WO2017085930A1 - Brace member and method for assembling brace member - Google Patents
Brace member and method for assembling brace member Download PDFInfo
- Publication number
- WO2017085930A1 WO2017085930A1 PCT/JP2016/004902 JP2016004902W WO2017085930A1 WO 2017085930 A1 WO2017085930 A1 WO 2017085930A1 JP 2016004902 W JP2016004902 W JP 2016004902W WO 2017085930 A1 WO2017085930 A1 WO 2017085930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axial force
- force member
- sliding side
- side base
- tube
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/38—Connections for building structures in general
- E04B1/58—Connections for building structures in general of bar-shaped building elements
Definitions
- the present invention relates to a brace material including an axial force material that absorbs seismic energy when an earthquake occurs and a stiffening tube that stiffens the material, and a method for assembling the brace material.
- brace materials are installed in building structures as seismic, vibration-damping and seismic dampers to absorb seismic energy and reduce damage to main structural members such as pillars and beams of building structures.
- the buckling restrained brace is generally composed of an axial force member, a stiffening tube, and a joint for joining to the main frame.
- the buckling restrained brace is compressed in the axial direction by the vibration of the building structure due to the earthquake.
- the axial force material of the buckling restraint brace bears the compression in the axial direction of the buckling restraint brace.
- the buckling-restraining brace includes a stiffening tube that stiffens the deflection and buckling of the axial force material so that the axial force material does not buckle due to axial compression and plastically deforms in the axial direction of the brace material.
- the stiffening tube is provided so as to cover the periphery of the axial force material as a buckling restraining material for the axial force material without burdening the axial force input to the brace material. Due to the above structure, the buckling-restrained brace prevents the occurrence of overall buckling of the axial force material even when a compressive axial force is applied, or delays the generation time to cause stable axial deformation, thereby absorbing seismic energy. Is supposed to increase.
- clevises are screwed to both ends of an axial force member made of steel bar that penetrates the stiffening pipe.
- One end of the stiffening tube is screwed to one end of the axial force member via a stop ring that is screwed into the stiffening tube and the axial force member.
- a sleeve made of a steel pipe is screwed to the other end portion of the axial force member. The sleeve is substantially half of the longitudinal direction penetrating into the stiffening tube, and the remaining half is exposed from the stiffening tube.
- this brace material can arrange
- the thickness of the sleeve needs to be smaller than half the difference between the inner diameter of the stiffening tube and the outer diameter of the axial force member.
- the inner surface of the stiffening tube is preferably located at a position close to the outer surface of the axial force member in order to reduce the deflection of the axial force member and to exhibit sufficient supplementary rigidity. For this reason, there is a limit to the plate thickness that the sleeve can take. Due to such a limit, when the bending strength of the sleeve is small, there is a possibility that yielding due to bending may occur in the range exposed from the stiffening tube of the sleeve.
- the axial force is not transmitted to the stiffening tube, but it expands and contracts in the axial direction.
- the periphery of the axial force material is not covered with a stiffening tube.
- the periphery of the axial force member between the end face of the stiffening tube and the clevis is covered with a sleeve.
- both ends of the brace are pin-supported by the clevis, so the entire structure becomes unstable, and the brace may be buckled as a whole.
- Prevents bending of the axial force material at the shrinkage margin of the brace ensures appropriate bending rigidity and yield strength of the stiffening tube, and properly manages the shrinkage allowance of the brace during production, so that the axial force is applied to the stiffening tube. It is necessary to prevent the entire brace from buckling so as not to act excessively.
- the axial force material is appropriately restrained by a mechanism replacing the sleeve, and the axial force material does not rotate and deform at the portion not covered by the stiffening tube at the end of the stiffening tube.
- the present invention responds to the above requirements, and appropriately restrains the rotational deformation of the axial force material at the end of the buckling restraint material (stiffening tube), and the axial force is transmitted to the buckling restraint material (stiffening tube). It is an object of the present invention to provide a brace material that can appropriately secure a shrinkage allowance for expanding and contracting in the axial direction and an assembly method of the brace material.
- a brace material includes a rod-shaped axial force material, a stiffening tube through which the axial force material penetrates, and a fixed-side end portion that is one end portion in the longitudinal direction of the stiffening tube. And a fixed side base joined to one end in the longitudinal direction of the axial force member, a sliding side base joined to the other end in the longitudinal direction of the axial force material, and the auxiliary A sliding-side end that is the other end in the longitudinal direction of the rigid pipe or a socket pipe that is detachably joined to the sliding-side base, and the fixed-side base and the sliding-side base are architectural A joining element serving as a joint for installation in a structure is provided, and the socket tube surrounds an outer peripheral portion of the sliding side end portion and an outer peripheral portion of the sliding side base.
- the socket tube and the stiffening tube or the sliding side base are screwed together.
- the axial force member has male threads at both end portions, and the fixed side base and the sliding side base have the axial force member.
- the hole includes a cylindrical portion and a female screw into which the axial force member is screwed on the back side of the cylindrical portion when viewed from the direction in which the axial force member is inserted.
- the axial force member, the fixed side base, and the sliding side base are joined by screwing of the male screw and the female screw.
- the sliding side cap extends from the end surface of the sliding side end of the stiffening tube to the surface of the sliding side cap facing the end surface.
- the axial force member is joined so that there is a gap between them.
- the joining element protrudes in a direction opposite to the side where the axial force member and the stiffening tube are joined, and the fixed side cap and the sliding member It is characterized by being joined to each of the moving side caps.
- the inner diameter of the socket tube surrounding the stiffening tube is constant in the longitudinal direction, and the outer diameter of the range is the stiffening member. It is characterized by becoming smaller as it approaches the center in the longitudinal direction of the tube.
- the method for assembling the brace material according to the present invention includes a rod-shaped axial force member, a stiffening tube through which the axial force member passes, and one end portion in the longitudinal direction of the stiffening tube.
- a fixed side base joined to one fixed side end and joined to one end in the longitudinal direction of the axial force member, and a sliding side joined to the other end in the longitudinal direction of the axial force member
- a socket tube that is detachably joined to the sliding side end that is the other end in the longitudinal direction of the stiffening tube or the sliding side cap, and the fixed side cap and the sliding
- the side cap is provided with a joining element that serves as a joint for installation in a building structure
- the socket tube is an assembly of braces that surrounds the outer periphery of the sliding side end and the outer periphery of the sliding side cap.
- a socket tube joining step for joining the socket tube to the stiffening tube or the slide side die, and the socket tube joining step includes the fixed side die. It is carried out after the joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step.
- the sliding side base fixing step is performed after the fixed side base joining step and the stiffening tube fixing step, and the sliding of the stiffening tube is performed. It includes a gap adjustment step from the end surface of the side end portion to the surface of the sliding side base facing the end surface.
- one end portion (fixed side end portion) of the stiffening tube in the longitudinal direction is joined to the fixed base, and the other end portion (sliding in the longitudinal direction of the stiffening tube)
- the outer periphery of the side end portion is surrounded by the socket tube.
- the socket tube surrounds the outer periphery of the stiffening tube, and there is no restriction on the outer diameter and the plate thickness, and the socket tube can be enlarged. Therefore, the bending strength and rigidity of the socket tube can be increased.
- deformation is constrained by a highly rigid socket tube, and between the sliding side end of the stiffening tube and the sliding side base. Occurrence of buckling and bending of the axial force material can be suppressed. As a result, a brace material having a high bending strength and hardly buckling can be obtained.
- the socket tube and the stiffening tube or the sliding side base are detachably joined. Thereby, an assembly is easily possible at the time of manufacture of a brace material.
- the dimension between the sliding side end of the stiffening tube and the sliding base is visible, making it easy to manage the dimensions during manufacturing, and in turn, managing the deformation performance of the brace material.
- a highly reliable brace material can be obtained.
- the axial force member is inserted into a hole provided in the fixed side base and the sliding side base, and is screwed and joined by a female screw located on the inner side of the cylindrical portion of the hole. With this configuration, even when bending deformation occurs in the male screw provided on the axial force member, the bending deformation around the male screw of the axial force member can be restrained by the cylindrical portion. The proof stress can be improved.
- the sliding side base is joined with a gap between the end face of the sliding side end of the stiffening tube and the surface (end face) of the sliding side face facing the end face.
- the joining element protrudes in a direction opposite to the side where the axial force member and the stiffening tube are joined, and is joined to each of the fixed side base and the sliding side base.
- the inner diameter of the socket tube in the range surrounding the stiffening tube is constant in the longitudinal direction, and the outer diameter of the range is a tapered shape that becomes smaller toward the center in the longitudinal direction (axial direction) of the stiffening tube. It becomes.
- the socket tube joining step is performed after the fixed side cap joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step, thereby sliding the stiffening tube described above.
- the brace material can be assembled while visually recognizing the dimension between the side end and the sliding base.
- the sliding side cap fixing step includes a gap adjustment step of adjusting the distance from the end surface of the sliding side end of the stiffening tube to the surface of the sliding side cap facing the end surface, thereby providing stiffening.
- the dimension between the sliding side end of the tube and the sliding side base can be adjusted to a desired length, and more accurate dimension management is possible.
- FIG. 1 is a side view of a brace material according to Embodiment 1 of the present invention.
- FIG. 2 is a view showing a cross section passing through the central axis of the brace material of FIG.
- FIG. 3 is an enlarged view of a cross section of the brace material of FIG. 1 on the fixed base side.
- FIG. 4 is an enlarged view of a cross section of the brace material of FIG. 1 on the sliding side base side.
- FIG. 5 is a diagram for explaining the structure of a conventional brace material as a comparative example.
- FIG. 1 is a side view of a brace material according to Embodiment 1 of the present invention.
- FIG. 2 is a view showing a cross section passing through the central axis of the brace material of FIG.
- FIG. 3 is an enlarged view of a cross section of the brace material of FIG. 1 on the fixed base side.
- FIG. 4 is an enlarged view of a cross section of the brace material of FIG. 1
- FIG. 6 is a cross-sectional view in side view for explaining a test body to be subjected to a loading test for confirming the performance of the brace material according to the first embodiment of the present invention and defining the length of each part.
- FIG. 7 is a load-strain diagram showing the result of a loading test for confirming the performance of the brace material according to Embodiment 1 of the present invention. As a result of No. 1, (b) shows the test specimen No. The result of 2.
- FIG. 8 is a load-strain diagram showing the result of a loading test for confirming the performance of a conventional brace material as a comparative material.
- FIG. 9 is a view showing a cross section passing through the central axis of the brace material according to the second embodiment of the present invention, and is a view for explaining the structure around the socket tube.
- FIG. 1 is a side view of a brace material according to Embodiment 1 of the present invention.
- FIG. 2 is a view showing a cross section passing through the central axis of the brace material of FIG.
- the longitudinal direction of a brace material is abbreviate
- the left side in FIGS. 1 and 2 is referred to as “one in the longitudinal direction”, and the right side is referred to as “the other in the longitudinal direction”.
- the brace material 100 includes a rod-shaped axial force member 10 and a cylindrical stiffening tube 20 that covers the outer periphery of the axial force member 10.
- the central axis 101 is the central axis of the brace material 100 and is the same as the central axis of the axial force material 10.
- the center of the stiffening tube 20 is also arranged at the same position as the central axis 101. That is, the axial force member 10 penetrates the center inside the cylindrical stiffening tube 20 in the longitudinal direction.
- the axial force member 10 is surrounded by the stiffening tube 20 and its deformation is restricted.
- One end portion 11 a in the longitudinal direction of the axial force member 10 is joined to the fixed side cap 30.
- the fixed side end 21 a which is one end in the longitudinal direction of the stiffening tube 20 is also joined to the fixed side base 30.
- the other end portion 11 b in the longitudinal direction of the axial force member 10 is joined to the sliding side base 60.
- the sliding side end 21 b that is the other end in the longitudinal direction of the stiffening tube 20 is disposed at a distance A from the sliding side base 60. That is, a gap is provided between the end surface of the sliding side end portion 21b of the stiffening tube 20 and the surface of the sliding side base 60 facing the end surface.
- the sliding-side end portion 21b of the stiffening tube 20 is surrounded on the outer periphery by a socket tube 50 having an inner cylindrical shape. The end of the socket tube 50 on the sliding side base 60 side is detachably joined to the sliding side base 60.
- the fixed side base 30 and the sliding side base 60 are joined with a clevis 40 protruding in the opposite direction to the side on which the axial force member 10 is joined.
- the clevis 40 corresponds to the “joining element” of the present invention.
- the one joined to the fixed base 30 is called a clevis 40a
- the one joined to the sliding side base 60 is called a clevis 40b.
- the clevis 40a is referred to as a “first joining element” of the present invention
- the clevis 40b is referred to as a “second joining element”.
- the clevis 40 serves as a joint for installing the brace material 100 in a building structure (not shown).
- FIG. 3 is an enlarged view of a cross section of the brace material of FIG. 1 on the fixed side cap 30 side.
- 4 is an enlarged view of a cross section of the brace material of FIG.
- the axial force member 10 is a long material and is a steel bar having a circular cross section.
- an axial force member 10 which is a steel rod having a circular cross section is shown.
- the axial force member 10 may be formed by joining a steel pipe or a flat plate in a cross-section, and the cross-sectional shape of the brace member 100 cut by a plane perpendicular to the central axis 101 is not limited.
- a male screw 12 a is formed at one end 11 a in the longitudinal direction of the axial force member 10.
- a male screw 12b is formed at the other end 11b in the longitudinal direction of the axial force member 10.
- the axial force member 10 When the axial force member 10 is formed of a plastically deformable material, it absorbs energy input to the brace material 100 when the axial force member 10 is plastically deformed, and has a higher effect as an anti-seismic and damping damper. can get. To prevent abnormal noise when the outer peripheral surface of the axial force member 10 and the inner peripheral surface of the stiffening tube 20 slide, and excessive increase in the axial force due to friction between the axial force member 10 and the stiffening tube 20. In order to prevent this, for example, a liner material made of synthetic resin may be installed on the outer peripheral surface of the axial force member 10.
- the stiffening tube 20 is a steel tube having a circular cross section, and the axial force member 10 can penetrate through the tube.
- the stiffening tube 20 is not limited to a cylindrical shape.
- the stiffening tube 20 only needs to be able to restrain the deflection so that the axial force member 10 does not buckle when the axial force member 10 is bent by the axial force.
- the stiffening tube 20 may be a cylinder having a square cross section.
- the longitudinal dimension of the stiffening tube 20 is such that when the one end portion 11a of the axial force member 10 and the fixed side end portion 21a of the stiffening tube 20 are fixed to the fixed side cap 30, the stiffening tube 20 slides. The other end portion 11b of the axial force member 10 protrudes from the side end portion 21b.
- the stiffening tube 20 is shorter than the axial force member 10.
- a male screw 22a is formed on the outer peripheral side of the fixed-side end portion 21a of the stiffening tube 20. The male screw 22 a is screwed with a stiffening tube screwed female screw portion 34 formed on the fixed side cap 30. In the fixed base 30, the stiffening tube 20 and the axial force member 10 are fixed so as not to move relatively in the longitudinal direction.
- the distance A is from the end surface of the sliding side end 21 b of the stiffening tube 20 to the end surface of the sliding side base 60 joined to the end 11 b of the axial force member 10. It has been.
- the brace material 100 is designed on the assumption that no axial force (force acting in the direction of the central axis 101 of the brace material 100) is input to the stiffening tube 20 because the distance A is taken. be able to.
- the stiffening tube 20 can be made thinner and smaller in outer diameter than the case where the axial force acts.
- the distance A is appropriately determined depending on the size and material of the brace material 100 and the building structure to be applied.
- the fixed side cap 30 has a cylindrical shape, and a hole 31 is opened from one end of the cylindrical shape to the center. A female screw 33 is formed on the back side of the hole 31.
- the axial force member 10 is joined to the fixed base 30 by the male screw 12 a being inserted into the hole 31 and screwed with the female screw 33 formed on the back side of the hole 31.
- the hole 31 may penetrate the fixed side cap 30 or may be a bag hole.
- the axial force member 10 can be inserted into the hole 31 from one side, and provided with a support portion 32 that comes into contact with the axial force member 10 when the axial force member 10 is deformed in front of the female screw 33. Deformation at the male screw 12a when receiving force can be suppressed.
- the male screw 12a of the axial force member 10 is screwed with the fixed base 30 that is the counterpart component, but in the state where the brace material 100 is completed, the male screw 12a is screwed with the female screw 33 at the mouth portion of the female screw 33. There may be a case where the male screw portion 13a does not occur.
- the male screw portion 13a is specifically an incomplete screw portion of the male screw 12a, or is not screwed because the male screw 12a is longer than the female screw 33 due to a dimensional error of the axial force member 10 or the fixed side cap 30. Part.
- the axial force member 10 is deformed by receiving an axial force due to vibration of the building structure, and may be deformed in the bending direction at that time.
- the unthreaded male thread portion 13a is threaded and has a smaller cross-sectional area than the other cylindrical portion of the axial force member 10, so that the strength and rigidity are low, and stress concentration is likely due to the thread valley shape. It has a shape. Therefore, when the axial force member 10 is deformed, there is a high possibility that the axial force member 10 is deformed from the male screw portion 13a that is not screwed and becomes a starting point of damage to the axial force member 10. Therefore, when the axial force member 10 is deformed, the axial force member 10 is brought into contact with the support portion 32 to suppress deformation around the male screw portion 13a that is not screwed, thereby improving the proof stress of the axial force member 10. Can do.
- a gap is required between the inner diameter of the support portion 32 and the outer diameter of the axial force member 10, but it is desirable that the gap is as small as possible. Further, the dimension of the support portion 32 in the direction of the central axis 101 can further suppress deformation of the axial force member 10 around the male screw portion 13a that is not screwed in the longer direction.
- a cylindrical recess having a predetermined depth from the end face of the fixed base is provided on the mouth side of the hole 31, and a stiffening tube threaded female thread portion 34 is provided on the inner peripheral portion of the cylindrical shape. Is provided.
- the stiffening tube threaded female thread portion 34 is provided concentrically with the hole 31.
- the stiffening tube 20 is screwed into the stiffening tube screwing female thread portion 34 and joined so as not to move relative to the axial force member 10 in the direction parallel to the central axis 101 of the brace material 100.
- a cylindrical recess having a predetermined depth from the end surface is provided on the end surface of the fixed-side base 30 on the side opposite to the end surface on which the stiffening tube screwing female thread portion 34 is provided.
- a clevis screwed female thread portion 37 is provided on the inner peripheral portion of the clevis.
- a male screw provided on the clevis 40 a is joined to the clevis screwed female screw portion 37.
- a taper portion 35 and a chamfered portion 36 whose outer diameter decreases toward the respective end surfaces are formed on the ridgeline between the end surface and the outer periphery of the fixed side cap 30.
- the sliding side cap 60 has a cylindrical shape, and a hole 61 is opened from one end of the cylindrical shape to the center.
- a female screw 63 is formed on the back side of the hole 61.
- the axial force member 10 is inserted into the hole 61, screwed into a female screw 63 formed on the back side of the hole 61, and joined to the sliding side base 60.
- the hole 61 may penetrate the sliding base 60 or may be a bag hole.
- the axial force member 10 can be inserted into the hole 61 of the sliding side cap 60 from one side.
- the hole 61 When the axial force member 10 receives an axial force, the hole 61 includes a support portion 62 that comes into contact with the axial force member 10 when the axial force member 10 is deformed in front of the female screw 63 in the insertion direction of the axial force member 10. Deformation of the male screw 12b can be suppressed.
- the proof stress of the axial force member 10 can be improved by causing the axial force member 10 to come into contact with the support portion 62 and suppressing deformation around the male screw portion 13b that is not screwed.
- a gap is required between the inner diameter of the support portion 62 and the outer diameter of the axial force member 10, but the gap is preferably as small as possible. Further, it is desirable that the dimension of the support portion 62 in the direction of the central axis 101 is longer, and deformation of the axial force member 10 around the male screw portion 13b that is not screwed can be further suppressed.
- a step is formed on the outer periphery of the end face of the sliding side base 60 on the side where the axial force member 10 is inserted, and the central portion of the sliding side base 60 is smaller in diameter than the outer periphery of the sliding side base 60.
- the cylinder protrudes toward the end face.
- the outer periphery of the cylinder is a socket pipe threaded male screw portion 64 to which the socket pipe 50 is screwed.
- a cylindrical recess having a predetermined depth from the end surface is provided on the end surface of the sliding side base 60 opposite to the end surface on which the socket pipe screwing male screw portion 64 is provided.
- a clevis screwed female threaded portion 67 is provided on the inner peripheral portion of the.
- a male screw provided on the clevis 40 b is joined to the clevis screwed female screw portion 67.
- a chamfered portion 66 is formed on the ridgeline between the end face of the sliding side base 60 on the side where the clevis 40b is joined and the outer periphery. Thereby, the sliding side cap 60 can ensure safety and durability, promote weight reduction, and improve design.
- the dimension of the chamfered portion 66 can be changed as appropriate, and may be changed to a tapered shape depending on strength or design.
- the clevis 40 functions as a joint for installation in a building structure (not shown), and includes a disc-like portion 41, a plate-like portion 42 installed on one end face of the disc-like portion 41, a plate A mounting hole 44 penetrating through the cylindrical portion 42 and a male screw 43 formed on the outer periphery of the disc-shaped portion 41.
- the center line of the mounting hole 44 and the center line of the male screw 43 intersect at a right angle.
- the term “intersection” does not mean that the geometrical intersection is accurate, and an industrial error is allowed.
- the clevis 40 is screwed to the fixed side base 30 and the sliding side base 60, respectively.
- the clevis 40a and the clevis 40b have the same shape, the cost of the brace material 100 as a whole can be reduced.
- the clevis 40a and the clevis 40b may have different shapes depending on the building structure to which the brace material 100 is applied.
- the fixed side cap 30 and the sliding side cap 60 and the clevis 40 are separately manufactured and integrated by screw connection, but the present invention is not limited to this.
- the fixed side base 30 and the sliding side base 60 and the clevis 40 may be integrated by mechanical joining such as shrink fitting or metallurgical joining such as welding, or integrally from the beginning by casting or the like. May be manufactured.
- the socket tube 50 is provided with a through hole 51 in the inner longitudinal direction, and has a tapered portion 52 and a cylindrical portion 55 on the outer peripheral side.
- the socket tube 50 has a sliding-side base screwed female screw 54 formed inside the cylindrical portion 55.
- the socket-side threaded male screw portion 64 of the sliding-side base 60 is screwed into the sliding-side base screwed female screw 54, and the socket pipe 50 and the sliding-side base 60 are joined.
- the through hole 51 surrounds the sliding side end 21 b of the stiffening tube 20.
- the inner surface of the through hole 51 and the outer peripheral surface of the stiffening tube 20 are arranged with a gap.
- the clearance B between the inner surface of the through hole 51 and the outer peripheral surface of the stiffening tube 20 and the length C in the longitudinal direction in which the through hole 51 surrounds the sliding side end 21b of the stiffening tube 20 are determined by the brace material.
- the accuracy of each part such as the stiffening tube 20, the fixed side cap 30, the axial force member 10, the sliding side cap 60, the socket tube 50, the deflection of the axial force member 10, etc. It is decided.
- the axial force material 10 bends.
- the deflection of the portion of the axial force member 10 covered by the stiffening tube 20 is restrained by the stiffening tube 20.
- the clearance B and the length C may be set within the range of the deformation amount of the axial force member 10 that is allowed in the interval where the deflection of the axial force member 10 is not restrained (distance A).
- the tapered portion 52 becomes smaller as the outer diameter approaches the tip 57. While reinforcing the stiffening tube 20, the external surfaces from the sliding base 60 to the stiffening tube 20 are smoothly connected, so that the design is improved while ensuring the strength. In addition, the taper part 52 is good also as a normal cylindrical shape.
- the brace material 100 has the structure described above, and an assembly method thereof will be described below.
- the female screw 33 of the fixed side cap 30 and the male screw 12a of the axial force member 10 are screwed together.
- This step corresponds to the “fixed side cap joining step” of the present invention.
- the stiffening tube threaded female screw portion 34 of the fixed side cap 30 and the male screw 22a of the stiffening tube 20 are screwed together.
- This step corresponds to the “stiffening tube fixing step” of the present invention.
- the sliding side end 21 b of the stiffening tube 20 is passed through the through hole 51 of the socket tube 50.
- This step corresponds to the “socket pipe fitting step” of the present invention.
- the order of these three steps can be determined as appropriate for the convenience of manufacturing.
- the axial force member 10 is passed through the hole 61 of the sliding side base 60, and the female screw 63 and the male screw 12b of the axial force member 10 are joined.
- This step corresponds to the “sliding side cap fixing step” of the present invention.
- the distance A from the end face of the sliding side end 21b of the stiffening tube 20 to the end face of the sliding side base 60 joined to the end 11b of the axial force member 10 is determined.
- the dimension (distance A) from the end surface of the sliding side end portion 21b of the stiffening tube 20 to the surface of the sliding side base 60 facing the end surface is further confirmed, and the distance A is set as necessary.
- a step of adjusting can be included. This step corresponds to the “gap adjusting step” of the present invention.
- the deformation performance of the brace material 100 can be managed as designed by the sliding side cap fixing process and the gap adjusting process.
- the sliding side cap screwed female screw 54 of the socket tube 50 is screwed to the socket pipe screwed male screw part 64 of the sliding side cap 60.
- This step corresponds to the “socket pipe joining step” of the present invention.
- the process of attaching the clevis 40a to the fixed base 30 and the process of attaching the clevis 40b to the sliding base 60 may be performed in advance before the assembly process of the brace material 100 or the brace material. You may implement after the assembly process of 100 is completed. Further, when the clevis 40 is integrally formed with the fixed side cap 30 and the sliding side cap 60 in advance, the assembly process of the clevis 40 is not required.
- FIG. 5 is a diagram for explaining the structure of a conventional brace material 900 as a comparative example.
- the prior art brace material 900 has a distance A2 from the integral clevis 960 to the end of the stiffening tube 920. Similar to the brace material 100 of the first embodiment, when the brace material 900 receives an axial force, the axial force material 910 at the distance A2 is bent and deformed.
- the sleeve 970 is disposed between the stiffening tube 920 and the axial force member 910, and surrounds the outer periphery of the axial force member 910 between the integrated clevis 960 and the stiffening tube 920.
- the bending strength of the portion of the axial force member 910 that is easily bent and deformed is improved.
- the thickness of the sleeve 970 is limited due to the structure, the bending strength of the axial force member 910 may not be ensured sufficiently.
- the fixed-side end 21a which is one end in the longitudinal direction of the stiffening tube 20
- the fixed-side base 30 is joined to the fixed-side base 30, and the other end in the longitudinal direction of the stiffening tube 20 is used.
- a predetermined range from the sliding side end portion 21 b, which is a portion, is surrounded by the through hole 51 of the socket tube 50. Since the socket tube 50 surrounds the outer periphery of the stiffening tube 20 and its thickness is not limited, the outer diameter and the plate thickness are increased compared to the sleeve 970 of the brace material 900 of the prior art. be able to.
- the deformation of the axial force member 10 is constrained between the sliding-side end portion 21b of the stiffening tube 20 and the sliding-side base 60 by the socket tube 50 having high rigidity. Occurrence of buckling and bending of the axial force member 10 between the sliding side end 21b and the sliding side base 60 is suppressed. Thereby, the brace material 100 with high bending strength is obtained.
- the socket tube 50 and the sliding side cap 60 are detachably joined. Thereby, an assembly is easily possible at the time of manufacture of the brace material 100.
- FIG. Further, the dimension between the sliding side end portion 21b of the stiffening tube 20 and the sliding side base 60 can be visually recognized, the dimension management at the time of manufacture is easy, and the deformation performance of the brace material 100 is eventually achieved. Management becomes easier.
- the socket tube 50 is removed and the sliding side end portion 21b of the stiffening tube 20 slides.
- the axial force member 10 can be visually confirmed from between the side cap 60. Thereby, it becomes possible to visually recognize the damage state of the axial force member 10 directly.
- Both ends of the axial force member 10 are joined to the fixed base 30 and the sliding base 60 with screws.
- each screw in the opposite direction for example, the male screw 12a and the female screw 33 are set to the right screw, and the male screw 12b and the female screw 63 are set to the left screw
- the distance between the hole 44a and the mounting hole 44b can be adjusted. Therefore, installation of the brace material 100 to a building structure is facilitated.
- the axial force member 10 is inserted into the hole 31 and the hole 61 provided in the fixed base 30 and the sliding base 60, and is screwed together with the female screw 33 and the female screw 63 on the back side of the hole 31 and the hole 61. Be joined. With this configuration, even when bending deformation occurs around the male screw 11 provided on the axial force member 10, the bending deformation around the male screw 11 of the axial force member 10 is caused by the support portion 32 and the support portion 62. Since it can restrain, the proof stress of the axial force material 10 can be improved.
- the sliding side base 60 is joined with a distance A between the end face of the sliding side end portion 21b of the stiffening tube 20 and the surface of the sliding side base 60 facing the end face.
- the clevis 40 (corresponding to the “joining element” of the present invention) protrudes in the direction opposite to the side where the axial force member 10 and the stiffening tube 20 are joined, and the fixed side cap 30 and the sliding side cap 60 It is joined to each.
- the clevis 40 can be shared and the cost can be reduced.
- the outer diameter of the socket tube 50 becomes smaller toward one end surface 50a (tip) in the longitudinal direction (as it approaches the longitudinal center of the stiffening tube 20). Therefore, after ensuring the strength of the brace material 100 at each position in the longitudinal direction, it is possible to promote weight reduction and improve design properties.
- the socket tube joining step is performed after the fixed side cap joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step.
- the brace material 100 can be assembled while visually recognizing the dimension between the sliding end 21b of the tube 20 and the sliding base 60.
- the sliding side cap fixing step includes a clearance adjustment step from the end surface of the sliding side end portion 21b of the stiffening tube 20 to the surface of the sliding side cap 60 facing the end surface, thereby further improving accuracy.
- the dimension A can be managed, and the deformation performance of the brace material 100 can be managed as designed.
- each joint portion of the brace material 100 is joined by a screw, but may be joined not only by a screw but also by other means.
- the joint portion between the socket tube 50 and the sliding side base 60 needs to be joined by a detachable joining method even after the brace material 100 is completed.
- the socket tube 50 may be fixed from the side using a set screw.
- FIG. 6 is a cross-sectional view in side view that defines the length of each part for explaining a test body to be subjected to a loading test for confirming the performance of the brace material 100 according to Embodiment 1 of the present invention. is there.
- symbol is abbreviate
- Table 1 shows the dimensions and the like of each part of the specimen (No1, No2).
- the outer diameter of the axial force member 10 is referred to as “D S ”.
- the yield point of the axial force member 10 is referred to as “ ⁇ y ”, and the product of the cross-sectional area of the axial force member 10 and the yield point ⁇ y is referred to as “N y ”.
- the outer diameter of the stiffening tube 20 is “D B ”, the plate thickness is “t B ”, and the length of a part of the clevis 40 and the socket tube 50 from the other end face 20 b in the longitudinal direction of the stiffening tube 20.
- the distance from the other end surface 20b in the longitudinal direction of the stiffening tube 20 to the one end surface 50a in the longitudinal direction of the socket tube 50 is defined as “l c (LC)”. It is called “l k ”.
- the distance from the center of the mounting hole 44a of the clevis 40a to the other end face 30b of the fixed side cap 30 is " F l J (FELJ)", and the other end face 30b of the fixed side cap 30 is one end face 50a of the socket tube 50.
- the distance to the "l B (LB AG)” the distance from one end surface 50a of the socket pipe 50 to the mounting hole 44b of the clevis 40b "M l J (Emuerujei)", referred respectively.
- the distance from the center of the mounting hole 44a of the clevis 40a to the center of the mounting hole 44b of the clevis 40b is referred to as “l”. Furthermore, the difference between the outer diameter of the axial force member 10 and the inner diameter of the stiffening tube 20 is “e S (Es)”, and the difference between the outer diameter of the stiffening tube 20 and the inner diameter of the socket tube 50 is “e k ( EK) ”.
- the clearance “e S / 2” between the outer peripheral surface of the axial force member 10 and the inner peripheral surface of the stiffening tube 20 and the clearance between the outer peripheral surface of the stiffening tube 20 and the inner peripheral surface of the socket tube 50. “E S / 2” is illustrated.
- the plate thickness at one end face 50a (tip) in the longitudinal direction of the socket tube 50 is referred to as “t K (TEK)”.
- test body used for the loading test for confirming the performance of the conventional brace material as a comparison material is demonstrated.
- the test body is the conventional brace material 900 shown in FIG. 5, and is a cross-sectional view in side view that defines the length of each part.
- Table 2 shows dimensions and the like of each part of the comparative material (No. 3).
- the outer diameter of the axial force member 910 is “D S ”
- the outer diameter of the stiffening tube 920 is “D B ”
- the plate thickness is referred to as “t B ”, respectively.
- the yield point of the axial force member 910 is referred to as “ ⁇ y ”
- the product of the cross-sectional area of the axial force member 10 and the yield point ⁇ y is referred to as “N y ”.
- Integral clevises 940 and 960 are installed at the ends 911a and 911b (in which male threads 912a and 912b are formed) of the axial force member 910, respectively.
- the distance between the center of the connection hole 944 of the body clevis 940 and the center of the connection hole 966 of the other integrated clevis 960 is referred to as “l”.
- One end 911a of the axial force member 910 male thread 912a is formed
- one end 921a of the stiffening tube 920 female thread 922a is formed
- a male screw 932 is formed).
- a cylindrical sleeve 970 is installed at a position close to the other end portion 911b of the axial force member 910.
- the sleeve 970 is located within the stiffening tube 920 by a distance “L” from the other end surface 920b of the stiffening tube 920. Is invading.
- the difference between the outer diameter of the sleeve 970 and the inner surface 922b at the other end 921b of the stiffening tube 920 is referred to as “e S / 2 (Es / 2)”.
- test specimen No. which is a comparative material. 3
- the cross-sectional secondary moment of the sleeve 970 is at most “0.062 ⁇ 10 7 (mm 4 )” or less.
- the cross-sectional secondary moment of the socket tube 50 of Embodiment 1 has a high (large) value that is about 17 times the cross-sectional secondary moment of the conventional sleeve 970 that is a comparative material. That is, the brace material 100 according to the first embodiment suppresses deformation of the axial force member 10 by the socket tube 50 having higher rigidity than the sleeve 970 provided in the brace material 900.
- FIG. 7 is a load-strain diagram showing the result of a loading test for confirming the performance of the brace material 100 according to the first embodiment of the present invention.
- (b) shows the test specimen No. The result of 2.
- the loading test is a double swing loading in which compression and tension of the brace material 100 are alternately and repeatedly applied.
- the brace material 100 is compressed by 0.25%. That is, the distance l (el) between the center of the mounting hole 44a of the clevis 40a and the center of the mounting hole 44b of the clevis 40b is reduced by 6.25 mm. At this time, the compressive load and the compressive strain are shown in the first quadrant of the graph of FIG. Next, the axial force member 10 is pulled by 0.25%. That is, the distance l (el) is increased by 6.25 mm. At this time, the tensile load and the tensile strain are shown in the third quadrant of the graph of FIG.
- the brace material 100 is compressed by 0.5% (distance l (el) is reduced by 12.5 mm), and then the brace material 100 is pulled by 0.5% (distance l (el) is 12.5 mm). Only stretch). Further, the brace material 100 is compressed by 1.0% (distance l (el) is reduced by 25 mm), and then the brace material 100 is pulled by 1.0% (distance l (el) is extended by 25 mm). Is repeated 5 times.
- the brace material 100 is compressed by 2.0% (distance l (el) is reduced by 50 mm), and then the brace material 100 is pulled by 2.0% (distance l (el) is 50 mm). This is repeated until the brace material 100 buckles or breaks.
- FIG. No. 2 is a specimen No. Similarly to 1, the final cycle was repeated three times, and the axial force member 10 was broken at the time of the fourth final cycle. That is, the test specimen No. 1 and Specimen No. 1 In both cases, since the brace material 100 is not buckled, it is indicated that the deflection of the axial force member 10 is appropriately restrained by the stiffening tube 20 and the socket tube 50.
- FIG. 8 is a load-strain diagram showing the results of a loading test for confirming the performance of a conventional brace material as a comparative material.
- the loading conditions are as follows. 1, no. Same as 2.
- 1 cycle of 0.10% compression and tension, 2 cycles of 0.25% compression and tension, and 1.0% compression after 2 cycles of 0.5% compression and tension When the brace material 900 is bent, the brace material 900 is buckled.
- Specimen No. above 1-No. 3 also shows that the configuration using the socket tube 50 of the brace material 100 according to the first embodiment has a higher bending strength (larger) than the configuration of the brace material 900 using the conventional sleeve 970. Therefore, it has been confirmed that it is difficult to buckle.
- the second embodiment is different from the first embodiment in that the joining position of the socket tube 50 is changed from the sliding side base 60 to the stiffening tube 20.
- a description will be given centering on a changing unit with respect to the first embodiment.
- FIG. 9 is a view showing a cross section passing through the central axis of the brace material 200 according to Embodiment 2 of the present invention, and is a view for explaining the structure around the socket tube.
- the same reference numerals are given to the same or corresponding parts as those in the first embodiment, and a part of the description will be omitted.
- the relative size and thickness of each member are not limited to the illustrated dimensions.
- the structure on the fixed side cap 30 side not shown is the same as that of the first embodiment.
- the sliding-side end portion 21b of the stiffening tube 20 is disposed at a distance A from the sliding-side base 60, and the inside is a socket tube 50 having a cylindrical shape.
- the outer periphery is surrounded.
- the end of the socket tube 50 on the sliding side base 60 side is detachably joined to a socket pipe threaded male screw portion 64 on the outer periphery of the sliding side base 60 by screw joining.
- the brace material 200 of the second embodiment shown in FIG. 9 has a male screw on the outer periphery of the sliding side end 221b of the stiffening tube 220 arranged at a distance A1 from the sliding side base 260. 224 is provided. Then, a female screw 254 provided in the through hole 251 of the socket tube 250 is screwed into the male screw 224 so as to surround the outer periphery of the stiffening tube 220. An end of the socket tube 250 on the sliding side base 260 side surrounds the outer periphery of the sliding side base 260. In the second embodiment, the through hole 251 is larger than the sliding side base 260.
- the socket tube 250 can be attached from the sliding side base 260 side after the sliding side base 260 and the axial force member 10 are joined.
- the through hole 251 is larger than the clevis 240b, and the socket tube 250 can be attached even after the clevis 240b is joined to the sliding side base 260.
- the outer peripheral surface of the sliding side base 260 and the through hole 251 of the socket tube 250 are fitted with a gap B1.
- the through hole 251 surrounds the outer periphery of the sliding side base 260 over a length C1 in the longitudinal direction.
- the clearance B1 and the length C1 are the assembly accuracy of the brace material 200, the accuracy of each part such as the stiffening tube 220, the fixed side base 30, the axial force member 10, the sliding side base 260, and the socket tube 250, and the axial force member 10. It is determined as appropriate according to the allowable amount of deflection.
- the joint location of the socket tube 250 is changed.
- the stiffening tube 220 within a predetermined range from the sliding side end 221 b is surrounded by the through hole 251 of the socket tube 250. ing. Since the socket tube 250 surrounds the outer periphery of the stiffening tube 220 and its thickness is not limited, the outer diameter and the plate thickness are increased in the same manner as the brace material 100 according to the first embodiment. be able to. Therefore, as with the brace material 100 according to the first embodiment, the brace material 200 with high bending strength is obtained.
- the socket tube 250 and the stiffening tube 220 are detachably joined.
- the brace material 200 can be easily assembled at the time of manufacture, the dimensional management of the distance A1 at the time of manufacture is easy, and the deformation performance of the brace material 200 is eventually achieved. Management becomes easier.
- both ends of the axial force member 10 in the brace material 200 are joined to the fixed side base 30 and the sliding side base 260 by screws, respectively.
- the distance between the mounting holes at both ends of the brace material 200 can be adjusted, and the installation of the brace material 200 to the building structure is facilitated.
- the axial force member 10 is the same as the brace member 100 according to the first embodiment with respect to the peripheral structure screwed with the fixed base 30 and the sliding base 260. Therefore, even if bending deformation occurs around the male screw 11 provided on the axial force member 10, the bending deformation around the male screw 11 of the axial force member 10 can be restrained by the support portion 262. The proof stress of the axial force member 10 can be improved.
- the sliding base 260 is joined with a distance A1 from the end face of the sliding end 221b of the stiffening tube 220 to the surface of the sliding base 260 facing the end face.
- the clevis 40 By making the clevis 40 separate from the fixed side cap 30 and the sliding side cap 60 and joining them later, the clevis 40 can be shared and the cost can be reduced. Corresponding to each building structure, the joining element (clevis 40) can be replaced.
- the assembly of the brace material 200 can be performed in the same manner as the brace material 100 according to the first embodiment. Therefore, the dimension (distance A1) between the sliding side end 221b of the stiffening tube 220 and the sliding side base 260 is visible. Therefore, the dimension management of the distance A1 with higher accuracy is possible, and the deformation performance of the brace material 200 can be managed as designed.
- each joint portion of the brace material 200 is joined by a screw, but it may be joined by other means in addition to the screw.
- the joint portion between the socket tube 250 and the stiffening tube 220 needs to be joined by a detachable joining method even after the brace material 200 is completed.
- the socket tube 50 may be fixed to the stiffening tube 220 using a set screw from the side.
- a brace material having a simple structure and high bending strength (large) can be obtained, and it can be applied to axial force materials having various shapes of cross-sectional shapes.
- Various brace materials that can be used can be widely used.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Joining Of Building Structures In Genera (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
The purpose of the present invention is to provide a highly deformable brace member and a method for assembling the same. The brace member 100 is provided with: a rod-shaped axial-force member 10; a stiffening pipe 20, the axial-force member passing through the interior thereof; a fixed-side base 30 joined to the fixed-side end, which is one longitudinal end of the stiffening pipe 20, and to one longitudinal end of the axial-force member 10; a slide-side base 60 joined to the other longitudinal end of the axial-force member 10; and a socket pipe 50 removably joined to the slide-side base 60 or the slide-side end, which is the other longitudinal end of the stiffening pipe 20. The brace member is characterized in that: the fixed-side base 30 and the slide-side base 60 are provided with joining elements 40, which are joints for installation in a building structure; and the socket pipe 50 surrounds the outer peripheral part of the slide-side end and the outer peripheral part of the slide-side base 60.
Description
本発明は、地震発生時の地震エネルギーを吸収する軸力材と、これを補剛する補剛管とを具備するブレース材及びブレース材の組立方法に関する。
The present invention relates to a brace material including an axial force material that absorbs seismic energy when an earthquake occurs and a stiffening tube that stiffens the material, and a method for assembling the brace material.
従来、ブレース材は、地震エネルギーを吸収し、建築構造物の柱や梁などの主要構造部材の損傷を低減するための耐震、制振・耐震ダンパーとして建築構造物に設置される。座屈拘束ブレースは、一般的には軸力材、補剛管、及び主架構に接合するための接合部で構成される。地震による建築構造物の振動により、座屈拘束ブレースは軸方向に圧縮される。座屈拘束ブレースの軸方向の圧縮は、座屈拘束ブレースの軸力材が負担する。軸方向圧縮により軸力材が座屈することなくブレース材の軸方向に塑性変形するように、座屈拘束ブレースは、軸力材のたわみ及び座屈を補剛する補剛管を備えている。補剛管は、ブレース材に入力された軸力を負担することなく、軸力材の座屈拘束材として軸力材の周囲を覆うよう設けられている。座屈拘束ブレースは、上記の構造により、圧縮軸力作用時にも軸力材の全体座屈の発生を防止ないしは発生時期を遅らせて、安定した軸方向変形を生じせしめて、地震エネルギーの吸収能力を大きくするようになっている。
Conventionally, brace materials are installed in building structures as seismic, vibration-damping and seismic dampers to absorb seismic energy and reduce damage to main structural members such as pillars and beams of building structures. The buckling restrained brace is generally composed of an axial force member, a stiffening tube, and a joint for joining to the main frame. The buckling restrained brace is compressed in the axial direction by the vibration of the building structure due to the earthquake. The axial force material of the buckling restraint brace bears the compression in the axial direction of the buckling restraint brace. The buckling-restraining brace includes a stiffening tube that stiffens the deflection and buckling of the axial force material so that the axial force material does not buckle due to axial compression and plastically deforms in the axial direction of the brace material. The stiffening tube is provided so as to cover the periphery of the axial force material as a buckling restraining material for the axial force material without burdening the axial force input to the brace material. Due to the above structure, the buckling-restrained brace prevents the occurrence of overall buckling of the axial force material even when a compressive axial force is applied, or delays the generation time to cause stable axial deformation, thereby absorbing seismic energy. Is supposed to increase.
従来技術として、軸力材と補剛材とを所定の形態に配置するための溶接作業を排除して、容易に製造することができ、また、重量の増加を防止することができるブレース材が開示されている(例えば、特許文献1参照)。
As a conventional technique, there is a brace material that can be easily manufactured by eliminating a welding operation for arranging an axial force member and a stiffener in a predetermined form, and can prevent an increase in weight. It is disclosed (for example, see Patent Document 1).
特許文献1に開示されているブレース材は、補剛管を貫通する棒鋼からなる軸力材の両端に、それぞれクレビスがねじ接続されている。補剛管の一方の端部は、補剛管及び軸力材にそれぞれ螺合する止めリングを介して、軸力材の一方の端部にねじ固定されている。軸力材の他方の端部には、鋼管からなるスリーブがねじ固定され、スリーブは長手方向の略半分が補剛管内に貫入し、残りの略半分が補剛管から露出している。このとき、スリーブの外周と補剛管の内周との間に、所定の大きさの隙間が形成されている。したがって、かかるブレース材は、溶接作業をすることなく、軸力材を補剛管に対して所定の位置に配置することができる。
In the brace material disclosed in Patent Document 1, clevises are screwed to both ends of an axial force member made of steel bar that penetrates the stiffening pipe. One end of the stiffening tube is screwed to one end of the axial force member via a stop ring that is screwed into the stiffening tube and the axial force member. A sleeve made of a steel pipe is screwed to the other end portion of the axial force member. The sleeve is substantially half of the longitudinal direction penetrating into the stiffening tube, and the remaining half is exposed from the stiffening tube. At this time, a gap of a predetermined size is formed between the outer periphery of the sleeve and the inner periphery of the stiffening tube. Therefore, this brace material can arrange | position an axial force material in a predetermined position with respect to a stiffening pipe | tube, without performing a welding operation.
しかしながら、スリーブの板厚は、補剛管の内径と軸力材の外径との差の半分よりも小さくする必要がある。また、補剛管の内面は、軸力材のたわみを小さくし十分な補剛性能を発揮するために、軸力材の外面に近い位置にあることが好ましい。このため、スリーブがとれる板厚には自ずと限界がある。かかる限界によって、スリーブの曲げ耐力が小さい場合には、スリーブの補剛管から露出している範囲に曲げによる降伏が生じるおそれがある。スリーブが固定されている側の補剛管の端面から、スリーブがある側の軸力材の端部に固定されたクレビスまでの間は、補剛管に軸力が伝わることなく軸方向に伸縮させる目的で設けられた、ブレース材の縮み代として、軸力材の周囲を補剛管で覆っていない。また、補剛管の端面からクレビスまでの間の軸力材の周囲は、スリーブにより覆われている。しかし、スリーブが降伏した場合は、ブレース両端はクレビスによってピン支持されているので構造全体が不安定となり、ブレースが全体座屈するおそれがあった。ブレースの縮み代部分における軸力材の折れ曲がりを防止し、補剛管の曲げ剛性ならびに降伏耐力を適性に確保し、製作時にブレースの縮み代を適性に管理して、補剛管に軸力が過大に作用させないようにしてブレースの全体座屈を防止させる必要がある。そのため、スリーブに代わる機構によって軸力材を適切に拘束し、軸力材が補剛管端部の補剛管に覆われていない部分で回転変形して塑性化することがない、曲げ耐力を高めた(耐力が大きい)ブレース材が要請されていた。
However, the thickness of the sleeve needs to be smaller than half the difference between the inner diameter of the stiffening tube and the outer diameter of the axial force member. Further, the inner surface of the stiffening tube is preferably located at a position close to the outer surface of the axial force member in order to reduce the deflection of the axial force member and to exhibit sufficient supplementary rigidity. For this reason, there is a limit to the plate thickness that the sleeve can take. Due to such a limit, when the bending strength of the sleeve is small, there is a possibility that yielding due to bending may occur in the range exposed from the stiffening tube of the sleeve. Between the end face of the stiffening tube on the side where the sleeve is fixed and the clevis fixed on the end of the axial force member on the side where the sleeve is located, the axial force is not transmitted to the stiffening tube, but it expands and contracts in the axial direction. As a shrinkage allowance for the brace material provided for this purpose, the periphery of the axial force material is not covered with a stiffening tube. The periphery of the axial force member between the end face of the stiffening tube and the clevis is covered with a sleeve. However, when the sleeve yields, both ends of the brace are pin-supported by the clevis, so the entire structure becomes unstable, and the brace may be buckled as a whole. Prevents bending of the axial force material at the shrinkage margin of the brace, ensures appropriate bending rigidity and yield strength of the stiffening tube, and properly manages the shrinkage allowance of the brace during production, so that the axial force is applied to the stiffening tube. It is necessary to prevent the entire brace from buckling so as not to act excessively. Therefore, the axial force material is appropriately restrained by a mechanism replacing the sleeve, and the axial force material does not rotate and deform at the portion not covered by the stiffening tube at the end of the stiffening tube. There was a demand for a brace material with increased (high yield strength).
本発明は上記要請に応えるものであって、座屈拘束材(補剛管)端部において軸力材の回転変形を適切に拘束し、座屈拘束材(補剛管)に軸力が伝わることなく軸方向に伸縮するための縮み代を適正に確保できるブレース材及びそのブレース材の組立方法を提供することを目的とする。
The present invention responds to the above requirements, and appropriately restrains the rotational deformation of the axial force material at the end of the buckling restraint material (stiffening tube), and the axial force is transmitted to the buckling restraint material (stiffening tube). It is an object of the present invention to provide a brace material that can appropriately secure a shrinkage allowance for expanding and contracting in the axial direction and an assembly method of the brace material.
(1)本発明に係るブレース材は、棒状の軸力材と、前記軸力材が内部を貫通する補剛管と、前記補剛管の長手方向の一方の端部である固定側端部に接合され、かつ前記軸力材の長手方向の一方の端部に接合される固定側口金と、前記軸力材の長手方向の他方の端部に接合される摺動側口金と、前記補剛管の長手方向の他方の端部である摺動側端部又は前記摺動側口金に着脱可能に接合されるソケット管と、を備え、前記固定側口金及び前記摺動側口金は、建築構造物に設置するための継手となる接合要素を備え、前記ソケット管は、前記摺動側端部の外周部及び前記摺動側口金の外周部を包囲することを特徴とする。
(1) A brace material according to the present invention includes a rod-shaped axial force material, a stiffening tube through which the axial force material penetrates, and a fixed-side end portion that is one end portion in the longitudinal direction of the stiffening tube. And a fixed side base joined to one end in the longitudinal direction of the axial force member, a sliding side base joined to the other end in the longitudinal direction of the axial force material, and the auxiliary A sliding-side end that is the other end in the longitudinal direction of the rigid pipe or a socket pipe that is detachably joined to the sliding-side base, and the fixed-side base and the sliding-side base are architectural A joining element serving as a joint for installation in a structure is provided, and the socket tube surrounds an outer peripheral portion of the sliding side end portion and an outer peripheral portion of the sliding side base.
(2)上記(1)のブレース材において、前記ソケット管と前記補剛管又は前記摺動側口金とは、ねじ接合されていることを特徴とする。
(3)上記(1)及び(2)のブレース材において、前記軸力材は、両側の端部に雄ネジを有し、前記固定側口金及び前記摺動側口金は、前記軸力材が挿入される孔を有し、該孔は、円筒部と、前記軸力材が挿入される方向から見て該円筒部の奥側に、前記軸力材が螺合する雌ネジと、を備え、前記軸力材と前記固定側口金及び前記摺動側口金は、前記雄ネジと前記雌ネジとの螺合により接合されることを特徴とする。
(4)上記(1)~(3)のブレース材において、前記摺動側口金は、前記補剛管の前記摺動側端部の端面から当該端面と対向する前記摺動側口金の面までの間に隙間があるように前記軸力材に接合されることを特徴とする。
(5)上記(1)~(4)のブレース材において、前記接合要素は、前記軸力材及び前記補剛管が接合されている側と反対の方向に突出し、前記固定側口金及び前記摺動側口金のそれぞれに接合されていることを特徴とする。
(6)さらに、上記(1)~(5)のブレース材において、前記ソケット管の前記補剛管を包囲する範囲の内径は、長手方向で一定で、当該範囲の外径は、前記補剛管の長手方向の中央に近づくほど小さくなることを特徴とする。 (2) In the brace material according to (1), the socket tube and the stiffening tube or the sliding side base are screwed together.
(3) In the brace material of the above (1) and (2), the axial force member has male threads at both end portions, and the fixed side base and the sliding side base have the axial force member. There is a hole to be inserted, and the hole includes a cylindrical portion and a female screw into which the axial force member is screwed on the back side of the cylindrical portion when viewed from the direction in which the axial force member is inserted. The axial force member, the fixed side base, and the sliding side base are joined by screwing of the male screw and the female screw.
(4) In the brace material of the above (1) to (3), the sliding side cap extends from the end surface of the sliding side end of the stiffening tube to the surface of the sliding side cap facing the end surface. The axial force member is joined so that there is a gap between them.
(5) In the brace material of the above (1) to (4), the joining element protrudes in a direction opposite to the side where the axial force member and the stiffening tube are joined, and the fixed side cap and the sliding member It is characterized by being joined to each of the moving side caps.
(6) Further, in the brace material of the above (1) to (5), the inner diameter of the socket tube surrounding the stiffening tube is constant in the longitudinal direction, and the outer diameter of the range is the stiffening member. It is characterized by becoming smaller as it approaches the center in the longitudinal direction of the tube.
(3)上記(1)及び(2)のブレース材において、前記軸力材は、両側の端部に雄ネジを有し、前記固定側口金及び前記摺動側口金は、前記軸力材が挿入される孔を有し、該孔は、円筒部と、前記軸力材が挿入される方向から見て該円筒部の奥側に、前記軸力材が螺合する雌ネジと、を備え、前記軸力材と前記固定側口金及び前記摺動側口金は、前記雄ネジと前記雌ネジとの螺合により接合されることを特徴とする。
(4)上記(1)~(3)のブレース材において、前記摺動側口金は、前記補剛管の前記摺動側端部の端面から当該端面と対向する前記摺動側口金の面までの間に隙間があるように前記軸力材に接合されることを特徴とする。
(5)上記(1)~(4)のブレース材において、前記接合要素は、前記軸力材及び前記補剛管が接合されている側と反対の方向に突出し、前記固定側口金及び前記摺動側口金のそれぞれに接合されていることを特徴とする。
(6)さらに、上記(1)~(5)のブレース材において、前記ソケット管の前記補剛管を包囲する範囲の内径は、長手方向で一定で、当該範囲の外径は、前記補剛管の長手方向の中央に近づくほど小さくなることを特徴とする。 (2) In the brace material according to (1), the socket tube and the stiffening tube or the sliding side base are screwed together.
(3) In the brace material of the above (1) and (2), the axial force member has male threads at both end portions, and the fixed side base and the sliding side base have the axial force member. There is a hole to be inserted, and the hole includes a cylindrical portion and a female screw into which the axial force member is screwed on the back side of the cylindrical portion when viewed from the direction in which the axial force member is inserted. The axial force member, the fixed side base, and the sliding side base are joined by screwing of the male screw and the female screw.
(4) In the brace material of the above (1) to (3), the sliding side cap extends from the end surface of the sliding side end of the stiffening tube to the surface of the sliding side cap facing the end surface. The axial force member is joined so that there is a gap between them.
(5) In the brace material of the above (1) to (4), the joining element protrudes in a direction opposite to the side where the axial force member and the stiffening tube are joined, and the fixed side cap and the sliding member It is characterized by being joined to each of the moving side caps.
(6) Further, in the brace material of the above (1) to (5), the inner diameter of the socket tube surrounding the stiffening tube is constant in the longitudinal direction, and the outer diameter of the range is the stiffening member. It is characterized by becoming smaller as it approaches the center in the longitudinal direction of the tube.
(7)また、本発明に係るブレース材の組立方法は、棒状の軸力材と、前記軸力材が内部を貫通する補剛管と、前記補剛管の長手方向の一方の端部である固定側端部に接合され、かつ前記軸力材の長手方向の一方の端部に接合される固定側口金と、前記軸力材の長手方向の他方の端部に接合される摺動側口金と、前記補剛管の長手方向の他方の端部である摺動側端部又は前記摺動側口金に着脱可能に接合されるソケット管と、を備え、前記固定側口金及び前記摺動側口金は、建築構造物に設置するための継手となる接合要素を備え、 前記ソケット管は、前記摺動側端部の外周部及び前記摺動側口金の外周部を包囲するブレース材の組立方法であって、前記固定側口金と前記軸力材とを接合する固定側口金接合工程と、前記固定側口金と前記補剛管とを接合する補剛管固定工程と、前記補剛管の前記摺動側端部の外周部に前記ソケット管を通すソケット管嵌合工程と、前記摺動側口金と前記軸力材とを接合する摺動側口金固定工程と、前記ソケット管を前記補剛管又は前記摺動側口金に接合するソケット管接合工程と、を有し、前記ソケット管接合工程は、前記固定側口金接合工程、前記補剛管固定工程、前記ソケット管嵌合工程、及び前記摺動側口金固定工程の後に実施されることを特徴とする。
(8)上記(7)のブレース材の組立方法において、前記摺動側口金固定工程は、前記固定側口金接合工程及び前記補剛管固定工程の後に実施され、前記補剛管の前記摺動側端部の端面から当該端面と対向する前記摺動側口金の面までの隙間調整工程を含むことを特徴とする。 (7) Further, the method for assembling the brace material according to the present invention includes a rod-shaped axial force member, a stiffening tube through which the axial force member passes, and one end portion in the longitudinal direction of the stiffening tube. A fixed side base joined to one fixed side end and joined to one end in the longitudinal direction of the axial force member, and a sliding side joined to the other end in the longitudinal direction of the axial force member And a socket tube that is detachably joined to the sliding side end that is the other end in the longitudinal direction of the stiffening tube or the sliding side cap, and the fixed side cap and the sliding The side cap is provided with a joining element that serves as a joint for installation in a building structure, and the socket tube is an assembly of braces that surrounds the outer periphery of the sliding side end and the outer periphery of the sliding side cap. A fixed side base joining step for joining the fixed side base and the axial force member; and the fixed side base and the auxiliary side. A stiffening tube fixing step for joining a rigid tube, a socket tube fitting step for passing the socket tube through an outer peripheral portion of the sliding side end of the stiffening tube, the sliding side cap and the axial force member And a socket tube joining step for joining the socket tube to the stiffening tube or the slide side die, and the socket tube joining step includes the fixed side die. It is carried out after the joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step.
(8) In the method for assembling the brace material of (7), the sliding side base fixing step is performed after the fixed side base joining step and the stiffening tube fixing step, and the sliding of the stiffening tube is performed. It includes a gap adjustment step from the end surface of the side end portion to the surface of the sliding side base facing the end surface.
(8)上記(7)のブレース材の組立方法において、前記摺動側口金固定工程は、前記固定側口金接合工程及び前記補剛管固定工程の後に実施され、前記補剛管の前記摺動側端部の端面から当該端面と対向する前記摺動側口金の面までの隙間調整工程を含むことを特徴とする。 (7) Further, the method for assembling the brace material according to the present invention includes a rod-shaped axial force member, a stiffening tube through which the axial force member passes, and one end portion in the longitudinal direction of the stiffening tube. A fixed side base joined to one fixed side end and joined to one end in the longitudinal direction of the axial force member, and a sliding side joined to the other end in the longitudinal direction of the axial force member And a socket tube that is detachably joined to the sliding side end that is the other end in the longitudinal direction of the stiffening tube or the sliding side cap, and the fixed side cap and the sliding The side cap is provided with a joining element that serves as a joint for installation in a building structure, and the socket tube is an assembly of braces that surrounds the outer periphery of the sliding side end and the outer periphery of the sliding side cap. A fixed side base joining step for joining the fixed side base and the axial force member; and the fixed side base and the auxiliary side. A stiffening tube fixing step for joining a rigid tube, a socket tube fitting step for passing the socket tube through an outer peripheral portion of the sliding side end of the stiffening tube, the sliding side cap and the axial force member And a socket tube joining step for joining the socket tube to the stiffening tube or the slide side die, and the socket tube joining step includes the fixed side die. It is carried out after the joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step.
(8) In the method for assembling the brace material of (7), the sliding side base fixing step is performed after the fixed side base joining step and the stiffening tube fixing step, and the sliding of the stiffening tube is performed. It includes a gap adjustment step from the end surface of the side end portion to the surface of the sliding side base facing the end surface.
(i)本発明に係るブレース材は、補剛管の長手方向の一方の端部(固定側端部)が固定側口金に接合され、補剛管の長手方向の他方の端部(摺動側端部)の外周がソケット管によって包囲されている。ソケット管は、補剛管の外周を包囲するもので、外径寸法及び板厚の制約が無く、大きくすることができるため、ソケット管の曲げ耐力及び剛性を高めることが可能になる。補剛管の摺動側端部と摺動側口金との間は、剛性の高いソケット管によって変形が拘束されており、補剛管の摺動側端部と摺動側口金との間の軸力材の座屈、曲げの発生が抑えられる。これにより、曲げ耐力が高く、座屈が生じ難いブレース材が得られる。
(I) In the brace material according to the present invention, one end portion (fixed side end portion) of the stiffening tube in the longitudinal direction is joined to the fixed base, and the other end portion (sliding in the longitudinal direction of the stiffening tube) The outer periphery of the side end portion is surrounded by the socket tube. The socket tube surrounds the outer periphery of the stiffening tube, and there is no restriction on the outer diameter and the plate thickness, and the socket tube can be enlarged. Therefore, the bending strength and rigidity of the socket tube can be increased. Between the sliding side end of the stiffening tube and the sliding side base, deformation is constrained by a highly rigid socket tube, and between the sliding side end of the stiffening tube and the sliding side base. Occurrence of buckling and bending of the axial force material can be suppressed. As a result, a brace material having a high bending strength and hardly buckling can be obtained.
(ii)ソケット管と補剛管又は摺動側口金とは、着脱可能に接合されている。これにより、ブレース材の製造時に容易に組み立てが可能である。また、補剛管の摺動側端部と摺動側口金との間の寸法が視認可能になっており、製造時の当該寸法管理が容易であり、ひいてはブレース材の変形性能の管理が容易となり、信頼性の高いブレース材が得られる。ブレース材が建築構造物に取り付けられた状態では、地震等による建物の振動がブレース材に入力された後に、ソケット管を外し、補剛管の摺動側端部と摺動側口金との間から軸力材を目視確認する。これにより、軸力材の損傷状況を直接視認することが可能となる。
(iii)軸力材は、固定側口金及び摺動側口金に備えられた孔に挿入され、その孔の円筒部の奥側にある雌ネジで螺合し接合される。この構成により、軸力材に設けられた雄ネジに曲げ変形が生じた場合であっても、軸力材の雄ネジ周辺での曲げ変形を円筒部で拘束することができるため、軸力材の耐力を向上させることができる。
(iv)補剛管の摺動側端部の端面から当該端面と対向する摺動側口金の面(端面)までの間に隙間を持って摺動側口金が接合されている。これにより、ブレース材に建築構造物からの力が加わっても、補剛管の軸方向には力(軸力)が加わらない。この構造により、補剛管の強度を強くする必要がないため、補剛管のコストを低減できる。
(v)接合要素は、軸力材及び補剛管が接合されている側と反対の方向に突出し、固定側口金及び摺動側口金のそれぞれに接合されている。接合要素を固定側口金及び摺動側口金とは別体にし、後から接合することにより、接合要素を共通化し、コストを下げることができる。各建築構造物に対応して、接合要素を取り替えることも可能となる。
(vi)補剛管を包囲する範囲のソケット管の内径は、長手方向で一定であり、当該範囲の外径は、前記補剛管の長手方向(軸方向)の中央に近づくほど小さいテーパー形状となる。ソケット管の外径をテーパー形状にすることにより、長手方向の各位置におけるブレース材の強度を確保した上で、軽量化の促進および意匠性の向上を図ることができる。 (Ii) The socket tube and the stiffening tube or the sliding side base are detachably joined. Thereby, an assembly is easily possible at the time of manufacture of a brace material. In addition, the dimension between the sliding side end of the stiffening tube and the sliding base is visible, making it easy to manage the dimensions during manufacturing, and in turn, managing the deformation performance of the brace material. Thus, a highly reliable brace material can be obtained. In a state where the brace material is attached to the building structure, after the vibration of the building due to an earthquake or the like is input to the brace material, the socket tube is removed, and the gap between the sliding side end of the stiffening tube and the sliding side base is removed. Check the axial force material visually. Thereby, it becomes possible to visually recognize the damage state of the axial force member.
(Iii) The axial force member is inserted into a hole provided in the fixed side base and the sliding side base, and is screwed and joined by a female screw located on the inner side of the cylindrical portion of the hole. With this configuration, even when bending deformation occurs in the male screw provided on the axial force member, the bending deformation around the male screw of the axial force member can be restrained by the cylindrical portion. The proof stress can be improved.
(Iv) The sliding side base is joined with a gap between the end face of the sliding side end of the stiffening tube and the surface (end face) of the sliding side face facing the end face. Thereby, even if the force from the building structure is applied to the brace material, no force (axial force) is applied in the axial direction of the stiffening tube. With this structure, it is not necessary to increase the strength of the stiffening tube, so the cost of the stiffening tube can be reduced.
(V) The joining element protrudes in a direction opposite to the side where the axial force member and the stiffening tube are joined, and is joined to each of the fixed side base and the sliding side base. By making the joining element separate from the fixed side base and the sliding side base and joining them later, the joint elements can be made common and the cost can be reduced. Corresponding to each building structure, the joining elements can be replaced.
(Vi) The inner diameter of the socket tube in the range surrounding the stiffening tube is constant in the longitudinal direction, and the outer diameter of the range is a tapered shape that becomes smaller toward the center in the longitudinal direction (axial direction) of the stiffening tube. It becomes. By making the outer diameter of the socket tube into a tapered shape, the strength of the brace material at each position in the longitudinal direction can be secured, and the weight reduction can be promoted and the design can be improved.
(iii)軸力材は、固定側口金及び摺動側口金に備えられた孔に挿入され、その孔の円筒部の奥側にある雌ネジで螺合し接合される。この構成により、軸力材に設けられた雄ネジに曲げ変形が生じた場合であっても、軸力材の雄ネジ周辺での曲げ変形を円筒部で拘束することができるため、軸力材の耐力を向上させることができる。
(iv)補剛管の摺動側端部の端面から当該端面と対向する摺動側口金の面(端面)までの間に隙間を持って摺動側口金が接合されている。これにより、ブレース材に建築構造物からの力が加わっても、補剛管の軸方向には力(軸力)が加わらない。この構造により、補剛管の強度を強くする必要がないため、補剛管のコストを低減できる。
(v)接合要素は、軸力材及び補剛管が接合されている側と反対の方向に突出し、固定側口金及び摺動側口金のそれぞれに接合されている。接合要素を固定側口金及び摺動側口金とは別体にし、後から接合することにより、接合要素を共通化し、コストを下げることができる。各建築構造物に対応して、接合要素を取り替えることも可能となる。
(vi)補剛管を包囲する範囲のソケット管の内径は、長手方向で一定であり、当該範囲の外径は、前記補剛管の長手方向(軸方向)の中央に近づくほど小さいテーパー形状となる。ソケット管の外径をテーパー形状にすることにより、長手方向の各位置におけるブレース材の強度を確保した上で、軽量化の促進および意匠性の向上を図ることができる。 (Ii) The socket tube and the stiffening tube or the sliding side base are detachably joined. Thereby, an assembly is easily possible at the time of manufacture of a brace material. In addition, the dimension between the sliding side end of the stiffening tube and the sliding base is visible, making it easy to manage the dimensions during manufacturing, and in turn, managing the deformation performance of the brace material. Thus, a highly reliable brace material can be obtained. In a state where the brace material is attached to the building structure, after the vibration of the building due to an earthquake or the like is input to the brace material, the socket tube is removed, and the gap between the sliding side end of the stiffening tube and the sliding side base is removed. Check the axial force material visually. Thereby, it becomes possible to visually recognize the damage state of the axial force member.
(Iii) The axial force member is inserted into a hole provided in the fixed side base and the sliding side base, and is screwed and joined by a female screw located on the inner side of the cylindrical portion of the hole. With this configuration, even when bending deformation occurs in the male screw provided on the axial force member, the bending deformation around the male screw of the axial force member can be restrained by the cylindrical portion. The proof stress can be improved.
(Iv) The sliding side base is joined with a gap between the end face of the sliding side end of the stiffening tube and the surface (end face) of the sliding side face facing the end face. Thereby, even if the force from the building structure is applied to the brace material, no force (axial force) is applied in the axial direction of the stiffening tube. With this structure, it is not necessary to increase the strength of the stiffening tube, so the cost of the stiffening tube can be reduced.
(V) The joining element protrudes in a direction opposite to the side where the axial force member and the stiffening tube are joined, and is joined to each of the fixed side base and the sliding side base. By making the joining element separate from the fixed side base and the sliding side base and joining them later, the joint elements can be made common and the cost can be reduced. Corresponding to each building structure, the joining elements can be replaced.
(Vi) The inner diameter of the socket tube in the range surrounding the stiffening tube is constant in the longitudinal direction, and the outer diameter of the range is a tapered shape that becomes smaller toward the center in the longitudinal direction (axial direction) of the stiffening tube. It becomes. By making the outer diameter of the socket tube into a tapered shape, the strength of the brace material at each position in the longitudinal direction can be secured, and the weight reduction can be promoted and the design can be improved.
(vii)ソケット管接合工程は、固定側口金接合工程、補剛管固定工程、ソケット管嵌合工程、及び摺動側口金固定工程の後に実施されることにより、上述の補剛管の摺動側端部と摺動側口金との間の寸法を視認しながらブレース材を組み立てることができる。
(viii)摺動側口金固定工程は、補剛管の摺動側端部の端面から当該端面と対向する摺動側口金の面までの距離を調整する隙間調整工程を含むことにより、補剛管の摺動側端部と摺動側口金との間の寸法を所望の長さに調節することができ、さらに精度の良い寸法管理が可能となる。 (Vii) The socket tube joining step is performed after the fixed side cap joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step, thereby sliding the stiffening tube described above. The brace material can be assembled while visually recognizing the dimension between the side end and the sliding base.
(Viii) The sliding side cap fixing step includes a gap adjustment step of adjusting the distance from the end surface of the sliding side end of the stiffening tube to the surface of the sliding side cap facing the end surface, thereby providing stiffening. The dimension between the sliding side end of the tube and the sliding side base can be adjusted to a desired length, and more accurate dimension management is possible.
(viii)摺動側口金固定工程は、補剛管の摺動側端部の端面から当該端面と対向する摺動側口金の面までの距離を調整する隙間調整工程を含むことにより、補剛管の摺動側端部と摺動側口金との間の寸法を所望の長さに調節することができ、さらに精度の良い寸法管理が可能となる。 (Vii) The socket tube joining step is performed after the fixed side cap joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step, thereby sliding the stiffening tube described above. The brace material can be assembled while visually recognizing the dimension between the side end and the sliding base.
(Viii) The sliding side cap fixing step includes a gap adjustment step of adjusting the distance from the end surface of the sliding side end of the stiffening tube to the surface of the sliding side cap facing the end surface, thereby providing stiffening. The dimension between the sliding side end of the tube and the sliding side base can be adjusted to a desired length, and more accurate dimension management is possible.
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。各図は模式的に示すものであって、各部材の相対的な大きさや板厚等は図示する寸法に限定されるものではない。以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。図において各部分に付された符号について、数字以外の添え字(a、b等)を付していない場合は、添え字が付された符号を総称しているものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Each figure is shown schematically, and the relative size and thickness of each member are not limited to the illustrated dimensions. In the following drawings, the size relationship of each component may be different from the actual one. In the figure, when the reference numerals attached to the respective parts are not attached with subscripts (a, b, etc.) other than numerals, the reference numerals with subscripts are collectively referred to.
[実施の形態1]
図1は、本発明の実施の形態1に係るブレース材の側面図である。図2は、図1のブレース材の中心軸を通る断面を示した図である。また、図1及び図2において、ブレース材の長手方向は、省略して示してある。なお、図1及び図2における左側を「長手方向の一方」と、右側を「長手方向の他方」と称する。 [Embodiment 1]
FIG. 1 is a side view of a brace material according toEmbodiment 1 of the present invention. FIG. 2 is a view showing a cross section passing through the central axis of the brace material of FIG. Moreover, in FIG.1 and FIG.2, the longitudinal direction of a brace material is abbreviate | omitted and shown. The left side in FIGS. 1 and 2 is referred to as “one in the longitudinal direction”, and the right side is referred to as “the other in the longitudinal direction”.
図1は、本発明の実施の形態1に係るブレース材の側面図である。図2は、図1のブレース材の中心軸を通る断面を示した図である。また、図1及び図2において、ブレース材の長手方向は、省略して示してある。なお、図1及び図2における左側を「長手方向の一方」と、右側を「長手方向の他方」と称する。 [Embodiment 1]
FIG. 1 is a side view of a brace material according to
ブレース材100は、棒状の軸力材10と、軸力材10の外周を覆う円筒形状の補剛管20を有する。中心軸101は、ブレース材100の中心軸であり、軸力材10の中心軸と同じである。補剛管20の中心も中心軸101と同じ位置になるように配置されている。つまり、軸力材10は、円筒形状の補剛管20の内部の中心を長手方向に貫通するものである。軸力材10は、補剛管20により外周を包囲され、変形が拘束される。軸力材10の長手方向の一方の端部11aは、固定側口金30に接合されている。補剛管20の長手方向の一方の端部である固定側端部21aも、固定側口金30に接合されている。
The brace material 100 includes a rod-shaped axial force member 10 and a cylindrical stiffening tube 20 that covers the outer periphery of the axial force member 10. The central axis 101 is the central axis of the brace material 100 and is the same as the central axis of the axial force material 10. The center of the stiffening tube 20 is also arranged at the same position as the central axis 101. That is, the axial force member 10 penetrates the center inside the cylindrical stiffening tube 20 in the longitudinal direction. The axial force member 10 is surrounded by the stiffening tube 20 and its deformation is restricted. One end portion 11 a in the longitudinal direction of the axial force member 10 is joined to the fixed side cap 30. The fixed side end 21 a which is one end in the longitudinal direction of the stiffening tube 20 is also joined to the fixed side base 30.
軸力材10の長手方向の他方の端部11bは、摺動側口金60に接合されている。補剛管20の長手方向の他方の端部である摺動側端部21bは、摺動側口金60から距離Aをおいて配置されている。つまり、補剛管20の摺動側端部21bの端面から、その端面と対向する摺動側口金60の面までの間に隙間を設けている。補剛管20の摺動側端部21bは、内部が円筒形状であるソケット管50により外周を包囲されている。ソケット管50の摺動側口金60側の端部は、摺動側口金60に着脱可能に接合されている。
The other end portion 11 b in the longitudinal direction of the axial force member 10 is joined to the sliding side base 60. The sliding side end 21 b that is the other end in the longitudinal direction of the stiffening tube 20 is disposed at a distance A from the sliding side base 60. That is, a gap is provided between the end surface of the sliding side end portion 21b of the stiffening tube 20 and the surface of the sliding side base 60 facing the end surface. The sliding-side end portion 21b of the stiffening tube 20 is surrounded on the outer periphery by a socket tube 50 having an inner cylindrical shape. The end of the socket tube 50 on the sliding side base 60 side is detachably joined to the sliding side base 60.
固定側口金30及び摺動側口金60は、軸力材10が接合されている側と反対方向に突出するクレビス40が接合されている。クレビス40は、本発明の「接合要素」に相当するものである。クレビス40は、固定側口金30に接合されている方をクレビス40a、摺動側口金60に接合されている方をクレビス40bと称する。なお、クレビス40aを 、本発明の「第1接合要素」と称し、クレビス40bを、「第2接合要素」と称する。クレビス40は、ブレース材100を建築構造物(図示しない)に設置するための継手となる。
The fixed side base 30 and the sliding side base 60 are joined with a clevis 40 protruding in the opposite direction to the side on which the axial force member 10 is joined. The clevis 40 corresponds to the “joining element” of the present invention. In the clevis 40, the one joined to the fixed base 30 is called a clevis 40a, and the one joined to the sliding side base 60 is called a clevis 40b. The clevis 40a is referred to as a “first joining element” of the present invention, and the clevis 40b is referred to as a “second joining element”. The clevis 40 serves as a joint for installing the brace material 100 in a building structure (not shown).
図3は、図1のブレース材の固定側口金30側の断面の拡大図である。図4は、図1のブレース材の摺動側口金60側の断面の拡大図である。以下、図3及び図4に基づき、各部品の詳細について説明する。
FIG. 3 is an enlarged view of a cross section of the brace material of FIG. 1 on the fixed side cap 30 side. 4 is an enlarged view of a cross section of the brace material of FIG. Hereinafter, the details of each component will be described with reference to FIGS. 3 and 4.
(軸力材)
軸力材10は、長尺材であって、断面円形の棒鋼である。実施の形態1においては、断面円形の鉄鋼製の棒材である軸力材10が示されている。軸力材10は、鋼管又は平板を断面十字に接合したものであってもよく、ブレース材100の中心軸101に対し垂直な面で切った断面形状は限定されるものではない。軸力材10の長手方向の一方の端部11aには、雄ネジ12aが形成されている。また、軸力材10の長手方向の他方の端部11bには、雄ネジ12bが形成されている。なお、軸力材10は、塑性変形可能な材料によって形成すると、軸力材10が塑性変形する際にブレース材100に入力されたエネルギーを吸収し、より高い耐震、制振ダンパーとしての効果が得られる。軸力材10の外周面と補剛管20の内周面とが摺動する際の異音を防止するため、及び軸力材10と補剛管20との摩擦による軸力の過大な上昇を防止するため、軸力材10の外周面に例えば合成樹脂製のライナー材を設置してもよい。 (Axial force material)
Theaxial force member 10 is a long material and is a steel bar having a circular cross section. In the first embodiment, an axial force member 10 which is a steel rod having a circular cross section is shown. The axial force member 10 may be formed by joining a steel pipe or a flat plate in a cross-section, and the cross-sectional shape of the brace member 100 cut by a plane perpendicular to the central axis 101 is not limited. A male screw 12 a is formed at one end 11 a in the longitudinal direction of the axial force member 10. A male screw 12b is formed at the other end 11b in the longitudinal direction of the axial force member 10. When the axial force member 10 is formed of a plastically deformable material, it absorbs energy input to the brace material 100 when the axial force member 10 is plastically deformed, and has a higher effect as an anti-seismic and damping damper. can get. To prevent abnormal noise when the outer peripheral surface of the axial force member 10 and the inner peripheral surface of the stiffening tube 20 slide, and excessive increase in the axial force due to friction between the axial force member 10 and the stiffening tube 20. In order to prevent this, for example, a liner material made of synthetic resin may be installed on the outer peripheral surface of the axial force member 10.
軸力材10は、長尺材であって、断面円形の棒鋼である。実施の形態1においては、断面円形の鉄鋼製の棒材である軸力材10が示されている。軸力材10は、鋼管又は平板を断面十字に接合したものであってもよく、ブレース材100の中心軸101に対し垂直な面で切った断面形状は限定されるものではない。軸力材10の長手方向の一方の端部11aには、雄ネジ12aが形成されている。また、軸力材10の長手方向の他方の端部11bには、雄ネジ12bが形成されている。なお、軸力材10は、塑性変形可能な材料によって形成すると、軸力材10が塑性変形する際にブレース材100に入力されたエネルギーを吸収し、より高い耐震、制振ダンパーとしての効果が得られる。軸力材10の外周面と補剛管20の内周面とが摺動する際の異音を防止するため、及び軸力材10と補剛管20との摩擦による軸力の過大な上昇を防止するため、軸力材10の外周面に例えば合成樹脂製のライナー材を設置してもよい。 (Axial force material)
The
(補剛管)
補剛管20は、断面円形の鋼管であり、管内部に軸力材10が貫通可能になっている。なお、補剛管20は、円筒形状に限られない。補剛管20は、軸力材10が軸力によりたわんだ際に、軸力材10が座屈しないようそのたわみを拘束できればよい。例えば補剛管20は、断面が四角形の筒であってもよい。 (Stiffening tube)
The stiffeningtube 20 is a steel tube having a circular cross section, and the axial force member 10 can penetrate through the tube. The stiffening tube 20 is not limited to a cylindrical shape. The stiffening tube 20 only needs to be able to restrain the deflection so that the axial force member 10 does not buckle when the axial force member 10 is bent by the axial force. For example, the stiffening tube 20 may be a cylinder having a square cross section.
補剛管20は、断面円形の鋼管であり、管内部に軸力材10が貫通可能になっている。なお、補剛管20は、円筒形状に限られない。補剛管20は、軸力材10が軸力によりたわんだ際に、軸力材10が座屈しないようそのたわみを拘束できればよい。例えば補剛管20は、断面が四角形の筒であってもよい。 (Stiffening tube)
The stiffening
補剛管20の長手方向寸法は、軸力材10の一方の端部11a及び補剛管20の固定側端部21aが固定側口金30に固定された際に、補剛管20の摺動側端部21bから軸力材10の他方の端部11bが突出するように構成されている。実施の形態1においては、補剛管20は、軸力材10よりも短い。また、補剛管20の固定側端部21aには、外周側に雄ネジ22aが形成されている。雄ネジ22aは、固定側口金30に形成された補剛管螺合雌ネジ部34と螺合する。固定側口金30において、補剛管20と軸力材10とが長手方向に相対的に動かないように固定される。
The longitudinal dimension of the stiffening tube 20 is such that when the one end portion 11a of the axial force member 10 and the fixed side end portion 21a of the stiffening tube 20 are fixed to the fixed side cap 30, the stiffening tube 20 slides. The other end portion 11b of the axial force member 10 protrudes from the side end portion 21b. In the first embodiment, the stiffening tube 20 is shorter than the axial force member 10. Further, a male screw 22a is formed on the outer peripheral side of the fixed-side end portion 21a of the stiffening tube 20. The male screw 22 a is screwed with a stiffening tube screwed female screw portion 34 formed on the fixed side cap 30. In the fixed base 30, the stiffening tube 20 and the axial force member 10 are fixed so as not to move relatively in the longitudinal direction.
図4に示されるように、補剛管20の摺動側端部21bの端面から、軸力材10の端部11bに接合されている摺動側口金60の端面までは、距離Aがとられている。実施の形態1では、距離Aが取られていることにより、補剛管20には軸力(ブレース材100の中心軸101方向に働く力)が入力されないという前提で、ブレース材100を設計することができる。補剛管20に軸力が入力されない前提で設計すると、補剛管20は、軸力が作用する場合と比較して、板厚を薄く、また外径をより小さくすることができる。これにより、補剛管20を大きくする必要がなく、ブレース材100のコスト及び重量を抑えることができる。したがって、補剛管20に軸力が伝わらないよう、距離Aを適切に管理することがブレースの変形性能を担保するうえで重要となる。なお、距離Aは、ブレース材100のサイズ、材料、適用される建築構造物により適宜決められる。
As shown in FIG. 4, the distance A is from the end surface of the sliding side end 21 b of the stiffening tube 20 to the end surface of the sliding side base 60 joined to the end 11 b of the axial force member 10. It has been. In the first embodiment, the brace material 100 is designed on the assumption that no axial force (force acting in the direction of the central axis 101 of the brace material 100) is input to the stiffening tube 20 because the distance A is taken. be able to. When designed on the assumption that no axial force is input to the stiffening tube 20, the stiffening tube 20 can be made thinner and smaller in outer diameter than the case where the axial force acts. Thereby, it is not necessary to enlarge the stiffening tube 20, and the cost and weight of the brace material 100 can be suppressed. Therefore, it is important to appropriately manage the distance A in order to ensure the deformation performance of the brace so that the axial force is not transmitted to the stiffening tube 20. The distance A is appropriately determined depending on the size and material of the brace material 100 and the building structure to be applied.
(固定側口金)
固定側口金30は、円柱形状であり、円柱形状の一方の端部から中心に孔31が空けられている。孔31の奥側は、雌ネジ33が形成されている。軸力材10は、雄ネジ12aが孔31に挿入され孔31の奥側に形成されている雌ネジ33と螺合し、固定側口金30と接合される。孔31は、固定側口金30を貫通していても、袋穴になっていてもよい。孔31が一方から軸力材10を挿入可能になっており、雌ネジ33よりも手前側に軸力材10が変形した際に当接する支持部32を備えることにより、軸力材10が軸力を受けた場合の雄ネジ12aでの変形を抑えることができる。 (Fixed side cap)
The fixedside cap 30 has a cylindrical shape, and a hole 31 is opened from one end of the cylindrical shape to the center. A female screw 33 is formed on the back side of the hole 31. The axial force member 10 is joined to the fixed base 30 by the male screw 12 a being inserted into the hole 31 and screwed with the female screw 33 formed on the back side of the hole 31. The hole 31 may penetrate the fixed side cap 30 or may be a bag hole. The axial force member 10 can be inserted into the hole 31 from one side, and provided with a support portion 32 that comes into contact with the axial force member 10 when the axial force member 10 is deformed in front of the female screw 33. Deformation at the male screw 12a when receiving force can be suppressed.
固定側口金30は、円柱形状であり、円柱形状の一方の端部から中心に孔31が空けられている。孔31の奥側は、雌ネジ33が形成されている。軸力材10は、雄ネジ12aが孔31に挿入され孔31の奥側に形成されている雌ネジ33と螺合し、固定側口金30と接合される。孔31は、固定側口金30を貫通していても、袋穴になっていてもよい。孔31が一方から軸力材10を挿入可能になっており、雌ネジ33よりも手前側に軸力材10が変形した際に当接する支持部32を備えることにより、軸力材10が軸力を受けた場合の雄ネジ12aでの変形を抑えることができる。 (Fixed side cap)
The fixed
実施の形態1において、軸力材10の雄ネジ12aは、相手部品である固定側口金30と螺合するが、ブレース材100が完成した状態において雌ネジ33の口元部で雌ネジと螺合しない雄ネジ部13aが生じる場合がある。その雄ネジ部13aは、具体的には雄ネジ12aの不完全ネジ部であるか、軸力材10や固定側口金30の寸法誤差により雌ネジ33より雄ネジ12aが長いために螺合しない部分である。
In the first embodiment, the male screw 12a of the axial force member 10 is screwed with the fixed base 30 that is the counterpart component, but in the state where the brace material 100 is completed, the male screw 12a is screwed with the female screw 33 at the mouth portion of the female screw 33. There may be a case where the male screw portion 13a does not occur. The male screw portion 13a is specifically an incomplete screw portion of the male screw 12a, or is not screwed because the male screw 12a is longer than the female screw 33 due to a dimensional error of the axial force member 10 or the fixed side cap 30. Part.
軸力材10は、建築構造物の振動により軸力を受けて変形し、その際に曲げ方向に変形を生じる場合がある。螺合しない雄ネジ部13aは、ネジ山が切ってあり軸力材10の他の円柱形状部分と比較して断面積が小さいため強度及び剛性が低く、またネジの谷形状により応力集中しやすい形状になっている。よって、軸力材10が変形する場合、螺合しない雄ネジ部13aから変形し、軸力材10の破損の起点となってしまう可能性が高い。そこで、軸力材10が変形した場合に、軸力材10を支持部32に当接させて螺合しない雄ネジ部13a周辺の変形を抑えることにより、軸力材10の耐力を向上させることができる。
The axial force member 10 is deformed by receiving an axial force due to vibration of the building structure, and may be deformed in the bending direction at that time. The unthreaded male thread portion 13a is threaded and has a smaller cross-sectional area than the other cylindrical portion of the axial force member 10, so that the strength and rigidity are low, and stress concentration is likely due to the thread valley shape. It has a shape. Therefore, when the axial force member 10 is deformed, there is a high possibility that the axial force member 10 is deformed from the male screw portion 13a that is not screwed and becomes a starting point of damage to the axial force member 10. Therefore, when the axial force member 10 is deformed, the axial force member 10 is brought into contact with the support portion 32 to suppress deformation around the male screw portion 13a that is not screwed, thereby improving the proof stress of the axial force member 10. Can do.
なお、支持部32の内径と軸力材10の外径との間には隙間が必要であるが、その隙間はできるだけ小さい方が望ましい。また、支持部32の中心軸101方向の寸法は、長い方が螺合しない雄ネジ部13a周辺の軸力材10の変形をより抑えることができる。
Note that a gap is required between the inner diameter of the support portion 32 and the outer diameter of the axial force member 10, but it is desirable that the gap is as small as possible. Further, the dimension of the support portion 32 in the direction of the central axis 101 can further suppress deformation of the axial force member 10 around the male screw portion 13a that is not screwed in the longer direction.
また、孔31の口元側には、固定側口金の端面から所定の深さの円筒形状の凹みが設けられており、その円筒形状の内周部には補剛管螺合雌ネジ部34が設けられている。補剛管螺合雌ネジ部34は、孔31と同心に設けられている。補剛管20は、補剛管螺合雌ネジ部34に螺合され、ブレース材100の中心軸101の平行方向に、軸力材10と相対的に動かないように接合される。
Further, a cylindrical recess having a predetermined depth from the end face of the fixed base is provided on the mouth side of the hole 31, and a stiffening tube threaded female thread portion 34 is provided on the inner peripheral portion of the cylindrical shape. Is provided. The stiffening tube threaded female thread portion 34 is provided concentrically with the hole 31. The stiffening tube 20 is screwed into the stiffening tube screwing female thread portion 34 and joined so as not to move relative to the axial force member 10 in the direction parallel to the central axis 101 of the brace material 100.
固定側口金30の補剛管螺合雌ネジ部34が設けられている側の端面と反対側の端面には、端面から所定の深さの円筒形状の凹みが設けられており、その円筒形状の内周部にはクレビス螺合雌ネジ部37が設けられている。クレビス螺合雌ネジ部37には、クレビス40aに設けられた雄ネジが接合される。
A cylindrical recess having a predetermined depth from the end surface is provided on the end surface of the fixed-side base 30 on the side opposite to the end surface on which the stiffening tube screwing female thread portion 34 is provided. A clevis screwed female thread portion 37 is provided on the inner peripheral portion of the clevis. A male screw provided on the clevis 40 a is joined to the clevis screwed female screw portion 37.
固定側口金30の端面と外周との間の稜線には、それぞれの端面に向かって外径が小さくなるテーパー部35及び面取部36が形成されている。これにより、固定側口金30の長手方向の各位置における強度を確保した上で、軽量化の促進および意匠性の向上を図ることができる。テーパー部35及び面取部36は、適宜寸法を変更することができる。強度又は意匠性により、テーパー部35を面取に変更しても良いし、面取部36をテーパー形状に変更しても良い。
A taper portion 35 and a chamfered portion 36 whose outer diameter decreases toward the respective end surfaces are formed on the ridgeline between the end surface and the outer periphery of the fixed side cap 30. Thereby, after ensuring the intensity | strength in each position of the longitudinal direction of the fixed side nozzle | cap | die 30, promotion of weight reduction and improvement of the design property can be aimed at. The taper portion 35 and the chamfered portion 36 can be appropriately changed in size. Depending on strength or design, the tapered portion 35 may be changed to chamfering, or the chamfered portion 36 may be changed to a tapered shape.
(摺動側口金)
摺動側口金60は、円柱形状であり、円柱形状の一方の端部から中心に孔61が空けられている。孔61の奥側には、雌ネジ63が形成されている。軸力材10は、孔61に挿入され、孔61の奥側に形成されている雌ネジ63と螺合し、摺動側口金60と接合される。孔61は、摺動側口金60を貫通していても、袋穴になっていてもよい。固定側口金30の孔31と同様に、摺動側口金60の孔61においても、一方から軸力材10が挿入可能になっている。孔61は、雌ネジ63よりも軸力材10の挿入方向の手前側に軸力材10が変形した際に当接する支持部62を備えることにより、軸力材10が軸力を受けた場合の雄ネジ12bでの変形を抑えることができる。軸力材10が変形する場合、螺合していない雄ネジ部13bから変形し、軸力材10の破損の起点となってしまう可能性が高い。しかし、軸力材10を支持部62で当接させて螺合しない雄ネジ部13b周辺の変形を抑えることにより、軸力材10の耐力を向上させることができる。 (Sliding side cap)
The slidingside cap 60 has a cylindrical shape, and a hole 61 is opened from one end of the cylindrical shape to the center. A female screw 63 is formed on the back side of the hole 61. The axial force member 10 is inserted into the hole 61, screwed into a female screw 63 formed on the back side of the hole 61, and joined to the sliding side base 60. The hole 61 may penetrate the sliding base 60 or may be a bag hole. Similarly to the hole 31 of the fixed side cap 30, the axial force member 10 can be inserted into the hole 61 of the sliding side cap 60 from one side. When the axial force member 10 receives an axial force, the hole 61 includes a support portion 62 that comes into contact with the axial force member 10 when the axial force member 10 is deformed in front of the female screw 63 in the insertion direction of the axial force member 10. Deformation of the male screw 12b can be suppressed. When the axial force member 10 is deformed, there is a high possibility that the axial force member 10 is deformed from the unthreaded male screw portion 13b and becomes a starting point of breakage of the axial force member 10. However, the proof stress of the axial force member 10 can be improved by causing the axial force member 10 to come into contact with the support portion 62 and suppressing deformation around the male screw portion 13b that is not screwed.
摺動側口金60は、円柱形状であり、円柱形状の一方の端部から中心に孔61が空けられている。孔61の奥側には、雌ネジ63が形成されている。軸力材10は、孔61に挿入され、孔61の奥側に形成されている雌ネジ63と螺合し、摺動側口金60と接合される。孔61は、摺動側口金60を貫通していても、袋穴になっていてもよい。固定側口金30の孔31と同様に、摺動側口金60の孔61においても、一方から軸力材10が挿入可能になっている。孔61は、雌ネジ63よりも軸力材10の挿入方向の手前側に軸力材10が変形した際に当接する支持部62を備えることにより、軸力材10が軸力を受けた場合の雄ネジ12bでの変形を抑えることができる。軸力材10が変形する場合、螺合していない雄ネジ部13bから変形し、軸力材10の破損の起点となってしまう可能性が高い。しかし、軸力材10を支持部62で当接させて螺合しない雄ネジ部13b周辺の変形を抑えることにより、軸力材10の耐力を向上させることができる。 (Sliding side cap)
The sliding
なお、固定側口金30の孔31と同様に、支持部62の内径と軸力材10の外径との間には隙間が必要であるが、その隙間はできるだけ小さい方が望ましい。また、支持部62の中心軸101方向の寸法は長い方が望ましく、螺合しない雄ネジ部13b周辺の軸力材10の変形をより抑えることができる。
In addition, like the hole 31 of the fixed base 30, a gap is required between the inner diameter of the support portion 62 and the outer diameter of the axial force member 10, but the gap is preferably as small as possible. Further, it is desirable that the dimension of the support portion 62 in the direction of the central axis 101 is longer, and deformation of the axial force member 10 around the male screw portion 13b that is not screwed can be further suppressed.
摺動側口金60の軸力材10が挿入される側の端面の外周には段差が形成されており、摺動側口金60の中央部は、摺動側口金60の外周よりも径の小さい円柱が端面側に突出している形になっている。当該円柱の外周は、ソケット管50がネジ接合するソケット管螺合雄ネジ部64となっている。
A step is formed on the outer periphery of the end face of the sliding side base 60 on the side where the axial force member 10 is inserted, and the central portion of the sliding side base 60 is smaller in diameter than the outer periphery of the sliding side base 60. The cylinder protrudes toward the end face. The outer periphery of the cylinder is a socket pipe threaded male screw portion 64 to which the socket pipe 50 is screwed.
摺動側口金60のソケット管螺合雄ネジ部64が設けられている側の端面と反対側の端面には、端面から所定の深さの円筒形状の凹みが設けられており、その円筒形状の内周部にはクレビス螺合雌ネジ部67が設けられている。クレビス螺合雌ネジ部67には、クレビス40bに設けられた雄ネジが接合される。
A cylindrical recess having a predetermined depth from the end surface is provided on the end surface of the sliding side base 60 opposite to the end surface on which the socket pipe screwing male screw portion 64 is provided. A clevis screwed female threaded portion 67 is provided on the inner peripheral portion of the. A male screw provided on the clevis 40 b is joined to the clevis screwed female screw portion 67.
摺動側口金60のクレビス40bが接合される側の端面と外周との間の稜線には面取部66が形成されている。これにより、摺動側口金60は、安全性、耐久性を確保し、軽量化の促進、意匠性の向上を図ることができる。面取部66は、適宜寸法を変更することができ、強度又は意匠性によりテーパー形状に変更しても良い。
A chamfered portion 66 is formed on the ridgeline between the end face of the sliding side base 60 on the side where the clevis 40b is joined and the outer periphery. Thereby, the sliding side cap 60 can ensure safety and durability, promote weight reduction, and improve design. The dimension of the chamfered portion 66 can be changed as appropriate, and may be changed to a tapered shape depending on strength or design.
(クレビス)
クレビス40は、建築構造物(図示しない)に設置するための継手として機能するものであって、円盤状部分41と、円盤状部分41の一方の端面に設置された板状部分42と、板状部分42を貫通する取付用孔44と、円盤状部分41の外周に形成された雄ネジ43とを有している。取付用孔44の中心線と雄ネジ43の中心線とは直角に交差している。ただし、交差とは、幾何学的に正確に交差する意味ではなく、工業的な誤差は許容するものである。クレビス40は、固定側口金30及び摺動側口金60にそれぞれネジ接合される。クレビス40aとクレビス40bとは、同一形状であればブレース材100全体のコストを抑えることができるが、ブレース材100が適用される建築構造物に応じて異なる形状のものにしても良い。 (Clevis)
The clevis 40 functions as a joint for installation in a building structure (not shown), and includes a disc-like portion 41, a plate-like portion 42 installed on one end face of the disc-like portion 41, a plate A mounting hole 44 penetrating through the cylindrical portion 42 and a male screw 43 formed on the outer periphery of the disc-shaped portion 41. The center line of the mounting hole 44 and the center line of the male screw 43 intersect at a right angle. However, the term “intersection” does not mean that the geometrical intersection is accurate, and an industrial error is allowed. The clevis 40 is screwed to the fixedside base 30 and the sliding side base 60, respectively. If the clevis 40a and the clevis 40b have the same shape, the cost of the brace material 100 as a whole can be reduced. However, the clevis 40a and the clevis 40b may have different shapes depending on the building structure to which the brace material 100 is applied.
クレビス40は、建築構造物(図示しない)に設置するための継手として機能するものであって、円盤状部分41と、円盤状部分41の一方の端面に設置された板状部分42と、板状部分42を貫通する取付用孔44と、円盤状部分41の外周に形成された雄ネジ43とを有している。取付用孔44の中心線と雄ネジ43の中心線とは直角に交差している。ただし、交差とは、幾何学的に正確に交差する意味ではなく、工業的な誤差は許容するものである。クレビス40は、固定側口金30及び摺動側口金60にそれぞれネジ接合される。クレビス40aとクレビス40bとは、同一形状であればブレース材100全体のコストを抑えることができるが、ブレース材100が適用される建築構造物に応じて異なる形状のものにしても良い。 (Clevis)
The clevis 40 functions as a joint for installation in a building structure (not shown), and includes a disc-like portion 41, a plate-like portion 42 installed on one end face of the disc-like portion 41, a plate A mounting hole 44 penetrating through the cylindrical portion 42 and a male screw 43 formed on the outer periphery of the disc-shaped portion 41. The center line of the mounting hole 44 and the center line of the male screw 43 intersect at a right angle. However, the term “intersection” does not mean that the geometrical intersection is accurate, and an industrial error is allowed. The clevis 40 is screwed to the fixed
なお、実施の形態1において、固定側口金30及び摺動側口金60とクレビス40とはそれぞれ別個に製造され、両者がネジ接続によって一体化しているが、本発明はこれに限定するものではない。固定側口金30及び摺動側口金60とクレビス40とが、焼き嵌め等の機械的な接合や溶接等の冶金的な接合によって一体化されてもよく、又は、鋳造等によって当初から一体的に製造されてもよい。
In the first embodiment, the fixed side cap 30 and the sliding side cap 60 and the clevis 40 are separately manufactured and integrated by screw connection, but the present invention is not limited to this. . The fixed side base 30 and the sliding side base 60 and the clevis 40 may be integrated by mechanical joining such as shrink fitting or metallurgical joining such as welding, or integrally from the beginning by casting or the like. May be manufactured.
(ソケット管)
ソケット管50は、内部の長手方向に貫通穴51が設けられ、外周側にテーパー部52と円筒部55とを有する。ソケット管50は、円筒部55の内側に摺動側口金螺合雌ネジ54が形成されている。摺動側口金螺合雌ネジ54には摺動側口金60のソケット管螺合雄ネジ部64が螺合し、ソケット管50と摺動側口金60とが接合される。貫通穴51は、補剛管20の摺動側端部21bを包囲している。貫通穴51の内側面と補剛管20の外周面とは、隙間を持って配置されている。貫通穴51の内側面と補剛管20の外周面との隙間B、及び貫通穴51が補剛管20の摺動側端部21bを包囲している長手方向の長さCは、ブレース材100の組み立て精度、補剛管20、固定側口金30、軸力材10、摺動側口金60、及びソケット管50等の各部の精度、軸力材10のたわみの許容量等に応じて適宜決められる。 (Socket tube)
Thesocket tube 50 is provided with a through hole 51 in the inner longitudinal direction, and has a tapered portion 52 and a cylindrical portion 55 on the outer peripheral side. The socket tube 50 has a sliding-side base screwed female screw 54 formed inside the cylindrical portion 55. The socket-side threaded male screw portion 64 of the sliding-side base 60 is screwed into the sliding-side base screwed female screw 54, and the socket pipe 50 and the sliding-side base 60 are joined. The through hole 51 surrounds the sliding side end 21 b of the stiffening tube 20. The inner surface of the through hole 51 and the outer peripheral surface of the stiffening tube 20 are arranged with a gap. The clearance B between the inner surface of the through hole 51 and the outer peripheral surface of the stiffening tube 20 and the length C in the longitudinal direction in which the through hole 51 surrounds the sliding side end 21b of the stiffening tube 20 are determined by the brace material. As appropriate according to the assembly accuracy of 100, the accuracy of each part such as the stiffening tube 20, the fixed side cap 30, the axial force member 10, the sliding side cap 60, the socket tube 50, the deflection of the axial force member 10, etc. It is decided.
ソケット管50は、内部の長手方向に貫通穴51が設けられ、外周側にテーパー部52と円筒部55とを有する。ソケット管50は、円筒部55の内側に摺動側口金螺合雌ネジ54が形成されている。摺動側口金螺合雌ネジ54には摺動側口金60のソケット管螺合雄ネジ部64が螺合し、ソケット管50と摺動側口金60とが接合される。貫通穴51は、補剛管20の摺動側端部21bを包囲している。貫通穴51の内側面と補剛管20の外周面とは、隙間を持って配置されている。貫通穴51の内側面と補剛管20の外周面との隙間B、及び貫通穴51が補剛管20の摺動側端部21bを包囲している長手方向の長さCは、ブレース材100の組み立て精度、補剛管20、固定側口金30、軸力材10、摺動側口金60、及びソケット管50等の各部の精度、軸力材10のたわみの許容量等に応じて適宜決められる。 (Socket tube)
The
ブレース材100が建築構造物の振動により軸力を受けた場合に、軸力材10がたわむ。軸力材10の補剛管20に覆われている部分は、補剛管20によりたわみが拘束される。しかし、補剛管20の摺動側端部21bから摺動側口金60までの間は距離Aがあり、この区間においては軸力材10のたわみが拘束されない。よって、軸力材10のたわみが拘束されない区間(距離Aの区間)において許容される軸力材10の変形量の範囲内で、隙間B及び長さCは設定されればよい。
When the brace material 100 receives an axial force due to the vibration of the building structure, the axial force material 10 bends. The deflection of the portion of the axial force member 10 covered by the stiffening tube 20 is restrained by the stiffening tube 20. However, there is a distance A from the sliding end 21b of the stiffening tube 20 to the sliding base 60, and the deflection of the axial force member 10 is not constrained in this section. Therefore, the clearance B and the length C may be set within the range of the deformation amount of the axial force member 10 that is allowed in the interval where the deflection of the axial force member 10 is not restrained (distance A).
テーパー部52は、外径が先端57に近づくほど小さくなる。補剛管20を補強しつつ、摺動側口金60から補剛管20までの外観面を滑らかに接続しているため、強度を確保しながら意匠性を向上させている。なお、テーパー部52は、通常の円筒形状としても良い。
The tapered portion 52 becomes smaller as the outer diameter approaches the tip 57. While reinforcing the stiffening tube 20, the external surfaces from the sliding base 60 to the stiffening tube 20 are smoothly connected, so that the design is improved while ensuring the strength. In addition, the taper part 52 is good also as a normal cylindrical shape.
(ブレース材100の組立方法)
ブレース材100は、上記で説明した構造を備えるが、その組立方法を以下に説明する。まず、固定側口金30の雌ネジ33と軸力材10の雄ネジ12aとをネジ接合する。この工程は、本発明の「固定側口金接合工程」に相当する。そして、固定側口金30の補剛管螺合雌ネジ部34と補剛管20の雄ネジ22aとをネジ接合する。この工程は、本発明の「補剛管固定工程」に相当する。その後、補剛管20の摺動側端部21bをソケット管50の貫通穴51に通す。この工程は、本発明の「ソケット管嵌合工程」に相当する。これらの3工程は、製造時の都合により、順序を適宜決定することができる。 (Assembly method of brace material 100)
Thebrace material 100 has the structure described above, and an assembly method thereof will be described below. First, the female screw 33 of the fixed side cap 30 and the male screw 12a of the axial force member 10 are screwed together. This step corresponds to the “fixed side cap joining step” of the present invention. Then, the stiffening tube threaded female screw portion 34 of the fixed side cap 30 and the male screw 22a of the stiffening tube 20 are screwed together. This step corresponds to the “stiffening tube fixing step” of the present invention. Thereafter, the sliding side end 21 b of the stiffening tube 20 is passed through the through hole 51 of the socket tube 50. This step corresponds to the “socket pipe fitting step” of the present invention. The order of these three steps can be determined as appropriate for the convenience of manufacturing.
ブレース材100は、上記で説明した構造を備えるが、その組立方法を以下に説明する。まず、固定側口金30の雌ネジ33と軸力材10の雄ネジ12aとをネジ接合する。この工程は、本発明の「固定側口金接合工程」に相当する。そして、固定側口金30の補剛管螺合雌ネジ部34と補剛管20の雄ネジ22aとをネジ接合する。この工程は、本発明の「補剛管固定工程」に相当する。その後、補剛管20の摺動側端部21bをソケット管50の貫通穴51に通す。この工程は、本発明の「ソケット管嵌合工程」に相当する。これらの3工程は、製造時の都合により、順序を適宜決定することができる。 (Assembly method of brace material 100)
The
以上の工程が完了後、摺動側口金60の孔61に軸力材10を通し、雌ネジ63と軸力材10の雄ネジ12bとを接合する。この工程は、本発明の「摺動側口金固定工程」に相当する。この工程が完了すると、補剛管20の摺動側端部21bの端面から、軸力材10の端部11bに接合されている摺動側口金60の端面までの距離Aが決まる。この工程には、更に補剛管20の摺動側端部21bの端面から当該端面と対向する摺動側口金60の面までの寸法(距離A)を確認し、必要に応じて距離Aを調整する工程を含ませることができる。この工程は、本発明の「隙間調整工程」に相当する。摺動側口金固定工程と隙間調整工程により、ブレース材100の変形性能を設計通りに管理できる。
After the above steps are completed, the axial force member 10 is passed through the hole 61 of the sliding side base 60, and the female screw 63 and the male screw 12b of the axial force member 10 are joined. This step corresponds to the “sliding side cap fixing step” of the present invention. When this step is completed, the distance A from the end face of the sliding side end 21b of the stiffening tube 20 to the end face of the sliding side base 60 joined to the end 11b of the axial force member 10 is determined. In this step, the dimension (distance A) from the end surface of the sliding side end portion 21b of the stiffening tube 20 to the surface of the sliding side base 60 facing the end surface is further confirmed, and the distance A is set as necessary. A step of adjusting can be included. This step corresponds to the “gap adjusting step” of the present invention. The deformation performance of the brace material 100 can be managed as designed by the sliding side cap fixing process and the gap adjusting process.
その後、ソケット管50の摺動側口金螺合雌ネジ54を摺動側口金60のソケット管螺合雄ネジ部64にネジ接合する。この工程は、本発明の「ソケット管接合工程」に相当する。なお、クレビス40aを固定側口金30に取り付ける工程、及びクレビス40bを摺動側口金60に取り付ける工程については、上記のブレース材100の組立工程前に予め実施しても良いし、上記のブレース材100の組立工程が完了してから実施しても良い。また、クレビス40が固定側口金30及び摺動側口金60と予め一体成形されている場合には、クレビス40の組立工程も不要となる。
Thereafter, the sliding side cap screwed female screw 54 of the socket tube 50 is screwed to the socket pipe screwed male screw part 64 of the sliding side cap 60. This step corresponds to the “socket pipe joining step” of the present invention. The process of attaching the clevis 40a to the fixed base 30 and the process of attaching the clevis 40b to the sliding base 60 may be performed in advance before the assembly process of the brace material 100 or the brace material. You may implement after the assembly process of 100 is completed. Further, when the clevis 40 is integrally formed with the fixed side cap 30 and the sliding side cap 60 in advance, the assembly process of the clevis 40 is not required.
(比較例)
図5は、比較例である従来のブレース材900の構造を説明する図である。従来技術のブレース材900は、一体型クレビス960から補剛管920の端部までの間に距離A2がある。実施の形態1のブレース材100と同様に、ブレース材900が軸力を受けた場合、この距離A2の部分の軸力材910は、たわんで変形することになる。従来のブレース材900では、スリーブ970を補剛管920と軸力材910の間に配置し、一体型クレビス960から補剛管920までの間の軸力材910の外周を包囲している。この構造により、たわんで変形しやすい軸力材910の部位の曲げ耐力を向上させている。しかし、従来技術においては、構造上、スリーブ970の厚さは制限されるため、軸力材910の曲げ耐力が十分確保できない場合があった。 (Comparative example)
FIG. 5 is a diagram for explaining the structure of aconventional brace material 900 as a comparative example. The prior art brace material 900 has a distance A2 from the integral clevis 960 to the end of the stiffening tube 920. Similar to the brace material 100 of the first embodiment, when the brace material 900 receives an axial force, the axial force material 910 at the distance A2 is bent and deformed. In the conventional brace material 900, the sleeve 970 is disposed between the stiffening tube 920 and the axial force member 910, and surrounds the outer periphery of the axial force member 910 between the integrated clevis 960 and the stiffening tube 920. With this structure, the bending strength of the portion of the axial force member 910 that is easily bent and deformed is improved. However, in the prior art, since the thickness of the sleeve 970 is limited due to the structure, the bending strength of the axial force member 910 may not be ensured sufficiently.
図5は、比較例である従来のブレース材900の構造を説明する図である。従来技術のブレース材900は、一体型クレビス960から補剛管920の端部までの間に距離A2がある。実施の形態1のブレース材100と同様に、ブレース材900が軸力を受けた場合、この距離A2の部分の軸力材910は、たわんで変形することになる。従来のブレース材900では、スリーブ970を補剛管920と軸力材910の間に配置し、一体型クレビス960から補剛管920までの間の軸力材910の外周を包囲している。この構造により、たわんで変形しやすい軸力材910の部位の曲げ耐力を向上させている。しかし、従来技術においては、構造上、スリーブ970の厚さは制限されるため、軸力材910の曲げ耐力が十分確保できない場合があった。 (Comparative example)
FIG. 5 is a diagram for explaining the structure of a
(実施の形態1のブレース材100の作用効果)
実施の形態1のブレース材100は、補剛管20の長手方向の一方の端部である、固定側端部21aが固定側口金30に接合され、補剛管20の長手方向の他方の端部である、摺動側端部21bから所定の範囲が、ソケット管50の貫通穴51によって包囲されている。ソケット管50は、補剛管20の外周を包囲するもので、その厚さが制限されるものでないから、従来技術のブレース材900のスリーブ970に比較して、外径及び板厚を大きくすることができる。本発明では、補剛管20の摺動側端部21bと摺動側口金60との間は、剛性の高いソケット管50によって軸力材10の変形が拘束されており、補剛管20の摺動側端部21bと摺動側口金60との間の軸力材10の座屈、曲げの発生が抑えられる。これにより、曲げ耐力の高いブレース材100が得られる。 (Operational effect of thebrace material 100 of the first embodiment)
In thebrace material 100 according to the first embodiment, the fixed-side end 21a, which is one end in the longitudinal direction of the stiffening tube 20, is joined to the fixed-side base 30, and the other end in the longitudinal direction of the stiffening tube 20 is used. A predetermined range from the sliding side end portion 21 b, which is a portion, is surrounded by the through hole 51 of the socket tube 50. Since the socket tube 50 surrounds the outer periphery of the stiffening tube 20 and its thickness is not limited, the outer diameter and the plate thickness are increased compared to the sleeve 970 of the brace material 900 of the prior art. be able to. In the present invention, the deformation of the axial force member 10 is constrained between the sliding-side end portion 21b of the stiffening tube 20 and the sliding-side base 60 by the socket tube 50 having high rigidity. Occurrence of buckling and bending of the axial force member 10 between the sliding side end 21b and the sliding side base 60 is suppressed. Thereby, the brace material 100 with high bending strength is obtained.
実施の形態1のブレース材100は、補剛管20の長手方向の一方の端部である、固定側端部21aが固定側口金30に接合され、補剛管20の長手方向の他方の端部である、摺動側端部21bから所定の範囲が、ソケット管50の貫通穴51によって包囲されている。ソケット管50は、補剛管20の外周を包囲するもので、その厚さが制限されるものでないから、従来技術のブレース材900のスリーブ970に比較して、外径及び板厚を大きくすることができる。本発明では、補剛管20の摺動側端部21bと摺動側口金60との間は、剛性の高いソケット管50によって軸力材10の変形が拘束されており、補剛管20の摺動側端部21bと摺動側口金60との間の軸力材10の座屈、曲げの発生が抑えられる。これにより、曲げ耐力の高いブレース材100が得られる。 (Operational effect of the
In the
ソケット管50と摺動側口金60とは、着脱可能に接合されている。これにより、ブレース材100の製造時に容易に組み立てが可能である。また、補剛管20の摺動側端部21bと摺動側口金60との間の寸法が視認可能になっており、製造時の当該寸法管理が容易であり、ひいてはブレース材100の変形性能の管理が容易となる。ブレース材100が建築構造物に取り付けられた状態では、地震等による建物の振動がブレース材100に入力された後に、ソケット管50を外し、補剛管20の摺動側端部21bと摺動側口金60との間から軸力材10を目視確認することができる。これにより、軸力材10の損傷状況を直接視認することが可能となる。
The socket tube 50 and the sliding side cap 60 are detachably joined. Thereby, an assembly is easily possible at the time of manufacture of the brace material 100. FIG. Further, the dimension between the sliding side end portion 21b of the stiffening tube 20 and the sliding side base 60 can be visually recognized, the dimension management at the time of manufacture is easy, and the deformation performance of the brace material 100 is eventually achieved. Management becomes easier. In a state where the brace material 100 is attached to the building structure, after the vibration of the building due to an earthquake or the like is input to the brace material 100, the socket tube 50 is removed and the sliding side end portion 21b of the stiffening tube 20 slides. The axial force member 10 can be visually confirmed from between the side cap 60. Thereby, it becomes possible to visually recognize the damage state of the axial force member 10 directly.
軸力材10の両端はそれぞれ固定側口金30及び摺動側口金60にネジにより接合されている。それぞれのネジを逆方向にする(例えば、雄ネジ12aおよび雌ネジ33を右ネジにして、雄ネジ12bおよび雌ネジ63を左ネジにする)ことによって、ブレース材100の両端にある、取付用孔44aと取付用孔44bとの距離を調整することができる。よって、ブレース材100の建築構造物への設置が容易になる。
Both ends of the axial force member 10 are joined to the fixed base 30 and the sliding base 60 with screws. By attaching each screw in the opposite direction (for example, the male screw 12a and the female screw 33 are set to the right screw, and the male screw 12b and the female screw 63 are set to the left screw) The distance between the hole 44a and the mounting hole 44b can be adjusted. Therefore, installation of the brace material 100 to a building structure is facilitated.
軸力材10は、固定側口金30及び摺動側口金60に備えられた孔31及び孔61に挿入され、孔31及び孔61の奥側にある雌ネジ33及び雌ネジ63で螺合し接合される。この構成により、軸力材10に設けられた雄ネジ11周辺に曲げ変形が生じた場合であっても、軸力材10の雄ネジ11周辺での曲げ変形を支持部32及び支持部62で拘束することができるため、軸力材10の耐力を向上させることができる。
The axial force member 10 is inserted into the hole 31 and the hole 61 provided in the fixed base 30 and the sliding base 60, and is screwed together with the female screw 33 and the female screw 63 on the back side of the hole 31 and the hole 61. Be joined. With this configuration, even when bending deformation occurs around the male screw 11 provided on the axial force member 10, the bending deformation around the male screw 11 of the axial force member 10 is caused by the support portion 32 and the support portion 62. Since it can restrain, the proof stress of the axial force material 10 can be improved.
補剛管20の摺動側端部21bの端面から当該端面と対向する摺動側口金60の面までの間に距離Aを持って摺動側口金60が接合されている。これにより、ブレース材100に建築構造物からの力が加わっても、補剛管20の軸方向には力(軸力)が加わらない。この構造により、補剛管20の強度を強くする必要がないため、補剛管20のコストを低減できる。
The sliding side base 60 is joined with a distance A between the end face of the sliding side end portion 21b of the stiffening tube 20 and the surface of the sliding side base 60 facing the end face. Thereby, even if the force from the building structure is applied to the brace material 100, no force (axial force) is applied in the axial direction of the stiffening tube 20. With this structure, it is not necessary to increase the strength of the stiffening tube 20, so the cost of the stiffening tube 20 can be reduced.
クレビス40(本発明の「接合要素」に相当する。)は、軸力材10及び補剛管20が接合されている側と反対の方向に突出し、固定側口金30及び摺動側口金60のそれぞれに接合されている。クレビス40を固定側口金30及び摺動側口金60とは別体にし、後から接合することにより、クレビス40を共通化し、コストを下げることができる。また、各建築構造物に対応して、接合要素を取り替えることも可能となる。
The clevis 40 (corresponding to the “joining element” of the present invention) protrudes in the direction opposite to the side where the axial force member 10 and the stiffening tube 20 are joined, and the fixed side cap 30 and the sliding side cap 60 It is joined to each. By making the clevis 40 separate from the fixed side cap 30 and the sliding side cap 60 and joining them later, the clevis 40 can be shared and the cost can be reduced. Moreover, it becomes possible to replace a joining element corresponding to each building structure.
ソケット管50の外径は長手方向の一方の端面50a(先端)に向かって(補剛管20の長手方向の中央に近づくほど)、小さくなる。よって、長手方向の各位置におけるブレース材100の強度を確保した上で、軽量化の促進および意匠性の向上を図ることができる。
The outer diameter of the socket tube 50 becomes smaller toward one end surface 50a (tip) in the longitudinal direction (as it approaches the longitudinal center of the stiffening tube 20). Therefore, after ensuring the strength of the brace material 100 at each position in the longitudinal direction, it is possible to promote weight reduction and improve design properties.
ブレース材100の組立において、ソケット管接合工程は、固定側口金接合工程、補剛管固定工程、ソケット管嵌合工程、及び摺動側口金固定工程の後に実施されることにより、上述の補剛管20の摺動側端部21bと摺動側口金60との間の寸法を視認しながらブレース材100を組み立てることができる。さらに、摺動側口金固定工程は、補剛管20の摺動側端部21bの端面から当該端面と対向する摺動側口金60の面までの隙間調整工程を含むことにより、さらに精度の良い距離Aの寸法管理が可能となり、ブレース材100の変形性能を設計通りに管理できる。
In the assembly of the brace material 100, the socket tube joining step is performed after the fixed side cap joining step, the stiffening tube fixing step, the socket tube fitting step, and the sliding side cap fixing step. The brace material 100 can be assembled while visually recognizing the dimension between the sliding end 21b of the tube 20 and the sliding base 60. Furthermore, the sliding side cap fixing step includes a clearance adjustment step from the end surface of the sliding side end portion 21b of the stiffening tube 20 to the surface of the sliding side cap 60 facing the end surface, thereby further improving accuracy. The dimension A can be managed, and the deformation performance of the brace material 100 can be managed as designed.
実施の形態1において、ブレース材100の各接合部は、ネジによる接合とされているが、ネジだけでなく他の手段により接合しても良い。ただし、ソケット管50と摺動側口金60との接合部は、ブレース材100が完成した後でも着脱可能な接合方法により接合する必要がある。例えば、側面から止めネジを用いてソケット管50を固定しても良い。
In Embodiment 1, each joint portion of the brace material 100 is joined by a screw, but may be joined not only by a screw but also by other means. However, the joint portion between the socket tube 50 and the sliding side base 60 needs to be joined by a detachable joining method even after the brace material 100 is completed. For example, the socket tube 50 may be fixed from the side using a set screw.
(試験体)
図6は、本発明の実施の形態1に係るブレース材100の性能を確認するための載荷試験に供する試験体を説明するものであって、各部の長さを定義する側面視の断面図である。なお、一部の符号の記載を省略している。表1に試験体(No1、No2)の各部の寸法等を示している。 (Test specimen)
FIG. 6 is a cross-sectional view in side view that defines the length of each part for explaining a test body to be subjected to a loading test for confirming the performance of thebrace material 100 according to Embodiment 1 of the present invention. is there. In addition, description of a part of code | symbol is abbreviate | omitted. Table 1 shows the dimensions and the like of each part of the specimen (No1, No2).
図6は、本発明の実施の形態1に係るブレース材100の性能を確認するための載荷試験に供する試験体を説明するものであって、各部の長さを定義する側面視の断面図である。なお、一部の符号の記載を省略している。表1に試験体(No1、No2)の各部の寸法等を示している。 (Test specimen)
FIG. 6 is a cross-sectional view in side view that defines the length of each part for explaining a test body to be subjected to a loading test for confirming the performance of the
図6において、試験体No.1および試験体No.2について、軸力材10の外径を「DS」と称す。なお、軸力材10の降伏点を「σy」、軸力材10の断面積と降伏点σyとの積は「Ny」と称す。補剛管20の外径を「DB」、板厚を「tB」、クレビス40の一部とソケット管50との長さのうち、補剛管20の長手方向の他方の端面20bからクレビス40bの取付用孔44bの中心までの距離を「lc(エルシー)」、 補剛管20の長手方向の他方の端面20bからソケット管50の長手方向の一方の端面50aまでの距離を「lk(エルケー)」と称す。クレビス40aの取付用孔44aの中心から固定側口金30の他方の端面30bまでの距離を「FlJ(エフエルジェイ)」、固定側口金30の他方の端面30bからソケット管50の一方の端面50aまでの距離を「lB(エルビー)」、ソケット管50の一方の端面50aからクレビス40bの取付用孔44bまでの距離を「MlJ(エムエルジェイ)」と、それぞれ称す。
In FIG. 1 and Specimen No. 1 2, the outer diameter of the axial force member 10 is referred to as “D S ”. The yield point of the axial force member 10 is referred to as “σ y ”, and the product of the cross-sectional area of the axial force member 10 and the yield point σ y is referred to as “N y ”. The outer diameter of the stiffening tube 20 is “D B ”, the plate thickness is “t B ”, and the length of a part of the clevis 40 and the socket tube 50 from the other end face 20 b in the longitudinal direction of the stiffening tube 20. The distance from the other end surface 20b in the longitudinal direction of the stiffening tube 20 to the one end surface 50a in the longitudinal direction of the socket tube 50 is defined as “l c (LC)”. It is called “l k ”. The distance from the center of the mounting hole 44a of the clevis 40a to the other end face 30b of the fixed side cap 30 is " F l J (FELJ)", and the other end face 30b of the fixed side cap 30 is one end face 50a of the socket tube 50. the distance to the "l B (LB AG)", the distance from one end surface 50a of the socket pipe 50 to the mounting hole 44b of the clevis 40b "M l J (Emuerujei)", referred respectively.
また、クレビス40aの取付用孔44aの中心からクレビス40bの取付用孔44bの中心までの距離を「l(エル)」と称す。さらに、軸力材10の外径と補剛管20の内径との差を「eS(イーエス)」、補剛管20の外径とソケット管50との内径との差を「ek(イーケー)」と称する。図6中においては、軸力材10の外周面と補剛管20の内周面との隙間「eS/2」及び補剛管20の外周面とソケット管50の内周面との隙間「eS/2」が図示されている。ソケット管50の長手方向の一方の端面50a(先端)における板厚を「tK(ティーケー)」と称す。
The distance from the center of the mounting hole 44a of the clevis 40a to the center of the mounting hole 44b of the clevis 40b is referred to as “l”. Furthermore, the difference between the outer diameter of the axial force member 10 and the inner diameter of the stiffening tube 20 is “e S (Es)”, and the difference between the outer diameter of the stiffening tube 20 and the inner diameter of the socket tube 50 is “e k ( EK) ”. In FIG. 6, the clearance “e S / 2” between the outer peripheral surface of the axial force member 10 and the inner peripheral surface of the stiffening tube 20 and the clearance between the outer peripheral surface of the stiffening tube 20 and the inner peripheral surface of the socket tube 50. “E S / 2” is illustrated. The plate thickness at one end face 50a (tip) in the longitudinal direction of the socket tube 50 is referred to as “t K (TEK)”.
(比較材)
以下に比較材としての従来のブレース材の性能を確認するための載荷試験に供する試験体を説明する。試験体は、図5に示されている従来のブレース材900であり、各部の長さを定義する側面視の断面図である。また、表2に、比較材(No.3)の各部の寸法等を示している。 (Comparison material)
Below, the test body used for the loading test for confirming the performance of the conventional brace material as a comparison material is demonstrated. The test body is theconventional brace material 900 shown in FIG. 5, and is a cross-sectional view in side view that defines the length of each part. Table 2 shows dimensions and the like of each part of the comparative material (No. 3).
以下に比較材としての従来のブレース材の性能を確認するための載荷試験に供する試験体を説明する。試験体は、図5に示されている従来のブレース材900であり、各部の長さを定義する側面視の断面図である。また、表2に、比較材(No.3)の各部の寸法等を示している。 (Comparison material)
Below, the test body used for the loading test for confirming the performance of the conventional brace material as a comparison material is demonstrated. The test body is the
図5において、比較材(No.3)であるブレース材900について、軸力材910の外径を「DS」と、補剛管920の外径を「DB」、補剛管920の板厚を「tB」と、それぞれ称す。軸力材910の降伏点を「σy」、軸力材10の断面積と降伏点σyとの積は「Ny」と称す。軸力材910の端部911a、911b(雄ネジ912a、912bが形成されている)には、一体型クレビス940、960(雌ネジ941、961が形成されている)が設置され、一方の一体型クレビス940の接続用孔944の中心と、他方の一体型クレビス960の接続用孔966の中心との距離を「l(エル)」と称する。軸力材910の一方の端部911a(雄ネジ912aが形成されている)と補剛管920の一方の端部921a(雌ネジ922aが形成されている)とは、口金930(雌ネジ931、雄ネジ932が形成されている)によって接続されている。軸力材910の他方の端部911bに近い位置に、筒状のスリーブ970が設置され、スリーブ970は補剛管920の他方の端面920bから距離「L(エル)」だけ補剛管920内に侵入している。スリーブ970の外径と補剛管920の他方の端部921bにおける内面922bとの差を「eS/2(イーエス/2)」と称す。
In FIG. 5, regarding the brace material 900 which is the comparative material (No. 3), the outer diameter of the axial force member 910 is “D S ”, the outer diameter of the stiffening tube 920 is “D B ”, and The plate thickness is referred to as “t B ”, respectively. The yield point of the axial force member 910 is referred to as “σ y ”, and the product of the cross-sectional area of the axial force member 10 and the yield point σ y is referred to as “N y ”. Integral clevises 940 and 960 ( internal threads 941 and 961 are formed) are installed at the ends 911a and 911b (in which male threads 912a and 912b are formed) of the axial force member 910, respectively. The distance between the center of the connection hole 944 of the body clevis 940 and the center of the connection hole 966 of the other integrated clevis 960 is referred to as “l”. One end 911a of the axial force member 910 (male thread 912a is formed) and one end 921a of the stiffening tube 920 (female thread 922a is formed) are a base 930 (female thread 931). , A male screw 932 is formed). A cylindrical sleeve 970 is installed at a position close to the other end portion 911b of the axial force member 910. The sleeve 970 is located within the stiffening tube 920 by a distance “L” from the other end surface 920b of the stiffening tube 920. Is invading. The difference between the outer diameter of the sleeve 970 and the inner surface 922b at the other end 921b of the stiffening tube 920 is referred to as “e S / 2 (Es / 2)”.
(断面二次モーメント)
以上より、試験体No.2におけるソケット管50の内径は、補剛管20の外径DBに補剛管20の外径とソケット管50との内径との差ekから求められ、表1中の値から、「114.3+4.0=118.3(mm)」となる。ソケット管50の外径は、外径の最も小さい部分でソケット管50の内径とソケット管50の端面50aでの板厚tKとから求められ、表1中の値から、「118.3+2×12=142.3(mm)」になる。よって、ソケット管50の断面二次モーメントは、最も小さい箇所で少なくとも「1.0×107(mm4)」以上になる。 (Secondary moment of section)
From the above, the test specimen No. The inner diameter of thesocket tube 50 in the two is determined from the difference e k of the inner diameter of the outer diameter and the socket pipe 50 of the stiffening tube 20 to the outer diameter D B of the stiffening tube 20, from the values in Table 1, " 114.3 + 4.0 = 18.3 (mm) ”. The outer diameter of the socket tube 50 is determined from the thickness t K at the end face 50a of the inner diameter and the socket pipe 50 of the socket pipe 50 with the smallest portion of the outer diameter, from the values in Table 1, "118.3 + 2 × 12 = 142.3 (mm) ". Therefore, the sectional moment of inertia of the socket tube 50 is at least “1.0 × 10 7 (mm 4 )” or more at the smallest portion.
以上より、試験体No.2におけるソケット管50の内径は、補剛管20の外径DBに補剛管20の外径とソケット管50との内径との差ekから求められ、表1中の値から、「114.3+4.0=118.3(mm)」となる。ソケット管50の外径は、外径の最も小さい部分でソケット管50の内径とソケット管50の端面50aでの板厚tKとから求められ、表1中の値から、「118.3+2×12=142.3(mm)」になる。よって、ソケット管50の断面二次モーメントは、最も小さい箇所で少なくとも「1.0×107(mm4)」以上になる。 (Secondary moment of section)
From the above, the test specimen No. The inner diameter of the
一方、比較材である試験体No.3におけるスリーブ970は、表2中の値から、内径が「46.0(mm)」で、外径が最大で「114.3-2×25=64.3(mm)」になる。スリーブ970の断面二次モーメントは、最大でも「0.062×107(mm4)」以下である。
On the other hand, test specimen No. which is a comparative material. 3, the sleeve 970 has an inner diameter of “46.0 (mm)” and an outer diameter of “114.3-2 × 25 = 64.3 (mm)”. The cross-sectional secondary moment of the sleeve 970 is at most “0.062 × 10 7 (mm 4 )” or less.
実施の形態1のソケット管50の断面二次モーメントは、比較材である従来のスリーブ970の断面二次モーメントの約17倍の高い(大きな)値を有している。つまり、実施の形態1のブレース材100は、ブレース材900に備えられているスリーブ970よりも高剛性のソケット管50により軸力材10の変形を抑えていることになる。
The cross-sectional secondary moment of the socket tube 50 of Embodiment 1 has a high (large) value that is about 17 times the cross-sectional secondary moment of the conventional sleeve 970 that is a comparative material. That is, the brace material 100 according to the first embodiment suppresses deformation of the axial force member 10 by the socket tube 50 having higher rigidity than the sleeve 970 provided in the brace material 900.
(載荷試験)
図7は、本発明の実施の形態1に係るブレース材100の性能を確認するための載荷試験の結果を示す荷重-歪線図であって、(a)は試験体No.1の結果、(b)は試験体No.2の結果である。載荷試験は、ブレース材100の圧縮および引っ張りを交互に繰り返し付与する両振り載荷である。 (Load test)
FIG. 7 is a load-strain diagram showing the result of a loading test for confirming the performance of thebrace material 100 according to the first embodiment of the present invention. As a result of No. 1, (b) shows the test specimen No. The result of 2. The loading test is a double swing loading in which compression and tension of the brace material 100 are alternately and repeatedly applied.
図7は、本発明の実施の形態1に係るブレース材100の性能を確認するための載荷試験の結果を示す荷重-歪線図であって、(a)は試験体No.1の結果、(b)は試験体No.2の結果である。載荷試験は、ブレース材100の圧縮および引っ張りを交互に繰り返し付与する両振り載荷である。 (Load test)
FIG. 7 is a load-strain diagram showing the result of a loading test for confirming the performance of the
図7の(a)において、まず、ブレース材100を0.25%だけ圧縮する。つまり、クレビス40aの取付用孔44aの中心とクレビス40bの取付用孔44bの中心との距離l(エル)を6.25mmだけ縮める。このとき、圧縮荷重および圧縮歪は、図7(a)のグラフの第1象限に示されている。次に、軸力材10を0.25%だけ引っ張る。つまり、距離l(エル)を6.25mmだけ伸ばす。このとき、引張荷重および引張歪は、図7(a)のグラフの第3象限に示されている。
7 (a), first, the brace material 100 is compressed by 0.25%. That is, the distance l (el) between the center of the mounting hole 44a of the clevis 40a and the center of the mounting hole 44b of the clevis 40b is reduced by 6.25 mm. At this time, the compressive load and the compressive strain are shown in the first quadrant of the graph of FIG. Next, the axial force member 10 is pulled by 0.25%. That is, the distance l (el) is increased by 6.25 mm. At this time, the tensile load and the tensile strain are shown in the third quadrant of the graph of FIG.
さらに、ブレース材100を0.5%だけ圧縮し(距離l(エル)を12.5mmだけ縮め)、次に、ブレース材100を0.5%だけ引っ張る(距離l(エル)を12.5mmだけ伸ばす)。さらに、ブレース材100を1.0%だけ圧縮し(距離l(エル)を25mmだけ縮め)、次に、ブレース材100を1.0%だけ引っ張る(距離l(エル)を25mmだけ伸ばす)載荷を1サイクルとして、これを5回繰り返す。
Further, the brace material 100 is compressed by 0.5% (distance l (el) is reduced by 12.5 mm), and then the brace material 100 is pulled by 0.5% (distance l (el) is 12.5 mm). Only stretch). Further, the brace material 100 is compressed by 1.0% (distance l (el) is reduced by 25 mm), and then the brace material 100 is pulled by 1.0% (distance l (el) is extended by 25 mm). Is repeated 5 times.
そして、最終サイクルとして、ブレース材100を2.0%だけ圧縮し(距離l(エル)を50mmだけ縮め)、次に、ブレース材100を2.0%だけ引っ張る(距離l(エル)を50mmだけ伸ばす)載荷を1サイクルとして、これをブレース材100が座屈または破断するまで繰り返す。
Then, as a final cycle, the brace material 100 is compressed by 2.0% (distance l (el) is reduced by 50 mm), and then the brace material 100 is pulled by 2.0% (distance l (el) is 50 mm). This is repeated until the brace material 100 buckles or breaks.
上記のサイクルにて載荷試験を実施すると、試験体No.1は、最終サイクルを3回繰り返し、4回目の最終サイクルの引張時に、軸力材10が破断した。
When the loading test is performed in the above cycle, the specimen No. In No. 1, the final cycle was repeated three times, and the axial force member 10 was broken during the fourth final cycle.
図7(b)において、試験体No.2は試験体No.1と同様に、最終サイクルを3回繰り返し、4回目の最終サイクルの引張時に、軸力材10が破断した。
すなわち、試験体No.1および試験体No.2は何れも、ブレース材100は座屈していないことから、補剛管20およびソケット管50によって、軸力材10のたわみが適切に拘束されたことが示されている。 In FIG. No. 2 is a specimen No. Similarly to 1, the final cycle was repeated three times, and theaxial force member 10 was broken at the time of the fourth final cycle.
That is, the test specimen No. 1 and Specimen No. 1 In both cases, since thebrace material 100 is not buckled, it is indicated that the deflection of the axial force member 10 is appropriately restrained by the stiffening tube 20 and the socket tube 50.
すなわち、試験体No.1および試験体No.2は何れも、ブレース材100は座屈していないことから、補剛管20およびソケット管50によって、軸力材10のたわみが適切に拘束されたことが示されている。 In FIG. No. 2 is a specimen No. Similarly to 1, the final cycle was repeated three times, and the
That is, the test specimen No. 1 and Specimen No. 1 In both cases, since the
図8は、比較材としての従来のブレース材の性能を確認するための載荷試験の結果を示す荷重-歪線図である。載荷条件は、試験体No.1、No.2に同じである。図8において、試験体No.3は、0.10%の圧縮および引っ張りを1サイクル、0.25%の圧縮および引っ張りを2サイクル、および0.5%の圧縮および引っ張りを2サイクルの載荷の後、1.0%の圧縮をした際に、ブレース材900は座屈している。
FIG. 8 is a load-strain diagram showing the results of a loading test for confirming the performance of a conventional brace material as a comparative material. The loading conditions are as follows. 1, no. Same as 2. In FIG. 3, 1 cycle of 0.10% compression and tension, 2 cycles of 0.25% compression and tension, and 1.0% compression after 2 cycles of 0.5% compression and tension When the brace material 900 is bent, the brace material 900 is buckled.
上記の試験体No.1~No.3の載荷試験結果からも、実施の形態1のブレース材100のソケット管50を用いた構成は、従来のスリーブ970を使用したブレース材900の構成と比較して、曲げ耐力の高い(大きい)ため座屈し難いことが確認されている。
Specimen No. above 1-No. 3 also shows that the configuration using the socket tube 50 of the brace material 100 according to the first embodiment has a higher bending strength (larger) than the configuration of the brace material 900 using the conventional sleeve 970. Therefore, it has been confirmed that it is difficult to buckle.
[実施の形態2]
実施の形態2は、実施の形態1に対し、ソケット管50の接合位置を摺動側口金60から補剛管20へ変更したものである。実施の形態2では、実施の形態1に対する変更部を中心に説明する。 [Embodiment 2]
The second embodiment is different from the first embodiment in that the joining position of thesocket tube 50 is changed from the sliding side base 60 to the stiffening tube 20. In the second embodiment, a description will be given centering on a changing unit with respect to the first embodiment.
実施の形態2は、実施の形態1に対し、ソケット管50の接合位置を摺動側口金60から補剛管20へ変更したものである。実施の形態2では、実施の形態1に対する変更部を中心に説明する。 [Embodiment 2]
The second embodiment is different from the first embodiment in that the joining position of the
図9は、本発明の実施の形態2に係るブレース材200の中心軸を通る断面を示す図であって、ソケット管周辺の構造を説明する図である。実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。各部材の相対的な大きさや板厚等は図示する寸法に限定されるものではない。図示されていない固定側口金30側の構造は、実施の形態1と同じである。
FIG. 9 is a view showing a cross section passing through the central axis of the brace material 200 according to Embodiment 2 of the present invention, and is a view for explaining the structure around the socket tube. The same reference numerals are given to the same or corresponding parts as those in the first embodiment, and a part of the description will be omitted. The relative size and thickness of each member are not limited to the illustrated dimensions. The structure on the fixed side cap 30 side not shown is the same as that of the first embodiment.
実施の形態1のブレース材100では、補剛管20の摺動側端部21bは、摺動側口金60から距離Aをおいて配置されているとともに、内部が円筒形状であるソケット管50により外周を包囲されている。ソケット管50の摺動側口金60側の端部は、摺動側口金60の外周にあるソケット管螺合雄ネジ部64に、ねじ接合により着脱可能に接合されている。
In the brace material 100 according to the first embodiment, the sliding-side end portion 21b of the stiffening tube 20 is disposed at a distance A from the sliding-side base 60, and the inside is a socket tube 50 having a cylindrical shape. The outer periphery is surrounded. The end of the socket tube 50 on the sliding side base 60 side is detachably joined to a socket pipe threaded male screw portion 64 on the outer periphery of the sliding side base 60 by screw joining.
一方、図9に示されている実施の形態2のブレース材200は、摺動側口金260から距離A1をおいて配置されている補剛管220の摺動側端部221bの外周に雄ネジ224が備えられている。そして、その雄ネジ224にソケット管250の貫通穴251に備えられた雌ネジ254が螺合し、補剛管220の外周を包囲している。ソケット管250の摺動側口金260側の端部は、摺動側口金260の外周を包囲している。実施の形態2においては、貫通穴251が摺動側口金260よりも大きくなっている。ソケット管250は、摺動側口金260と軸力材10とが接合された後に、摺動側口金260側から取り付けることができる。また、貫通穴251は、クレビス240bよりも大きくなっており、クレビス240bが摺動側口金260と接合された後でもソケット管250は取付可能である。
On the other hand, the brace material 200 of the second embodiment shown in FIG. 9 has a male screw on the outer periphery of the sliding side end 221b of the stiffening tube 220 arranged at a distance A1 from the sliding side base 260. 224 is provided. Then, a female screw 254 provided in the through hole 251 of the socket tube 250 is screwed into the male screw 224 so as to surround the outer periphery of the stiffening tube 220. An end of the socket tube 250 on the sliding side base 260 side surrounds the outer periphery of the sliding side base 260. In the second embodiment, the through hole 251 is larger than the sliding side base 260. The socket tube 250 can be attached from the sliding side base 260 side after the sliding side base 260 and the axial force member 10 are joined. The through hole 251 is larger than the clevis 240b, and the socket tube 250 can be attached even after the clevis 240b is joined to the sliding side base 260.
摺動側口金260の外周面とソケット管250の貫通穴251は、隙間B1をもって嵌合している。貫通穴251は、摺動側口金260の外周を、長手方向の長さC1に渡って包囲している。隙間B1及び長さC1は、ブレース材200の組み立て精度、補剛管220、固定側口金30、軸力材10、摺動側口金260、及びソケット管250等の各部の精度、軸力材10のたわみの許容量等に応じて適宜決められる。
The outer peripheral surface of the sliding side base 260 and the through hole 251 of the socket tube 250 are fitted with a gap B1. The through hole 251 surrounds the outer periphery of the sliding side base 260 over a length C1 in the longitudinal direction. The clearance B1 and the length C1 are the assembly accuracy of the brace material 200, the accuracy of each part such as the stiffening tube 220, the fixed side base 30, the axial force member 10, the sliding side base 260, and the socket tube 250, and the axial force member 10. It is determined as appropriate according to the allowable amount of deflection.
(実施の形態2のブレース材200の作用効果)
実施の形態2のブレース材200は、ソケット管250の接合箇所を変更しているが、摺動側端部221bから所定の範囲の補剛管220が、ソケット管250の貫通穴251によって包囲されている。ソケット管250は、補剛管220の外周を包囲するもので、その厚さが制限されるものではないから、実施の形態1に係るブレース材100と同様に、外径及び板厚を大きくすることができる。よって、実施の形態1に係るブレース材100と同様に、曲げ耐力の高いブレース材200が得られる。 (Operational effect of thebrace material 200 of the second embodiment)
In thebrace material 200 of the second embodiment, the joint location of the socket tube 250 is changed. However, the stiffening tube 220 within a predetermined range from the sliding side end 221 b is surrounded by the through hole 251 of the socket tube 250. ing. Since the socket tube 250 surrounds the outer periphery of the stiffening tube 220 and its thickness is not limited, the outer diameter and the plate thickness are increased in the same manner as the brace material 100 according to the first embodiment. be able to. Therefore, as with the brace material 100 according to the first embodiment, the brace material 200 with high bending strength is obtained.
実施の形態2のブレース材200は、ソケット管250の接合箇所を変更しているが、摺動側端部221bから所定の範囲の補剛管220が、ソケット管250の貫通穴251によって包囲されている。ソケット管250は、補剛管220の外周を包囲するもので、その厚さが制限されるものではないから、実施の形態1に係るブレース材100と同様に、外径及び板厚を大きくすることができる。よって、実施の形態1に係るブレース材100と同様に、曲げ耐力の高いブレース材200が得られる。 (Operational effect of the
In the
ソケット管250と補剛管220とは、着脱可能に接合されている。これにより、ブレース材200は、実施の形態1に係るブレース材100と同様に、製造時に容易に組み立てが可能で、製造時の距離A1の寸法管理が容易であり、ひいてはブレース材200の変形性能の管理が容易となる。また、実施の形態1に係るブレース材100と同様に、ブレース材200が建築構造物に取り付けられた状態で、軸力材10の損傷状況を直接視認することが可能である。
The socket tube 250 and the stiffening tube 220 are detachably joined. Thereby, like the brace material 100 according to the first embodiment, the brace material 200 can be easily assembled at the time of manufacture, the dimensional management of the distance A1 at the time of manufacture is easy, and the deformation performance of the brace material 200 is eventually achieved. Management becomes easier. Further, similarly to the brace material 100 according to the first embodiment, it is possible to directly recognize the damage state of the axial force member 10 in a state where the brace material 200 is attached to the building structure.
実施の形態1に係るブレース材100と同様に、ブレース材200における軸力材10の両端はそれぞれ固定側口金30及び摺動側口金260にネジにより接合されている。それぞれのネジを逆方向にすることによって、ブレース材200の両端にある、取付用孔の距離を調整することができ、ブレース材200の建築構造物への設置が容易になる。
As with the brace material 100 according to the first embodiment, both ends of the axial force member 10 in the brace material 200 are joined to the fixed side base 30 and the sliding side base 260 by screws, respectively. By making each screw in the opposite direction, the distance between the mounting holes at both ends of the brace material 200 can be adjusted, and the installation of the brace material 200 to the building structure is facilitated.
軸力材10は、固定側口金30及び摺動側口金260と螺合する周辺の構造についても実施の形態1に係るブレース材100と同様である。よって、軸力材10に設けられた雄ネジ11周辺に曲げ変形が生じた場合であっても、軸力材10の雄ネジ11周辺での曲げ変形を支持部262で拘束することができるため、軸力材10の耐力を向上させることができる。
The axial force member 10 is the same as the brace member 100 according to the first embodiment with respect to the peripheral structure screwed with the fixed base 30 and the sliding base 260. Therefore, even if bending deformation occurs around the male screw 11 provided on the axial force member 10, the bending deformation around the male screw 11 of the axial force member 10 can be restrained by the support portion 262. The proof stress of the axial force member 10 can be improved.
補剛管220の摺動側端部221bの端面から当該端面と対向する摺動側口金260の面までの間に距離A1を持って摺動側口金260が接合されている。これにより、実施の形態1に係るブレース材100と同様に、ブレース材200に建築構造物からの力が加わっても、補剛管220の軸方向には力(軸力)が加わらない。この構造により、補剛管220の強度を強くする必要がないため、補剛管220のコストを低減できる。
The sliding base 260 is joined with a distance A1 from the end face of the sliding end 221b of the stiffening tube 220 to the surface of the sliding base 260 facing the end face. Thereby, similarly to the brace material 100 according to the first embodiment, even if a force from the building structure is applied to the brace material 200, no force (axial force) is applied in the axial direction of the stiffening tube 220. With this structure, it is not necessary to increase the strength of the stiffening tube 220, so the cost of the stiffening tube 220 can be reduced.
クレビス40を固定側口金30及び摺動側口金60とは別体にし、後から接合することにより、クレビス40を共通化し、コストを低減できる。各建築構造物に対応して、接合要素(クレビス40)を取り替えることも可能となる。
By making the clevis 40 separate from the fixed side cap 30 and the sliding side cap 60 and joining them later, the clevis 40 can be shared and the cost can be reduced. Corresponding to each building structure, the joining element (clevis 40) can be replaced.
ブレース材200の組立も、実施の形態1に係るブレース材100と同様に実施できる。よって、補剛管220の摺動側端部221bと摺動側口金260との間の寸法(距離A1)が視認可能である。そのため、さらに精度の良い距離A1の寸法管理が可能となり、ブレース材200の変形性能を設計通りに管理できる。
The assembly of the brace material 200 can be performed in the same manner as the brace material 100 according to the first embodiment. Therefore, the dimension (distance A1) between the sliding side end 221b of the stiffening tube 220 and the sliding side base 260 is visible. Therefore, the dimension management of the distance A1 with higher accuracy is possible, and the deformation performance of the brace material 200 can be managed as designed.
実施の形態2においても、ブレース材200の各接合部は、ネジによる接合とされているが、ネジだけでなく他の手段により接合しても良い。ただし、ソケット管250と補剛管220との接合部は、ブレース材200が完成した後でも着脱可能な接合方法により接合する必要がある。例えば、側面から止めネジを用いてソケット管50を補剛管220に固定しても良い。
Also in Embodiment 2, each joint portion of the brace material 200 is joined by a screw, but it may be joined by other means in addition to the screw. However, the joint portion between the socket tube 250 and the stiffening tube 220 needs to be joined by a detachable joining method even after the brace material 200 is completed. For example, the socket tube 50 may be fixed to the stiffening tube 220 using a set screw from the side.
本発明によれば、簡素な構造で曲げ耐力の高い(大きい)ブレース材が得られ、各種形態の断面形状を有する軸力材についても適用することができるから、建築構造物の様々な要求に対応することができる各種ブレース材を広く利用することができる。
According to the present invention, a brace material having a simple structure and high bending strength (large) can be obtained, and it can be applied to axial force materials having various shapes of cross-sectional shapes. Various brace materials that can be used can be widely used.
10 軸力材、11a (一方の)端部、11b (他方の)端部、12a 雄ネジ、12b 雄ネジ、13a 雄ネジ部、13b 雄ネジ部、20 補剛管、20b (他方の)端面、21a 固定側端部、21b 摺動側端部、22a 雄ネジ、30 固定側口金、30b 端面、31 孔、32 支持部、33 雌ネジ、34 補剛管螺合雌ネジ部、35 テーパー部、36 面取部、37 クレビス螺合雌ネジ部、40 クレビス、40a (固定側口金側の)クレビス、40b (摺動側口金側の)クレビス、41 円盤状部分、42 板状部分、43 雄ネジ、44 取付用孔、44a 取付用孔、44b 取付用孔、50 ソケット管、50a 端面、51 貫通穴、52 テーパー部、54 摺動側口金螺合雌ネジ、55 円筒部、57 先端、60 摺動側口金、61 孔、62 支持部、63 雌ネジ、64 ソケット管螺合雄ネジ部、66 面取部、67 クレビス螺合雌ネジ部、100 ブレース材、101 中心軸、200 ブレース材、220 補剛管、221b 摺動側端部、224 雄ネジ、240b クレビス、250 ソケット管、251 貫通穴、254 雌ネジ、260 摺動側口金、262 支持部、263 雌ネジ、267 クレビス螺合雌ネジ部、900 ブレース材(比較材)、910 軸力材、911a 端部、911b 端部、912a 雄ネジ、912b 雄ネジ、920 補剛管、920b 端面、921a 端部、921b 端部、922a 雌ネジ、922b 内面、931 雌ネジ、932 雄ネジ、940 一体型クレビス、941 雌ネジ、944 接続用孔、960 一体型クレビス、961 雌ネジ、966 接続用孔、970 スリーブ、A 距離、A1 距離、A2 距離、B 隙間、B1 隙間、C 長さ、DS 外径、DB 外径、ek (内径の)差、eS (内径の)差、Ny 軸力材10の断面積と降伏点σyとの積、l 距離、lB 距離、FlJ 距離、tB 板厚、tK 板厚、σy 降伏点。
10 axial force material, 11a (one) end, 11b (other) end, 12a male thread, 12b male thread, 13a male thread part, 13b male thread part, 20 stiffening tube, 20b (other) end face 21a fixed side end, 21b sliding side end, 22a male screw, 30 fixed side cap, 30b end face, 31 hole, 32 support part, 33 female screw, 34 stiffening tube threaded female screw part, 35 taper part , 36 Chamfered part, 37 Clevis screwed female thread part, 40 Clevis, 40a Clevis (on the fixed side base side), 40b Clevis (on the sliding side base side), 41 Disc-shaped part, 42 Plate-shaped part, 43 Male Screw, 44 mounting hole, 44a mounting hole, 44b mounting hole, 50 socket tube, 50a end face, 51 through hole, 52 taper part, 54 sliding side screw threaded female screw, 55 cylindrical part, 57 tip, 60 Sliding side base, 61 holes, 62 Support part, 63 female thread, 64 socket pipe threaded male thread part, 66 chamfered part, 67 clevis threaded female thread part, 100 brace material, 101 central shaft, 200 brace material, 220 stiffening tube, 221b sliding side End part, 224 male thread, 240b clevis, 250 socket tube, 251 through hole, 254 female thread, 260 sliding side cap, 262 support part, 263 female thread, 267 clevis threaded female thread part, 900 brace material (comparative material) ), 910 Axial force material, 911a end, 911b end, 912a male thread, 912b male thread, 920 stiffening tube, 920b end surface, 921a end, 921b end, 922a female thread, 922b inner surface, 931 female thread, 932 Male thread, 940 Integrated clevis, 941 Female thread, 944 Connection hole, 960 Integrated clevis, 961 Female thread, 966 Connection hole 970 sleeve, A distance, A1 distance, A2 distance, B clearance, B1 gap, C length, D S outer diameter, D B outer diameter (inner diameter) e k difference (internal diameter) e S differences, N y The product of the cross-sectional area of the axial force member 10 and the yield point σ y , l distance, l B distance, F l J distance, t B plate thickness, t K plate thickness, σ y yield point.
Claims (8)
- 棒状の軸力材と、
前記軸力材が内部を貫通する補剛管と、
前記補剛管の長手方向の一方の端部である固定側端部に接合され、かつ前記軸力材の長手方向の一方の端部に接合される固定側口金と、
前記軸力材の長手方向の他方の端部に接合される摺動側口金と、
前記補剛管の長手方向の他方の端部である摺動側端部又は前記摺動側口金に着脱可能に接合されるソケット管と、を備え、
前記固定側口金及び前記摺動側口金は、
建築構造物に設置するための継手となる接合要素を備え、
前記ソケット管は、
前記摺動側端部の外周部及び前記摺動側口金の外周部を包囲するブレース材。 A rod-shaped axial force material,
A stiffening tube through which the axial force member penetrates,
A fixed base that is bonded to one end in the longitudinal direction of the stiffening tube and is bonded to one end in the longitudinal direction of the axial force member;
A sliding side base joined to the other end in the longitudinal direction of the axial force member;
A socket tube detachably joined to the sliding side end which is the other end in the longitudinal direction of the stiffening tube or the sliding side base,
The fixed side base and the sliding side base are:
It has a joining element that becomes a joint for installation in a building structure,
The socket tube is
A brace material surrounding an outer peripheral portion of the sliding side end portion and an outer peripheral portion of the sliding side base. - 前記ソケット管と前記補剛管又は前記摺動側口金とは、
ねじ接合されている請求項1に記載のブレース材。 The socket tube and the stiffening tube or the sliding side base are:
The brace material according to claim 1, wherein the brace material is screwed. - 前記軸力材は、
両側の端部に雄ネジを有し、
前記固定側口金及び前記摺動側口金は、
前記軸力材が挿入される孔を有し、
該孔は、
円筒部と、
前記軸力材が挿入される方向から見て該円筒部の奥側に、前記軸力材が螺合する雌ネジと、を備え、
前記軸力材と前記固定側口金及び前記摺動側口金は、
前記雄ネジと前記雌ネジとの螺合により接合される請求項1又は2に記載のブレース材。 The axial force material is
Have male threads at both ends,
The fixed side base and the sliding side base are:
A hole into which the axial force member is inserted;
The hole
A cylindrical portion;
A female screw on which the axial force member is screwed, on the back side of the cylindrical portion when viewed from the direction in which the axial force member is inserted,
The axial force member, the fixed side base and the sliding side base are:
The brace material according to claim 1 or 2 joined by screwing of said male screw and said female screw. - 前記摺動側口金は、
前記補剛管の前記摺動側端部の端面から当該端面と対向する前記摺動側口金の面までの間に隙間があるように、前記軸力材に接合される請求項1~3の何れか1項に記載のブレース材。 The sliding side base is
The joint according to claim 1, wherein the axial force member is joined so that there is a gap between an end surface of the sliding side end portion of the stiffening tube and a surface of the sliding side base facing the end surface. The brace material according to any one of the above. - 前記接合要素は、
前記軸力材及び前記補剛管が接合されている側と反対の方向に突出し、前記固定側口金及び前記摺動側口金のそれぞれに接合されている請求項1~4の何れか1項に記載のブレース材。 The joining element is
5. The method according to claim 1, wherein the axial force member and the stiffening pipe protrude in a direction opposite to a side where the axial force member and the stiffening pipe are joined, and are joined to the fixed side base and the sliding side base, respectively. The brace material described. - 前記ソケット管の前記補剛管を包囲する範囲の内径は、
長手方向で一定で、
当該範囲の外径は、
前記補剛管の長手方向の中央に近づくほど小さくなる請求項1~5の何れか1項に記載のブレース材。 The inner diameter of the socket tube surrounding the stiffening tube is:
Constant in the longitudinal direction,
The outer diameter of the range is
The brace material according to any one of claims 1 to 5, wherein the brace material decreases as it approaches the center in the longitudinal direction of the stiffening tube. - 棒状の軸力材と、
前記軸力材が内部を貫通する補剛管と、
前記補剛管の長手方向の一方の端部である固定側端部に接合され、かつ前記軸力材の長手方向の一方の端部に接合される固定側口金と、
前記軸力材の長手方向の他方の端部に接合される摺動側口金と、
前記補剛管の長手方向の他方の端部である摺動側端部又は前記摺動側口金に着脱可能に接合されるソケット管と、を備え、
前記固定側口金及び前記摺動側口金は、
建築構造物に設置するための継手となる接合要素を備え、
前記ソケット管は、
前記摺動側端部の外周部及び前記摺動側口金の外周部を包囲するブレース材の組立方法であって、
前記固定側口金と前記軸力材とを接合する固定側口金接合工程と、
前記固定側口金と前記補剛管とを接合する補剛管固定工程と、
前記補剛管の前記摺動側端部の外周部に前記ソケット管を通すソケット管嵌合工程と、前記摺動側口金と前記軸力材とを接合する摺動側口金固定工程と、
前記ソケット管を前記補剛管又は前記摺動側口金に接合するソケット管接合工程と、を有し、
前記ソケット管接合工程は、
前記固定側口金接合工程、前記補剛管固定工程、前記ソケット管嵌合工程、及び前記摺動側口金固定工程の後に実施されるブレース材の組立方法。 A rod-shaped axial force material,
A stiffening tube through which the axial force member penetrates,
A fixed base that is bonded to one end in the longitudinal direction of the stiffening tube and is bonded to one end in the longitudinal direction of the axial force member;
A sliding side base joined to the other end in the longitudinal direction of the axial force member;
A socket tube detachably joined to the sliding side end which is the other end in the longitudinal direction of the stiffening tube or the sliding side base,
The fixed side base and the sliding side base are:
It has a joining element that becomes a joint for installation in a building structure,
The socket tube is
A method for assembling a brace material surrounding an outer peripheral portion of the sliding side end portion and an outer peripheral portion of the sliding side base,
A fixed side base joining step for joining the fixed side base and the axial force member;
A stiffening tube fixing step of joining the fixed side cap and the stiffening tube;
A socket tube fitting step of passing the socket tube through an outer peripheral portion of the sliding side end portion of the stiffening tube, a sliding side cap fixing step of joining the sliding side cap and the axial force member,
A socket pipe joining step of joining the socket pipe to the stiffening pipe or the sliding side cap,
The socket pipe joining step includes
A method for assembling a brace material, which is performed after the fixed side base joining step, the stiffening tube fixing step, the socket pipe fitting step, and the sliding side base fixing step. - 前記摺動側口金固定工程は、
前記固定側口金接合工程及び前記補剛管固定工程の後に実施され、かつ前記補剛管の前記摺動側端部の端面から当該端面と対向する前記摺動側口金の面までの隙間調整工程を含む請求項7に記載のブレース材の組立方法。 The sliding side cap fixing step includes
A gap adjustment step from the end surface of the sliding side end portion of the stiffening tube to the surface of the sliding side cap facing the end surface, which is performed after the fixing side base joining step and the stiffening tube fixing step. The method for assembling a brace material according to claim 7.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187014324A KR102165293B1 (en) | 2015-11-17 | 2016-11-16 | Brace member and method for assembling brace member |
SG11201803115TA SG11201803115TA (en) | 2015-11-17 | 2016-11-16 | Brace member and method of assembling the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224978A JP6150869B2 (en) | 2015-11-17 | 2015-11-17 | Brace material and method for assembling brace material |
JP2015-224978 | 2015-11-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017085930A1 true WO2017085930A1 (en) | 2017-05-26 |
Family
ID=58719207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004902 WO2017085930A1 (en) | 2015-11-17 | 2016-11-16 | Brace member and method for assembling brace member |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6150869B2 (en) |
KR (1) | KR102165293B1 (en) |
SG (1) | SG11201803115TA (en) |
TW (1) | TWI608150B (en) |
WO (1) | WO2017085930A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4816091B2 (en) * | 2006-01-13 | 2011-11-16 | Jfeスチール株式会社 | Double steel pipe brace material |
JP2013112949A (en) * | 2011-11-25 | 2013-06-10 | Jfe Steel Corp | Brace member |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3290566B2 (en) * | 1995-07-12 | 2002-06-10 | 株式会社シマノ | Bicycle pedals |
JP3246656B2 (en) * | 1997-12-26 | 2002-01-15 | 川鉄建材株式会社 | Double steel pipe type structural material |
JP3702363B2 (en) * | 2000-01-26 | 2005-10-05 | Jfeシビル株式会社 | Articulated earthquake-resistant structural material |
JP2006028737A (en) * | 2004-07-12 | 2006-02-02 | Yahagi Construction Co Ltd | Triple pipe vibration control brace having length adjusting mechanism |
JP2006299576A (en) * | 2005-04-19 | 2006-11-02 | Yahagi Construction Co Ltd | Triple pipe damping brace having slot |
US9593504B2 (en) * | 2012-09-06 | 2017-03-14 | Bluescope Buildings North America, Inc. | Buckling restrained brace assembly |
JP2015017371A (en) * | 2013-07-09 | 2015-01-29 | 株式会社竹中工務店 | Buckling stiffening brace |
-
2015
- 2015-11-17 JP JP2015224978A patent/JP6150869B2/en active Active
-
2016
- 2016-11-16 WO PCT/JP2016/004902 patent/WO2017085930A1/en active Application Filing
- 2016-11-16 KR KR1020187014324A patent/KR102165293B1/en active Active
- 2016-11-16 SG SG11201803115TA patent/SG11201803115TA/en unknown
- 2016-11-16 TW TW105137440A patent/TWI608150B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4816091B2 (en) * | 2006-01-13 | 2011-11-16 | Jfeスチール株式会社 | Double steel pipe brace material |
JP2013112949A (en) * | 2011-11-25 | 2013-06-10 | Jfe Steel Corp | Brace member |
Also Published As
Publication number | Publication date |
---|---|
JP2017089351A (en) | 2017-05-25 |
JP6150869B2 (en) | 2017-06-21 |
SG11201803115TA (en) | 2018-05-30 |
KR20180073630A (en) | 2018-07-02 |
TWI608150B (en) | 2017-12-11 |
KR102165293B1 (en) | 2020-10-13 |
TW201721001A (en) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5330487B2 (en) | Brace material | |
US9644384B2 (en) | Buckling restrained brace and related methods | |
JP6204263B2 (en) | Brace material | |
US20070200345A1 (en) | Sucker rod connection with improved fatigue resistance, formed by applying diametrical interference to reduce axial interference | |
US9758963B2 (en) | Bearing wall and wall surface member for bearing wall | |
US20080100060A1 (en) | Pipe joint | |
KR101892338B1 (en) | A pin joint type structural member made of double steel pipe for restaining buckling therrof | |
WO2017085930A1 (en) | Brace member and method for assembling brace member | |
JP6192555B2 (en) | Tie rod connector | |
JP2010242460A (en) | Buckling restraint brace | |
JP7002182B2 (en) | Connection structure | |
JP6587111B2 (en) | Braces and brace mounting structure | |
JP5335527B2 (en) | Buckling restraint brace | |
KR20210054391A (en) | Semi-threaded one-touch coupler for rebar connection | |
KR102105560B1 (en) | One touch rebar coupler | |
JP5034579B2 (en) | Double steel pipe brace material | |
JP6544546B1 (en) | Brace | |
CN103511433A (en) | Riveting bolt | |
TWI579449B (en) | Buckling restraining brace and structure having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16865934 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187014324 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16865934 Country of ref document: EP Kind code of ref document: A1 |