[go: up one dir, main page]

WO2017113310A1 - 电容触摸模组的调校方法及调校装置 - Google Patents

电容触摸模组的调校方法及调校装置 Download PDF

Info

Publication number
WO2017113310A1
WO2017113310A1 PCT/CN2015/100154 CN2015100154W WO2017113310A1 WO 2017113310 A1 WO2017113310 A1 WO 2017113310A1 CN 2015100154 W CN2015100154 W CN 2015100154W WO 2017113310 A1 WO2017113310 A1 WO 2017113310A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
value
module
capacitive touch
adjusting
Prior art date
Application number
PCT/CN2015/100154
Other languages
English (en)
French (fr)
Inventor
朱剑磊
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to PCT/CN2015/100154 priority Critical patent/WO2017113310A1/zh
Priority to CN201580073626.8A priority patent/CN107209612A/zh
Publication of WO2017113310A1 publication Critical patent/WO2017113310A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Definitions

  • the invention relates to a capacitive touch module, and in particular to a calibration method and a calibration device for a capacitive touch module.
  • a capacitive touch module used on a control panel such as a household appliance includes a plurality of capacitive sensors and a processing chip connected to the capacitive sensor.
  • the plurality of capacitive sensors form a plurality of touch points, and the processing chip outputs a corresponding touch when touching each touch point. The value, so the touch operation can be detected based on the value of the processing chip output.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the main purpose of the present invention is to provide a method for adjusting a capacitive touch module, and the tuning method includes:
  • the predetermined test point comprises a plurality
  • the capacitive touch module includes a plurality of sensors
  • a value corresponding to the output of each of the predetermined test points is determined by the sensor below the predetermined test point or the surrounding sensor.
  • each of the sensors corresponds to a plurality of the output values and a plurality of the difference values; the adjusting step includes:
  • the adjusting sub-steps comprise:
  • a first adjusting substep comparing the difference value corresponding to each of the sensors, and adjusting the sensor with the largest difference value
  • the first adjustment sub-step is repeated.
  • the senor includes a plurality of parameters; the adjusting sub-step includes:
  • the senor includes a capacitor; the controlling step includes:
  • the calculating sub-step calculates the output value based on the capacitance change value.
  • the tuning method comprises:
  • the calibrating device of the embodiment of the present invention is used for calibrating a capacitive touch module, wherein the capacitive touch module includes a processing chip and a sensor; and the adjusting device comprises:
  • control module configured to control the touch device to touch a predetermined test point of the capacitive touch module to obtain an output value of the processing chip
  • a processing module for comparing the output value with a standard value to obtain a difference value
  • an adjustment module connected to the processing module, configured to adjust a determination trigger threshold of the predetermined test point of the capacitive touch module or a sensitivity of the sensor according to the difference value.
  • the predetermined test point comprises a plurality
  • the capacitive touch module includes a plurality of sensors; the output value corresponding to each of the predetermined test points is determined by the sensor below the predetermined test point or the surrounding sensor.
  • each of the sensors corresponds to a plurality of the output values and a plurality of the difference values; the adjustment module is configured to adjust the plurality of the difference values according to the plurality of Said sensor.
  • the processing module is configured to compare the difference values corresponding to each of the sensors to obtain a maximum difference value
  • the adjustment module is configured to adjust the sensor corresponding to the maximum difference value.
  • the senor includes a plurality of parameters
  • the processing module is configured to compare the difference value and the difference threshold
  • the adjusting module is configured to adjust the plurality of parameters of the sensor corresponding to the difference value when an absolute value of the difference value is greater than the difference threshold;
  • the adjustment module is further configured to fine-tune a parameter of the sensor corresponding to the difference value when an absolute value of the difference value is less than or equal to the difference threshold.
  • the senor comprises a capacitor
  • the control module is configured to control a touch device to touch a predetermined test point of the capacitive touch module to obtain a capacitance change value
  • the calibration device further includes a processing module, the processing module configured to calculate the output value according to the capacitance change value.
  • control module is configured to control the touch device to repeatedly touch a predetermined test point of the capacitive touch module to obtain a plurality of sets of the output values
  • the processing module is configured to obtain the difference value with higher reliability according to the plurality of sets of the output values.
  • the adjustment method and the adjustment device of the embodiment of the invention are adopted, and the adjustment is fast and accurate, and the automatic adjustment is easy.
  • FIG. 1 is a schematic flow chart of a calibration method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of functional modules of a calibration apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a capacitive touch module in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another capacitive touch module in accordance with an embodiment of the present invention.
  • FIG. 5 is a side view of a capacitive touch module according to an embodiment of the present invention.
  • FIG. 6 is a side elevational view of a capacitive touch module and a touch device according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing comparison of output values and standard values corresponding to predetermined test points of the capacitive touch module according to the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a difference value corresponding to a predetermined test point of the capacitive touch module according to the embodiment of the present invention.
  • FIG. 9 is a flow chart showing an adjustment substep of the calibration method according to the embodiment of the present invention.
  • FIG. 10 is a schematic flow chart showing an adjustment substep of the calibration method according to the embodiment of the present invention.
  • 11 is a flow chart showing the control steps of the calibration method according to the embodiment of the present invention.
  • FIG. 12 is a schematic flow chart of a calibration method according to an embodiment of the present invention.
  • the calibration method of the embodiment of the present invention can be implemented by the calibration apparatus 100 of the embodiment of the present invention and used to calibrate the capacitive touch module 200.
  • the capacitive touch module widely used in high-end electronic devices such as mobile phones or tablet computers adopts densely distributed capacitive sensors and processing chips with many channels, and is applied to a glass panel to support functions such as multi-touch and coordinate recognition.
  • capacitive touch modules use fewer, simpler capacitive sensors and fewer processing chips for non-glass panel materials such as flexible circuit boards, circuit boards, and transparent conductive films, and can be applied to digital products. (for example, wearable devices) and input panels for home appliances.
  • the capacitive touch module 200 is a mutual capacitive touch module, and includes a transmit capacitive sensor Tx0 and three receive capacitive sensors Rx0, Rx1, and Rx2.
  • the emission capacitance sensor Tx0 includes a first ring electrode and a second ring electrode.
  • the diameter of the first annular electrode is larger than the diameter of the second annular electrode.
  • the three receiving capacitance sensors Rx0, Rx1, and Rx2 are disposed between the first ring-shaped electrode and the second ring-shaped electrode.
  • the three receiving capacitance sensors Rx0, Rx1, and Rx2 each have an arc-shaped comb structure, that is, substantially arc-shaped and form a comb shape at both ends.
  • the three receiving capacitance sensors Rx0, Rx1, and Rx2 are nested with each other.
  • the transmitting capacitance sensor Tx0 and the three receiving capacitance sensors Rx0, Rx1, and Rx2 are mutually inductive, so when the predetermined touch point is touched, the capacitance between the transmitting capacitance sensor Tx0 and the three receiving capacitance sensors Rx0, Rx1, and Rx2 changes.
  • the result is that the processing chip output of the capacitive touch module outputs a corresponding value.
  • the capacitive touch module is a self-capacitive capacitive touch module and includes three receiving capacitive sensors Rx3, Rx4, and Rx5.
  • the receiving capacitive sensor Rx3 is two semi-comb electrodes and is oppositely disposed.
  • the receiving capacitive sensors Rx4 and Rx5 are disposed between the two semi-comb electrodes of the receiving capacitive sensor Rx3, and the receiving capacitive sensors Rx4 and Rx5 are comb-shaped and nested with each other and with the two semi-comb electrodes of the receiving capacitive sensor Rx3. Nested to each other.
  • the calibration method of the embodiment of the present invention includes:
  • the touch device 110 is controlled to touch a predetermined test point of the capacitive touch module 200 to obtain an output value of the processing chip 220 of the capacitive touch module 200;
  • the calibration device 100 of the embodiment of the present invention is used to adjust the capacitive touch module 200 .
  • the capacitive touch module 200 includes a processing chip 220 and a sensor 210 .
  • the calibration apparatus 100 of the embodiment of the present invention includes a touch device 110, a control module 120, a processing module 130, and an adjustment module 140.
  • step S1 can be implemented by control module 120
  • step S2 can be implemented by processing module 130
  • step S3 can be implemented by adjustment module 140.
  • the control module 120 is configured to control the touch device 110 to touch a predetermined test point of the capacitive touch module 200 to obtain an output value of the processing chip 220. After the touch device 110 touches a predetermined test point, the sensor 200 generates a capacitance change, and the processing chip 220 converts the capacitance change into an output value.
  • the processing module 130 is configured to compare the value output by the processing chip 220 with a standard value to obtain a difference value.
  • the adjustment module 140 is configured to adjust the determination trigger threshold of the predetermined test point of the capacitive touch module 200 or the sensitivity of the corresponding sensor 210 according to the difference value.
  • the predetermined test point may be a touch button of the capacitive touch module 200. By touching the corresponding predetermined test point processing chip 220, the corresponding value may be output to enable the electronic device (not shown) using the capacitive touch module 200 to implement the corresponding function.
  • the capacitive touch module 200 can include a touch screen 90 touch screen 230 and a sensor 210 disposed under the touch screen 230 of the touch screen 90 .
  • the predetermined test point 80 is located on the touch screen 90 of the touch screen 90 .
  • the output value of the processing chip 220 is in one-to-one correspondence with the predetermined test point 80, and is related to the output of the sensor 210 near the predetermined test point 80, and is a value obtained by comprehensively calculating the output of the sensor 210 by the processing chip 220 through a preset algorithm. Determining the trigger threshold by adjusting the predetermined test point 80 can avoid false positives and improve the accuracy of the decision trigger.
  • the output value of the processing chip 220 of the predetermined test point 80-10 of the capacitive touch module 200 is designed to be 500, and the original setting determination threshold is such that the determination range is 495 to 505, but the actual production of a certain capacitive touch module 200 is scheduled for a test point.
  • the output of the processing chip 220 of 80-1 is 493, which causes the judgment to be misaligned, and even a misjudgment occurs.
  • the output value is changed to 500 or other values between 495 and 505, that is, the calibration is successful, so that the determination is made. accurate.
  • the touch device may include a metal bar 111 including a ground terminal 1111 grounded through a capacitor and a touch terminal 1113 for the touch capacitive touch module 200 .
  • the touch device may further include a stepping motor 113 and a guide rail (not shown) or the like, and the metal rod 111 may be slid along the required trajectory by driving the stepping motor 113.
  • the processing module 130 receives and processes the relevant data to obtain an output value.
  • the capacitive touch module 200 can have a plurality of predetermined test points 80 . Additionally, the capacitive touch module 200 can include a plurality of sensors 210. The output value of the processing chip 220 corresponding to each predetermined test point 80 is determined by the sensor 210 below the predetermined test point 80 or the surrounding sensor 210. Each predetermined test point 80 can correspond to one or more sensors 210. The output value corresponding to each predetermined test point 80 can be associated with one or The sensor outputs of the plurality of sensors 210 are related.
  • each predetermined test point 80 in FIG. 5 and its associated sensor 210 are:
  • Predetermined test point 80-3 sensor 210-1 and sensor 210-2;
  • Predetermined test point 80-4 sensor 210-1 and sensor 210-2;
  • Predetermined test point 80-7 sensor 210-2 and sensor 210-3;
  • the sensing output of the plurality of sensors 210 around the touch point is generally affected.
  • the touch causes the capacitance values of the plurality of capacitors to change. Therefore, the output value corresponding to each predetermined test point 80 should also be obtained based on the sensing output of one or more sensors 210 associated with the predetermined test point 80, which is advantageous for improving the accuracy of the judgment.
  • each sensor 210 corresponds to an output value of the plurality of processing chips 220 and a plurality of difference values
  • step S3 includes:
  • the sensor 210 is adjusted according to a plurality of difference values corresponding to the sensor 210.
  • the step S31 can be implemented by the adjustment module 140.
  • the adjustment module 140 is configured to adjust the sensor 210 according to a plurality of difference values corresponding to the sensor 210.
  • the adjustment sensor 210 may be the sensitivity of the adjustment sensor 210. It can be understood that if the output value corresponding to each predetermined test point 80 can be related to the plurality of sensors 210, the sensing output of each sensor 210 can also affect the output value or difference value corresponding to the plurality of predetermined test points 80. Therefore, when adjusting the sensor 210, reference should be made to a plurality of difference values associated with the sensor 210.
  • FIG. 7 is a comparison between the standard value of each predetermined test point 80 and the output value of the processing chip 220
  • FIG. 8 is a difference value corresponding to each predetermined test point.
  • the difference values of the predetermined test points 80-3, 80-4, 80-5, and 80-6 are relatively large, and it can be considered that the sensor 210-2 is out of alignment, so refer to the predetermined test points 80-3, 80.
  • each of the sensors 210 in FIG. 5 and the predetermined test points 80 corresponding to the difference values affected by them are:
  • the difference values corresponding to the predetermined test points 80-1, 80-2, 80-3, and 80-4 can be referred to, and when the sensor 210-2 is adjusted, the predetermined test point 80-3 can be referred to,
  • the predetermined test point 80-3 can be referred to
  • the difference values of 80-4, 80-5, 80-6, 80-7, and 80-8 refer to the predetermined test points 80-7, 80-8, 80-9, and 80-10 when adjusting the sensor 210-3. Corresponding difference value.
  • step S31 may further include:
  • step S311 is repeated.
  • the step S311 may be implemented by the processing module 130 and the adjustment module 140, that is, the processing module 130 is configured to compare the difference values corresponding to the respective sensors 210 to obtain a maximum difference value, and the adjustment module 140 is configured to adjust the maximum difference value.
  • the processing module 130 is configured to compare the difference values corresponding to the respective sensors 210 to obtain a maximum difference value
  • the adjustment module 140 is configured to adjust the maximum difference value.
  • the sensor 210 corresponding to the adjusted maximum difference value may be the sensitivity of the adjustment sensor 210.
  • Each sensor 210 can correspond to a difference value of a plurality of predetermined test points 80. Therefore, the comparison of the corresponding difference values between the sensor 210 and the sensor 210 is a comprehensive comparison. For example, multiple corresponding to each sensor 210 can be calculated first. The average of the difference values is compared to the average of each sensor 210 to determine which sensor 210 to adjust first.
  • step S311 means that each time the sensor 210 is adjusted, the sensor 210 having the largest difference value is re-compared and judged, and the sensor 210 is adjusted. By repeating the above comparison and adjustment process, the respective sensors 210 are gradually adjusted. The advantage of this is that each adjustment makes priority to adjust the sensor 210 with a large deviation, so that there is no longer a large deviation of the sensor 210 after multiple adjustments.
  • the absolute value of the difference value corresponding to the sensor 210-2 is the largest, and the absolute value of the difference value corresponding to the sensor 210-3 is the second, that is, the sensor 210-2 is adjusted first, and if the adjustment is completed, the sensor 210-2 If the absolute value of the corresponding difference value is smaller than that of the sensor 210-3, the sensor 210-3 is adjusted.
  • sensor 210 can include a plurality of parameters, such as parameter a, parameter b, and parameter c.
  • Step S31 may include:
  • Step S313 comparing the difference value with the difference threshold, and adjusting a plurality of parameters of the sensor 210 corresponding to the difference value when the absolute value of the difference value is greater than the difference threshold, or fine-tuning and the difference value when the absolute value of the difference value is less than or equal to the difference threshold A corresponding parameter of the sensor 210.
  • Step S313 can be implemented by the processing module 130 and the adjustment module 140.
  • the processing module 130 is configured to compare the difference value and the difference threshold, and the adjusting module 140 is configured to adjust the plurality of parameters of the sensor 210 corresponding to the difference value when the absolute value of the difference value is greater than the difference threshold.
  • the adjustment module 140 is further configured to fine-tune a parameter of the sensor 210 corresponding to the difference value when the absolute value of the difference value is less than or equal to the difference threshold.
  • the adjustment of the sensor 210 involves multiple parameters of the sensor 210.
  • multiple parameters of the sensor 210 may be adjusted, such as adjusting one parameter or multiple units of parameters a, b, and c respectively;
  • one of the plurality of parameters of the sensor 210 can be adjusted, such as adjusting the parameter a by one unit.
  • the adjustment speed and the accuracy are adjusted, and the plurality of parameters are adjusted so that the absolute value of the difference value corresponding to the sensor 210 is reduced as soon as possible, and fine adjustment is performed after a small degree to further improve the accuracy of the touch determination. .
  • the parameters of the sensor 210 can be adjusted step by step.
  • Such a manner of adjusting different number of parameters for different difference value sizes is also advantageous for implementing automatic control, and automatically implementing the above adjustment by writing a program setting rule.
  • the parameters of the sensor 210 can be adjusted step by step.
  • sensor 210 includes a capacitor.
  • Step S1 may include:
  • Step S11 controlling the touch device to touch the predetermined test point 80 of the capacitive touch module 200 to obtain a capacitance change value
  • step S13 the output value of the processing chip 220 is calculated based on the capacitance change value.
  • Step S11 in this embodiment may be implemented by the control module 120, and step S13 may be implemented by the processing module 130 of the calibration apparatus 100.
  • the control module 120 is configured to control the predetermined test point 80 of the touch device touch capacitive touch module 200 to obtain a capacitance change value.
  • the processing module 130 is configured to calculate an output value of the processing chip 220 according to the capacitance change value.
  • the principle of using the capacitive sensor 210 is that when a finger or other grounding conductor is touched, the capacitance value of the capacitive sensor 210 changes, and an input signal is introduced into the setting circuit where the capacitor is located to obtain an output signal including a capacitance change value.
  • the output signal of one or more of the capacitance outputs associated with a predetermined test point 80 is processed by the processing chip 220 to obtain an output value corresponding to the predetermined test point 80.
  • the tuning method includes:
  • Step S4 repeating step S1 to obtain output values of the plurality of sets of processing chips 220;
  • step S5 a difference value with higher reliability is obtained according to the output values of the plurality of sets of processing chips 220.
  • the step S4 can be implemented by the control module 120 of the calibration apparatus 100 of the embodiment of the present invention, and the step S5 can be implemented by the processing module 130.
  • the control module 120 is configured to control the touch device to repeat the predetermined test point 80 of the touch capacitive touch module 200 to obtain output values of the plurality of sets of processing chips 220.
  • the processing module 130 is configured to obtain a difference value with high reliability according to the output values of the plurality of sets of processing chips 220.
  • step S5 the output values of the plurality of sets of processing chips 220 may be comprehensively processed, for example, deleting a group having a large difference from other group data, or calculating an average value, etc., and performing a comprehensive processing to obtain a set of difference values having a higher reliability. data.
  • the difference value data thus obtained has high reliability and can be used for calibration.
  • the present invention also provides a capacitive touch module 200 that can be calibrated using the calibration apparatus 100 of the embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically defined otherwise.
  • the terms “installation”, “connected”, and “connected” should be understood broadly, and may be a fixed connection, for example, or They are detachable or integrally connected; they can be mechanically connected, they can be electrically connected or can communicate with each other; they can be connected directly or indirectly through an intermediate medium, which can be internal or two components of two components. Interaction relationship.
  • an intermediate medium which can be internal or two components of two components. Interaction relationship.
  • the "on" or “below” of the second feature may include direct contact of the first and second features, and may also include the first sum, unless otherwise specifically defined and defined.
  • the second feature is not in direct contact but through additional features between them.
  • the first feature “above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly above and above the second feature, or merely the first feature level being less than the second feature.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the embodiments of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

一种电容触摸模组(200)的调校装置(100)及调校方法。首先,控制触摸装置(110)触摸所述电容触摸模组(200)的预定测试点(80)以获得所述电容触摸模组(200)的处理芯片(220)的输出数值(S1)。然后,比较所述输出数值与标准数值以得到差异值(S2)。最后,根据所述差异值调整所述电容触摸模组(200)的预定测试点(80)的判定触发阈值或所述传感器(210)的灵敏度(S3)。上述调校方法调校快速、准确,且易实现自动化调校。

Description

电容触摸模组的调校方法及调校装置 技术领域
本发明涉及电容触摸模组,特别涉及一种电容触摸模组的调校方法及调校装置。
背景技术
目前在一些家用电器等控制面板上使用的电容触摸模组包括多个电容传感器及与电容传感器连接的处理芯片,多个电容传感器形成多个触摸点,处理芯片在触摸每个触摸点时输出对应的数值,因此可以根据处理芯片输出的数值来侦测触摸操作。
然而,限于生产工艺,即使是同批生产的两个电容触摸模组,触摸相同的触摸点,两个处理芯片输出的数值也可能不同,因此需要调校。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
本发明的主要目的在于提供一种电容触摸模组的调校方法,所述调校方法包括:
控制步骤,控制触摸装置触摸所述电容触摸模组的预定测试点以获得所述电容触摸模组的处理芯片的输出数值;
比较步骤,比较所述输出数值与标准数值以得到差异值;及
调整步骤,根据所述差异值调整所述电容触摸模组的所述预定测试点的判定触发阈值或对应的传感器的灵敏度。
在某些实施方式中,所述预定测试点包括多个;
所述电容触摸模组包括多个传感器;
对应每个所述预定测试点的所述输出的数值由所述预定测试点下方的所述传感器或周围的所述传感器确定。
在某些实施方式中,每个所述传感器对应多个所述输出数值及多个所述差异值;所述调整步骤包括:
调整子步骤,根据与所述传感器对应的所述多个所述差异值调整所述传感器。
在某些实施方式中,所述调整子步骤包括:
第一调整子步骤,比较各个所述传感器对应的所述差异值,并调整所述差异值最大的所述传感器;及
重复所述第一调整子步骤。
在某些实施方式中,所述传感器包括多个参数;所述调整子步骤包括:
第二调整子步骤,比较所述差异值与差异阈值,并在所述差异值的绝对值大于所述差异阈值时调整与所述差异值对应的所述传感器的所述多个参数,或在所述差异值的绝对值小于等于所述差异阈值时微调与所述差异值对应的所述传感器的一个参数。
在某些实施方式中,所述传感器包括电容;所述控制步骤包括:
控制子步骤,控制触摸装置触摸所述电容触摸模组的预定测试点以获得电容变化值;及
计算子步骤,根据所述电容变化值计算所述输出数值。
在某些实施方式中,所述调校方法包括:
重复所述控制步骤以得到多组所述输出数值;及
根据所述多组所述输出数值得到信度较高的所述差异值。
本发明实施方式的调校装置,用于调校电容触摸模组,其特征在于,所述电容触摸模组包括处理芯片及传感器;所述调校装置包括:
触摸装置;
控制模块,用于控制所述触摸装置触摸所述电容触摸模组的预定测试点以获得所述处理芯片的输出数值;
处理模块,用于比较所述输出数值与标准数值以得到差异值;及
与所述处理模块连接的调整模块,用于根据所述差异值调整所述电容触摸模组的预定测试点的判定触发阈值或所述传感器的灵敏度。
在某些实施方式中,所述预定测试点包括多个;
所述电容触摸模组包括多个传感器;对应每个所述预定测试点的所述输出数值由所述预定测试点下方的所述传感器或周围的所述传感器确定。
在某些实施方式中,每个所述传感器对应多个所述输出数值及多个所述差异值;所述调整模块用于根据与所述传感器对应的所述多个所述差异值调整所述传感器。
在某些实施方式中,所述处理模块用于比较各个所述传感器对应的所述差异值以得到最大差异值;
所述调整模块用于调整所述最大差异值对应的所述传感器。
在某些实施方式中,所述传感器包括多个参数;
所述处理模块用于比较所述差异值与差异阈值;
所述调整模块用于在所述差异值的绝对值大于所述差异阈值时调整与所述差异值对应的所述传感器的所述多个参数;
所述调整模块还用于在所述差异值的绝对值小于等于所述差异阈值时微调与所述差异值对应的所述传感器的一个参数。
在某些实施方式中,所述传感器包括电容;
所述控制模块用于控制触摸装置触摸所述电容触摸模组的预定测试点以获得电容变化值;
所述调校装置还包括处理模块,所述处理模块用于根据所述电容变化值计算所述输出数值。
在某些实施方式中,所述控制模块用于控制所述触摸装置重复触摸所述电容触摸模组的预定测试点以获得多组所述输出数值;
所述处理模块用于根据所述多组所述输出数值得到信度较高的所述差异值。
采用本发明实施方式的调校方法及调校装置,调校快速、准确,且易实现自动化调校。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的调校方法的流程示意图。
图2是本发明实施方式的调校装置的功能模块示意图。
图3是本发明实施方式的电容触摸模组的示意图。
图4是本发明实施方式的另一个电容触摸模组的示意图。
图5是本发明实施方式的电容触摸模组的侧视示意图。
图6是本发明实施方式的电容触摸模组及触摸装置的侧视示意图。
图7是本发明实施方式的电容触摸模组的预定测试点对应的输出数值与标准数值的比较示意图。
图8是本发明实施方式的电容触摸模组的预定测试点对应的差异值的示意图。
图9是本发明实施方式的调校方法的调整子步骤的流程示意图。
图10是本发明实施方式的调校方法的调整子步骤的流程示意图。
图11是本发明实施方式的调校方法的控制步骤的流程示意图。
图12是本发明实施方式的调校方法的流程示意图。
具体实施方式
下面详细描述本发明的实施方式的实施方式,所述实施方式的示例在附图中示出, 其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
请参阅图1~2,本发明实施方式的调校方法可以由本发明实施方式的调校装置100实现,并用于调校电容触摸模组200。
目前广泛应用于手机或平板电脑等高端电子装置的电容触摸模组采用密集分布的电容传感器及通道较多的处理芯片,并应用于玻璃面板上,可以支持多点触摸及坐标识别等功能。
然而,也有一些电容触摸模组采用较少、较简单的电容传感器及通道较少的处理芯片,应用于柔性电路板、电路板及透明导电膜等非玻璃面板材质上,并可以应用于数码产品(例如可穿戴设备)及家电产品的输入面板上。
请参阅图3,在某些实施方式中,电容触摸模组200为互容式电容触摸模组,并包括发射电容传感器Tx0及三个接收电容传感器Rx0、Rx1、Rx2。
发射电容传感器Tx0包括第一环状电极及第二环状电极。第一环状电极的直径比第二环状电极的直径大。三个接收电容传感器Rx0、Rx1、Rx2设置在第一环状电极及第二环状电极之间。三个接收电容传感器Rx0、Rx1、Rx2均具有弧形梳状结构,即基本呈弧形且在两端分别形成梳状。三个接收电容传感器Rx0、Rx1、Rx2相互嵌套。
发射电容传感器Tx0与三个接收电容传感器Rx0、Rx1、Rx2之间相互感应,因此当触摸预定触摸点时,发射电容传感器Tx0与三个接收电容传感器Rx0、Rx1、Rx2之间的电容会发生变化,导致电容触摸模组的处理芯片输出对应的数值。
请参阅图4,在另外的实施方式中,电容触摸模组为自容式电容触摸模组,并包括三个接收电容传感器Rx3、Rx4、Rx5。
接收电容传感器Rx3为两个半梳状电极,并相对设置。接收电容传感器Rx4、Rx5设置在接收电容传感器Rx3的两个半梳状电极之间,接收电容传感器Rx4、Rx5两端呈梳状并相互嵌套且与接收电容传感器Rx3的两个半梳状电极相互嵌套。
请重新参阅图1~2,本发明实施方式的调校方法包括:
S1,控制触摸装置110触摸电容触摸模组200的预定测试点以获得电容触摸模组200的处理芯片220的输出数值;
S2,比较处理芯片220的输出数值与标准数值以得到差异值;及
S3,根据差异值调整电容触摸模组200的预定测试点的判定触发阈值或对应的传感器210的灵敏度。
请参阅图2,本发明实施方式的调校装置100,用于调校电容触摸模组200,电容触摸模组200包括处理芯片220及传感器210。本发明实施方式的调校装置100包括触摸装置110、控制模块120、处理模块130及调整模块140。
在某些实施方式中,步骤S1可由控制模块120实现,步骤S2可由处理模块130实现,步骤S3可由调整模块140实现。也就是说,控制模块120用于控制触摸装置110触摸电容触摸模组200的预定测试点以获得处理芯片220的输出数值。触摸装置110触摸预定测试点后,传感器200产生电容变化,处理芯片220将电容变化转化为输出的数值。处理模块130用于比较处理芯片220输出的数值与标准数值以得到差异值。调整模块140用于根据差异值调整电容触摸模组200的预定测试点的判定触发阈值或对应的传感器210的灵敏度。
预定测试点可以是电容触摸模组200的触摸按键,通过触摸相应的预定测试点处理芯片220可以输出对应的数值从而使采用电容触摸模组200的电子装置(图未示)实现相应的功能。
下面以图4的电容触摸模组200为例说明本发明实施方式的调校方法及调校装置,然而,可以理解,本发明的调校方法及调校装置不应于以下讨论的实施方式,而可以根据需求在本发明的精神内作合适的变化。
请参阅图5,电容触摸模组200可包括触摸屏90触摸屏230及设置于触摸屏90触摸屏230下方的传感器210,预定测试点80位于触摸屏90触摸屏230上。处理芯片220的输出数值与预定测试点80一一对应,与预定测试点80附近的传感器210的输出有关,是传感器210的输出通过预设算法经处理芯片220综合计算而得到的数值。通过调整预定测试点80判定触发阈值可避免误判,提升判定触发的精准度。
例如设计电容触摸模组200的预定测试点80-10的处理芯片220的输出数值为500,原设定判定阈值使判定范围为495~505,但实际生产的某电容触摸模组200预定测试点80-1的处理芯片220的输出为493,导致判定失准,甚至出现误判,通过调整判定阈值使判定范围为490~505,即可解决上述问题。或者,通过调整传感器210的灵敏度,以改变处理芯片220的输出数值,如上例中通过调整传感器210的灵敏度使输出数值变为500或495与505之间的其他数值,即调校成功,使判定准确。
请参阅图6,触摸装置可包括用金属棒111,金属棒111包括通过电容接地的接地端1111及用于触摸电容触摸模组200的触摸端1113。触摸装置还可包括步进电机113及导轨(图未示)等,通过驱动步进电机113使得金属棒111可沿着所需要的轨迹滑动。每移动到相应的预定测试点80,处理模块130即接收并处理相关数据以得到输出数值。
请参阅图5,在某些实施方式中,电容触摸模组200可以有多个预定测试点80。此外,电容触摸模组200可包括多个传感器210。对应每个预定测试点80的处理芯片220的输出数值由预定测试点80下方的传感器210或周围的传感器210确定。每个预定测试点80可对应一个或多个传感器210。每个预定测试点80对应的输出数值可与一个或 多个传感器210的传感输出有关。
例如,图5中各个预定测试点80及与其有关的传感器210分别为:
预定测试点80-1——传感器210-1;
预定测试点80-2——传感器210-1;
预定测试点80-3——传感器210-1及传感器210-2;
预定测试点80-4——传感器210-1及传感器210-2;
预定测试点80-5——传感器210-2;
预定测试点80-6——传感器210-2;
预定测试点80-7——传感器210-2及传感器210-3;
预定测试点80-8——传感器210-2及传感器210-3;
预定测试点80-9——传感器210-3;
预定测试点80-10——传感器210-3;
人手触摸电容触摸模组200时一般会影响触摸点周围多个传感器210的传感输出,例如,若传感器210采用电容传感器210,触摸会导致多个电容的电容值发生变化。因此,每个预定测试点80对应的输出数值也应根据与预定测试点80相关的一个或多个传感器210的传感输出得到,这样有利于提升判断的精准度。
在某些实施方式中,每个传感器210对应多个处理芯片220的输出数值及多个差异值,步骤S3包括:
S31,根据与传感器210对应的多个差异值调整传感器210。
在某些实施方式中,步骤S31可由调整模块140实现,具体的,调整模块140用于根据与传感器210对应的多个差异值调整传感器210。
其中调整传感器210可以是调整传感器210的灵敏度。可以理解,若每个预定测试点80对应的输出数值可与多个传感器210有关,每个传感器210的传感输出也可影响多个预定测试点80对应的输出数值或差异值。所以在调整传感器210的时候,应参考与该传感器210相关的多个差异值。
例如,请一并参阅图7及图8,图7是各个预定测试点80的标准数值与处理芯片220的输出数值的比较,图8是各个预定测试点对应的差异值。图7中,预定测试点80-3、80-4、80-5、80-6对应的差异值较大,可认为是传感器210-2失准导致,因此参考预定测试点80-3、80-4、80-5、80-6的差异值调整传感器210-2。
例如,图5中各个传感器210及受其影响的差异值对应的预定测试点80分别为:
传感器210-1——预定测试点80-1、80-2、80-3及80-4
传感器210-2——预定测试点80-3、80-4、80-5、80-6、80-7及80-8
传感器210-3——预定测试点80-7、80-8、80-9及80-10
也就是说,调整传感器210-1时可参考预定测试点80-1、80-2、80-3及80-4对应的差异值,调整传感器210-2时可参考预定测试点80-3、80-4、80-5、80-6、80-7及80-8对应的差异值,调整传感器210-3时可参考预定测试点80-7、80-8、80-9及80-10对应的差异值。
请参阅图9,在某些实施方式中,步骤S31可进一步包括:
S311,比较各个传感器210对应的差异值,并调整差异值最大的传感器210;及
S312,重复步骤S311。
在某些实施方式中,步骤S311可采用处理模块130及调整模块140实现,即处理模块130用于比较各个传感器210对应的差异值以得到最大差异值,调整模块140用于调整最大差异值对应的传感器210。其中,调整最大差异值对应的传感器210可以是调整传感器210的灵敏度。
每个传感器210可对应多个预定测试点80的差异值,因此,传感器210与传感器210之间的对应差异值的比较是一种综合比较,例如,可以先计算每个传感器210对应的多个差异值的平均值,再比较各传感器210的该平均值,以判断先调整哪个传感器210。
例如,通过求取与各传感器210对应的各差异值的平均值,发现传感器210-2的该平均值的绝对值较大,因此先调整传感器210-2。重复步骤S311是指,每调整完一个传感器210,再重新比较和判断对应的差异值最大的传感器210并对其进行调整,通过反复进行上述比较和调整的过程,逐步将各个传感器210调整完毕。这样的好处是,每一次调整都优先调整偏差较大的传感器210,从而保证多次调整后不再有偏差较大的传感器210存在。
例如,请参阅图7,传感器210-2对应的差异值的绝对值最大,传感器210-3对应的差异值的绝对值次之,即先调整传感器210-2,若调整完成后传感器210-2对应的差异值的绝对值小于传感器210-3的,则调整传感器210-3。
这样重复进行比较及调整的方式还有利于实现自动化控制,通过编写程序设定规则,来实现自动实施上述重复调整的步骤。
请参阅图10,在某些实施方式中,传感器210可包括多个参数,如参数a、参数b及参数c。步骤S31可包括:
步骤S313,比较差异值与差异阈值,并在差异值的绝对值大于差异阈值时调整与差异值对应的传感器210的多个参数,或在差异值的绝对值小于等于差异阈值时微调与差异值对应的传感器210的一个参数。
步骤S313可由处理模块130及调整模块140实现。处理模块130用于比较差异值与差异阈值,调整模块140用于在差异值的绝对值大于差异阈值时调整与差异值对应的传感器210的多个参数。调整模块140还用于在差异值的绝对值小于等于差异阈值时微调与差异值对应的传感器210的一个参数。
传感器210的调整涉及传感器210的多个参数,当差异值较大时,可对传感器210的多个参数进行调整,如分别调整参数a、b、c一个单位或多个单位;当差异值较小时,可对传感器210的多个参数中的其中一个参数进行调整,如调整参数a一个单位。
这样兼顾了调整速度及精准度,在对多个参数进行调整以使传感器210对应的差异值的绝对值尽快减小,在小到一定程度后再进行微调,以使触摸判定的精准度进一步提升。通过反复进行此步骤,可逐步将传感器210的参数调整准确。
这样针对不同差异值大小进行不同数目参数的调整的方式还有利于实现自动化控制,通过编写程序设定规则,来实现自动实施上述调整。通过循环调用该程序,可逐步将传感器210的参数调整准确。
请参阅图11,在某些实施方式中,传感器210包括电容。
步骤S1可包括:
步骤S11,控制触摸装置触摸电容触摸模组200的预定测试点80以获得电容变化值;及
步骤S13,根据电容变化值计算处理芯片220的输出数值。
本实施方式中的步骤S11可由控制模块120实现,步骤S13可由调校装置100的处理模块130实现。控制模块120用于控制触摸装置触摸电容触摸模组200的预定测试点80以获得电容变化值。处理模块130用于根据电容变化值计算处理芯片220的输出数值。
采用电容传感器210的原理是,当手指或其他接地导体触摸,电容传感器210的电容值会发生变化,在电容所在的设定电路中导入输入信号,得到包含电容变化值的输出信号。与某预定测试点80相关的一个或多个电容输出端的输出信号经处理芯片220综合处理可得到与该预定测试点80相对应的输出数值。
请参阅图12,在某些实施方式中,调校方法包括:
步骤S4,重复步骤S1以得到多组处理芯片220的输出数值;及
步骤S5,根据多组处理芯片220的输出数值得到信度较高的差异值。
其中步骤S4可由本发明实施方式的调校装置100的控制模块120实现,步骤S5可由处理模块130实现。控制模块120用于控制触摸装置重复触摸电容触摸模组200的预定测试点80以获得多组处理芯片220的输出数值。处理模块130用于根据多组处理芯片220的输出数值得到信度较高的差异值。
在步骤S5中,可对多组处理芯片220的输出数值进行综合处理,例如删除与其他组数据相差较大的组,或计算平均值等,经过综合处理得到信度较高的一组差异值数据。这样得到的差异值数据可靠度较高,可用于调校。本发明还提供一种电容触摸模组200,可采用本发明实施方式的调校装置100进行调校。
在本发明的实施方式的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明的实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的实施方式的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的实施方式中的具体含义。
在本发明的实施方式中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的实施方式的不同结构。为了简化本发明的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介 质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种电容触摸模组的调校方法,其特征在于,所述调校方法包括:
    控制步骤,控制触摸装置触摸所述电容触摸模组的预定测试点以获得所述电容触摸模组的处理芯片的输出数值;
    比较步骤,比较所述输出数值与标准数值以得到差异值;及
    调整步骤,根据所述差异值调整所述电容触摸模组的所述预定测试点的判定触发阈值或对应的传感器的灵敏度。
  2. 如权利要求1所述的电容触摸模组的调校方法,其特征在于,所述预定测试点包括多个;
    所述电容触摸模组包括多个传感器;
    对应每个所述预定测试点的所述输出的数值由所述预定测试点下方的所述传感器或周围的所述传感器确定。
  3. 如权利要求1所述的电容触摸模组的调校方法,其特征在于,每个所述传感器对应多个所述输出数值及多个所述差异值;所述调整步骤包括:
    调整子步骤,根据与所述传感器对应的所述多个所述差异值调整所述传感器。
  4. 如权利要求3所述的电容触摸模组的调校方法,其特征在于,所述调整子步骤包括:
    第一调整子步骤,比较各个所述传感器对应的所述差异值,并调整所述差异值最大的所述传感器;及
    重复所述第一调整子步骤。
  5. 如权利要求3所述的电容触摸模组的调校方法,其特征在于,所述传感器包括多个参数;所述调整子步骤包括:
    第二调整子步骤,比较所述差异值与差异阈值,并在所述差异值的绝对值大于所述差异阈值时调整与所述差异值对应的所述传感器的所述多个参数,或在所述差异值的绝对值小于等于所述差异阈值时微调与所述差异值对应的所述传感器的一个参数。
  6. 如权利要求1所述的电容触摸模组的调校方法,其特征在于,所述传感器包括电容;所述控制步骤包括:
    控制子步骤,控制触摸装置触摸所述电容触摸模组的预定测试点以获得电容变化值;及
    计算子步骤,根据所述电容变化值计算所述输出数值。
  7. 如权利要求1所述的电容触摸模组的调校方法,其特征在于,所述调校方法包括:
    重复所述控制步骤以得到多组所述输出数值;及
    根据所述多组所述输出数值得到信度较高的所述差异值。
  8. 一种调校装置,用于调校电容触摸模组,其特征在于,所述电容触摸模组包括处理芯片及传感器;所述调校装置包括:
    触摸装置;
    控制模块,用于控制所述触摸装置触摸所述电容触摸模组的预定测试点以获得所述处理芯片的输出数值;
    处理模块,用于比较所述输出数值与标准数值以得到差异值;及
    与所述处理模块连接的调整模块,用于根据所述差异值调整所述电容触摸模组的预定测试点的判定触发阈值或所述传感器的灵敏度。
  9. 如权利要求8所述的调校装置,其特征在于,所述预定测试点包括多个;
    所述电容触摸模组包括多个传感器;对应每个所述预定测试点的所述输出数值由所述预定测试点下方的所述传感器或周围的所述传感器确定。
  10. 如权利要求8所述的调校装置,其特征在于,每个所述传感器对应多个所述输出数值及多个所述差异值;所述调整模块用于根据与所述传感器对应的所述多个所述差异值调整所述传感器。
  11. 如权利要求10所述的调校装置,其特征在于,所述处理模块用于比较各个所述传感器对应的所述差异值以得到最大差异值;
    所述调整模块用于调整所述最大差异值对应的所述传感器。
  12. 如权利要求10所述的调校装置,其特征在于,所述传感器包括多个参数;
    所述处理模块用于比较所述差异值与差异阈值;
    所述调整模块用于在所述差异值的绝对值大于所述差异阈值时调整与所述差异值 对应的所述传感器的所述多个参数;
    所述调整模块还用于在所述差异值的绝对值小于等于所述差异阈值时微调与所述差异值对应的所述传感器的一个参数。
  13. 如权利要求8所述的调校装置,其特征在于,所述传感器包括电容;
    所述控制模块用于控制触摸装置触摸所述电容触摸模组的预定测试点以获得电容变化值;
    所述调校装置还包括处理模块,所述处理模块用于根据所述电容变化值计算所述输出数值。
  14. 如权利要求8所述的调校装置,其特征在于,所述控制模块用于控制所述触摸装置重复触摸所述电容触摸模组的预定测试点以获得多组所述输出数值;
    所述处理模块用于根据所述多组所述输出数值得到信度较高的所述差异值。
PCT/CN2015/100154 2015-12-31 2015-12-31 电容触摸模组的调校方法及调校装置 WO2017113310A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/100154 WO2017113310A1 (zh) 2015-12-31 2015-12-31 电容触摸模组的调校方法及调校装置
CN201580073626.8A CN107209612A (zh) 2015-12-31 2015-12-31 电容触摸模组的调校方法及调校装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/100154 WO2017113310A1 (zh) 2015-12-31 2015-12-31 电容触摸模组的调校方法及调校装置

Publications (1)

Publication Number Publication Date
WO2017113310A1 true WO2017113310A1 (zh) 2017-07-06

Family

ID=59224401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100154 WO2017113310A1 (zh) 2015-12-31 2015-12-31 电容触摸模组的调校方法及调校装置

Country Status (2)

Country Link
CN (1) CN107209612A (zh)
WO (1) WO2017113310A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109984579A (zh) * 2017-12-29 2019-07-09 浙江绍兴苏泊尔生活电器有限公司 触摸按键的处理方法和装置、烹饪器具
CN117075758A (zh) * 2023-10-13 2023-11-17 武汉海微科技有限公司 自动化调整屏幕灵敏度方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092378A (zh) * 2011-11-02 2013-05-08 联咏科技股份有限公司 触控感测方法
CN103105979A (zh) * 2011-07-19 2013-05-15 佳能株式会社 电子设备及其控制方法
CN103235672A (zh) * 2013-04-11 2013-08-07 深圳市天微电子有限公司 电容触摸屏自动校准方法与系统
CN103488364A (zh) * 2013-09-29 2014-01-01 Tcl集团股份有限公司 一种电容式触摸屏及其自适应校正方法、系统
CN104461136A (zh) * 2014-12-03 2015-03-25 无锡华润矽科微电子有限公司 触控装置中动态阈值调整电路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103294289B (zh) * 2012-03-02 2016-02-03 禾瑞亚科技股份有限公司 具自动校正的电容式触控系统及方法
CN103543888B (zh) * 2012-07-16 2016-09-07 联咏科技股份有限公司 电容式触控装置及其感测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105979A (zh) * 2011-07-19 2013-05-15 佳能株式会社 电子设备及其控制方法
CN103092378A (zh) * 2011-11-02 2013-05-08 联咏科技股份有限公司 触控感测方法
CN103235672A (zh) * 2013-04-11 2013-08-07 深圳市天微电子有限公司 电容触摸屏自动校准方法与系统
CN103488364A (zh) * 2013-09-29 2014-01-01 Tcl集团股份有限公司 一种电容式触摸屏及其自适应校正方法、系统
CN104461136A (zh) * 2014-12-03 2015-03-25 无锡华润矽科微电子有限公司 触控装置中动态阈值调整电路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109984579A (zh) * 2017-12-29 2019-07-09 浙江绍兴苏泊尔生活电器有限公司 触摸按键的处理方法和装置、烹饪器具
CN109984579B (zh) * 2017-12-29 2022-08-02 浙江绍兴苏泊尔生活电器有限公司 触摸按键的处理方法和装置、烹饪器具
CN117075758A (zh) * 2023-10-13 2023-11-17 武汉海微科技有限公司 自动化调整屏幕灵敏度方法、装置、设备及存储介质
CN117075758B (zh) * 2023-10-13 2024-01-30 武汉海微科技有限公司 自动化调整屏幕灵敏度方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN107209612A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
KR102066017B1 (ko) 좌표 표시 장치 및 좌표 표시 장치의 입력 위치를 측정하는 좌표 측정 장치
US9069427B2 (en) High noise immunity sensing methods and apparatus for a capacitive touch device
US10691268B2 (en) Touch sensitive processing apparatus, method and electronic system
US9952728B2 (en) Device and method for measuring capacitance difference
US10739920B2 (en) Touch sensitive processing apparatus, system and method thereof
CN109002230B (zh) 触摸屏校准方法、装置以及电子设备
US10712870B2 (en) Method for improving fault tolerance of touchscreen and touchscreen terminal
CN102902404A (zh) 触摸面板
US20210326023A1 (en) Data detection method and device, storage medium and touch device
KR20140017255A (ko) C―type tsp을 이용한 전자펜 입력 인식 장치 및 방법
CN103941927A (zh) 触摸信号检测电路及方法和触摸设备
US20150193075A1 (en) Touch apparatus and touch method thereof
US20120127111A1 (en) Control methods for sensing devices
WO2017113310A1 (zh) 电容触摸模组的调校方法及调校装置
US9213457B2 (en) Driving method for touch panel and touch control system
TWI694358B (zh) 用於設定和觸控面板之連接參數的觸控處理裝置、電子系統與其觸控處理方法
CN108958565A (zh) 用于多点电容触控的坐标计算方法、触控装置及移动终端
CN104881187B (zh) 信号处理方法
CN204203950U (zh) 一种测试触摸屏的测试系统及触控笔
CN103677432A (zh) 触控面板驱动方法及触控系统
CN104375696B (zh) 触摸屏感应值自校正的装置与方法
CN108762567B (zh) 一种位置解析度测量方法及装置
CN110162209B (zh) 电容式感测装置、环境事件检测方法及校正时机判断方法
CN208126355U (zh) 一种检测装置
WO2019000288A1 (zh) 一种触控响应方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 161118)

122 Ep: pct application non-entry in european phase

Ref document number: 15911936

Country of ref document: EP

Kind code of ref document: A1