WO2017113464A1 - Wirelessly rechargeable zigbee network wireless air pressure sensor - Google Patents
Wirelessly rechargeable zigbee network wireless air pressure sensor Download PDFInfo
- Publication number
- WO2017113464A1 WO2017113464A1 PCT/CN2016/072323 CN2016072323W WO2017113464A1 WO 2017113464 A1 WO2017113464 A1 WO 2017113464A1 CN 2016072323 W CN2016072323 W CN 2016072323W WO 2017113464 A1 WO2017113464 A1 WO 2017113464A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air pressure
- pressure sensor
- wireless
- zigbee
- circuit
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L11/00—Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/08—Means for indicating or recording, e.g. for remote indication
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
Definitions
- the invention relates to a wireless charging ZigBee network wireless air pressure sensor, belonging to the ZigBee network wireless air pressure sensor innovation technology.
- Conventional air pressure measuring devices generally use mechanical barometers for direct measurement or single sensor measurements. Data acquisition is done by manual field readings. Mechanical barometer measurements are simple, but require a lot of labor and poor real-time performance in the data acquisition process. Human error is also prone to occur; when there is a large amount of air pressure on the site (such as a large number of airbags in the airbag construction technology), it takes a lot of time to read all the air pressure data.
- the wireless air pressure sensor network based on the ZigBee network mode can measure the air pressure of multiple measuring points and collect the air pressure data of each air pressure point through the ZigBee coordinator, and then display it through the PC interface, or through the network protocol converter. Send it to the cloud and view barometric data on your phone, tablet, and more.
- ZigBee technology is an emerging wireless network technology with close proximity, low complexity, low power consumption, low data rate and low cost. ZigBee technology can give full play to its advantages in situations where data collection or monitoring is required, network data is small, equipment costs are low, data transmission security is high, equipment size is small, terrain is complex, and network coverage is required. . And the ZigBee Alliance has developed a globally open standard for designing reliable, cost-effective, low-power wireless network monitoring and control products.
- the wireless sensor network composed of ZigBee technology is a medium- and short-range, low-rate wireless sensor network.
- Low RF transmission cost each node requires only a small amount of energy; low power consumption, suitable for long-term battery power supply; can achieve point-to-multipoint, two-point peer-to-peer communication; with rapid network automatic configuration, automatic recovery function;
- the sensors can coordinate with each other to achieve data communication. It can be applied to industrial control, modern agricultural monitoring, digital home, intelligent building monitoring, environmental monitoring and other fields.
- the air pressure sensor based on the ZigBee network is driven by a lithium ion battery. Due to the limited battery capacity, the primary charging sensor can only work for a limited time. Therefore, due to the poor battery life of the existing sensor at the use site, there is a problem that the sensor needs to be frequently disassembled to replace the rechargeable battery. With the continuous development and maturity of wireless charging technology, the problem of limited battery life of traditional industrial detection technology sensor node power supply is also solved.
- the wireless charging technology means that a device having a battery is charged by wirelessly acquiring electric power such as electromagnetic induction.
- wireless charging technology in order to solve the problem that the existing battery technology can not keep up with the development of electronic products, so that users get relatively convenient and fast charging needs;
- the existing non-uniform electronic product power interface can be unified To solve the problem of versatility of charging equipment;
- wireless charging does not require an external charging interface, thereby solving the problem of water immersion in electronic products, and also preventing dust from entering electronic products.
- the invention solves the trouble that the battery life of the sensor is poor due to poor battery life and the need to frequently disassemble the sensor to replace the rechargeable battery, and realizes the function of charging the air pressure sensor on the spot by the wireless charging transmitter, thereby greatly improving the continuous use time of the sensor.
- the wirelessly chargeable ZigBee network wireless air pressure sensor of the present invention comprises a ZigBee wireless communication module, an analog air pressure sensor, a wireless charging circuit and an induction coil, wherein the analog air pressure sensor detects the air pressure change to generate an analog output signal.
- the signal output by the ZigBee wireless communication module is sent to the ZigBee wireless network via the antenna, the wireless charging circuit transmits energy through the induction coil and the Qi wireless charging transmitter, and the wireless charging circuit is connected with the lithium battery, and the lithium battery is passed through
- the voltage circuit supplies power to the analog air pressure sensor, and the boost circuit supplies power to the ZigBee wireless communication module through the power conversion circuit.
- the technical solution adopted by the present invention compares with other technologies, and the present invention uses a Qi wireless charging transmitter to charge the sensor in the field.
- the invention can effectively solve the sensor in addition to outdoor use.
- the terminal node needs to constantly change the battery, and can ensure that the node does not lose power for a long time, and solves the problem that the sensor uses the site due to poor battery life and needs to frequently disassemble the sensor to replace the rechargeable battery, thereby realizing the charging of the air pressure sensor on site.
- the function of charging the transmitter greatly improves the continuous use time of the sensor; in addition, the invention can timely reflect the problem and the cause through the indicator light regardless of the failure of the battery or the charging power source, and can protect the central control chip from being damaged by the high voltage current.
- the sensor of the invention can be applied to the airbag air pressure monitoring, on-site industrial control, tire pressure monitoring, environmental monitoring, medical treatment and the like in ship launching construction.
- Figure 1 is a schematic block diagram of the present invention.
- the wirelessly charged ZigBee network wireless air pressure sensor is characterized by comprising a ZigBee wireless communication module, an analog air pressure sensor, a wireless charging circuit and an induction coil, wherein the analog air pressure sensor detects the air pressure change.
- the analog output signal is transmitted to the ZigBee wireless communication module, and the signal output by the ZigBee wireless communication module is sent to the ZigBee wireless network via the antenna, the wireless charging circuit transmits energy through the induction coil and the Qi wireless charging transmitter, and the wireless charging circuit is connected to the lithium battery.
- the lithium battery supplies power to the analog air pressure sensor through the boost circuit, and the boost circuit supplies power to the ZigBee wireless communication module through the power conversion circuit.
- the charging control circuit includes a charging control chip, and the charging control chip transmits energy through the induction coil and the Qi wireless charging transmitter.
- the ZigBee wireless communication module includes a radio frequency front end amplifying circuit and a radio frequency communication circuit
- the radio frequency communication circuit includes a microprocessor and an RF transceiver
- the analog air pressure sensor detects the air pressure change to generate an analog output signal through the A/D conversion port.
- the signal output by the microprocessor is sent by the RF transceiver and the RF amplifying circuit to the ZigBee wireless network via the antenna.
- the boosting circuit supplies power to the radio frequency communication circuit and the radio frequency front end amplifying circuit through the power conversion circuit.
- the microprocessor is connected to the indication module.
- the indication module includes a power status indicator, a network status indicator, and an operation status indicator.
- the wireless charging circuit realizes the transmission of electric energy through the induction coil and the Qi wireless charging transmitter through a wireless manner.
- the induction coil is an induction coil of the type 760308101303 manufactured by Würth, Germany.
- the above Qi wireless charging transmitter is a Qi standard using the Wireless Charging Alliance (WPC).
- the working principle of the invention is as follows: as shown in FIG. 1 , when the lithium battery is low in power, the battery is charged by using the Qi wireless charging transmitter.
- the wireless charging transmitter is connected to the external power source and connected through the Würth induction coil.
- the charging control chip determines whether the lithium battery is charged after the judgment of the charging control chip. If the voltage state provided by the adapter meets the charging standard, the charging control chip charges the lithium battery according to the set charging current. After the lithium battery is full, the charging control chip The charging mode is automatically terminated.
- the system enters the normal working process after the lithium battery is turned on, the voltage of 3.7V is changed to the standard 5V voltage by the booster circuit. After a voltage of 5V is passed through the 3.3V voltage conversion circuit, the voltage is supplied to the RF communication circuit and the RF.
- the front-end amplifier circuit works normally; the other 5V voltage is used for the analog air pressure sensor to work normally. .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
Claims (9)
- 一种可无线充电的ZigBee网络无线气压传感器,其特征在于包括有ZigBee无线通讯模块、模拟气压传感器、无线充电电路及感应线圈,其中模拟气压传感器检测到气压变化产生模拟输出信号传输至ZigBee无线通讯模块,ZigBee无线通讯模块输出的信号经天线发送至ZigBee无线网络,无线充电电路通过感应线圈与Qi无线充电发射器传递能量,且无线充电电路与锂电池连接,锂电池通过升压电路为模拟气压传感器供电,且升压电路通过电源转换电路为ZigBee无线通讯模块供电。 A wirelessly chargeable ZigBee network wireless air pressure sensor, comprising a ZigBee wireless communication module, an analog air pressure sensor, a wireless charging circuit and an induction coil, wherein the analog air pressure sensor detects a change in air pressure to generate an analog output signal for transmission to a ZigBee wireless communication Module, the signal output by the ZigBee wireless communication module is sent to the ZigBee wireless network via the antenna, the wireless charging circuit transmits energy through the induction coil and the Qi wireless charging transmitter, and the wireless charging circuit is connected with the lithium battery, and the lithium battery passes the boosting circuit to simulate the air pressure. The sensor is powered, and the boost circuit supplies power to the ZigBee wireless communication module through the power conversion circuit.
- 根据权利要求1所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述充电控制电路中包括有充电控制芯片,充电控制芯片通过感应线圈和Qi无线充电发射器传递能量。The wirelessly chargeable ZigBee network wireless air pressure sensor according to claim 1, wherein the charging control circuit comprises a charging control chip, and the charging control chip transmits energy through the induction coil and the Qi wireless charging transmitter.
- 根据权利要求1所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述ZigBee无线通讯模块包括射频前端放大电路及射频通信电路,射频通信电路包括有微处理器及RF收发器,模拟气压传感器检测到气压变化产生模拟输出信号通过A/D转换端口传输至微处理器,微处理器输出的信号由RF收发器及射频放大电路经天线发送至ZigBee无线网络。The wirelessly chargeable ZigBee network wireless air pressure sensor according to claim 1, wherein the ZigBee wireless communication module comprises a radio frequency front end amplifying circuit and a radio frequency communication circuit, and the radio frequency communication circuit comprises a microprocessor and an RF transceiver, and the analog air pressure is The sensor detects the change of the air pressure and generates an analog output signal to the microprocessor through the A/D conversion port. The signal output by the microprocessor is sent by the RF transceiver and the RF amplifying circuit to the ZigBee wireless network via the antenna.
- 根据权利要求3所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述升压电路通过电源转换电路为射频通信电路和射频前端放大电路供电。The wirelessly chargeable ZigBee network wireless air pressure sensor according to claim 3, wherein the boosting circuit supplies power to the radio frequency communication circuit and the radio frequency front end amplifying circuit through the power conversion circuit.
- 根据权利要求3所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述微处理器连接有指示模块。The wirelessly chargeable ZigBee network wireless air pressure sensor of claim 3 wherein said microprocessor is coupled to an indicator module.
- 根据权利要求5所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述指示模块包括有电源状态指示灯、网络状态指示灯、运行状态指示灯。The wirelessly chargeable ZigBee network wireless air pressure sensor according to claim 5, wherein the indication module comprises a power status indicator, a network status indicator, and an operation status indicator.
- 根据权利要求1至6任一项所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述无线充电电路通过感应线圈与Qi无线充电发射器是通过无线的方式实现电能的传递。The wirelessly chargeable ZigBee network wireless air pressure sensor according to any one of claims 1 to 6, wherein the wireless charging circuit realizes the transmission of electric energy by means of an induction coil and a Qi wireless charging transmitter.
- 根据权利要求7所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述感应线圈是型号为760308101303的感应线圈。The wirelessly chargeable ZigBee network wireless air pressure sensor according to claim 7, wherein said induction coil is an induction coil of the type 760308101303.
- 根据权利要求7所述的可无线充电的ZigBee网络无线气压传感器,其特征在于上述Qi无线充电发射器是采用无线充电联盟的Qi标准。The wirelessly chargeable ZigBee network wireless air pressure sensor according to claim 7, wherein said Qi wireless charging transmitter is a Qi standard using a wireless charging alliance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511005168.2A CN105527050A (en) | 2015-12-29 | 2015-12-29 | Wireless rechargeable ZigBee network air pressure sensor |
CN201511005168.2 | 2015-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017113464A1 true WO2017113464A1 (en) | 2017-07-06 |
Family
ID=55769418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/072323 WO2017113464A1 (en) | 2015-12-29 | 2016-01-27 | Wirelessly rechargeable zigbee network wireless air pressure sensor |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105527050A (en) |
WO (1) | WO2017113464A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108860534A (en) * | 2016-08-19 | 2018-11-23 | 周漪楠 | A kind of device for preventing submarine cliff of displacement formula and rapidly sinking |
CN111800515A (en) * | 2017-12-06 | 2020-10-20 | 上海麦腾物联网技术有限公司 | Wireless communication management method for Internet of things embedded equipment |
CN108365642A (en) * | 2017-12-26 | 2018-08-03 | 中国航发四川燃气涡轮研究院 | A kind of telemetry system for revolving part test is for electric installation and control method |
CN109186587A (en) * | 2018-09-14 | 2019-01-11 | 中国水利水电科学研究院 | A kind of variable pebble bed-load motion study device counted certainly with track of specific gravity |
CN109443628B (en) * | 2018-12-20 | 2024-08-16 | 中国工程物理研究院应用电子学研究所 | High-power microwave source strong electromagnetic environment air pressure measuring device |
CN213183009U (en) | 2020-08-17 | 2021-05-11 | 开利公司 | Smoke detector capable of being charged in multiple modes and fire fighting system comprising smoke detector |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219557A (en) * | 2013-04-02 | 2013-07-24 | 深圳市微航磁电技术有限公司 | Battery with wireless charging function |
CN203758679U (en) * | 2013-12-20 | 2014-08-06 | 广东工业大学 | Wireless intelligent air pressure sensor based on ZigBee network mode |
CN204180250U (en) * | 2014-09-29 | 2015-02-25 | 黎妙娟 | There is the sound equipment of QI standard radio charge function |
TW201519920A (en) * | 2013-11-19 | 2015-06-01 | Univ Chang Gung | Supporting rack having micro sensor |
CN104931082A (en) * | 2014-03-21 | 2015-09-23 | 罗伯特·博世有限公司 | Sensor device and method for producing a sensor device |
US20150338283A1 (en) * | 2014-05-20 | 2015-11-26 | Hon Hai Precision Industry Co., Ltd. | Device and method for temperature monitoring in multiple areas using one sensor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9130407B2 (en) * | 2008-05-13 | 2015-09-08 | Qualcomm Incorporated | Signaling charging in wireless power environment |
CN202111487U (en) * | 2011-05-12 | 2012-01-11 | 赵东晶 | Wireless charging device |
CN102431397A (en) * | 2011-11-09 | 2012-05-02 | 吉林市航盛宏宇电子有限公司 | Wireless charging automobile tire pressure monitoring device |
CN103607026A (en) * | 2013-11-27 | 2014-02-26 | 上海电器科学研究院 | Intelligent switch with wireless charging function and charging method |
CN205336265U (en) * | 2015-12-29 | 2016-06-22 | 广东工业大学 | ZigBee network wireless baroceptor that can wirelessly charge |
-
2015
- 2015-12-29 CN CN201511005168.2A patent/CN105527050A/en active Pending
-
2016
- 2016-01-27 WO PCT/CN2016/072323 patent/WO2017113464A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219557A (en) * | 2013-04-02 | 2013-07-24 | 深圳市微航磁电技术有限公司 | Battery with wireless charging function |
TW201519920A (en) * | 2013-11-19 | 2015-06-01 | Univ Chang Gung | Supporting rack having micro sensor |
CN203758679U (en) * | 2013-12-20 | 2014-08-06 | 广东工业大学 | Wireless intelligent air pressure sensor based on ZigBee network mode |
CN104931082A (en) * | 2014-03-21 | 2015-09-23 | 罗伯特·博世有限公司 | Sensor device and method for producing a sensor device |
US20150338283A1 (en) * | 2014-05-20 | 2015-11-26 | Hon Hai Precision Industry Co., Ltd. | Device and method for temperature monitoring in multiple areas using one sensor |
CN204180250U (en) * | 2014-09-29 | 2015-02-25 | 黎妙娟 | There is the sound equipment of QI standard radio charge function |
Also Published As
Publication number | Publication date |
---|---|
CN105527050A (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017113464A1 (en) | Wirelessly rechargeable zigbee network wireless air pressure sensor | |
WO2017113463A1 (en) | Usb rechargeable wireless air pressure sensor based on zigbee network | |
CN103528623A (en) | Multifunctional environment monitor | |
CN112543130B (en) | Intelligent communication detection system and communication method thereof | |
CN203724080U (en) | Embedded apparatus for sensing vital signs and environment information | |
CN203503106U (en) | Household intelligent robot dolly | |
CN104517394A (en) | Household intelligent robot trolley | |
CN205336265U (en) | ZigBee network wireless baroceptor that can wirelessly charge | |
CN205449375U (en) | USB rechargeable zigBee network wireless baroceptor | |
CN201331349Y (en) | Motion displacement wireless detecting system | |
CN105652197A (en) | Portable electromagnetic relay tester with wireless communication function | |
CN205981500U (en) | But remote control's intelligent pressure transmitter | |
CN203658883U (en) | Temperature and humidity monitoring system for power battery pack of electric vehicle | |
CN211824552U (en) | Artificial intelligence humiture collection system | |
CN208190661U (en) | A kind of LoRa signal strength monitoring terminal device | |
CN202042044U (en) | Universal Remote Wireless Monitoring Module | |
CN207867326U (en) | The system for carrying out intelligent measurement based on several sensing equipments | |
CN215300517U (en) | Power adapter with environment state detection function and expansion piece | |
CN205126213U (en) | Body temperature data intelligence memory system | |
CN204988349U (en) | Large -scale public building thing environment monitoring device | |
CN210007421U (en) | intelligent charging cabinet | |
CN201293937Y (en) | Wireless sensor network device for circumstance detection | |
CN206311932U (en) | Usb data transponder based on LoRa modulation techniques | |
CN206593697U (en) | Wireless senser suitable for gathering temperature-humidity signal | |
CN206672312U (en) | Multifunction wireless smoke fire detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16880274 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16880274 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/12/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16880274 Country of ref document: EP Kind code of ref document: A1 |