波高、津波を検出するため、地上の基準局(基地局)が必要となる。
However, in the devices and systems described in the above-mentioned patent documents, a ground reference station (base station) is required to detect displacement, tide level, wave height, and tsunami at an observation position at sea by RTK positioning.
また、基準局が停止してしまうと、測位用の補正情報を取得することができず、高精度な測位が実現できない。したがって、海上の観測位置での変位、潮位、波高、津波を算出することが容易ではなくなる。
Also, if the reference station stops, the correction information for positioning cannot be acquired, and high-accuracy positioning cannot be realized. Therefore, it is not easy to calculate the displacement, tide level, wave height, and tsunami at the observation position at sea.
この発明の目的は、基準局を用いなくても津波を正確に観測することが可能な津波観測装置、津波観測システム、津波観測方法を提供することにある。
An object of the present invention is to provide a tsunami observation apparatus, a tsunami observation system, and a tsunami observation method capable of accurately observing a tsunami without using a reference station.
この発明の津波観測装置は、複数のGNSSアンテナ、センサユニット、姿勢角算出部、および、観測部を備える。複数のGNSSアンテナは、複数のGNSS信号をそれぞれに受信する。センサユニットは、複数のGNSSアンテナを所定の位置関係で保持する。姿勢角算出部は、複数のGNSS信号の搬送波位相を用いて、センサユニットの姿勢角を算出する。観測部は、姿勢角の時間変化を用いて津波を観測する。
The tsunami observation apparatus of the present invention includes a plurality of GNSS antennas, a sensor unit, an attitude angle calculation unit, and an observation unit. The plurality of GNSS antennas respectively receive a plurality of GNSS signals. The sensor unit holds a plurality of GNSS antennas in a predetermined positional relationship. The attitude angle calculation unit calculates the attitude angle of the sensor unit using the carrier phase of the plurality of GNSS signals. The observation unit observes the tsunami using the time change of the attitude angle.
この構成では、搬送波位相から姿勢角が高精度に算出される。したがって、姿勢角の時間変化は高精度に算出され、津波は正確に観測される。
In this configuration, the attitude angle is calculated with high accuracy from the carrier wave phase. Therefore, the time change of the attitude angle is calculated with high accuracy, and the tsunami is accurately observed.
この発明によれば、基準局を用いなくても津波を正確に観測することができる。
According to this invention, it is possible to accurately observe a tsunami without using a reference station.
本発明の第1の実施形態に係る津波観測装置について、図を参照して説明する。図1は、本発明の第1の実施形態に係る津波観測装置の機能ブロック図である。図2は、本発明の第1の実施形態に係る観測部の機能ブロック図である。図3は、本発明の第1の実施形態に係る津波観測装置のセンサユニットで計測可能なパラメータの一例を示した図である。
The tsunami observation apparatus according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a functional block diagram of a tsunami observation apparatus according to the first embodiment of the present invention. FIG. 2 is a functional block diagram of the observation unit according to the first embodiment of the present invention. FIG. 3 is a diagram illustrating an example of parameters that can be measured by the sensor unit of the tsunami observation apparatus according to the first embodiment of the present invention.
図1に示すように、津波観測装置10は、センサユニット20と観測部40とを備える。センサユニット20は、GNSSアンテナ211,212、GNSS受信部221,222、加速度センサ23、および、姿勢角算出部30を備える。GNSSアンテナ211,212、GNSS受信部221,222、加速度センサ23、および、姿勢角算出部30は、センサユニット20に収容されている。なお、姿勢角算出部30は、センサユニット20に収容されていなくてもよい。
As shown in FIG. 1, the tsunami observation apparatus 10 includes a sensor unit 20 and an observation unit 40. The sensor unit 20 includes GNSS antennas 211 and 212, GNSS receivers 221 and 222, an acceleration sensor 23, and an attitude angle calculator 30. The GNSS antennas 211 and 212, the GNSS receivers 221 and 222, the acceleration sensor 23, and the attitude angle calculator 30 are housed in the sensor unit 20. Note that the attitude angle calculation unit 30 may not be accommodated in the sensor unit 20.
図3に示すように、津波観測装置10は、船舶100に設置されている。センサユニット20のGNSSアンテナ211,212は、船舶100におけるオープンスカイの環境(図3参照)に配置されている。GNSSアンテナ211とGNSSアンテナ212は、予め所定の位置関係でセンサユニット20に保持されている。センサユニット20は、予め所定の姿勢で船舶100に固定されている。これにより、GNSSアンテナ211とGNSSアンテナ212とを結ぶ方向と、船舶100の船首と船尾を結ぶ方向との関係は既知となる。例えば、図3の例のように、GNSSアンテナ211とGNSSアンテナ212とを結ぶ方向と、船舶100の船首と船尾を結ぶ方向とは、平行である。
As shown in FIG. 3, the tsunami observation apparatus 10 is installed in a ship 100. The GNSS antennas 211 and 212 of the sensor unit 20 are arranged in an open sky environment (see FIG. 3) in the ship 100. The GNSS antenna 211 and the GNSS antenna 212 are held in the sensor unit 20 in a predetermined positional relationship in advance. The sensor unit 20 is fixed to the ship 100 in a predetermined posture in advance. Thereby, the relationship between the direction connecting the GNSS antenna 211 and the GNSS antenna 212 and the direction connecting the bow and stern of the ship 100 becomes known. For example, as in the example of FIG. 3, the direction connecting the GNSS antenna 211 and the GNSS antenna 212 and the direction connecting the bow and stern of the ship 100 are parallel.
GNSSアンテナ211は、GNSS受信部221に接続されている。GNSSアンテナ211は、GNSS信号を受信して、GNSS受信部221に出力する。GNSSアンテナ212は、GNSS受信部222に接続されている。GNSSアンテナ212は、GNSS信号を受信して、GNSS受信部222に出力する。GNSS信号は、GNSS衛星SATから送信されている。なお、図1、図3では、GNSS衛星SATは、1つしか図示していないが、複数のGNSS衛星が存在しており、GNSSアンテナ211,212は、複数のGNSS衛星からのGNSS信号を受信している。
The GNSS antenna 211 is connected to the GNSS receiving unit 221. The GNSS antenna 211 receives the GNSS signal and outputs it to the GNSS receiving unit 221. The GNSS antenna 212 is connected to the GNSS receiving unit 222. The GNSS antenna 212 receives the GNSS signal and outputs it to the GNSS receiving unit 222. The GNSS signal is transmitted from the GNSS satellite SAT. 1 and 3, only one GNSS satellite SAT is shown, but there are a plurality of GNSS satellites, and the GNSS antennas 211 and 212 receive GNSS signals from the plurality of GNSS satellites. is doing.
GNSS受信部221は、GNSS信号を捕捉、追尾して、GNSS信号の搬送波位相を算出する。GNSS受信部221は、搬送波位相を姿勢角算出部30に出力する。GNSS受信部222は、GNSS信号を捕捉、追尾して、GNSS信号の搬送波位相を算出する。GNSS受信部222は、搬送波位相を姿勢角算出部30に出力する。GNSS受信部221,222は、所定の時間間隔(例えば、エポック毎)で、搬送波位相を算出して、姿勢角算出部30に出力する。
The GNSS receiver 221 captures and tracks the GNSS signal, and calculates the carrier phase of the GNSS signal. The GNSS receiver 221 outputs the carrier wave phase to the attitude angle calculator 30. The GNSS receiver 222 captures and tracks the GNSS signal and calculates the carrier phase of the GNSS signal. The GNSS receiver 222 outputs the carrier wave phase to the attitude angle calculator 30. The GNSS receivers 221 and 222 calculate the carrier wave phase at a predetermined time interval (for example, every epoch) and output the carrier wave phase to the attitude angle calculator 30.
加速度センサ23は、少なくとも1軸の加速度を検出して、姿勢角算出部30に出力する。加速度センサ23は、GNSS受信部221,222の搬送波位相の算出タイミングと少なくとも同じタイミングで加速度を検出している。
The acceleration sensor 23 detects at least one-axis acceleration and outputs it to the attitude angle calculation unit 30. The acceleration sensor 23 detects the acceleration at least at the same timing as the carrier phase calculation timing of the GNSS receivers 221 and 222.
姿勢角算出部30は、GNSS受信部221からの搬送波位相と、GNSS受信部222からの搬送波位相とを用いて、搬送波位相差を算出する。姿勢角算出部30は、搬送波位相差から、既知の方法を用いて姿勢角を算出する。姿勢角算出部30は、図3に示す三次元の姿勢角(ヨー角(ヘディング角)ψ(psi),ピッチ角θ(theta),ロール角φ(phi))を算出する。姿勢角算出部30は、姿勢角を観測部40に出力する。
The attitude angle calculation unit 30 uses the carrier phase from the GNSS reception unit 221 and the carrier phase from the GNSS reception unit 222 to calculate the carrier phase difference. The attitude angle calculation unit 30 calculates the attitude angle from the carrier wave phase difference using a known method. The posture angle calculation unit 30 calculates the three-dimensional posture angles (yaw angle (heading angle) ψ (psi), pitch angle θ (theta), roll angle φ (phi)) shown in FIG. The posture angle calculation unit 30 outputs the posture angle to the observation unit 40.
図2に示すように、観測部40は、姿勢角変化算出部41、第1周波数成分抽出部42、および、判定部43を備える。
As shown in FIG. 2, the observation unit 40 includes an attitude angle change calculation unit 41, a first frequency component extraction unit 42, and a determination unit 43.
観測部40は、姿勢角の時間変化を用いて津波を観測する。観測部40は、津波の観測結果を外部に出力することができる。観測部40は、具体的に次に示す処理を行って津波を観測する。
The observation unit 40 observes the tsunami using the time change of the posture angle. The observation unit 40 can output the tsunami observation result to the outside. The observation unit 40 observes the tsunami by specifically performing the following processing.
姿勢角変化算出部41は、複数時間の姿勢角の差分から姿勢角の時間変化(以下、「姿勢角変化」と称する。)を算出する。姿勢角変化算出部41は、姿勢角変化を第1周波数成分抽出部42に出力する。
The posture angle change calculation unit 41 calculates a change in posture angle over time (hereinafter referred to as “posture angle change”) from the difference in posture angle over a plurality of hours. The posture angle change calculation unit 41 outputs the posture angle change to the first frequency component extraction unit 42.
第1周波数成分抽出部42は、姿勢角変化における津波の第1周波数成分を、次に示す概念を用いて抽出する。津波の周期は、例えば2分以上であり、波の周期は、長くても10秒程度である。すなわち、津波の周期は、波の周期よりも長い。センサユニット20(津波観測装置10)が設置された船舶100は、津波や波からの力を受けると、姿勢角が変化する。この際、姿勢角の変化は、波の周期もしくは津波の周期に依存する。このため、津波による姿勢角変化の周期は、波による姿勢角変化の周期よりも長くなる。言い換えれば、津波による姿勢角変化の周波数は、波による姿勢角変化の周波数よりも低くなる。
1st frequency component extraction part 42 extracts the 1st frequency component of the tsunami in a posture angle change using the concept shown next. The period of the tsunami is, for example, 2 minutes or more, and the period of the wave is about 10 seconds at the longest. That is, the period of the tsunami is longer than the period of the wave. When the ship 100 in which the sensor unit 20 (tsunami observation apparatus 10) is installed receives a force from a tsunami or a wave, the attitude angle changes. At this time, the change in the posture angle depends on the wave period or the tsunami period. For this reason, the cycle of the posture angle change due to the tsunami is longer than the cycle of the posture angle change due to the wave. In other words, the attitude angle change frequency caused by the tsunami is lower than the frequency of the attitude angle change caused by the wave.
第1周波数成分抽出部42は、姿勢角変化をフーリエ変換処理する。第1周波数成分抽出部42は、このフーリエ変換によって得られる周波数スペクトルから第1周波数成分を抽出する。なお、第1周波数成分抽出部42は、ローパスフィルタやバンドパスフィルタ等を用いて、第1周波数成分を抽出してもよい。第1周波数成分抽出部42は、第1周波数成分を判定部43に出力する。
The first frequency component extraction unit 42 performs a Fourier transform process on the posture angle change. The first frequency component extraction unit 42 extracts the first frequency component from the frequency spectrum obtained by the Fourier transform. Note that the first frequency component extraction unit 42 may extract the first frequency component using a low-pass filter, a band-pass filter, or the like. The first frequency component extraction unit 42 outputs the first frequency component to the determination unit 43.
判定部43は、第1周波数成分を用いて津波の有無を判定する。具体的には、判定部43は、津波判定用の閾値を、予め記憶している。判定部43は、第1周波数成分のレベル(振幅)が閾値以上であれば、津波であると判定する。判定部43は、第1周波数成分のレベルが閾値未満であれば、津波ではないと判定する。これにより、観測部40は、津波の観測結果を得ることができる。なお、判定部43は、三次元の姿勢角における少なくとも1つの姿勢角成分を用いて、津波の有無を判定することができる。しかしながら、三次元の姿勢角の全ての姿勢角成分を用いることによって、津波の有無をより正確に判定することができる。観測部40が出力する観測結果には、この津波の有無の判定結果が含まれている。
The determination part 43 determines the presence or absence of a tsunami using the first frequency component. Specifically, the determination unit 43 stores a tsunami determination threshold value in advance. If the level (amplitude) of the first frequency component is equal to or greater than the threshold value, the determination unit 43 determines that a tsunami has occurred. The determination unit 43 determines that it is not a tsunami if the level of the first frequency component is less than the threshold value. Thereby, the observation part 40 can obtain the observation result of the tsunami. The determination unit 43 can determine the presence / absence of a tsunami using at least one posture angle component in a three-dimensional posture angle. However, by using all the posture angle components of the three-dimensional posture angle, it is possible to more accurately determine the presence or absence of a tsunami. The observation result output by the observation unit 40 includes the determination result of the presence or absence of this tsunami.
このように、本実施形態の構成を用いることによって、基地局からの測位用の補正情報を用いることなく、津波を観測することができる。また、本実施形態の構成を用いることによって、RTK測位を用いることなく、津波を観測することができる。
Thus, by using the configuration of this embodiment, it is possible to observe a tsunami without using correction information for positioning from a base station. Further, by using the configuration of the present embodiment, it is possible to observe a tsunami without using RTK positioning.
また、本実施形態の構成では、搬送波位相を用いて姿勢角を高精度に算出できる。これにより、姿勢角変化を高精度に算出することができる。したがって、津波を正確に観測することができる。
In the configuration of the present embodiment, the attitude angle can be calculated with high accuracy using the carrier wave phase. As a result, the posture angle change can be calculated with high accuracy. Therefore, the tsunami can be observed accurately.
なお、判定部43は、搬送波位相の変化量と加速度センサの検出値を用いて津波の高さを算出することもできる。これにより、津波の観測結果として、津波の有無のみでなく、津波の高さを高精度に算出することができる。
Note that the determination unit 43 can also calculate the height of the tsunami using the amount of change in the carrier phase and the detection value of the acceleration sensor. As a result, not only the presence / absence of the tsunami but also the height of the tsunami can be calculated with high accuracy as the tsunami observation result.
上述の説明では、津波の観測の各処理を、図1、図2に示した複数の機能部によって実行する態様を示した。しかしながら、上述の各処理をプログラム化し、当該プログラムを記憶部に記憶して、コンピュータ等の処理装置(プロセッサ)で、このプログラムを実行してもよい。この場合、図4に示すフローに準じて処理を行えばよい。図4は、本発明の第1の実施形態に係る津波観測方法のフローチャートである。
In the above description, a mode in which each process of tsunami observation is executed by the plurality of functional units shown in FIGS. However, each of the above-described processes may be programmed, the program may be stored in a storage unit, and the program may be executed by a processing device (processor) such as a computer. In this case, the processing may be performed according to the flow shown in FIG. FIG. 4 is a flowchart of the tsunami observation method according to the first embodiment of the present invention.
処理装置は、複数のGNSSアンテナ211,212で受信したGNSS信号を用いて、姿勢角を算出する(S101)。処理装置は、複数時間の姿勢角から姿勢角の時間変化(姿勢角変化)を算出する(S102)。処理装置は、姿勢角変化における津波の第1周波数成分を抽出する(S103)。処理装置は、第1周波数成分を用いて津波の有無を判定する(S104)。
The processing device calculates the attitude angle using the GNSS signals received by the plurality of GNSS antennas 211 and 212 (S101). The processing device calculates a change in posture angle over time (a change in posture angle) from a plurality of posture angles (S102). The processing device extracts the first frequency component of the tsunami in the posture angle change (S103). The processing device determines the presence or absence of a tsunami using the first frequency component (S104).
次に、本発明の第2の実施形態に係る津波観測装置および津波観測システムについて、図を参照して説明する。図5は、本発明の第2の実施形態に係る津波観測装置の機能ブロック図である。
Next, a tsunami observation apparatus and a tsunami observation system according to the second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a functional block diagram of a tsunami observation apparatus according to the second embodiment of the present invention.
図5に示すように、本発明の第2の実施形態に係る津波観測装置10Aは、無線通信部50および無線通信用アンテナ60を備えた点で、第1の実施形態に係る津波観測装置10と異なる。津波観測装置10Aの他の構成は、第1の実施形態に係る津波観測装置10と同じであり、同じ点の説明は省略する。
As shown in FIG. 5, the tsunami observation apparatus 10A according to the second embodiment of the present invention is provided with a radio communication unit 50 and a radio communication antenna 60, and thus the tsunami observation apparatus 10 according to the first embodiment. And different. The other configuration of the tsunami observation apparatus 10A is the same as that of the tsunami observation apparatus 10 according to the first embodiment, and the description of the same points is omitted.
津波観測装置10Aは、無線通信部50と無線通信用アンテナ60を備える。無線通信部50には、観測部40から津波の観測結果が入力される。津波の観測結果は、上述の津波の判定結果(少なくとも津波があることを示す判定結果)を含むものである。無線通信部50は、津波の観測結果から外部送信用の津波観測データを生成する。無線通信部50は、無線通信用アンテナ60を介して津波観測データを外部に送信する。この構成によって、津波観測装置10Aは、津波の観測結果を外部に通知することができる。
The tsunami observation apparatus 10A includes a wireless communication unit 50 and a wireless communication antenna 60. Tsunami observation results are input from the observation unit 40 to the wireless communication unit 50. The tsunami observation result includes the above-described tsunami determination result (a determination result indicating that there is at least a tsunami). The wireless communication unit 50 generates tsunami observation data for external transmission from the tsunami observation result. The wireless communication unit 50 transmits the tsunami observation data to the outside via the wireless communication antenna 60. With this configuration, the tsunami observation apparatus 10A can notify the observation result of the tsunami to the outside.
上述の説明では、津波の観測および津波観測データの送信の各処理を、図5に示した複数の機能部によって実行する態様を示した。しかしながら、上述の各処理をプログラム化し、当該プログラムを記憶部に記憶して、コンピュータ等の処理装置(プロセッサ)で、このプログラムを実行してもよい。この場合、図6に示すフローに準じて処理を行えばよい。図6は、本発明の第2の実施形態に係る津波観測方法のフローチャートである。
In the above description, a mode has been described in which each process of tsunami observation and transmission of tsunami observation data is executed by a plurality of functional units shown in FIG. However, each of the above-described processes may be programmed, the program may be stored in a storage unit, and the program may be executed by a processing device (processor) such as a computer. In this case, the processing may be performed according to the flow shown in FIG. FIG. 6 is a flowchart of the tsunami observation method according to the second embodiment of the present invention.
図6に示すステップS101-S104は、図4に示したステップS101-S104と同じである。処理装置は、津波の判定結果を含む津波の観測結果から、外部送信用の津波観測データを生成する(S105)。処理装置は、津波観測データを外部に送信する(S106)。
Steps S101 to S104 shown in FIG. 6 are the same as steps S101 to S104 shown in FIG. The processing device generates tsunami observation data for external transmission from the tsunami observation result including the tsunami determination result (S105). The processing device transmits tsunami observation data to the outside (S106).
津波観測装置10Aを用いて、図7に示すような構成からなる津波観測システムを実現することができる。図7は、第2の実施形態に係る津波観測システムの構成を示す図である。
Using the tsunami observation apparatus 10A, a tsunami observation system having a configuration as shown in FIG. 7 can be realized. FIG. 7 is a diagram illustrating a configuration of a tsunami observation system according to the second embodiment.
図7に示すように、津波観測システム1は、津波観測装置10Aが取り付けられた船舶100と基地局110とを備える。船舶100は、海上を航行または海上に停留している。基地局110は、地上に配置されている。基地局110は、津波の影響を受けない位置に配置されていることが好ましい。基地局110は、RTK測位の基準局と異なり、測位用の補正情報を津波観測装置10Aに送信する必要はない。そのため、補正情報の精度向上のために、津波観測装置10Aに近い沿岸に配置する必要がない。したがって、基地局110は、地震等が生じても津波観測データを受信可能な位置に配置されていればよい。
As shown in FIG. 7, the tsunami observation system 1 includes a ship 100 to which a tsunami observation apparatus 10A is attached and a base station 110. The ship 100 is navigating or stopping on the sea. Base station 110 is located on the ground. The base station 110 is preferably arranged at a position that is not affected by the tsunami. Unlike the reference station for RTK positioning, the base station 110 does not need to transmit the correction information for positioning to the tsunami observation apparatus 10A. Therefore, in order to improve the accuracy of the correction information, it is not necessary to arrange on the coast near the tsunami observation apparatus 10A. Therefore, the base station 110 may be arranged at a position where it can receive tsunami observation data even if an earthquake or the like occurs.
津波観測データは、津波観測装置10の無線通信用アンテナ60から送信され、通信用衛星TSATを介して、基地局110で受信される。
Tsunami observation data is transmitted from the radio communication antenna 60 of the tsunami observation apparatus 10 and received by the base station 110 via the communication satellite TSAT.
基地局110は、受信した津波観測データを復調する。基地局110は、復調した津波観測データを用いて、津波の有無を含む津波情報を生成して、放送する。津波情報は、例えば、一般家屋120に対して放送される。また、津波情報は、公共放送やインターネット等の通信回線を介して放送される。津波の影響を受ける可能性のある人々は、津波情報から津波の有無を正確に確認でき、避難行動を確実に行うことができる。
The base station 110 demodulates the received tsunami observation data. The base station 110 generates and broadcasts tsunami information including the presence or absence of a tsunami using the demodulated tsunami observation data. The tsunami information is broadcast to the general house 120, for example. The tsunami information is broadcast via a communication line such as a public broadcast or the Internet. People who may be affected by the tsunami can accurately confirm the presence or absence of the tsunami from the tsunami information and can perform evacuation behavior with certainty.
このような津波観測システム1において、津波観測装置10Aは、津波を正確に観測することができる。したがって、津波観測システム1は、正確な津波情報を外部に通知することができる。
In such a tsunami observation system 1, the tsunami observation apparatus 10A can accurately observe the tsunami. Therefore, the tsunami observation system 1 can notify accurate tsunami information to the outside.
次に、第3の実施形態に係る津波観測装置について、図を参照して説明する。図8は、本発明の第3の実施形態に係る津波観測装置の機能ブロック図である。
Next, a tsunami observation apparatus according to the third embodiment will be described with reference to the drawings. FIG. 8 is a functional block diagram of a tsunami observation apparatus according to the third embodiment of the present invention.
本実施形態に係る津波観測装置10Bは、観測部40Bの構成において、第1の実施形態に係る津波観測装置10と異なる。本実施形態に係る津波観測装置10Bの他の構成は、第1の実施形態に係る津波観測装置10と同じであり、同じ箇所の説明は省略する。
The tsunami observation apparatus 10B according to the present embodiment is different from the tsunami observation apparatus 10 according to the first embodiment in the configuration of the observation unit 40B. Other configurations of the tsunami observation apparatus 10B according to the present embodiment are the same as those of the tsunami observation apparatus 10 according to the first embodiment, and description of the same portions is omitted.
観測部40Bは、姿勢角変化算出部41、第1周波数成分抽出部42、判定部43B、速度算出部44、および、第2周波数成分抽出部45を備える。
The observation unit 40B includes an attitude angle change calculation unit 41, a first frequency component extraction unit 42, a determination unit 43B, a speed calculation unit 44, and a second frequency component extraction unit 45.
姿勢角変化算出部41、第1周波数成分抽出部42は、第1の実施形態に係る観測部40の姿勢角変化算出部41、第1周波数成分抽出部42とそれぞれ同じである。
The posture angle change calculation unit 41 and the first frequency component extraction unit 42 are the same as the posture angle change calculation unit 41 and the first frequency component extraction unit 42 of the observation unit 40 according to the first embodiment, respectively.
速度算出部44は、搬送波位相を用いて高さ方向速度を算出する。具体的には、速度算出部44は、GNSS受信部221,222から搬送波位相を取得する。速度算出部44は、GNSSアンテナの高さ方向(図3のz軸方向)の位置の変化量を搬送波位相の変化量から算出する。速度算出部44は、この位置の変化量を時間で除算することによって高さ方向速度を算出する。速度算出部44は、高さ方向速度を第2周波数成分抽出部45に出力する。
The velocity calculation unit 44 calculates the height direction velocity using the carrier wave phase. Specifically, the speed calculation unit 44 acquires the carrier wave phase from the GNSS reception units 221 and 222. The speed calculation unit 44 calculates the amount of change in the position of the GNSS antenna in the height direction (z-axis direction in FIG. 3) from the amount of change in the carrier phase. The speed calculation unit 44 calculates the height direction speed by dividing the amount of change in position by time. The speed calculation unit 44 outputs the height direction speed to the second frequency component extraction unit 45.
第2周波数成分抽出部45は、高さ方向速度における津波の第2周波数成分を抽出する。第2周波数成分抽出部45における第2周波数成分の抽出方法は、第1周波数成分抽出部42における第1周波数成分の抽出方法と同じである。第2周波数成分抽出部45は、第2周波数成分を判定部43Bに出力する。
The second frequency component extraction unit 45 extracts the second frequency component of the tsunami at the height direction speed. The second frequency component extraction method in the second frequency component extraction unit 45 is the same as the first frequency component extraction method in the first frequency component extraction unit 42. The second frequency component extraction unit 45 outputs the second frequency component to the determination unit 43B.
判定部43Bは、第1周波数成分と第2周波数成分とから津波の有無を判定する。なお、第2周波数成分から津波の有無を判定する方法は、第1周波数成分から津波の有無を判定する方法と同じである。
The determination unit 43B determines the presence or absence of a tsunami from the first frequency component and the second frequency component. The method for determining the presence / absence of a tsunami from the second frequency component is the same as the method for determining the presence / absence of a tsunami from the first frequency component.
このように、本実施形態の構成を用いることによって、姿勢角変化と高さ方向速度との2種類の指標から津波の有無を判定して、津波を観測することができる。これにより、津波をより正確に観測することができる。
As described above, by using the configuration of the present embodiment, it is possible to determine the presence or absence of a tsunami from two types of indices, the change in posture angle and the velocity in the height direction, and observe the tsunami. Thereby, the tsunami can be observed more accurately.
上述の説明では、津波の観測の各処理を、図8に示した複数の機能部によって実行する態様を示した。しかしながら、上述の各処理をプログラム化し、当該プログラムを記憶部に記憶して、コンピュータ等の処理装置(プロセッサ)で、このプログラムを実行してもよい。この場合、図9に示すフローに準じて処理を行えばよい。図9は、本発明の第3の実施形態に係る津波観測方法のフローチャートである。
In the above description, each tsunami observation process has been performed by a plurality of functional units shown in FIG. However, each of the above-described processes may be programmed, the program may be stored in a storage unit, and the program may be executed by a processing device (processor) such as a computer. In this case, the processing may be performed according to the flow shown in FIG. FIG. 9 is a flowchart of the tsunami observation method according to the third embodiment of the present invention.
図9に示すステップS101-S103は、図4に示したステップS101-S103と同じである。処理装置は、搬送波位相から高さ方向速度を算出する(S112)。処理装置は、高さ方向速度における津波の第2周波数成分を抽出する(S113)。処理装置は、第1周波数成分と第2周波数成分とを用いて、津波の判定を行う(S114)。
Steps S101 to S103 shown in FIG. 9 are the same as steps S101 to S103 shown in FIG. The processing device calculates the height direction velocity from the carrier phase (S112). The processing device extracts the second frequency component of the tsunami at the height direction speed (S113). The processing apparatus determines a tsunami using the first frequency component and the second frequency component (S114).
なお、図8に示す津波観測装置10Bでは、観測部40Bは、搬送波位相から高さ方向速度を算出している。しかしながら、図10に示すような構成でも高さ方向速度を算出することができる。図10は、本発明の第3の実施形態に係る津波観測装置の他の構成の機能ブロック図である。
In the tsunami observation apparatus 10B shown in FIG. 8, the observation unit 40B calculates the height direction velocity from the carrier phase. However, the velocity in the height direction can be calculated even with the configuration shown in FIG. FIG. 10 is a functional block diagram of another configuration of the tsunami observation apparatus according to the third embodiment of the present invention.
図10に示すように、観測部40B'の速度算出部44には、加速度センサ23から加速度が入力される。この加速度は、高さ方向の加速度を含んでいればよい。速度算出部44は、高さ方向の加速度を積算(積分)して、高さ方向速度を算出する。なお、この際、速度算出部44は、姿勢角を用いて加速度センサ23の検出誤差を推定し、当該検出誤差で補正された加速度を用いてもよい。
As shown in FIG. 10, the acceleration is input from the acceleration sensor 23 to the velocity calculation unit 44 of the observation unit 40B ′. This acceleration should just include the acceleration of a height direction. The speed calculation unit 44 calculates the height direction speed by integrating (integrating) the acceleration in the height direction. At this time, the speed calculation unit 44 may estimate the detection error of the acceleration sensor 23 using the posture angle and use the acceleration corrected by the detection error.
次に、本発明の第4の実施形態に係る津波観測装置について、図を参照して説明する。図11は、本発明の第4の実施形態に係る津波観測装置の観測部の機能ブロック図である。
Next, a tsunami observation apparatus according to the fourth embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a functional block diagram of an observation unit of a tsunami observation apparatus according to the fourth embodiment of the present invention.
本実施形態に係る津波観測装置10Cは、観測部40Cの構成において、第3の実施形態に係る津波観測装置10Bと異なる。本実施形態に係る津波観測装置10Cの他の構成は、第3の実施形態に係る津波観測装置10Bと同じであり、同じ箇所の説明は省略する。
The tsunami observation apparatus 10C according to the present embodiment is different from the tsunami observation apparatus 10B according to the third embodiment in the configuration of the observation unit 40C. Other configurations of the tsunami observation apparatus 10C according to the present embodiment are the same as those of the tsunami observation apparatus 10B according to the third embodiment, and the description of the same portions is omitted.
観測部40Cは、観測部40Bに対して方向算出部46をさらに備えた点で異なる。なお、判定部43Cは判定部43Bと同じであり、判定部43Cの説明は省略する。
The observation unit 40C is different from the observation unit 40B in that it further includes a direction calculation unit 46. The determination unit 43C is the same as the determination unit 43B, and the description of the determination unit 43C is omitted.
方向算出部46は、姿勢角変化における津波の周波数成分から、津波の進行方向を算出する。例えば、津波観測装置10Cが取り付けられた船舶に対して、船首の斜め前方から津波が進行してきたとする。この場合、ヨー角ψ(psi),ピッチ角θ(theta),ロール角φ(phi)の全てが変化する。一方、船首方向から真っ直ぐに津波が進行してきたとする。この場合、ヨー角ψ(psi),ピッチ角θ(theta)は変化するが、ロール角φ(phi)は殆ど変化しない。このように、姿勢角変化を算出することによって、津波の進行方向を算出することができる。方向算出部46は、判定部43Cにおいて津波が有ると判定された時に津波の進行方向を算出する。なお、方向算出部46は、姿勢角変化から波等の外力の係る方向を算出する。そして、方向算出部46は、判定部43Cにおいて津波が有ると判定された時の外力の係る方向から津波の進行方向を算出してもよい。
The direction calculation unit 46 calculates the traveling direction of the tsunami from the frequency component of the tsunami in the posture angle change. For example, it is assumed that a tsunami has progressed from an oblique forward of the bow to a ship to which the tsunami observation device 10C is attached. In this case, all of yaw angle ψ (psi), pitch angle θ (theta), and roll angle φ (phi) change. On the other hand, it is assumed that the tsunami has progressed straight from the bow direction. In this case, the yaw angle ψ (psi) and the pitch angle θ (theta) change, but the roll angle φ (phi) hardly changes. Thus, the traveling direction of the tsunami can be calculated by calculating the posture angle change. The direction calculation unit 46 calculates the traveling direction of the tsunami when the determination unit 43C determines that there is a tsunami. The direction calculation unit 46 calculates a direction related to an external force such as a wave from the posture angle change. And the direction calculation part 46 may calculate the advancing direction of a tsunami from the direction which external force when it determines with the determination part 43C having a tsunami.
このように、本実施形態の構成を用いることによって、津波の有無のみでなく、津波の進行方向を算出することができる。そして、これら津波の有無、および、津波の進行方向を観測結果として利用することができる。この際、搬送波位相を用いた高精度な基線ベクトルの変化に基づいて、津波の進行方向が算出されるので、津波の進行方向を高精度に算出することができる。
Thus, by using the configuration of the present embodiment, it is possible to calculate not only the presence / absence of a tsunami but also the traveling direction of the tsunami. The presence / absence of the tsunami and the traveling direction of the tsunami can be used as observation results. At this time, since the traveling direction of the tsunami is calculated based on a highly accurate change in the baseline vector using the carrier phase, the traveling direction of the tsunami can be calculated with high accuracy.
なお、本実施形態構成では、姿勢角変化から津波の速度を算出することもできる。例えば、姿勢角変化から、船舶が受ける力を算出し、この力から加速度、速度を算出することができる。これにより、観測結果として、津波に対するより多くの情報を得ることができる。
In the configuration of this embodiment, the tsunami speed can also be calculated from the posture angle change. For example, the force received by the ship can be calculated from the attitude angle change, and the acceleration and speed can be calculated from the force. Thereby, more information about the tsunami can be obtained as an observation result.
上述の説明では、津波の観測の各処理を、図11に示した複数の機能部によって実行する態様を示した。しかしながら、上述の各処理をプログラム化し、当該プログラムを記憶部に記憶して、コンピュータ等の処理装置(プロセッサ)で、このプログラムを実行してもよい。この場合、図12に示すフローに準じて処理を行えばよい。図12は、本発明の第4の実施形態に係る津波観測方法のフローチャートである。
In the above description, each tsunami observation process has been performed by a plurality of functional units shown in FIG. However, each of the above-described processes may be programmed, the program may be stored in a storage unit, and the program may be executed by a processing device (processor) such as a computer. In this case, the process may be performed according to the flow shown in FIG. FIG. 12 is a flowchart of the tsunami observation method according to the fourth embodiment of the present invention.
図12に示すステップS101-S103,S112-S114は、図9に示したステップS101-S103,S112-S114と同じである。処理装置は、姿勢角変化における津波の周波数成分から津波の進行方向を検出する(S121)。
Steps S101 to S103 and S112 to S114 shown in FIG. 12 are the same as steps S101 to S103 and S112 to S114 shown in FIG. The processing device detects the traveling direction of the tsunami from the frequency component of the tsunami in the posture angle change (S121).
なお、第3の実施形態に係る津波観測装置10B、第4の実施形態に係る観測部40Cを備える津波観測装置に対して、第2の実施形態に係る津波観測装置10Aの無線通信部50および無線通信用アンテナ60を備えてもよい。
Note that the tsunami observation apparatus 10B according to the third embodiment and the tsunami observation apparatus including the observation unit 40C according to the fourth embodiment, the radio communication unit 50 of the tsunami observation apparatus 10A according to the second embodiment and A wireless communication antenna 60 may be provided.
次に、本発明の第5の実施形態に係る津波観測装置について、図を参照して説明する。図13は、本発明の第5の実施形態に係る津波観測装置の機能ブロック図である。
Next, a tsunami observation apparatus according to the fifth embodiment of the present invention will be described with reference to the drawings. FIG. 13 is a functional block diagram of a tsunami observation apparatus according to the fifth embodiment of the present invention.
本実施形態に係る津波観測装置10Dは、位置算出部70と時刻算出部80とを備える点において、第1の実施形態に係る津波観測装置10と異なる。
The tsunami observation apparatus 10D according to the present embodiment is different from the tsunami observation apparatus 10 according to the first embodiment in that it includes a position calculation unit 70 and a time calculation unit 80.
センサユニット20Dは、第1の実施形態に係るセンサユニット20に対して、位置算出部70と時刻算出部80とをさらに備える。
The sensor unit 20D further includes a position calculation unit 70 and a time calculation unit 80 with respect to the sensor unit 20 according to the first embodiment.
GNSS受信部221は、GNSS信号のコード位相と、GNSS信号の追尾により得られる航法メッセージを、位置算出部70および時刻算出部80に出力する。
The GNSS receiving unit 221 outputs the code phase of the GNSS signal and the navigation message obtained by tracking the GNSS signal to the position calculating unit 70 and the time calculating unit 80.
位置算出部70は、コード位相からコード擬似距離を算出する。位置算出部70は、航法メッセージから衛星位置を取得する。位置算出部70は、コード擬似距離と衛星位置とを用いて、津波観測装置10Dの位置を算出する。位置算出部70は、津波観測装置10Dの位置を、観測部40Dの判定部43Dに出力する。
The position calculation unit 70 calculates a code pseudo distance from the code phase. The position calculation unit 70 acquires the satellite position from the navigation message. The position calculation unit 70 calculates the position of the tsunami observation apparatus 10D using the code pseudorange and the satellite position. The position calculation unit 70 outputs the position of the tsunami observation device 10D to the determination unit 43D of the observation unit 40D.
時刻算出部80は、航法メッセージから時刻情報を取得して、時刻を算出する。時刻算出部80は、時刻を観測部40Dの判定部43Dに出力する。
The time calculation unit 80 acquires time information from the navigation message and calculates the time. The time calculation unit 80 outputs the time to the determination unit 43D of the observation unit 40D.
判定部43Dは、第1の実施形態に係る観測部40と同じ方法で津波を判定するとともに、津波が有ると判定した時点での位置および時刻を検出する。判定部43Dは、この検出した位置を津波の観測位置とし、この検出した時刻を津波の観測時刻とする。これにより、観測位置および観測時刻を観測結果に含むことができる。
The determination unit 43D determines the tsunami by the same method as the observation unit 40 according to the first embodiment, and detects the position and time when it is determined that there is a tsunami. The determination unit 43D sets the detected position as the tsunami observation position, and sets the detected time as the tsunami observation time. Thereby, the observation position and the observation time can be included in the observation result.
本実施形態の構成では、位置および時刻は、GNSS信号の追尾結果から算出される。したがって、センサユニット20Dで算出される位置および時刻は高精度である。これにより、津波の判定とともに、津波の観測位置および観測時刻を高精度に検出することができる。
In the configuration of the present embodiment, the position and time are calculated from the tracking result of the GNSS signal. Therefore, the position and time calculated by the sensor unit 20D are highly accurate. Thereby, the tsunami observation position and the observation time can be detected with high accuracy together with the tsunami determination.
なお、位置算出部70および時刻算出部80は、観測部40Dに備えられていてもよい。この場合、判定部43Dにおいて津波が有ると判定された時に、位置算出部70は位置を算出し、時刻算出部80は時刻を算出すればよい。
The position calculation unit 70 and the time calculation unit 80 may be provided in the observation unit 40D. In this case, when the determination unit 43D determines that there is a tsunami, the position calculation unit 70 may calculate the position, and the time calculation unit 80 may calculate the time.
また、本実施形態の津波観測装置10Dに対して、第2、第3の実施形態に係る津波観測装置10A,10B、および、第4の実施形態に係る観測部40Cを備える津波観測装置の構成を組み合わせることも可能である。
Further, the tsunami observation apparatus 10D according to the present embodiment is configured with a tsunami observation apparatus 10A, 10B according to the second and third embodiments and an observation unit 40C according to the fourth embodiment. It is also possible to combine.
次に、本発明の第6の実施形態に係る津波観測システムについて、図を参照して説明する。図14は、本発明の第6の実施形態に係る津波観測システムの構成を示す図である。
Next, a tsunami observation system according to the sixth embodiment of the present invention will be described with reference to the drawings. FIG. 14 is a diagram showing a configuration of a tsunami observation system according to the sixth embodiment of the present invention.
本実施形態に係る津波観測システム1Aは、第2の実施形態に係る津波観測システム1に対して、衛星通信機能を備えない船舶102を含む点で異なる。
The tsunami observation system 1A according to the present embodiment is different from the tsunami observation system 1 according to the second embodiment in that it includes a ship 102 that does not have a satellite communication function.
船舶101には、第2の実施形態に係る津波観測装置10Aが取り付けられている。したがって、船舶101は、通信衛星TSATを介して津波観測データを送信することができる。船舶102には、第1の実施形態に係る津波観測装置10が取り付けられている。したがって、船舶102は、通信衛星TSATを介する津波観測データの送信を行うことができない。船舶101,102は、図示していない船舶間無線通信装置(近距離無線通信装置)を備えている。
A tsunami observation apparatus 10A according to the second embodiment is attached to the ship 101. Therefore, the ship 101 can transmit tsunami observation data via the communication satellite TSAT. A tsunami observation apparatus 10 according to the first embodiment is attached to the ship 102. Therefore, the ship 102 cannot transmit tsunami observation data via the communication satellite TSAT. The ships 101 and 102 include a ship-to-ship wireless communication device (short-range wireless communication device) (not shown).
このような構成では、船舶102は、船舶間通信によって船舶101に、津波観測データを送信する。船舶101は、自船の津波観測データと船舶102の津波観測データとを、通信衛星TSATを介して、基地局110に送信する。
In such a configuration, the ship 102 transmits tsunami observation data to the ship 101 by inter-ship communication. The ship 101 transmits the tsunami observation data of its own ship and the tsunami observation data of the ship 102 to the base station 110 via the communication satellite TSAT.
このような構成を用いることによって、基地局110と、直接に無線通信を行うことができない船舶102の津波観測データも利用することができる。これにより、より多くの位置で観測した津波観測データに基づいて津波情報を生成でき、津波情報がより正確で詳細になる。
By using such a configuration, tsunami observation data of the ship 102 that cannot directly communicate with the base station 110 can be used. Thereby, tsunami information can be generated based on tsunami observation data observed at more positions, and the tsunami information becomes more accurate and detailed.
次に、本発明の第7の実施形態に係る津波観測システムについて、図を参照して説明する。図15は、本発明の第7の実施形態に係る津波観測システムの構成を示す図である。
Next, a tsunami observation system according to the seventh embodiment of the present invention will be described with reference to the drawings. FIG. 15 is a diagram showing a configuration of a tsunami observation system according to the seventh embodiment of the present invention.
本実施形態に係る津波観測システム1Bは、第2の実施形態に係る津波観測システム1に対して、複数の船舶101,102,103を配置した点で異なる。
The tsunami observation system 1B according to this embodiment is different from the tsunami observation system 1 according to the second embodiment in that a plurality of ships 101, 102, 103 are arranged.
船舶101,102,103は、海上の異なる位置に停泊している。このように、複数の位置で津波観測データを得ることによって、基地局110は、津波の挙動を推定することができる。
Ships 101, 102, and 103 are anchored at different locations on the sea. Thus, by obtaining tsunami observation data at a plurality of positions, the base station 110 can estimate the behavior of the tsunami.
例えば、各船舶101,102,103に、津波観測装置10A'が取り付けられている。津波観測装置10A'は、第2、第3、第4の実施形態に示した津波観測装置10A,10B,10C,10Dを組み合わせた構成を備える。これにより、津波観測装置10A'で生成される津波観測データは、津波の有無、観測位置、観測時刻、および津波の進行方向を含む。
For example, a tsunami observation apparatus 10A ′ is attached to each ship 101, 102, 103. The tsunami observation apparatus 10A ′ includes a combination of the tsunami observation apparatuses 10A, 10B, 10C, and 10D shown in the second, third, and fourth embodiments. Thereby, the tsunami observation data generated by the tsunami observation apparatus 10A ′ includes the presence / absence of the tsunami, the observation position, the observation time, and the traveling direction of the tsunami.
各津波観測装置10A'は、津波観測データを基地局110に送信する。この際、図15に示すように、基地局110に近い船舶103の津波観測データは、地上波の無線通信を利用し、基地局110から遠い(地上波の無線通信が届かない距離にある)船舶101,102の津波観測データは、通信衛星TSATを利用すればよい。なお、全ての船舶が通信衛星TSATを用いてもよい。逆に全ての船舶が地上波の無線通信を用いることもできる。ただし、通信衛星TSATを用いることによって、より遠方から津波観測データを得ることができ、有効である。
Each tsunami observation device 10A ′ transmits tsunami observation data to the base station 110. At this time, as shown in FIG. 15, the tsunami observation data of the ship 103 close to the base station 110 uses terrestrial radio communication and is far from the base station 110 (at a distance where terrestrial radio communication cannot reach). The tsunami observation data of the ships 101 and 102 may use the communication satellite TSAT. All ships may use the communication satellite TSAT. Conversely, all ships can use terrestrial wireless communication. However, tsunami observation data can be obtained from a greater distance by using the communication satellite TSAT, which is effective.
基地局110は、各津波観測装置10A'の津波観測データを用いて、津波の挙動を推定する。例えば、基地局110は、船舶101,102,103の津波観測装置10A'の津波観測データにおける観測位置(例えば、図3のP1,P2,P3)、観測時刻(例えば、図3のt1,t2,t3)から津波の速度を算出する。これにより、深さによって変化する津波の速度を実測の津波観測データから算出でき、津波の速度をより正確に算出することができる。
The base station 110 estimates the tsunami behavior using the tsunami observation data of each tsunami observation apparatus 10A ′. For example, the base station 110 uses the observation position (for example, P1, P2, P3 in FIG. 3) and the observation time (for example, t1, t2 in FIG. 3) in the tsunami observation data of the tsunami observation apparatus 10A ′ of the ships 101, 102, 103. , T3) to calculate the tsunami velocity. Thereby, the speed of the tsunami that changes depending on the depth can be calculated from the actually measured tsunami observation data, and the speed of the tsunami can be calculated more accurately.
また、この津波の速度を用いて、沿岸への津波の到達時刻(図15のtE0)を算出することができる。これにより、より詳細で実用的な津波情報を生成することができる。
Also, the arrival time of the tsunami on the coast (tE0 in FIG. 15) can be calculated using the speed of this tsunami. Thereby, more detailed and practical tsunami information can be generated.
なお、船舶101,102,103は、予め所定位置に停泊していてもよく、航行中の船舶101,102,103の現在位置を、津波の観測位置にしてもよい。
The ships 101, 102, and 103 may be anchored at a predetermined position in advance, and the current position of the ships 101, 102, and 103 that are in navigation may be set as the tsunami observation position.
さらに、津波の発生要因である地震等の震源位置が分かった際に、基地局110は、船舶101,102,103に、観測位置に移動するように指示してもよい。この際、基地局110は、船舶101,102,103が震源位置と所望の沿岸との間に並ぶように、船舶101,102,103に指示するとよい。これにより、緊急時においても、津波を正確に観測でき、津波の挙動を正確に推定することができる。
Furthermore, the base station 110 may instruct the ships 101, 102, and 103 to move to the observation position when the location of the epicenter such as an earthquake that is the cause of the tsunami is known. At this time, the base station 110 may instruct the vessels 101, 102, and 103 so that the vessels 101, 102, and 103 are aligned between the epicenter and the desired coast. As a result, even in an emergency, the tsunami can be observed accurately and the behavior of the tsunami can be accurately estimated.
この場合、図16に示すフローに基づくとよい。図16は、本発明の第7の実施形態に係る津波観測システムにおける津波の挙動の推定処理を示すフローチャートである。
In this case, it may be based on the flow shown in FIG. FIG. 16 is a flowchart showing a tsunami behavior estimation process in the tsunami observation system according to the seventh embodiment of the present invention.
基地局110は、津波の発生要因である地震、地殻変動、火山の爆発等に関する情報を外部から取得する。この取得情報に基づいて、基地局110は、船舶101,102,103に対して、津波観測位置へ移動する指示をする。これにより、船舶101,102,103の各津波観測装置10A'は、津波観測位置に配置される(S201)。
The base station 110 obtains information on the tsunami-causing factors such as earthquakes, crustal movements, and volcanic explosions from the outside. Based on this acquired information, the base station 110 instructs the ships 101, 102, and 103 to move to the tsunami observation position. Thereby, each tsunami observation apparatus 10A ′ of the ships 101, 102, 103 is arranged at the tsunami observation position (S201).
各津波観測装置10A'は、津波観測データを所定の時間間隔で生成する(S202)。各津波観測装置10A'は、基地局110に対して津波観測データを送信し、基地局110は、これらの津波観測データを受信する(S203)。基地局110は、受信した津波観測データを用いて、津波の挙動を推定する(S204)。
Each tsunami observation apparatus 10A ′ generates tsunami observation data at predetermined time intervals (S202). Each tsunami observation apparatus 10A ′ transmits tsunami observation data to the base station 110, and the base station 110 receives these tsunami observation data (S203). The base station 110 estimates the behavior of the tsunami using the received tsunami observation data (S204).
なお、上述の各実施形態では、津波観測装置を船舶に取り付ける態様を示した。しかしながら、ブイ等に津波観測装置を取り付けることも可能である。
In each of the above-described embodiments, a mode in which the tsunami observation device is attached to the ship is shown. However, it is also possible to attach a tsunami observation device to a buoy or the like.
ただし、航行機能を有する船舶等を用いることによって、津波観測装置を所望の位置に移動、配置できる。これにより、津波の発生状況に応じた適切な位置に津波観測装置を配置することができ、より有効な津波観測データを得ることができる。
However, the tsunami observation device can be moved and arranged at a desired position by using a ship having a navigation function. Thereby, a tsunami observation apparatus can be arrange | positioned in the suitable position according to the generation | occurrence | production state of a tsunami, and more effective tsunami observation data can be obtained.
また、船舶を用いた場合、津波観測装置のセンサユニットは、平常時に船舶の姿勢センサとして利用することができ、津波の観測が必要な時に津波観測装置の一部として利用することができる。これにより、新規の津波観測装置を配置する必要がない。
Also, when a ship is used, the sensor unit of the tsunami observation device can be used as a ship attitude sensor in normal times, and can be used as a part of the tsunami observation device when tsunami observation is necessary. This eliminates the need for a new tsunami observation device.
また、姿勢センサを備える船舶は、既に多数存在している。このため、これらの姿勢センサを津波観測装置のセンサユニットに利用することで、広範囲でより多くの津波観測データを容易に得ることができる。
There are already many ships equipped with attitude sensors. For this reason, by using these attitude sensors in the sensor unit of the tsunami observation apparatus, it is possible to easily obtain more tsunami observation data in a wide range.
また、船舶には電源が備えられているので、船舶を用いることによって、津波観測装置の電源を安定して確保することができる。また、海上で航行中もしくは停泊中の船舶は、津波の影響を受けて停電する可能性が低い。したがって、津波の観測時に津波観測装置が停止することを防止でき、必要な時に津波観測データを確実に得ることができる。
Also, since the ship is equipped with a power supply, the power supply of the tsunami observation device can be secured stably by using the ship. In addition, ships that are sailing or anchored at sea are less likely to be out of power due to the tsunami. Therefore, it is possible to prevent the tsunami observation apparatus from stopping during the tsunami observation, and to reliably obtain the tsunami observation data when necessary.
また、ブイはメンテナンスを高い頻度で行わなければならない。このため、ブイは、メンテナンスが面倒であり、特に、津波の早期発見のために沿岸から遠い位置にブイを配置する場合、メンテナンスはさらに面倒になり、実用性が大きく低下してしまう。しかしながら、船舶に取り付けられた姿勢角センサを用いることによって、この問題を解消することができる。具体的には、船舶に取り付けられているため、メンテナンスのために海上を移動する必要はない。また、上述の津波観測装置を用いた場合、GNSS信号の搬送波位相を用いているため、ジャイロコンパスのように姿勢に応じて物理的に動作する機構部品を用いない。したがって、メンテナンスを行う頻度を大幅に少なくでき、メンテナンスに係る作業負荷を大幅に軽減できる。
Also, buoys must be maintained frequently. For this reason, buoys are troublesome to maintain, and in particular, when buoys are arranged at positions far from the coast for early detection of tsunami, the maintenance becomes even more troublesome and the practicality is greatly reduced. However, this problem can be solved by using an attitude angle sensor attached to the ship. Specifically, since it is attached to a ship, it is not necessary to move on the sea for maintenance. In addition, when the above-described tsunami observation apparatus is used, since the carrier phase of the GNSS signal is used, a mechanical component that physically operates in accordance with the posture, such as a gyrocompass, is not used. Therefore, the frequency of performing maintenance can be greatly reduced, and the work load related to maintenance can be greatly reduced.
また、上述のように基地局は、測位用の補正情報を取得して、津波観測装置に送信する必要がなく、複数箇所に容易に設置することができる。これにより、例えば、1つの基地局が被災しても、他の基地局で、津波観測データを受信でき、津波情報をより確実に通知することができる。
Also, as described above, the base station does not need to acquire correction information for positioning and transmit it to the tsunami observation apparatus, and can be easily installed at a plurality of locations. Thereby, for example, even if one base station is damaged, tsunami observation data can be received by other base stations, and tsunami information can be notified more reliably.
また、センサユニットは、2つのGNSSアンテナと加速度センサを用いる態様に限るものではない。センサユニットは、三次元の姿勢角が算出できる構成であればよく、例えば、加速度センサを用いずに、3つ以上のGNSSアンテナから構成してもよい。この場合、GNSS受信部は、GNSSアンテナ毎に設置すればよい。
In addition, the sensor unit is not limited to an embodiment using two GNSS antennas and an acceleration sensor. The sensor unit only needs to have a configuration that can calculate a three-dimensional attitude angle. For example, the sensor unit may include three or more GNSS antennas without using an acceleration sensor. In this case, a GNSS receiver may be installed for each GNSS antenna.
1,1A,1B:津波観測システム
10,10A,10B,10B',10D:津波観測装置
20,20D:センサユニット
23:加速度センサ
30:姿勢角算出部
40,40B,40B',40C,40D:観測部
41:姿勢角変化算出部
42:周波数成分抽出部
43,43B,43C:判定部
44:速度算出部
45:周波数成分抽出部
46:方向算出部
50:無線通信部
60:無線通信用アンテナ
70:位置算出部
80:時刻算出部
100,101,102,103:船舶
110:基地局
120:一般家屋
211,212:GNSSアンテナ
221,222:GNSS受信部 1, 1A, 1B: Tsunami observation system 10, 10A, 10B, 10B ′, 10D: Tsunami observation device 20, 20D: Sensor unit 23: Acceleration sensor 30: Posture angle calculation unit 40, 40B, 40B ′, 40C, 40D: Observation unit 41: posture angle change calculation unit 42: frequency component extraction units 43, 43B, 43C: determination unit 44: speed calculation unit 45: frequency component extraction unit 46: direction calculation unit 50: wireless communication unit 60: wireless communication antenna 70: Position calculation unit 80: Time calculation unit 100, 101, 102, 103: Ship 110: Base station 120: General house 211, 212: GNSS antenna 221, 222: GNSS reception unit
10,10A,10B,10B',10D:津波観測装置
20,20D:センサユニット
23:加速度センサ
30:姿勢角算出部
40,40B,40B',40C,40D:観測部
41:姿勢角変化算出部
42:周波数成分抽出部
43,43B,43C:判定部
44:速度算出部
45:周波数成分抽出部
46:方向算出部
50:無線通信部
60:無線通信用アンテナ
70:位置算出部
80:時刻算出部
100,101,102,103:船舶
110:基地局
120:一般家屋
211,212:GNSSアンテナ
221,222:GNSS受信部 1, 1A, 1B:
Claims (14)
- 複数のGNSS信号をそれぞれに受信する複数のGNSSアンテナと、
前記複数のGNSSアンテナを所定の位置関係で保持するセンサユニットと、
前記複数のGNSS信号の搬送波位相を用いて、前記センサユニットの姿勢角を算出する姿勢角算出部と、
前記姿勢角の時間変化を用いて津波を観測する観測部と、
を備える、津波観測装置。 A plurality of GNSS antennas each receiving a plurality of GNSS signals;
A sensor unit that holds the plurality of GNSS antennas in a predetermined positional relationship;
An attitude angle calculation unit that calculates an attitude angle of the sensor unit using carrier phases of the plurality of GNSS signals;
An observation unit for observing a tsunami using a time change of the attitude angle;
Tsunami observation device. - 請求項1に記載の津波観測装置であって、
前記観測部は、
前記姿勢角の時間変化における第1周波数成分を抽出する第1周波数成分抽出部と、
前記第1周波数成分を用いて前記津波の有無を判定する判定部と、を備える、
津波観測装置。 The tsunami observation device according to claim 1,
The observation unit is
A first frequency component extraction unit for extracting a first frequency component in the time change of the posture angle;
A determination unit that determines the presence or absence of the tsunami using the first frequency component,
Tsunami observation equipment. - 請求項2に記載の津波観測装置であって、
前記観測部は、
前記搬送波位相から高さ方向速度を算出する高さ方向速度算出部と、
前記高さ方向速度における第2周波数成分を抽出する第2周波数成分抽出部と、を備え、
前記判定部は、
前記第2周波数成分も用いて前記津波の有無を判定する、
津波観測装置。 The tsunami observation device according to claim 2,
The observation unit is
A height direction velocity calculating unit for calculating a height direction velocity from the carrier phase;
A second frequency component extraction unit that extracts a second frequency component at the height direction speed,
The determination unit
The presence or absence of the tsunami is also determined using the second frequency component.
Tsunami observation equipment. - 請求項2または請求項3に記載の津波観測装置であって、
少なくとも1つの前記GNSS信号を用いて時刻を算出する時刻算出部と、
前記複数のGNSS信号を用いて位置を算出する位置算出部と、をさらに備え、
前記判定部は、
前記津波が有ると判定された時の前記時刻および前記位置を、前記津波の観測時刻および前記津波の観測位置とする、
津波観測装置。 A tsunami observation apparatus according to claim 2 or claim 3, wherein
A time calculating unit that calculates time using at least one of the GNSS signals;
A position calculation unit that calculates a position using the plurality of GNSS signals,
The determination unit
The time and the position when it is determined that the tsunami exists are the observation time of the tsunami and the observation position of the tsunami,
Tsunami observation equipment. - 請求項1乃至請求項4のいずれかに記載の津波観測装置であって、
前記観測部は、
前記姿勢角の時間変化を用いて津波の方向を算出する方向算出部をさらに備える、
津波観測装置。 A tsunami observation apparatus according to any one of claims 1 to 4,
The observation unit is
A directional calculator that calculates the direction of the tsunami using the time change of the posture angle;
Tsunami observation equipment. - 請求項1乃至請求項5のいずれかに記載の津波観測装置であって、
前記姿勢角算出部は、前記センサユニットに収容されている、
津波観測装置。 A tsunami observation apparatus according to any one of claims 1 to 5,
The posture angle calculation unit is accommodated in the sensor unit.
Tsunami observation equipment. - 請求項1乃至請求項6のいずれかに記載の津波観測装置であって、
前記観測部で観測された津波の観測結果を含む津波観測データを外部に送信する無線通信部を備える、
津波観測装置。 A tsunami observation apparatus according to any one of claims 1 to 6,
A wireless communication unit for transmitting tsunami observation data including observation results of the tsunami observed by the observation unit to the outside;
Tsunami observation equipment. - 請求項7に記載の津波観測装置と、
前記津波観測データを受信し、該津波観測データに基づく津波情報を通知する基地局と、を備える、
津波観測システム。 A tsunami observation device according to claim 7;
A base station that receives the tsunami observation data and notifies tsunami information based on the tsunami observation data;
Tsunami observation system. - 請求項8に記載の津波観測システムであって、
前記基地局は、複数の前記津波観測装置からの前記津波観測データを用いて、前記津波の挙動を推定する、
津波観測システム。 The tsunami observation system according to claim 8,
The base station uses the tsunami observation data from a plurality of the tsunami observation devices to estimate the behavior of the tsunami.
Tsunami observation system. - 請求項8または請求項9に記載の津波観測システムであって、
前記津波観測装置は、船舶に取り付けられている、
津波観測システム。 A tsunami observation system according to claim 8 or claim 9, wherein
The tsunami observation device is attached to a ship,
Tsunami observation system. - 請求項10に記載の津波観測システムであって、
前記基地局は、前記津波の発生要因が通知されると、前記船舶に対して海上の所定位置に移動する通知を行う、
津波観測システム。 The tsunami observation system according to claim 10,
When the base station is notified of the cause of the tsunami, the base station notifies the ship to move to a predetermined position on the sea.
Tsunami observation system. - 複数のGNSSアンテナで受信したGNSS信号の搬送波位相を用いて、前記複数のGNSSアンテナを保持するセンサユニットの姿勢角を算出し、
前記姿勢角の時間変化を用いて津波を観測する、
津波観測方法。 Using the carrier phase of the GNSS signal received by the plurality of GNSS antennas, the attitude angle of the sensor unit holding the plurality of GNSS antennas is calculated,
Observe the tsunami using the time change of the attitude angle,
Tsunami observation method. - 請求項12に記載の津波観測方法であって、
前記津波の観測結果を含む津波観測データを外部に送信する、
津波観測方法。 A tsunami observation method according to claim 12,
Sending tsunami observation data including the tsunami observation results to the outside,
Tsunami observation method. - 請求項13に記載の津波観測方法であって、
前記津波の発生要因が通知されると、前記複数のGNSSアンテナを、海上の所定位置に移動し、
前記姿勢角の算出は、前記海上の所定位置に移動した後に行われる、
津波観測方法。 A tsunami observation method according to claim 13,
When the generation factor of the tsunami is notified, the plurality of GNSS antennas are moved to predetermined positions on the sea,
The calculation of the attitude angle is performed after moving to a predetermined position on the sea.
Tsunami observation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017567996A JPWO2017141614A1 (en) | 2016-02-19 | 2017-01-19 | Tsunami observation equipment, tsunami observation system, tsunami observation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-029671 | 2016-02-19 | ||
JP2016029671 | 2016-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017141614A1 true WO2017141614A1 (en) | 2017-08-24 |
Family
ID=59624948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001681 WO2017141614A1 (en) | 2016-02-19 | 2017-01-19 | Tsunami observation device, tsunami observation system, and tsunami observation method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2017141614A1 (en) |
WO (1) | WO2017141614A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019107212A1 (en) * | 2017-12-01 | 2019-06-06 | 古野電気株式会社 | Oscillation observation device, oscillation observation method, and oscillation observation program |
TWI854275B (en) * | 2022-08-12 | 2024-09-01 | 董東璟 | Water level data buoy for full-time continuous observation |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001147263A (en) * | 1999-11-24 | 2001-05-29 | Hitachi Zosen Corp | Method and apparatus for measuring displacement of object by GPS |
JP2004317182A (en) * | 2003-04-14 | 2004-11-11 | Furuno Electric Co Ltd | Ocean wave measuring instrument and ocean wave measuring method |
JP2007018291A (en) * | 2005-07-08 | 2007-01-25 | Port & Airport Research Institute | Tsunami information providing method and tsunami information providing system |
JP2008107225A (en) * | 2006-10-26 | 2008-05-08 | Akebono Brake Ind Co Ltd | Tsunami detection device |
JP2008224556A (en) * | 2007-03-15 | 2008-09-25 | Hitachi Zosen Corp | Tsunami and wave observation facilities |
JP2009229432A (en) * | 2008-02-26 | 2009-10-08 | Takehiko Furukawa | Seismic sea wave observation system using gps receiver |
US20100174488A1 (en) * | 2009-01-08 | 2010-07-08 | National Taiwan University | Tsunami Detection Method And System |
JP2015025671A (en) * | 2013-07-24 | 2015-02-05 | 古野電気株式会社 | State calculation device, mobile body, state calculation method and state calculation program |
-
2017
- 2017-01-19 JP JP2017567996A patent/JPWO2017141614A1/en active Pending
- 2017-01-19 WO PCT/JP2017/001681 patent/WO2017141614A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001147263A (en) * | 1999-11-24 | 2001-05-29 | Hitachi Zosen Corp | Method and apparatus for measuring displacement of object by GPS |
JP2004317182A (en) * | 2003-04-14 | 2004-11-11 | Furuno Electric Co Ltd | Ocean wave measuring instrument and ocean wave measuring method |
JP2007018291A (en) * | 2005-07-08 | 2007-01-25 | Port & Airport Research Institute | Tsunami information providing method and tsunami information providing system |
JP2008107225A (en) * | 2006-10-26 | 2008-05-08 | Akebono Brake Ind Co Ltd | Tsunami detection device |
JP2008224556A (en) * | 2007-03-15 | 2008-09-25 | Hitachi Zosen Corp | Tsunami and wave observation facilities |
JP2009229432A (en) * | 2008-02-26 | 2009-10-08 | Takehiko Furukawa | Seismic sea wave observation system using gps receiver |
US20100174488A1 (en) * | 2009-01-08 | 2010-07-08 | National Taiwan University | Tsunami Detection Method And System |
JP2015025671A (en) * | 2013-07-24 | 2015-02-05 | 古野電気株式会社 | State calculation device, mobile body, state calculation method and state calculation program |
Non-Patent Citations (1)
Title |
---|
1: "Multi Antenna GPS Jushinki no Teian", PROCEEDINGS OF THE 2004 COMMUNICATIONS SOCIETY CONFERENCE OF IEICE, no. 1, 8 September 2004 (2004-09-08), pages 223 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019107212A1 (en) * | 2017-12-01 | 2019-06-06 | 古野電気株式会社 | Oscillation observation device, oscillation observation method, and oscillation observation program |
CN111465874A (en) * | 2017-12-01 | 2020-07-28 | 古野电气株式会社 | Swing observation device, swing observation method, and swing observation program |
US11156721B2 (en) * | 2017-12-01 | 2021-10-26 | Furuno Electric Co., Ltd. | Oscillation observation device, oscillation observation method and oscillation observation program |
CN111465874B (en) * | 2017-12-01 | 2024-06-07 | 古野电气株式会社 | Swing observation device, swing observation method, and storage medium |
TWI854275B (en) * | 2022-08-12 | 2024-09-01 | 董東璟 | Water level data buoy for full-time continuous observation |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017141614A1 (en) | 2018-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6360199B2 (en) | State calculation device, state calculation method, and state calculation program | |
JP5232994B2 (en) | GPS receiver and GPS positioning correction method | |
US11215714B2 (en) | Deceiving signal detection system and deceiving signal detection method | |
KR101015039B1 (en) | Underwater localization system and method | |
JP2011149720A (en) | Surveying system | |
JP2018084445A (en) | Underwater acoustic positioning system | |
WO2020149014A1 (en) | Satellite selection device and program | |
KR102039644B1 (en) | Precise integrated navigation positioning verification apparatus | |
JPWO2006046298A1 (en) | Relative positioning method and relative positioning system using satellite | |
JP6675118B2 (en) | Underwater localization system | |
WO2017141614A1 (en) | Tsunami observation device, tsunami observation system, and tsunami observation method | |
US10948292B2 (en) | Sensor error calculating device, attitude angle calculating apparatus, method of calculating sensor error and method of calculating attitude angle | |
US12013467B2 (en) | Positioning device, speed measuring device, and computer program product | |
JP2008139105A (en) | Mobile positioning device | |
JP2019168257A (en) | Moving body information estimation device and program | |
JP6199679B2 (en) | Posture detection apparatus, moving body including the same, and posture detection method | |
Dai et al. | Heading-determination using the sensor-fusion based maritime PNT Unit | |
Albrektsen et al. | Navigation of uav using phased array radio | |
JP2010060421A (en) | Positioning system for moving body and gnss receiving apparatus | |
JP2007271500A (en) | Position / attitude estimation device | |
JP2010112759A (en) | Mobile body positioning apparatus | |
Saito et al. | Performance evaluation and a new disaster prevention system of precise point positioning at sea | |
WO2006051582A1 (en) | Relative positioning system using satellite | |
JP2012211795A (en) | Method and device for measuring medium-frequency wave on sea surface | |
JP2010216822A (en) | Device for measurement of attitude |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17752878 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017567996 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17752878 Country of ref document: EP Kind code of ref document: A1 |