WO2017107129A1 - 穿绕硅钢带磁芯的电力变压器及其制作方法 - Google Patents
穿绕硅钢带磁芯的电力变压器及其制作方法 Download PDFInfo
- Publication number
- WO2017107129A1 WO2017107129A1 PCT/CN2015/098662 CN2015098662W WO2017107129A1 WO 2017107129 A1 WO2017107129 A1 WO 2017107129A1 CN 2015098662 W CN2015098662 W CN 2015098662W WO 2017107129 A1 WO2017107129 A1 WO 2017107129A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- winding
- silicon steel
- core
- steel strip
- windings
- Prior art date
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 238000004804 winding Methods 0.000 claims abstract description 218
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000000137 annealing Methods 0.000 claims abstract description 17
- 229910052802 copper Inorganic materials 0.000 claims abstract description 16
- 239000010949 copper Substances 0.000 claims abstract description 16
- 239000000919 ceramic Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000011521 glass Substances 0.000 claims abstract description 5
- 229910052573 porcelain Inorganic materials 0.000 claims description 42
- 230000000712 assembly Effects 0.000 claims description 38
- 238000000429 assembly Methods 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 16
- 238000005192 partition Methods 0.000 claims description 15
- 125000006850 spacer group Chemical group 0.000 claims description 13
- 241001669679 Eleotris Species 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 238000009413 insulation Methods 0.000 claims description 7
- 239000002966 varnish Substances 0.000 claims description 7
- 239000003973 paint Substances 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000005470 impregnation Methods 0.000 claims description 5
- 239000003365 glass fiber Substances 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 3
- 238000005219 brazing Methods 0.000 claims description 2
- 238000010292 electrical insulation Methods 0.000 claims description 2
- 238000010791 quenching Methods 0.000 claims 1
- 230000000171 quenching effect Effects 0.000 claims 1
- 238000005496 tempering Methods 0.000 claims 1
- 230000004907 flux Effects 0.000 abstract description 7
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 239000003063 flame retardant Substances 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- 238000007654 immersion Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 28
- 238000010586 diagram Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000446313 Lamella Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/25—Magnetic cores made from strips or ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
Definitions
- the invention relates to a medium and three-phase power transformer of medium capacity of 30 to 1600 kVA (kVA) and a manufacturing method thereof, in particular to first making a winding, placing it on a special machine tool and winding a silicon steel strip to form a magnetic core, and then implementing 750 ° C Process for overall annealing to 800 °C.
- kVA kVA
- Prior art power transformers whether oil-immersed or dry, must cut or punch silicon steel sheets of various sizes, and stack them into a circular cylinder with a transverse cross-section of the bread, and then assemble into a core. structure. The process is numerous and complicated, and the material waste is also a lot, and the transformer produced is large in magnetic leakage and low in power conversion efficiency.
- the high-efficiency power transformers that have been produced in the prior art have various forms, including amorphous iron core transformers and R-type transformers.
- the amorphous iron core transformer has low iron loss value but large volume, and the iron core manufacturing process is troublesome, becomes brittle after annealing, has poor mechanical impact resistance, and is low in cost performance, and is difficult to promote.
- the R-type transformer has compact structure, small floor space, reasonable layout, optimized magnetic circuit, low loss and remarkable power saving effect, but its production process is complicated and costly, and the disadvantage of producing corner residual material cannot be completely avoided.
- the patent does not disclose the specific process steps of the technology for power transformer manufacturing, and the specific embodiment of such single-phase and three-phase power transformers that are wound around a silicon steel strip core.
- the technical problem to be solved by the present invention is to avoid the disadvantages of the above-mentioned prior art high-performance transformer production process complicated and high in cost, and to provide a high-performance wound core power transformer structure with simple production process and low cost and its fabrication method.
- the technical solution adopted by the present invention to solve the technical problem is a power transformer which is wound around a silicon steel strip magnetic core, and is suitable for a capacity range of 30 to 1600 kVA, and includes at least one winding-magnetic core module and an insulating support for mounting and fixing the same
- the winding-core module includes at least two winding assemblies; each winding assembly includes inner and outer windings that are nested together in a common central axis; each inner and outer winding includes an inner and outer porcelain skeleton And the inner and outer coils of the fiberglass insulated copper wire wound on the inner and outer porcelain skeletons respectively; the inner cavity of the inner and outer windings has a substantially rectangular cavity at the center of the cross section, and is used for accommodating a winding silicon steel strip and nesting the two windings; the winding-core module is end-to-end connected by a central axis of each winding assembly and positioned on a special machine tool, and is inserted from a gap between adjacent two winding assemblies The silicon steel strip
- the winding-core module comprises 3 to 4 winding assemblies, the central axes of each of the winding assemblies are end-to-end connected in a ring shape, which together have a toroidal core of the same wound silicon steel strip; outer coils of each outer winding They are connected in series, parallel or mixed, and are used as high-voltage primary side coils; the inner layer coils of the inner layer windings are connected in series, parallel or mixed with each other, or respectively output and independently supply power, and are used as secondary voltages of lower voltage. Side coils; this arrangement is for better magnetic coupling.
- the two ends of the inner and outer porcelain skeleton respectively have respective protrusions which are radially protruded around the outer surface thereof and extend axially; the inner layer winding is locked in the outer layer winding by its own protrusion In the cavity, the inner and outer windings are respectively fixed and fixed by respective porcelain skeleton protrusions.
- the power transformer for winding a silicon steel strip core further includes a center spacer disposed at a central axis of the winding-core module for insulation between the outer windings, the center spacer having a central cylindrical shape
- the central axis of the through hole is an axis of symmetry, and at least two spacers are uniformly distributed, and the spacers are embedded between two outer windings for electrically connecting the two high voltage sides to improve the electrical insulation strength therebetween.
- the inner and outer annular surfaces of the inner and outer porcelain skeletons are respectively provided with inner and outer porcelain skeleton partitions for facilitating winding of the inner and outer coils and radially extending and axially extending.
- the insulating support device further comprises a set of single-phase columns of the same electrical ceramics and two upper and lower ring sleepers of the same number as the winding assembly; the annular sleepers are provided with the same number of winding assemblies for fixed connection with the single-phase column a fixed partition, the winding assembly is embedded between each of the upper and lower fixed partitions of the annular sleeper; the single-phase column is provided with a single-phase column connecting ear for connecting with the input and output wiring devices .
- the insulating support device further includes a set of three-phase column and four ring sleepers of the same size as the winding assembly; the ring sleeper is provided with the same number of winding assemblies for fixed connection with the three-phase column a fixed partition; each of the four annular sleepers is embedded with a winding assembly for each of the winding core modules; the winding assembly is embedded in each of the upper and lower fixed partitions of the annular sleepers
- the three-phase column is provided with a three-phase column connecting ear for connecting with the input and output wiring devices.
- the inner windings are electrically connected to each other by a brazing joint between the edges of the inner porcelain skeleton; the outer windings are connected to each other by a fastener across the connecting line between the edges of the outer porcelain skeleton Electrical connection.
- the input wiring device includes a porcelain bottle for high voltage input wire insulation; the output wiring device includes a connection groove at the inner winding end for connection with the inner layer coil, and a connection between the connection groove and the external output copper row The copper bars are electrically connected.
- the technical solution adopted by the present invention to solve the technical problem may also be a winding-magnetic core module for a power transformer, comprising at least two winding assemblies; each winding assembly includes a coaxially stacked inner core, Outer windings; each inner and outer windings respectively comprise inner and outer porcelain skeletons, and inner and outer coils of glass fiber insulated copper wires respectively wound on respective porcelain skeletons;
- the cavity at the central portion of the cross-section of the outer winding is approximately rectangular, for accommodating the wound silicon steel strip and for arranging the two windings;
- the winding-core module is connected end to end by the central axis of each winding assembly
- the ring is positioned on a special machine tool, and the silicon steel strip is automatically wound from the gap between the adjacent two winding assemblies until the inner cavity of each inner winding is filled to form a common core of each winding assembly; each winding assembly and a toroidal magnetic core wound by a silicon steel strip together constitutes a winding-core module; and
- the technical solution adopted by the present invention to solve the technical problem may also be a method for manufacturing the power transformer of the wound silicon steel strip magnetic core, comprising the following steps: Step A: in the inner and outer layers of the porcelain The inner and outer coils are respectively wound around the skeleton to form inner and outer windings; the inner and outer coils are all wound by an insulated copper wire wrapped or wrapped with a matte glass ribbon; step B: The inner layer windings are respectively coaxially inserted into the outer layer windings to form a winding assembly, and then at least two winding assemblies are placed on a special machine for winding the silicon steel strip, and the central axes of the winding assemblies are connected end to end. The ring is positioned thereon, and the silicon steel strip is inserted from the gap between the adjacent two winding assemblies until the inner cavity of each inner winding is filled to form a common core of each winding assembly.
- step C the winding assemblies which are wound by the common magnetic core, including their inner and outer porcelain skeletons and the inner and outer coils wound thereon are put together
- the annealing furnace is tempered for 12 to 24 hours, and the annealing temperature is 750 ° C to 800 ° C to eliminate the influence of the internal stress of the silicon steel strip during the winding process on its magnetic permeability.
- step D the winding assemblies which are entangled by the common magnetic core after being annealed in the step C, and when they are cooled to an ambient temperature of 5 ° C to 40 ° C, the whole is Put the insulating paint into the vacuum container for 30 minutes to 5 hours, take out and dry, and make the winding-core module to be used.
- step E a winding-magnetic core module impregnated with the insulating varnish by the step D is mounted and fixed on an insulating support device composed of two annular sleepers and four single-phase columns made of electrical ceramics. A single phase power transformer.
- step F three windings of the insulating varnish impregnated with step D - the core module is layered and mounted on an insulating support consisting of four annular sleepers and four electrical ceramics three-phase columns And the inner or outer coils of each of the winding-core modules are respectively connected in a star or a triangle to form a three-phase power transformer.
- the beneficial effects of the present invention are as follows: 1. Since the magnetization direction of the wound core is completely consistent with the rolling direction of the silicon steel sheet, and there is no joint between the core layers, the magnetic circuit is everywhere. The magnetic flux distribution is uniform, there is no obvious high resistance zone, and there is no distortion of the magnetic flux density at the joint; under the premise of the same material, the wound core can reduce the core loss compared with the laminated core. The magnetic flux leakage is obviously reduced. 2.
- the working magnetic flux density of the power transformer that wears the magnetic core is reasonable.
- the silicon steel strip wound on the special machine tool is extremely dense, and does not cause the magnetic circuit discontinuity like the laminated magnetic core. The stacking pressure is tight and the noise is almost empty. It is most suitable for indoor and residential areas.
- the high temperature annealing of the magnetic core of the wound silicon steel strip not only eliminates the internal stress caused by bending of the silicon steel strip, but also The magnetic domain in the silicon steel strip is improved, and the secondary recrystallization ability of the silicon steel strip is improved, so that the magnetic properties of the silicon steel strip are much better than the level at the factory; 4, because the silicon steel strip itself has a large electrical resistivity, and each layer of silicon steel Coating between strips There is an insulating varnish or an oxidized insulating layer formed by heat treatment, so that the eddy current is confined in each layer of the lamella, so that the eddy current loss is greatly reduced, and the heat generated by the transformer itself is very low; 5.
- the windings of the transformer are uniformly distributed around the toroidal magnetic field. Core In each arc segment, all of the secondary side and primary side coils act as heat sinks, allowing sufficient heat exchange with the outside.
- FIG. 1 is a schematic projection view of a winding-core module 100 of a preferred embodiment of a power transformer wound around a silicon steel strip core with a portion of the winding assembly 120 removed;
- FIG. 2 is a schematic diagram showing the axial projection structure of the combined state of each winding assembly 120 after the winding core module 100 of the preferred embodiment removes the magnetic core 150;
- Figure 3 is a schematic plan view of the orthographic projection of Figure 2;
- FIG. 4 is a schematic cross-sectional view of the cross-sectional axial projection structure of FIG. 2 after removing the inner and outer coils 125 and 126;
- FIG. 5 is a schematic diagram showing the combined state of the single winding assembly 120 after removing the inner and outer coils 125, 126;
- Figure 6 is a schematic plan view of the orthographic projection of Figure 5;
- Figure 7 is a schematic perspective view of a single outer porcelain skeleton 124
- Figure 8 is a schematic plan view of the orthographic projection of Figure 7;
- Figure 9 is a schematic perspective view of a single inner porcelain skeleton 123;
- Figure 10 is a schematic plan view of the orthographic projection of Figure 9;
- Figure 11 is a schematic view showing the axial projection structure of the center spacer 140
- Figure 12 is a schematic projection view of the interconnection relationship between the outer layer windings 122;
- FIG. 13 is a schematic projection view showing the interconnection relationship between the inner layer windings 121;
- Figure 14 is a schematic diagram of the connection relationship between the inner layer coil 125 and the low-voltage output copper row 196, the inner layer porcelain skeleton 123 is omitted;
- connection groove 191 is in a separated state
- Figure 16 is a schematic view showing the projection structure of the annular sleeper 470
- 17 is a schematic view showing the axial projection structure of the single-phase column 460.
- FIG. 18 is a schematic diagram showing the axial projection structure of the single-phase transformer for removing the inner and outer windings 121 and 122 to retain the core 150;
- Figure 19 is a schematic diagram showing the axial projection structure of a single-phase transformer
- Figure 20 is a top plan view of Figure 19;
- 21 is a schematic diagram showing the axial projection structure of the three-phase transformer 480 and the annular sleeper 470 in a combined state;
- Figure 22 is a schematic diagram showing the axial projection structure of a three-phase transformer.
- a preferred embodiment of the winding-core module 100 of the present invention includes at least two winding assemblies 120; each winding assembly 120 includes inner and outer windings that are nested together in a common central axis. 121, 122; each of the inner and outer windings 121, 122 includes inner and outer porcelain skeletons 123, 124, and the inner and outer porcelain skeletons 123, 124 are respectively made of glass fiber insulated copper wires.
- Outer coils 125, 126; the inner and outer windings 121, 122 have a substantially rectangular central cavity 131, 132 for accommodating the wound silicon steel strip and the two windings 121, 122
- the winding-core module 100 is end-to-end connected by the central axis of each winding assembly 120 in a ring shape on a special machine tool, and is inserted into the silicon steel strip from the gap between the adjacent two winding assemblies 120 until it is full.
- Each inner winding inner cavity 131 constitutes a common magnetic core 150 of each winding assembly 120; each winding assembly 120 and a toroidal magnetic core 150 wound by a silicon steel strip together form a winding-core module 100; and in the winding - the outer surface of the core module 100 and the gaps therein,
- the insulating paint film formed by integral annealing and vacuum impregnation is firmly coated and adsorbed; each of the winding-core module 100 and the outer coils 125 and 126 are respectively connected in series, parallel or mixed manner. Connections are respectively used as primary side, secondary side coils, or vice versa; the winding-core module 100 is provided with input wiring devices 180 and output wiring devices 190 for electrical connection of the same secondary side grid and secondary side grid respectively. .
- the inner and outer windings 121, 122 are a secondary winding and a primary winding, respectively, or a primary winding and a secondary winding, respectively.
- the inner and outer windings 121, 122 can be set to the required primary or secondary coils according to the specific design requirements of the transformer. For example, considering the heat dissipation requirement of the secondary coil during high voltage to low voltage conversion, the outer coil can be set to the next time. Stage coil.
- the outer coil can be placed as a primary coil, taking into account the high magnetic coupling requirements of high voltage to low voltage switching.
- each of the inner and outer coils 125 and 126 may be used as a primary side coil or a secondary side coil, respectively; and the inner and outer coils 125 and 126 may be used as a secondary side coil or a primary side coil, respectively.
- the low voltage end coil of 380 or 220 volts may be provided as an inner layer coil, such as 11000 volts.
- the high-voltage end coil is set as the outer coil; thus, in the transformer application where the high voltage is converted into a low voltage, the low-voltage end, that is, the secondary coil is placed in the inner layer, tightly surrounding the magnetic core, the magnetic induction intensity, the magnetic flux application is better, and the magnetic induction coupling Better, the power output is more stable.
- the inner and outer coils 125, 126 are connected in series; of course, the inner coils 125 can also be electrically connected to each other in parallel or in series and in parallel; the outer coils 126 can also be connected in parallel with each other. Or electrically connected in series and in a hybrid manner.
- the winding-core module 100 is provided with an input wiring device 180 and an output wiring device 190 for respectively connecting the same secondary side power grid and the secondary side power grid.
- the inner layer windings 121 are electrically connected to each other by a connecting copper piece 137 brazed across the edge 127 of the inner layer of the porcelain skeleton; the outer layer windings 122 are bridged by the fasteners at the edge of the outer porcelain skeleton 128.
- the connecting lines 138 are electrically connected to each other.
- only one winding-core module 100 which is mounted and fixed to the insulating support device 400, is a single-phase power transformer.
- the insulating support device 400 further includes a set of single-phase upright posts 460 of the same electrical ceramics and two upper and lower annular sleepers 470 in the same number as the winding assembly 120; the annular sleepers 470 are provided with the same number of winding assemblies 120 as a fixed partition 477 fixedly connected to the single-phase column 460.
- the winding assemblies 120 are embedded between the fixed partitions 477 of the upper and lower annular sleepers 470; the single-phase uprights 460 are provided for the same
- the input and output wiring devices 180, 190 are connected to a single-phase column connecting ear 467.
- three winding-core modules 100 are mounted and fixed to the insulating support device 400, and the inner or outer coils 125, 126 of the winding-core module 100 are star-shaped or
- the delta connection is the three-phase power transformer.
- the inner layer coils 125 may be connected to each other in a star or delta shape, and may be used as a primary side, that is, a high voltage side, or as a secondary side, that is, a low voltage side; the outer layer coils 126 may be connected to each other by a star or a triangle.
- the primary side that is, the high voltage side
- the secondary side that is, the low voltage side
- the insulating support device 400 further includes a set of three-phase columns 480 and four pieces of the same electrical ceramic material as the winding assembly 120.
- the annular sleeper 470 is provided with a fixed partition 477 for the same connection with the three-phase column 480 as the winding assembly 120; the four annular sleepers 470 are respectively embedded between the two Each winding assembly 120 used in the winding-core module 100; the winding assembly 120 is embedded between each of the upper and lower fixed partitions 477 of the annular sleeper 470; the three-phase vertical columns 480 are provided for the same
- the input and output wiring devices 180, 190 are connected to the three-phase column connecting ears 487.
- the winding-core module 100 includes four winding assemblies 120, and the central axis end-to-end connection of each winding assembly 120 is in an annular positioning arrangement, which together have the same ring-shaped magnetic flux around the silicon steel strip.
- the winding-core module 100 can also include 3, 5, and 6 windings.
- Component 120; the number of windings can be flexibly adjusted and combined according to the actual transformer size requirements, or it can be 7 to 8 or more winding assemblies 120.
- the inner and outer porcelain skeletons 123, 124 have inner and outer porcelain skeleton edges 127, 128 respectively protruding around the end faces thereof; the inner layer windings 121 pass through the inner layer of porcelain The skeleton rim 127 is snapped into the outer winding cavity 132 of the outer winding 122; the inner and outer windings 121, 122 are interconnected by inner and outer porcelain skeleton edges 127, 128, respectively.
- a center spacer 140 is disposed at the center of the winding-core module 100 for insulation between the outer windings 122, and the center spacer 140 has a middle cylinder therebetween. At least two spacers 147 are uniformly distributed around the axis of the through hole 148, and the spacers 147 are embedded in the gap between the two outer ceramic frames 124 to isolate the outer windings 122.
- the inner and outer porcelain skeletons 123, 124 are spaced apart from the inner and outer sides to provide inner and outer porcelain skeleton partitions 135, 136 for facilitating the winding of the inner and outer coils 125, 126. .
- the input wiring device 180 includes a porcelain bottle 184 for high voltage input wire insulation.
- the output wiring device 190 includes a connection slot 191 for connection to the inner layer coil 125, and an electrical connection between the connection slot 191 and the outer output copper bus 196 using a connection copper bar 192.
- a method for manufacturing a power transformer that is wound around a silicon steel strip magnetic core comprising the following steps A: winding inner and outer coils 125, 126 on the inner and outer porcelain skeletons 123, 124, respectively The outer windings 121, 122; the inner and outer coils 125, 126 are all wrapped by an insulated copper wire wrapped or wound with a matte glass ribbon; step B: respectively, the inner windings 121 Coaxially inserted into each outer winding 122 to form a winding assembly 120, and then at least two winding assemblies 120 are placed on a special machine for threading silicon steel strips, with the central axis of each winding assembly 120 being connected end to end in a circular position. Arranged, the silicon steel strip is passed through from the gap between the adjacent two winding assemblies 120 until the inner cavity 131 is filled to form the core 150 common to the winding assemblies 120.
- the winding assemblies 120 wound by the common core 150 including their inner and outer porcelain skeletons 123, 124 and the windings wound thereon.
- the outer coils 125 and 126 are put into the annealing furnace for 12 to 24 hours, and the annealing temperature is 750 ° C to 800 ° C to eliminate the magnetic permeability of the silicon steel strip due to the accumulation of internal stress during the winding process. influences.
- the annealing temperature of the above step may also be other temperatures between 700 ° C and 1000 ° C, such as 850 ° C and 900 ° C.
- step D the common magnetic core 150 after annealing through step C
- Each of the winding assemblies 120 wound together is cooled to a temperature of 5 ° C to 40 ° C, and the liquid insulating varnish is immersed in a vacuum for 0.5 to 5 hours, taken out and dried to form a winding-core module to be used. 100.
- step E a winding-magnetic core module 100 impregnated with insulating varnish via step D is mounted and fixed to an insulating support consisting of two annular sleepers 470 and four single-phase columns 460 of electrical ceramics.
- a single phase power transformer is formed on device 400.
- steps F three windings-impregnated varnish-impregnated cores 100 are mounted and fixed to the insulation consisting of four annular sleepers 470 and four electrical ceramics three-phase columns 480.
- the inner or outer coils 125, 126 of the winding-core module 100 are connected to each other in a star or delta shape to form a three-phase power transformer.
- a power transformer that is wound around a silicon steel strip core, suitable for a capacity range of 30 to 1600 kVA, comprising at least one winding-core module and an insulating support device; the winding-core module includes at least two winding assemblies; the winding assembly includes The inner and outer windings are stacked on the central axis; the inner and outer porcelain skeletons are respectively wrapped with glass fiber insulated copper wires to form inner and outer windings; the central axis of each winding assembly is connected in an endless manner.
- the inner silicon steel strip is wound to form a magnetic core; the inner and outer windings are coaxially sleeved and wrapped around the outer circumference of the annular wound core to form a winding-magnetic core module; high temperature annealing is performed at 750 ° C to 800 ° C After the winding-core module is fabricated, an insulative support device is mounted to form a wound core transformer. Under the premise of the same material, the power conversion efficiency of the laminated core transformer is improved compared with the prior art; and the volume and weight are smaller, the core has no magnetic leakage, and the operation has no noise.
- the wound core transformer of the present invention has a dry transformer of about 85% of the transformation efficiency of about 12%, up to 97%; and the present invention
- the volume of the core-wound transformer and the weight tend to be small, the core has no magnetic leakage, and the operation is noise-free.
- the transformer of the present invention eliminates the common transformer insulating toxic materials such as "DuPont paper" and is more environmentally friendly.
- the manufacturing method of the wound core transformer of the invention can realize the intelligent, automatic and modular production of the transformer, greatly improve the consistency of the transformer, and overturn the labor-intensive backward production mode.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
一种穿绕硅钢带磁芯的电力变压器,适用于30至1600kVA容量范围,至少包括一个绕组-磁芯模块(100)和绝缘支承装置(400);该模块又包括至少两个绕组组件(120);每一绕组组件各自包括共中轴线地套叠在一起的、由玻璃纤维绝缘铜线分别缠绕在内、外层瓷骨架(123、124)上构成的内、外层绕组(121、122);各绕组组件内腔(131、132)的中心轴线首尾连接呈环形,定位在专用机床上,内腔塞入硅钢带、穿绕形成磁芯(150),各内、外层绕组便包覆在穿绕磁芯外周;经750℃至800℃整体退火后再浸渍阻燃绝缘漆、烘干,制得绕组-磁芯模块,装上绝缘支承装置便是穿绕硅钢带磁芯的电力变压器。在材质类似的情况下,相比现有技术裁剪叠片磁芯变压器,材料和工时都大幅节省,变电效率提高;且体积、重量更小,铁芯漏磁和运行噪音也更轻微。
Description
本发明涉及30至1600kVA(千伏安)中等容量的单、三相电力变压器及其制作方法,尤其涉及先制作绕组、将其置于专用机床上穿绕硅钢带构成磁芯,再实施750℃至800℃整体退火的工艺方法。
现有技术电力变压器,无论是油浸的抑或是干式的,都必须裁剪或冲压诸多尺寸的硅钢片,将它们叠合成为横断面包络线是圆形的柱体,再组装成为铁芯结构。工序繁多、复杂,材料浪费也不少,而且制成的变压器漏磁大,变电效率低。
长期以来,人们一直都在努力寻求一种新的电力变压器结构和工艺方法,但是成果有限。现有技术已经在生产的高效率电力变压器有多种形式,包括非晶铁芯变压器和R型变压器等。
非晶铁芯变压器的铁损值低但体积大,铁芯制作工艺麻烦,退火后变脆,抗机械冲击性能差,性价比低,难以推广。
R型变压器结构紧凑,占地面积小,布局合理、磁路优化、损耗低,节电效果显著,但是其生产工艺复杂、成本高,并且不能完全避免产生边角余料的缺点。
本申请人/发明人在十多年前提出了一款名称为“变压器卷绕磁心绕制方法及专用机床”的中国发明专利,于2001年7月4日获授权公告,公告号为CN1068134C。所述专利公开了变压器穿绕硅钢带磁芯专用机床结构的技术方案,以及这种穿绕硅钢带磁芯变压器的基本构造。这款专利公开的技术明显简化了硅钢片材料的加工步骤,节约了原材料并大大提高了劳动生产率,产品变压器的性能也有很大提高。但是所述专利并没有公开该项技术用于电力变压器制造的具体工艺步骤,以及这种穿绕硅钢带磁芯的单相和三相电力变压器的具体实施例。
发明内容
本发明要解决的技术问题在于避免上述现有技术高性能变压器生产工艺复杂、成本高的不足之处,而提出一种生产工艺简单又成本低廉的高性能穿绕磁芯电力变压器结构及其制作方法。
本发明解决所述技术问题采用的技术方案是一种穿绕硅钢带磁芯的电力变压器,适用于30至1600kVA容量范围,至少包括一个绕组-磁芯模块和用于将其安装固定的绝缘支承装置;所述绕组-磁芯模块包括至少两个绕组组件;每一绕组组件包括共中轴线地套叠在一起的内、外层绕组;每个内、外层绕组包括内、外层瓷骨架,以及分别缠绕在内、外层瓷骨架上的材质为玻璃纤维绝缘铜线的内、外层线圈;所述内、外层绕组的横断面中央部位空腔呈近似矩形,用于容置穿绕的硅钢带以及让所述俩绕组套叠;所述绕组-磁芯模块由各该绕组组件的中心轴线首尾连接呈环形定位在专用机床上,从相邻俩绕组组件之间的间隙塞入硅钢带穿绕,直至塞满各内层绕组内空腔而构成各该绕组组件共同的磁芯;各绕组组件和由硅钢带穿绕成的环形磁芯共同组成绕组-磁芯模块;而且在该绕组-磁芯模块的外表面和其内诸缝隙中,还牢固地包覆和吸附有一层经整体退火和真空浸渍而形成的绝缘漆膜;各该绕组-磁芯模块的内、外层线圈各自分别以互相串联、并联或混联的方式电连接,分别用作为一次侧、二次侧线圈,或反之;所述绕组-磁芯模块上设置有用于分别同一次侧电网和二次侧电网电连接的输入接线装置和输出接线装置;安装固定于绝缘支承装置上的只有一个绕组-磁芯模块,就是单相电力变压器;安装固定于绝缘支承装置上的有三个绕组-磁芯模块,且各该绕组-磁芯模块的内层或外层线圈用作一次侧即高电压侧的,相互做星形或三角形连接,那就是三相电力变压器。
所述绕组-磁芯模块包括3至4个绕组组件,各该绕组组件的中心轴线首尾连接呈环形,它们共同拥有同一个穿绕硅钢带的环形磁芯;各该外层绕组的外层线圈相互串联、并联或混联,用做高电压的一次侧线圈;各该内层绕组的内层线圈相互串联、并联或混联,或各自分别输出、独立供电,用做较低电压的二次侧线圈;如此安排是为了获得较好的磁耦合。
所述内、外层瓷骨架的两端部分别有环绕其外表面径向突起并轴向延伸的、各自的突楞;所述内层绕组借助其自身的突楞卡接在外层绕组内的空腔中;所述各内、外层绕组分别通过各自的瓷骨架突楞互相嵌合固定。
所述的穿绕硅钢带磁芯的电力变压器还包括置于所述绕组-磁芯模块中心轴线部位、用于各外层绕组之间绝缘的中心隔件,该中心隔件以其中央圆柱形通孔中心轴线为对称轴,均匀分布有至少俩隔片,所述各隔片嵌入相邻俩互相电连接的、用于高压侧的俩外层绕组之间,以提高其间的电绝缘强度。
所述内、外层瓷骨架各自的内外环面上,等间隔地设置有用于方便缠绕内、外层线圈的、径向突起并轴向延伸的内、外层瓷骨架隔板。
所述绝缘支承装置还包括与绕组组件数量相同的一组电工瓷材质的单相立柱和上下两块环形枕木;所述环形枕木上设有与绕组组件数量相同的用于同单相立柱固定连接的固定隔板,所述各绕组组件嵌置于上下两块所述环形枕木的各固定隔板之间;所述单相立柱上设置有用于同输入、输出接线装置连接的单相立柱连接耳。
所述绝缘支承装置还包括与绕组组件数量相同的一组电工瓷材质的三相立柱和四块环形枕木;所述环形枕木上设有与绕组组件数量相同的用于同三相立柱固定连接的固定隔板;所述四块环形枕木两两之间各嵌置有一个绕组-磁芯模块所用的各绕组组件;所述绕组组件嵌置于上下两块所述环形枕木的各固定隔板之间;所述各三相立柱上设置有用于同输入、输出接线装置连接的三相立柱连接耳。
所述各内层绕组通过钎焊跨接在内层瓷骨架边沿之间的连接铜片互相电连接;所述各外层绕组通过紧固件跨接在外层瓷骨架边沿之间的连接线互相电连接。
所述输入接线装置包括用于高压输入电线绝缘的瓷瓶;所述输出接线装置包括位于内层绕组端部用于同内层线圈连接的连接槽、在连接槽和外部输出铜排之间使用连接铜排进行电连接。
本发明解决所述技术问题采用的技术方案还可以是一种用于电力变压器的绕组-磁芯模块,包括至少两个绕组组件;每个绕组组件包括共中轴线地套叠在一起的内、外层绕组;每个内、外层绕组分别包括各自的内、外层瓷骨架,以及分别缠绕在各自瓷骨架上的、材质为玻璃纤维绝缘铜线的内、外层线圈;所述内、外层绕组的横断面中央部位空腔呈近似矩形,用于容置穿绕的硅钢带以及让所述俩绕组套叠;所述绕组-磁芯模块由各该绕组组件的中轴线首尾连接呈环形定位在专用机床上,从相邻俩绕组组件之间的间隙塞入硅钢带自动穿绕,直至塞满各内层绕组内空腔而构成各该绕组组件共同的磁芯;各绕组组件和由硅钢带穿绕成的环形磁芯共同组成绕组-磁芯模块;而且在该绕组-磁芯模块的外表面和其内诸缝隙中,还牢固地包覆和吸附有一层经整体退火和真空浸渍而形成的绝缘漆膜;各该内、外层线圈分别互相以串联、并联或混联的方式电连接,用作为一、二次侧线圈或反之;所述绕组-磁芯模块上设置有分别用于同一次侧、二次侧电网电连接的输入接线装置和输出接线装置。
本发明解决所述技术问题采用的技术方案还可以是一种制作所述穿绕硅钢带磁芯的电力变压器的工艺方法,包括以下步骤:步骤A:在所述各内、外层瓷
骨架上分别缠绕内、外层线圈制成各内、外层绕组;所述各内、外层线圈均由包覆或缠绕有无纬玻璃丝带的绝缘铜导线卷绕而成;步骤B:将所述各内层绕组分别共轴线地塞入各外层绕组内,制成绕组组件,再由至少两个绕组组件置于穿绕硅钢带专用机床上,以各该绕组组件的中心轴线首尾连接呈环形定位于其上,从相邻俩绕组组件之间的间隙塞入硅钢带穿绕,直至塞满各内层绕组内空腔而构成各该绕组组件共同的磁芯。
在实施了所述步骤B之后还有步骤C:由所述共同的磁芯穿绕在一起的各绕组组件,包括它们的内、外层瓷骨架及其上缠绕的内、外层线圈一同投入退火炉内做调质处理12至24小时,退火温度750℃~800℃,以消除硅钢带在穿绕过程中积累内应力而对其导磁率造成的影响。
在实施了步骤C之后还有步骤D:经步骤C退火后的所述由共同的磁芯穿绕在一起的各绕组组件,俟其冷却到5℃~40℃的环境温度时,将其整体放入真空容器中浸渍绝缘漆30分钟至5小时,取出烘干,制成待用的绕组-磁芯模块
在实施了步骤D之后还有步骤E:经步骤D浸渍了绝缘漆的一个绕组-磁芯模块安装固定在由两块环形枕木和四个电工瓷材质的单相立柱组成的绝缘支承装置上组成一单相电力变压器。
在实施了步骤D之后还有步骤F:经步骤D浸渍了绝缘漆的三个绕组-磁芯模块分层安装固定在由四块环形枕木和四个电工瓷材质的三相立柱组成的绝缘支承装置上;并且各该绕组-磁芯模块的内层或外层线圈各自分别做星形或三角形连接,组成三相电力变压器。
同现有技术相比较,本发明的有益效果是:1、由于穿绕磁芯的磁化方向完全与硅钢片的轧制方向一致,且磁芯层间没有搭头接槰,磁路各处的磁通分布均匀,没有明显的高阻区、没有接缝处磁通密度的畸变现象;在材质相同的前提下,穿绕式磁芯与叠片式磁芯相比,可令磁芯损耗和漏磁都明显降低;2、穿绕磁芯的电力变压器工作磁通密度设计合理,在专用机床上穿绕的硅钢带极为致密,不会产生如叠片式磁芯那样因磁路不连续和叠压欠紧密而发出噪音,几乎达到环保静音状态,最适合室内和居民小区使用;3、穿绕硅钢带磁芯经高温退火处理,不仅消除了硅钢带因弯曲而产生的内应力,而且细化了硅钢带内的磁畴,提高了硅钢带二次再结晶能力,使硅钢带的磁性能大大优于其出厂时的水平;4、由于硅钢带本身的电阻率较大,且各层硅钢带之间涂覆有绝缘漆或通过热处理生成有氧化绝缘层,从而把涡流限制在各层薄片内,使涡流损耗大为减少,变压器本身发热量就很低了;5、变压器各绕组均匀分布包覆在环形磁芯
各弧段,全部二次侧、一次侧线圈都充当散热体,可与外部做充分的热交换。
图1是本发明穿绕硅钢带磁芯的电力变压器优选实施例之绕组-磁芯模块100移除部分绕组组件120后的轴测投影示意图;
图2是所述优选实施例之绕组-磁芯模块100移除磁芯150后各绕组组件120组合状态的轴测投影结构示意图;
图3是图2的正投影俯视结构示意图;
图4是图2移除内、外层线圈125、126后的横断面轴测投影结构示意图;
图5是单个绕组组件120在移除内、外层线圈125、126后的组合状态轴测投影结构示意图;
图6是图5的正投影俯视结构示意图;
图7是单个外层瓷骨架124的轴测投影结构示意图;
图8是图7的正投影俯视结构示意图;
图9是单个内层瓷骨架123的轴测投影结构示意图;
图10是图9的正投影俯视结构示意图;
图11是中心隔件140的轴测投影结构示意图;
图12是各外层绕组122之间互相连接关系的轴测投影示意图;
图13是各内层绕组121之间互相连接关系的轴测投影示意图;
图14是内层线圈125和低压输出铜排196的连接关系示意图,图中省略了内层瓷骨架123;
图15是外部输出铜排196和连接铜排192连接关系示意图,图中连接槽191处于分离状态;
图16是环形枕木470轴测投影结构示意图;
图17是单相立柱460的轴测投影结构示意图;
图18是单相变压器移除各内、外层绕组121、122保留穿绕磁芯150的轴测投影结构示意图;
图19是单相变压器的轴测投影结构示意图;
图20是图19的俯视结构示意图;
图21是三相变压器的三相立柱480和环形枕木470组合状态的轴测投影结构示意图;
图22是三相变压器的轴测投影结构示意图。
以下结合各附图对本发明的实施方式做进一步详述。
如图1至11所示本发明的绕组-磁芯模块100的优选实施例中,包括至少两个绕组组件120;每个绕组组件120包括共中轴线地套叠在一起的内、外层绕组121、122;每个内、外层绕组121、122包括内、外层瓷骨架123、124,以及分别缠绕在内、外层瓷骨架123、124上的材质为玻璃纤维绝缘铜线的内、外层线圈125、126;所述内、外层绕组121、122的横断面中央部位空腔131、132呈近似矩形,用于容置穿绕的硅钢带以及让所述俩绕组121、122套叠;所述绕组-磁芯模块100由各该绕组组件120的中心轴线首尾连接呈环形定位在专用机床上,从相邻俩绕组组件120之间的间隙塞入硅钢带穿绕,直至塞满各内层绕组内空腔131而构成各该绕组组件120共同的磁芯150;各绕组组件120和由硅钢带穿绕成的环形磁芯150共同组成绕组-磁芯模块100;而且在该绕组-磁芯模块100的外表面和其内诸缝隙中,还牢固地包覆和吸附有一层经整体退火和真空浸渍而形成的绝缘漆膜;各该绕组-磁芯模块100内、外层线圈125、126各自分别以互相串联、并联或混联的方式电连接,分别用作为一次侧、二次侧线圈,或反之;所述绕组-磁芯模块100上设置有用于分别同一次侧电网和二次侧电网电连接的输入接线装置180和输出接线装置190。
在专用机床上从相邻俩绕组组件120之间的间隙塞入硅钢带穿绕成磁芯150的工艺过程,可以采用本申请人/发明人的中国发明专利CN 1068134C“变压器卷绕磁心的绕制方法及专用机床”公开的技术方案。
如图1至11所示,所述内、外层绕组121、122分别为次级绕组和初级绕组,或分别为初级绕组和次级绕组。可以根据变压器的具体设计需要将内、外层绕组121、122设置成需要的初级或次级线圈,如考虑到在高压到低压变换时次级线圈的散热需求,可以将外层线圈设置成次级线圈。再如考虑到高压到低压变换时的高磁路耦合需求可以将外层线圈设置成初级线圈。即各内、外层线圈125、126可以分别用作为一次侧线圈或二次侧线圈;各内、外层线圈125、126也可以分别用作为二次侧线圈或一次侧线圈。
初级绕组和次级绕组与内层和外层线圈的对应关系应实际应用需求不同而不同,在一些优选实施例中,可将380或220伏特的低压端线圈设置为内层线圈,如11000伏特的高压端线圈设置为外层线圈;这样在高压转换成低压的变压器应用中,低压端即次级线圈放置在内层,紧紧围绕磁芯,磁感应强度,磁通应用更好,其磁感应耦合更好,电力输出更稳定。
如图12和13所示,各内、外层线圈125、126互相串联;当然各内层线圈125也可以互相以并联或串并混联的方式电连接;各外层线圈126也可以互相并联或串并混联的方式电连接。所述绕组-磁芯模块100上设置有用于分别同一次侧电网和二次侧电网连接的输入接线装置180和输出接线装置190。所述各内层绕组121通过钎焊跨接在内层瓷骨架边沿127之间的连接铜片137互相电连接;所述各外层绕组122通过紧固件跨接在外层瓷骨架边沿128之间的连接线138互相电连接。
如图16至20所示,安装固定于绝缘支承装置400上的只有一个绕组-磁芯模块100,就是单相电力变压器。所述绝缘支承装置400还包括与绕组组件120数量相同的一组电工瓷材质的单相立柱460和上下两块环形枕木470;所述环形枕木470上设有与绕组组件120数量相同的用于同单相立柱460固定连接的固定隔板477,所述各绕组组件120嵌置于上下两块所述环形枕木470的各固定隔板477之间;所述单相立柱460上设置有用于同输入、输出接线装置180、190连接的单相立柱连接耳467。
如图21至22所示,安装固定于绝缘支承装置400上的有三个绕组-磁芯模块100,且各该绕组-磁芯模块100的内层或外层线圈125、126相互做星形或三角形连接,那就是三相电力变压器。各内层线圈125相互做星形或三角形连接可以用作一次侧即高电压侧的,也可以用作二次侧即低电压侧的;各外层线圈126相互做星形或三角形连接可以用作一次侧即高电压侧的,也可以用作二次侧即低电压侧的;所述绝缘支承装置400还包括与绕组组件120数量相同的一组电工瓷材质的三相立柱480和四块环形枕木470;所述环形枕木470上设有与绕组组件120数量相同的用于同三相立柱480固定连接的固定隔板477;所述四块环形枕木470两两之间各嵌置有一个绕组-磁芯模块100所用的各绕组组件120;所述绕组组件120嵌置于上下两块所述环形枕木470的各固定隔板477之间;所述各三相立柱480上设置有用于同输入、输出接线装置180,190连接的三相立柱连接耳487。
如图1至4所示,所述绕组-磁芯模块100包括4个绕组组件120,各该绕组组件120的中轴线首尾连接呈环形定位布置,它们共同拥有同一个穿绕硅钢带的环形磁芯150;各该外层绕组122的外层线圈126相互串联、并联或混联,用做高电压的一次侧线圈;各该内层绕组121的内层线圈125相互串联、并联或混联后,或各自分别输出、独立供电,用做较低电压的二次侧线圈,以便获得较高的磁耦合系数。当然所述绕组-磁芯模块100也可以包括3、5、6个绕组
组件120;绕组的数量可以根据实际变压器的大小需求灵活调整和组合,也可以是7至8个甚至更多的绕组组件120。
如图1至4所示,所述内、外层瓷骨架123、124的两端分别有环绕其端面突起的内、外层瓷骨架边沿127、128;所述内层绕组121通过内层瓷骨架边沿127卡接在外层绕组122的外层绕组空腔132内;所述各内、外层绕组121、122分别通过内、外层瓷骨架边沿127、128互相连接。
如图1至4及图11所示,还包括置于所述绕组-磁芯模块100中心用于各外层绕组122间绝缘的中心隔件140,所述中心隔件140以其中间的圆柱形通孔148轴心为中心均匀分布有至少两个隔片147,所述各隔片147嵌入两两连接的外层瓷骨架124之间的间隙中隔离绝缘各外层绕组122。
如图7至10所示,所述内、外层瓷骨架123、124的内外侧间隔设置有用于方便缠绕内、外层线圈125、126的突起的内、外层瓷骨架隔板135、136。
如图12所示,所述输入接线装置180包括用于高压输入电线绝缘的瓷瓶184。
如图13至15所示,所述输出接线装置190包括用于同内层线圈125连接的连接槽191、在连接槽191和外部输出铜排196之间使用连接铜排192进行电连接。
一种制作穿绕硅钢带磁芯的电力变压器的工艺方法,包括以下步骤A:在所述各内、外层瓷骨架123、124上分别缠绕内、外层线圈125,126制成各内、外层绕组121、122;所述各内、外层线圈125、126均为包覆或缠绕有无纬玻璃丝带的绝缘铜导线穿绕而成;步骤B:将所述各内层绕组121分别共轴线地塞入各外层绕组122内,制成绕组组件120,再由至少两个绕组组件120置于穿绕硅钢带专用机床上,以各该绕组组件120的中轴线首尾连接呈环形定位布置,从相邻俩绕组组件120之间的间隙穿入硅钢带穿绕,直至塞满各内层绕组内空腔131而构成各该绕组组件120共同的磁芯150。
在实施了所述步骤B之后还有步骤C:由所述共同的磁芯150穿绕在一起的各绕组组件120,包括它们的内、外层瓷骨架123、124及其上缠绕的缠绕内、外层线圈125、126一同投入退火炉内做调质处理12至24小时,退火温度750℃~800℃,以消除硅钢带因在穿绕过程中积累了内应力而对其导磁率造成的影响。上述步骤的退火温度还可以是700℃~1000℃之间的其他温度,如850℃和900℃。
在实施了步骤C之后还有步骤D:经步骤C退火后的所述由共同的磁芯150
穿绕在一起的各绕组组件120,俟其冷却到5℃~40℃的环境温度时,在真空中浸渍液态绝缘漆0.5至5小时,取出烘干,制成待用的绕组-磁芯模块100。
在实施了步骤D之后还有步骤E:经步骤D浸渍有绝缘漆的一个绕组-磁芯模块100安装固定在由两块环形枕木470和四个电工瓷材质的单相立柱460组成的绝缘支承装置400上组成一单相电力变压器。
在实施了步骤D之后还有步骤F:经步骤D浸渍有绝缘漆的三个绕组-磁芯模块100安装固定在由四块环形枕木470和四个电工瓷材质的三相立柱480组成的绝缘支承装置400上;并且各该绕组-磁芯模块100的内层或外层线圈125、126相互做星形或三角形连接,组成三相电力变压器。
穿绕硅钢带磁芯的电力变压器,适用于30至1600千伏安容量范围,至少包括一个绕组-磁芯模块和绝缘支承装置;绕组-磁芯模块包括至少两个绕组组件;该绕组组件包括共中轴线地套叠在一起的内、外层绕组;内、外层瓷骨架上分别缠绕玻璃纤维绝缘铜线形成内、外层绕组;各绕组组件的中轴线首尾连接呈环形定位布置,其内穿入硅钢带穿绕形成磁芯;使得各内、外层绕组共轴心套接并包覆在圆环状穿绕磁芯外周形成绕组-磁芯模块;进行750℃~800℃高温退火后制得绕组-磁芯模块,装上绝缘支承装置制得穿绕磁心变压器。在材质相同的前提下,相对现有技术中叠片式磁芯变压器变电效率提高;且体积、重量更小,铁芯无漏磁、运行无噪音。
本发明的穿绕磁芯变压器与同功率传统的非穿绕磁芯结构变压器相比,相对现有技术中变电效率85%左右的干式变压器提高了12%,高达97%;同时本发明的穿绕磁芯变压器体积、重量趋于极限小,铁芯无漏磁、运行无噪音。
由于采用涂覆有绝缘层的硅钢片和包覆有环保阻燃聚氨酯的绕线绕成的线圈,本发明中的变压器淘汰了常用变压器绝缘有毒材料如“杜邦纸”,更环保。
本发明的穿绕磁芯变压器制作方法,可以实现变压器的智能化、自动化、模块化生产,大幅度提高了变压器的一致性,推翻了劳动密集型的落后生产方式。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (15)
- 一种穿绕硅钢带磁芯的电力变压器,适用于30至1600kVA容量范围,至少包括一个绕组-磁芯模块(100)和用于将其安装固定的绝缘支承装置(400);所述绕组-磁芯模块(100)包括至少两个绕组组件(120);每一绕组组件(120)包括共中轴线地套叠在一起的内、外层绕组(121、122);每个内、外层绕组(121、122)包括内、外层瓷骨架(123、124),以及分别缠绕在内、外层瓷骨架(123、124)上的材质为玻璃纤维绝缘铜线的内、外层线圈(125、126);所述内、外层绕组(121、122)的横断面中央部位空腔(131、132)呈近似矩形,用于容置穿绕的硅钢带以及让所述俩绕组(121、122)套叠;所述绕组-磁芯模块(100)由各该绕组组件(120)的中心轴线首尾连接呈环形定位在专用机床上,从相邻俩绕组组件(120)之间的间隙塞入硅钢带穿绕,直至塞满各内层绕组内空腔(131)而构成各该绕组组件(120)共同的磁芯(150);各绕组组件(120)和由硅钢带穿绕成的环形磁芯(150)共同组成绕组-磁芯模块(100);而且在该绕组-磁芯模块(100)的外表面和其内诸缝隙中,还牢固地包覆和吸附有一层经整体退火和真空浸渍而形成的绝缘漆膜;各该绕组-磁芯模块(100)的内、外层线圈(125、126)各自分别以互相串联、并联或混联的方式电连接,分别用作为一次侧、二次侧线圈,或反之;所述绕组-磁芯模块(100)上设置有用于分别同一次侧电网和二次侧电网电连接的输入接线装置(180)和输出接线装置(190);安装固定于绝缘支承装置(400)上的只有一个绕组-磁芯模块(100),就是单相电力变压器;安装固定于绝缘支承装置(400)上的有三个绕组-磁芯模块(100),且各该绕组-磁芯模块(100)的内层或外层线圈(125、126)用作一次侧即高电压侧的,相互做星形或三角形连接,那就是三相电力变压器。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:所述绕组-磁芯模块(100)包括3至4个绕组组件(120),各该绕组组件(120)的中心轴线首尾连接呈环形,它们共同拥有同一个穿绕硅钢带的环形磁芯(150);各该外层绕组(122)的外层线圈(126)相互串联、并联或混联,用做高电压的一次侧线圈;各该内层绕组(121)的内层线圈(125)相互串联、并联或混联,或各自分别输出、独立供电,用做较低电压的二次侧线圈;如此安排是为了获得较好的磁耦合。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:所述内、外层瓷骨架(123、124)的两端部分别有环绕其外表面径向突起并轴向延伸的、各自的突楞(127、128);所述内层绕组(121)借助其自身的突楞(127)卡接在外层绕组(122)内的空腔(132)中;所述各内、外层绕组(121、122)分别通过各自的瓷骨架突楞(12、128)互相嵌合固定。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:还包括置于所述绕组-磁芯模块(100)中心轴线部位、用于各外层绕组(122)之间绝缘的中心隔件(140),该中心隔件(140)以其中央圆柱形通孔(148)中心轴线为对称轴,均匀分布有至少俩隔片(147),所述各隔片(147)嵌入相邻俩互相电连接的、用于高压侧的俩外层绕组(122)之间,以提高其间的电绝缘强度。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:所述内、外层瓷骨架(123、124)各自的内外环面上,等间隔地设置有用于方便缠绕内、外层线圈(125、126)的、径向突起并轴向延伸的内、外层瓷骨架隔板(135、136)。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:所述绝缘支承装置(400)还包括与绕组组件(120)数量相同的一组电工瓷材质的单相立柱(460)和上下两块环形枕木(470);所述环形枕木(470)上设有与绕组组件(120)数量相同的用于同单相立柱(460)固定连接的固定隔板(477),所述各绕组组件(120)嵌置于上下两块所述环形枕木(470)的各固定隔板(477)之间;所述单相立柱(460)上设置有用于同输入、输出接线装置(180、190)连接的单相立柱连接耳(467)。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:所述绝缘支承装置(400)还包括与绕组组件(120)数量相同的一组电工瓷材质的三相立柱(480)和四块环形枕木(470);所述环形枕木(470)上设有与绕组组件(120)数量相同的用于同三相立柱(480)固定连接的固定隔板(477);所述四块环形枕木(470)两两之间各嵌置有一个绕组-磁芯模块(100)所用的各绕组组件(120);所述绕组组件(120)嵌置于上下两块所述环形枕木(470)的各固定隔板(477)之间;所述各三相立柱(480)上设置有用于同输入、输出接线装置(180,190)连接的三相立柱连接耳(487)。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:所述各内层绕组(121)通过钎焊跨接在内层瓷骨架边沿(127)之间的连接铜片(137)互相电连接;所述各外层绕组(122)通过紧固件跨接在外层瓷骨架边沿(128)之间的连接线(138)互相电连接。
- 根据权利要求1所述的穿绕硅钢带磁芯的电力变压器,其特征在于:所述输入接线装置(180)包括用于高压输入电线绝缘的瓷瓶(184);所述输出接线装置(190)包括位于内层绕组(121)端部用于同内层线圈(125)连接的连接槽(191)、在连接槽(191)和外部输出铜排(196)之间使用连接铜排(192)进行电连接。
- 一种用于电力变压器的绕组-磁芯模块(100),包括至少两个绕组组件(120);每个绕组组件(120)包括共中轴线地套叠在一起的内、外层绕组(121、122);每个内、外层绕组(121、122)分别包括各自的内、外层瓷骨架(123、124),以及分别缠绕在各自瓷骨架(123、124)上的、材质为玻璃纤维绝缘铜线的内、外层线圈(125、126);所述内、外层绕组(121、122)的横断面中央部位空腔(131、132)呈近似矩形,用于容置穿绕的硅钢带以及让所述俩绕组(121、122)套叠;所述绕组-磁芯模块(100)由各该绕组组件(120)的中轴线首尾连接呈环形定位在专用机床上,从相邻俩绕组组件(120)之间的间隙塞入硅钢带自动穿绕,直至塞满各内层绕组内空腔(131)而构成各该绕组组件(120)共同的磁芯(150);各绕组组件(120)和由硅钢带穿绕成的环形磁芯(150)共同组成绕组-磁芯模块(100);而且在该绕组-磁芯模块(100)的外表面和其内诸缝隙中,还牢固地包覆和吸附有一层经整体退火和真空浸渍而形成的绝缘漆膜;各该内、外层线圈(125、126)分别互相以串联、并联或混联的方式电连接,用作为一、二次侧线圈或反之;所述绕组-磁芯模块(100)上设置有分别用于同一次侧、二次侧电网电连接的输入接线装置(180)和输出接线装置(190)。
- 一种制作权利要求1至9所述穿绕硅钢带磁芯的电力变压器的工艺方法,包括以下步骤:步骤A:在所述各内、外层瓷骨架(123、124)上分别缠绕内、外层线圈(125、126)制成各内、外层绕组(121、122);所述各内、外层线圈(125、126)均由包覆或缠绕有无纬玻璃丝带的绝缘铜导线卷绕而成;步骤B:将所述各内层绕组(121)分别共轴线地塞入各外层绕组(122)内,制成绕组组件(120),再由至少两个绕组组件(120)置于穿绕硅钢带专用机床上,以各该绕组组件(120)的中心轴线首尾连接呈环形定位于其上,从相邻俩绕组组件(120)之间的间隙塞入硅钢带穿绕,直至塞满各内层绕组内空腔(131)而构成 各该绕组组件(120)共同的磁芯(150)。
- 根据权利要求11所述的制作穿绕硅钢带磁芯的电力变压器的工艺方法,其特征在于:在实施了所述步骤B之后还有步骤C:由所述共同的磁芯(150)穿绕在一起的各绕组组件(120),包括它们的内、外层瓷骨架(123、124)及其上缠绕的内、外层线圈(125、126)一同投入退火炉内做调质处理12至24小时,退火温度750℃~800℃,以消除硅钢带在穿绕过程中积累内应力而对其导磁率造成的影响。
- 根据权利要求12所述的制作穿绕硅钢带磁芯的电力变压器的工艺方法,其特征在于:在实施了步骤C之后还有步骤D:经步骤C退火后的所述由共同的磁芯(150)穿绕在一起的各绕组组件(120),俟其冷却到5℃~40℃的环境温度时,将其整体放入真空容器中浸渍绝缘漆30分钟至5小时,取出烘干,制成待用的绕组-磁芯模块(100)
- 根据权利要求13所述的制作穿绕硅钢带磁芯的电力变压器的工艺方法,其特征在于:在实施了步骤D之后还有步骤E:经步骤D浸渍了绝缘漆的一个绕组-磁芯模块(100)安装固定在由两块环形枕木(470)和四个电工瓷材质的单相立柱(460)组成的绝缘支承装置(400)上组成一单相电力变压器。
- 根据权利要求13所述的穿绕硅钢带磁芯的电力变压器的制作方法,其特征在于:在实施了步骤D之后还有步骤F:经步骤D浸渍了绝缘漆的三个绕组-磁芯模块(100)分层安装固定在由四块环形枕木(470)和四个电工瓷材质的三相立柱(480)组成的绝缘支承装置(400)上;并且各该绕组-磁芯模块(100)的内层或外层线圈(125、126)各自分别做星形或三角形连接,组成三相电力变压器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/098662 WO2017107129A1 (zh) | 2015-12-24 | 2015-12-24 | 穿绕硅钢带磁芯的电力变压器及其制作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/098662 WO2017107129A1 (zh) | 2015-12-24 | 2015-12-24 | 穿绕硅钢带磁芯的电力变压器及其制作方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017107129A1 true WO2017107129A1 (zh) | 2017-06-29 |
Family
ID=59088678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/098662 WO2017107129A1 (zh) | 2015-12-24 | 2015-12-24 | 穿绕硅钢带磁芯的电力变压器及其制作方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017107129A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022056268A1 (en) * | 2020-09-10 | 2022-03-17 | Murata Manufacturing Co., Ltd. | Embedded magnetic device including multilayer windings |
CN114284037A (zh) * | 2021-12-15 | 2022-04-05 | 无锡市海鹰传感器有限公司 | 通过提高散热能力来减小体积重量的中频功率变压器结构 |
WO2022072473A1 (en) * | 2020-09-29 | 2022-04-07 | Murata Manufacturing Co., Ltd. | Embedded magnetic device including multilayer windings |
CN115172019A (zh) * | 2022-07-29 | 2022-10-11 | 天长市瑞荣塑业有限公司 | 一种超薄组合型变压器骨架 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155743A (zh) * | 1996-11-26 | 1997-07-30 | 蒋栖瑞 | 变压器带状磁芯的穿绕方法及其专用机床 |
US20070085650A1 (en) * | 2005-10-14 | 2007-04-19 | Chiu-Nan Chen | QQ-type spirakore |
CN104021916A (zh) * | 2014-06-06 | 2014-09-03 | 合肥雷科电子科技有限公司 | 大功率浮动高压可重构组合式高频高压整流变压器 |
CN104485208A (zh) * | 2014-12-12 | 2015-04-01 | 国家电网公司 | 一种卷铁芯穿心式升流器 |
CN105655108A (zh) * | 2015-12-24 | 2016-06-08 | 蒋栖瑞 | 穿绕硅钢带磁芯的电力变压器及其制作方法 |
CN205335042U (zh) * | 2015-12-24 | 2016-06-22 | 蒋栖瑞 | 穿绕硅钢带磁芯的电力变压器 |
-
2015
- 2015-12-24 WO PCT/CN2015/098662 patent/WO2017107129A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1155743A (zh) * | 1996-11-26 | 1997-07-30 | 蒋栖瑞 | 变压器带状磁芯的穿绕方法及其专用机床 |
US20070085650A1 (en) * | 2005-10-14 | 2007-04-19 | Chiu-Nan Chen | QQ-type spirakore |
CN104021916A (zh) * | 2014-06-06 | 2014-09-03 | 合肥雷科电子科技有限公司 | 大功率浮动高压可重构组合式高频高压整流变压器 |
CN104485208A (zh) * | 2014-12-12 | 2015-04-01 | 国家电网公司 | 一种卷铁芯穿心式升流器 |
CN105655108A (zh) * | 2015-12-24 | 2016-06-08 | 蒋栖瑞 | 穿绕硅钢带磁芯的电力变压器及其制作方法 |
CN205335042U (zh) * | 2015-12-24 | 2016-06-22 | 蒋栖瑞 | 穿绕硅钢带磁芯的电力变压器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022056268A1 (en) * | 2020-09-10 | 2022-03-17 | Murata Manufacturing Co., Ltd. | Embedded magnetic device including multilayer windings |
WO2022072473A1 (en) * | 2020-09-29 | 2022-04-07 | Murata Manufacturing Co., Ltd. | Embedded magnetic device including multilayer windings |
CN114284037A (zh) * | 2021-12-15 | 2022-04-05 | 无锡市海鹰传感器有限公司 | 通过提高散热能力来减小体积重量的中频功率变压器结构 |
CN115172019A (zh) * | 2022-07-29 | 2022-10-11 | 天长市瑞荣塑业有限公司 | 一种超薄组合型变压器骨架 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101707813B1 (ko) | 개선된 냉각 특징을 구비한 건식 변압기 | |
US9343210B2 (en) | Three-phase magnetic cores for magnetic induction devices and methods for manufacturing them | |
WO2017107129A1 (zh) | 穿绕硅钢带磁芯的电力变压器及其制作方法 | |
JP2012517119A (ja) | アモルファス金属連続磁路型変圧器及びその製造方法 | |
CN107369534B (zh) | 一种三相立体叠铁芯变压器 | |
WO2011158290A1 (ja) | 静止電磁機器 | |
CN201298427Y (zh) | 油浸式变压器 | |
KR101967877B1 (ko) | 변압기 철심과 권선 조립방법 및 그를 이용한 변압기 제조방법 | |
WO2014067435A1 (zh) | 连续式线圈绕制工艺方法 | |
CN105655108B (zh) | 穿绕硅钢带磁芯的电力变压器及其制作方法 | |
KR101481057B1 (ko) | 유전위 컴팩트 주상변압기 제조방법 | |
US6326877B1 (en) | Transformer coil support structure | |
CA2758282C (en) | Power transformer with amorphous core | |
CN203850132U (zh) | 一种非晶合金变压器线圈 | |
CN204289035U (zh) | 变压器 | |
CN109524220B (zh) | 变压器及变压器加工方法 | |
KR101506698B1 (ko) | 변압기용 철심 권선 조립체 | |
CN205335042U (zh) | 穿绕硅钢带磁芯的电力变压器 | |
CN107331495B (zh) | 一种三框三柱立体叠片式变压器铁芯 | |
CN203787251U (zh) | 电气化铁道专用的单相变压器、三相变压器及三相铁芯 | |
CN101202158A (zh) | 变压器 | |
CN211879187U (zh) | 一种新型单相节能变压器 | |
JP3933347B2 (ja) | 静止誘導機器用巻線 | |
WO2009024009A1 (fr) | Structure de réacteur à doubles parties actives | |
CN112420335B (zh) | 一种分段绝缘多相柱中频变压器及级联式电力电子变压器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15911128 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15911128 Country of ref document: EP Kind code of ref document: A1 |