[go: up one dir, main page]

WO2017138472A1 - Suction casing for multi-stage submersible pump, and multi-stage submersible pump - Google Patents

Suction casing for multi-stage submersible pump, and multi-stage submersible pump Download PDF

Info

Publication number
WO2017138472A1
WO2017138472A1 PCT/JP2017/004148 JP2017004148W WO2017138472A1 WO 2017138472 A1 WO2017138472 A1 WO 2017138472A1 JP 2017004148 W JP2017004148 W JP 2017004148W WO 2017138472 A1 WO2017138472 A1 WO 2017138472A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
suction
axis
submersible pump
suction casing
Prior art date
Application number
PCT/JP2017/004148
Other languages
French (fr)
Japanese (ja)
Inventor
和也 平本
前田 毅
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to BR112018016288-4A priority Critical patent/BR112018016288B1/en
Priority to CN201780010440.7A priority patent/CN108603507B/en
Publication of WO2017138472A1 publication Critical patent/WO2017138472A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D11/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use

Definitions

  • the present invention relates to a suction casing for a multistage submersible pump.
  • Multi-stage submersible pumps that handle liquids (for example, submersible pumps for deep wells) are known.
  • Such a multistage submersible pump is configured by connecting a plurality of casings in which an impeller is housed in the axial direction.
  • the following Patent Document 1 has a suction casing fixed to the submersible motor, a guide vane, a plurality of intermediate casings stacked in a multistage manner on the upper portion of the suction casing, and attached to the uppermost intermediate casing.
  • a multi-stage submersible pump comprising a discharge casing is disclosed. In this multistage submersible pump, the water sucked from the suction casing flows linearly into the intermediate casing along the axial direction.
  • the multistage submersible pump As described above, it is generally a problem how to suppress the loss and improve the pump efficiency.
  • the water flowing into the impeller flows linearly in the axial direction (the direction in which the pump shaft extends).
  • one of the causes of loss is the separation of water in the intermediate casing having guide vanes. In order to suppress this separation, it is desirable to avoid an extreme change in the direction of water flow.
  • the flow to which the swirl component is imparted by the first stage impeller flows into the second and subsequent intermediate casings.
  • multi-stage submersible pumps in which the flow direction of water flowing into the first-stage intermediate casing has a swirling component while the flow direction of water flowing into the second-stage and subsequent stages has a swirling component have been recently developed.
  • the impeller of the multistage submersible pump is designed so that the impeller can exhibit the best performance in the inflow flow having a predetermined swirl component. May be designed.
  • the impeller designed in this way is also referred to as a swivel design impeller.
  • good efficiency can be ensured to some extent as a whole pump.
  • the flow direction of the water flowing into the first stage is a linear flow different from the optimum design condition, so the performance of the first stage impeller is the same as that of the second and subsequent impellers. It will be inferior to performance. For this reason, the multistage submersible pump provided with the turning design impeller leaves room for improvement in terms of efficiency.
  • Patent Documents 2 and 3 are known as techniques for imparting a swirl component to the inflow water to the pump.
  • a swirl component also referred to as pre-swirling
  • a swirl component is imparted to the inflowing water by providing an arc-shaped rectifying plate (water guide plate) in the suction flow path.
  • arc-shaped rectifying plate water guide plate
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized, for example, as the following modes.
  • a suction casing for a multistage submersible pump that handles liquid is provided.
  • the suction casing includes a plurality of casing bodies that extend along the axis and are arranged at intervals in the circumferential direction around the axis.
  • a plurality of suction ports are formed along the circumferential direction by gaps between the plurality of casing bodies.
  • the plurality of suction ports are in a direction in which the liquid inflow direction in each of the plurality of suction ports is different from the direction toward the axis, and the liquid inflow direction in each of the plurality of suction ports is a plurality of The inflow direction of the liquid at one of the suction ports is formed to be a direction rotated by a predetermined angle about the axis.
  • the liquid flowing in from the plurality of suction ports can form a swirling flow. That is, it is possible to cause a pre-turn in the liquid flowing into the first stage of the multistage submersible pump. Moreover, it is not necessary to add a member such as a current plate for that purpose.
  • a suction casing for a multistage submersible pump that handles liquid is provided.
  • the suction casing includes a plurality of casing bodies that extend along the axis and are arranged at intervals in the circumferential direction around the axis.
  • a plurality of suction ports are formed along the circumferential direction by gaps between the plurality of casing bodies.
  • the plurality of suction ports are formed so that the liquid flowing in from the plurality of suction ports flows in a direction different from the direction toward the axis in a cross section orthogonal to the axis to generate a swirling flow. According to this suction casing, the same effects as those of the first embodiment are produced.
  • the plurality of suction ports are configured such that the inflow direction of the liquid in each of the plurality of suction ports is rotationally symmetric about the axis. It is formed. According to this form, a more uniform pre-turn can be generated.
  • the suction casing further includes a plurality of casing bodies in the circumferential direction at one end or both ends of the plurality of casing bodies in the axial direction.
  • the flange part connected to is provided. According to this mode, the suction casing can be easily connected to the intermediate casing and the motor by using the flange portion, so that the assembly of the multistage submersible pump is facilitated.
  • a multistage submersible pump that handles liquid.
  • the multistage submersible pump includes a suction casing according to any one of the first to fourth aspects, a motor disposed on one side of the suction casing in the axial direction, and an intermediate casing disposed in multiple stages on the other side of the suction casing. And the intermediate casing in which the impeller rotated by the motor is accommodated in each stage is provided. According to such a multistage submersible pump, the same effects as in any of the first to fourth embodiments can be obtained.
  • FIG. 2 is a cross-sectional view of the suction casing along the line AA in FIG. 1. It is sectional drawing corresponding to FIG. 3 of the suction casing as a comparative example.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a multistage submersible pump 20 as an embodiment of the present invention.
  • the multistage submersible pump 20 (hereinafter also simply referred to as pump 20) is a submersible pump for deep wells that is installed so that the whole is submerged in the well water.
  • the use of the pump 20 is not limited, and the pump 20 can be any multistage submersible pump that handles liquid.
  • the number of stages can be any number of 2 or more.
  • the pump 20 includes a motor 30, a shaft 40, a suction casing 100, and intermediate casings 50, 60, and 70 connected in multiple stages.
  • the shaft 40 extends in the longitudinal direction inside the pump 20 and has an axis AL.
  • the shaft 40 is connected to the motor 30 via a coupling 41.
  • the suction casing 100 is arranged coaxially with the axis AL.
  • the suction casing 100 includes a suction casing main body 110 and flange portions 120 and 130.
  • the suction casing 100 is formed with a suction port 111 (in this embodiment, four suction ports 111a to 111d are formed as will be described later, but here they are collectively referred to as the suction port 111). Yes.
  • One end side of the suction casing 100 in the axis line AL direction is fixed to the motor 30 by a bolt 125, and the other end side is fixed to the intermediate casing 50 by a bolt 135.
  • the intermediate casings 50, 60, and 70 are connected in multiple stages in this order along the axis AL as viewed from the motor 30 side.
  • Impellers 51, 61, and 71 are accommodated in the intermediate casings 50, 60, and 70, respectively.
  • the impellers 51, 61 and 71 are fixed around the shaft 40.
  • guide vanes 52, 62, and 72 are provided inside the intermediate casings 50, 60, and 70 following the impellers 51, 61, and 71, respectively.
  • the water flowing in from the suction port 111 is sent to the subsequent stage while being sequentially boosted in each stage, and the discharge casing (not illustrated) connected to the subsequent stage of the intermediate casing (not illustrated) in the final stage. Discharged from.
  • FIG. 2 is a perspective view of the suction casing 100.
  • FIG. 3 is a cross-sectional view of the suction casing 100 along the line AA of FIG. 1 orthogonal to the axis AL.
  • the suction casing 100 includes four suction casing bodies 110a to 110d in this embodiment. These suction casing bodies 110a to 110d extend along the axis AL as shown in FIG. Further, as shown in FIG. 3, the suction casing bodies 110a to 110d are arranged at intervals in the circumferential direction around the axis AL.
  • the suction casing bodies 110a to 110d have the same shape, and the cross-sectional shape is formed in an L shape. However, the shapes of the suction casing bodies 110a to 110d can be arbitrarily set.
  • the suction casing bodies 110a to 110d are arranged so as to be rotationally symmetric about the axis AL.
  • suction ports 111a to 111d are formed along the circumferential direction by a gap between adjacent suction casing bodies among these suction casing bodies 110a to 110d.
  • the suction casing bodies 110a to 110d having the same shape are arranged so as to be rotationally symmetric about the axis AL, so that the suction ports 111a to 111d are also rotationally symmetric about the axis AL.
  • the suction ports 111a to 111d are formed so that the water inflow directions A2 to A5 in the suction ports 111a to 111d are different from the direction toward the axis AL. Since the suction ports 111a to 111d are arranged so as to be rotationally symmetric about the axis AL, the water inflow directions A2 to A5 are also rotationally symmetric about the axis AL (90 degrees in this embodiment). Rotational symmetry).
  • the swirling flow indicated by the arrow A6 can be generated by the water flowing from the suction ports 111a to 111d. That is, the water flowing in from the suction ports 111a to 111d flows along the axis AL while turning around the axis AL, and flows into the first-stage intermediate casing 50. For this reason, pre-swirl can be caused in the water flowing into the first-stage intermediate casing 50 without adding a member such as a current plate. As a result, in all stages including the first stage, the flowing water can be swirled. Therefore, the efficiency of a multistage submersible pump provided with a turning design impeller can be improved.
  • the suction ports 111a to 111d are formed so that the inflow directions A2 to A5 are rotationally symmetric about the axis AL, so that a more uniform pre-turn can be generated. .
  • the inflow directions A2 to A5 can be arbitrarily set such that the inflow direction of water at one of the suction ports 111a to 111d is rotated by a predetermined angle about the axis AL. . That is, the inflow direction of each suction port can be arbitrarily set so that the flow direction of water flowing from the suction port does not cancel the swirl flow.
  • the number of suction ports is not limited to four and can be any number of two or more. In other words, the number of suction casing bodies can be any number of three or more.
  • the inner surface of the suction casing body (the inner surface forming the flow path) can be of any shape, for example, an arc shape (for example, the axis AL) in order to suppress sudden changes in the direction of water flow as much as possible. May be formed in a shape of a part of a circle centered at.
  • the suction casing 100 includes flange portions 120 and 130.
  • the flange portions 120 and 130 are formed at both ends of the suction casing bodies 110a to 110d in the direction of the axis AL, and connect the suction casing bodies 110a to 110d in the circumferential direction.
  • the flange 120 is formed at the end of the suction casing bodies 110a to 110d on the motor 30 side.
  • a plurality of bolt holes 121 are formed in the flange portion 120 in the circumferential direction. Using the bolt hole 121, the motor 30 and the suction casing 100 can be fixed by the bolt 125 as described above.
  • the flange portion 130 is formed at the end of the suction casing bodies 110a to 110d on the intermediate casing 50 side.
  • the flange portion 130 includes a first large-diameter portion 131 adjacent to the suction casing bodies 110a to 110d, a second large-diameter portion 133 adjacent to the intermediate casing 50, the first large-diameter portion 131, and the second large-diameter portion.
  • a small-diameter portion 132 between the small-diameter portion 133.
  • a plurality of bolt holes 134 are formed in the second large diameter portion 133 in the circumferential direction. The bolt hole 134 is formed radially outside the outer peripheral surface of the small diameter portion 132.
  • the suction casing 100 and the intermediate casing 50 can be fixed by the bolt 135 as described above. Further, since the small diameter portion 132 is formed, the insertion of the bolting tool and the movable region are ensured satisfactorily. Therefore, the suction casing bodies 110a to 110d are formed on the plane orthogonal to the axis AL. The bolt 135 can be easily tightened.
  • notches 122 and 123 are formed in the flange portion 120. These notches 122 and 123 can be used as accommodation spaces for power cables connected to the motor 30.
  • FIG. 4 is a cross-sectional view corresponding to FIG. 3 of a suction casing 200 as a comparative example.
  • the suction casing 200 includes four substantially U-shaped suction casing bodies 210a to 210d, and suction ports 211a to 211d are formed by gaps therebetween.
  • the inflow directions A7 to A10 of water at the suction ports 211a to 211d are directions toward the axis AL.
  • the swirling flow as shown by the arrow A6 in FIG. 3 does not occur, and the water flowing in from the suction ports 211a to 211d goes straight to the intermediate casing 50 along the axis AL. . Therefore, when the suction casing 200 is used for a multistage submersible pump including a swirl design impeller, the efficiency at the first stage is reduced as compared with the case where the suction casing 100 of the present embodiment is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A multi-stage submersible pump in which a preliminary whirl is caused in the flow of water into the pump without attaching a special member. A suction casing for a multi-stage submersible pump which handles liquid is provided with a plurality of casing bodies which extend along an axis and which are arranged at intervals in a circumferential direction about the axis. The gaps between the plurality of casing bodies form a plurality of suction openings along the circumferential direction. The plurality of suction openings are formed such that, in a cross section perpendicular to the axis, each of the plurality of suction openings has a liquid inflow direction different from a direction toward the axis, and such that the liquid inflow direction in each of the plurality of suction openings is a direction defined by rotating the liquid inflow direction of one of the plurality of suction openings by a predetermined angle about the axis.

Description

多段水中ポンプ用の吸込ケーシング、および、多段水中ポンプSuction casing for multistage submersible pump and multistage submersible pump
 本発明は、多段水中ポンプ用の吸込ケーシングに関する。 The present invention relates to a suction casing for a multistage submersible pump.
 液体を扱う多段水中ポンプ(例えば、深井戸用水中ポンプ)が知られている。このような多段水中ポンプは、羽根車が内部に収容されたケーシングが軸線方向に複数連結されて構成される。例えば、下記特許文献1は、水中モータに固定される吸込ケーシングと、ガイドベーンを有し、吸込ケーシングの上部に多段状に積み重ねられた複数の中間ケーシングと、最上部の中間ケーシングに取付けられた吐出ケーシングと、を備える多段水中ポンプを開示している。この多段水中ポンプでは、吸込ケーシングから吸い込まれた水が軸線方向に沿って直線的に中間ケーシングに流入する。 Multi-stage submersible pumps that handle liquids (for example, submersible pumps for deep wells) are known. Such a multistage submersible pump is configured by connecting a plurality of casings in which an impeller is housed in the axial direction. For example, the following Patent Document 1 has a suction casing fixed to the submersible motor, a guide vane, a plurality of intermediate casings stacked in a multistage manner on the upper portion of the suction casing, and attached to the uppermost intermediate casing. A multi-stage submersible pump comprising a discharge casing is disclosed. In this multistage submersible pump, the water sucked from the suction casing flows linearly into the intermediate casing along the axial direction.
特開平6-323291号公報JP-A-6-323291 特開2005-320869号公報JP 2005-320869 A 公開実用昭和54-24103号公報Published Utility Showa 54-24103
 上述したような多段水中ポンプにおいては、一般的に、いかに損失を抑制し、ポンプ効率を向上させるかが課題となっている。損失を抑制するためには、羽根車へ流入する水が、軸線方向(ポンプのシャフトが延在する方向)に直線的に流れることが理想的である。一方で、損失の要因の1つは、ガイドベーンを有する中間ケーシング内での水の剥離である。この剥離を抑制するためには、水の流れ方向の極端な変化を避けることが望ましい。多段水中ポンプでは、2段目以降の中間ケーシングには、1段目の羽根車によって旋回成分が付与された流れが流入する。上記の理想状態に近づけるために、この旋回成分を有する流入水を直線的な流れに変えることは、水の流れ方向の極端な変化を伴い、その結果、剥離が生じやすくなる。つまり、羽根車へ流入する水の流れを軸線方向の直線的な流れにして損失を抑制することと、水の流れ方向の極端な変化を避けて損失を抑制することは、トレードオフの関係にある。 In the multistage submersible pump as described above, it is generally a problem how to suppress the loss and improve the pump efficiency. In order to suppress the loss, it is ideal that the water flowing into the impeller flows linearly in the axial direction (the direction in which the pump shaft extends). On the other hand, one of the causes of loss is the separation of water in the intermediate casing having guide vanes. In order to suppress this separation, it is desirable to avoid an extreme change in the direction of water flow. In the multistage submersible pump, the flow to which the swirl component is imparted by the first stage impeller flows into the second and subsequent intermediate casings. Changing the inflowing water having the swirl component into a linear flow in order to approach the ideal state described above is accompanied by an extreme change in the water flow direction, and as a result, separation is likely to occur. In other words, there is a trade-off relationship between controlling the loss by making the flow of water flowing into the impeller a linear flow in the axial direction and suppressing the loss while avoiding an extreme change in the water flow direction. is there.
 このように1段目の中間ケーシングに流入する水の流れ方向が直線的であるのに対して2段目以降に流入する水の流れが旋回成分を有する多段水中ポンプでは、近年、多段水中ポンプ全体で見れば、旋回成分を有する水の流れが支配的であることを考慮し、所定の旋回成分を有する流入流れにおいて、羽根車が最高の性能を発揮できるように多段水中ポンプの羽根車が設計される場合がある。このように設計された羽根車は、旋回設計羽根車とも称される。旋回設計羽根車を備える多段水中ポンプでは、ポンプ全体として、ある程度良好な効率を確保することができる。 In recent years, multi-stage submersible pumps in which the flow direction of water flowing into the first-stage intermediate casing has a swirling component while the flow direction of water flowing into the second-stage and subsequent stages has a swirling component have been recently developed. Considering that the flow of water having a swirl component is dominant, the impeller of the multistage submersible pump is designed so that the impeller can exhibit the best performance in the inflow flow having a predetermined swirl component. May be designed. The impeller designed in this way is also referred to as a swivel design impeller. In a multistage submersible pump provided with a swirl design impeller, good efficiency can be ensured to some extent as a whole pump.
 しかしながら、旋回設計羽根車では、1段目に流入する水の流れ方向が設計最適条件とは異なる直線的な流れとなるので、1段目の羽根車の性能は2段目以降の羽根車の性能よりも劣ることになる。このため、旋回設計羽根車を備える多段水中ポンプは、効率面において改善の余地を残している。 However, in the swirl design impeller, the flow direction of the water flowing into the first stage is a linear flow different from the optimum design condition, so the performance of the first stage impeller is the same as that of the second and subsequent impellers. It will be inferior to performance. For this reason, the multistage submersible pump provided with the turning design impeller leaves room for improvement in terms of efficiency.
 旋回設計羽根車を備える多段水中ポンプの効率を改善する方法の1つとして、旋回成分を有していない直線的な流れに対して最高の性能を発揮できるように、1段目の羽根車を、2段目以降の羽根車とは別に設計することが考えられる。しかしながら、この場合、同一形状の羽根車を各段に使用することができなくなり、部品の種類が増えることになる。その結果、製造工数の増加、高コスト化、維持管理性の低下などを招くことになる。 One way to improve the efficiency of a multistage submersible pump with a swirl design impeller is to install the first impeller so that the best performance can be achieved against a straight flow that does not have a swirl component. It is conceivable to design separately from the second and subsequent impellers. However, in this case, impellers having the same shape cannot be used for each stage, and the types of parts increase. As a result, the manufacturing man-hours increase, the cost increases, and the maintainability deteriorates.
 旋回設計羽根車を備える多段水中ポンプの効率を改善する別の方法として、1段目に流入する水の流れ方向が旋回成分を含むように、吸込ケーシングを改良することが考えられる。ポンプへの流入水に旋回成分を付与する技術として、例えば、上記の特許文献2,3が知られている。特許文献2、3では、吸込流路に円弧状の整流板(導水板)を設けることによって、流入水に旋回成分(予旋回とも称される)を付与している。しかしながら、このような整流板を付加することは、装置の複雑化、高コスト化、メンテナンスの煩雑化などを招くことになる。 As another method for improving the efficiency of a multistage submersible pump equipped with a swirl design impeller, it is conceivable to improve the suction casing so that the flow direction of water flowing into the first stage includes a swirl component. For example, Patent Documents 2 and 3 are known as techniques for imparting a swirl component to the inflow water to the pump. In Patent Documents 2 and 3, a swirl component (also referred to as pre-swirling) is imparted to the inflowing water by providing an arc-shaped rectifying plate (water guide plate) in the suction flow path. However, adding such a rectifying plate causes complication of the apparatus, cost increase, and complicated maintenance.
 このようなことから、多段水中ポンプにおいて、特別な部材を付加することなく、ポンプへの流入水に予旋回を生じさせる技術が求められる。 For this reason, in multistage submersible pumps, there is a need for a technique that causes a pre-swirl in the inflow water to the pump without adding a special member.
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、例えば、以下の形態として実現することが可能である。 The present invention has been made to solve at least a part of the above-described problems, and can be realized, for example, as the following modes.
 本発明の第1の形態によれば、液体を扱う多段水中ポンプ用の吸込ケーシングが提供される。この吸込ケーシングは、軸線に沿って延在するとともに軸線を中心として周方向に間隔を隔てて配置される複数のケーシング本体を備える。複数のケーシング本体同士の隙間によって、周方向に沿って複数の吸込口が形成される。複数の吸込口は、軸線と直交する断面において、複数の吸込口の各々における液体の流入方向が軸線に向かう方向とは異なる方向となり、複数の吸込口の各々における液体の流入方向が、複数の吸込口のうちの1つの吸込口における液体の流入方向を、軸線を中心として所定角度回転させた方向となるように形成される。 According to the first aspect of the present invention, a suction casing for a multistage submersible pump that handles liquid is provided. The suction casing includes a plurality of casing bodies that extend along the axis and are arranged at intervals in the circumferential direction around the axis. A plurality of suction ports are formed along the circumferential direction by gaps between the plurality of casing bodies. In the cross-section orthogonal to the axis, the plurality of suction ports are in a direction in which the liquid inflow direction in each of the plurality of suction ports is different from the direction toward the axis, and the liquid inflow direction in each of the plurality of suction ports is a plurality of The inflow direction of the liquid at one of the suction ports is formed to be a direction rotated by a predetermined angle about the axis.
 かかる吸込ケーシングによれば、複数の吸込口から流入する液体が旋回流を形成することができる。すなわち、多段水中ポンプの1段目に流入する液体に予旋回を生じさせることができる。しかも、そのために整流板などの部材を追加する必要もない。 According to such a suction casing, the liquid flowing in from the plurality of suction ports can form a swirling flow. That is, it is possible to cause a pre-turn in the liquid flowing into the first stage of the multistage submersible pump. Moreover, it is not necessary to add a member such as a current plate for that purpose.
 本発明の第2の形態によれば、液体を扱う多段水中ポンプ用の吸込ケーシングが提供される。この吸込ケーシングは、軸線に沿って延在するとともに軸線を中心として周方向に間隔を隔てて配置される複数のケーシング本体を備える。複数のケーシング本体同士の隙間によって、周方向に沿って複数の吸込口が形成される。複数の吸込口は、複数の吸込口から流入する液体が軸線と直交する断面において軸線に向かう方向とは異なる方向に流入して、旋回流を生じさせるように形成されている。かかる吸込ケーシングによれば、第1の形態と同様の効果を奏する。 According to the second embodiment of the present invention, a suction casing for a multistage submersible pump that handles liquid is provided. The suction casing includes a plurality of casing bodies that extend along the axis and are arranged at intervals in the circumferential direction around the axis. A plurality of suction ports are formed along the circumferential direction by gaps between the plurality of casing bodies. The plurality of suction ports are formed so that the liquid flowing in from the plurality of suction ports flows in a direction different from the direction toward the axis in a cross section orthogonal to the axis to generate a swirling flow. According to this suction casing, the same effects as those of the first embodiment are produced.
 本発明の第3の形態によれば、第1または第2の形態において、複数の吸込口は、複数の吸込口の各々における液体の流入方向が、軸線を中心とした回転対称となるように形成される。かかる形態によれば、より均一な予旋回を生じさせることができる。 According to the third aspect of the present invention, in the first or second aspect, the plurality of suction ports are configured such that the inflow direction of the liquid in each of the plurality of suction ports is rotationally symmetric about the axis. It is formed. According to this form, a more uniform pre-turn can be generated.
 本発明の第4の形態によれば、第1ないし第3のいずれかの形態において、吸込ケーシングは、さらに、軸線方向における複数のケーシング本体の一端または両端に、複数のケーシング本体同士を周方向に連結するフランジ部を備える。かかる形態によれば、フランジ部を利用して、吸込ケーシングを中間ケーシングやモータに容易に連結することができるので、多段水中ポンプの組み立てが容易になる。 According to the fourth aspect of the present invention, in any one of the first to third aspects, the suction casing further includes a plurality of casing bodies in the circumferential direction at one end or both ends of the plurality of casing bodies in the axial direction. The flange part connected to is provided. According to this mode, the suction casing can be easily connected to the intermediate casing and the motor by using the flange portion, so that the assembly of the multistage submersible pump is facilitated.
 本発明の第5の形態によれば、液体を扱う多段水中ポンプが提供される。この多段水中ポンプは、第1ないし第4のいずれかの形態の吸込ケーシングと、吸込ケーシングの、軸線方向における一方側に配置されるモータと、吸込ケーシングの他方側に多段に配置される中間ケーシングであって、モータによって回転駆動される羽根車が各段に収容される中間ケーシングと、を備える。かかる多段水中ポンプによれば、第1ないし第4のいずれかの形態と同様の効果を奏する。 According to the fifth aspect of the present invention, a multistage submersible pump that handles liquid is provided. The multistage submersible pump includes a suction casing according to any one of the first to fourth aspects, a motor disposed on one side of the suction casing in the axial direction, and an intermediate casing disposed in multiple stages on the other side of the suction casing. And the intermediate casing in which the impeller rotated by the motor is accommodated in each stage is provided. According to such a multistage submersible pump, the same effects as in any of the first to fourth embodiments can be obtained.
本発明の一実施形態としての多段水中ポンプの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the multistage submersible pump as one Embodiment of this invention. 吸込ケーシングの斜視図である。It is a perspective view of a suction casing. 図1のA-A線に沿った吸込ケーシングの断面図である。FIG. 2 is a cross-sectional view of the suction casing along the line AA in FIG. 1. 比較例としての吸込ケーシングの図3に対応する断面図である。It is sectional drawing corresponding to FIG. 3 of the suction casing as a comparative example.
 A.実施例:
 図1は、本発明の一実施形態としての多段水中ポンプ20の概略構成を示す断面図である。多段水中ポンプ20(以下、単にポンプ20とも呼ぶ)は、本実施例では、その全体が井戸水中に水没するように設置される深井戸用水中ポンプである。ただし、ポンプ20の用途は限定されるものではなく、ポンプ20は、液体を扱う任意の多段水中ポンプとすることができる。また、段数は、2以上の任意の数とすることができる。
A. Example:
FIG. 1 is a cross-sectional view showing a schematic configuration of a multistage submersible pump 20 as an embodiment of the present invention. In the present embodiment, the multistage submersible pump 20 (hereinafter also simply referred to as pump 20) is a submersible pump for deep wells that is installed so that the whole is submerged in the well water. However, the use of the pump 20 is not limited, and the pump 20 can be any multistage submersible pump that handles liquid. Further, the number of stages can be any number of 2 or more.
 図示するように、ポンプ20は、モータ30と、シャフト40と、吸込ケーシング100と、多段に連結された中間ケーシング50,60,70と、を備えている。シャフト40は、ポンプ20の内部を長手方向に延在しており、軸線ALを有している。このシャフト40は、カップリング41を介して、モータ30に連結されている。 As shown in the figure, the pump 20 includes a motor 30, a shaft 40, a suction casing 100, and intermediate casings 50, 60, and 70 connected in multiple stages. The shaft 40 extends in the longitudinal direction inside the pump 20 and has an axis AL. The shaft 40 is connected to the motor 30 via a coupling 41.
 吸込ケーシング100は、軸線ALと同軸に配置されている。吸込ケーシング100は、吸込ケーシング本体110と、フランジ部120,130と、を備えている。この吸込ケーシング100には、吸込口111(本実施例では、後述するとおり、4つの吸込口111a~111dが形成されているが、ここでは、これらを吸込口111として総称する)が形成されている。かかる吸込ケーシング100は、軸線AL方向における一端側がボルト125によってモータ30に固定されており、他端側がボルト135によって中間ケーシング50に固定されている。 The suction casing 100 is arranged coaxially with the axis AL. The suction casing 100 includes a suction casing main body 110 and flange portions 120 and 130. The suction casing 100 is formed with a suction port 111 (in this embodiment, four suction ports 111a to 111d are formed as will be described later, but here they are collectively referred to as the suction port 111). Yes. One end side of the suction casing 100 in the axis line AL direction is fixed to the motor 30 by a bolt 125, and the other end side is fixed to the intermediate casing 50 by a bolt 135.
 中間ケーシング50,60,70は、軸線ALに沿って、モータ30側から見てこの順に多段に連結されている。中間ケーシング50,60,70の内部には、それぞれ、羽根車51,61,71が収容されている。羽根車51,61,71は、シャフト40のまわりに固定されている。また、中間ケーシング50,60,70の内部には、それぞれ、羽根車51,61,71に続いて、ガイドベーン52,62,72が設けられている。 The intermediate casings 50, 60, and 70 are connected in multiple stages in this order along the axis AL as viewed from the motor 30 side. Impellers 51, 61, and 71 are accommodated in the intermediate casings 50, 60, and 70, respectively. The impellers 51, 61 and 71 are fixed around the shaft 40. In addition, guide vanes 52, 62, and 72 are provided inside the intermediate casings 50, 60, and 70 following the impellers 51, 61, and 71, respectively.
 かかるポンプ20では、モータ30を駆動すると、シャフト40が羽根車51,61,71とともに回転する。これにより、矢印A1に示すように吸込口111から吸込ケーシング100内に水が流入し、軸線ALに沿って中間ケーシング50側に向けて流れる。そして、1段目の中間ケーシング50内に流入した水は、羽根車51によってガイドベーン52に送られ、ガイドベーン52によって昇圧され、2段目の中間ケーシング60に流入する。同様に、2段目の中間ケーシング60に流入した水は、羽根車61によってガイドベーン62に送られ、ガイドベーン62によって昇圧され、3段目の中間ケーシング70に流入する。このようにして、吸込口111から流入した水は、各段において順次昇圧されながら、後段に送られ、最終段の中間ケーシング(図示せず)の後段に連結された吐出ケーシング(図示せず)から排出される。 In such a pump 20, when the motor 30 is driven, the shaft 40 rotates together with the impellers 51, 61, 71. Thereby, as shown to arrow A1, water flows in into the suction casing 100 from the suction inlet 111, and flows toward the intermediate casing 50 side along the axis line AL. Then, the water flowing into the first stage intermediate casing 50 is sent to the guide vane 52 by the impeller 51, pressurized by the guide vane 52, and flows into the second stage intermediate casing 60. Similarly, the water flowing into the second-stage intermediate casing 60 is sent to the guide vane 62 by the impeller 61, is pressurized by the guide vane 62, and flows into the third-stage intermediate casing 70. In this way, the water flowing in from the suction port 111 is sent to the subsequent stage while being sequentially boosted in each stage, and the discharge casing (not illustrated) connected to the subsequent stage of the intermediate casing (not illustrated) in the final stage. Discharged from.
 図2は、吸込ケーシング100の斜視図である。図3は、軸線ALに直交する図1のA-A線に沿った吸込ケーシング100の断面図である。図3に示すように、吸込ケーシング100は、本実施例では、4つの吸込ケーシング本体110a~110dを備えている。これらの吸込ケーシング本体110a~110dは、図2に示すように、軸線ALに沿って延在している。また、図3に示すように、吸込ケーシング本体110a~110dは、軸線ALを中心として周方向に間隔を隔てて配置されている。吸込ケーシング本体110a~110dは、本実施例では、同一形状を有しており、断面形状がL字状に形成されている。ただし、吸込ケーシング本体110a~110dの形状は、任意に設定可能である。また、本実施例では、吸込ケーシング本体110a~110dは、軸線ALを中心とした回転対称となるように配置されている。 FIG. 2 is a perspective view of the suction casing 100. FIG. 3 is a cross-sectional view of the suction casing 100 along the line AA of FIG. 1 orthogonal to the axis AL. As shown in FIG. 3, the suction casing 100 includes four suction casing bodies 110a to 110d in this embodiment. These suction casing bodies 110a to 110d extend along the axis AL as shown in FIG. Further, as shown in FIG. 3, the suction casing bodies 110a to 110d are arranged at intervals in the circumferential direction around the axis AL. In the present embodiment, the suction casing bodies 110a to 110d have the same shape, and the cross-sectional shape is formed in an L shape. However, the shapes of the suction casing bodies 110a to 110d can be arbitrarily set. In the present embodiment, the suction casing bodies 110a to 110d are arranged so as to be rotationally symmetric about the axis AL.
 図3に示すように、これらの吸込ケーシング本体110a~110dのうちの隣接する吸込ケーシング本体同士の隙間によって、4つの吸込口111a~111dが周方向に沿って形成されている。本実施例では、同一形状を有する吸込ケーシング本体110a~110dが軸線ALを中心とした回転対称となるように配置されているので、吸込口111a~111dも軸線ALを中心とした回転対称となるように配置されている。 As shown in FIG. 3, four suction ports 111a to 111d are formed along the circumferential direction by a gap between adjacent suction casing bodies among these suction casing bodies 110a to 110d. In this embodiment, the suction casing bodies 110a to 110d having the same shape are arranged so as to be rotationally symmetric about the axis AL, so that the suction ports 111a to 111d are also rotationally symmetric about the axis AL. Are arranged as follows.
 図3に示すように、吸込口111a~111dは、吸込口111a~111dの各々における水の流入方向A2~A5が軸線ALに向かう方向とは異なる方向になるように形成されている。吸込口111a~111dは、軸線ALを中心とした回転対称となるように配置されているので、水の流入方向A2~A5も、軸線ALを中心とした回転対称(本実施例では、90度回転対称)となる。 As shown in FIG. 3, the suction ports 111a to 111d are formed so that the water inflow directions A2 to A5 in the suction ports 111a to 111d are different from the direction toward the axis AL. Since the suction ports 111a to 111d are arranged so as to be rotationally symmetric about the axis AL, the water inflow directions A2 to A5 are also rotationally symmetric about the axis AL (90 degrees in this embodiment). Rotational symmetry).
 かかる吸込口111a~111dの流入方向A2~A5によれば、図3に示すように、吸込口111a~111dから流入する水によって、矢印A6で示される旋回流を発生させることができる。つまり、吸込口111a~111dから流入する水は、軸線ALを中心として旋回しつつ、軸線ALに沿って流れ、1段目の中間ケーシング50に流入することになる。このため、整流板などの部材を追加することなく、1段目の中間ケーシング50に流入する水に予旋回を生じさせることができる。その結果、1段目を含む全ての段において、流入する水の流れを旋回流とすることができる。したがって、旋回設計羽根車を備える多段水中ポンプの効率を向上させることができる。しかも、本実施例では、吸込口111a~111dは、流入方向A2~A5が、軸線ALを中心とした回転対称となるように形成されているので、いっそう均一な予旋回を生じさせることができる。 According to the inflow directions A2 to A5 of the suction ports 111a to 111d, as shown in FIG. 3, the swirling flow indicated by the arrow A6 can be generated by the water flowing from the suction ports 111a to 111d. That is, the water flowing in from the suction ports 111a to 111d flows along the axis AL while turning around the axis AL, and flows into the first-stage intermediate casing 50. For this reason, pre-swirl can be caused in the water flowing into the first-stage intermediate casing 50 without adding a member such as a current plate. As a result, in all stages including the first stage, the flowing water can be swirled. Therefore, the efficiency of a multistage submersible pump provided with a turning design impeller can be improved. In addition, in the present embodiment, the suction ports 111a to 111d are formed so that the inflow directions A2 to A5 are rotationally symmetric about the axis AL, so that a more uniform pre-turn can be generated. .
 ただし、流入方向A2~A5は、吸込口111a~111dのうちの1つの吸込口における水の流入方向を、軸線ALを中心として所定角度回転させた方向となるように、任意に設定可能である。つまり、各吸込口の流入方向は、吸込口から流入する水の流れ方向が旋回流を打ち消す方向とならないように、任意に設定可能である。また、吸込口の数は、4つに限らず、2以上の任意の数とすることができる。換言すれば、吸込ケーシング本体の数は、3以上の任意の数とすることができる。さらに、吸込ケーシング本体の内面(流路を形成する内面)は、任意の形状とすることができ、例えば、水の流れる方向の急激な変化を極力抑制するために、円弧状(例えば、軸線ALを中心とする円の一部分の形状)に形成されていてもよい。 However, the inflow directions A2 to A5 can be arbitrarily set such that the inflow direction of water at one of the suction ports 111a to 111d is rotated by a predetermined angle about the axis AL. . That is, the inflow direction of each suction port can be arbitrarily set so that the flow direction of water flowing from the suction port does not cancel the swirl flow. Further, the number of suction ports is not limited to four and can be any number of two or more. In other words, the number of suction casing bodies can be any number of three or more. Furthermore, the inner surface of the suction casing body (the inner surface forming the flow path) can be of any shape, for example, an arc shape (for example, the axis AL) in order to suppress sudden changes in the direction of water flow as much as possible. May be formed in a shape of a part of a circle centered at.
 また、図2に示すように、吸込ケーシング100は、フランジ部120,130を備えている。フランジ部120,130は、軸線AL方向における吸込ケーシング本体110a~110dの両端に形成されており、吸込ケーシング本体110a~110dを周方向に連結している。フランジ部120は、吸込ケーシング本体110a~110dのうちのモータ30側の端部に形成されている。フランジ部120には、複数のボルト穴121が周方向に複数形成されている。このボルト穴121を利用して、上述したように、モータ30と吸込ケーシング100とをボルト125によって固定することができる。 Further, as shown in FIG. 2, the suction casing 100 includes flange portions 120 and 130. The flange portions 120 and 130 are formed at both ends of the suction casing bodies 110a to 110d in the direction of the axis AL, and connect the suction casing bodies 110a to 110d in the circumferential direction. The flange 120 is formed at the end of the suction casing bodies 110a to 110d on the motor 30 side. A plurality of bolt holes 121 are formed in the flange portion 120 in the circumferential direction. Using the bolt hole 121, the motor 30 and the suction casing 100 can be fixed by the bolt 125 as described above.
 フランジ部130は、吸込ケーシング本体110a~110dのうちの中間ケーシング50側の端部に形成されている。フランジ部130は、吸込ケーシング本体110a~110dと隣接する第1の大径部131と、中間ケーシング50に隣接する第2の大径部133と、第1の大径部131と第2の大径部133との間の小径部132と、を備えている。第2の大径部133には、ボルト穴134が周方向に複数形成されている。ボルト穴134は、小径部132の外周面よりも径方向外側に形成されている。このボルト穴134を利用して、上述したように、吸込ケーシング100と中間ケーシング50とをボルト135によって固定することができる。また、小径部132が形成されていることによって、ボルト締め用工具の挿入および可動領域が良好に確保されるので、軸線ALと直交する平面上における吸込ケーシング本体110a~110dの形成箇所においても、ボルト135を容易に締めることができる。 The flange portion 130 is formed at the end of the suction casing bodies 110a to 110d on the intermediate casing 50 side. The flange portion 130 includes a first large-diameter portion 131 adjacent to the suction casing bodies 110a to 110d, a second large-diameter portion 133 adjacent to the intermediate casing 50, the first large-diameter portion 131, and the second large-diameter portion. A small-diameter portion 132 between the small-diameter portion 133. A plurality of bolt holes 134 are formed in the second large diameter portion 133 in the circumferential direction. The bolt hole 134 is formed radially outside the outer peripheral surface of the small diameter portion 132. Using the bolt hole 134, the suction casing 100 and the intermediate casing 50 can be fixed by the bolt 135 as described above. Further, since the small diameter portion 132 is formed, the insertion of the bolting tool and the movable region are ensured satisfactorily. Therefore, the suction casing bodies 110a to 110d are formed on the plane orthogonal to the axis AL. The bolt 135 can be easily tightened.
 また、図3に示すように、フランジ部120には、切欠122,123が形成されている。これらの切欠122,123は、モータ30に接続される動力ケーブルの収容スペースとして利用することができる。 Further, as shown in FIG. 3, notches 122 and 123 are formed in the flange portion 120. These notches 122 and 123 can be used as accommodation spaces for power cables connected to the motor 30.
 図4は、比較例としての吸込ケーシング200の、図3に対応する断面図である。図示するように、吸込ケーシング200は、略U字状の4つの吸込ケーシング本体210a~210dを備えており、それらの間の隙間によって吸込口211a~211dが形成されている。吸込口211a~211dにおける水の流入方向A7~A10は、軸線ALに向かう方向となっている。かかる吸込ケーシング200では、図3に矢印A6で示したような旋回流は発生せず、吸込口211a~211dから流入した水は、軸線ALに沿って直線的に中間ケーシング50に向かうことになる。したがって、旋回設計羽根車を備える多段水中ポンプに吸込ケーシング200を使用すると、本実施例の吸込ケーシング100を使用した場合と比べて、1段目での効率が低下することになる。 FIG. 4 is a cross-sectional view corresponding to FIG. 3 of a suction casing 200 as a comparative example. As illustrated, the suction casing 200 includes four substantially U-shaped suction casing bodies 210a to 210d, and suction ports 211a to 211d are formed by gaps therebetween. The inflow directions A7 to A10 of water at the suction ports 211a to 211d are directions toward the axis AL. In such a suction casing 200, the swirling flow as shown by the arrow A6 in FIG. 3 does not occur, and the water flowing in from the suction ports 211a to 211d goes straight to the intermediate casing 50 along the axis AL. . Therefore, when the suction casing 200 is used for a multistage submersible pump including a swirl design impeller, the efficiency at the first stage is reduced as compared with the case where the suction casing 100 of the present embodiment is used.
 以上、本発明のいくつかの実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の組み合わせ、または、省略が可能である。 Although several embodiments of the present invention have been described above, the above-described embodiments of the present invention are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof. Moreover, in the range which can solve at least one part of the subject mentioned above, or the range which exhibits at least one part of an effect, the combination of each component described in the claim and the specification, or omission is possible. .
  20…多段水中ポンプ
  30…モータ
  40…シャフト
  41…カップリング
  50,60,70…中間ケーシング
  51,61,71…羽根車
  52,62,72…ガイドベーン
  100…吸込ケーシング
  110,110a,110b,110c,110d…吸込ケーシング本体
  111,111a,111b,111c,111d…吸込口
  120,130…フランジ部
  121,134…ボルト穴
  122,123…切欠
  125,135…ボルト
  131…第1の大径部
  132…小径部
  133…第2の大径部
  AL…軸線
DESCRIPTION OF SYMBOLS 20 ... Multistage submersible pump 30 ... Motor 40 ... Shaft 41 ... Coupling 50, 60, 70 ... Intermediate casing 51, 61, 71 ... Impeller 52, 62, 72 ... Guide vane 100 ... Suction casing 110, 110a, 110b, 110c , 110d ... Suction casing body 111, 111a, 111b, 111c, 111d ... Suction port 120, 130 ... Flange part 121, 134 ... Bolt hole 122, 123 ... Notch 125, 135 ... Bolt 131 ... First large diameter part 132 ... Small diameter part 133 ... Second large diameter part AL ... Axis

Claims (5)

  1.  液体を扱う多段水中ポンプ用の吸込ケーシングであって、
     軸線に沿って延在するとともに前記軸線を中心として周方向に間隔を隔てて配置される複数のケーシング本体を備え、
     前記複数のケーシング本体同士の隙間によって、前記周方向に沿って複数の吸込口が形成され、
     前記複数の吸込口は、前記軸線と直交する断面において、
      前記複数の吸込口の各々における前記液体の流入方向が前記軸線に向かう方向とは異なる方向となり、
      前記複数の吸込口の各々における前記液体の流入方向が、前記複数の吸込口のうちの1つの吸込口における前記液体の流入方向を、前記軸線を中心として所定角度回転させた方向となるように形成された
     吸込ケーシング。
    A suction casing for a multistage submersible pump that handles liquid,
    A plurality of casing bodies that extend along the axis and are arranged at intervals in the circumferential direction around the axis;
    A plurality of suction ports are formed along the circumferential direction by the gaps between the plurality of casing bodies,
    In the cross section orthogonal to the axis, the plurality of suction ports,
    The inflow direction of the liquid in each of the plurality of suction ports is different from the direction toward the axis,
    The inflow direction of the liquid in each of the plurality of suction ports is a direction obtained by rotating the inflow direction of the liquid in one of the plurality of suction ports by a predetermined angle about the axis. Formed suction casing.
  2.  液体を扱う多段水中ポンプ用の吸込ケーシングであって、
     軸線に沿って延在するとともに前記軸線を中心として周方向に間隔を隔てて配置される複数のケーシング本体を備え、
     前記複数のケーシング本体同士の隙間によって、前記周方向に沿って複数の吸込口が形成され、
     前記複数の吸込口は、該複数の吸込口から流入する前記液体が前記軸線と直交する断面において該軸線に向かう方向とは異なる方向に流入して、旋回流を生じさせるように形成されている
     吸込ケーシング。
    A suction casing for a multistage submersible pump that handles liquid,
    A plurality of casing bodies that extend along the axis and are arranged at intervals in the circumferential direction around the axis;
    A plurality of suction ports are formed along the circumferential direction by the gaps between the plurality of casing bodies,
    The plurality of suction ports are formed so that the liquid flowing in from the plurality of suction ports flows in a direction different from the direction toward the axis in a cross section orthogonal to the axis to generate a swirling flow. Suction casing.
  3.  請求項1または請求項2に記載の吸込ケーシングであって、
     前記複数の吸込口は、該複数の吸込口の各々における前記液体の流入方向が、前記軸線を中心とした回転対称となるように形成された
     吸込ケーシング。
    The suction casing according to claim 1 or 2, wherein
    The suction casing is formed such that an inflow direction of the liquid in each of the plurality of suction ports is rotationally symmetric about the axis.
  4.  請求項1ないし請求項3のいずれか一項に記載の吸込ケーシングであって、
     さらに、前記軸線方向における前記複数のケーシング本体の一端または両端に、該複数のケーシング本体同士を周方向に連結するフランジ部を備える
     吸込ケーシング。
    A suction casing according to any one of claims 1 to 3,
    Furthermore, the suction casing is provided with a flange portion that connects the plurality of casing bodies in the circumferential direction at one end or both ends of the plurality of casing bodies in the axial direction.
  5.  液体を扱う多段水中ポンプであって、
     請求項1ないし請求項4のいずれか一項に記載の吸込ケーシングと、
     前記吸込ケーシングの、前記軸線方向における一方側に配置されるモータと、
     前記吸込ケーシングの他方側に多段に配置される中間ケーシングであって、前記モータによって回転駆動される羽根車が各段に収容される中間ケーシングと
     を備える多段水中ポンプ。
    A multistage submersible pump that handles liquids,
    A suction casing according to any one of claims 1 to 4,
    A motor disposed on one side of the suction casing in the axial direction;
    A multi-stage submersible pump, comprising: an intermediate casing arranged in multiple stages on the other side of the suction casing, wherein the intermediate casing accommodates in each stage an impeller that is rotationally driven by the motor.
PCT/JP2017/004148 2016-02-10 2017-02-06 Suction casing for multi-stage submersible pump, and multi-stage submersible pump WO2017138472A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112018016288-4A BR112018016288B1 (en) 2016-02-10 2017-02-06 MULTISTAGE SUBMERSIBLE PUMP SUCTION HOUSING AND MULTISTAGE SUBMERSIBLE PUMP
CN201780010440.7A CN108603507B (en) 2016-02-10 2017-02-06 Suction housing for multi-stage submersible pump, and multi-stage submersible pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016023674A JP6624962B2 (en) 2016-02-10 2016-02-10 Suction casing for multi-stage submersible pump and multi-stage submersible pump
JP2016-023674 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017138472A1 true WO2017138472A1 (en) 2017-08-17

Family

ID=59563311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004148 WO2017138472A1 (en) 2016-02-10 2017-02-06 Suction casing for multi-stage submersible pump, and multi-stage submersible pump

Country Status (5)

Country Link
JP (1) JP6624962B2 (en)
CN (1) CN108603507B (en)
BR (1) BR112018016288B1 (en)
TW (1) TWI710704B (en)
WO (1) WO2017138472A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095638A1 (en) * 2021-11-29 2023-06-01 株式会社モリタ Centrifugal pump, centrifugal pump device, and firefighting automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109441841B (en) * 2018-11-17 2024-05-07 广东瑞荣泵业有限公司 Space twisted plastic impeller type submersible pump for well

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424103U (en) * 1977-07-21 1979-02-16
JP2007247414A (en) * 2006-03-13 2007-09-27 Mitsubishi Heavy Ind Ltd Pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134008Y2 (en) * 1973-10-16 1976-08-23
CN86204176U (en) * 1986-06-16 1987-06-10 中国石化销售公司山西省石油公司 Multistage horizontal centrifugal pump with induced wheel
ITVI20020095A1 (en) * 2002-05-15 2003-11-17 Vertical Srl MULTI-STAGE PUMP PARTICULARLY OF IMMERSION TYPE
CN103163620B (en) * 2011-12-16 2015-01-07 佳能企业股份有限公司 Lens mechanism
EP3088739B1 (en) * 2013-12-27 2019-11-06 Iwaki Co., Ltd. Magnetic pump
KR20150032686A (en) * 2015-03-09 2015-03-27 재단법인 중소조선연구원 Device for guiding impeller suction of centrifugal pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424103U (en) * 1977-07-21 1979-02-16
JP2007247414A (en) * 2006-03-13 2007-09-27 Mitsubishi Heavy Ind Ltd Pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095638A1 (en) * 2021-11-29 2023-06-01 株式会社モリタ Centrifugal pump, centrifugal pump device, and firefighting automobile

Also Published As

Publication number Publication date
CN108603507B (en) 2020-02-07
JP2017141735A (en) 2017-08-17
CN108603507A (en) 2018-09-28
BR112018016288A2 (en) 2018-12-26
TWI710704B (en) 2020-11-21
BR112018016288B1 (en) 2023-12-26
TW201730436A (en) 2017-09-01
JP6624962B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
US8087901B2 (en) Fluid channeling device for back-to-back compressors
EP3088739B1 (en) Magnetic pump
KR101521904B1 (en) Axial flow pump
WO2016121046A1 (en) Centrifugal-compressor casing and centrifugal compressor
WO2017138472A1 (en) Suction casing for multi-stage submersible pump, and multi-stage submersible pump
JP2014074359A (en) Multistage pump
JP6712159B2 (en) Diffuser and multi-stage pump device
CN106232996B (en) General housing for centrifugal gas compressor
JP2018523055A (en) Centrifugal pump
JP3924233B2 (en) Turbo pump diffuser
CN101493092B (en) Multi-stage pump
JP2018091317A (en) Multi-stage pump
US10465687B2 (en) Device for conditioning flow of working fluids
CA2938192C (en) Horizontal pumping system with primary stage assembly and separate npsh stage assembly
JP6626900B2 (en) Centrifugal compressor
JP6424039B2 (en) pump
US11560902B2 (en) Self-priming assembly for use in a multi-stage pump
JP2016148306A (en) Guide body and pump device
CN105626544A (en) Horizontal type multistage centrifugal pump
JP6071197B2 (en) Multi-directional suction casing and centrifugal fluid machine
WO2017073499A1 (en) Turbo machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018016288

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018016288

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180809

122 Ep: pct application non-entry in european phase

Ref document number: 17750195

Country of ref document: EP

Kind code of ref document: A1