WO2017077612A1 - Dispositif de radar à laser - Google Patents
Dispositif de radar à laser Download PDFInfo
- Publication number
- WO2017077612A1 WO2017077612A1 PCT/JP2015/081112 JP2015081112W WO2017077612A1 WO 2017077612 A1 WO2017077612 A1 WO 2017077612A1 JP 2015081112 W JP2015081112 W JP 2015081112W WO 2017077612 A1 WO2017077612 A1 WO 2017077612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- frequency
- light
- modulator
- signal
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 352
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 230000005540 biological transmission Effects 0.000 claims description 176
- 238000000926 separation method Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 29
- 239000000443 aerosol Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 229910003327 LiNbO3 Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 101100056299 Mus musculus Arl10 gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
Definitions
- the laser radar device of the present invention includes a reference light source that outputs laser light, a wavelength separator that switches an optical path of the laser light output by the reference light source according to a frequency, and a laser beam that the wavelength separator switches the optical path in space.
- An optical antenna that radiates and receives scattered light from a radiation object as received light, a receiver that heterodyne detects the received light, a signal processing circuit that performs frequency analysis on the signal heterodyne detected by the receiver, and a reference light source and wavelength separation
- an optical phase modulator that shifts the frequency of the laser beam output from the reference light source.
- FIG. 4 is a relationship diagram between a complex plane notation of output light from the optical IQ modulator 3 according to Embodiment 1 of the present invention and a time waveform. It is a figure which shows the frequency spectrum of the input light of the optical IQ modulator 3 which concerns on Embodiment 1 of this invention, and output light. It is a figure which shows the measurement result of the switching time of the frequency shift in the optical IQ modulator 3 which concerns on Embodiment 1 of this invention.
- the optical IQ modulator 3 is an optical modulator that shifts the frequency of the transmission light output from the optical path branching coupler 2.
- the input terminal of the optical IQ modulator 3 is connected to the first distribution terminal of the optical path branching coupler 2, and the output terminal of the optical IQ modulator 3 is connected to the input terminal of the light intensity modulator 4.
- the first RF terminal (I terminal) of the optical IQ modulator 3 is connected to the output terminal of the signal distributor 14, and the second RF terminal (Q terminal) of the optical IQ modulator 3 is a 90 ° phase shifter. Connected to the output terminal.
- FIG. 2 is a configuration diagram showing a configuration example of the optical IQ modulator 3 according to the first embodiment of the present invention.
- the optical IQ modulator 3 is an optical modulator having a nested structure in which a Mach-Zehnder type optical modulator using an LN (LiNbO3) modulator is arranged in two stages.
- the optical IQ modulator 3 includes an input terminal 301, an output terminal 302, an I terminal 303, a Q terminal 304, a first bias terminal 305, a second bias terminal 306, a third bias terminal 307, and optical transmission lines 308 and 309. , 310, 317, 318 and 320, 180 ° phase shifters 311 and 312 and phase modulators 313, 314, 315, 316 and 319.
- 180 ° phase shifters 311 and 312 are phase shifters that change the phase of the RF signal input from the I terminal 303 or the Q terminal 304 by 180 °.
- the 180 ° phase shifter 311 is connected to the RF terminal of the phase modulator 314, and the 180 ° phase shifter 312 is connected to the RF terminal of the phase modulator 315.
- the wavelength separator 7 is a wavelength separator that separates the optical path of the transmission light output from the transmission / reception path separator 6 according to the wavelength.
- An input terminal of the wavelength separator 7 is connected to an output terminal of the light transmission / reception path separator 6, a first output terminal of the wavelength separator 7 is connected to the first optical antenna, and a second of the wavelength separator 7 is connected.
- the output terminal is connected to the second optical antenna.
- the wavelength separator 7 separates the optical path of the transmission light according to the wavelength, and outputs the separated transmission light to the first optical antenna or the second optical antenna for each wavelength.
- the wavelength separator 7 may be a diffraction grating, a separator using DWDM (Dense Wavelength Division Multiplexing), or the like.
- the second optical antenna 9 is an optical antenna that spatially illuminates the transmission light separated by the wavelength separator 7 and receives scattered light from the aerosol of the transmission light as reception light.
- the wavelength of the transmission light output from the second optical antenna 9 is different from the wavelength of the transmission light output from the first optical antenna 8, and the line-of-sight direction of the second optical antenna 9 is the line-of-sight direction of the first optical antenna 8. And different.
- the optical receiver 11 is a receiver that heterodyne-receives the combined light combined by the optical multiplexer 10.
- the input terminal of the optical receiver 11 is connected to the output terminal of the optical multiplexer 10, and the output terminal of the optical receiver 11 is connected to the input terminal of the signal processing circuit 12.
- the optical receiver 11 detects the combined light of the local light and the received light output from the optical multiplexer 10 by a heterodyne method, converts the detected optical signal into an electrical signal, and converts the converted electrical signal to the signal processing circuit 12. Output.
- the electrical signal subjected to heterodyne detection is an envelope of combined light of received light and local light, and the envelope is a signal (difference frequency signal) indicating a difference frequency component between the received light and local light.
- the optical receiver 11 is a balanced receiver in which a single photodiode and two photodiodes are arranged in parallel.
- the signal processing circuit 12 is a signal processing circuit that Fourier-transforms the difference frequency signal output from the optical receiver 11 to obtain the frequency of the difference frequency signal.
- the signal processing circuit 12 calculates wind direction and wind speed information included in the received light by obtaining the frequency of the difference frequency signal.
- the signal processing circuit 12 uses an FPGA (Field-Programmable Gate Array).
- the signal generator 16 is a signal generator that generates a bias control signal for the optical IQ modulator 3.
- the output terminal of the signal generator 16 is connected to the first bias terminal 305, the second bias terminal 306, and the third bias terminal 307 of the optical IQ modulator 3, and supplies a bias voltage.
- the signal generator 16 is a D / A converter (Digital-to-Analog-Converter) or the like.
- the pulse signal generator 17 is a pulse signal generator that generates a pulse signal that controls the pulsing of the transmission light in the light intensity modulator 4.
- the output terminal of the pulse signal generator 17 is connected to the control terminal of the light intensity modulator 4.
- the pulse signal generator 17 generates a pulse signal and outputs it to the light intensity modulator 4.
- the pulse signal generator 17 is a D / A converter (Analog to Digital Converter), a pulse generator, or the like.
- FIG. 5 is a diagram showing a measurement result of the frequency shift switching time in the optical IQ modulator 3 according to the first embodiment of the present invention.
- the vertical axis is frequency and the horizontal axis is time.
- FIG. 5 plots the frequency change with f0 being 0 on the vertical axis.
- f 1 20 GHz.
- the frequency is switched from +20 [GHz] to ⁇ 20 [GHz] at a speed of 10 [ms] or less.
- the optical IQ modulator 3 switches the optical frequency to f 0 + f 1 or f 0 ⁇ f 1 by switching the input bias control signal as described in the first embodiment.
- the beam emission direction can be switched at high speed by switching the optical frequency.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Dans l'art antérieur, le dispositif de radar à laser présentait le problème de ne pas pouvoir commuter rapidement une direction de ligne de visée. Un dispositif de radar à laser selon la présente invention est pourvu d'une source de lumière de référence pour délivrer en sortie une lumière laser, un séparateur de longueur d'onde pour commuter le trajet optique de la sortie de lumière laser par la source de lumière de référence en fonction de la fréquence de celle-ci, une antenne optique pour irradier la lumière laser dont le trajet optique a été commuté par le séparateur de longueur d'onde dans l'espace et pour recevoir la lumière diffusée depuis un objet irradié en tant que lumière de réception, un récepteur pour la détection hétérodyne de la lumière de réception, un circuit de traitement de signal pour l'analyse de fréquence du signal détecté par détection hétérodyne par le récepteur, et un modulateur de phase optique qui est disposé entre la source de lumière de référence et le séparateur de longueur d'onde et décale la fréquence de la sortie de lumière laser par la source de lumière de référence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/081112 WO2017077612A1 (fr) | 2015-11-05 | 2015-11-05 | Dispositif de radar à laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/081112 WO2017077612A1 (fr) | 2015-11-05 | 2015-11-05 | Dispositif de radar à laser |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017077612A1 true WO2017077612A1 (fr) | 2017-05-11 |
Family
ID=58661726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081112 WO2017077612A1 (fr) | 2015-11-05 | 2015-11-05 | Dispositif de radar à laser |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017077612A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107505606A (zh) * | 2017-08-11 | 2017-12-22 | 苏州光联光电科技有限责任公司 | 一种基于光纤环行器的激光雷达光路系统 |
JP6338033B1 (ja) * | 2017-09-19 | 2018-06-06 | 三菱電機株式会社 | 局部発振器 |
JPWO2021176652A1 (fr) * | 2020-03-05 | 2021-09-10 | ||
US20210409122A1 (en) * | 2021-06-01 | 2021-12-30 | Intel Corporation | Method and apparatus for linear frequency modulation of large dynamic range with single side band iq modulator for coherent lidars |
CN114651174A (zh) * | 2019-09-13 | 2022-06-21 | 马来西亚国家石油公司 | 光纤分布测量系统及用于光纤分布测量的信号处理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001235431A (ja) * | 2000-02-25 | 2001-08-31 | Topcon Corp | 表面検査装置 |
JP2006340188A (ja) * | 2005-06-03 | 2006-12-14 | National Institute Of Information & Communication Technology | 位相連続光周波数偏移変調器、位相連続光周波数偏移変調方法 |
JP2009222616A (ja) * | 2008-03-18 | 2009-10-01 | Toyota Central R&D Labs Inc | 方位測定方法及び方位測定装置 |
JP2012119759A (ja) * | 2010-11-29 | 2012-06-21 | Hitachi Ltd | 偏波多重光伝送システム、偏波多重光送信器及び偏波多重光受信器 |
WO2015087842A1 (fr) * | 2013-12-09 | 2015-06-18 | 三菱電機株式会社 | Dispositif radar laser |
-
2015
- 2015-11-05 WO PCT/JP2015/081112 patent/WO2017077612A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001235431A (ja) * | 2000-02-25 | 2001-08-31 | Topcon Corp | 表面検査装置 |
JP2006340188A (ja) * | 2005-06-03 | 2006-12-14 | National Institute Of Information & Communication Technology | 位相連続光周波数偏移変調器、位相連続光周波数偏移変調方法 |
JP2009222616A (ja) * | 2008-03-18 | 2009-10-01 | Toyota Central R&D Labs Inc | 方位測定方法及び方位測定装置 |
JP2012119759A (ja) * | 2010-11-29 | 2012-06-21 | Hitachi Ltd | 偏波多重光伝送システム、偏波多重光送信器及び偏波多重光受信器 |
WO2015087842A1 (fr) * | 2013-12-09 | 2015-06-18 | 三菱電機株式会社 | Dispositif radar laser |
Non-Patent Citations (1)
Title |
---|
TETSUYA KAWANISHI ET AL.: "Optical frequency shifter with SSB modulator", IEICE TECHNICAL REPORT, vol. 102, no. 267, 15 August 2002 (2002-08-15), pages 69 - 74 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107505606A (zh) * | 2017-08-11 | 2017-12-22 | 苏州光联光电科技有限责任公司 | 一种基于光纤环行器的激光雷达光路系统 |
JP6338033B1 (ja) * | 2017-09-19 | 2018-06-06 | 三菱電機株式会社 | 局部発振器 |
WO2019058419A1 (fr) * | 2017-09-19 | 2019-03-28 | 三菱電機株式会社 | Oscillateur local |
US10944360B2 (en) | 2017-09-19 | 2021-03-09 | Mitsubishi Electric Corporation | Local oscillator |
CN114651174A (zh) * | 2019-09-13 | 2022-06-21 | 马来西亚国家石油公司 | 光纤分布测量系统及用于光纤分布测量的信号处理方法 |
JPWO2021176652A1 (fr) * | 2020-03-05 | 2021-09-10 | ||
WO2021176652A1 (fr) * | 2020-03-05 | 2021-09-10 | 日本電気株式会社 | Dispositif de mesure optique et procédé de mesure optique |
US20210409122A1 (en) * | 2021-06-01 | 2021-12-30 | Intel Corporation | Method and apparatus for linear frequency modulation of large dynamic range with single side band iq modulator for coherent lidars |
US12301293B2 (en) * | 2021-06-01 | 2025-05-13 | Intel Corporation | Method and apparatus for linear frequency modulation of large dynamic range with single side band IQ modulator for coherent LIDARs |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6005302B2 (ja) | レーザレーダ装置 | |
EP3064956B1 (fr) | Émetteur de radar à éléments en réseau phasé commandé totalement optiquement | |
Yao | Photonics to the rescue: A fresh look at microwave photonic filters | |
JP6223644B1 (ja) | レーザレーダ装置 | |
CN105162523B (zh) | 光学产生微波相位编码信号的装置 | |
WO2017077612A1 (fr) | Dispositif de radar à laser | |
EP3039745B1 (fr) | Générateur de signal pour une antenne à balayage électronique | |
US9917651B2 (en) | Feed signal generation for a phased array antenna | |
JPH01291141A (ja) | 光ファイバ分散特性測定方式 | |
Wang et al. | Polarization division multiplexed photonic radio-frequency channelizer using an optical comb | |
WO2018083749A1 (fr) | Dispositif radar laser | |
Zhang et al. | Photonic generation of multi-frequency dual-chirp microwave waveform with multiplying bandwidth | |
Zuo et al. | Photonic-assisted filter-free microwave Doppler frequency shift measurement using a fixed low-frequency reference signal | |
US10425155B2 (en) | Device and method for free space coherent optical communication by means of automatic compensation for phase noise in atmosphere using femtosecond laser optical comb | |
JP4494347B2 (ja) | 光変調装置 | |
JP6719414B2 (ja) | 位相共役光発生装置及び光通信システム、並びに位相共役光発生方法 | |
JP7325669B2 (ja) | レーザレーダ装置 | |
Cao et al. | Multiband chirp microwave signals generator with multiple chirp rates based on photonic approach | |
JP5334619B2 (ja) | 光路長制御装置 | |
AU2018350865B2 (en) | Apparatus and method for reducing distortion of an optical signal | |
CN106452592A (zh) | 可调谐单通带微波光子希尔伯特变换滤波系统 | |
Zhou et al. | A tunable multi-frequency optoelectronic oscillator based on stimulated Brillouin scattering | |
Li et al. | Photonic generation of dual-band microwave waveforms with simultaneous and diverse modulation formats | |
Tang et al. | Photonics-assisted joint radar detection and frequency measurement system | |
Li et al. | Dual-chirp waveform generation and its TBWP improvement based on polarization modulation and phase coding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15907798 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15907798 Country of ref document: EP Kind code of ref document: A1 |