WO2017133648A1 - 液体体积计量工具、容器和方法 - Google Patents
液体体积计量工具、容器和方法 Download PDFInfo
- Publication number
- WO2017133648A1 WO2017133648A1 PCT/CN2017/072789 CN2017072789W WO2017133648A1 WO 2017133648 A1 WO2017133648 A1 WO 2017133648A1 CN 2017072789 W CN2017072789 W CN 2017072789W WO 2017133648 A1 WO2017133648 A1 WO 2017133648A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- channel
- metering
- pressure
- piston
- Prior art date
Links
Images
Definitions
- the present invention relates to a liquid volumetric metering tool, container and method, particularly a liquid volumetric metering tool and a liquid container having a pressure swing chamber and a method of metering the volume of the liquid.
- the existing self-measuring container is affected by factors such as the operating force, the operating speed, the volume of the liquid in the container body, the volume of the gas in the pressure-changing member, etc., and the initial position of the liquid in the metering channel is difficult to fix.
- the initial position of the measurement cannot be fixed, which not only interferes with the measurement accuracy, but also affects the convenience of operation. These have hindered the widespread use of containers with self-metering capabilities.
- the present invention provides a liquid volume measuring tool, including a pressure transforming device, a metering channel, a liquid taking passage, and an outflow passage;
- the pressure transformation device includes a cavity and a piston reciprocally movable in the cavity, and the cavity and the piston may generate a pressure change space which is a pressure transformation cavity; the piston causes the pressure transformation by reciprocating motion Positive and negative pressure changes are generated in the cavity; the beginning end of the metering channel is in communication with the interior of the pressure changing chamber;
- a valve that is opened when the negative pressure is applied to the metering channel and closed when positive pressure is set;
- a valve that is closed when the positive pressure is applied to the outlet of the outflow channel and closed when the negative pressure is applied;
- the reciprocating motion of the piston can pass over the reservoir or opening.
- the liquid volumetric measuring tool has at least two transformation stages in the pressure changing chamber during a metering and taking process:
- Negative pressure stage Moving the piston outward creates a negative pressure that causes liquid to enter the fill channel and fill the metering channel, and excess liquid flows out of the metering channel into the pressure chamber. Complete initial positioning of the metering channel liquid.
- the balancing phase is also included after the negative pressure phase, that is, the phase in which the opening is located within the pressure changing chamber.
- the negative pressure phase when the piston continues to move past the return port and moves to the inside of the pressure changing chamber, the pressure inside and outside the pressure changing chamber is the same. Excess liquid stops entering the pressure change chamber; excess liquid entering the pressure change chamber flows outward from the opening.
- the stage in which the opening is located in the pressure changing chamber before pressurization is also in the equilibrium stage.
- the opening is a cavity wall gap connecting the outside of the pressure changing chamber; further, the opening may be connected to the liquid guiding tube.
- the catheter can prevent excessive liquid contamination of the metering tool, and can also recycle excess liquid.
- the opening When the opening is located in the pressure changing chamber, the opening can communicate with the outside of the pressure changing chamber.
- the liquid volumetric measuring tool can temporarily store excess liquid entering the pressure changing chamber when the liquid storage tank is located inside the pressure changing chamber. When the liquid storage tank is located outside the pressure changing chamber, the liquid inside the liquid storage tank flows out under the action of gravity or the operator shaking.
- the liquid volume measuring tool has a relatively simple structure, can be mass-produced, can reduce the production cost, can realize convenient and quick measurement and take out the contents when used, has quick response and good control feeling; can be initially positioned and accurately measured.
- the liquid volumetric measuring tool overcomes the inconvenience and inaccuracy of the prior art liquid metering.
- the starting end of the metering channel can be located within the pressure changing chamber.
- the manner in which the starting end of the metering channel is directly located in the pressure changing chamber is simple in overall structure, and the positioning is directly accurate.
- the metering channel starting end can be on the cavity wall or on the piston.
- the measuring tool piston of this structure can have a larger stroke and is counter-measured Should be fast, good sense of control; simple structure.
- the metering channel can be connected to the pressure-changing chamber through a conduit, the metering channel starting end and the tube forming an inverted U-shaped structure.
- the inverted U-shaped structure can prevent gas from entering the metering passage.
- the metering channel start port can be made up.
- the port is easy to observe upwards, and it can also prevent air from mixing into the metering channel; it helps to improve the metering accuracy.
- the piston can be connected with an elastic member that resets it.
- the piston is connected with an elastic member for resetting it.
- the piston can be automatically reset after the positive pressure is taken out, generating a negative pressure, filling the metering passage with liquid, completing the initial positioning, and preparing for the next metering and taking out.
- the invention also relates to a liquid volumetric measuring container, comprising a container body and a pressure transformation device, a metering channel, a liquid taking passage, and an outflow passage;
- the pressure transformation device includes a cavity and a piston reciprocally movable in the cavity, and the cavity and the piston may generate a pressure change space which is a pressure transformation cavity; the piston causes the pressure transformation by reciprocating motion Positive and negative pressure changes are generated in the cavity; the beginning end of the metering channel is in communication with the interior of the pressure changing chamber;
- a valve that is opened when the negative pressure is applied to the metering channel and closed when positive pressure is set;
- a valve that is closed when the positive pressure is applied to the outlet of the outflow channel and closed when the negative pressure is applied;
- the reciprocating motion of the piston can pass over the reservoir or opening.
- the piston can be coupled to a traction device that extends out of the container body. This structure allows manual operation.
- the opening can be opened into the container body.
- the liquid in the pressure changing chamber can be returned to the inside of the container body, and can be taken out again to prevent the returning liquid from being wasted or causing pollution.
- the invention also relates to a liquid volume metering method comprising the steps of:
- the horizontal position of the opening is lower than the starting end port of the metering channel, and can communicate with the outside of the pressure changing chamber;
- the invention also relates to another liquid volume metering method comprising the steps of:
- the horizontal position of the liquid storage tank is lower than the starting end port of the metering channel
- the two liquid volume metering methods are simple in operation, convenient to use, and accurate in measurement. It is suitable for ordinary residents' daily application, and is also suitable for scientific staff to use in precise measurement; it can be manually pushed or pulled, or it can be driven by electric power.
- FIG. 1 is a schematic structural view of a liquid volume measuring tool according to Embodiment 1;
- FIG. 2 is a schematic structural view of a liquid container according to Embodiment 2;
- Embodiment 3 is a schematic structural view of a liquid volume measuring tool according to Embodiment 3;
- FIG. 4 is a schematic structural view of a liquid container according to Embodiment 4.
- Figure 5 is a schematic structural view of a liquid container according to Embodiment 5;
- Figure 6 is a schematic structural view of a liquid container according to Embodiment 6;
- Figure 7 is a schematic structural view of a liquid container according to Embodiment 7;
- Figure 8 is a schematic view showing the structure of the liquid container of the eighth embodiment.
- the metering tool comprises a transformer device, a metering channel 8, a liquid withdrawal channel 11, and an outflow channel 12.
- One end of the outflow channel 12 is connected to the interface 162 of the control valve body 13, and the other end is an outflow port.
- One end of the liquid take-out passage 11 is connected to the interface 172 of the control valve body 13, and the other end is a liquid take-up port.
- the pressure transforming device is a member that can pressurize and depressurize the pressure changing chamber 20, and includes a cavity 2 and a piston 21.
- the cavity 2 is provided with an opening 22, and the piston 21 is connected to the electric device 23.
- the initial end of the metering channel 8 communicates with the pressure chamber 20 through a conduit 19.
- the initial end of the metering channel 8 and the duct 19 form an inverted U shape, and the initial end port of the metering channel 8 is upward.
- the other end of the metering passage 8 is connected to the control valve 1 composed of the valve body 13 and the spool 14, and communicates with the intermediate passage 15 in the spool 14.
- the valve body 13 of the control valve 1 is connected to three channels: a liquid take-out passage 11, an outflow passage 12, and a metering passage 8.
- the valve body 14 of the control valve is located in the inner cavity of the valve body 13, and can slide up and down in the cavity, but the outer peripheral side of the valve body 14 and the inner wall of the valve body 13 are fluid-tight.
- the spool 14 has an intermediate passage 15 therein, and the intermediate passage 15 has an interface 161 and an interface 171 on the outer peripheral side of the spool.
- An interface 162 and an interface 172 are provided on the valve body.
- the interface 162 communicates with the outflow channel 12, and the interface 172 communicates with the liquid withdrawal channel 11.
- the interface 161 and the interface 162 have three different communication relationships: only the interface 161 is in communication with the interface 162; the interface 161 and the interface 162 There is no communication between the interface 171 and the interface 172 (as shown in FIG. 1); only the interface 171 is connected to the interface 172.
- Springs are mounted on both ends of the valve body 13, and the spring can cause the spool 14 to be in a position where the interface 161 and the interface 162 and the interface 171 and the interface 172 are not in communication when there is no external pressure.
- a pressure relief port 18 is provided at the lower end of the valve body 13.
- the outflow opening of the outflow channel 12 is located outside of the metrology tool.
- the electric device 23 When the opening 22 is located outside the pressure changing chamber 20, the electric device 23 is activated to pull the piston 21 outward, and the pressure is reduced to a negative pressure in the pressure changing chamber 20; the inside of the metering passage 8 is a negative pressure.
- the valve core 14 of the control valve 1 moves upward under the action of the negative pressure, and the interface 171 communicates with the interface 172, so that the liquid take-out passage 11 communicates with the metering passage 8 through the intermediate passage 15; the liquid enters the metering passage 8 under the action of the negative pressure; The contents entering the metering channel 8 exceed the initial end of the metering channel, i.e., into the conduit 19, and then into the pressure chamber 20.
- the pressure changing chamber 20 communicates inside and outside, the negative pressure does not exist, and the metering passage 8 liquid stops flowing.
- the spool 14 is moved downward by the spring of the upper end of the valve body 13, and the interface 161 and the interface 162, the interface 171 and the interface 172 are both in the open position.
- the liquid in the pipe 19 flows into the interior of the pressure changing chamber 20 by gravity.
- the liquid inside the pressure changing chamber 20 flows out of the pressure changing chamber 20 from the opening 22 by gravity.
- the liquid in the metering channel 8 completes the initial positioning.
- the electric device 23 When metering is required, the electric device 23 is activated to push the piston 21 inwardly to press the piston into the pressure changing chamber 20 over the opening 22; the inside of the metering passage 8 is a positive pressure.
- the spool 14 of the control valve 1 moves downward under positive pressure, and the interface 161 communicates with the interface 162 such that the outflow passage 12 communicates with the metering passage 8 through the intermediate passage 15; the liquid flows out from the metering passage 8 under positive pressure.
- Channel 12 flows outward.
- the scale 81 on the metering channel 8 can indicate the volume of the effluent liquid.
- this metering tool is convenient, fast and accurate.
- FIG. 2 is a schematic view showing the structure of a liquid container according to Embodiment 2.
- the container was added to the container body containing the liquid on the basis of the liquid volume measuring tool of Example 1.
- the container can directly measure the liquid in the main body of the container, and does not require an external tool.
- the liquid in the container is rarely exposed to external air, and is not oxidized or contaminated by air or an external measuring tool, and is well protected.
- the metering and taking out is convenient, fast and accurate.
- FIG. 3 is a schematic structural view of a liquid volumetric measuring tool according to Embodiment 3.
- the metering tool comprises a transformer device, a metering channel 8, a liquid withdrawal channel 11, and an outflow channel 12.
- One end of the outflow channel 12 is connected to the liquid intake channel 8 and the other end is an outflow port.
- the channel is provided with a check valve 121 that can be opened in the direction of the outflow port.
- One end of the liquid take-out passage 11 communicates with the liquid take-out passage 8, and the other end is a liquid take-out port, and a check valve 111 that can be opened in the direction of the metering passage 8 is disposed in the passage.
- the metering channel 8 is mostly coiled on the upper surface of the metering tool with a scale 81 on the other end, the port 82 at the other end being located in the pressure changing chamber 2, and the port 82 being upward.
- the metering channel 8 that is much longer than the actual connection requires more accurate metering.
- the pressure transforming device is a member that can pressurize and depressurize the pressure changing chamber 2, including the cavity 20 and the piston 21; the cavity 20 is provided with an opening 22, and the piston 21 is connected to the pull rod 23.
- the tie rod 23 extends to the outside of the metering tool.
- the spring 24 can be reset after the piston 21 is offset from the equilibrium point.
- This metering tool is also convenient, fast and accurate.
- FIG. 4 is a schematic structural view of a liquid container according to Embodiment 4.
- the container was added to the container body for storing the liquid on the basis of the liquid volume measuring tool of Example 3.
- the container can directly measure the liquid in the main body of the container, does not require an external tool, and is rarely exposed to external air.
- the liquid in the container is not redeemed or contaminated by air or external tools, and is better. protection of.
- the metering is accurate, convenient and fast.
- FIG. 5 is a schematic view showing the structure of a liquid container according to Embodiment 5.
- the container comprises a container body 1 and a transformer device, a metering channel 6, a liquid withdrawal channel 7, and an outflow channel 8.
- the container body 1 is provided with a filling port, and after filling, the gas check valve 11 that allows only the container body 1 is allowed to be sealed.
- the container body 1 contains a liquid 2 therein.
- the transformer device includes a cavity 4 and a piston 21, and an opening 22 connecting the catheter is disposed at a lower portion of the cavity 4.
- a pull rod 23 is connected to the piston 21, and the pull rod 23 extends out of the container through the pressure changing chamber 3, and the tie rod 23 is hermetically sealed at the interface with the chamber 4.
- a spring 24 is mounted on the lower side of the piston 21, and the spring 24 automatically resets the piston 23 after it is displaced from the set position.
- the starting end 5 of the metering passage 6 is open to the upper portion of the pressure changing chamber 3, and is wound down the side wall of the container body 1 after being wound around the edge of the upper surface of the container for a week, and then enters the bottom of the container body 1.
- the other end (end point end) of the metering passage 6 communicates with the liquid take-out passage 7 and the outflow passage 8.
- the liquid take-up passage 7 is extremely short, and is only an opening at the end of the metering passage 6, and a check valve 9 is provided therein.
- the one-way valve 9 allows the liquid 2 in the container body 1 to enter the metering channel 6, and no backflow is allowed.
- the outflow passage 8 communicates with the metering passage 6, and a check valve 10 is disposed therein.
- the one-way valve 10 only allows the liquid to flow outward.
- the pull rod 23 is pulled upward to press the position of the opening 22 to pressurize the pressure changing chamber 3; the metering channel 6 is positive pressure, single The valve 9 is closed, the check valve 10 is opened, and the liquid in the metering passage 6 flows out from the outflow passage 8.
- the volume of the effluent liquid can be read from the scale on the metering channel.
- the piston 21 is reset by the action of the spring 24, the piston 21 is pulled downward, and the pressure is decompressed into the pressure changing chamber 3; the inside of the metering passage 6 is a negative pressure, and the check valve 10 is closed, one way.
- the valve 9 is opened and the liquid 2 in the container body 1 enters the metering channel 6 from the liquid take-up channel 7.
- the metering channel 6 is filled with liquid, excess liquid enters the pressure changing chamber 3; the piston 21 continues downwardly past the opening 22, and the liquid in the pressure changing chamber 3 flows outward through the opening 22 to return to the container body 1.
- the liquid in the metering passage 6 stops moving, the initial positioning is completed, and the container is ready for the next take-out.
- the pull rod 23 needs to be pushed downward to move the piston 21 downward, so that the metering channel 6 is filled with liquid, and the initial positioning is performed before the metering is taken.
- Such a container can directly meter the liquid in the main body of the container; the presence of the check valve 11 causes the liquid 2 to contact a very small amount of external gas, and the liquid in the container is not oxidized or contaminated by the air, and is well protected. Metering and taking out is also convenient, accurate and fast.
- Figure 6 is a schematic view showing the structure of a liquid container according to Embodiment 6.
- the container is different from the embodiment 5 in that an opening for connecting the liquid guiding tube is not provided in the lower portion of the cavity 4, and a groove 22 is provided in the axial direction on the inner surface of the lower portion of the cavity 4, and the groove 22 is directed into the cavity 4.
- Direction opening The embodiment is the same as the principle of the embodiment 5, and the groove 22 is equivalent to the liquid guiding tube, and the liquid in the pressure changing chamber 3 is drained to the outside of the pressure changing chamber, and the opening of the groove 22 in the inner direction of the cavity 4 is inside the pressure changing chamber 3. It corresponds to an opening that can be resized as the piston 21 moves.
- Figure 7 is a schematic view showing the structure of a liquid container described in Embodiment 7.
- the container is different from the embodiment 5 in that an opening for connecting the liquid guiding tube is not provided in the lower portion of the cavity 4, and a liquid storage tank 22 is disposed in the radial direction on the inner surface of the lower portion of the cavity 4, and the liquid storage tank 22 is provided. Opening to the inside of the cavity 4, it is possible to accommodate a large amount of liquid flowing into the pressure changing chamber 3.
- the steps of metering the liquid 2 in the container body 1 are:
- the pull rod 23 is pulled upward to pass the position of the liquid storage tank 22, and is pressurized into the pressure changing chamber 3;
- the positive pressure in the passage 6 is closed, the check valve 9 is closed, the check valve 10 is opened, and the liquid in the metering passage 6 flows out from the outflow passage 8.
- the volume of the effluent liquid can be read from the scale on the metering channel.
- the liquid in the liquid storage tank 22 flows out of the liquid storage tank 22 by gravity and enters the container body 1.
- the piston 21 is reset by the action of the spring 24, and the piston 21 is driven downward to decompress the pressure in the pressure changing chamber 3; the inside of the metering passage 6 is a negative pressure, and the check valve 10 is closed, one way.
- the valve 9 is opened and the liquid 2 in the container body 1 enters the metering channel 6 from the liquid take-up channel 7.
- the metering channel 6 is filled with liquid, excess liquid enters the pressure changing chamber 3; the piston 21 continues to pass down the reservoir 22 and excess liquid enters the reservoir 22.
- the liquid in the metering passage 6 stops moving, the initial positioning is completed, and the container is ready for the next take-out.
- the container of the embodiment can also directly measure the liquid in the main body of the container; and the liquid in the container is well protected.
- the metering is quick, convenient and accurate.
- Figure 8 is a schematic view showing the structure of a liquid container according to Embodiment 8.
- the container body 1 has a cylindrical shape and contains a liquid 2, and further includes a pressure changing device, a metering passage 4, a liquid take-out passage 14, and an outflow passage.
- the pressure transforming device is composed of a cavity 20 and a piston 21, and the surrounding pressure changing chamber 3 can change in pressure with the movement of the piston 21.
- An opening 22 is provided in the lower portion of the cavity 20, and the pull rod 23 is connected to the piston 21, and the pull rod 23 extends outside the container body 1.
- the spring 24 connects the piston and the cavity 20 and can pull the piston 21 to reset after deviating from the equilibrium point.
- the starting end 41 of the metering channel 4 is upward, located in the pressure changing chamber 3; the metering channel 4 has a scale 9; the other end of the metering channel 4 is connected to the control valve.
- the control valve includes a valve body 5 and a spool 18.
- the tail end of the metering passage 4 is in seamless communication with the valve body 5 of the control valve.
- the valve body 5 is similar to a portion of the metering passage 4, and the spool 18 can be moved left and right within the valve body 5 under the pressure transmitted by the metering passage 4.
- the valve body 5 has two interfaces, an interface 14 and an interface 15.
- the interface 14 communicates with the liquid take-up passage and opens into the container body 1.
- the interface 15 communicates with an outflow channel consisting of a conduit 16 and a conduit 6.
- the inner passage 13 in the middle of the spool 18 is provided with an interface 12 which leads to the inner surface of the valve body 5 and is connectable to the interface 14 or the interface 15.
- the spring 17 and the spring 19 can reset the spool 18.
- a check valve 7 is provided in the duct 6 which only allows liquid to flow out of the container.
- the steps for taking out the contents of the container from the container are as follows:
- the valve core 18 in the control valve is moved to the right side under the pressure of the metering passage 4 side, so that the interface 12 and the interface 15 are in communication, and the liquid in the metering channel 4 flows out along the pipe 16 and the pipe 6; Face, read the volume of the liquid taken out; after reaching the required volume, stop pushing the pull rod 23.
- the spool 18 of the control valve is moved to the left by the action of the spring 19, and the interface 12 and the interface 15 are staggered.
- the piston 21 moves to the right under the action of the spring 24, a negative pressure is generated in the pressure changing chamber 3, and a negative pressure is transmitted into the metering passage 4; the spool 18 of the control valve is moved to the left side under the pressure of the metering passage 4 side, The interface 12 and the interface 14 are communicated, and the liquid 2 in the container body 1 enters the metering passage 4 from the liquid take-out passage 14; the excess liquid enters the pressure changing chamber 3 after the metering passage 4 is filled.
- the piston 21 continues to move to the right. After passing through the opening 22 provided in the cavity 20, the negative pressure in the pressure changing chamber 3 disappears, the liquid stops entering the metering passage 4, and the initial positioning is completed; the excess liquid entering the pressure changing chamber 3 is opened from the opening. 22 outflow.
- the spool 18 of the control valve is moved to the right by the action of the spring 17, and the interface 12 and the interface 14 are staggered.
Landscapes
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
Abstract
一种液体体积计量工具、容器和方法。该计量工具包括变压装置、计量通道、取液通道、流出通道;变压装置包括腔体和能在腔体内往复移动的活塞,腔体和活塞围成的可产生压力变化的空间是变压腔;活塞通过往复运动使变压腔内产生正负压力变化;计量通道起始端与变压腔内部相连通;在计量通道与取液通道之间或者在取液通道内,设置向计量通道方向负压时打开、正压时关闭的阀门;在计量通道与所述流出通道之间或者在所述流出通道内,设置向所述流出通道出口方向正压时打开、负压时关闭的阀门;在水平位置低于所述计量通道起始端端口的腔体壁上设置储液槽或者开口;活塞的往复运动能够越过储液槽或者开口。这种计量工具和容器结构简单,使用方便,计量准确。
Description
本发明涉及一种液体体积计量的工具、容器和方法,特别是具有变压腔的液体体积计量工具和液体容器以及能够计量取用液体体积的方法。
人们在生活中使用液体时往往需要精确计量液体体积,比如计量取用各种试剂、液体农药、化工原料、洗涤液、除菌液、食用油、液体药品等。计量取用这些液体,通常会使用计量工具,比如量筒、量杯、移液管。使用计量工具存在诸多弊端,比如液体被计量工具浪费、污染;液体毒性挥发、液体被空气氧化;转移过程中损耗影响计量精度等等。为此,近年来有自计量容器的新技术来解决上述问题。使用有自计量功能的容器盛放上述液体,取用时不需要使用外部计量工具,可以避免上述诸多弊端。
然而,现有自计量容器在计量取用时,受到操作力度、操作速度、容器主体内液体体积、变压部件内气体体积等因素影响,液体在计量通道内的初始位置难以固定。计量初始位置不能固定,不仅会干扰计量精度,而且会影响操作便利性。这些都阻碍了有自计量功能的容器大范围地推广应用。
人们生活中需要一种液体体积计量工具、或者具有液体体积计量取用功能的容器,使每次的取用过程能够准确、方便,使被计量取用的液体尽量少受外部空气或者杂质影响。
发明内容
为了解决上述现有技术中存在的问题,本发明提供一种液体体积计量工具,包括变压装置、计量通道、取液通道、流出通道;
所述变压装置包括腔体和能在腔体内往复移动的活塞,所述腔体和所述活塞围成的可产生压力变化空间是变压腔;所述活塞通过往复运动使所述变压腔内产生正负压力变化;所述计量通道起始端与所述变压腔内部相连通;
在所述计量通道与所述取液通道之间或者在所述取液通道内,设置向所述计量通道方向负压时打开、正压时关闭的阀门;
在所述计量通道与所述流出通道之间或者在所述流出通道内,设置向所述流出通道出口方向正压时打开、负压时关闭的阀门;
在水平位置低于所述计量通道起始端端口的所述腔体壁上设置储液槽或者开口;
所述活塞的往复运动能够越过所述储液槽或者开口。
这种液体体积计量工具,一个计量取出过程变压腔内至少有两个变压阶段:
1、负压阶段。向外移动活塞产生负压,使液体从取液通道进入并充满计量通道,过量液体从计量通道流出到变压腔内。完成计量通道液体初始定位。
2、正压阶段。向内移动活塞,变压腔内产生正压,使液体经计量通道、流出通道向外流出。从计量通道可读出流出液体体积。
在计量工具设置开口等情况下,还在负压阶段之后包括平衡阶段,即开口位于变压腔之内的阶段。在负压阶段后,当活塞继续移动越过回流口,移动到使所述开口位于变压腔内部时,变压腔内外压力相同。过量液体停止进入变压腔;进入变压腔的过量液体从开口向外流出。计量取用时加压前开口位于变压腔内的阶段也属于平衡阶段。
这种液体体积计量工具,开口是连通变压腔外部的腔体壁缺口;进一步的,开口可以连通有导液管。导液管可以防止过量液体污染计量工具,也可以将过量液体回收利用。当该开口位于变压腔内时,该开口可以连通变压腔外部。
这种液体体积计量工具,当储液槽位于变压腔内部时,储液槽能暂时储存进入变压腔内的过量液体。当储液槽位于变压腔外部时,储液槽内部液体在重力作用或者操作者晃动下流出。
这种液体体积计量工具结构相对简单,能大规模生产,能降低生产成本;在使用时能够实现方便、快捷地计量、取出所容物;反应快,操控感好;可以初始定位,计量准确。这种液体体积计量工具克服了现有技术液体计量存在的不方便、不准确等弊端。
对于这种液体体积计量工具,可以使计量通道起始端位于变压腔内。这种计量通道起始端直接位于变压腔内的方式整体结构简单,定位直接准确。
对于这种液体体积计量工具,可以使计量通道起始端在所述腔体壁上或者所述活塞上。这种结构的计量工具活塞行程可以更大,计量时反
应快,操控感好;结构简单。
对于这种液体体积计量工具,可以使所述计量通道通过管道连通所述变压腔,所述计量通道起始端和所述管道组成倒U形结构。在相关阀门关闭不严密或者管道口径过粗等的情况下,倒U形结构可以防止气体进入计量通道内。
对于上述几种液体体积计量工具,可以使计量通道起始端端口向上。端口向上观察方便,也可以防止空气混入计量通道;有助于提高计量精度。
对于这种液体体积计量工具,可以使活塞连接有使其复位的弹性部件。活塞连接有使其复位的弹性部件,一种情况下可以在正压取出后使活塞自动复位,产生负压,使计量通道内充满液体,完成初始定位,为下一次计量取出做好准备。
本发明还涉及一种液体体积计量容器,包括容器主体和变压装置、计量通道、取液通道、流出通道;
所述变压装置包括腔体和能在腔体内往复移动的活塞,所述腔体和所述活塞围成的可产生压力变化空间是变压腔;所述活塞通过往复运动使所述变压腔内产生正负压力变化;所述计量通道起始端与所述变压腔内部相连通;
在所述计量通道与所述取液通道之间或者在所述取液通道内,设置向所述计量通道方向负压时打开、正压时关闭的阀门;
在所述计量通道与所述流出通道之间或者在所述流出通道内,设置向所述流出通道出口方向正压时打开、负压时关闭的阀门;
在水平位置低于所述计量通道起始端端口的所述腔体壁上设置储液槽或者开口;
所述活塞的往复运动能够越过所述储液槽或者开口。
对于这种液体体积计量容器,可以使活塞连接有牵引装置,所述牵引装置伸出所述容器主体外。这种结构可以实现手动操作。
对于这种液体体积计量容器,可以使开口通向容器主体内。这样可以实现变压腔内液体流回容器主体内部,可以重新被取出利用,防止回流液体被浪费或者造成污染。
本发明还涉及一种液体体积计量取用方法,包括以下步骤:
A、向外拉动腔体内的活塞,产生负压,使变压腔向计量通道内施加负压,使液体经取液通道进入计量通道;
B、液体充满计量通道后,过量液体进入变压腔;
C、继续拉动活塞,使其越过设置在所述腔体壁上开口所在的位置,使变压腔与外界气体沟通;过量液体不再进入变压腔,计量初始位置确定;变压腔内的过量液体通过开口外流;
所述开口水平位置低于所述计量通道起始端端口,且能与所述变压腔外部连通;
D、向内推动腔体内的活塞,使其反向移动越过所述开口所在位置,变压腔与外界隔绝;
E、继续推动活塞压缩变压腔,向计量通道内加正压,使计量通道内液体经流出通道外流;从计量通道刻度计量流出的液体。
本发明还涉及另一种液体体积计量取用方法,包括以下步骤:
A、向外拉动腔体腔内的活塞,产生负压,使变压腔向计量通道内施加负压,使液体经取液通道进入计量通道;
B、液体充满计量通道后,过量液体进入变压腔;
C、继续拉动活塞,使其越过设置在所述腔体壁上储液槽所在位置,变压腔内的过量液体进入储液槽;停止拉动活塞,过量液体不再进入变压腔,计量初始位置确定;
所述储液槽水平位置低于所述计量通道起始端端口;
D、向内推动腔体内的活塞,使其反向移动越过储液槽所在位置,变压腔与外界隔绝;储液槽内液体外流;
E、继续推动活塞压缩变压腔,向计量通道内加正压,使计量通道内液体经流出通道外流;从计量通道刻度计量流出的液体。
这两种液体体积计量取用方法,操作简单、使用方便、计量准确。适合普通居民日常应用,也适合科研人员精密计量使用;可以手动推拉操作,也可以电力驱动。
图1是实施例1所述液体体积计量工具的结构示意图;
图2是实施例2所述液体容器的结构示意图;
图3是实施例3所述液体体积计量工具的结构示意图;
图4是实施例4所述液体容器的结构示意图;
图5是实施例5所述液体容器的结构示意图;
图6是实施例6所述液体容器的结构示意图;
图7是实施例7所述液体容器的结构示意图;
图8是实施例8所述液体容器的结构示意图。
实施例1
图1所示为根据实施例1所述的一种液体体积计量工具的结构示意图。该计量工具包括变压装置、计量通道8、取液通道11、流出通道12。流出通道12一端连接控制阀门阀体13上接口162,另一端为流出口。取液通道11一端连接控制阀门阀体13上接口172,另一端为取液口。
变压装置为能使变压腔20内加压和减压的部件,包括腔体2、活塞21;腔体2上设置开口22,活塞21连接电动装置23。计量通道8的初始端通过管道19连通变压腔20。计量通道8初始端与管道19组成倒U形,计量通道8初始端端口向上。
计量通道8另一端连接由阀体13和阀芯14组成的控制阀门1,并与阀芯14内的中间通道15连通。控制阀门1的阀体13外连接3个通道:取液通道11、流出通道12和计量通道8。控制阀门的阀芯14位于阀体13内部空腔中,可以在空腔内上下滑动,但阀芯14外周侧与阀体13内壁之间液密封。阀芯14内有中间通道15,中间通道15在阀芯外周侧面有接口161、接口171。阀体上设置接口162和接口172。接口162连通流出通道12,接口172连通取液通道11。
根据阀芯13在阀体14内往复滑动的位置不同,接口161和接口162、接口171和接口172有3种不同的连通关系:仅有接口161与接口162相连通;接口161与接口162之间以及接口171与接口172之间均不连通(如图1所示的状态);仅接口171与接口172之间相连通。阀体13内两端各安装有弹簧,弹簧能使阀芯14在没有外压力时处于接口161与接口162之间以及接口171与接口172之间均不连通的位置。阀体13下端设置泄压口18。
流出通道12的流出口位于计量工具外。
这种计量工具的计量取出液体的步骤如下:
开口22位于变压腔20外部时,启动电动装置23,向外拉动活塞21,向变压腔20内减压呈负压;计量通道8内为负压。
控制阀门1的阀芯14在负压作用下向上移动,接口171和接口172连通,使得取液通道11通过中间通道15和计量通道8相连通;液体在负压作用下进入计量通道8;当进入计量通道8的所容物超过计量通道初始端,即流入管道19,进而流入变压腔20内。
当活塞21移动到开口22位于变压腔20内部时,变压腔20内外连通,负压不存在,计量通道8液体停止流动。阀芯14在阀体13上端弹簧的作用下向下移动,接口161和接口162、接口171和接口172均处于断开位置。管道19内液体在重力作用下流入变压腔20内部。变压腔20内部液体在重力作用下从开口22流出变压腔20。计量通道8内液体完成初始定位。
需要计量取出时,启动电动装置23,向内推动活塞21,使活塞越过开口22向变压腔20内加压;计量通道8内为正压。
控制阀门1的阀芯14在正压作用下向下移动,接口161和接口162连通,使得流出通道12通过中间通道15和计量通道8相连通;液体在正压作用下从计量通道8经流出通道12向外流出。计量通道8上的刻度81可以指示流出液体的体积。
与传统液体体积计量工具相比,这种计量工具方便、快捷、准确。
实施例2
图2所示为根据实施例2所述的一种液体容器的结构示意图。该容器在实施例1的液体体积计量工具的基础上添加了容纳液体的容器主体。
这种容器可以直接计量取用容器主体内的液体,不需要外部工具,容器内液体极少接触外部气体,不会被空气或者外部计量工具氧化还原或者污染,会受到较好的保护。计量取出方便、快捷、准确。
实施例3
图3所示为根据实施例3所述的一种液体体积计量工具的结构示意图。
该计量工具包括变压装置、计量通道8、取液通道11、流出通道12。流出通道12一端连接连通取液通道8,另一端为流出口,通道内设置可以向流出口方向打开的单向阀121。取液通道11一端连通取液通道8,另一端为取液口,通道内设置可以向计量通道8方向打开的单向阀111。计量通道8大部分盘绕于计量工具的上表面,上有刻度81,另一端的端口82位于变压腔2内,端口82向上。远长于实际连接需要的计量通道8使计量更精确。
变压装置为能使变压腔2内加压和减压的部件,包括腔体20、活塞21;腔体20上设置开口22,活塞21连接拉杆23。拉杆23伸往计量工具外部。弹簧24能在活塞21偏离平衡点后复位。
这种计量工具的计量取出液体的步骤如下:
开口22在变压腔2外部时,弹簧24被拉伸,活塞21在弹簧24拉动下向变压腔2外部移动,向变压腔2内减压,计量通道8内为负压;单向阀121关闭,单向阀111打开,液体从取液通道11进入计量通道8,过量液体经端口82进入变压腔2内。
活塞21越过开口22,变压腔2内负压消失,计量通道8内液体不再流动,计量通道8完成初始定位;变压腔2内液体经开口22向外流出。
计量取出时,向内推动拉杆23,活塞21越过开口22后向变压腔2内加压,计量通道8内为正压;单向阀111关闭,单向阀121打开,液体沿流出通道12流出。观察计量通道8上刻度81,读出流出的液体体积。
这种计量工具同样方便、快捷、准确。
实施例4
图4所示为根据实施例4所述的一种液体容器的结构示意图。该容器在实施例3的液体体积计量工具的基础上添加了储存液体的容器主体。
同实施例2一样,这种容器可以直接计量取用容器主体内的液体,不需要外部工具,极少接触外部气体,容器内液体不会被空气或者外部工具氧化还原或者污染,会受到较好的保护。计量取出准确、方便、快捷。
实施例5
图5所示为实施例5所述的一种液体容器的结构示意图。该容器包括容器主体1和变压装置、计量通道6、取液通道7、流出通道8。
容器主体1上设灌装口,灌装后用仅允许进入容器主体1的气体单向阀11封口。容器主体1内装液体2。
变压装置包括腔体4和活塞21,在腔体4下部设置连接导液管的开口22。活塞21上连接拉杆23,拉杆23穿过变压腔3伸出容器外部,拉杆23与腔体4交界处气密封。活塞21下侧安装弹簧24,弹簧24使活塞23偏离设定位置后自动复位。
计量通道6起始端5开口于变压腔3上部,在容器上表面边缘盘绕近一周后沿容器主体1侧壁向下,随后进入容器主体1底部。在容器主体1底部,计量通道6另一端(终点端)连通取液通道7和流出通道8。
取液通道7极短,仅为计量通道6终点端的一个开口,内设单向阀9。单向阀9允许容器主体1内液体2进入计量通道6,不允许倒流。
流出通道8连通计量通道6,内设单向阀10。单向阀10仅允许液体向外流出。
计量取出容器主体1内液体2的步骤有:
若计量通道6内液体已经充满,活塞位于如图5所在的位置,则向上拉动拉杆23,使其越过开口22所在位置,向变压腔3内加压;计量通道6内为正压,单向阀9关闭,单向阀10打开,计量通道6内的液体从流出通道8向外流出。从计量通道上的刻度可以读出流出液体的体积。
取出完成后,停止拉动拉杆23,活塞21在弹簧24的作用下复位,拉动活塞21向下,向变压腔3内减压;计量通道6内为负压,单向阀10关闭,单向阀9打开,容器主体1内的液体2从取液通道7进入计量通道6。当计量通道6充满液体后,过量液体进入变压腔3;活塞21继续向下越过开口22,变压腔3内液体经开口22向外流出,回到容器主体1内。活塞21复位后,计量通道6内液体停止移动,完成初始定位,容器为下次取出做好了准备。
若计量通道6内液体未充满,活塞21位于开口22上方,则需要先向下推动拉杆23,使活塞21向下移动,使计量通道6内充满液体,完成初始定位后再计量取用。
这种容器可以直接计量取用容器主体内的液体;单向阀11的存在使液体2接触极少量的外部气体,容器内液体不会被空气氧化还原或者污染,会受到较好的保护。计量取出同样方便、准确、快捷。
实施例6
图6所示为实施例6所述的一种液体容器的结构示意图。该容器与实施例5相比,区别是在腔体4下部没有设置连接导液管的开口,而是在腔体4下部的内表面沿轴向方向设置槽22,槽22向腔体4内方向开口。本实施例与实施例5原理相同,槽22相当于导液管,将变压腔3内的液体引流到变压腔外,槽22向腔体4内方向的开口在变压腔3内部部分相当于可以随活塞21移动而变换大小的开口。
实施例7
图7所示为实施例7所述的一种液体容器的结构示意图。该容器与实施例5相比,区别是在腔体4下部没有设置连接导液管的开口,而是在腔体4下部的内表面上沿径向方向设置储液槽22,储液槽22向腔体4内方向开口,能容纳过量流入变压腔3内的液体。
计量取用容器主体1内液体2的步骤是:
若计量通道6内液体已经充满,活塞位于如图5所在的位置,则向上拉动拉杆23,使其越过储液槽22所在位置,向变压腔3内加压;计量
通道6内为正压,单向阀9关闭,单向阀10打开,计量通道6内的液体从流出通道8向外流出。从计量通道上的刻度可以读出流出液体的体积。储液槽22内液体在重力作用下流出储液槽22,进入容器主体1内。
取出完成后,停止拉动拉杆23,活塞21在弹簧24的作用下复位,带动活塞21向下,向变压腔3内减压;计量通道6内为负压,单向阀10关闭,单向阀9打开,容器主体1内的液体2从取液通道7进入计量通道6。当计量通道6充满液体后,过量液体进入变压腔3;活塞21继续向下越过储液槽22,过量液体进入储液槽22。活塞21复位稳定后,计量通道6内液体停止移动,完成初始定位,容器为下次取出做好了准备。
若计量通道6内液体未充满,则需要首先完成初始定位,然后加压取出。
本实施例容器同样可以直接计量取用容器主体内的液体;对容器内液体有较好的保护。计量取出快捷、方便、准确。
实施例8
图8所示为根据实施例8所述的一种液体容器的结构示意图。该容器主体1呈圆柱形,内装液体2,此外还包括变压装置、计量通道4、取液通道14和流出通道。
变压装置由腔体20和活塞21组成,所围成的变压腔3能随活塞21的移动而产生压力变化。腔体20下部设置开口22,活塞21上连接拉杆23,拉杆23伸出容器主体1外部。弹簧24连接活塞和腔体20,能拉动活塞21在偏离平衡点后复位。
计量通道4起始端41端口向上,位于变压腔3内;计量通道4上有刻度9;计量通道4另一端连通控制阀门。
控制阀门包括阀体5和阀芯18。计量通道4尾端与控制阀门的阀体5无缝连通,阀体5类似计量通道4的一部分,阀芯18可以在计量通道4传递的压力作用下在阀体5内左右移动。阀体5上有两个接口,接口14和接口15。接口14连通取液通道,通向容器主体1内。接口15连通由管道16和管道6组成的流出通道。阀芯18中间的内部通道13设有接口12,接口12通向阀体5内表面,能与接口14或者接口15连通。弹簧17和弹簧19能使阀芯18复位。阀芯18在平衡点时接口12与接口14和接口15均不接通。管道6内设置仅允许液体向容器外部流出的单向阀7。
这种容器的取出容器内所容物的步骤如下:
向内推拉杆23,使活塞21向左移动,越过设置在腔体20上的开口
22后,变压腔3内产生正压,向计量通道4内加压;
控制阀门内阀芯18在计量通道4侧的压力作用下向右侧移动,使接口12和接口15相连通,计量通道4内的液体沿管道16和管道6向外流出;观察计量通道内液面,读取取出液体的体积;到达需要的体积后,停止推动拉杆23。控制阀门内阀芯18在弹簧19的作用下向左移动,接口12和接口15错开。
活塞21在弹簧24的作用下向右移动,变压腔3内产生负压,向计量通道4内传递负压;控制阀门内阀芯18在计量通道4侧的压力作用下向左侧移动,使接口12和接口14相连通,容器主体1内液体2从取液通道14进入计量通道4;计量通道4充满后过量液体进入变压腔3。活塞21继续向右移动,越过设置在腔体20上的开口22后,变压腔3内负压消失,液体停止进入计量通道4,初始定位完成;进入变压腔3内的过量液体从开口22流出。控制阀门内阀芯18在弹簧17的作用下向右移动,接口12和接口14错开。
这时,容器为下一次取出做好了准备。
尽管已经示出和描述了本发明的若干实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例相关技术进行多种变化、修改、替换、变型和重新组合。本发明的范围由所附权利要求及其等同物限定。
Claims (10)
- 一种液体体积计量工具,其特征在于包括变压装置、计量通道、取液通道、流出通道;所述变压装置包括腔体和能在腔体内往复移动的活塞,所述腔体和所述活塞围成的可产生压力变化空间是变压腔;所述活塞通过往复运动使所述变压腔内产生正负压力变化;所述计量通道起始端与所述变压腔内部相连通;在所述计量通道与所述取液通道之间或者在所述取液通道内,设置向所述计量通道方向负压时打开、正压时关闭的阀门;在所述计量通道与所述流出通道之间或者在所述流出通道内,设置向所述流出通道出口方向正压时打开、负压时关闭的阀门;在水平位置低于所述计量通道起始端端口的所述腔体壁上设置储液槽或者开口;所述活塞的往复运动能够越过所述储液槽或者开口。
- 如权利要求1所述的液体体积计量工具,其特征在于,所述计量通道起始端位于所述变压腔内,或者位于所述腔体壁上,或者位于所述活塞上。
- 如权利要求1所述的液体体积计量工具,其特征在于,所述计量通道通过管道连通所述变压腔,所述计量通道起始端和所述管道组成倒U形结构。
- 如权利要求1所述的液体体积计量工具,其特征在于,所述计量通道起始端端口向上。
- 如权利要求1所述的液体体积计量工具,其特征在于,所述活塞连接有使其复位的弹性部件。
- 一种液体体积计量容器,其特征在于包括容器主体、变压装置、计量通道、取液通道和流出通道;所述变压装置包括腔体和能在腔体内往复移动的活塞,所述腔体和所述活塞围成的可产生压力变化空间是变压腔;所述活塞通过往复运动使所述变压腔内产生正负压力变化;所述计量通道起始端与所述变压腔内部相连通;在所述计量通道与所述取液通道之间或者在所述取液通道内,设置 向所述计量通道方向负压时打开、正压时关闭的阀门;在所述计量通道与所述流出通道之间或者在所述流出通道内,设置向所述流出通道出口方向正压时打开、负压时关闭的阀门;在水平位置低于所述计量通道起始端端口的所述腔体壁上设置储液槽或者开口;所述活塞的往复运动能够越过所述储液槽或者开口。
- 如权利要求6所述的液体体积计量工具,其特征在于,所述活塞连接有联动装置,所述联动装置伸出所述容器主体外。
- 如权利要求6所述的液体体积计量容器,其特征在于,所述开口通向所述容器主体内。
- 一种液体体积计量取用方法,其特征在于包括以下步骤:A、向外拉动腔体内的活塞,产生负压,使变压腔向计量通道内施加负压,使液体经取液通道进入计量通道;B、液体充满计量通道后,过量液体进入变压腔;C、继续拉动活塞,使其越过设置在所述腔体壁上开口所在的位置,使变压腔与外界气体沟通;过量液体不再进入变压腔,计量初始位置确定;变压腔内的过量液体通过开口外流;所述开口水平位置低于所述计量通道起始端端口,且能与所述变压腔外部连通;D、向内推动腔体内的活塞,使其反向移动越过所述开口所在位置,变压腔与外界隔绝;E、继续推动活塞压缩变压腔,向计量通道内加正压,使计量通道内液体经流出通道外流;从计量通道刻度计量流出的液体。
- 一种液体体积计量取用方法,其特征在于包括以下步骤:A、向外拉动腔体腔内的活塞,产生负压,使变压腔向计量通道内施加负压,使液体经取液通道进入计量通道;B、液体充满计量通道后,过量液体进入变压腔;C、继续拉动活塞,使其越过设置在所述腔体壁上储液槽所在位置,变压腔内的过量液体进入储液槽;停止拉动活塞,过量液体不再进入变压腔,计量初始位置确定;所述储液槽水平位置低于所述计量通道起始端端口;D、向内推动腔体内的活塞,使其反向移动越过储液槽所在位置,变压腔与外界隔绝;储液槽内液体外流;E、继续推动活塞压缩变压腔,向计量通道内加正压,使计量通道内液体经流出通道外流;从计量通道刻度计量流出的液体。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201620115843.0U CN205952721U (zh) | 2016-02-04 | 2016-02-04 | 液体体积计量工具和容器 |
CN201610081335.X | 2016-02-04 | ||
CN201610081335.XA CN105730891B (zh) | 2016-02-04 | 2016-02-04 | 液体体积计量工具、容器和方法 |
CN201620115843.0 | 2016-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017133648A1 true WO2017133648A1 (zh) | 2017-08-10 |
Family
ID=59499418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/072789 WO2017133648A1 (zh) | 2016-02-04 | 2017-01-30 | 液体体积计量工具、容器和方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017133648A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109374082A (zh) * | 2018-05-10 | 2019-02-22 | 北京红海科技开发有限公司 | 一种计量取用液体的工具、容器 |
CN111693336A (zh) * | 2020-06-23 | 2020-09-22 | 新乡医学院三全学院 | 药物分析用流体取样装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2775670A1 (fr) * | 1998-03-06 | 1999-09-10 | Andre Sala | Appareil pour la distribution de quantites predeterminees de produits liquides et/ou pateux |
JP2011011752A (ja) * | 2009-06-30 | 2011-01-20 | Yoshino Kogyosho Co Ltd | 定量ポンプ |
CN104029927A (zh) * | 2013-03-05 | 2014-09-10 | 北京红海科技开发有限公司 | 自量取容器及取出该容器内部所容物的方法 |
CN105730891A (zh) * | 2016-02-04 | 2016-07-06 | 北京红海科技开发有限公司 | 液体体积计量工具、容器和方法 |
CN105966782A (zh) * | 2016-06-28 | 2016-09-28 | 北京红海科技开发有限公司 | 液体取用工具、容器和方法 |
CN205952722U (zh) * | 2016-06-28 | 2017-02-15 | 北京红海科技开发有限公司 | 液体取用工具、容器 |
-
2017
- 2017-01-30 WO PCT/CN2017/072789 patent/WO2017133648A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2775670A1 (fr) * | 1998-03-06 | 1999-09-10 | Andre Sala | Appareil pour la distribution de quantites predeterminees de produits liquides et/ou pateux |
JP2011011752A (ja) * | 2009-06-30 | 2011-01-20 | Yoshino Kogyosho Co Ltd | 定量ポンプ |
CN104029927A (zh) * | 2013-03-05 | 2014-09-10 | 北京红海科技开发有限公司 | 自量取容器及取出该容器内部所容物的方法 |
CN105730891A (zh) * | 2016-02-04 | 2016-07-06 | 北京红海科技开发有限公司 | 液体体积计量工具、容器和方法 |
CN105966782A (zh) * | 2016-06-28 | 2016-09-28 | 北京红海科技开发有限公司 | 液体取用工具、容器和方法 |
CN205952722U (zh) * | 2016-06-28 | 2017-02-15 | 北京红海科技开发有限公司 | 液体取用工具、容器 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109374082A (zh) * | 2018-05-10 | 2019-02-22 | 北京红海科技开发有限公司 | 一种计量取用液体的工具、容器 |
CN111693336A (zh) * | 2020-06-23 | 2020-09-22 | 新乡医学院三全学院 | 药物分析用流体取样装置 |
CN111693336B (zh) * | 2020-06-23 | 2023-03-14 | 新乡医学院三全学院 | 药物分析用流体取样装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105730891B (zh) | 液体体积计量工具、容器和方法 | |
JP6113289B2 (ja) | 容器、器具及び内容物の取り出し方法 | |
US4818706A (en) | Reagent-dispensing system and method | |
CN105966782B (zh) | 液体取用工具、容器和方法 | |
US3805998A (en) | Dispensing pipette | |
US20160002023A1 (en) | Self-measuring container and method for removing content therein | |
WO2017133648A1 (zh) | 液体体积计量工具、容器和方法 | |
CN205952722U (zh) | 液体取用工具、容器 | |
US3146920A (en) | Dispenser for metered amounts of fluid | |
CN107899627B (zh) | 用于液体计量取用的初始定位系统和方法 | |
WO2016197968A1 (zh) | 一种初始定位装置、容器和方法 | |
US2798647A (en) | Pipette | |
CN205150711U (zh) | 自计量容器及其初始定位装置 | |
CN103693298B (zh) | 容器及其取出内部所容物的方法 | |
CN108137211B (zh) | 一种初始定位装置、容器和方法 | |
US10260925B2 (en) | Container and cover | |
CN207478608U (zh) | 用于液体计量取用的初始定位系统 | |
CN205952721U (zh) | 液体体积计量工具和容器 | |
CN208238876U (zh) | 用于液体计量取用的工具、容器 | |
WO2018001286A1 (zh) | 液体取用工具、容器和方法 | |
CN108627213A (zh) | 一种计量取用的工具、容器和方法 | |
WO2019096319A1 (zh) | 用于液体计量取用的初始定位系统和方法 | |
CN108627212A (zh) | 用于液体计量取用的工具、容器和方法 | |
CN209166570U (zh) | 一种计量取用液体的工具、容器 | |
CN102589636A (zh) | 一种计量取液瓶 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17746968 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17746968 Country of ref document: EP Kind code of ref document: A1 |