[go: up one dir, main page]

WO2017119106A1 - Power storage module - Google Patents

Power storage module Download PDF

Info

Publication number
WO2017119106A1
WO2017119106A1 PCT/JP2016/050383 JP2016050383W WO2017119106A1 WO 2017119106 A1 WO2017119106 A1 WO 2017119106A1 JP 2016050383 W JP2016050383 W JP 2016050383W WO 2017119106 A1 WO2017119106 A1 WO 2017119106A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
battery
container
storage module
module according
Prior art date
Application number
PCT/JP2016/050383
Other languages
French (fr)
Japanese (ja)
Inventor
吉瀬 万希子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/050383 priority Critical patent/WO2017119106A1/en
Publication of WO2017119106A1 publication Critical patent/WO2017119106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage module in which a plurality of power storage devices are combined.
  • Examples of power storage devices mounted on electric vehicles or storage battery systems for power storage include lithium ion secondary batteries, electric double layer capacitors, and lithium ion capacitors. These power storage devices include not only conventional portable devices, but also home appliances, backup power supplies, electric vehicles abbreviated as EV (Electric Vehicle), hybrid electric vehicles abbreviated as HEV (Hybrid Electric Vehicle), or smart grids. Application expansion to such large-scale power sources is progressing. Power storage devices used in these devices are larger than conventional power sources for portable devices, and are required to withstand long-term use.
  • Patent Document 1 inserts a plurality of battery cells into a holder block, equalizes the external pressure applied to the battery cells, and suppresses deterioration of the battery cells.
  • the holder block of Patent Document 1 is made of plastic or metal.
  • Patent Document 1 Since plastic is inferior in heat conductivity to metal, in the invention disclosed in Patent Document 1, if the holder block is made of plastic, the battery cell becomes high temperature as soon as charging and discharging are performed, and the deterioration is promoted. In order to prevent this, in Patent Document 1, a closing plate is disposed below the holder block, and the battery is cooled from the bottom by flowing a coolant through the closing plate to cool the battery, thereby suppressing deterioration of the battery cell. ing.
  • the present invention has been made in view of the above, and an object thereof is to obtain a power storage module in which a module container is not easily deformed even when the power storage device is deteriorated.
  • the present invention is a power storage module that includes a plurality of power storage devices arranged in a plurality of rows and a module container that holds the plurality of power storage devices.
  • the power storage devices are arranged in the module container with the positive electrode terminal and the negative electrode terminal facing upward, with the center position shifted in the arrangement direction for each column, and the positive electrode terminal and the negative electrode terminal between adjacent power storage devices are electrically conductive. They are connected by members.
  • the power storage module according to the present invention has an effect that the module container is not easily deformed even when the power storage device is deteriorated.
  • FIG. 1 The figure which shows schematic structure of the electrical storage module which concerns on Embodiment 1 of this invention 1 is an exploded perspective view showing a configuration of a storage battery of an electricity storage module according to Embodiment 1.
  • FIG. 2 The figure which shows the structure of the electrical storage module which concerns on Embodiment 2 of this invention.
  • FIG. 4 The perspective view of the spacer board which incorporates the cooling pipe of the electrical storage module which concerns on Embodiment 4.
  • FIG. 4 The perspective view of the spacer board provided with the heat sink of the electrical storage module which concerns on Embodiment 4.
  • FIG. 4 The perspective view of the spacer board provided with the fin integrated with the main-body part of the electrical storage module which concerns on Embodiment 4.
  • FIG. 5 of this invention The disassembled perspective view of the electrical storage module which concerns on Embodiment 6 of this invention
  • FIG. 1 is a diagram showing a schematic configuration of the power storage module according to Embodiment 1 of the present invention.
  • the power storage module according to Embodiment 1 includes a plurality of storage batteries 1 that are power storage devices that store electric power, and a module container 5 that houses and holds the storage battery 1.
  • the storage battery 1 includes a positive electrode terminal 2 and a negative electrode terminal 3.
  • the storage battery 1 is also provided with a gas release valve 4 that opens to release the internal gas when the internal pressure of the battery becomes equal to or higher than the open pressure.
  • the module container 5 is made of metal or resin.
  • the module container 5 may be provided with a function of enclosing the outer frames of the plurality of storage batteries 1 and collecting the storage batteries 1, and may not be a container shape.
  • the plurality of storage batteries 1 are arranged in a plurality of rows, and in the case of series connection, the positive terminals 2 and the negative terminals 3 of the storage batteries 1 in adjacent rows are connected to each other by a bus bar 12.
  • the bus bar 12 is a plate-like or bar-like metal plate made of a metal such as copper, aluminum, or nickel, and serves as a power line that connects the storage batteries 1 or the storage battery 1 and the converter.
  • the connection of the storage battery 1 is not restricted to series connection, and in the case of parallel connection, the positive terminals of a plurality of adjacent storage batteries are connected and the negative terminals are connected.
  • the bus bar 12 may be made of copper plated with nickel or tin.
  • the bus bar 12 may be screwed through the positive terminal 2 or the negative terminal 3 and may be directly welded to the positive terminal 2 and the negative terminal 3 of the storage battery 1.
  • FIG. 1 shows a configuration in which the positive terminals 2 and the negative terminals 3 are connected by the bus bars 12 that are conductive members between the storage batteries 1 in adjacent rows.
  • the positive electrode terminal 2 and the negative electrode terminal 3 may be connected to each other by a bus bar 12.
  • FIG. 2 is an exploded perspective view showing the configuration of the storage battery of the power storage module according to Embodiment 1.
  • FIG. The storage battery 1 has a structure in which a wound body 6 that generates a voltage is accommodated in a battery container 10 and sealed with a battery lid 11.
  • the wound body 6 is obtained by winding a positive electrode 8, a negative electrode 9, and separators 7 a, 7 b that insulate the positive electrode 8 and the negative electrode 9 on each other in the order of the separator 7 a, the positive electrode 8, the separator 7 b, and the negative electrode 9. ,
  • the wound body 6 may be cylindrical.
  • the storage battery 1 is formed by inserting a wound body 6 into a battery container 10, injecting an electrolytic solution, covering the battery cover 11, and laser welding between the battery container 10 and the battery cover 11.
  • the battery container 10 is made of a metal such as aluminum, stainless steel, or iron, and generally has a square shape or a cylindrical shape.
  • the positive electrode terminal 2 can be formed of aluminum.
  • the negative electrode terminal 3 can be formed of aluminum, copper, or copper plated with nickel.
  • the material of the positive electrode terminal 2 and the negative electrode terminal 3 is not limited to said material.
  • power storage devices such as lithium ion secondary batteries are subject to deterioration in which the power storage capacity decreases with long-term use.
  • Deteriorated power storage devices are deformed due to the generation of gas generated by internal reactions and the increase in electrode thickness due to repeated charge and discharge.
  • the deterioration of the electricity storage device varies depending on the operating conditions and the environment, but in many cases, the container of the electricity storage device expands due to the deterioration. If the gap is generated between the electrodes due to the generation of gas in the container and the adhesion is reduced, the reaction becomes non-uniform and the deterioration of the electricity storage device further proceeds.
  • the container swells in various ways, but square, pouch-type, or cylindrical-type power storage devices swell around the center of the wide surface as they deteriorate, increasing their thickness to a drum shape. It may be deformed.
  • a thickness is applied at the central portion of the surface having the largest area due to the pressing force applied from the module container and the end of the electrode body inside the power storage device being constrained. The increase is likely to be maximized.
  • the opening pressure of the gas release valve 4 depends on the type of the storage battery 1, but opens immediately if the opening pressure is too low. Once the storage battery 1 is opened, air and moisture are mixed from the outside and the characteristics of the battery deteriorate. Therefore, it is necessary to take measures such as discontinuing use and replacing the battery. For this reason, in the storage battery 1, the opening pressure of the gas release valve 4 is set high, and the battery container 10 often expands before the internal pressure reaches the opening pressure of the gas release valve 4.
  • the plurality of storage batteries 1 are arranged in the module container 5 in two rows by shifting the end portions 1e and the central portion 1c so that the end portions 1e of the wide surface 1w are not aligned. ing.
  • the storage batteries 1 are arranged in adjacent rows so as to be arranged in the arrangement direction so that the end portion 1e that is unlikely to bulge is disposed at a position facing the central portion 1c of the battery container 10 that is liable to bulge.
  • Connection of the positive electrode terminal 2 and the negative electrode terminal 3 is suppressed by suppressing deformation of the module container 5 due to overlapping of the bulges of the central portion 1c of 1w, and suppressing an increase in stress applied to the positive electrode terminal 2, the negative electrode terminal 3, and its connecting portion.
  • the battery container 10 is a square type, but it may be a pouch type using a laminate film in which an aluminum film and a resin film are laminated and adhered.
  • the storage battery 1 is connected by the bus bar 12.
  • a power cable in which a stranded wire of copper or aluminum is covered with an insulator or an anticorrosive layer may be used as the conductive member. Is possible.
  • the storage battery 1 is connected by the bus bar 12, but the terminal of the storage battery 1 may be welded instead of screwed.
  • a configuration in which a plurality of storage batteries 1 are arranged in two rows is shown, but the number of columns may be larger than two.
  • the storage battery 1 is thin like a pouch type, a plurality of rows can be arranged.
  • the number of storage batteries 1 arranged in the module is not limited to eight shown in FIG.
  • the storage battery 1 in which the wound body 6 is housed in the battery container 10 and the electrolytic solution is injected and then the battery cover 11 is put on is taken as an example.
  • the storage battery 1 has a positive electrode, a separator, and a negative electrode alternately.
  • stacking may be accommodated in a battery container, and the structure which inject
  • the storage battery 1 is arranged so that the central portions 1c of the wide surface 1w having a large amount of deformation due to swelling do not overlap with each other. Progress of deterioration can be suppressed.
  • FIG. FIG. 3 is a diagram showing a configuration of the power storage module according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that the storage battery is disposed with a gap provided between the side surfaces 1s of the storage batteries 1 adjacent in the same row.
  • By providing an interval between the side surfaces 1 s it is possible to efficiently dissipate heat from the storage battery 1, and it is possible to suppress a temperature rise of the storage battery 1 and suppress deterioration.
  • cooling by ventilation such as a fan
  • Others are the same as in the first embodiment.
  • FIG. FIG. 4 is a diagram showing the configuration of the power storage module according to Embodiment 3 of the present invention.
  • the module battery 5 is notched and the internal storage battery 1 is visualized.
  • the third embodiment is different from the first embodiment in that a fan 14 is attached to the lid 13 of the module container 5 and the storage battery 1 is cooled by blowing air from the upper part of the terminal of the storage battery 1.
  • a positive electrode terminal 2 and a negative electrode terminal 3 protruding to the outside of the battery are connected to an internal positive electrode 8 and a negative electrode 9. For this reason, it becomes possible to cool the inside of the storage battery 1 efficiently by cooling the positive electrode terminal 2 or the negative electrode terminal 3.
  • Others are the same as in the first embodiment.
  • FIG. FIG. 5 is a diagram showing the configuration of the power storage module according to Embodiment 4 of the present invention.
  • the fourth embodiment is different from the second embodiment in that the spacer plate 15 is disposed in close contact with the storage battery 1 between the opposing wide surfaces 1w of the storage battery 1.
  • the material of the spacer plate 15 is not particularly limited, but a metal plate having a certain degree of strength and good thermal conductivity, or a composite of metal and carbon formed into a plate shape or a sheet shape is desirable. That is, it is preferable that the battery 1 has a strength that does not deform due to the pressing force to the spacer plate 15 when the storage battery 1 swells.
  • the height of the spacer plate 15 is preferably lower than the height of the storage battery 1. By reducing the height of the spacer plate 15, the power storage module itself can be reduced in weight, and a measurement line or the like can be stored in the space above the spacer plate 15.
  • FIG. 6 is a diagram illustrating a configuration in which a CMU substrate is accommodated in a space between the storage battery of the power storage module according to Embodiment 4 and the inner wall of the module container. Since the storage batteries 1 are alternately shifted, an empty space is created at the end of the power storage module container 5. By installing a measurement member such as the CMU substrate 20 in this space, the space inside the module container 5 can be used effectively.
  • CMU cell monitoring unit
  • FIG. 7 is a perspective view of a spacer plate incorporating a cooling pipe of the power storage module according to the fourth embodiment.
  • a cooling pipe 16 is built in the spacer plate 15, and the storage battery can be cooled by flowing a coolant through the cooling pipe 16.
  • the cooling pipe 16 is preferably made of a material having good heat conductivity such as copper, brass or aluminum. Further, instead of incorporating the cooling pipe 16, it is possible to provide the spacer plate 15 with a flow path through which the coolant passes by cutting the spacer plate 15 or creating the spacer plate 14 by extrusion. is there.
  • FIG. 8 is a perspective view of the spacer plate provided with the heat sink of the power storage module according to the fourth embodiment. Since a plurality of plate-like heat sinks 17 are formed inside the spacer plate 15, the heat generated from the storage battery 1 can be efficiently transferred to the outside by performing cooling by blowing with a fan or the like from the front side of the spacer plate 15. I can escape.
  • FIG. 9 is a perspective view of a spacer plate provided with fins integrated with the main body of the power storage module according to the fourth embodiment.
  • the spacer plate 15 is formed with fins 15b integrated with the main body 15a perpendicular to the main body 15a.
  • the spacer plate 15 is formed in such an arrangement that the branched fins 15b are installed in the gap between the storage batteries 1 from the main body portion 15a as the center. In this case, the heat transferred from the wide surface 1w of the storage battery 1 to the spacer plate 15 is radiated by the fins 15b. Thereby, the heat generated from the storage battery 1 can be efficiently released to the outside.
  • FIG. FIG. 10 is an exploded perspective view of the power storage module according to Embodiment 5 of the present invention.
  • the power storage module according to the fifth embodiment is the second embodiment in that the bottom surface 51 of the module container 5 has a structure in which the guide 18 along the bottom surface shape of the storage battery 1 and the air vent 51a for cooling are provided. Is different.
  • the guide 18 is provided by forming a recess corresponding to the shape of the storage battery 1 on the bottom surface 51.
  • the guide 18 facilitates the positioning of the storage battery 1 to improve the assemblability, and prevents the storage battery 1 from being displaced and inclined.
  • the air vent 51 and improving the air permeability of the bottom surface 51 the temperature rise inside the module container 5 can be suppressed, and the deterioration of the storage battery 1 can be suppressed.
  • FIG. 11 is an exploded perspective view of the power storage module according to Embodiment 6 of the present invention.
  • the module container 5 is not shown except for the bottom surface 51.
  • the power storage module according to the sixth embodiment is different from the second embodiment in that a guide 19 for fitting the spacer plate 15 to the bottom surface 51 of the module container 5 is formed.
  • the storage battery 1 can be pressed by fitting the spacer plate 15 in accordance with the guide 19.
  • the shift and inclination of the storage battery 1 can be prevented.
  • the bottom surface 51 into a structure with good air permeability, the temperature rise of the power storage module can be suppressed, and the deterioration of the storage battery 1 can be suppressed.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 storage battery 1c center part, 1e end part, 1s side face, 1w wide face, 2 positive electrode terminal, 3 negative electrode terminal, 4 gas release valve, 5 module container, 6 rolls, 7a, 7b separator, 8 positive electrode, 9 negative electrode 10, battery container, 11 battery cover, 12 bus bar, 13 cover, 14 fan, 15 spacer plate, 15a main body, 15b fin, 16 cooling pipe, 17 heat sink, 18, 19 guide, 20 CMU substrate, 51 bottom surface, 51a through Pores.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

Provided is a power storage module that includes: a plurality of power storage batteries (1) disposed so as to be arranged in multiple rows; and a module container (5) that retains the plurality of storage batteries (1). In a state in which positive electrode terminals (2) and negative electrode terminals (3) are on top, the plurality of storage batteries (1) are arranged within the module container (5) so that the center position is shifted in the arrangement direction in each row so that an end (1e) of a wide surface (1w) and a center part (1c) face each other. The positive electrode terminal (2) and the negative electrode terminal (3) of adjacent storage batteries (1) are connected to each other by a bus bar (12).

Description

蓄電モジュールPower storage module
 本発明は、蓄電デバイスを複数個組み合わせた蓄電モジュールに関する。 The present invention relates to a power storage module in which a plurality of power storage devices are combined.
 電気自動車又は電力貯蔵用蓄電池システムに搭載される蓄電デバイスには、リチウムイオン二次電池、電気二重層キャパシタ及びリチウムイオンキャパシタが挙げられる。これらの蓄電デバイスは、従来の携帯用機器のみならず、家電製品、バックアップ電源、EV(Electric Vehicle)と略称される電気自動車、HEV(Hybrid Electric Vehicle)と略称されるハイブリッド電気自動車又はスマートグリッドのような大型電源への適用拡大が進んでいる。これらの機器に使用される蓄電デバイスは、従来の携帯機器用電源に比べて大型であり、長期間の使用に耐えることが要求される。 Examples of power storage devices mounted on electric vehicles or storage battery systems for power storage include lithium ion secondary batteries, electric double layer capacitors, and lithium ion capacitors. These power storage devices include not only conventional portable devices, but also home appliances, backup power supplies, electric vehicles abbreviated as EV (Electric Vehicle), hybrid electric vehicles abbreviated as HEV (Hybrid Electric Vehicle), or smart grids. Application expansion to such large-scale power sources is progressing. Power storage devices used in these devices are larger than conventional power sources for portable devices, and are required to withstand long-term use.
 これらのシステムに使用される蓄電デバイスは、長期の保存又は充放電サイクルによって劣化が進行し、蓄積可能な容量が低下する。劣化抑制の目的から、特許文献1では、複数の電池セルをホルダーブロックに挿入し、電池セルにかかる外部からの圧力を均等化し、電池セルの劣化を抑制している。特許文献1のホルダーブロックは、プラスチック又は金属製である。 The power storage devices used in these systems are deteriorated by long-term storage or charge / discharge cycles, and the capacity that can be stored decreases. For the purpose of suppressing deterioration, Patent Document 1 inserts a plurality of battery cells into a holder block, equalizes the external pressure applied to the battery cells, and suppresses deterioration of the battery cells. The holder block of Patent Document 1 is made of plastic or metal.
 プラスチックは熱伝導性が金属よりも劣るため、特許文献1に開示される発明では、ホルダーブロックがプラスチック製であると、電池セルは充放電を行うとすぐに高温となり劣化が促進される。これを防止する目的で、特許文献1では、ホルダーブロックの下部に閉塞プレートを配置し、閉塞プレートの中に冷媒を流して冷却することにより電池を底面から冷却し、電池セルの劣化を抑制している。 Since plastic is inferior in heat conductivity to metal, in the invention disclosed in Patent Document 1, if the holder block is made of plastic, the battery cell becomes high temperature as soon as charging and discharging are performed, and the deterioration is promoted. In order to prevent this, in Patent Document 1, a closing plate is disposed below the holder block, and the battery is cooled from the bottom by flowing a coolant through the closing plate to cool the battery, thereby suppressing deterioration of the battery cell. ing.
特開2008-59849号公報JP 2008-59849 A
 特許文献1に開示される発明では、蓄電デバイスである電池セルは広幅面の中央部を揃えて配列されているため、蓄電デバイスに劣化が生じて蓄電デバイスの容器が膨らむと、変形量が大きい広幅面の中央部に対応する部分のモジュール容器に加わる応力が強くなり、モジュール容器が変形する。また、蓄電デバイスの容器が膨らむと、広幅面同士が当たり、互いに押圧力がかかり、電池セル同士の接続部に応力がかかる。このような応力は長期使用に伴い、接続部の緩み及び応力割れなどの原因となる。また、モジュール容器が強固で変形しない場合、蓄電デバイスの拘束力が強く膨れは抑制されるが、容器内の内圧が上昇し、内部の圧力を開放するため、容器が開口してしまう可能性がある。 In the invention disclosed in Patent Document 1, since the battery cells that are power storage devices are arranged with the central portion of the wide surface aligned, if the power storage device deteriorates and the container of the power storage device expands, the amount of deformation is large. The stress applied to the module container in the portion corresponding to the central portion of the wide surface is increased, and the module container is deformed. Further, when the container of the electricity storage device swells, the wide surfaces come into contact with each other, a pressing force is applied to each other, and a stress is applied to the connection portion between the battery cells. Such stress causes loosening of connection parts and stress cracking with long-term use. In addition, when the module container is strong and does not deform, the restraining force of the power storage device is strong and swelling is suppressed, but the internal pressure in the container rises and the internal pressure is released, so the container may open. is there.
 本発明は、上記に鑑みてなされたものであって、蓄電デバイスに劣化が生じてもモジュール容器が変形しにくい蓄電モジュールを得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a power storage module in which a module container is not easily deformed even when the power storage device is deteriorated.
 上述した課題を解決し、目的を達成するために、本発明は、複数列に配列して設置された複数の蓄電デバイスと、該複数の蓄電デバイスを保持するモジュール容器とを有する蓄電モジュールであって、蓄電デバイスは、正極端子及び負極端子を上にした姿勢で、列ごとに中心位置を配列方向にずらしてモジュール容器内に配置され、隣り合う蓄電デバイス同士の正極端子と負極端子とが導電部材で接続されていることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a power storage module that includes a plurality of power storage devices arranged in a plurality of rows and a module container that holds the plurality of power storage devices. The power storage devices are arranged in the module container with the positive electrode terminal and the negative electrode terminal facing upward, with the center position shifted in the arrangement direction for each column, and the positive electrode terminal and the negative electrode terminal between adjacent power storage devices are electrically conductive. They are connected by members.
 本発明に係る蓄電モジュールは、蓄電デバイスに劣化が生じてもモジュール容器が変形しにくいという効果を奏する。 The power storage module according to the present invention has an effect that the module container is not easily deformed even when the power storage device is deteriorated.
本発明の実施の形態1に係る蓄電モジュールの概略構成を示す図The figure which shows schematic structure of the electrical storage module which concerns on Embodiment 1 of this invention 実施の形態1に係る蓄電モジュールの蓄電池の構成を示す分解斜視図1 is an exploded perspective view showing a configuration of a storage battery of an electricity storage module according to Embodiment 1. FIG. 本発明の実施の形態2に係る蓄電モジュールの構成を示す図The figure which shows the structure of the electrical storage module which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る蓄電モジュールの構成を示す図The figure which shows the structure of the electrical storage module which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る蓄電モジュールの構成を示す図The figure which shows the structure of the electrical storage module which concerns on Embodiment 4 of this invention. 実施の形態4に係る蓄電モジュールの蓄電池とモジュール容器の内壁との間のスペースにCMU基板を収納した構成を示す図The figure which shows the structure which accommodated the CMU board | substrate in the space between the storage battery of the electrical storage module which concerns on Embodiment 4, and the inner wall of a module container. 実施の形態4に係る蓄電モジュールの冷却パイプを内蔵するスペーサ板の斜視図The perspective view of the spacer board which incorporates the cooling pipe of the electrical storage module which concerns on Embodiment 4. FIG. 実施の形態4に係る蓄電モジュールのヒートシンクを備えたスペーサ板の斜視図The perspective view of the spacer board provided with the heat sink of the electrical storage module which concerns on Embodiment 4. FIG. 実施の形態4に係る蓄電モジュールの本体部と一体化したフィンを備えたスペーサ板の斜視図The perspective view of the spacer board provided with the fin integrated with the main-body part of the electrical storage module which concerns on Embodiment 4. FIG. 本発明の実施の形態5に係る蓄電モジュールの分解斜視図The disassembled perspective view of the electrical storage module which concerns on Embodiment 5 of this invention 本発明の実施の形態6に係る蓄電モジュールの分解斜視図The disassembled perspective view of the electrical storage module which concerns on Embodiment 6 of this invention
 以下に、本発明の実施の形態に係る蓄電モジュールを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a power storage module according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1に係る蓄電モジュールの概略構成を示す図である。実施の形態1に係る蓄電モジュールは、電力を蓄積する蓄電デバイスである複数個の蓄電池1と、蓄電池1を収容し保持するモジュール容器5とを有する。蓄電池1は、正極端子2と負極端子3とを備えている。また、蓄電池1は、電池内部の圧力が開放圧力以上となった場合に開放して内部のガスを逃がすガス放出弁4を備えている。モジュール容器5は、金属又は樹脂製である。モジュール容器5は、複数個の蓄電池1の外枠を囲い、蓄電池1をとりまとめる機能を備えていれば良く、器状でなくても良い。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of the power storage module according to Embodiment 1 of the present invention. The power storage module according to Embodiment 1 includes a plurality of storage batteries 1 that are power storage devices that store electric power, and a module container 5 that houses and holds the storage battery 1. The storage battery 1 includes a positive electrode terminal 2 and a negative electrode terminal 3. The storage battery 1 is also provided with a gas release valve 4 that opens to release the internal gas when the internal pressure of the battery becomes equal to or higher than the open pressure. The module container 5 is made of metal or resin. The module container 5 may be provided with a function of enclosing the outer frames of the plurality of storage batteries 1 and collecting the storage batteries 1, and may not be a container shape.
 複数個の蓄電池1は、複数列に配列して設置されており、直列接続の場合、隣り合う列の蓄電池1同士の正極端子2と負極端子3とがバスバー12で互いに接続されている。バスバー12は、銅、アルミニウム又はニッケルなどの金属を材料とする板状又は棒状の金属板であり、蓄電池1同士又は蓄電池1と変換器とを接続する電力線の役割を担う。なお、蓄電池1の接続は直列接続に限らず、並列接続の場合は隣り合う複数の蓄電池の正極端子同士が接続されかつ負極端子同士が接続される。なお、バスバー12は、ニッケル又はスズのめっきを施した銅を材料とすることも可能である。バスバー12は、正極端子2又は負極端子3に通してねじ止めするものと、蓄電池1の正極端子2及び負極端子3に直接溶接されるものとがある。図1には隣り合う列の蓄電池1同士で正極端子2と負極端子3とを導電部材であるバスバー12で接続した構成を示しているが、これに限らず、同じ列で隣り合う蓄電池1同士の正極端子2と負極端子3とをバスバー12で相互に接続した構成であっても良い。 The plurality of storage batteries 1 are arranged in a plurality of rows, and in the case of series connection, the positive terminals 2 and the negative terminals 3 of the storage batteries 1 in adjacent rows are connected to each other by a bus bar 12. The bus bar 12 is a plate-like or bar-like metal plate made of a metal such as copper, aluminum, or nickel, and serves as a power line that connects the storage batteries 1 or the storage battery 1 and the converter. In addition, the connection of the storage battery 1 is not restricted to series connection, and in the case of parallel connection, the positive terminals of a plurality of adjacent storage batteries are connected and the negative terminals are connected. The bus bar 12 may be made of copper plated with nickel or tin. The bus bar 12 may be screwed through the positive terminal 2 or the negative terminal 3 and may be directly welded to the positive terminal 2 and the negative terminal 3 of the storage battery 1. FIG. 1 shows a configuration in which the positive terminals 2 and the negative terminals 3 are connected by the bus bars 12 that are conductive members between the storage batteries 1 in adjacent rows. The positive electrode terminal 2 and the negative electrode terminal 3 may be connected to each other by a bus bar 12.
 図2は、実施の形態1に係る蓄電モジュールの蓄電池の構成を示す分解斜視図である。蓄電池1は、電圧を発生させる巻回体6を電池容器10内に収容し、電池蓋11で密閉した構造である。巻回体6は、正極8と負極9と、正極8及び負極9を絶縁するセパレータ7a,7bとを、セパレータ7a、正極8、セパレータ7b、負極9の順に重ねた上で巻いたものであり、角柱又はこれに準ずる形状である。なお、巻回体6は円柱状であっても良い。 FIG. 2 is an exploded perspective view showing the configuration of the storage battery of the power storage module according to Embodiment 1. FIG. The storage battery 1 has a structure in which a wound body 6 that generates a voltage is accommodated in a battery container 10 and sealed with a battery lid 11. The wound body 6 is obtained by winding a positive electrode 8, a negative electrode 9, and separators 7 a, 7 b that insulate the positive electrode 8 and the negative electrode 9 on each other in the order of the separator 7 a, the positive electrode 8, the separator 7 b, and the negative electrode 9. , A prismatic shape or a similar shape. The wound body 6 may be cylindrical.
 蓄電池1は、電池容器10内に巻回体6を挿入し、電解液を注入した後に電池蓋11を被せ、電池容器10と電池蓋11との間をレーザ溶接することによって形成されている。 The storage battery 1 is formed by inserting a wound body 6 into a battery container 10, injecting an electrolytic solution, covering the battery cover 11, and laser welding between the battery container 10 and the battery cover 11.
 電池容器10は、アルミニウム、ステンレス又は鉄といった金属製であり、一般的には角型又は円筒形状であるが、ここでは角型であるとする。 The battery container 10 is made of a metal such as aluminum, stainless steel, or iron, and generally has a square shape or a cylindrical shape.
 正極端子2は、アルミニウムで形成することができる。負極端子3は、アルミニウム、銅又はニッケルめっきを施した銅で形成することができる。なお、正極端子2及び負極端子3の材料は、上記の材料に限定されることはない。 The positive electrode terminal 2 can be formed of aluminum. The negative electrode terminal 3 can be formed of aluminum, copper, or copper plated with nickel. In addition, the material of the positive electrode terminal 2 and the negative electrode terminal 3 is not limited to said material.
 一般に、リチウムイオン二次電池を始めとする蓄電デバイスは、長期使用に伴って蓄電容量が減少する劣化が生じる。劣化が生じた蓄電デバイスは、内部における反応により生じたガスの発生及び充放電の繰り返しによる電極厚さの増大といった原因により変形する。蓄電デバイスの劣化は、運転条件及び環境により変化するが、多くの場合、劣化により蓄電デバイスの容器が膨張する。容器内でのガスの発生によって電極間に隙間が生じ密着性が低下すると、反応が不均一になって蓄電デバイスの劣化がさらに進行しやすくなる。劣化度合い及び運転条件により容器の膨れ方は様々であるが、角型、パウチ型又は円筒型の蓄電デバイスは劣化に伴い広幅面の中央部を中心に膨れ、厚さが増加して太鼓状に変形する場合がある。角型、パウチ型又は長円筒型の場合、モジュール容器から押圧力が加わること、及び蓄電デバイス内部の電極体の端部が拘束されていることにより、面積が最も広い面の中央部において厚さ増加量が最大になりやすい。 In general, power storage devices such as lithium ion secondary batteries are subject to deterioration in which the power storage capacity decreases with long-term use. Deteriorated power storage devices are deformed due to the generation of gas generated by internal reactions and the increase in electrode thickness due to repeated charge and discharge. The deterioration of the electricity storage device varies depending on the operating conditions and the environment, but in many cases, the container of the electricity storage device expands due to the deterioration. If the gap is generated between the electrodes due to the generation of gas in the container and the adhesion is reduced, the reaction becomes non-uniform and the deterioration of the electricity storage device further proceeds. Depending on the degree of deterioration and the operating conditions, the container swells in various ways, but square, pouch-type, or cylindrical-type power storage devices swell around the center of the wide surface as they deteriorate, increasing their thickness to a drum shape. It may be deformed. In the case of a square type, a pouch type, or a long cylindrical type, a thickness is applied at the central portion of the surface having the largest area due to the pressing force applied from the module container and the end of the electrode body inside the power storage device being constrained. The increase is likely to be maximized.
 実施の形態1に係る蓄電モジュールにおいて蓄電デバイスに用いた蓄電池1は、ガス放出弁4の開放圧力は蓄電池1の種類によるが、開放圧力が低すぎるとすぐに開放してしまう。蓄電池1は、一旦開放すると外部から空気及び水分が混入して電池の特性が低下するため、使用を中断して交換するなどの処置が必要となる。このため、蓄電池1は、ガス放出弁4の開放圧力が高く設定され、内部の圧力がガス放出弁4の開放圧力に達する前に電池容器10が膨張することが多い。 In the storage battery 1 used in the storage device in the storage module according to Embodiment 1, the opening pressure of the gas release valve 4 depends on the type of the storage battery 1, but opens immediately if the opening pressure is too low. Once the storage battery 1 is opened, air and moisture are mixed from the outside and the characteristics of the battery deteriorate. Therefore, it is necessary to take measures such as discontinuing use and replacing the battery. For this reason, in the storage battery 1, the opening pressure of the gas release valve 4 is set high, and the battery container 10 often expands before the internal pressure reaches the opening pressure of the gas release valve 4.
 実施の形態1においては、複数の蓄電池1を、広幅面1wの端部1eを揃えるのではなく、端部1eと中央部1cとが向き合うようにずらして2列でモジュール容器5内に配置している。膨れが生じやすい電池容器10の中央部1cと対向する位置に膨れが生じにくい端部1eが配置されるように隣接する列の蓄電池1を配列方向に沿ってずらして設置することで、広幅面1wの中央部1cの膨れ同士が重なることによるモジュール容器5の変形を抑制し、正極端子2、負極端子3、及びその接続部にかかる応力の増大を抑え、正極端子2及び負極端子3の接続部分の緩み及びはずれを防止するとともに、モジュール容器5の変形を抑えることができる。これによって蓄電池1の劣化を抑制するとともに、モジュール容器5の軽量化が可能となる。さらに、モジュール容器5で蓄電池1を周囲から拘束することによって、蓄電池1の膨れを抑制し、劣化の進行を抑えることが可能となる。 In Embodiment 1, the plurality of storage batteries 1 are arranged in the module container 5 in two rows by shifting the end portions 1e and the central portion 1c so that the end portions 1e of the wide surface 1w are not aligned. ing. By arranging the storage batteries 1 in adjacent rows so as to be arranged in the arrangement direction so that the end portion 1e that is unlikely to bulge is disposed at a position facing the central portion 1c of the battery container 10 that is liable to bulge, Connection of the positive electrode terminal 2 and the negative electrode terminal 3 is suppressed by suppressing deformation of the module container 5 due to overlapping of the bulges of the central portion 1c of 1w, and suppressing an increase in stress applied to the positive electrode terminal 2, the negative electrode terminal 3, and its connecting portion. While preventing the part from loosening and coming off, deformation of the module container 5 can be suppressed. As a result, deterioration of the storage battery 1 can be suppressed, and the module container 5 can be reduced in weight. Furthermore, by restraining the storage battery 1 from the periphery with the module container 5, it becomes possible to suppress the swelling of the storage battery 1 and to suppress the progress of deterioration.
 上記の説明では、電池容器10は角型であるとしたが、アルミニウム膜と樹脂膜とを積層して密着させたラミネートフィルムを用いたパウチ型であっても良い。 In the above description, the battery container 10 is a square type, but it may be a pouch type using a laminate film in which an aluminum film and a resin film are laminated and adhered.
 上記の説明では、蓄電池1がバスバー12で接続されているとしたが、バスバー12の代わりに銅又はアルミニウムの細線のより線を絶縁体又は防食層で覆った電力ケーブルを導電部材に用いることも可能である。また、上記の説明では、蓄電池1がバスバー12で接続されているとしたが、蓄電池1の端子がネジ留めでなく、溶接されていても良い。 In the above description, the storage battery 1 is connected by the bus bar 12. However, instead of the bus bar 12, a power cable in which a stranded wire of copper or aluminum is covered with an insulator or an anticorrosive layer may be used as the conductive member. Is possible. In the above description, the storage battery 1 is connected by the bus bar 12, but the terminal of the storage battery 1 may be welded instead of screwed.
 また、上記の説明では、複数の蓄電池1を2列に並べた構成を示したが、列数は2列よりも多くても良い。蓄電池1がパウチ型のような薄型の場合は、複数列並べることも可能である。モジュール内に配置する蓄電池1の数についても図1に示した8個に限定されることはない。 In the above description, a configuration in which a plurality of storage batteries 1 are arranged in two rows is shown, but the number of columns may be larger than two. When the storage battery 1 is thin like a pouch type, a plurality of rows can be arranged. The number of storage batteries 1 arranged in the module is not limited to eight shown in FIG.
また、上記の説明では電池容器10に巻回体6を収容し、電解液を注入した後に電池蓋11を被せた蓄電池1を例としたが、蓄電池1は、正極、セパレータ及び負極を交互に積層して作製した積層体を電池容器に収納し、電解液を注入して封口した構造であってもよい。 Further, in the above description, the storage battery 1 in which the wound body 6 is housed in the battery container 10 and the electrolytic solution is injected and then the battery cover 11 is put on is taken as an example. However, the storage battery 1 has a positive electrode, a separator, and a negative electrode alternately. The laminated body produced by laminating | stacking may be accommodated in a battery container, and the structure which inject | poured and sealed electrolyte solution may be sufficient.
 実施の形態1に係る蓄電モジュールは、膨れによる変形量が大きい広幅面1wの中央部1c同士が重ならないように蓄電池1を配置しているため、モジュール容器5の変形を抑制し、蓄電池1の劣化の進行を抑えることができる。 In the power storage module according to Embodiment 1, the storage battery 1 is arranged so that the central portions 1c of the wide surface 1w having a large amount of deformation due to swelling do not overlap with each other. Progress of deterioration can be suppressed.
実施の形態2.
 図3は、本発明の実施の形態2に係る蓄電モジュールの構成を示す図である。実施の形態2においては、同じ列で隣り合う蓄電池1の側面1s同士の間に隙間を設けて蓄電池を配置している点で実施の形態1と相違している。側面1s同士の間に間隔を設けることにより、蓄電池1から効率的に放熱することが可能となり、蓄電池1の温度上昇を抑制して劣化を抑えることができる。また、ファンなどの送風により冷却する際に、蓄電池1間に冷却流路ができ、蓄電池1を効率的に冷却できる。この他については、実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 3 is a diagram showing a configuration of the power storage module according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that the storage battery is disposed with a gap provided between the side surfaces 1s of the storage batteries 1 adjacent in the same row. By providing an interval between the side surfaces 1 s, it is possible to efficiently dissipate heat from the storage battery 1, and it is possible to suppress a temperature rise of the storage battery 1 and suppress deterioration. Moreover, when cooling by ventilation, such as a fan, a cooling flow path is made between the storage batteries 1, and the storage battery 1 can be cooled efficiently. Others are the same as in the first embodiment.
実施の形態3.
 図4は、本発明の実施の形態3に係る蓄電モジュールの構成を示す図である。図4では、モジュール容器5を切り欠いて内部の蓄電池1を可視化して示している。実施の形態3においては、モジュール容器5の蓋13にファン14を取り付け、蓄電池1の端子上部から送風により蓄電池1を冷却している点で実施の形態1と相違している。蓄電池1は、電池の外部に突出している正極端子2及び負極端子3が内部の正極8及び負極9と接続されている。このため、正極端子2又は負極端子3を冷却することにより、蓄電池1の内部を効率的に冷却することが可能となる。この他については、実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 4 is a diagram showing the configuration of the power storage module according to Embodiment 3 of the present invention. In FIG. 4, the module battery 5 is notched and the internal storage battery 1 is visualized. The third embodiment is different from the first embodiment in that a fan 14 is attached to the lid 13 of the module container 5 and the storage battery 1 is cooled by blowing air from the upper part of the terminal of the storage battery 1. In the storage battery 1, a positive electrode terminal 2 and a negative electrode terminal 3 protruding to the outside of the battery are connected to an internal positive electrode 8 and a negative electrode 9. For this reason, it becomes possible to cool the inside of the storage battery 1 efficiently by cooling the positive electrode terminal 2 or the negative electrode terminal 3. Others are the same as in the first embodiment.
実施の形態4.
 図5は、本発明の実施の形態4に係る蓄電モジュールの構成を示す図である。実施の形態4においては、蓄電池1の対向する広幅面1w同士の間に蓄電池1に密着してスペーサ板15を配置している点で実施の形態2と相違している。蓄電池1の列同士の間にスペーサ板15を設置することにより、対向する蓄電池1の膨れを抑制しスペーサ板15とモジュール容器5の間で蓄電池1を加圧することにより蓄電池1の膨れを抑え、劣化を抑制する。スペーサ板15の素材は特に限定されないが、ある程度の強度を持った熱伝導性の良好な金属板、又は金属とカーボンとの複合体を板状又はシート状に成型したものが望ましい。即ち、蓄電池1が膨れた時のスペーサ板15への押圧力により変形しない強度を有するものが好ましい。隣接する列の蓄電池1同士の間にスペーサ板15を設けることにより、蓄電池1を効率的に冷却し、蓄電池1の劣化を抑えることができる。
Embodiment 4 FIG.
FIG. 5 is a diagram showing the configuration of the power storage module according to Embodiment 4 of the present invention. The fourth embodiment is different from the second embodiment in that the spacer plate 15 is disposed in close contact with the storage battery 1 between the opposing wide surfaces 1w of the storage battery 1. By installing the spacer plate 15 between the rows of the storage batteries 1, the swelling of the opposing storage batteries 1 is suppressed, and by pressing the storage battery 1 between the spacer plate 15 and the module container 5, the swelling of the storage batteries 1 is suppressed, Suppress deterioration. The material of the spacer plate 15 is not particularly limited, but a metal plate having a certain degree of strength and good thermal conductivity, or a composite of metal and carbon formed into a plate shape or a sheet shape is desirable. That is, it is preferable that the battery 1 has a strength that does not deform due to the pressing force to the spacer plate 15 when the storage battery 1 swells. By providing the spacer plate 15 between the storage batteries 1 in adjacent rows, the storage battery 1 can be efficiently cooled and deterioration of the storage battery 1 can be suppressed.
 スペーサ板15の高さは、蓄電池1の高さより低いことが好ましい。スペーサ板15の高さを低くすることにより、蓄電モジュール自体を軽量化するとともに、スペーサ板15の上部のスペースに計測線などを収納することができる。 The height of the spacer plate 15 is preferably lower than the height of the storage battery 1. By reducing the height of the spacer plate 15, the power storage module itself can be reduced in weight, and a measurement line or the like can be stored in the space above the spacer plate 15.
 また、端位置の蓄電池1に対向するスペースには、蓄電池1の温度及び電圧を計測して上位基板と通信を行うセル監視ユニット(Cell Monitoring Unit,CMU)基板、通信線、端子台、電流ヒューズ、温度ヒューズといった計測部材を収納することが可能である。なお、計測部材は、蓄電モジュールが負荷に電力を供給するために必要となるモジュール状態の計測及び負荷との通信のために必要となる部材の総称である。図6は、実施の形態4に係る蓄電モジュールの蓄電池とモジュール容器の内壁との間のスペースにCMU基板を収納した構成を示す図である。蓄電池1を交互にずらして配置しているため、蓄電モジュール容器5の端部に空きスペースができる。このスペースにCMU基板20のような計測部材を設置することで、モジュール容器5内部の空間を有効に活用できる。 Also, in the space facing the storage battery 1 at the end position, a cell monitoring unit (CMU) board that measures the temperature and voltage of the storage battery 1 and communicates with the upper board, a communication line, a terminal block, a current fuse It is possible to accommodate a measurement member such as a thermal fuse. Note that the measurement member is a generic name for members that are required for measurement of a module state that is necessary for the power storage module to supply power to the load and for communication with the load. FIG. 6 is a diagram illustrating a configuration in which a CMU substrate is accommodated in a space between the storage battery of the power storage module according to Embodiment 4 and the inner wall of the module container. Since the storage batteries 1 are alternately shifted, an empty space is created at the end of the power storage module container 5. By installing a measurement member such as the CMU substrate 20 in this space, the space inside the module container 5 can be used effectively.
 スペーサ板15には、蓄電池1を冷却する放熱構造を付加することもできる。スペーサ板15に放熱構造を付加することにより、蓄電1を効率的に冷却し、劣化を抑えることができる。図7は、実施の形態4に係る蓄電モジュールの冷却パイプを内蔵するスペーサ板の斜視図である。スペーサ板15の内部に冷却パイプ16が内蔵されており、冷却パイプ16の中に冷媒を流して蓄電池を冷却することが可能となっている。冷却パイプ16は銅、真鍮又はアルミニウムといった熱伝導の良好な材料で作製されることが望ましい。また、冷却パイプ16を内蔵するのではなく、スペーサ板15に切削加工を施したり、押出し加工でスペーサ板14を作成するなどして、冷媒が通る流路をスペーサ板15に設けることも可能である。 A heat dissipation structure for cooling the storage battery 1 can be added to the spacer plate 15. By adding a heat dissipation structure to the spacer plate 15, the power storage 1 can be efficiently cooled and deterioration can be suppressed. FIG. 7 is a perspective view of a spacer plate incorporating a cooling pipe of the power storage module according to the fourth embodiment. A cooling pipe 16 is built in the spacer plate 15, and the storage battery can be cooled by flowing a coolant through the cooling pipe 16. The cooling pipe 16 is preferably made of a material having good heat conductivity such as copper, brass or aluminum. Further, instead of incorporating the cooling pipe 16, it is possible to provide the spacer plate 15 with a flow path through which the coolant passes by cutting the spacer plate 15 or creating the spacer plate 14 by extrusion. is there.
 図8は、実施の形態4に係る蓄電モジュールのヒートシンクを備えたスペーサ板の斜視図である。スペーサ板15の内部に複数の板状のヒートシンク17が形成されているため、スペーサ板15の手前方向からファンなどによって、送風による冷却を行うことにより蓄電池1から発生した熱を効率的に外部に逃がすことができる。 FIG. 8 is a perspective view of the spacer plate provided with the heat sink of the power storage module according to the fourth embodiment. Since a plurality of plate-like heat sinks 17 are formed inside the spacer plate 15, the heat generated from the storage battery 1 can be efficiently transferred to the outside by performing cooling by blowing with a fan or the like from the front side of the spacer plate 15. I can escape.
 図9は、実施の形態4に係る蓄電モジュールの本体部と一体化したフィンを備えたスペーサ板の斜視図である。なお、図9には、蓄電池1を合わせて図示している。スペーサ板15には、本体部15aと一体化したフィン15bが本体部15aに対して垂直に形成されている。スペーサ板15は、中心となる本体部15aから、枝分かれしたフィン15bが蓄電池1同士の隙間に設置されるような配置で形成されている。この場合、蓄電池1の広幅面1wからスペーサ板15へ伝わった熱はフィン15bにより放熱される。これにより、蓄電池1から発生した熱を効率的に外部に逃がすことができる。 FIG. 9 is a perspective view of a spacer plate provided with fins integrated with the main body of the power storage module according to the fourth embodiment. In FIG. 9, the storage battery 1 is also illustrated. The spacer plate 15 is formed with fins 15b integrated with the main body 15a perpendicular to the main body 15a. The spacer plate 15 is formed in such an arrangement that the branched fins 15b are installed in the gap between the storage batteries 1 from the main body portion 15a as the center. In this case, the heat transferred from the wide surface 1w of the storage battery 1 to the spacer plate 15 is radiated by the fins 15b. Thereby, the heat generated from the storage battery 1 can be efficiently released to the outside.
実施の形態5.
 図10は、本発明の実施の形態5に係る蓄電モジュールの分解斜視図である。実施の形態5に係る蓄電モジュールは、モジュール容器5の底面51が、蓄電池1の底面形状に沿ったガイド18及び冷却のための通気孔51aを設けた構造となっている点で実施の形態2と相違している。ガイド18は、底面51に蓄電池1の形状に対応する凹部を形成することによって設けられている。ガイド18により、蓄電池1の位置決めを容易にして組立性を高めるとともに、蓄電池1のずれ及び傾きを防止することができる。また、通気孔51を設けて底面51の通気性を高めることで、モジュール容器5内部の温度上昇が抑制でき、蓄電池1の劣化が抑制できる。
Embodiment 5 FIG.
FIG. 10 is an exploded perspective view of the power storage module according to Embodiment 5 of the present invention. The power storage module according to the fifth embodiment is the second embodiment in that the bottom surface 51 of the module container 5 has a structure in which the guide 18 along the bottom surface shape of the storage battery 1 and the air vent 51a for cooling are provided. Is different. The guide 18 is provided by forming a recess corresponding to the shape of the storage battery 1 on the bottom surface 51. The guide 18 facilitates the positioning of the storage battery 1 to improve the assemblability, and prevents the storage battery 1 from being displaced and inclined. Moreover, by providing the air vent 51 and improving the air permeability of the bottom surface 51, the temperature rise inside the module container 5 can be suppressed, and the deterioration of the storage battery 1 can be suppressed.
実施の形態6.
 図11は、本発明の実施の形態6に係る蓄電モジュールの分解斜視図である。なお、図11では、モジュール容器5は、底面51以外は図示を省略している。実施の形態6に係る蓄電モジュールは、モジュール容器5の底面51にスペーサ板15をはめ込むためのガイド19が形成されている点で実施の形態2と相違している。ガイド19に従ってスペーサ板15をはめ込むことによって、蓄電池1を押圧することが可能となっている。実施の形態6においても、実施の形態5と同様に、蓄電池1のずれ及び傾きを防止することができる。また、底面51を通気性が良い構造とすることで、蓄電モジュールの温度上昇が抑制でき、蓄電池1の劣化が抑制できる。
Embodiment 6 FIG.
FIG. 11 is an exploded perspective view of the power storage module according to Embodiment 6 of the present invention. In FIG. 11, the module container 5 is not shown except for the bottom surface 51. The power storage module according to the sixth embodiment is different from the second embodiment in that a guide 19 for fitting the spacer plate 15 to the bottom surface 51 of the module container 5 is formed. The storage battery 1 can be pressed by fitting the spacer plate 15 in accordance with the guide 19. In the sixth embodiment as well, similarly to the fifth embodiment, the shift and inclination of the storage battery 1 can be prevented. Moreover, by making the bottom surface 51 into a structure with good air permeability, the temperature rise of the power storage module can be suppressed, and the deterioration of the storage battery 1 can be suppressed.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1 蓄電池、1c 中央部、1e 端部、1s 側面、1w 広幅面、2 正極端子、3 負極端子、4 ガス放出弁、5 モジュール容器、6 巻回体、7a,7b セパレータ、8 正極、9 負極、10 電池容器、11 電池蓋、12 バスバー、13 蓋、14 ファン、15 スペーサ板、15a 本体部、15b フィン、16 冷却パイプ、17 ヒートシンク、18,19 ガイド、20 CMU基板、51 底面、51a 通気孔。 1 storage battery, 1c center part, 1e end part, 1s side face, 1w wide face, 2 positive electrode terminal, 3 negative electrode terminal, 4 gas release valve, 5 module container, 6 rolls, 7a, 7b separator, 8 positive electrode, 9 negative electrode 10, battery container, 11 battery cover, 12 bus bar, 13 cover, 14 fan, 15 spacer plate, 15a main body, 15b fin, 16 cooling pipe, 17 heat sink, 18, 19 guide, 20 CMU substrate, 51 bottom surface, 51a through Pores.

Claims (8)

  1.  複数列に配列して設置された複数の蓄電デバイスと、該複数の蓄電デバイスを保持するモジュール容器とを有する蓄電モジュールであって、
     前記蓄電デバイスは、正極端子及び負極端子を上にした姿勢で、列ごとに中心位置を配列方向にずらして前記モジュール容器内に配置され、隣り合う前記蓄電デバイス同士の前記正極端子と前記負極端子とが導電部材で接続されていることを特徴とする蓄電モジュール。
    A power storage module having a plurality of power storage devices arranged in a plurality of rows and a module container holding the plurality of power storage devices,
    The power storage device is disposed in the module container with the positive electrode terminal and the negative electrode terminal facing upward, with the center position shifted in the arrangement direction for each column, and the positive electrode terminal and the negative electrode terminal between the adjacent power storage devices Are connected by a conductive member.
  2.  同じ列で隣り合う前記蓄電デバイスの側面の間に間隙を設けたことを特徴とする請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, wherein a gap is provided between side surfaces of the power storage devices adjacent in the same row.
  3.  前記正極端子及び前記負極端子に冷却風を送るファンを有することを特徴とする請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, further comprising a fan that sends cooling air to the positive terminal and the negative terminal.
  4.  前記蓄電デバイスの列同士の間に設置されたスペーサ板を備えることを特徴とする請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, further comprising a spacer plate installed between the rows of the power storage devices.
  5.  前記スペーサ板は、放熱構造を持つことを特徴とする請求項4に記載の蓄電モジュール。 5. The power storage module according to claim 4, wherein the spacer plate has a heat dissipation structure.
  6.  前記モジュール容器の底面に設けられたガイドによって前記蓄電デバイスの間隔が固定されていることを特徴とする請求項1に記載の蓄電モジュール。 The power storage module according to claim 1, wherein a distance between the power storage devices is fixed by a guide provided on a bottom surface of the module container.
  7.  前記底面に、通気孔が設けられていることを特徴とする請求項6に記載の蓄電モジュール。 The electric storage module according to claim 6, wherein a vent hole is provided on the bottom surface.
  8.  前記モジュール容器と前記蓄電デバイスとの間の空間に計測部材を収容したことを特徴とする請求項1から7のいずれか1項に記載の蓄電モジュール。 The power storage module according to any one of claims 1 to 7, wherein a measurement member is accommodated in a space between the module container and the power storage device.
PCT/JP2016/050383 2016-01-07 2016-01-07 Power storage module WO2017119106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050383 WO2017119106A1 (en) 2016-01-07 2016-01-07 Power storage module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050383 WO2017119106A1 (en) 2016-01-07 2016-01-07 Power storage module

Publications (1)

Publication Number Publication Date
WO2017119106A1 true WO2017119106A1 (en) 2017-07-13

Family

ID=59274091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050383 WO2017119106A1 (en) 2016-01-07 2016-01-07 Power storage module

Country Status (1)

Country Link
WO (1) WO2017119106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7559009B2 (en) 2022-06-22 2024-10-01 プライムプラネットエナジー&ソリューションズ株式会社 Energy Storage Module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660204U (en) * 1993-01-21 1994-08-19 富士重工業株式会社 Battery equipment for electric vehicles
JP2011198511A (en) * 2010-03-17 2011-10-06 Mitsubishi Heavy Ind Ltd Battery system
JP2012164463A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Battery module
JP2012169108A (en) * 2011-02-14 2012-09-06 Toyota Motor Corp Power storage device
JP2013518394A (en) * 2010-01-26 2013-05-20 シンベット・コーポレイション Battery array, structure and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660204U (en) * 1993-01-21 1994-08-19 富士重工業株式会社 Battery equipment for electric vehicles
JP2013518394A (en) * 2010-01-26 2013-05-20 シンベット・コーポレイション Battery array, structure and method
JP2011198511A (en) * 2010-03-17 2011-10-06 Mitsubishi Heavy Ind Ltd Battery system
JP2012164463A (en) * 2011-02-04 2012-08-30 Mitsubishi Heavy Ind Ltd Battery module
JP2012169108A (en) * 2011-02-14 2012-09-06 Toyota Motor Corp Power storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7559009B2 (en) 2022-06-22 2024-10-01 プライムプラネットエナジー&ソリューションズ株式会社 Energy Storage Module

Similar Documents

Publication Publication Date Title
KR101806997B1 (en) Battery module
US10446812B2 (en) Battery pack and manufacturing method therefor
KR102210218B1 (en) Battery system, base plate for a battery system and electric vehicle
KR101983391B1 (en) Cooling Device for Battery Module and Battery Module Assembly having the same
JP5617940B2 (en) Square lithium ion secondary battery
KR102072765B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
US10916795B2 (en) Battery module assembly and manufacturing method therefor
US10135047B2 (en) Battery pack
US8053098B2 (en) Power storage unit that effectively controls pressure and vehicle
JPWO2020054229A1 (en) Power supply
US20130130099A1 (en) Secondary battery of differential lead structure
JP2010061988A (en) Storage battery device
KR101761825B1 (en) Battery module, and battery pack including the same
KR20180107569A (en) Battery pack
KR20130046999A (en) Battery cell and battery module using the same
WO2018116735A1 (en) Electricity storage device
US20230187796A1 (en) Battery module
JP4479753B2 (en) Power storage device
WO2017119106A1 (en) Power storage module
EP3413393A1 (en) Electrode assembly for a battery module
JP2019535108A (en) Battery module and battery pack including the same
JP2018170070A (en) Battery pack
WO2018110395A1 (en) Battery pack
JP2015008071A (en) Power storage device module
JP7285878B2 (en) SECONDARY BATTERY, BATTERY MODULE, AND SECONDARY BATTERY MANUFACTURING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP