WO2017122049A1 - Procédé de compaction de nano-silice - Google Patents
Procédé de compaction de nano-silice Download PDFInfo
- Publication number
- WO2017122049A1 WO2017122049A1 PCT/IB2016/050193 IB2016050193W WO2017122049A1 WO 2017122049 A1 WO2017122049 A1 WO 2017122049A1 IB 2016050193 W IB2016050193 W IB 2016050193W WO 2017122049 A1 WO2017122049 A1 WO 2017122049A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silica
- nano
- water
- compacted
- bulk density
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 134
- 239000000377 silicon dioxide Substances 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005056 compaction Methods 0.000 title abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 95
- 230000000274 adsorptive effect Effects 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 238000010298 pulverizing process Methods 0.000 claims abstract description 8
- 230000007246 mechanism Effects 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 5
- 238000011068 loading method Methods 0.000 claims abstract description 4
- 238000007873 sieving Methods 0.000 claims abstract description 4
- 108010010803 Gelatin Proteins 0.000 claims description 9
- 239000008273 gelatin Substances 0.000 claims description 8
- 229920000159 gelatin Polymers 0.000 claims description 8
- 235000019322 gelatine Nutrition 0.000 claims description 8
- 235000011852 gelatine desserts Nutrition 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 239000000443 aerosol Substances 0.000 claims description 4
- 238000005086 pumping Methods 0.000 claims description 3
- 230000001698 pyrogenic effect Effects 0.000 claims description 3
- 229910021485 fumed silica Inorganic materials 0.000 claims description 2
- 238000011067 equilibration Methods 0.000 abstract description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- 239000000843 powder Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000000084 colloidal system Substances 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 102000004169 proteins and genes Human genes 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000009736 wetting Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000002329 infrared spectrum Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 125000005372 silanol group Chemical group 0.000 description 4
- 229910002012 Aerosil® Inorganic materials 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 241000271915 Hydrophis Species 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000002594 sorbent Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 241000405563 Jasmine virus T Species 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
Definitions
- the invention belongs to the chemical technology and relates to the method of increasing the bulk density in order to receive compacted nano-silica while saving its physical-chemical properties.
- Such nano-silica may be used as the sorbent and carrier of the medical preparations in many areas of medicine, pharmacology, veterinary science. It also may be used as filler in the production of oils, lacquers, paints, adhesives, rubber, silicon rubber, sealers, polymeric materials, abrasives under chemical-mechanical polishing of the mono-crystals of the electronics, for preparation of new adsorbents and catalyzers [Medicinal chemistry and clinical application of silica dioxide / ed. by Chuiko A. A. - Kyiv. - Naukova dumka. - 2003.
- nano-silica is obtained by burning halides and organosilicon substances in hydrogen-air flame.
- Pyrogenic synthesis method allows receive powder material (nano-silica), the size of the particles of which is 5-20 nm. Under the synthesis due to the coalescence the noncoherent components appear in the reactor, they form agglomerates, the volume of which consists of 98% air. Major space between agglomerates causes their low bulk density, which leads to the excessive dust formation, adverse working conditions, considerable expenses for packing, storage and transportation of the production and clean out of the technological equipment. It also requires the larger equipment for usage of nano-silicas in the production of different preparations and products.
- nano-silica compaction is based on the vacuous compaction by the means of the pressure below atmospheric (300-900 mbar), applied to the filter in the form of the tube, in which the nano-silica is mixed and transferred by the rotating auger [US Patent N° 4326852 ].
- the disadvantage of this method is insignificant increase of the bulk density to 120 g/1 and significant dust formation.
- Vacuous systems are fairly expensive and complicated, as a rule.
- the present invention aims to increase the bulk density of nano-silica, to reduce the dust formation and to preserve the other standardized physico-chemical properties, inter alia, the adsorptive characteristics, of the initial uncompacted product.
- the application task is solved through the method of nano-silica compaction claimed which comprises: loading nano-silica into the reactor with stirring mechanism and water pulverization device, which includes the water injection system and sprayer; pumping water under the pressure and pulverization it in the form of aerosol while stirring the mixture continuously and intensively over a period of time, then switching off the mixer remaining compacted nano-silica for equilibration, then unloading, drying and sieving. Water forces air out of the powder volume and forms hydrated film of the nano-silica particles. Consequently, the dispersion of water in nano-sized silica leads to the microencapsulation.
- the nano-sized silica is capable of stabilizing the water nano-drops.
- Appliance of the present method claimed for the compaction of nano-silicas is important and sufficient for achievement of technical result which consists in the increase of the bulk density of nano-silica and the decrease of dust formation and preservation the adsorptive properties of nano-silica.
- the bulk density was determined by volumetric method. For that purpose 25 ml of silica (after it has been dried out) was put into the 100 ml glass graduated in 25 and 50 ml, and weighted by using electronic scales with relative mean errors ⁇ 0,01 mg at 290 K.
- NMR-spectroscopy The NMR spectra were recorded using a NMR spectrometer of high- resolution Varian Mercury (operating frequency 400 MHz). The 90° probe pulse with a duration of 3 and bandwidth of 20 khz was used. The temperature was controlled by Bruker VT-1000 device with relative mean errors ⁇ 1 K. The intensity of signals was determined by measurement of area of peaks in the assumption of their Gaussian shape with relative mean errors ⁇ 10%. To prevent super-cooling of water in the studied objects, the measurements of the concentration of unfrozen water were carried out on heating of samples preliminarily cooled to 210 K.
- Interfacial energy of water on the boundary with solid particles or in its aqueous solutions was determined as the module of total decrease of water free energy, conditional upon the presence of the phase boundary [Gun'ko V.M., Turov V.V., Gorbyk P.P. Water on Interface. Kyiv. Naukova Dumka - 2009. - 694 p.; Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. - New York: Taylor & Francis, 2013. - 1040 p.; Turov V.V., Gun'ko V.M. Clustered water and its application. - Kyiv: Naukova Dumka, 2011.
- the samples of nano-silicas weighing 0,2 g were dispersed and shook over a period of 1 hour together with 25 ml 0,6 % wt of gelatin succeeded by the settling of the sorbent in centrifuge and determination of the adsorbate equilibrium concentration in centrifugate.
- the adsorption value was calculated as the difference between the initial and equilibrium concentration - mass of silica in the sample ratio.
- the supernatant fluid was collected and the amount of gelatin was determined by using the biuret reaction. This method is based on the formation of a biuret complex of protein peptide bonds with bivalent copper ions.
- biuret reagent consisting of KOH, CuSQ-i and sodium citrate was used.
- copper is bound to four nitrogens by the coordination bonds, and to two oxygens by the electrostatic interactions.
- the full complex is formed only with peptides consisting of more than 4 residues.
- the equilibrium concentration was determined by the colorimetric method by using KFK-2MP device [The Ukranian State Pharmacopoeia / SE «Scientific and Expert Pharmacopoeial center».— 1 ed.— Kharkov: RIREG, 2001.— Add. 1.— 2004.— 520 p.; FC42U-82/224-889-00 Si ks].
- optical density of the solution was determined under the wavelength of 540 nm in 10 mm basin in 30 minutes after the probe selection. Simultaneously, the optical density of the received solution was determined by using the spectrophotometer Specord M-40 (Karl Zeiss Iena, Germany) under the wavelength of 560 nm in 10 mm basin.
- Fig. 1 SEM micrograph of the nano-silica A-300 with the bulk density of 45 mg/ml .
- Fig. 2 The dependency of bulk density of the dry nano-silica A-300 powder on the degree of its wetness.
- Fig.5. The dependency of the maximum gelatin adsorption value on the concentration of water used for the hydraulic compaction of nano-silica in accordance with FEK (1 ) and spectrophotometer (2) data.
- Fig. 7 Reactor equipped with a stirring mechanism and a water pulverization device, which includes a water injection system and a sprayer.
- Example 3 The compaction of nano-silica was performed similarly to the example 1.
- the correlation watennano-silica was 3 : 1.
- Example 4 The compaction of nano-silica was performed similarly to the example 1.
- the correlation watennano-silica was 4: 1.
- Example 5 The compaction of nano-silica was performed similarly to the example 1.
- the correlation water :nano-silica was 5: 1.
- Example 6 (by the prototype).
- 3,5 kg of silica dioxide were delivered by applying the rotating auger (40 rotations per minute) to the surface of the filter "Siperm" with pores of 20 ⁇ , which has the tube form (length 2000 mm, diameter 303 mm) and is situated in a closed chamber, then the vacuum pump was switched on to create the pressure of 840 mbar ; the product was unloaded by applying the rotating auger through the cross outlet.
- Nanosilica leads to the loss in the flowability of the powder and the increase in the energy consumption while drying without changing the bulk density.
- Nano-silica, compacted by the claimed method is characterized by the bulk density of 175-250 g/1, reduced dust formation while preserving the physico-chemical properties of the initial un-compacted product.
- the textural porosity of nanosilica is conditional upon the pore spaces between nanoparticles in aggregates (nanopores of the radius R ⁇ 1 nm and mesopores of the radius 1 ⁇ R ⁇ 25 nm) and hollownesses between aggregates in agglomerates (macropores of the radius R > 25 nm).
- Fig. 2 Bulk density of nanosilica dependance on the degree of its wetness diagram is given in Fig. 2 which shows that with a rise of wetness the bulk density increases monotonically and reaches its maximum of 250 g/1, which is roughly 5 times higher than the bulk density of the initial silica.
- thermodynamic characteristics of the bound water for silica samples with different bulk densities is listed in the table 2, in which the values of the amount of strongly and weakly bound water (Cuw s and C m v respectively), maximal decrease of the Gibbs free in the layer of bound water (Ag" 1 "*) and value of interfacial energy (ys) are given.
- the interfacial energy which characterizes the total interaction between silica and aqueous medium, is within the range from 1 1 to 15 J/g, which affirms a relatively weak change in the structure of aggregates of silica in the process of its hydraulic compaction.
- IR-spectra of the nanosilica A-300 samples with different amounts of water, which was used for the hydraulic compaction, are given in Fig. 6 a,b.
- the dependence of the signal intensity of free OH-groups (calculated in accordance with the peak area) on the amount of wetting liquid (C(H 2 0)) is given in Fig. 6c.
- the hydraulic compaction of amorphous nano-silicas allows to increase the bulk density from 0.05 to 0.25 g/ml without considerable loss of protein holding adsorption capacity.
- the further growth of the amount of wetting water may reduce the adsorption capacity to 25% of the initial.
- the process of compaction goes along with some changes in the radial distributions of adsorbed on the silica surface water polyassociates (nanodrops), consisting in the growth of contribution from nanodrops of the radius 0.6-2 nm.
- the protein adsorptive capacity of the nano-silica A-300 in relation to gelatin decreases with the increase of the bulk density no more than by 30%, which allows to actively use the compacted forms of silica as enterosorbents and carriers of medications.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
La présente invention concerne un procédé de compaction de nano-silice comprenant les étapes suivantes : charge de la nano-silice dans le réacteur avec un mécanisme d'agitation et un dispositif de pulvérisation d'eau, alimentation d'une quantité appropriée d'eau sous la pression de 0,5 à 1 atm, le rapport en masse de l'eau et de la nano-silice étant de 2:1 à 5:1, agitation du mélange de manière continue et intensive, en le laissant pour équilibrage, séchage à 450 K et tamisage. La nano-silice compactée obtenue est caractérisée par une densité en vrac supérieure et conserve ses caractéristiques d'adsorption.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2016/050193 WO2017122049A1 (fr) | 2016-01-15 | 2016-01-15 | Procédé de compaction de nano-silice |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2016/050193 WO2017122049A1 (fr) | 2016-01-15 | 2016-01-15 | Procédé de compaction de nano-silice |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017122049A1 true WO2017122049A1 (fr) | 2017-07-20 |
Family
ID=55436124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2016/050193 WO2017122049A1 (fr) | 2016-01-15 | 2016-01-15 | Procédé de compaction de nano-silice |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017122049A1 (fr) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2414478A1 (de) * | 1974-03-26 | 1975-10-02 | Degussa | Verfahren zur herstellung aerogelartiger strukturierter kieselsaeuren |
US4326852A (en) | 1978-10-12 | 1982-04-27 | Wacker-Chemie Gmbh | Method for increasing the bulk weight of silicon dioxide |
GB2329893A (en) * | 1997-10-02 | 1999-04-07 | Samsung Electronics Co Ltd | Sol-gel method of manufacturing a silica glass article from silica with two particle sizes |
EP1316589A2 (fr) * | 2001-11-30 | 2003-06-04 | Shin-Etsu Chemical Co., Ltd. | Poudre fine de silice hydrophobe et sa préparation |
JP2003192331A (ja) * | 2001-12-26 | 2003-07-09 | Shin Etsu Chem Co Ltd | 親水性シリカ微粉末及びその製造方法 |
EP1813574A1 (fr) * | 2006-01-25 | 2007-08-01 | Degussa GmbH | Silice pyrogénée sous forme d'écaille |
WO2009015967A2 (fr) | 2007-07-31 | 2009-02-05 | Evonik Degussa Gmbh | Procédés de compression d'oxydes préparés par voie pyrogénique |
DE102012211121A1 (de) * | 2012-06-28 | 2014-01-02 | Evonik Industries Ag | Granuläre, funktionalisierte Kieselsäure, Verfahren zu deren Herstellung und deren Verwendung |
-
2016
- 2016-01-15 WO PCT/IB2016/050193 patent/WO2017122049A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2414478A1 (de) * | 1974-03-26 | 1975-10-02 | Degussa | Verfahren zur herstellung aerogelartiger strukturierter kieselsaeuren |
US4326852A (en) | 1978-10-12 | 1982-04-27 | Wacker-Chemie Gmbh | Method for increasing the bulk weight of silicon dioxide |
GB2329893A (en) * | 1997-10-02 | 1999-04-07 | Samsung Electronics Co Ltd | Sol-gel method of manufacturing a silica glass article from silica with two particle sizes |
EP1316589A2 (fr) * | 2001-11-30 | 2003-06-04 | Shin-Etsu Chemical Co., Ltd. | Poudre fine de silice hydrophobe et sa préparation |
JP2003192331A (ja) * | 2001-12-26 | 2003-07-09 | Shin Etsu Chem Co Ltd | 親水性シリカ微粉末及びその製造方法 |
EP1813574A1 (fr) * | 2006-01-25 | 2007-08-01 | Degussa GmbH | Silice pyrogénée sous forme d'écaille |
WO2009015967A2 (fr) | 2007-07-31 | 2009-02-05 | Evonik Degussa Gmbh | Procédés de compression d'oxydes préparés par voie pyrogénique |
DE102012211121A1 (de) * | 2012-06-28 | 2014-01-02 | Evonik Industries Ag | Granuläre, funktionalisierte Kieselsäure, Verfahren zu deren Herstellung und deren Verwendung |
Non-Patent Citations (34)
Title |
---|
"Enterosorption in complex treatment of acute surgical abdominal diseases", 2009, VINNYTSIA-KYIV-KHARKOV: OMA-PAK, pages: 128 |
"Enterosorption in complex treatment of acute surgical abdominal diseases", vol. 2009, VINNYTSIA-KYIV-KHARKOV: OMA-PAK, pages: 128 |
"Medicinal chemistry and clinical application of silica dioxide", 2003, KYIV. - NAUKOVA DUMKA, pages: 415 |
"Medicinal chemistry and clinical application of silica dioxide", 2003, KYIV. - NAUKOVA DUMKA., pages: 415 |
"The Ukranian State Pharmacopoeia", 2004, KHARKOV: RIREG, pages: 520 |
"Thermodynamic Properties of Individual Substances", 1978, MOSCOW: NAUKA, pages: 495 |
AKSNES D.W.; KIMTYS L: "Characterization of mesoporous solids by H NMR", SOLID STATE NUCLEAR MAGNETIC RESONANCE, vol. 25, 2004, pages 146 - 163 |
AKSNES D.W.; KIMTYS L: "Characterization ofmesoporous solids by H NMR", SOLID STATE NUCLEAR MAGNETIC RESONANCE., vol. 25, 2004, pages 146 - 163 |
CHUIKO 0.0.; PENTYK 0.0.: "The scientific principles of the development of medicines", 1998, KHARKOV: OSNOVA, article "The scientific principles of the development of medicines on the basis of highly dispersed silica", pages: 35 - 51 |
DAWSON R.; ELLIOT D.; ELLIOT W.; JONES K.: "Biochemists manual", 1991 |
FORNY ET AL: "Storing water in powder form by self-assembling hydrophobic silica nanoparticles", POWDER TECHNOLOGY, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 171, no. 1, 28 December 2006 (2006-12-28), pages 15 - 24, XP005817389, ISSN: 0032-5910, DOI: 10.1016/J.POWTEC.2006.09.006 * |
FROLOV YU.G: "The Course of Colloid Chemistry. Surface Events and Dispersion Systems", 1982, MOSCOW. - KHIMIA, pages: 400 |
GERASHCHENKO II: "Enterosorbents: drugs and dietary supplements", 2014, NAS OF UKRAINE, pages: 248 |
GERASHCHENKO II: "Enterosorbents: drugs and dietary supplements. Kyiv", 2014, NAS OF UKRAINE, pages: 248 |
GUN'KO V.M., TUROV V.V.; BOGATYREV V.M. ET AL.: "Unusual Properties of Water at Hydrophilic/Hydrophobic Interfaces", ADV. COLLOID INTERFACE SCI., vol. 118, 2005, pages 125 - 172 |
GUN'KO V.M.; TUROV V.V.: "Nuclear Magnetic Resonance Studies of Interfacial Phenomena.", 2013, NEW YORK: TAYLOR & FRANCIS, pages: 1040 |
GUN'KO V.M.; TUROV V.V.; BOGATYREV V.M ET AL.: "Unusual Properties of Water at Hydrophilic/Hydrophobic Interfaces", ADV. COLLOID INTERFACE SCI, vol. 118, 2005, pages 125 - 172 |
GUN'KO V.M.; TUROV V.V.; BOGATYREV V.M ET AL.: "Unusual Properties of Water at Hydrophilic/Hydrophobic Interfaces", ADV. COLLOID INTERFACE SCI., vol. 118, 2005, pages 125 - 172 |
GUN'KO V.M.; TUROV V.V.; BOGATYREV V.M. ET AL.: "Unusual Properties of Water at Hydrophilic/Hydrophobic Interfaces", ADV. COLLOID INTERFACE SCI., vol. 118, 2005, pages 125 - 172 |
GUN'KO V.M.; TUROV V.V.; GORBYK P.P.: "Water on Interface", 2009, KYIV. NAUKOVA DUMKA, pages: 694 |
GUN'KO V.M.; TUROV V.V.; GORBYK P.P: "Water on Interface", 2009, KYIV. NAUKOVA DUMKA, pages: 694 |
GUN'KO V.M.; TUROV V.V: "Nuclear Magnetic Resonance Studies of Interfacial Phenomena", 2013, NEW YORK: TAYLOR & FRANCIS, pages: 1040 |
GUN'KO V.M.; TUROV V.V: "Nuclear Magnetic Resonance Studies of Interfacial Phenomena", 2013, TAYLOR & FRANCIS, pages: 1040 |
KULIK M.V.; ZASUKHA T.V.; LUTSUK M.B: "Saponite and aerosil in livestock breeding and medicine", 2012, pages: 362 |
KULIK M.V.; ZASUKHA T.V.; LUTSUK M.B: "Saponite and aerosil in livestock breeding and medicine. Vinnytsia", 2012, pages: 362 |
MCCOOL B.; MURPHY L.; TRIPP C.P: "A simple FTIR technique for estimated the surface aria of silica powders and films", J. COLLOID AND INTERFACE SCI., vol. 295, 2006, pages 294 - 298 |
P.P. GORBIK; V.V.TUROV: "Nanomaterials and nanocomposites in medicine, biology, ecology", 2011, KYIV: NAUKOVA DUMKA, pages: 444 |
P.P. GORBIK; V.V.TUROV: "Nanomaterials and nanocomposites in medicine, biology, ecology", vol. 2011, KYIV: NAUKOVA DUMKA, pages: 444 |
PETROV O. V.; FURO I.: "NMR cryoporometry: Principles, application and potential", PROGR. NMR, vol. 54, 2009, pages 97 - 122 |
PETROV O.V.; FURO I: "NMR cryoporometry: Principles, application and potential", PROGR. NMR, vol. 54, 2009, pages 97 - 122 |
RALPH K. HER: "The Chemistry of Silica", 1979, JOHN WILEY AND SONS, pages: 866 |
RALPH K. ILER: "The Chemistry of Silica", 1979, JOHN WILEY AND SONS, pages: 866 |
TUROV V.V.; GUN'KO V.M.: "Clustered water and its application", 2011, KYIV: NAUKOVA DUMKA, pages: 316 |
TUROV V.V.; GUN'KO V.M: "Clustered water and its application", 2011, KYIV: NAUKOVA DUMKA, pages: 316 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6401151B2 (ja) | クロマトグラフィー材料 | |
Gun'ko et al. | Effect of water content on the characteristics of hydro-compacted nanosilica | |
Carpin et al. | How does particle size influence caking in lactose powder? | |
Gun'Ko et al. | Morphology and surface properties of fumed silicas | |
Demarchi et al. | A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release | |
Kaman et al. | Silica encapsulated manganese perovskite nanoparticles for magnetically inducedhyperthermia without the risk of overheating | |
CN104508054A (zh) | 粒状功能化二氧化硅、其制备方法及用途 | |
Anastasova et al. | A pure magnetite hydrogel: Synthesis, properties and possible applications | |
Gun’ko et al. | Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas | |
Ghirişan et al. | Comparative study of spray-drying and freeze-drying on the soluble coffee properties | |
JP2001327849A (ja) | 分散性の微細な固体から成る顆粒およびそれらの製法 | |
Kolesnichenko et al. | Nanodispersed suspensions of zeolite catalysts for converting dimethyl ether into olefins | |
WO2017122049A1 (fr) | Procédé de compaction de nano-silice | |
JP3177248B2 (ja) | 超臨界流体抽出の促進方法 | |
Yetgin et al. | Calf thymus DNA characterization and its adsorption on different silica surfaces | |
Sakai et al. | Structural Characterization of a Cyclodextrin/l-menthol Inclusion Complex in the Solid-state by Solid-state NMR and Vibrational Circular Dichroism | |
Fernandes et al. | Synthetic cobalt clays for the storage and slow release of therapeutic nitric oxide | |
JP7042754B2 (ja) | 高強度成形アルミナ及び該高強度成形アルミナの製造方法 | |
Babonneau et al. | Encapsulation of ibuprofen in mesoporous silica: solid state NMR characterization | |
Nakagawa et al. | Microencapsulation of β-carotene by self-aggregated caseinates | |
Batsanov et al. | Orientational polarization of molecular liquids in contact with diamond crystals | |
Krupska et al. | Composite medical systems based on hydrophobic silica and gelatin | |
Тurov et al. | Thixotropic system based on mixture of hydrophilic and hydrophobic silica | |
JP7133747B1 (ja) | 吸着剤および吸着剤の製造方法 | |
RU2069177C1 (ru) | Способ получения гранулированного активного оксида алюминия с бидисперсной пористой структурой |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16706430 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.10.2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16706430 Country of ref document: EP Kind code of ref document: A1 |