[go: up one dir, main page]

WO2017138505A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017138505A1
WO2017138505A1 PCT/JP2017/004315 JP2017004315W WO2017138505A1 WO 2017138505 A1 WO2017138505 A1 WO 2017138505A1 JP 2017004315 W JP2017004315 W JP 2017004315W WO 2017138505 A1 WO2017138505 A1 WO 2017138505A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
source electrode
opening
underlayer
Prior art date
Application number
PCT/JP2017/004315
Other languages
English (en)
French (fr)
Inventor
柴田 大輔
田村 聡之
石田 昌宏
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2017566942A priority Critical patent/JP6754782B2/ja
Publication of WO2017138505A1 publication Critical patent/WO2017138505A1/ja
Priority to US16/056,954 priority patent/US10529843B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/477Vertical HEMTs or vertical HHMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • H10D30/4755High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/478High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] the 2D charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/343Gate regions of field-effect devices having PN junction gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/82Heterojunctions
    • H10D62/824Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/252Source or drain electrodes for field-effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • H10D64/256Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are recessed in semiconductor bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • H10D64/513Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/62Electrodes ohmically coupled to a semiconductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/60Schottky-barrier diodes 

Definitions

  • the present disclosure relates to a semiconductor device that functions as a transistor.
  • a semiconductor device such as a transistor formed using a nitride semiconductor represented by a general formula of Al x Ga 1-xy In y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) has a low on-resistance.
  • the withstand voltage is high, and the pinch-off characteristic is good.
  • a transistor formed using a nitride semiconductor is expected to be used as a power transistor used in a power circuit of a television or other consumer devices, for example.
  • a vertical transistor described in Patent Document 1 is known.
  • FIG. 16 is a cross-sectional view of a conventional semiconductor device 100 described in Patent Document 1.
  • the semiconductor device 100 includes a substrate 101, a drift layer 104 made of n-type GaN, a barrier layer 106 made of p-type GaN, a source electrode S, a drain electrode D, and a gate electrode G.
  • a channel layer 122 made of GaN and an electron supply layer 126 made of AlGaN are formed so as to cover the gate groove formed to penetrate the barrier layer 106 and reach the drift layer 104.
  • the source electrode S is in contact with the channel layer 122 and also in contact with the barrier layer 106.
  • the gate electrode G is formed so as to cover the gate groove.
  • the drain electrode D is formed on the back side of the substrate 101. Note that an insulating film 109 is formed between the gate electrode G and the electron supply layer 126.
  • the avalanche energy resistance of the conventional semiconductor device transistor 100 shown in FIG. 16 is considered.
  • the distance from the bottom of the gate trench to the drain electrode D is shorter than the distance from the interface between the barrier layer 106 and the drift layer 104 to the drain electrode D. For this reason, electric field concentration occurs at the gate groove, particularly at the end of the gate groove. Therefore, an avalanche breakdown occurs in the gate groove, and an avalanche current flows from the drain electrode D to the source electrode S through the channel layer 122.
  • the channel layer 122 forms a two-dimensional electron gas layer generated at the interface between the AlGaN layer and the GaN layer.
  • the two-dimensional electron gas layer has almost no thickness (generally, the thickness is said to be several nm). Therefore, the large energy accumulated in the inductive load is consumed in the two-dimensional electron gas layer having almost no thickness, and the energy density becomes very large in the channel layer 122, causing a local temperature rise. This leads to transistor breakdown. Therefore, the conventional transistor has a problem that the avalanche energy resistance is small.
  • an object of the present disclosure is to provide a semiconductor device having a large avalanche energy resistance and a high withstand voltage.
  • a semiconductor device includes a first conductivity type substrate having a first main surface and a second main surface facing each other, and a first of the substrate.
  • the semiconductor device is formed so as to cover the first opening, the electron transit layer made of the second nitride semiconductor, the electron transit layer above the electron transit layer, and the second An electron supply layer made of a third nitride semiconductor having a band gap larger than that of the nitride semiconductor; a channel layer formed in the electron transit layer and in the vicinity of the interface between the electron transit layer and the electron supply layer; A second opening penetrating the supply layer and the electron transit layer and reaching the base layer.
  • the semiconductor device is formed so as to cover the gate electrode formed above the electron supply layer and where the first opening is located, and the second opening.
  • a source electrode that is in contact with the channel layer and the base layer, and a drain electrode that is formed on the second main surface of the substrate, and the bottom surface of the groove portion is lower than the bottom surface of the first opening portion. Is close to the first main surface of the substrate.
  • the distance from the bottom surface of the groove portion directly below the source electrode to the substrate is shorter than the distance from the bottom surface of the first opening directly below the gate electrode to the substrate.
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2A is a cross-sectional view showing a current path flowing through the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2B is a diagram illustrating a relationship between the drain current and the drain voltage of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 3A is a cross-sectional view showing a current path through the semiconductor device according to the comparative example.
  • FIG. 3B is a diagram illustrating a relationship between the drain current and the drain voltage of the semiconductor device according to the comparative example.
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2A is a cross-sectional view showing a current path flowing through the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 2B is a diagram illustrating a relationship between the drain current and the drain voltage of the semiconductor device according to the first embodiment of
  • FIG. 4A is a cross-sectional view illustrating a relationship between the length of the bottom surface of the source electrode and the length of the bottom surface of the groove portion of the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 4B is a diagram illustrating a relationship between the avalanche breakdown voltage, the length of the bottom surface of the source electrode, and the length of the bottom surface of the groove in the semiconductor device according to the first embodiment of the present disclosure.
  • FIG. 5 is a cross-sectional view of a semiconductor device according to a first modification example of the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view of a semiconductor device according to a second modification example of the first embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of a semiconductor device according to the second embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of a semiconductor device according to the third embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of a semiconductor device according to a first modification example of the third embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view of a semiconductor device according to a second modification example of the third embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view of a semiconductor device according to a third modification example of the third embodiment of the present disclosure.
  • FIG. 12 is a cross-sectional view of a semiconductor device according to the fourth embodiment of the present disclosure.
  • FIG. 13 is a cross-sectional view of a semiconductor device according to a modification of the fourth embodiment of the present disclosure.
  • FIG. 14 is an enlarged view of the upper surface and the upper surface of the semiconductor device according to the fifth embodiment of the present disclosure.
  • FIG. 15 is an enlarged view of a top surface of a semiconductor device and a part of the top surface according to a modification of the fifth embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view of a conventional semiconductor device.
  • the terms “upper” and “lower” do not refer to the upward direction (vertically upward) and downward direction (vertically downward) in absolute space recognition, but are based on the stacking order in the stacked structure. Is used as a term defined by the relative positional relationship.
  • the terms “upper” and “lower” are used not only when two components are spaced apart from each other and there is another component between the two components. The present invention is also applied when two components are in close contact with each other and are in contact with each other.
  • AlGaN represents ternary mixed crystal Al x Ga 1-x N (x is a certain value, where 0 ⁇ x ⁇ 1).
  • the multi-element mixed crystal is abbreviated with an array of constituent element symbols, such as AlInN and GaInN.
  • a nitride semiconductor Al x Ga 1-xy In y N (x and y are certain values, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) is abbreviated as AlGaInN.
  • FIG. 1 is a cross-sectional view of a semiconductor device 12 according to this embodiment.
  • the semiconductor device 12 of the present embodiment includes a substrate 1 made of n-type GaN and a drift layer 2 made of n-type GaN on the main surface of the substrate 1.
  • a groove 10 is formed in part of the drift layer 2.
  • the semiconductor device 12 further includes a first base layer 3, a block layer 4, and a second base layer 5 that are sequentially formed above the drift layer 2.
  • the semiconductor device 12 further includes a gate opening 9 that is an example of a first opening that passes through the second base layer 5, the block layer 4, and the first base layer 3 and reaches the drift layer 2.
  • the semiconductor device 12 further includes a first regrowth layer 6 that is an example of an electron transit layer formed to cover the gate opening 9 and a second regrowth layer 7 that is an example of an electron supply layer. Prepare in this order. In the vicinity of the interface between the first regrowth layer 6 and the second regrowth layer 7, a two-dimensional electron gas layer 8 serving as a channel is formed.
  • the semiconductor device 12 further includes a gate electrode G formed at a position where the gate opening 9 above the second regrowth layer 7 is located.
  • the semiconductor device 12 further penetrates the second regrowth layer 7, the first regrowth layer 6, the second underlayer 5, and the block layer 4 at a position corresponding to the groove 10, and the first underlayer
  • the source opening 11 is an example of the second opening reaching 3.
  • the semiconductor device 12 further includes a source electrode S formed so as to cover the source opening 11 and in contact with the first underlayer 3 and the second regrowth layer 7.
  • the semiconductor device 12 includes a drain electrode D formed on the back surface of the substrate 1.
  • the semiconductor device 12 according to this embodiment is a so-called vertical field effect transistor.
  • the gate opening 9 and the groove 10 are provided at positions separated from each other in plan view.
  • the source electrode S and the gate electrode G are provided apart from each other in plan view.
  • the source electrode S is in contact with the two-dimensional electron gas layer 8 on the side surface of the source opening 11. Note that an example of a planar layout of a chip including the semiconductor device 12 will be described later in a fifth embodiment.
  • the bottom surface 10 b of the groove 10 is closer to the main surface of the substrate 1 than the bottom surface 9 b of the gate opening 9. Specifically, the interface between the drift layer 2 immediately below the source electrode S and the first underlayer 3 in the trench 10 is in contact with the drift layer 2 immediately below the gate electrode G in the gate opening 9 and the first re-layer. It is in a position closer to the main surface of the substrate 1 than the interface with the growth layer 6.
  • each layer (each member) constituting the semiconductor device 12 will be described in detail.
  • the substrate 1 has a first main surface and a second main surface facing away from each other, and has a first conductivity type.
  • the first main surface is a main surface on the side where the drift layer 2 is formed.
  • the plane orientation of the first main surface is (0001) (that is, c-plane).
  • the second main surface is a main surface (back surface) on the side where the drain electrode D is formed.
  • the first conductivity type is an n + type. That is, an excessive amount of n-type dopant is added to the substrate 1 (so-called n + ).
  • n-type and n-type indicate the conductivity type of the semiconductor layer
  • n + indicates a state in which an n-type dopant is excessively added to the semiconductor layer, so-called heavy doping.
  • n ⁇ represents a so-called light doping state in which an n-type dopant is excessively added to the semiconductor layer.
  • the n-type, n + -type or n ⁇ -type reverse conductivity type is p-type, p + -type or p ⁇ -type.
  • the drift layer 2 is a nitride semiconductor layer formed on the first main surface of the substrate 1 and made of the first conductivity type first nitride semiconductor.
  • the drift layer 2 has a layer thickness of 8 ⁇ m and is made of n-type conductivity type GaN.
  • the drift layer 2 is formed by crystal growth on the first main surface of the substrate 1. Crystal growth is performed, for example, by metal organic vapor phase epitaxy (MOVPE method). The same applies to the first underlayer 3, the block layer 4, and the second underlayer 5.
  • MOVPE method metal organic vapor phase epitaxy
  • the donor concentration of the drift layer 2 is a predetermined value in the range of, for example, 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the carbon (C) concentration of the drift layer 2 is a predetermined value in the range of 1 ⁇ 10 15 cm ⁇ 3 or more and 2 ⁇ 10 17 cm ⁇ 3 or less.
  • the drift layer 2 has a groove 10.
  • the groove portion 10 is formed by removing a portion from the upper surface of the drift layer 2 to a predetermined depth.
  • the groove 10 is formed by removing a predetermined region of the drift layer 2 in plan view by dry etching.
  • the groove portion 10 has an oblique side surface 10 a inclined with respect to the first main surface of the substrate 1 and a bottom surface 10 b substantially parallel to the first main surface of the substrate 1. Note that the side surface 10 a may be orthogonal to the first main surface of the substrate 1.
  • the bottom surface 10 b of the groove 10 is located closer to the first main surface of the substrate 1 than the bottom surface 9 b of the gate opening 9. That is, the distance from the bottom surface 10 b to the first main surface of the substrate 1 is shorter than the distance from the bottom surface 9 b to the first main surface of the substrate 1.
  • the depth of the groove 10 is deeper than the depth of the gate opening 9 in the drift layer 2.
  • the groove 10 is formed at a position different from the gate electrode G (or the gate opening 9) in plan view. Specifically, the groove 10 is formed at a position overlapping the source electrode S in plan view. The trench 10 is formed at a position directly below the source electrode S, being separated from the gate opening 9.
  • the first underlayer 3 is an underlayer formed above the drift layer 2.
  • the first underlayer 3 is formed on the drift layer 2.
  • the first underlayer 3 is formed on the upper surface of the drift layer 2 and on the side surface 10 a and the bottom surface 10 b of the groove portion 10.
  • the first underlayer 3 is a nitride semiconductor layer made of a fifth nitride semiconductor of a second conductivity type opposite to the first conductivity type.
  • the first underlayer 3 has a layer thickness of 400 nm and is made of p-type conductivity type GaN.
  • the first underlayer 3 having p-type conductivity is formed, for example, by crystal growth of GaN doped with Mg.
  • the first underlayer 3 may be formed by forming undoped GaN (intrinsic GaN, hereinafter referred to as i-GaN) and then ion-implanting Mg into i-GaN.
  • the first underlayer 3 is not limited to the p-type, and may have semi-insulating properties or insulating properties.
  • iron (Fe) may be added to the first underlayer 3.
  • the block layer 4 is disposed between the first regrowth layer (electron transit layer) 6 and the first underlayer 3. Specifically, the block layer 4 is disposed on the first base layer 3.
  • the block layer 4 is made of a nitride semiconductor that is insulating or semi-insulating.
  • the block layer 4 has a layer thickness of 200 nm and is made of n-type conductivity type GaN.
  • the concentration of carbon (C) contained in the block layer 4 is, for example, 3 ⁇ 10 17 cm ⁇ 3 or more, and may be 1 ⁇ 10 18 cm ⁇ 3 or more.
  • the concentration of silicon (Si) or oxygen (O) serving as an n-type impurity contained in the block layer 4 is lower than the concentration of carbon (C), for example, 5 ⁇ 10 16 cm ⁇ 3 or less.
  • the concentration of silicon or oxygen may be 2 ⁇ 10 16 cm ⁇ 3 or less.
  • the block layer 4 may be formed by ion implantation of magnesium (Mg), iron (Fe), boron (B), or the like into i-GaN.
  • the ions to be implanted may be ion species other than those described above as long as the ion species can increase the resistance of i-GaN.
  • the block layer 4 can suppress the occurrence of a parasitic npn structure, it is possible to reduce the influence of malfunction due to the parasitic npn structure.
  • a first regrowth layer 6 a second regrowth layer 7 formed by crystal regrowth is formed between the source electrode S and the drain electrode D. It has a laminated structure of second underlayer 5 (n-type) / first underlayer 3 (p-type) / drift layer 2 (n-type).
  • This stacked structure is a parasitic npn structure (parasitic bipolar transistor).
  • the parasitic bipolar transistor When a current flows through the first underlayer 3 when the semiconductor device 12 is in an off state, the parasitic bipolar transistor is turned on, and the breakdown voltage of the semiconductor device 12 may be reduced. In that case, malfunction of the semiconductor device 12 is likely to occur. If the influence of the parasitic bipolar transistor is sufficiently small, the semiconductor device 12 may not include the block layer 4.
  • the second underlayer 5 is disposed between the first regrowth layer (electron transit layer) 6 and the first underlayer 3.
  • the second underlayer 5 is a nitride semiconductor layer disposed on the block layer 4.
  • the second underlayer 5 is made of, for example, AlGaN (Al 0.2 Ga 0.8 N) having a layer thickness of 20 nm and an Al composition of 0.2.
  • the second underlayer 5 has a function of suppressing diffusion of p-type impurities (such as Mg) from the first underlayer 3.
  • the Al composition of the second underlayer 5 is not limited to 0.2, and may be another Al composition.
  • the Al composition range of the second underlayer 5 may be in the range of 0.12 to 0.30.
  • the gate opening 9 is formed.
  • the gate opening 9 is formed at a position different from the groove 10 in plan view.
  • the gate opening 9 has an oblique side surface 9 a inclined with respect to the first main surface of the substrate 1 and a bottom surface 9 b substantially parallel to the first main surface of the substrate 1.
  • the gate opening 9 is formed so that the opening area increases as the distance from the substrate 1 increases.
  • the cross-sectional shape of the gate opening 9 is an inverted trapezoidal shape.
  • the gate opening 9 is formed on the first main surface of the substrate 1 from the drift layer 2 (the groove 10 is formed after the drift layer 2 is formed) to the second base layer 5 in order, and then partially.
  • the second underlayer 5, the block layer 4, and the first underlayer 3 are formed by etching so that the drift layer 2 is exposed.
  • the gate opening 9 is formed in a predetermined shape by, for example, patterning by photolithography and dry etching.
  • the first regrowth layer 6 is an example of an electron transit layer made of a second nitride semiconductor formed so as to cover the gate opening 9.
  • the first regrowth layer 6 has a thickness of 100 nm and is made of GaN, for example.
  • the film thickness of the first regrowth layer 6 is substantially constant. For this reason, the first regrowth layer 6 is formed in a concave shape along the surface of the gate opening 9.
  • the first regrowth layer 6 is disposed in contact with the upper surface of the second underlayer 5 and the side surface 9 a and the bottom surface 9 b of the gate opening 9. More specifically, the first regrowth layer 6 is in contact with each end face of the second underlayer 5, the block layer 4, and the first underlayer 3 in the gate opening 9, and the gate opening. It is in contact with the exposed surface of the drift layer 2 exposed at the portion 9 (the bottom surface 9b of the gate opening 9).
  • the second regrowth layer 7 is a third nitride formed above the first regrowth layer 6 and having a band gap larger than that of the second nitride semiconductor constituting the first regrowth layer 6. It is an example of the electron supply layer which consists of semiconductors. Specifically, the second regrowth layer 7 is disposed on the first regrowth layer 6.
  • the second regrowth layer 7 includes, for example, a first layer made of AlN having a layer thickness of 1 nm and a second layer made of AlGaN having a layer thickness of 50 nm and an Al composition of 0.2.
  • the Al composition of the second layer made of AlGaN in the second regrowth layer 7 is not limited to 0.2, and may be another Al composition.
  • the range of the Al composition of the second regrowth layer 7 may be a range of 0.12 or more and 0.30 or less.
  • the first layer made of AlN is in contact with the first regrowth layer 6.
  • a channel is formed in the vicinity of the interface between the first layer made of AlN and the first regrowth layer 6, more precisely in the vicinity of the interface between the first layer made of AlN and the first layer made of AlN.
  • a two-dimensional electron gas layer 8 is formed.
  • the two-dimensional electron gas layer 8 is a channel formed in the first regrowth layer (electron transit layer) 6 and in the vicinity of the interface between the first regrowth layer 6 and the second regrowth layer 7. It is an example of a layer. In the normal operation of the semiconductor device 12, a current flows through the two-dimensional electron gas layer 8.
  • the first regrowth layer 6 and the second regrowth layer 7 are formed so as to cover the gate opening 9 by crystal regrowth after providing the gate opening 9.
  • Crystal regrowth is performed, for example, by metal organic vapor phase epitaxial growth (MOVPE).
  • the second regrowth layer 7, the first regrowth layer 6, the second underlayer 5, and the block layer 4 are formed from the upper surface of the second regrowth layer 7.
  • a source opening (second opening) 11 that penetrates and reaches the first underlayer 3 is formed.
  • the source opening 11 has an oblique side surface 11 a inclined with respect to the first main surface of the substrate 1 and a bottom surface 11 b substantially parallel to the first main surface of the substrate 1. Note that the side surface 11 a may be orthogonal to the first main surface of the substrate 1.
  • the cross-sectional shape of the source opening 11 is, for example, an inverted trapezoid, but is not limited thereto.
  • the gate electrode G is formed above the second regrowth layer 7 and at a position where the gate opening 9 is located. Specifically, the gate electrode G is formed on the second regrowth layer 7 along the concave shape of the gate opening 9.
  • the gate electrode G is formed using a conductive material such as metal.
  • the gate electrode G is formed using a material that makes a Schottky contact with a nitride semiconductor having n-type conductivity.
  • the material for example, nickel (Ni) or an alloy or compound containing Ni (so-called Ni-based material), tungsten silicide (WSi), gold (Au), or the like can be used.
  • the gate electrode G is formed by patterning a conductive film formed by sputtering or vapor deposition, for example.
  • the source electrode S is disposed so as to cover the source opening 11, is separated from the gate electrode G, and is in contact with the two-dimensional electron gas layer (channel layer) and the first underlayer 3. Specifically, the source electrode S is formed so as to cover all of the side surface 11 a of the source opening 11 and the bottom surface 11 b of the source opening 11 from the second regrowth layer 7. More specifically, the source electrode S is in contact with the second regrowth layer 7, the first regrowth layer 6, the second underlayer 5, and the block layer 4 at the side surface 11 a of the source opening 11. .
  • the source electrode S is formed using a conductive material such as metal.
  • a material of the source electrode S for example, a material that makes ohmic contact with a nitride semiconductor having an n-type conductivity such as Ti / Al can be used.
  • the source electrode S is formed, for example, by patterning a conductive film formed by sputtering or vapor deposition.
  • the drain electrode D is disposed on the second main surface (back surface) of the substrate 1.
  • the drain electrode D is formed using a conductive material such as metal.
  • a material of the drain electrode D for example, a material that makes ohmic contact with an n-type conductivity type nitride semiconductor can be used.
  • the drain electrode D is formed by forming a conductive film by sputtering or vapor deposition, for example.
  • FIG. 2A is a cross-sectional view showing a current path flowing through the semiconductor device 12 according to the present embodiment.
  • FIG. 2B is a diagram showing a relationship between the drain current ID and the drain voltage VD of the semiconductor device 12 according to the present embodiment. Specifically, in FIG. 2B, the relationship between the current flowing through the drain electrode D (drain current ID) and the applied voltage (drain voltage VD) when a voltage is applied between the source electrode S and the drain electrode D. Is shown.
  • FIG. 3A is a cross-sectional view showing a current path through the semiconductor device 13 according to the comparative example.
  • FIG. 3B is a diagram illustrating a relationship between the drain current ID and the drain voltage VD of the semiconductor device 13 according to the comparative example.
  • FIGS. 2A and 3A of the drain current ID when a voltage is applied between the source electrode S and the drain electrode D, the two-dimensional electron gas immediately below the gate opening 9 from the drain electrode D.
  • the current flowing to the source electrode S via the layer 8 is represented by IDSg.
  • the current flowing from the drain electrode D to the source electrode S via the first underlayer 3 is represented by IDSd.
  • 2A and 3A indicate the direction of electrons, and current flows in the opposite direction of the arrow.
  • the drain voltage at which IDSg begins to flow is represented by VDSg
  • the voltage at which IDSd begins to flow is represented by VDSd.
  • a part of reference numerals representing layers is omitted in order to avoid complexity.
  • IDSg rapidly increases at a drain voltage exceeding VDSg. It can also be seen that IDSd increases rapidly at drain voltages exceeding VDSd. These rapidly increasing currents are currents called avalanche currents, and VDSg and VDSd are voltages called breakdown voltages.
  • VDSg is larger than VDSd. That is, in the semiconductor device 12, the breakdown voltage based on the current IDSg passing through the two-dimensional electron gas layer 8 immediately below the gate opening 9 is the breakdown based on the current IDSd flowing through the first underlayer 3 immediately below the source electrode S. Greater than voltage. This means that when the drain voltage VD is increased in the semiconductor device 12, breakdown occurs between the first underlayer 3 immediately below the source electrode S and the drain electrode D, and an avalanche current flows.
  • the groove portion 10 is formed in the drift layer 2 in the direction directly below the source electrode S, and the bottom surface 10b of the groove portion 10 is closer to the substrate 1 than the bottom surface 9b of the gate opening 9. That is, the thickness of the drift layer 2 directly below the source electrode S (source opening 11) is shorter than the thickness of the drift layer 2 directly below the gate electrode G (gate opening 9). For this reason, the electric field concentration right under the gate electrode G is relaxed, and the current IDSd flows more easily than the current IDSg. Therefore, the current IDSd flows at a voltage VDSd lower than the voltage VDSg through which the current IDSg flows.
  • VDSd is larger than VDSg. That is, in the semiconductor device 13, the breakdown voltage based on the current IDSd flowing through the first base layer 3 immediately below the source electrode S is the breakdown based on the current IDSg passing through the two-dimensional electron gas layer 8 directly below the gate opening 9. Greater than voltage. This means that when the drain voltage VD is increased in the semiconductor device 13, breakdown occurs through the two-dimensional electron gas layer 8 immediately below the gate opening 9 and an avalanche current flows.
  • the current IDSg flows from the source electrode S to the drain electrode D via the two-dimensional electron gas layer 8 immediately below the gate opening 9. Since the layer thickness of the two-dimensional electron gas layer 8 is smaller than the length of the pn junction between the drift layer 2 and the first underlayer 3, the size of the current path of the two-dimensional electron gas layer 8 is 2 and the size of the current path of the pn junction between the first underlayer 3. Therefore, if IDSd and IDSg have the same magnitude, the current density of the current IDSg flowing through the two-dimensional electron gas layer 8 is the pn junction between the drift layer 2 and the first underlayer 3. It becomes larger than the current density of the flowing current IDSd. In this case, the energy density generated in the two-dimensional electron gas layer 8 is larger than the energy density generated in the pn junction between the drift layer 2 and the first underlayer 3.
  • the semiconductor device 12 according to the present embodiment As shown in FIGS. 2A and 2B, breakdown occurs between the first underlayer 3 immediately below the source electrode S and the drain electrode D, and an avalanche current flows.
  • the semiconductor device 13 according to the comparative example As shown in FIGS. 3A and 3B, between the source electrode S and the drain electrode D, the two-dimensional electron gas layer 8 directly under the gate opening 9 is interposed. A breakdown occurs and an avalanche current flows. Therefore, the semiconductor device 12 according to the present embodiment has a larger avalanche energy tolerance than the semiconductor device 13 according to the comparative example.
  • the avalanche energy resistance is greatly improved.
  • the length of the bottom surface 10 b of the groove 10 is larger than the length of the bottom surface 11 b of the source opening 11.
  • the area of the pn junction (interface between the first base layer 3 and the drift layer 2) through which the avalanche current flows can be further increased.
  • the energy density inside the semiconductor device 12 can be reduced, and the avalanche energy tolerance can be further increased.
  • FIG. 4A is a cross-sectional view showing the relationship between the length Ls of the bottom surface of the source electrode S of the semiconductor device 12 according to the present embodiment and the length Lb of the bottom surface 10b of the groove 10.
  • FIG. 4B is a diagram illustrating the relationship between the avalanche breakdown voltage, the length Ls of the bottom surface of the source electrode S, and the length Lb of the bottom surface 10b of the groove 10 in the semiconductor device 12 according to the present embodiment.
  • Ls represents the length of the bottom surface of the source electrode S, that is, the length of the bottom surface 11b of the source opening 11.
  • the avalanche breakdown voltage increases when Lb is 5 ⁇ m or more, that is, when the length Lb of the bottom surface 10b of the groove 10 is equal to or longer than the length Ls of the bottom surface of the source electrode S.
  • Lb is 5 ⁇ m or more
  • the area of the pn junction between the drift layer 2 and the first underlayer 3 increases as the length Lb of the bottom surface 10b of the trench 10 increases, and the avalanche current density can be reduced. This is because the tolerance can be increased.
  • the avalanche breakdown voltage can be increased by making the length Lb of the bottom surface 10b of the trench 10 the same as the length Ls of the bottom surface of the source electrode S or longer than Ls. I understand that it will be possible.
  • the semiconductor device 12 includes the first conductive type substrate 1 having the first main surface and the second main surface facing each other, and the first main surface of the substrate 1.
  • a drift layer 2 formed of a first conductivity type first nitride semiconductor formed on the surface and having a groove 10 in a part thereof; and a first underlayer 3 formed above the drift layer 2
  • the second nitridation formed so as to cover the gate opening 9 and the gate opening 9 that penetrates the first base layer 3 at a position different from the groove 10 in plan view and reaches the drift layer 2
  • a first regrowth layer 6 made of a material semiconductor, and a second regrowth layer made of a third nitride semiconductor formed above the first regrowth layer 6 and having a band gap larger than that of the second nitride semiconductor.
  • the regrowth layer 7 and the inside of the first regrowth layer 6 and the first regrowth layer 6 and the second regrowth layer 6 A two-dimensional electron gas layer (channel layer) 8 formed in the vicinity of the interface with the regrowth layer 7, the first regrowth layer 6 and the second regrowth layer 7, penetrates the first underlayer 3.
  • the bottom surface 10 b of the groove 10 is closer to the first main surface of the substrate 1 than the bottom surface 9 b of the gate opening 9.
  • the distance from the bottom surface 10 b of the trench 10 immediately below the source electrode S (that is, the bottom surface of the first base layer 3) to the substrate 1 is shorter than the distance from the bottom surface 9 b of the gate opening 9 to the substrate 1. Therefore, an avalanche current can be passed through the pn diode formed by the first underlayer 3 and the drift layer 2 immediately below the source electrode S without passing through the two-dimensional electron gas layer 8. Therefore, when an inductive load is provided for the semiconductor device 12, the energy accumulated in the inductive load can be consumed in a much larger volume than the two-dimensional electron gas layer 8, and the energy density is greatly reduced. be able to. As a result, according to the present embodiment, a semiconductor device 12 having a high avalanche energy resistance and a high breakdown voltage can be obtained.
  • the first underlayer 3 is made of a fifth nitride semiconductor of a second conductivity type that is a conductivity type opposite to the first conductivity type.
  • the first underlayer 3 is formed using a p-type nitride semiconductor.
  • a pn junction diode can be formed by the first underlayer 3 and the drift layer 2, so that the breakdown voltage of the semiconductor device 12 can be increased.
  • the layer thickness of each layer from the drift layer 2 to the second regrowth layer 7 is not limited to the above, and the layer thickness is appropriately set within a range in which the semiconductor device 12 having a high avalanche energy resistance can be obtained. be able to.
  • Ls 5 ⁇ m, it is not limited to the above, and can be set as appropriate within a range in which the semiconductor device 12 having a high avalanche energy resistance can be obtained.
  • the second regrowth layer 7 has an example of a laminated structure including a first layer made of AlN having a thickness of 1 nm and a second layer made of AlGaN having a thickness of 50 nm. Although explained, it is not limited to this. Since the two-dimensional electron gas layer 8 is formed even if the second regrowth layer 7 is a single layer made of AlGaN, the same effect as described above can be obtained.
  • FIG. 5 is a cross-sectional view of a semiconductor device 12a according to this modification.
  • the semiconductor device 12a according to the present modification is different from the semiconductor device 12 according to the first embodiment in that a gate electrode G1 is provided instead of the gate electrode G.
  • a gate electrode G1 is provided instead of the gate electrode G.
  • the positions of both ends (gate end, end of gate electrode G) of the gate electrode G1 included in the semiconductor device 12a are located inside the gate opening 9.
  • the threshold value of the semiconductor device 12 a can be determined only by a portion (side wall portion) along the side surface 9 a of the gate opening 9.
  • the semiconductor device 12a having a high avalanche energy resistance can be obtained, and the carrier concentration of the flat portion (the portion along the bottom surface 9b of the gate opening 9) can be increased.
  • the on-resistance can be reduced.
  • FIG. 6 is a cross-sectional view of a semiconductor device 12b according to this modification.
  • the semiconductor device 12b according to the present modification has a gate electrode G2 instead of the gate electrode G and the first regrowth layer 6 as compared with the semiconductor device 12 according to the first embodiment.
  • the point provided with the 1st regrowth layer 6b is different. Below, it demonstrates centering on difference with 1st Embodiment, and description of a common point is abbreviate
  • the gate end of the gate electrode G2 is located outside the gate opening 9.
  • the width LG of the gate electrode G2 is larger than the width of the gate opening 9.
  • the width of the gate opening 9 corresponds to the distance in the lateral direction (direction parallel to the main surface of the substrate 1) between the upper ends of the side surfaces 9a in the cross section shown in FIG.
  • the threshold value of the semiconductor device 12b is the larger one of the portion (side wall portion) along the side surface 9a of the gate opening 9 and the portion (flat portion) along the bottom surface 9b of the gate opening 9. Determined by.
  • the layer thickness Lt of the first regrowth layer 6b in the direction parallel to the first main surface of the substrate 1 is in the direction perpendicular to the first main surface of the substrate 1. It is larger than the layer thickness Lr. That is, Lr ⁇ Lt.
  • the threshold value of the semiconductor device 12 b is determined by the flat portion of the gate opening 9.
  • the distance between the first underlayer 3 having the p-type conductivity and the two-dimensional electron gas layer 8 can be increased. Therefore, depletion of the two-dimensional electron gas layer 8 on the side wall portion of the gate opening 9 due to the influence from the first underlayer 3 can be reduced. Therefore, the threshold value of the channel in the side wall portion of the gate opening 9 can be reduced.
  • the threshold value of the semiconductor device 12b according to this modification can be determined by the flat portion of the gate opening 9.
  • the semiconductor device 12b having a large avalanche energy resistance can be obtained, and the following two advantages can be obtained.
  • the depletion of the two-dimensional electron gas layer 8 can be reduced in the side wall portion of the gate opening 9, it is possible to suppress a decrease in channel carrier concentration. Therefore, it is possible to suppress the depletion layer from constricting from the p-type first base layer 3, and to reduce the on-resistance of the semiconductor device 12b.
  • the process after the formation of the first regrowth layer 6b is performed.
  • the opening depth can be reduced.
  • the process time can be shortened and the coverage of the gate electrode G2 can be improved.
  • FIG. 7 is a cross-sectional view of the semiconductor device 15 according to the present embodiment.
  • the semiconductor device 15 according to the present embodiment has a third gap between the gate electrode G and the second regrowth layer 7 as compared with the semiconductor device 12 according to the first embodiment.
  • the difference is that the regrowth layer 14 is provided.
  • it demonstrates centering on difference with 1st Embodiment, and description of a common point is abbreviate
  • the third regrowth layer 14 is disposed between the second regrowth layer (electron supply layer) 7 and the gate electrode G, and has a second conductivity type opposite to the first conductivity type. It is an example of the control layer which consists of a 4th nitride semiconductor. Specifically, the third regrowth layer 14 is made of AlGaN having a p-type conductivity type.
  • the semiconductor device 15 can increase the potential energy of the two-dimensional electron gas layer 8, which is a channel, immediately below the third regrowth layer 14 by providing the third regrowth layer 14 made of p-type AlGaN. it can. Therefore, the threshold value of the semiconductor device 15 can be increased, and the semiconductor device 15 can be normally off. Since the third regrowth layer 14 can increase the threshold value of the semiconductor device 15, it is called a control layer in the sense of controlling the threshold value.
  • the third regrowth layer 14 is not limited to p-type AlGaN, and other p-type nitride semiconductors such as p-type GaN and p-type AlGaInN may be used. Even in this case, the potential energy of the two-dimensional electron gas layer 8 immediately below the third regrowth layer 14 can be increased.
  • the semiconductor device 15 may include an insulating control layer disposed between the second regrowth layer 7 and the gate electrode G instead of the third regrowth layer 14.
  • the threshold value of the semiconductor device 15 can be increased, and the semiconductor device 15 can be normally off.
  • any material can be used as the material used for the third regrowth layer 14 as long as it has an effect of increasing the potential energy of the channel.
  • the semiconductor device 15 is disposed between the second regrowth layer 7 and the gate electrode G, and has the second conductivity type opposite to the first conductivity type.
  • the third regrowth layer 14 made of the fourth nitride semiconductor is further provided.
  • the semiconductor device 100 can be operated in a normally-off operation.
  • the semiconductor device 15 having a high avalanche energy resistance can be obtained.
  • the positions of both ends of the gate electrode G may be located inside the gate opening 9 in the semiconductor device 15 as well. Further, the positions of both ends of the third regrowth layer 14 may be located inside the gate opening 9. By doing so, the threshold value of the semiconductor device 15 can be determined only by the side wall portion of the gate opening 9.
  • FIG. 8 is a cross-sectional view of the semiconductor device 17 according to the present embodiment.
  • the source electrode S includes the first source electrode S1 and the second source electrode S2 as compared with the semiconductor device 12 according to the first embodiment.
  • the difference is that the through hole 16 is formed in the first underlayer 3.
  • Other points are the same as those of the semiconductor device 12 of the first embodiment. Below, it demonstrates centering on difference with 1st Embodiment, and description of a common point is abbreviate
  • a plurality of through holes 16 are formed in the first base layer 3.
  • the number of through holes 16 may be one.
  • Each of the plurality of through holes 16 reaches the drift layer 2 from the bottom surface of the source opening 11. That is, the plurality of through holes 16 are formed in the groove 10 and in the source opening 11 in plan view.
  • the plurality of through holes 16 are filled with the second source electrode S2.
  • the source electrode S has a multilayer structure of a first source electrode S1 and a second source electrode S2.
  • the first source electrode S 1 is in contact with the two-dimensional electron gas layer (channel layer) 8. Specifically, as shown in FIG. 8, the first source electrode S ⁇ b> 1 is formed along the side surface 11 a of the source opening 11.
  • the first source electrode S ⁇ b> 1 is in contact with each end face of the second regrowth layer 7, the first regrowth layer 6, the second underlayer 5, and the block layer 4.
  • the first source electrode S1 is formed using a conductive material such as metal.
  • a conductive material such as metal.
  • a metal that makes ohmic contact with an n-type nitride semiconductor such as Ti / Al can be used.
  • the first source electrode S1 is formed, for example, by patterning a conductive film formed by sputtering or vapor deposition.
  • the second source electrode S2 is in contact with the drift layer 2. Specifically, the second source electrode S2 is filled in the through hole 16 and is in contact with the drift layer 2 through the through hole 16. The second source electrode S ⁇ b> 2 is further in contact with the first base layer 3. Specifically, the second source electrode S ⁇ b> 2 is in contact with the first base layer 3 at the bottom surface 11 b of the source opening 11 and the through hole 16. Further, the first source electrode S1 and the second source electrode S2 are electrically connected.
  • the second source electrode S2 is formed using a conductive material such as metal.
  • the second source electrode S2 is made of a material different from that of the first source electrode S1.
  • the second source electrode S2 includes Pd, Ni, Au, Pt, and the like, and is in ohmic contact with the first base layer 3.
  • the second source electrode S2 is Schottky connected to the drift layer 2.
  • the second source electrode S2 is formed, for example, by patterning a conductive film formed by sputtering or vapor deposition.
  • the first foundation layer 3 has the through hole 16 that reaches the drift layer 2 from the bottom surface 11b of the source opening 11, and the source electrode S further includes In contact with the drift layer 2 through the through hole 16.
  • a diode is formed between the drain electrode D and the source electrode S on the bottom surface 10 b of the groove 10.
  • This diode has a configuration in which a pn junction formed by the p-type first base layer 3 and the n-type drift layer 2 and a Schottky junction formed by the second source electrode S2 and the drift layer 2 are mixed.
  • the operating voltage can be lowered when a forward current flows, and the breakdown voltage can be increased when a reverse current flows.
  • the source electrode S is made of a material different from the first source electrode S 1 that is in contact with the two-dimensional electron gas layer 8 and the first source electrode S 1, and is in contact with the drift layer 2. 2 source electrodes S2. Specifically, in the semiconductor device 17, the second source electrode S ⁇ b> 2 is in contact with the first base layer 3.
  • the source electrode (first source electrode S1) of the transistor and the anode electrode (second source electrode S2) of the diode are formed of two kinds of metals. Yes. That is, the first source electrode S1 is in ohmic contact with the n-type nitride semiconductor, and the second source electrode S2 (anode electrode) is in ohmic contact with the p-type first underlayer 3. Such a metal is used.
  • the semiconductor device 17 ohmic contact is formed with the channel (two-dimensional electron gas layer 8) as the first source electrode S ⁇ b> 1 to achieve low resistance, and at the same time, contact with the first base layer 3 A contact with low resistance is possible. For this reason, the depletion layer from the first underlayer 3 can also be efficiently extended, and the breakdown voltage of the semiconductor device 17 can be increased. As a result, it is possible to further increase the breakdown voltage of the semiconductor device 17.
  • FIG. 9 is a cross-sectional view of the semiconductor device 18 according to this modification.
  • the semiconductor device 18 according to this modification is different from the semiconductor device 17 according to the third embodiment in that the first source electrode S1 and the second source electrode S2 are formed of the same material.
  • the source electrode S is integrally formed using the same material as in the first embodiment.
  • the source electrode S (the first source electrode S1 and the second source electrode S2) is formed using Ti / Al. According to this configuration, since the source electrode S can be formed in one step, the number of steps can be reduced and the cost of the semiconductor device 18 can be reduced.
  • FIG. 10 is a cross-sectional view of the semiconductor device 19 according to this modification.
  • the semiconductor device 19 according to this modification includes a third regrowth layer 14 between the gate electrode G and the second regrowth layer 7 as compared with the semiconductor device 17 according to the third embodiment. Is different.
  • the third regrowth layer 14 is the same as the third regrowth layer 14 included in the semiconductor device 15 according to the second embodiment, and is made of, for example, p-type AlGaN.
  • the threshold value of the semiconductor device 19 can be increased, and the semiconductor device 19 can be normally off.
  • FIG. 11 is a cross-sectional view of the semiconductor device 20 according to this modification.
  • the first source electrode S1 and the second source electrode S2 are formed of the same material as compared with the semiconductor device 19 according to the second modification of the third embodiment. Is different. That is, as shown in FIG. 11, the source electrode S is integrally formed using the same material as in the first embodiment.
  • This modification corresponds to a combination of the first modification and the second modification of the third embodiment.
  • the depletion layer can be easily extended from the first base layer 3 (p-type) divided by the through-hole 16, so that the leakage current does not increase and a high breakdown voltage can be secured.
  • the width of the through hole 16 is, for example, not less than 0.5 ⁇ m and not more than 10 ⁇ m, and preferably not less than 1 ⁇ m and not more than 5 ⁇ m. Further, the width of the first base layer 3 formed discretely by the plurality of through holes 16 is, for example, 0.5 ⁇ m or more and 10 ⁇ m or less, and preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • FIG. 12 is a cross-sectional view of the semiconductor device 22 according to the present embodiment.
  • the semiconductor device 22 according to the present embodiment is different from the semiconductor device 12 according to the first embodiment in that it includes an implantation layer 21 formed by ion implantation.
  • an implantation layer 21 formed by ion implantation.
  • the implanted layer 21 is a layer formed by implanting ions into a part of the first underlayer 3 and the drift layer 2 located immediately below the source electrode S.
  • the implantation layer 21 is formed by ion-implanting the portion immediately below the source electrode S to the drift layer 2 with respect to the first base layer 3.
  • Injection layer 21 has p-type conductivity.
  • a predetermined region of the first underlayer 3 (region immediately below the source electrode S). Ion implantation is performed. Note that the ion implantation may be performed after the drift layer 2 and the first underlayer 3 are formed by crystal growth, and then the block layer 4 and the second underlayer 5 may be formed. The ion implantation is performed before the gate opening 9 is formed, but may be performed after the gate opening 9 is formed.
  • the groove 10 is formed in the drift layer 2 by forming the injection layer 21. That is, instead of removing a partial region of the drift layer 2 to a predetermined depth, the groove 10 is formed by performing ion implantation to the region to a predetermined depth. Specifically, the interface between the ion-implanted region (implant layer 21) and the non-ion-implanted region (drift layer 2) corresponds to the side surface 10a and the bottom surface 10b of the groove 10.
  • the tip of the ion implantation region applied to the implantation layer 21 corresponds to the bottom surface 10b of the groove 10, and the bottom layer 9b of the gate opening 9, that is, the drift layer 2 and the first regrowth layer immediately below the gate electrode G. 6 is located closer to the first main surface of the substrate 1 than the interface with the substrate 6.
  • the ion species for ion implantation is not particularly limited as long as it is an element that becomes a p-type dopant. For example, Mg, Fe, C, or the like can be used.
  • the portion immediately below the source electrode S in the first underlayer 3 is ion-implanted.
  • the first underlayer 3, the block layer 4, and the second underlayer 5 can be continuously grown. Thereby, the crystal regrowth can be reduced to one after the first regrowth layer 6, and the cost of the semiconductor device 22 can be reduced.
  • the semiconductor device 22 having a high avalanche energy resistance can be obtained.
  • FIG. 13 is a cross-sectional view of the semiconductor device 23 according to this modification.
  • the semiconductor device 23 according to this modification includes a third regrowth layer 14 between the gate electrode G and the second regrowth layer 7 as compared to the semiconductor device 22 according to the fourth embodiment. Is different.
  • the third regrowth layer 14 is the same as the third regrowth layer 14 included in the semiconductor device 15 according to the second embodiment, and is made of, for example, p-type AlGaN.
  • the threshold value of the semiconductor device 23 can be increased, and the semiconductor device 23 can be normally off.
  • FIG. 14 is an enlarged view of the upper surface of the semiconductor device 27 according to the present embodiment and the upper surface.
  • a semiconductor device 27 shown in FIG. 14 is, for example, one in which a plurality of semiconductor devices 12 according to the first embodiment are arranged and integrated on one chip. As shown in FIG. 14, the semiconductor device 27 includes a plurality of semiconductor devices 12, a source pad 25, a gate pad 26, and a drain pad (not shown).
  • FIG. 14A is a diagram showing the arrangement of the source pad 25 and the gate pad 26 on the upper surface of the semiconductor device 27.
  • FIG. 14B is an enlarged view of FIG. 14A, and is a view seen through the source pad 25.
  • the drain pad (not shown) is formed on the back surface of the semiconductor device 27. Note that the cross-sectional view taken along the line II in FIG. 14B is the same as the cross-sectional view of the semiconductor device 12 shown in FIG.
  • the source pad 25 is provided in a U-shape in plan view (substantially U-shaped sideways). Further, as shown in FIG. 14B, a plurality of contact holes 24 are arranged in a range covered by the source pad 25. A source electrode S is provided in the contact hole 24 and is electrically connected to the source pad 25.
  • the gate pad 26 is provided so that both sides are sandwiched between the source pads 25.
  • the gate pad 26 is electrically connected to the gate electrode G.
  • the source pad 25 is indicated by a thick broken line.
  • the drain pad is electrically connected to the drain electrode D.
  • the source electrode S, the gate electrode G, and the source opening 11 extend long in the vertical direction on the paper surface of FIG. That is, the planar layout of the source electrode S, the gate electrode G, and the source opening 11 is a so-called finger type layout.
  • the longitudinal direction of the source electrode S, the gate electrode G, and the source opening 11 (the direction from the bottom to the top in FIG. 14A and 14B) is the ⁇ 11-20> direction.
  • a minus (-) in parentheses ⁇ > indicating a direction represents a bar.
  • FIG. 15 is an enlarged view of the upper surface of the semiconductor device 28 according to this modification and a part of the upper surface.
  • the semiconductor device 28 is obtained, for example, by integrating a plurality of semiconductor devices 15 according to the second embodiment on a single chip. As shown in FIG. 15, the semiconductor device 28 includes a plurality of semiconductor devices 12, a source pad 25, a gate pad 26, and a drain pad (not shown).
  • FIG. 15A is a view showing the arrangement of the source pad 25 and the gate pad 26 on the upper surface of the semiconductor device 28, and is a view seen through the source pad 25.
  • FIG. FIG. 15B is a partially enlarged view of FIG.
  • the drain pad (not shown) is formed on the back surface of the semiconductor device 28.
  • the source pad 25 is indicated by a thick broken line.
  • a sectional view taken along line VII-VII in FIG. 15A is the same as the sectional view of the semiconductor device 15 shown in FIG.
  • the semiconductor device 28 according to this modification is different from the semiconductor device 27 according to the fifth embodiment in the shapes of the source electrode S and the gate electrode G. Specifically, in the semiconductor device 28, the source electrode S and the gate electrode G are arranged in a hexagonal shape. As shown in FIG. 15B, the gate electrode G, the gate opening 9 (broken line), and the third regrowth layer 14 are arranged so as to surround the source electrode S and the source opening 11 (broken line). Thus, one cell 29 is configured.
  • the arrangement structure of the cells 29 is a so-called close-packed structure.
  • the direction from the bottom to the top of the drawing in FIGS. 15A and 15B and along the hexagonal side of the source electrode S is the ⁇ 11-20> direction.
  • the source electrode S is electrically connected to the source pad 25, and the gate electrode G is electrically connected to the gate pad 26.
  • the drain pad (not shown) is electrically connected to the drain electrode D.
  • the sectional view taken along line II in FIG. 14B is the sectional view of the semiconductor device 12 shown in FIG.
  • the device 15, the semiconductor devices 17 to 20, or the semiconductor devices 22 and 23 may be used.
  • 15A, the cross-sectional view taken along the line VII-VII is the semiconductor device 15 shown in FIG. 7, but is not limited to the semiconductor device 15, but the semiconductor device 12, the semiconductor devices 17 to 20, or the semiconductor device. 22, 23 may be sufficient.
  • the longitudinal direction of the source electrode S, the gate electrode G, and the source opening 11 is the ⁇ 11-20> direction, but may be a ⁇ 1-100> direction.
  • the plane orientation of the substrate 1 is the (0001) plane.
  • the plane is not limited to the (0001) plane, and any plane may be used as long as it has a polarity.
  • the first conductivity type is n, n + or n ⁇ type and the second conductivity type is p, p + or p ⁇ type has been described. Not exclusively.
  • the first conductivity type may be p, p + or p ⁇ type, and the second conductivity type may be n, n + or n ⁇ type.
  • the semiconductor device according to the present disclosure is useful as a power device used in a power supply circuit of a consumer device such as a television.

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導体装置(12)は、基板(1)と、溝部(10)を有するドリフト層(2)と、第1の下地層(3)と、平面視において溝部(10)と異なる位置においてドリフト層(2)にまで達するゲート開口部(9)と、ゲート開口部(9)を覆うように順に形成された第1の再成長層(6)及び第2の再成長層(7)と、第1の再成長層(6)と第2の再成長層(7)との界面近傍に形成される二次元電子ガス層(8)と、第1の下地層(3)にまで達するソース開口部(11)と、第1の再成長層(6)の上方に形成されたゲート電極(G)と、二次元電子ガス層(8)及び第1の下地層(3)に接するソース電極(S)と、基板(1)の裏面上に形成されたドレイン電極(D)とを備え、溝部(10)の底面(10b)は、ゲート開口部(9)の底面(9b)よりも基板(1)に近い。

Description

半導体装置
 本開示は、トランジスタとして機能する半導体装置に関するものである。
 一般式がAlGa1-x-yInN(0≦x≦1、0≦y≦1)で表される窒化物半導体を用いて形成されたトランジスタなどの半導体装置は、低いオン抵抗で、かつ耐圧が高く、さらには良好なピンチオフ特性を有する。このため、窒化物半導体を用いて形成されたトランジスタは、例えばテレビジョンや他の民生機器の電源回路に用いられるパワートランジスタとして利用されることへの期待が高まっている。このようなトランジスタの一例として、例えば特許文献1に記載された縦型トランジスタが知られている。
 図16は、特許文献1に記載された従来の半導体装置100の断面図である。半導体装置100は、基板101と、n型GaNよりなるドリフト層104と、p型GaNよりなるバリア層106と、ソース電極Sと、ドレイン電極Dと、ゲート電極Gとを備えている。半導体装置100は、さらに、バリア層106を貫通し、ドリフト層104に達する深さまで形成されたゲート溝部を覆うように、GaNよりなるチャネル層122及びAlGaNよりなる電子供給層126が形成されている。ソース電極Sは、チャネル層122に接し、かつ、バリア層106にも接している。ゲート電極Gは、ゲート溝部を覆うように形成されている。ドレイン電極Dは、基板101の裏面側に形成されている。なお、ゲート電極Gと電子供給層126との間に絶縁膜109が形成されている。
特開2012-84617号公報
 トランジスタを例えばインバータに応用した場合、誘導性負荷を用いてトランジスタのスイッチングを行うことになる。ターンオフした際に誘導性負荷に溜まっているエネルギー(E=1/2LI、Lは自己インダクタンス、Iは電流)を回路内で消費する必要がある。その際のトランジスタの耐破壊性の指標としてアバランシェエネルギー耐量がある。アバランシェエネルギー耐量は、誘導性負荷に蓄積されたエネルギーをトランジスタで消費した場合、トランジスタが破壊に至らずに消費できる最大エネルギーと定義される。このとき、トランジスタはオフ状態においてドレイン電極Dからソース電極Sへ電流を流さなければならず、必然的にトランジスタのアバランシェ領域を用いてそのエネルギーを消費することになる。
 ここで、図16に示す従来の半導体装置トランジスタ)100のアバランシェエネルギー耐量について考える。従来の半導体装置100は、ゲート溝部の底部からドレイン電極Dまでの距離が、バリア層106とドリフト層104との界面からドレイン電極Dまでの距離よりも短い。このため、ゲート溝部、特に、ゲート溝部の端部において、電界集中が起きる。そのため、アバランシェ降伏はゲート溝部にて発生し、アバランシェ電流はチャネル層122を通ってドレイン電極Dからソース電極Sへ流れることになる。
 チャネル層122は、AlGaN層とGaN層との界面に発生する二次元電子ガス層を形成する。二次元電子ガス層はほとんど厚さを持たない(一般的に厚さは数nmと言われる)。したがって、誘導性負荷に溜まった大きなエネルギーは、ほとんど厚さを持たない二次元電子ガス層にて消費することになり、チャネル層122においてエネルギー密度が非常に大きくなって局所的な温度上昇が発生し、トランジスタの破壊につながる。そのため、従来のトランジスタでは、アバランシェエネルギー耐量が小さいという問題を有している。
 上記の課題に鑑み、本開示は、アバランシェエネルギー耐量が大きく、高耐圧の半導体装置を提供することを目的とする。
 上記課題を解決するため、本開示の一態様に係る半導体装置は、互いに背向する第1の主面及び第2の主面を有する、第1の導電型の基板と、基板の第1の主面上に形成され、かつ、一部に溝部を有する第1の導電型の第1の窒化物半導体よりなるドリフト層と、ドリフト層の上方に形成された下地層と、平面視において溝部と異なる位置において下地層を貫通し、かつ、ドリフト層にまで達する第1の開口部とを備える。そして、本態様に係る半導体装置は、第1の開口部を覆うように形成された、第2の窒化物半導体よりなる電子走行層と、電子走行層の上方に形成され、かつ、第2の窒化物半導体よりバンドギャップが大きい第3の窒化物半導体よりなる電子供給層と、電子走行層の内部で、かつ、電子走行層と電子供給層との界面近傍に形成されるチャネル層と、電子供給層及び電子走行層を貫通し、下地層にまで達する第2の開口部とを備える。そして、本態様に係る半導体装置は、電子供給層の上方で、かつ、第1の開口部が位置する一に形成されたゲート電極と、第2の開口部を覆うように形成され、ゲート電極とは離間し、かつ、チャネル層及び下地層に接するソース電極と、基板の第2の主面上に形成されたドレイン電極と、を備え、溝部の底面は、第1の開口部の底面よりも基板の第1の主面に近い。
 この構成により、ソース電極の直下における溝部の底面から基板までの距離が、ゲート電極の直下における第1の開口部の底面から基板までの距離より短くなる。これにより、ゲート電極の直下における電界集中を緩和し、ドレイン電極とソース電極との間にてアバランシェ電流を流すことができる。
 本開示によれば、アバランシェエネルギー耐量が大きく、高耐圧の半導体装置を提供することができる。
図1は、本開示の第1の実施形態に係る半導体装置の断面図である。 図2Aは、本開示の第1の実施形態に係る半導体装置を流れる電流経路を示す断面図である。 図2Bは、本開示の第1の実施形態に係る半導体装置のドレイン電流とドレイン電圧との関係を示す図である。 図3Aは、比較例に係る半導体装置を流れる電流経路を示す断面図である。 図3Bは、比較例に係る半導体装置のドレイン電流とドレイン電圧との関係を示す図である。 図4Aは、本開示の第1の実施形態に係る半導体装置のソース電極の底面の長さと溝部の底面の長さとの関係を示す断面図である。 図4Bは、本開示の第1の実施形態に係る半導体装置における、アバランシェ降伏電圧とソース電極の底面の長さ及び溝部の底面の長さとの関係を示す図である。 図5は、本開示の第1の実施形態の第1の変形例に係る半導体装置の断面図である。 図6は、本開示の第1の実施形態の第2の変形例に係る半導体装置の断面図である。 図7は、本開示の第2の実施形態に係る半導体装置の断面図である。 図8は、本開示の第3の実施形態に係る半導体装置の断面図である。 図9は、本開示の第3の実施形態の第1の変形例に係る半導体装置の断面図である。 図10は、本開示の第3の実施形態の第2の変形例に係る半導体装置の断面図である。 図11は、本開示の第3の実施形態の第3の変形例に係る半導体装置の断面図である。 図12は、本開示の第4の実施形態に係る半導体装置の断面図である。 図13は、本開示の第4の実施形態の変形例に係る半導体装置の断面図である。 図14は、本開示の第5の実施形態に係る半導体装置の上面及び当該上面を拡大した図である。 図15は、本開示の第5の実施形態の変形例に係る半導体装置の上面及び当該上面の一部を拡大した図である。 図16は、従来の半導体装置の断面図である。
 以下、本開示の実施形態に係る半導体装置について、図面を参照しながら詳細に説明する。なお、以下に説明する実施形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する趣旨ではない。よって、以下の実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。また、以下の実施形態において、略平行などの「略」を用いた表現を用いている。例えば、略平行は、完全に平行であることを意味するだけでなく、実質的に平行である、すなわち、例えば数%程度の差異を含むことも意味する。他の「略」を用いた表現についても同様である。
 また、本明細書において、「上方」及び「下方」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構造における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 また、AlGaNとは、3元混晶AlGa1-xN(xはある値、但し0≦x≦1)のことを表す。以下、多元混晶はそれぞれの構成元素記号の配列、例えばAlInN、GaInNなどでもって略記される。例えば、窒化物半導体AlGa1-x-yInN(x、yはある値、但し0≦x≦1、0≦y≦1)はAlGaInNと略記される。
 (第1の実施形態)
 以下、本開示の第1の実施形態に係る半導体装置について、添付の図面を参照して説明する。
 [構成及び製造方法]
 図1は、本実施形態に係る半導体装置12の断面図である。
 図1に示すように、本実施形態の半導体装置12は、n型GaNよりなる基板1と、基板1の主面上にn型のGaNよりなるドリフト層2とを備える。ドリフト層2の一部には、溝部10が形成されている。
 半導体装置12は、さらに、ドリフト層2の上方に順に形成された、第1の下地層3と、ブロック層4と、第2の下地層5とを備える。半導体装置12は、さらに、第2の下地層5、ブロック層4及び第1の下地層3を貫通し、ドリフト層2にまで達する第1の開口部の一例であるゲート開口部9を有する。
 半導体装置12は、さらに、ゲート開口部9を覆うように形成された電子走行層の一例である第1の再成長層6、及び、電子供給層の一例である第2の再成長層7をこの順で備える。第1の再成長層6の、第2の再成長層7との界面の近傍には、チャネルとなる二次元電子ガス層8が形成される。半導体装置12は、さらに、第2の再成長層7の上方のゲート開口部9が位置する位置に形成されたゲート電極Gを備える。
 半導体装置12は、さらに、溝部10に対応する位置において、第2の再成長層7、第1の再成長層6、第2の下地層5及びブロック層4を貫通し、第1の下地層3にまで達する第2の開口部の一例であるソース開口部11を有する。半導体装置12は、さらに、ソース開口部11を覆うように形成され、第1の下地層3と第2の再成長層7とに接するソース電極Sを備える。また、半導体装置12は、基板1の裏面上に形成されたドレイン電極Dを備える。このように、本実施形態に係る半導体装置12は、いわゆる縦型の電界効果トランジスタである。
 ゲート開口部9と溝部10とは、平面視において、互いに離れた位置に設けられている。ソース電極Sとゲート電極Gとは、平面視において離間して設けられている。また、ソース電極Sは、ソース開口部11の側面において二次元電子ガス層8に接触している。なお、半導体装置12を備えるチップの平面レイアウトの一例については、後で第5の実施形態で説明する。
 本実施形態では、溝部10の底面10bは、ゲート開口部9の底面9bよりも基板1の主面に近い。具体的には、溝部10におけるソース電極Sの直下にあるドリフト層2と第1の下地層3との界面は、ゲート開口部9におけるゲート電極Gの直下にあるドリフト層2と第1の再成長層6との界面よりも基板1の主面に近い位置にある。
 以下では、半導体装置12を構成する各層(各部材)の具体的な構成について詳細に説明する。
 基板1は、互いに背向する第1の主面及び第2の主面を有し、第1の導電型を有する。第1の主面は、ドリフト層2が形成される側の主面である。第1の主面の面方位は、(0001)(すなわちc面)である。第2の主面は、ドレイン電極Dが形成される側の主面(裏面)である。本実施形態では、第1の導電型は、n型である。つまり、基板1には、n型のドーパントが過剰に添加されている(いわゆるnである)。
 なお、p型、n型は、半導体層の導電型を示し、nとは、半導体層にn型ドーパントが過剰に添加された状態、いわゆるヘビードープを表す。また、nとは、半導体層にn型ドーパントが過少に添加された状態、いわゆるライトドープを表す。n型、n型又はn型の逆導電型は、p型、p型又はp型である。
 ドリフト層2は、基板1の第1の主面上に形成され、かつ、第1の導電型の第1の窒化物半導体よりなる窒化物半導体層である。例えば、ドリフト層2は、層厚が8μmであり、かつ、n型の導電型のGaNよりなる。ドリフト層2は、基板1の第1の主面上に結晶成長させることで形成される。結晶成長は、例えば有機金属気相エピタキシャル成長法(MOVPE法)により行われる。なお、第1の下地層3、ブロック層4及び第2の下地層5も同様である。
 ドリフト層2のドナー濃度は、例えば1×1015cm-3以上かつ1×1017cm-3以下の範囲の所定の値である。また、ドリフト層2の炭素(C)濃度は、1×1015cm-3以上かつ2×1017cm-3以下の範囲の所定の値である。
 本実施形態では、ドリフト層2は、溝部10を有する。溝部10は、ドリフト層2の上面から所定の深さまでを除去することで形成される。例えば、溝部10は、ドリフト層2の平面視における所定の領域をドライエッチングにより除去することで形成される。
 溝部10は、基板1の第1の主面に対して傾斜した斜めの側面10aと、基板1の第1の主面に略平行な底面10bとを有する。なお、側面10aは、基板1の第1の主面に対して直交していてもよい。溝部10の底面10bは、ゲート開口部9の底面9bよりも基板1の第1の主面に近い位置に位置している。すなわち、底面10bから基板1の第1の主面までの距離は、底面9bから基板1の第1の主面までの距離より短い。本実施形態では、溝部10の深さは、ゲート開口部9のドリフト層2における深さよりも深い。
 溝部10は、平面視において、ゲート電極G(又はゲート開口部9)とは異なる位置に形成されている。具体的には、溝部10は、平面視において、ソース電極Sと重なる位置に形成されている。溝部10は、ゲート開口部9とは離間して、ソース電極Sの直下の位置に形成されている。
 第1の下地層3は、ドリフト層2の上方に形成された下地層である。本実施形態では、第1の下地層3は、ドリフト層2上に形成されている。具体的には、第1の下地層3は、ドリフト層2の上面、並びに、溝部10の側面10a及び底面10b上に形成されている。
 第1の下地層3は、第1の導電型とは逆導電型の第2の導電型の第5の窒化物半導体よりなる窒化物半導体層である。例えば、第1の下地層3は、層厚が400nmであり、かつ、p型の導電型のGaNよりなる。
 p型の導電型を有する第1の下地層3は、例えばMgを添加したGaNを結晶成長することにより形成されている。第1の下地層3は、アンドープのGaN(無添加(intrinsic)GaN、以下i-GaNという)を形成し、その後、i-GaNに対してMgをイオン注入することにより形成されてもよい。
 なお、第1の下地層3は、p型に限らず、半絶縁性又は絶縁性を有してもよい。第1の下地層3が半絶縁性又は絶縁性を有するようにするには、例えば第1の下地層3に鉄(Fe)を添加すればよい。
 ブロック層4は、第1の再成長層(電子走行層)6と第1の下地層3との間に配置されている。具体的には、ブロック層4は、第1の下地層3上に配置されている。ブロック層4は、絶縁性又は半絶縁性である窒化物半導体より形成されている。例えば、ブロック層4は、層厚が200nmであり、かつ、n型の導電型のGaNよりなる。ブロック層4に含まれる炭素(C)濃度は、例えば3×1017cm-3以上であり、1×1018cm-3以上でもよい。
 ブロック層4を構成する材料としては、絶縁性又は半絶縁性を有する材料であればどのような材料を用いてもよい。このとき、ブロック層4に含まれるn型不純物となる珪素(Si)又は酸素(O)の濃度は、炭素(C)の濃度に比べて低く、例えば5×1016cm-3以下である。珪素又は酸素の濃度は、2×1016cm-3以下でもよい。なお、ブロック層4は、i-GaNにマグネシウム(Mg)、鉄(Fe)又はホウ素(B)などのイオン注入で形成されてもよい。また、注入するイオンは、i-GaNを高抵抗化できるイオン種であれば上記以外のイオン種でもよい。
 ブロック層4は、寄生npn構造の発生を抑制することができるため、当該寄生npn構造による誤動作の影響を低減することができる。半導体装置12がブロック層4を備えない場合には、ソース電極Sとドレイン電極Dとの間には、結晶再成長で形成された第1の再成長層6、第2の再成長層7、第2の下地層5(n型)/第1の下地層3(p型)/ドリフト層2(n型)という積層構造を有する。この積層構造は、寄生npn構造(寄生バイポーラトランジスタ)となっている。半導体装置12がオフ状態の時、第1の下地層3に電流が流れると、この寄生バイポーラトランジスタがオンしてしまい、半導体装置12の耐圧を低下させる場合がある。その場合、半導体装置12の誤動作が生じやすい。なお、寄生バイポーラトランジスタの影響が十分に小さい場合、半導体装置12は、ブロック層4を備えなくてもよい。
 第2の下地層5は、第1の再成長層(電子走行層)6と、第1の下地層3との間に配置されている。第2の下地層5は、具体的には、ブロック層4上に配置された窒化物半導体層である。第2の下地層5は、例えば、層厚が20nmであり、Al組成が0.2であるAlGaN(Al0.2Ga0.8N)よりなる。第2の下地層5は、第1の下地層3からのp型不純物(Mgなど)の拡散を抑制する機能を有する。
 なお、第2の下地層5のAl組成は0.2に限定されず、他のAl組成であってもよい。例えば、第2の下地層5のAl組成の範囲は、0.12以上かつ0.30以下の範囲であってもよい。
 本実施形態では、図1に示すように、第2の下地層5の上面から、第2の下地層5、ブロック層4及び第1の下地層3を貫通し、ドリフト層2にまで達する凹状のゲート開口部9が形成されている。ゲート開口部9は、平面視において溝部10と異なる位置に形成されている。
 ゲート開口部9は、基板1の第1の主面に対して傾斜した斜めの側面9aと、基板1の第1の主面に略平行な底面9bとを有する。ゲート開口部9は、基板1から遠ざかる程、開口面積が大きくなるように形成されている。例えば、ゲート開口部9の断面形状は、逆台形状である。
 ゲート開口部9は、基板1の第1の主面上に、ドリフト層2(ドリフト層2の形成後に溝部10を形成する)から第2の下地層5までを順に形成した後、部分的にドリフト層2を露出させるように、第2の下地層5、ブロック層4及び第1の下地層3をエッチングにより除去することで形成される。ゲート開口部9は、例えば、フォトリソグラフィによるパターニング、及び、ドライエッチングなどによって所定形状に形成される。
 第1の再成長層6は、ゲート開口部9を覆うように形成された、第2の窒化物半導体よりなる電子走行層の一例である。第1の再成長層6は、例えば、層厚が100nmであり、GaNよりなる。第1の再成長層6の膜厚は、略一定である。このため、第1の再成長層6は、ゲート開口部9の表面に沿って凹状に形成されている。
 具体的には、第1の再成長層6は、第2の下地層5の上面と、ゲート開口部9の側面9a及び底面9bとに接触して配置されている。より具体的には、第1の再成長層6は、ゲート開口部9において、第2の下地層5、ブロック層4及び第1の下地層3の各々の端面と接触し、かつ、ゲート開口部9に露出したドリフト層2の露出面(ゲート開口部9の底面9b)とに接触している。
 第2の再成長層7は、第1の再成長層6の上方に形成され、かつ、第1の再成長層6を構成する第2の窒化物半導体よりバンドギャップが大きい第3の窒化物半導体よりなる電子供給層の一例である。第2の再成長層7は、具体的には、第1の再成長層6上に配置されている。第2の再成長層7は、例えば、層厚が1nmのAlNよりなる第1の層と、層厚が50nmの、Al組成が0.2であるAlGaNよりなる第2の層とからなる。
 なお、第2の再成長層7におけるAlGaNよりなる第2の層のAl組成は0.2に限定されず、他のAl組成であってもよい。第2の再成長層7のAl組成の範囲は、0.12以上かつ0.30以下の範囲であってもよい。
 AlNよりなる第1の層が第1の再成長層6に接する。AlNよりなる第1の層と第1の再成長層6との界面、より正確には第1の再成長層6における、AlNよりなる第1の層との界面の近傍には、チャネルとなる二次元電子ガス層8が形成される。
 二次元電子ガス層8は、第1の再成長層(電子走行層)6の内部で、かつ、第1の再成長層6と第2の再成長層7との界面近傍に形成されるチャネル層の一例である。半導体装置12の通常動作においては、二次元電子ガス層8に電流が流れる。
 第1の再成長層6及び第2の再成長層7は、ゲート開口部9を設けた後、結晶再成長により、ゲート開口部9を覆うように形成される。結晶再成長は、例えば有機金属気相エピタキシャル成長法(MOVPE法)により行われる。
 本実施形態では、図1に示すように、第2の再成長層7の上面から、第2の再成長層7、第1の再成長層6、第2の下地層5及びブロック層4を貫通し、第1の下地層3にまで達するソース開口部(第2の開口部)11が形成されている。
 ソース開口部11は、基板1の第1の主面に対して傾斜した斜めの側面11aと、基板1の第1の主面に略平行な底面11bとを有する。なお、側面11aは、基板1の第1の主面に対して直交していてもよい。ソース開口部11の断面形状は、例えば逆台形であるが、これに限定されない。
 ゲート電極Gは、第2の再成長層7の上方で、かつ、ゲート開口部9の位置する位置に形成されている。具体的には、ゲート電極Gは、第2の再成長層7上に、ゲート開口部9の凹形状に沿って形成されている。
 ゲート電極Gは、金属などの導電性の材料を用いて形成されている。例えば、ゲート電極Gは、n型の導電型を有する窒化物半導体に対してショットキー接触をする材料を用いて形成されている。当該材料として、例えば、ニッケル(Ni)若しくはNiを含む合金又は化合物(いわゆるNi系材料)、タングステンシリサイド(WSi)、金(Au)などを用いることができる。ゲート電極Gは、例えば、スパッタ又は蒸着などによって成膜した導電膜をパターニングすることにより形成される。
 ソース電極Sは、ソース開口部11を覆うように配置され、ゲート電極Gと離間し、二次元電子ガス層(チャネル層)及び第1の下地層3に接触している。具体的には、ソース電極Sは、第2の再成長層7から、ソース開口部11の側面11a及びソース開口部11の底面11bの全てを覆うように形成されている。より具体的には、ソース電極Sは、ソース開口部11の側面11aで、第2の再成長層7、第1の再成長層6、第2の下地層5及びブロック層4に接している。
 ソース電極Sは、金属などの導電性の材料を用いて形成されている。ソース電極Sの材料としては、例えば、Ti/Alなどのn型の導電型を有する窒化物半導体に対してオーミック接触をする材料を用いることができる。ソース電極Sは、例えば、スパッタ又は蒸着などによって成膜した導電膜をパターニングすることにより形成される。
 ドレイン電極Dは、基板1の第2の主面(裏面)上に配置される。ドレイン電極Dは、金属などの導電性の材料を用いて形成されている。ドレイン電極Dの材料としては、例えば、n型の導電型の窒化物半導体に対してオーミック接触をする材料を用いることができる。ドレイン電極Dは、例えば、スパッタ又は蒸着などによって導電膜を成膜することで形成される。
 [アバランシェエネルギー耐量]
 ここで、本実施形態に係る半導体装置12に関し、アバランシェエネルギー耐量が大幅に向上することについて、図2A、図2B、図3A及び図3Bを用いて以下に説明する。
 図2Aは、本実施形態に係る半導体装置12を流れる電流経路を示す断面図である。図2Bは、本実施形態に係る半導体装置12のドレイン電流IDとドレイン電圧VDとの関係を示す図である。具体的には、図2Bでは、ソース電極Sとドレイン電極Dとの間に電圧を印加した場合の、ドレイン電極Dを流れる電流(ドレイン電流ID)と印加した電圧(ドレイン電圧VD)との関係を示している。
 また、比較例として、ドリフト層2が溝部10を有しない場合の半導体装置13を例に挙げて説明する。図3Aは、比較例に係る半導体装置13を流れる電流経路を示す断面図である。図3Bは、比較例に係る半導体装置13のドレイン電流IDとドレイン電圧VDとの関係を示す図である。
 図2A、図2B、図3A及び図3Bにおいて、ソース電極Sとドレイン電極Dとの間に電圧を印加した場合におけるドレイン電流IDのうち、ドレイン電極Dからゲート開口部9直下の二次元電子ガス層8を経由してソース電極Sへ流れる電流をIDSgで表している。また、ドレイン電極Dから第1の下地層3を経由してソース電極Sへ流れる電流をIDSdで表している。なお、図2A及び図3Aで示す白抜きの矢印は、電子の向きを表しており、電流は矢印の反対向きに流れる。また、図2B及び図3Bにおいて、IDSgが流れ始めるドレイン電圧をVDSgで表し、IDSdが流れ始める電圧をVDSdで表す。なお、図2A及び図3Aにおいて、煩雑さを避けるため、層を表す符号の一部を省略している。
 図2B及び図3Bに示すグラフより、VDSgを超えるドレイン電圧においては、IDSgが急激に増大することが分かる。また、VDSdを超えるドレイン電圧においては、IDSdが急激に増大することが分かる。これら急激に増大する電流はアバランシェ電流と呼ばれる電流であり、VDSg及びVDSdは降伏電圧と呼ばれる電圧である。
 本実施形態に係る半導体装置12では、図2Bに示すように、VDSgの方がVDSdよりも大きい。すなわち、半導体装置12では、ゲート開口部9の直下の二次元電子ガス層8を経由する電流IDSgに基づく降伏電圧が、ソース電極Sの直下の第1の下地層3を流れる電流IDSdに基づく降伏電圧よりも大きい。このことは、半導体装置12においてドレイン電圧VDを大きくした場合に、ソース電極Sの直下の第1の下地層3とドレイン電極Dとの間で降伏が生じてアバランシェ電流が流れることを意味する。
 本実施形態に係る半導体装置12では、ソース電極Sの直下方向において、ドリフト層2に溝部10が形成されており、溝部10の底面10bがゲート開口部9の底面9bよりも基板1に近い。つまり、ソース電極S(ソース開口部11)の直下方向におけるドリフト層2の厚みが、ゲート電極G(ゲート開口部9)の直下方向におけるドリフト層2の厚みより短くなる。このため、ゲート電極Gの直下における電界集中が緩和され、電流IDSdが電流IDSgよりも流れやすくなる。したがって、電流IDSgが流れる電圧VDSgより低い電圧VDSdで電流IDSdが流れる。
 一方、比較例に係る半導体装置13では、図3Bに示すように、VDSdの方がVDSgよりも大きい。すなわち、半導体装置13では、ソース電極Sの直下の第1の下地層3を流れる電流IDSdに基づく降伏電圧が、ゲート開口部9の直下の二次元電子ガス層8を経由する電流IDSgに基づく降伏電圧よりも大きい。このことは、半導体装置13においてドレイン電圧VDを大きくした場合に、ゲート開口部9の直下の二次元電子ガス層8を経由して降伏が生じてアバランシェ電流が流れることを意味する。
 ここで、ソース電極Sからゲート開口部9の直下の二次元電子ガス層8を経由してドレイン電極Dへ電流IDSgが流れる場合を考える。二次元電子ガス層8の層厚は、ドリフト層2と第1の下地層3との間のpn接合の長さよりも小さいので、二次元電子ガス層8の電流パスの大きさは、ドリフト層2と第1の下地層3との間のpn接合の電流パスの大きさよりも小さくなる。したがって、仮にIDSdとIDSgとが等しい大きさであった場合には、二次元電子ガス層8を流れる電流IDSgの電流密度は、ドリフト層2と第1の下地層3との間のpn接合を流れる電流IDSdの電流密度よりも大きくなる。この場合、二次元電子ガス層8において生じるエネルギー密度は、ドリフト層2と第1の下地層3との間のpn接合において生じるエネルギー密度よりも大きくなる。
 逆にいえば、ソース電極Sの直下の第1の下地層3とドレイン電極Dとの間で降伏が生じてアバランシェ電流が流れた方が、半導体装置12に生じるエネルギー密度を小さくでき、アバランシェエネルギー耐量が増大する。
 本実施形態に係る半導体装置12では、図2A及び図2Bで示したように、ソース電極Sの直下の第1の下地層3とドレイン電極Dとの間で降伏が生じてアバランシェ電流が流れる。一方、比較例に係る半導体装置13では、図3A及び図3Bで示したように、ソース電極Sとドレイン電極Dとの間で、ゲート開口部9の直下の二次元電子ガス層8を介して降伏が生じてアバランシェ電流が流れる。そのため、本実施形態に係る半導体装置12は、比較例に係る半導体装置13よりも大きなアバランシェエネルギー耐量を有することになる。
 すなわち、本実施形態に係る半導体装置12では、アバランシェエネルギー耐量が大幅に向上する。
 [アバランシェ降伏電圧とソース電極の底面の長さ及び溝部の底面の長さとの関係]
 ここで、図1に示すように、本実施形態に係る半導体装置12では、ソース開口部11の底面11bの長さよりも溝部10の底面10bの長さが大きい。これにより、アバランシェ電流が流れるpn接合(第1の下地層3とドリフト層2との界面)の面積をより大きくできる。このため、半導体装置12の内部におけるエネルギー密度を低減することができ、アバランシェエネルギー耐量をより大きくすることができる。
 以下では、アバランシェ降伏電圧と、ソース電極Sの底面(ソース開口部11の底面11b)の長さ及び溝部10の底面10bの長さとの関係について、図4A及び図4Bを用いて詳細に説明する。
 図4Aは、本実施形態に係る半導体装置12のソース電極Sの底面の長さLsと溝部10の底面10bの長さLbとの関係を示す断面図である。図4Bは、本実施形態に係る半導体装置12における、アバランシェ降伏電圧と、ソース電極Sの底面の長さLs及び溝部10の底面10bの長さLbとの関係を示す図である。なお、図4A及び図4Bにおいて、Lsは、ソース電極Sの底面の長さ、すなわち、ソース開口部11の底面11bの長さを表している。Lbは、溝部10の底面10bの長さを表している。なお、図4Aにおいて、煩雑さを避けるため、層を表す符号の一部を省略している。また、一例として、Ls=5μmとしている。
 図4Bに示すように、Lbが5μm以上の場合、すなわち、溝部10の底面10bの長さLbをソース電極Sの底面の長さLs以上としたとき、アバランシェ降伏電圧が増加しているのが分かる。これは、溝部10の底面10bの長さLbが大きい程、ドリフト層2と第1の下地層3との間のpn接合の面積が大きくなってアバランシェ電流の密度を下げることができ、アバランシェエネルギー耐量を大きくできるためである。
 このことから、半導体装置12では、溝部10の底面10bの長さLbをソース電極Sの底面の長さLsと同じにする、又は、Lsより長くすることで、アバランシェ降伏電圧を大きくすることが可能になることが分かる。
 [効果など]
 以上のように、本実施形態に係る半導体装置12は、互いに背向する第1の主面及び第2の主面を有する、第1の導電型の基板1と、基板1の第1の主面上に形成され、かつ、一部に溝部10を有する第1の導電型の第1の窒化物半導体よりなるドリフト層2と、ドリフト層2の上方に形成された第1の下地層3と、平面視において溝部10と異なる位置において第1の下地層3を貫通し、かつ、ドリフト層2にまで達するゲート開口部9と、ゲート開口部9を覆うように形成された、第2の窒化物半導体よりなる第1の再成長層6と、第1の再成長層6の上方に形成され、かつ、第2の窒化物半導体よりバンドギャップが大きい第3の窒化物半導体よりなる第2の再成長層7と、第1の再成長層6の内部で、かつ、第1の再成長層6と第2の再成長層7との界面近傍に形成される二次元電子ガス層(チャネル層)8と、第1の再成長層6及び第2の再成長層7を貫通し、第1の下地層3にまで達するソース開口部11と、第2の再成長層7の上方で、かつ、ゲート開口部9が位置する位置に形成されたゲート電極Gと、ソース開口部11を覆うように形成され、ゲート電極Gとは離間し、かつ、二次元電子ガス層8及び第1の下地層3に接するソース電極Sと、基板1の第2の主面上に形成されたドレイン電極Dと、を備え、溝部10の底面10bは、ゲート開口部9の底面9bよりも基板1の第1の主面に近い。
 これによれば、ソース電極Sの直下における溝部10の底面10b(すなわち第1の下地層3の底面)から基板1までの距離が、ゲート開口部9の底面9bから基板1までの距離より短いので、アバランシェ電流を二次元電子ガス層8に流さずに、ソース電極Sの直下における第1の下地層3とドリフト層2とによって形成されるpnダイオードに流すことができる。そのため、半導体装置12に対し、誘導性負荷を設けた場合、誘導性負荷に溜まったエネルギーを二次元電子ガス層8よりも非常に大きな体積で消費することができ、大幅にエネルギー密度を低減することができる。その結果、本実施形態によれば、アバランシェエネルギー耐量が大きく、高耐圧の半導体装置12が得られる。
 また、例えば、本実施形態に係る半導体装置12では、第1の下地層3は、第1の導電型とは逆導電型である第2の導電型の第5の窒化物半導体よりなる。具体的には、第1の下地層3は、p型の窒化物半導体を用いて形成されている。
 これにより、第1の下地層3とドリフト層2とでpn接合のダイオードを形成することができるので、半導体装置12の耐圧を高めることができる。
 なお、本実施形態において、ドリフト層2から第2の再成長層7までの各層の層厚については上記に限られず、アバランシェエネルギー耐量が高い半導体装置12が得られる範囲において層厚を適宜設定することができる。また、Ls=5μmとしたが、上記に限られず、アバランシェエネルギー耐量が高い半導体装置12が得られる範囲において適宜設定することができる。
 なお、本実施形態において、第2の再成長層7は、層厚が1nmのAlNよりなる第1の層と、層厚が50nmのAlGaNよりなる第2の層からなる積層構造である例について説明したが、これに限らない。第2の再成長層7は、AlGaNよりなる単層でも二次元電子ガス層8が形成されるので、上記と同様の効果が得られる。
 (第1の変形例)
 続いて、第1の実施形態の第1変形例について、図5を用いて説明する。
 図5は、本変形例に係る半導体装置12aの断面図である。図5に示すように、本変形例に係る半導体装置12aは、第1の実施形態に係る半導体装置12と比較して、ゲート電極Gの代わりに、ゲート電極G1を備える点が相違する。以下では、第1の実施形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 本変形例において、半導体装置12aが有するゲート電極G1の両端(ゲート端、ゲート電極Gの端)の位置は、ゲート開口部9の内側に位置している。この場合、半導体装置12aの閾値は、ゲート開口部9の側面9aに沿った部分(側壁部)のみで決めることができる。
 このような構成においては、アバランシェエネルギー耐量が高い半導体装置12aが得られるとともに、平坦部(ゲート開口部9の底面9bに沿った部分)のキャリア濃度を大きくすることができるため、半導体装置12aのオン抵抗を低減できる。
 (第2の変形例)
 続いて、第1の実施形態の第2変形例について、図6を用いて説明する。
 図6は、本変形例に係る半導体装置12bの断面図である。図6に示すように、本変形例に係る半導体装置12bは、第1の実施形態に係る半導体装置12と比較して、ゲート電極G及び第1の再成長層6の代わりに、ゲート電極G2及び第1の再成長層6bを備える点が相違する。以下では、第1の実施形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 本変形例においては、ゲート電極G2のゲート端がゲート開口部9の外側に位置している。具体的には、ゲート電極G2の幅LGは、ゲート開口部9の幅より大きい。なお、ゲート開口部9の幅は、図6に示す断面において、側面9aの上端同士の横方向(基板1の主面に平行な方向)における距離に相当する。この場合、半導体装置12bの閾値は、ゲート開口部9の側面9aに沿った部分(側壁部)、及び、ゲート開口部9の底面9bに沿った部分(平坦部)のうち、閾値が大きい方で決まる。
 本変形例に係る半導体装置12bでは、第1の再成長層6bの、基板1の第1の主面に平行な方向の層厚Ltが、基板1の第1の主面に垂直な方向の層厚Lrよりも大きい。すなわち、Lr<Ltである。これにより、半導体装置12bの閾値は、ゲート開口部9の平坦部で決められる。
 このようにすることで、p型の導電型を有する第1の下地層3と二次元電子ガス層8との間の距離を大きくすることができる。そのため、ゲート開口部9の側壁部における二次元電子ガス層8が第1の下地層3からの影響により空乏化するのを低減できる。したがって、ゲート開口部9の側壁部におけるチャネルの閾値を低減することができる。
 このようにして、本変形例に係る半導体装置12bの閾値を、ゲート開口部9の平坦部によって決めることができる。
 また、本変形例によれば、アバランシェエネルギー耐量が大きい半導体装置12bが得られるとともに、以下に示す2つの利点を有する。
 第1の利点として、ゲート開口部9の側壁部において、二次元電子ガス層8の空乏化を低減できるので、チャネルのキャリア濃度の低下を抑制することができる。そのため、p型である第1の下地層3からの空乏層の狭窄を抑制でき、半導体装置12bのオン抵抗を低減できる。
 第2の利点として、第1の再成長層6bの、基板1の第1の主面に垂直な方向の層厚Lrの値が小さいので、第1の再成長層6bを形成した以降のプロセスにおいて開口深さを小さくできる。開口深さを小さくすることで、プロセス時間を短縮でき、ゲート電極G2のカバレッジも良好にできる。
 すなわち、本変形例に係る半導体装置12bによれば、Lr<Ltとすることで、プロセスを容易にしつつ、オン抵抗を低減することが可能になる。
 (第2の実施形態)
 続いて、第2の実施形態について説明する。
 図7は、本実施形態に係る半導体装置15の断面図である。図7に示すように、本実施形態に係る半導体装置15は、第1の実施形態に係る半導体装置12と比較して、ゲート電極Gと第2の再成長層7との間に第3の再成長層14を備える点が相違する。以下では、第1の実施形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 第3の再成長層14は、第2の再成長層(電子供給層)7とゲート電極Gとの間に配置され、第1の導電型とは逆導電型である第2の導電型の第4の窒化物半導体よりなるコントロール層の一例である。具体的には、第3の再成長層14は、p型の導電型を有するAlGaNから形成されている。半導体装置15は、p型AlGaNよりなる第3の再成長層14を設けることにより、第3の再成長層14の直下における、チャネルである二次元電子ガス層8のポテンシャルエネルギーを大きくすることができる。そのため、半導体装置15の閾値を増大させることができ、半導体装置15をノーマリーオフにすることができる。第3の再成長層14は、半導体装置15の閾値を増大させることができるので、閾値を制御する意味でコントロール層と呼ばれる。
 なお、第3の再成長層14としては、p型AlGaNに限らず、他のp型窒化物半導体、例えばp型GaN、p型AlGaInNを用いてもよい。この場合においても、第3の再成長層14の直下における二次元電子ガス層8のポテンシャルエネルギーを大きくすることができる。
 また、第3の再成長層14としては、p型AlGaNの代わりに、SiN又はSiOのような絶縁膜を用いても、第3の再成長層14の直下における二次元電子ガス層8のポテンシャルエネルギーを大きくすることができる。つまり、半導体装置15は、第3の再成長層14の代わりに、第2の再成長層7とゲート電極Gとの間に配置された絶縁性のコントロール層を備えてもよい。
 そのため、第3の再成長層14に関しp型窒化物半導体や絶縁膜を用いた場合、半導体装置15の閾値を増大させることができ、半導体装置15をノーマリーオフにすることができる。要するに、第3の再成長層14に用いる材料として、チャネルのポテンシャルエネルギーを大きくできる効果がある材料であれば何を用いてもよい。
 以上のように、本実施形態に係る半導体装置15は、第2の再成長層7とゲート電極Gとの間に配置され、第1の導電型とは逆導電型である第2の導電型の第4の窒化物半導体よりなる第3の再成長層14を、さらに備える。
 これにより、半導体装置15の閾値を増大させることができるので、半導体装置100をノーマリーオフ動作で動作させることができる。
 また、本実施形態によれば、アバランシェエネルギー耐量が高い半導体装置15が得られることはいうまでもない。
 なお、第1の実施形態の第1の変形例に係る半導体装置12aと同様、半導体装置15についても、ゲート電極Gの両端の位置が、ゲート開口部9の内側に位置してもよい。また、第3の再成長層14の両端の位置が、ゲート開口部9の内側に位置してもよい。このようにすることで、半導体装置15の閾値は、ゲート開口部9の側壁部のみで決めることができる。
 (第3の実施形態)
 続いて、第3の実施形態について説明する。
 図8は、本実施形態に係る半導体装置17の断面図である。図8に示すように、本実施形態に係る半導体装置17は、第1の実施形態に係る半導体装置12と比較して、ソース電極Sが第1のソース電極S1及び第2のソース電極S2を備える点と、第1の下地層3に貫通孔16が形成されている点とが相違する。他の点については、第1の実施形態の半導体装置12と同様である。以下では、第1の実施形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 本実施形態では、図8に示すように、第1の下地層3には、複数の貫通孔16が形成されている。なお、貫通孔16の個数は1つでもよい。複数の貫通孔16の各々は、ソース開口部11の底面よりドリフト層2にまで達する。つまり、複数の貫通孔16は、平面視において、溝部10内で、かつ、ソース開口部11内に形成されている。複数の貫通孔16には、第2のソース電極S2が充填されている。
 ソース電極Sは、第1のソース電極S1と第2のソース電極S2との多層構造を有する。第1のソース電極S1は、二次元電子ガス層(チャネル層)8に接している。具体的には、図8に示すように、第1のソース電極S1は、ソース開口部11の側面11aに沿って形成されている。第1のソース電極S1は、第2の再成長層7、第1の再成長層6、第2の下地層5及びブロック層4の各々の端面と接触している。
 第1のソース電極S1は、金属などの導電性の材料を用いて形成されている。第1のソース電極S1の材料は、例えば、Ti/Alなどのn型窒化物半導体とオーミック接触する金属を用いることができる。第1のソース電極S1は、例えば、スパッタ又は蒸着などによって成膜した導電膜をパターニングすることにより形成される。
 第2のソース電極S2は、ドリフト層2に接している。具体的には、第2のソース電極S2は、貫通孔16内部に充填され、貫通孔16を介してドリフト層2に接している。第2のソース電極S2は、さらに、第1の下地層3に接している。具体的には、第2のソース電極S2は、ソース開口部11の底面11bと貫通孔16とで第1の下地層3に接している。また、第1のソース電極S1と第2のソース電極S2とは、電気的に接続されている。
 第2のソース電極S2は、金属などの導電性の材料を用いて形成されている。本実施形態では、第2のソース電極S2は、第1のソース電極S1とは異なる材料で構成されている。例えば、第2のソース電極S2は、Pd、Ni、Au、Ptなどを含んでおり、第1の下地層3とはオーミック接触している。第2のソース電極S2は、ドリフト層2とショットキー接続している。第2のソース電極S2は、例えば、スパッタ又は蒸着などによって成膜した導電膜をパターニングすることにより形成される。
 以上のように、本実施形態に係る半導体装置17では、第1の下地層3は、ソース開口部11の底面11bよりドリフト層2にまで達する貫通孔16を有し、ソース電極Sは、さらに、貫通孔16を介してドリフト層2に接する。
 これにより、本実施形態に係る半導体装置17では、溝部10の底面10bにおいて、ドレイン電極Dとソース電極Sとの間にダイオードが形成される。このダイオードは、p型の第1の下地層3とn型のドリフト層2とによるpn接合と、第2のソース電極S2とドリフト層2とによるショットキー接合とが混在した構成になる。
 これにより、ドレイン電極Dとソース電極Sとの間に形成されるダイオードにおいて、順方向電流が流れる場合に動作電圧を低くでき、逆方向電流が流れる場合に耐圧を大きくすることができる。
 また、例えば、半導体装置17では、ソース電極Sは、二次元電子ガス層8に接する第1のソース電極S1と、第1のソース電極S1とは異なる材料で構成され、ドリフト層2に接する第2のソース電極S2とを有する。具体的には、半導体装置17では、第2のソース電極S2は、第1の下地層3に接する。
 このように、本実施形態に係る半導体装置17では、トランジスタのソース電極(第1のソース電極S1)とダイオードのアノード電極(第2のソース電極S2)とが、2種類の金属で形成されている。すなわち、第1のソース電極S1は、n型窒化物半導体に対してオーミック接触し、第2のソース電極S2(アノード電極)は、p型である第1の下地層3に対してオーミック接触となるような金属を用いている。
 これにより、半導体装置17では、第1のソース電極S1としてチャネル(二次元電子ガス層8)に対してオーミック接触を形成し低抵抗化を実現すると同時に、第1の下地層3に対してコンタクト抵抗が小さい接触ができる。このため、第1の下地層3からの空乏層も効率的に伸ばすことができ、半導体装置17の高耐圧化が可能になる。これにより、半導体装置17の更なる高耐圧化を実現することができる。
 なお、半導体装置17の代わりに、以下に示す第1の変形例、第2の変形例又は第3の変形例に係る半導体装置を用いても、半導体装置17と同様の効果が得られる。以下では、本実施形態の変形例について図面を用いて説明する。各変形例において、第3の実施形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 (第1の変形例)
 続いて、第3の実施形態の第1の変形例について、図9を用いて説明する。
 図9は、本変形例に係る半導体装置18の断面図である。本変形例に係る半導体装置18は、第3の実施形態に係る半導体装置17と比較して、第1のソース電極S1と第2のソース電極S2とが同じ材料で形成されている点が相違する。すなわち、図9に示すように、ソース電極Sは、第1の実施の形態と同様に、同一の材料を用いて一体に形成されている。具体的には、ソース電極S(第1のソース電極S1及び第2のソース電極S2)は、Ti/Alを用いて形成されている。この構成によれば、ソース電極Sを一工程で形成することができるので、工程を削減でき、半導体装置18の低コスト化を実現することができる。
 (第2の変形例)
 続いて、第3の実施形態の第2の変形例について、図10を用いて説明する。
 図10は、本変形例に係る半導体装置19の断面図である。本変形例に係る半導体装置19は、第3の実施形態に係る半導体装置17と比較して、ゲート電極Gと第2の再成長層7との間に第3の再成長層14を備える点が相違する。第3の再成長層14は、第2の実施形態に係る半導体装置15が備える第3の再成長層14と同じであり、例えば、p型のAlGaNから形成されている。
 本変形例では、第3の再成長層14としてp型窒化物半導体を用いているので、半導体装置19の閾値を増大させることができ、半導体装置19をノーマリーオフにすることができる。
 (第3の変形例)
 続いて、第3の実施形態の第3の変形例について、図11を用いて説明する。
 図11は、本変形例に係る半導体装置20の断面図である。本変形例に係る半導体装置20は、第3の実施形態の第2の変形例に係る半導体装置19と比較して、第1のソース電極S1と第2のソース電極S2とが同じ材料で形成されている点が相違する。すなわち、図11に示すように、ソース電極Sは、第1の実施の形態と同様に、同一の材料を用いて一体に形成されている。本変形例は、第3の実施の形態の第1の変形例と第2の変形例とを組み合わせたものに相当する。
 なお、第3の実施形態及びその変形例に係る半導体装置17~20において、貫通孔16は、1つのみ形成されていてもよいが、2つ以上形成されている。これにより、貫通孔16によって分割された第1の下地層3(p型)から空乏層を伸ばしやすくなるため、リーク電流が増加せず、高い耐圧を確保できる。なお、貫通孔16の幅は、例えば0.5μm以上かつ10μm以下であり、好ましくは、1μm以上かつ5μm以下でもよい。また、複数の貫通孔16によって離散的に形成される第1の下地層3の幅は、例えば0.5μm以上かつ10μm以下であり、好ましくは1μm以上かつ5μm以下でもよい。
 (第4の実施形態)
 続いて、第4の実施形態について説明する。
 図12は、本実施形態に係る半導体装置22の断面図である。図12に示すように、本実施形態に係る半導体装置22は、第1の実施形態に係る半導体装置12と比較して、イオン注入により形成された注入層21を備える点が相違する。以下では、第1の実施形態との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 注入層21は、ソース電極Sの直下に位置する第1の下地層3及びドリフト層2の一部にイオンが注入されることで形成された層である。例えば、第1の下地層3に対して、ソース電極S直下の部分をドリフト層2に至るまでイオン注入をすることで、注入層21を形成する。注入層21は、p型の導電型を有する。
 具体的には、基板1上に、ドリフト層2から第2の下地層5までの各層を順に結晶成長により形成した後、第1の下地層3の所定領域(ソース電極Sの直下の領域)にイオン注入を行う。なお、ドリフト層2と第1の下地層3とを結晶成長により形成した後にイオン注入を行い、その後、ブロック層4及び第2の下地層5を形成してもよい。また、イオン注入は、ゲート開口部9を形成する前に行うが、ゲート開口部9を形成した後に行ってもよい。
 本実施形態では、注入層21を形成することで、ドリフト層2に溝部10を形成する。すなわち、ドリフト層2の一部領域を所定の深さまで除去するのではなく、当該領域に所定の深さまでイオン注入を行うことで、溝部10を形成する。具体的には、イオン注入された領域(注入層21)と、イオン注入されていない領域(ドリフト層2)との界面が、溝部10の側面10a及び底面10bに対応する。
 したがって、注入層21にかかるイオン注入領域の先端は、溝部10の底面10bに相当し、ゲート開口部9の底面9b、すなわち、ゲート電極Gの直下にあるドリフト層2と第1の再成長層6との界面よりも基板1の第1の主面に近い位置に位置している。なお、イオン注入のイオン種は、p型のドーパントとなる元素であれば特に限定されず、例えばMg、Fe、Cなどを用いることができる。
 以上のように、本実施形態に係る半導体装置22では、第1の下地層3のうちソース電極Sの直下の部分は、イオン注入されている。
 これにより、ドリフト層2の結晶成長に続いて、第1の下地層3、ブロック層4及び第2の下地層5を連続して結晶成長させることができる。これにより、結晶再成長を第1の再成長層6以降の1回に減らすことができ、半導体装置22の低コスト化が実現できる。
 また、アバランシェエネルギー耐量が高い半導体装置22が得られることはいうまでもない。
 (変形例)
 ここで、第4の実施形態の第1の変形例について、図13を用いて説明する。
 図13は、本変形例に係る半導体装置23の断面図である。本変形例に係る半導体装置23は、第4の実施形態に係る半導体装置22と比較して、ゲート電極Gと第2の再成長層7との間に第3の再成長層14を備える点が相違する。第3の再成長層14は、第2の実施形態に係る半導体装置15が備える第3の再成長層14と同じであり、例えば、p型のAlGaNから形成されている。
 本変形例では、第3の再成長層14としてp型窒化物半導体を用いているので、半導体装置23の閾値を増大させることができ、半導体装置23をノーマリーオフにすることができる。
 また、アバランシェエネルギー耐量が高い半導体装置23が得られることはいうまでもない。
 (第5の実施形態)
 続いて、本開示の第5の実施形態に係る半導体装置27について、図14を用いて説明する。図14は、本実施形態に係る半導体装置27の上面及び当該上面を拡大した図である。
 図14に示す半導体装置27は、例えば、第1の実施形態に係る半導体装置12を1つのチップに複数個配列して集積させたものである。図14に示すように、半導体装置27は、複数の半導体装置12と、ソースパッド25と、ゲートパッド26と、ドレインパッド(図示せず)とを備える。
 図14の(a)は、半導体装置27の上面におけるソースパッド25及びゲートパッド26の配置を示す図である。図14の(b)は、図14の(a)の拡大図であり、ソースパッド25を透視した図である。ドレインパッド(図示せず)は、半導体装置27の裏面に形成されている。なお、図14の(b)におけるI-I線における断面図は、図1に示す半導体装置12の断面図と同じである。
 図14の(a)及び(b)に示すように、ソースパッド25は、平面視形状がコの字状(横向きの略U字状)に設けられている。また、図14の(b)に示すように、ソースパッド25が覆う範囲内には、複数のコンタクトホール24が配置されている。コンタクトホール24には、ソース電極Sが設けられ、ソースパッド25と導通している。
 また、ゲートパッド26は、ソースパッド25に両側が挟まれるように設けられている。ゲートパッド26は、ゲート電極Gと導通している。なお、図14の(b)において、ソースパッド25は、太い破線で示されている。
 また、図示しないが、ドレインパッドは、ドレイン電極Dと導通している。
 なお、ソース電極S及びゲート電極G、並びに、ソース開口部11(破線)は、図14の(b)の紙面上下方向に長く伸びている。すなわち、ソース電極S及びゲート電極G並びにソース開口部11の平面レイアウトは、いわゆるフィンガー型のレイアウトである。ソース電極S、ゲート電極G及びソース開口部11の長手方向(図14の(a)及び(b)の紙面の下から上へ向かう方向)は、<11-20>方向である。なお、方向を示す括弧<>の中のマイナス(-)は、バーを表す。
 (変形例)
 ここで、本開示の第5の実施形態の変形例に係る半導体装置28について、図15を用いて説明する。図15は、本変形例に係る半導体装置28の上面及び当該上面の一部を拡大した図である。
 半導体装置28は、例えば、第2の実施形態に係る半導体装置15を1つのチップに複数個配列して集積させたものである。図15に示すように、半導体装置28は、複数の半導体装置12と、ソースパッド25と、ゲートパッド26と、ドレインパッド(図示せず)とを備える。
 図15の(a)は、半導体装置28の上面におけるソースパッド25及びゲートパッド26の配置を示す図であり、ソースパッド25を透視した図である。図15の(b)は、図15の(a)の一部拡大図である。ドレインパッド(図示せず)は、半導体装置28の裏面に形成されている。なお、図15の(a)において、ソースパッド25は、太い破線で示されている。図15の(a)におけるVII-VII線における断面図は、図7に示す半導体装置15の断面図と同じである。
 本変形例に係る半導体装置28は、第5の実施形態に係る半導体装置27と比較して、ソース電極S及びゲート電極Gの形状が相違する。具体的には、半導体装置28では、ソース電極Sとゲート電極Gとが六角形に配置されている。なお、図15の(b)に示すように、ゲート電極G、ゲート開口部9(破線)及び第3の再成長層14は、ソース電極S及びソース開口部11(破線)を囲むように配置され、1つのセル29を構成している。
 図15の(a)に示すように、セル29の配置構造は、いわゆる最密充填構造である。図15の(a)及び(b)の紙面の下から上へ向かう方向で、かつ、ソース電極Sの六角形の辺に沿う方向は、<11-20>方向である。
 なお、ソース電極Sはソースパッド25に導通し、ゲート電極Gはゲートパッド26に導通している。また、ドレインパッド(図示せず)は、ドレイン電極Dと導通している。
 本実施形態及びその変形例では、図14の(b)において、I-I線における断面図は、図1に示す半導体装置12の断面図であるとしたが、半導体装置12に限らず、半導体装置15、半導体装置17~20、又は半導体装置22、23であってもよい。また、図15の(a)において、VII-VII線における断面図は、図7に示す半導体装置15としたが、半導体装置15に限らず、半導体装置12、半導体装置17~20、又は半導体装置22、23であってもよい。
 また、上記の実施形態において、ソース電極S、ゲート電極G及びソース開口部11の長手方向を<11-20>方向としたが、<1-100>方向とすることも可能である。
 また、上記実施形態において、基板1の面方位を(0001)面としたが、(0001)面に限らず、極性を有する面であればどのような面を用いてもよい。
 (その他)
 以上、本発明に係る半導体装置について、上記の実施形態及び変形例に基づいて説明したが、本発明は、上記の実施形態に限定されるものではない。
 例えば、上記の各実施形態では、第1の導電型がn、n又はn型であり、第2の導電型がp、p又はp型である例について示したが、これに限らない。第1の導電型がp、p又はp型であり、第2の導電型がn、n又はn型でもよい。
 その他、各実施形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 本開示に係る半導体装置は、例えばテレビジョンなどの民生機器の電源回路などで用いられるパワーデバイスなどとして有用である。
1 基板
2 ドリフト層
3 第1の下地層
4 ブロック層
5 第2の下地層
6、6b 第1の再成長層
7 第2の再成長層
8 二次元電子ガス層
9 ゲート開口部
9a、10a、11a 側面
9b、10b、11b 底面
10 溝部
11 ソース開口部
12、12a、12b、13、15、17、18、19、20、22、23、27、28 半導体装置
14 第3の再成長層
16 貫通孔
21 注入層
24 コンタクトホール
25 ソースパッド
26 ゲートパッド
29 セル
S ソース電極
S1 第1のソース電極
S2 第2のソース電極
D ドレイン電極
G、G1、G2 ゲート電極
 
 
 

Claims (7)

  1.  互いに背向する第1の主面及び第2の主面を有する、第1の導電型の基板と、
     前記基板の前記第1の主面上に形成され、かつ、一部に溝部を有する前記第1の導電型の第1の窒化物半導体よりなるドリフト層と、
     前記ドリフト層の上方に形成された下地層と、
     平面視において前記溝部と異なる位置において前記下地層を貫通し、かつ、前記ドリフト層にまで達する第1の開口部と、
     前記第1の開口部を覆うように形成された、第2の窒化物半導体よりなる電子走行層と、
     前記電子走行層の上方に形成され、かつ、前記第2の窒化物半導体よりバンドギャップが大きい第3の窒化物半導体よりなる電子供給層と、
     前記電子走行層の内部で、かつ、前記電子走行層と前記電子供給層との界面近傍に形成されるチャネル層と、
     前記電子供給層及び前記電子走行層を貫通し、前記下地層にまで達する第2の開口部と、
     前記電子供給層の上方で、かつ、前記第1の開口部が位置する位置に形成されたゲート電極と、
     前記第2の開口部を覆うように形成され、前記ゲート電極とは離間し、かつ、前記チャネル層及び前記下地層に接するソース電極と、
     前記基板の前記第2の主面上に形成されたドレイン電極と、を備え、
     前記溝部の底面は、前記第1の開口部の底面よりも前記基板の前記第1の主面に近い
     半導体装置。
  2.  前記電子供給層と前記ゲート電極との間に配置され、前記第1の導電型とは逆導電型である第2の導電型の第4の窒化物半導体よりなるコントロール層を、さらに備える
     請求項1に記載の半導体装置。
  3.  前記下地層は、前記第1の導電型とは逆導電型である第2の導電型の第5の窒化物半導体よりなる
     請求項1又は2に記載の半導体装置。
  4.  前記下地層は、前記第2の開口部の底面より前記ドリフト層にまで達する貫通孔を有し、
     前記ソース電極は、さらに、前記貫通孔を介して前記ドリフト層に接する
     請求項1から3のいずれか1項に記載の半導体装置。
  5.  前記ソース電極は、
     前記チャネル層に接する第1のソース電極と、
     前記第1のソース電極とは異なる材料で構成され、前記ドリフト層に接する第2のソース電極とを有する
     請求項4に記載の半導体装置。
  6.  前記第2のソース電極は、前記下地層に接する
     請求項5に記載の半導体装置。
  7.  前記下地層のうち前記ソース電極の直下の部分は、イオン注入されている
     請求項1から6のいずれか1項に記載の半導体装置。
PCT/JP2017/004315 2016-02-12 2017-02-07 半導体装置 WO2017138505A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017566942A JP6754782B2 (ja) 2016-02-12 2017-02-07 半導体装置
US16/056,954 US10529843B2 (en) 2016-02-12 2018-08-07 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-024278 2016-02-12
JP2016024278 2016-02-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/056,954 Continuation US10529843B2 (en) 2016-02-12 2018-08-07 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2017138505A1 true WO2017138505A1 (ja) 2017-08-17

Family

ID=59563294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004315 WO2017138505A1 (ja) 2016-02-12 2017-02-07 半導体装置

Country Status (3)

Country Link
US (1) US10529843B2 (ja)
JP (1) JP6754782B2 (ja)
WO (1) WO2017138505A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075433A (ja) * 2017-10-13 2019-05-16 株式会社豊田中央研究所 半導体装置およびその製造方法
WO2019097813A1 (ja) * 2017-11-16 2019-05-23 パナソニック株式会社 窒化物半導体装置
WO2019181391A1 (ja) * 2018-03-22 2019-09-26 パナソニック株式会社 窒化物半導体装置
WO2019187789A1 (ja) * 2018-03-27 2019-10-03 パナソニック株式会社 窒化物半導体装置
WO2020017437A1 (ja) * 2018-07-17 2020-01-23 パナソニック株式会社 窒化物半導体装置
JP2020017579A (ja) * 2018-07-23 2020-01-30 株式会社東芝 半導体装置及びその製造方法
WO2020137303A1 (ja) * 2018-12-27 2020-07-02 パナソニック株式会社 窒化物半導体装置
WO2022176455A1 (ja) * 2021-02-16 2022-08-25 パナソニックホールディングス株式会社 窒化物半導体デバイス
JP2023513840A (ja) * 2020-02-18 2023-04-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 縦型電界効果トランジスタ、それを製造するための方法、および縦型電界効果トランジスタを有するデバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396939B2 (ja) * 2016-03-31 2018-09-26 株式会社サイオクス 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
JP6656991B2 (ja) * 2016-03-31 2020-03-04 株式会社サイオクス 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
JP6685890B2 (ja) * 2016-12-19 2020-04-22 株式会社東芝 半導体装置及びその製造方法
CN111863954A (zh) * 2019-04-26 2020-10-30 苏州晶湛半导体有限公司 一种增强型器件及其制备方法
DE102019212641A1 (de) * 2019-08-23 2021-02-25 Robert Bosch Gmbh Vertikaler feldeffekttransistor und verfahren zum ausbilden desselben
CN213635993U (zh) * 2020-12-17 2021-07-06 苏州晶湛半导体有限公司 一种增强型半导体器件
CN113644128A (zh) * 2021-06-29 2021-11-12 西安电子科技大学 一种槽栅多沟道结构GaN基高电子迁移率晶体管及制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272586A (ja) * 2008-05-12 2009-11-19 Toyota Motor Corp Iii族窒化物半導体装置とその製造方法
JP2011035072A (ja) * 2009-07-30 2011-02-17 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2011100877A (ja) * 2009-11-06 2011-05-19 Toshiba Corp 半導体装置及びその製造方法
WO2015122135A1 (ja) * 2014-02-13 2015-08-20 パナソニックIpマネジメント株式会社 窒化物半導体デバイス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645034B2 (ja) * 2003-02-06 2011-03-09 株式会社豊田中央研究所 Iii族窒化物半導体を有する半導体素子
JP4737471B2 (ja) * 2009-10-08 2011-08-03 住友電気工業株式会社 半導体装置およびその製造方法
JP5569321B2 (ja) 2010-10-07 2014-08-13 住友電気工業株式会社 半導体装置およびその製造方法
JP2012104568A (ja) * 2010-11-08 2012-05-31 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2013183034A (ja) * 2012-03-02 2013-09-12 Sumitomo Electric Ind Ltd 電力用半導体装置
US9306061B2 (en) * 2013-03-13 2016-04-05 Cree, Inc. Field effect transistor devices with protective regions
JP6107597B2 (ja) * 2013-03-26 2017-04-05 豊田合成株式会社 半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272586A (ja) * 2008-05-12 2009-11-19 Toyota Motor Corp Iii族窒化物半導体装置とその製造方法
JP2011035072A (ja) * 2009-07-30 2011-02-17 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JP2011100877A (ja) * 2009-11-06 2011-05-19 Toshiba Corp 半導体装置及びその製造方法
WO2015122135A1 (ja) * 2014-02-13 2015-08-20 パナソニックIpマネジメント株式会社 窒化物半導体デバイス

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019075433A (ja) * 2017-10-13 2019-05-16 株式会社豊田中央研究所 半導体装置およびその製造方法
JP7017579B2 (ja) 2017-11-16 2022-02-08 パナソニック株式会社 窒化物半導体装置
WO2019097813A1 (ja) * 2017-11-16 2019-05-23 パナソニック株式会社 窒化物半導体装置
US12142644B2 (en) 2017-11-16 2024-11-12 Panasonic Holdings Corporation Nitride semiconductor device
US11621328B2 (en) 2017-11-16 2023-04-04 Panasonic Holdings Corporation Nitride semiconductor device
CN111344842B (zh) * 2017-11-16 2023-02-21 松下控股株式会社 氮化物半导体装置
CN111344842A (zh) * 2017-11-16 2020-06-26 松下电器产业株式会社 氮化物半导体装置
JPWO2019097813A1 (ja) * 2017-11-16 2020-11-19 パナソニック株式会社 窒化物半導体装置
WO2019181391A1 (ja) * 2018-03-22 2019-09-26 パナソニック株式会社 窒化物半導体装置
JP7157138B2 (ja) 2018-03-22 2022-10-19 パナソニックホールディングス株式会社 窒化物半導体装置
JPWO2019181391A1 (ja) * 2018-03-22 2021-03-11 パナソニック株式会社 窒化物半導体装置
JP7195306B2 (ja) 2018-03-27 2022-12-23 パナソニックホールディングス株式会社 窒化物半導体装置
WO2019187789A1 (ja) * 2018-03-27 2019-10-03 パナソニック株式会社 窒化物半導体装置
JPWO2019187789A1 (ja) * 2018-03-27 2021-03-25 パナソニック株式会社 窒化物半導体装置
CN111902920B (zh) * 2018-03-27 2024-10-01 松下控股株式会社 氮化物半导体装置
CN111902920A (zh) * 2018-03-27 2020-11-06 松下电器产业株式会社 氮化物半导体装置
US11515412B2 (en) 2018-03-27 2022-11-29 Panasonic Holdings Corporation Nitride semiconductor device
WO2020017437A1 (ja) * 2018-07-17 2020-01-23 パナソニック株式会社 窒化物半導体装置
JPWO2020017437A1 (ja) * 2018-07-17 2021-08-02 パナソニック株式会社 窒化物半導体装置
JP7303807B2 (ja) 2018-07-17 2023-07-05 パナソニックホールディングス株式会社 窒化物半導体装置
JP2020017579A (ja) * 2018-07-23 2020-01-30 株式会社東芝 半導体装置及びその製造方法
WO2020137303A1 (ja) * 2018-12-27 2020-07-02 パナソニック株式会社 窒化物半導体装置
JP7361723B2 (ja) 2018-12-27 2023-10-16 パナソニックホールディングス株式会社 窒化物半導体装置
JPWO2020137303A1 (ja) * 2018-12-27 2021-11-11 パナソニック株式会社 窒化物半導体装置
JP2023513840A (ja) * 2020-02-18 2023-04-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 縦型電界効果トランジスタ、それを製造するための方法、および縦型電界効果トランジスタを有するデバイス
JP7555420B2 (ja) 2020-02-18 2024-09-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 縦型電界効果トランジスタ、それを製造するための方法、および縦型電界効果トランジスタを有するデバイス
WO2022176455A1 (ja) * 2021-02-16 2022-08-25 パナソニックホールディングス株式会社 窒化物半導体デバイス

Also Published As

Publication number Publication date
US20180350965A1 (en) 2018-12-06
JP6754782B2 (ja) 2020-09-16
JPWO2017138505A1 (ja) 2018-12-06
US10529843B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
JP6754782B2 (ja) 半導体装置
US8872227B2 (en) Nitride semiconductor device
JP4542912B2 (ja) 窒素化合物半導体素子
US8519439B2 (en) Nitride semiconductor element with N-face semiconductor crystal layer
US9589951B2 (en) High-electron-mobility transistor with protective diode
US20140110759A1 (en) Semiconductor device
CN111902920B (zh) 氮化物半导体装置
JP6755892B2 (ja) 半導体装置
KR101636134B1 (ko) 반도체 장치
US9680001B2 (en) Nitride semiconductor device
JP6665157B2 (ja) 窒化物半導体装置
JP7361723B2 (ja) 窒化物半導体装置
CN111886683B (zh) 氮化物半导体装置
JP2025065365A (ja) 窒化物半導体デバイス
US12068375B2 (en) Nitride semiconductor device
CN111712925B (zh) 半导体装置
JP5545653B2 (ja) 窒化物系半導体装置
US20240332413A1 (en) Hemt device having an improved gate structure and manufacturing process thereof
WO2023112374A1 (ja) 窒化物半導体デバイス
JP2008177368A (ja) 縦型半導体電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750228

Country of ref document: EP

Kind code of ref document: A1