WO2017067333A1 - 图形化衬底、制备方法及发光二极管 - Google Patents
图形化衬底、制备方法及发光二极管 Download PDFInfo
- Publication number
- WO2017067333A1 WO2017067333A1 PCT/CN2016/097799 CN2016097799W WO2017067333A1 WO 2017067333 A1 WO2017067333 A1 WO 2017067333A1 CN 2016097799 W CN2016097799 W CN 2016097799W WO 2017067333 A1 WO2017067333 A1 WO 2017067333A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- dielectric layer
- aluminum nitride
- patterned substrate
- gap
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 88
- 238000002360 preparation method Methods 0.000 title abstract description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 77
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 37
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000007547 defect Effects 0.000 claims abstract description 11
- 238000000151 deposition Methods 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims description 21
- 229920002120 photoresistant polymer Polymers 0.000 claims description 16
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 abstract description 14
- 238000005240 physical vapour deposition Methods 0.000 abstract description 5
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 abstract description 4
- 239000013081 microcrystal Substances 0.000 abstract 1
- 239000002245 particle Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 174
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
Definitions
- the present invention belongs to the technical field of semiconductor manufacturing, and in particular, to a patterned substrate for reducing crystal defects, a preparation method, and a light emitting diode.
- mainstream LEDs use a patterned substrate for epitaxial growth.
- the surface pattern provides a choice of various growth crystal phases for the growth of the late gallium nitride epitaxial layer, so that the gallium nitride epitaxial layer is conventional.
- the two-dimensional growth becomes three-dimensional growth, thereby effectively reducing the dislocation density in the gallium nitride-based LED material, avoiding the generation of cracks, thereby improving the internal quantum luminous efficiency of the LED; on the other hand, the light is increased due to the array pattern structure.
- the scattering changes the optical line of the LED to form a diffuse reflection, which in turn improves the light extraction efficiency.
- a gap surface the same side covering the convex side surface and the top surface platform, and then placing the substrate in the chemical vapor deposition chamber to grow a gallium nitride based buffer layer, an N type semiconductor layer, a light emitting layer, and
- the P-type semiconductor layer forms a semiconductor element ⁇ , and the surface of the bump and the surface of the gap exhibit a serious epitaxial layer to compete for growth, thereby causing unevenness of the surface of the buffer layer, and the dislocation defect increases the force port; and the dislocation line along the crystal growth direction Extending to the illuminating area affects the performance of the device.
- the present invention provides a patterned substrate, a preparation method, and a light emitting diode, by depositing a dielectric layer on a surface of a substrate having a plurality of uniformly distributed bumps, utilizing the amorphous characteristics of the dielectric layer,
- the aluminum nitride layer deposited by the PVD method on the convex surface is amorphous, and the aluminum nitride layer covering the adjacent convex gap surface is a polycrystalline state composed of minute crystal grains.
- the substrate is applied to the epitaxial layer deposited by MOCVD to form an LED, and the gallium nitride-based epitaxial layer is more easily grown by the polycrystalline aluminum nitride layer on the surface of the bump gap, and the amorphous aluminum nitride layer is not easy to grow.
- the characteristic is that the epitaxial layer is selectively grown on the surface of the aluminum nitride layer on the surface of the convex gap, and the convex surface is difficult to grow, the growth probability of the gallium nitride-based epitaxial layer on the side of the substrate pattern is reduced, and the lateral growth of the gallium nitride base is reduced.
- the epitaxial layer and the planar surface are positively grown with a gallium nitride-based epitaxial layer combined with a lattice defect density, which improves the performance of the finally formed semiconductor device; meanwhile, since the growth of the lateral gallium nitride-based epitaxial layer is suppressed, The grown gallium nitride-based epitaxial layers are more easily combined into a flat surface to enhance the crystal quality of the epitaxial layer.
- the technical solution provided by the present invention is: a patterned substrate having opposite first and second surfaces, wherein the first surface is uniformly distributed with a plurality of protrusions, and each of the protrusions has a gap therebetween.
- a surface of the protruding gap is not covered by the dielectric layer;
- a surface of the dielectric layer and a surface of the protruding gap are deposited with an aluminum nitride layer, the surface of the dielectric layer
- the aluminum nitride layer inhibits lateral epitaxial growth of the patterned substrate surface.
- the aluminum nitride layer of the convex gap surface is more likely to grow a gallium nitride based material than the aluminum nitride layer on the surface of the dielectric layer.
- the aluminum nitride layer on the convex surface is an amorphous layer
- the aluminum nitride layer on the surface of the convex gap is a polycrystalline layer composed of minute crystal grains.
- the adjacent protrusions have a pitch of 50 nm to 5000 nm.
- the dielectric layer has a thickness of 1 nm to 200 nm.
- the aluminum nitride layer has a thickness of 1 nm to 200 nm.
- the present invention provides a method for preparing a patterned substrate, comprising the steps of: Sl, providing a substrate having a flat surface, and preparing a plurality of uniformly distributed protrusions on the flat surface, each convex Having a gap therebetween; S2, forming a dielectric layer on the surface of the substrate subjected to the above treatment, covering only the surface of the protrusion, not covering the surface of the convex gap; S3, the dielectric layer Surface and Depositing an aluminum nitride layer on the surface of the raised gap to form a patterned substrate, the aluminum nitride layer on the surface of the dielectric layer suppresses lateral epitaxial growth of the patterned substrate surface, and reduces the positive growth of the epitaxial layer Crystal defects.
- the step S2 is formed by the following method: forming a dielectric layer covering the surface of the protrusion and the surface of the convex gap on the surface of the substrate processed through the step S1; Coating a photoresist, removing the photoresist and the dielectric layer of the convex gap surface by an etching technique, retaining the photoresist and the dielectric layer of the convex surface; removing the photoresist of the convex surface to form a convex surface A substrate having a dielectric layer and a raised gap surface without a dielectric layer.
- the dielectric layer has a thickness of 1 nm to 200 nm.
- the aluminum nitride layer has a thickness of 1 nm to 200 nm.
- the present invention provides a light emitting diode comprising a patterned substrate and a light emitting epitaxial stack formed on the patterned substrate, the patterned substrate having opposing first and second surfaces, Wherein the first surface is uniformly distributed with a plurality of protrusions, and each of the protrusions has a gap therebetween, and the surface of the protrusion is deposited with a dielectric layer, the surface of the protrusion gap is free of the dielectric layer; An aluminum nitride layer is deposited on the surface and the surface of the raised gap, and the aluminum nitride layer on the surface of the dielectric layer inhibits lateral epitaxial growth of the surface of the patterned substrate.
- the aluminum nitride layer on the convex surface is an amorphous layer
- the aluminum nitride layer on the surface of the convex gap is a polycrystalline layer composed of minute crystal grains.
- the luminescent epitaxial stack selectively grows an aluminum nitride layer on the surface of the bump gap.
- the present invention deposits a dielectric layer on the convex surface of the patterned substrate without depositing a dielectric layer on the surface of the convex gap, and the aluminum nitride deposited on the convex surface by the PVD method due to the amorphous nature of the dielectric layer
- the layer is amorphous, and the aluminum nitride layer covering the surface of the non-dielectric layer of the raised gap is a polycrystalline state composed of minute crystal grains.
- the substrate is applied to the epitaxial layer deposited by MOCVD, and the gallium nitride-based epitaxial layer is more easily grown by the polycrystalline aluminum nitride layer on the surface of the convex gap, and the amorphous aluminum nitride layer on the convex surface is not easy to grow.
- the characteristics are such that the epitaxial layer is selectively grown on the surface of the aluminum nitride layer on the surface of the bump gap, and the raised surface is less likely to grow the epitaxial layer, reducing the growth probability of the side gallium nitride-based epitaxial layer, and reducing the lateral growth of the gallium nitride based layer.
- Epitaxial layer The gallium nitride-based epitaxial layer whose surface is grown forward is combined with the lattice defect density of germanium to enhance the performance of the finally formed semiconductor device; meanwhile, the growth of the lateral gallium nitride-based epitaxial layer is suppressed, and the growth is positive.
- the gallium nitride based epitaxial layer is more easily combined into a flat surface to enhance the crystal quality of the epitaxial layer.
- FIG. 1 is a schematic structural view of a patterned substrate according to Embodiment 1 of the present invention.
- FIG. 2a is a schematic view of a substrate having a flat surface according to Embodiment 1 of the present invention.
- FIG. 2b is a schematic view of a patterned substrate having a plurality of bumps according to Embodiment 1 of the present invention.
- FIG 3 is a schematic structural view of a substrate after depositing a dielectric layer according to Embodiment 1 of the present invention.
- FIG. 4a is a schematic structural view of a substrate after coating a photoresist according to Embodiment 1 of the present invention.
- FIG. 4b is a schematic structural view of a substrate after removing a bump gap dielectric layer according to Embodiment 1 of the present invention.
- FIG. 5 is a schematic structural view of a substrate after removing a mask layer according to Embodiment 1 of the present invention.
- FIG. 6 is a schematic structural view of a substrate after depositing an aluminum nitride layer according to Embodiment 1 of the present invention.
- FIG. 7 is a schematic diagram of an external structure according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a patterned substrate according to Embodiment 2 of the present invention.
- FIG. 9 is a schematic structural view of a substrate after depositing an aluminum nitride layer according to Embodiment 2 of the present invention.
- a patterned substrate 10 is provided.
- the patterned substrate 10 has opposing first and second surfaces, wherein the first surface is uniformly distributed with a plurality of protrusions on the surface thereof. 11.
- the phase of the protrusions 11 is 50 n m to 5000 nm, and the top end of the protrusions 11 has no platform structure, which is preferably a triangular pyramid structure.
- the side surface 112 of the bump 11 is deposited with a dielectric layer 22 having a thickness of 1 nm to 200 nm, and the bump gap surface 111 has no dielectric layer, and the dielectric layer 22 is any one of a silicon dioxide layer or a silicon nitride layer.
- the surface of the substrate having the dielectric layer 22 is deposited with an aluminum nitride layer 40 having a thickness of 1 nm to 200 nm.
- the aluminum nitride layer 40 covers the surface of the dielectric layer 22 of the protrusion 11 and the adjacent convex gap surface 111 to form a convex portion, respectively.
- the surface 111 has no dielectric layer and is a crystalline surface, and the deposited convex gap surface of the aluminum nitride layer 41 is a polycrystalline state composed of minute crystal grains; an amorphous convex side surface of the surface of the dielectric layer 22
- the aluminum nitride layer 42 and the polycrystalline aluminum nitride layer 41 are more likely to grow the subsequent gallium nitride-based epitaxial layer; thereby causing the amorphous state on the surface of the dielectric layer 22 to suppress lateral epitaxial growth of the surface of the patterned substrate 10, thereby reducing
- the epitaxial layer grows forward and combines the crystal defect density of the germanium to improve the crystal quality of the epitaxial layer.
- the present invention provides a method for preparing a patterned substrate, the steps of which are as follows:
- Sl providing a substrate 10' having a flat surface (as shown in FIG. 2a), and preparing a plurality of uniformly distributed protrusions 11 on the surface of the flat substrate 10' (as shown in FIG. 2b);
- the substrate 10' is selected from any one of a sapphire substrate, a silicon substrate, and a silicon carbide substrate;
- a dielectric layer 20 is deposited on the convex side surface 111, and the dielectric layer 20 covers the gap surface 111 between the convex side surface 112 and the adjacent protrusion 11 to form a convex surface.
- the photoresist 31 and the dielectric layer 21 of the raised gap surface 111 are removed by photolithography and etching techniques, and the photoresist 32 and the dielectric layer 22 of the raised side 112 are retained (as shown in FIG. 4b).
- Cleaning) removing the photoresist 32 of the convex side 111, and finally forming a substrate having a convex surface having a dielectric layer 22 and a convex gap surface 111 having no dielectric layer (as shown in FIG. 5);
- a gallium nitride based light emitting epitaxial stack is grown on the patterned substrate 10 to form a light emitting diode structure.
- the patterned substrate 10 is provided with an opposite first surface and a second surface, wherein the first surface is uniformly distributed with a plurality of protrusions 11 , and the surface of the protrusion 11 is deposited with a dielectric layer 22 , the dielectric layer
- the surface and raised gap surface 111 is deposited with an aluminum nitride layer 40.
- the gallium nitride-based epitaxial layer is more easily grown by the polycrystalline aluminum nitride layer 41 on the surface of the non-dielectric layer at the adjacent convex gap surface 111, and the convex side 112 is not
- the crystalline aluminum nitride layer 42 is not easy to grow, so that the gallium nitride based epitaxial layer is selectively grown on the surface of the polycrystalline aluminum nitride layer 41; and the convex side surface 112 is not easy to grow, and the side gallium nitride based epitaxy is reduced.
- the growth probability of the layer is reduced, and the lattice defect density of the gallium nitride-based epitaxial layer in which the lateral growth of the gallium nitride-based epitaxial layer and the convex gap surface 111 are grown is reduced, and the performance of the finally formed semiconductor element is improved; Since the growth of the lateral gallium nitride-based epitaxial layer is suppressed, the forward-grown gallium nitride-based epitaxial layers are more easily merged into a flat surface, and then the first semiconductor layer 60, the light-emitting layer 70, and the second surface are continuously deposited on the flat surface.
- the second semiconductor layer 80 obtains a semiconductor element excellent in crystal quality.
- the protrusion of the patterned substrate 10 in this embodiment further has a top platform 113 structure, and the protrusion 11 is a truncated cone structure.
- the dielectric layer 20 is deposited not only on the convex side surface 112 but also on the convex top surface platform 113, and the aluminum nitride layer 40 in the subsequent process is also deposited on the convex layer in turn.
- the crystalline state and the crystalline state of the aluminum nitride layer 41 of the convex gap surface 112 suppress the phenomenon of the surface layer and the gap surface of the epitaxial layer, thereby improving the crystal quality of the semiconductor element.
Abstract
一种图形化衬底(10)、制备方法及发光二极管,通过在具有复数个凸起(11)的衬底表面沉积介质层(22),利用介质层(22)的非晶体特性,使得PVD法沉积于凸起侧面(112)和顶面平台(113)的氮化铝层(42)为非晶态,而覆盖于凸起间隙的平整表面(111)的氮化铝(41)是由微小晶粒组成的多晶。随后该衬底(10)应用于MOCVD法沉积氮化镓基外延层(50,60,70,80)形成发光二极管时,利用在平整面(111)上的氮化铝(41)多晶态更易生长,而非晶态氮化铝(42)不易沉积氮化镓基外延层的特性,外延层选择性生长于凸起间隙的平整表面(111)氮化铝层(41)上,而凸起侧面(112)和顶面平台(113)不易生长,减小侧面氮化镓基外延层生长,降低侧向生长的氮化镓基外延层与平整表面(111)上正向生长的氮化镓基外延层合并时缺陷数量,提升最终形成的半导体元件的性能。同时,由于抑制了侧向氮化镓基外延层生长,正向生长的氮化镓基外延层更容易合并成一个平整表面。
Description
说明书 发明名称:图形化衬底、 制备方法及发光二极管 技术领域
[0001] 本发明属于半导体制造技术领域, 特别涉及一种降低晶体缺陷的图形化衬底、 制备方法及发光二极管。
背景技术
[0002] 现在主流 LED都是利用图形化衬底来进行外延生长, 一方面其表面的图形为 后期氮化镓外延层的生长提供多种生长晶相的选择, 使氮化镓外延层由传统的 二维生长变为三维生长, 从而有效地降低氮化镓基 LED材料中的位错密度, 避免 裂纹的产生, 进而提高 LED的内量子发光效率; 另一方面, 由于阵列图形结构增 加了光的散射, 改变了 LED的光学线路, 形成漫反射, 进而提升光提取效率。 但因目前广泛使用的蓝宝石衬底和氮化镓基材料层存在较大晶格失配, 形核及 生长困难, 而为了克服形核难的问题, 有人提出将衬底置于 1000°C左右热处理后 , 再生长一层质量较差的低温缓冲层, 然后转入高温条件生长高质量的氮化镓 基外延层。 由于此过程中存在高低温转换, 降低了 MOCVD机台的使用效率; 同 吋不同层间温差大导致不同层间的应力增加, 从而影响晶体性能。
[0003] 因此又有人提出在图形化衬底表面沉积一层氮化铝层, 减小衬底与氮化镓基外 延层层之间的晶格差异, 而目前常用工艺是将图形化衬底置于 PVD腔室, 沉积 氮化铝层于衬底表面, 而由于常使用的蓝宝石衬底与氮化铝层晶格失配较小, 故氮化铝层不仅覆盖于图形化衬底的凸起间隙表面, 同吋也覆盖于所述凸起的 侧面和顶面平台, 当再将此衬底置于化学气相沉积腔室中生长氮化镓基缓冲层 、 N型半导体层、 发光层和 P型半导体层形成半导体元件吋, 所述凸起侧面和间 隙表面出现严重的外延层竞相生长, 从而造成缓冲层表面不平整, 位错缺陷增 力口; 而位错线会沿着晶体生长方向延伸到发光区, 影响器件的性能。 技术问题
[0004] 在此处键入技术问题描述段落。
技术问题
问题的解决方案
技术解决方案
[0005] 针对上述问题, 本发明提出了一种图形化衬底、 制备方法及发光二极管, 通过 在具有复数个均匀分布的凸起的衬底表面沉积介质层, 利用介质层的非晶体特 性, 使得 PVD法沉积于凸起表面的氮化铝层为非晶态, 而覆盖于相邻凸起间隙 表面的氮化铝层为由微小晶粒组成的多晶态。 随后该衬底应用于 MOCVD法沉积 外延层形成发光二极管吋, 利用在凸起间隙表面的多晶态氮化铝层更易生长氮 化镓基外延层, 而非晶态氮化铝层不易生长的特性, 使外延层选择性生长于凸 起间隙表面的氮化铝层表面, 而凸起表面难于生长, 减小衬底图形侧面氮化镓 基外延层生长几率, 降低侧向生长氮化镓基外延层与平整表面正向生长氮化镓 基外延层合并吋的晶格缺陷密度, 提升最终形成的半导体元件的性能; 同吋, 由于抑制了侧向氮化镓基外延层的生长, 使正向生长的氮化镓基外延层更易合 并成一个平整表面, 提升外延层的晶体质量。
[0006] 本发明提供的技术方案为: 图形化衬底, 具有相对的第一表面和第二表面, 其 中第一表面均匀分布有复数个凸起, 所述各个凸起之间具有间隙, 其中, 所述 凸起表面沉积有介质层, 所述凸起间隙的表面无所述介质层; 所述介质层的表 面及所述凸起间隙的表面沉积有氮化铝层, 所述介质层表面的氮化铝层抑制图 形化衬底表面的侧向外延生长。
[0007] 优选的, 所述凸起间隙表面的氮化铝层比所述介质层表面的氮化铝层更易于生 长氮化镓基材料。
[0008] 优选的, 所述凸起表面上的氮化铝层为非晶态层, 所述凸起间隙表面上的氮化 铝层为由微小晶粒组成的多晶态层。
[0009] 优选的, 所述相邻凸起间距为 50nm~5000nm。
[0010] 优选的, 所述介质层厚度为 lnm~200 nm。
[0011] 优选的, 所述氮化铝层厚度为 lnm~200 nm。
[0012] 同吋, 本发明提出一种图形化衬底的制备方法, 包括如下步骤: Sl、 提供一具 有平坦表面的衬底, 于所述平坦表面制备复数个均匀分布的凸起, 各个凸起之 间具有间隙; S2、 在经过上述处理的衬底表面上形成介质层, 其仅覆盖在所述 凸起的表面上, 未覆盖所述凸起间隙的表面; S3、 于所述介质层的表面上和所
述凸起间隙的表面上沉积氮化铝层, 构成图形化衬底, 所述介质层表面的氮化 铝层抑制图形化衬底表面的侧向外延生长, 降低外延层正向生长合并吋的晶体 缺陷。
[0013] 而所述步骤 S2通过下面方法形成: 在经过步骤 S1处理的衬底表面上形成介质层 , 其覆盖所述凸起的表面及所述凸起间隙的表面; 在所述介质层表面涂布光阻 , 利用刻蚀技术去除所述凸起间隙表面的光阻和介质层, 保留所述凸起表面的 光阻和介质层; 去除所述凸起表面的光阻, 形成凸起表面具有介质层、 而凸起 间隙表面无介质层的衬底。
[0014] 优选的, 所述介质层厚度为 lnm~200nm。
[0015] 优选的, 所述氮化铝层厚度为 lnm~200nm。
[0016] 此外, 本发明提供的发光二极管, 包括图形化衬底和形成于所述图形化衬底上 的发光外延叠层, 所述图形化衬底具有相对的第一表面和第二表面, 其中第一 表面均匀分布有复数个凸起, 所述各个凸起之间具有间隙, 所述凸起表面沉积 有介质层, 所述凸起间隙的表面无所述介质层; 所述介质层的表面及所述凸起 间隙表面沉积有氮化铝层, 所述介质层表面的氮化铝层抑制图形化衬底表面的 侧向外延生长。
[0017] 优选的, 所述凸起表面上的氮化铝层为非晶态层, 所述凸起间隙表面上的氮化 铝层为由微小晶粒组成的多晶态层。
[0018] 优选的, 所述发光外延叠层选择性生长于所述凸起间隙表面上的氮化铝层。
发明的有益效果
有益效果
[0019] 本发明通过在图形化衬底的凸起表面沉积介质层、 而凸起间隙表面不沉积介质 层, 由于介质层的非晶态特性, 使得 PVD法沉积于凸起表面的氮化铝层为非晶 态, 而覆盖于凸起间隙非介质层表面的氮化铝层为由微小晶粒组成的多晶态。 随后该衬底应用于 MOCVD法沉积外延层吋, 利用在凸起间隙表面的多晶态氮化 铝层更易生长氮化镓基外延层, 而凸起表面的非晶态氮化铝层不易生长的特性 , 使外延层选择性生长于凸起间隙表面的氮化铝层表面, 而凸起表面不易生长 外延层, 减小侧面氮化镓基外延层生长几率, 降低侧向生长氮化镓基外延层与
平整表面正向生长的氮化镓基外延层合并吋的晶格缺陷密度, 提升最终形成的 半导体元件的性能; 同吋, 由于抑制了侧向氮化镓基外延层生长, 使正向生长 的氮化镓基外延层更容易合并成一个平整表面, 提升外延层的晶体质量。
对附图的简要说明
附图说明
[0020] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的 实施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描 述概要, 不是按比例绘制。
[0021] 图 1为本发明实施例一之图形化衬底结构示意图。
[0022] 图 2a为本发明实施例一之具有平坦表面的衬底示意图。
[0023] 图 2b为本发明实施例一之具有复数个凸起的图形化衬底示意图。
[0024] 图 3为本发明实施例一之沉积介质层后衬底结构示意图。
[0025] 图 4a为本发明实施例一之涂布光阻后衬底结构示意图。
[0026] 图 4b为本发明实施例一之去除凸起间隙面介质层后衬底结构示意图。
[0027] 图 5为本发明实施例一之去除掩膜层后衬底结构示意图。
[0028] 图 6为为本发明实施例一之沉积氮化铝层后衬底结构示意图。
[0029] 图 7为本发明实施例一之外延结构示意图。
[0030] 图 8为本发明实施例二之图形化衬底示意图。
[0031] 图 9为本发明实施例二之沉积氮化铝层后衬底结构示意图。
[0032] 图中: 10'.平坦衬底; 10.图形化衬底; 11.凸起; 111.凸起间隙表面; 112.凸 起侧面; 113.凸起顶面平台; 20.介质层; 21.凸起间隙表面介质层; 22.凸起侧 面介质层; 23.凸起顶面平台介质层; 30.光阻; 31.凸起间隙表面光阻; 32.凸 起侧面光阻; 40.氮化铝层; 41.凸起间隙表面氮化铝层; 42.凸起侧面氮化铝层 ; 43.凸起顶面平台氮化铝层; 50.缓冲层; 60. N型半导体层; 70.发光层; 80. P型半导体层。
本发明的实施方式
[0033] 下面结合附图和实施例对本发明的具体实施方式进行详细说明。
[0034] 实施例 1
[0035] 参看附图 1, 本发明提供的图形化衬底 10, 所述图形化衬底 10具有相对的第一 表面和第二表面, 其中第一表面均匀其表面均匀分布有复数个凸起 11, 所述相 令凸起 11间距为 50nm~5000nm, 凸起 11顶端无平台结构, 其优选三角锥体结构 。 凸起 11的侧面 112沉积有厚度为 lnm~200nm的介质层 22, 而凸起间隙表面 111 无介质层, 介质层 22为二氧化硅层或氮化硅层中的任意一种。 具有介质层 22的 衬底表面沉积有厚度为 lnm~200nm的氮化铝层 40, 氮化铝层 40覆盖于凸起 11的 介质层 22表面和相邻凸起间隙表面 111处, 分别形成凸起间隙表面氮化铝层 41和 凸起侧面氮化铝层 42; 由于所述介质层 22为非晶态, 沉积其表面的氮化铝层 42 亦为非晶态; 而相邻凸起间隙表面 111处无介质层, 为晶态表面, 其沉积的凸起 间隙表面氮化铝层 41为由微小晶粒组成的多晶态; 相较于介质层 22表面的非晶 态的凸起侧面氮化铝层 42, 多晶态氮化铝层 41更易生长后续氮化镓基外延层; 从而使得介质层 22表面的非晶态抑制了图形化衬底 10表面的侧向外延生长, 降 低了外延层正向生长合并吋的晶体缺陷密度, 提高外延层晶体质量。
[0036] 为实现上述图形化衬底的作用, 本发明提出一种图形化衬底的制备方法, 其步 骤如下:
[0037] Sl、 提供一具有平坦表面的衬底 10' (如图 2a所示) , 于所述平坦衬底 10'表面 制备复数个均匀分布的凸起 11 (如图 2b所示) ; 所述衬底 10'选自蓝宝石衬底、 硅衬底、 碳化硅衬底中的任意一种;
[0038] S2、 如图 3所示, 于所述凸起侧面 111沉积介质层 20, 所述介质层 20覆盖于凸起 侧面 112及相邻凸起 11之间的间隙表面 111, 形成位于凸起间隙表面 112的介质层 21, 以及位于凸起侧面 112表面的介质层 22; 所述介质层 20厚度为 lnm~200nm; 随后, 在所述介质层 20表面涂覆光阻 30 (如图 4a所示) , 利用光刻和刻蚀技术去 除所述凸起间隙面 111的光阻 31和介质层 21, 保留所述凸起侧面 112的光阻 32和 介质层 22 (如图 4b所示) ; 清洗去除所述凸起侧面 111的光阻 32, 最终形成凸起 表面具有介质层 22、 而凸起间隙表面 111无介质层的衬底 (如图 5所示) ;
[0039] S3、 如图 6所示, 利用物理气相沉积法于所述具有介质层 22的衬底表面沉积氮 化铝层 40, 形成表面由凸起 11、 介质层 22和氮化铝层 40的图形化衬底 10; 而所
述介质层 22表面的氮化铝层 42抑制图形化衬底 10表面的侧向外延生长, 降低外 延层正向生长合并吋的晶体缺陷。
[0040] 参看附图 7, 于上述图形化衬底 10上生长氮化镓基发光外延叠层形成发光二极 管结构。 具体为: 提供图形化衬底 10, 具有相对的第一表面和第二表面, 其中 第一表面均匀分布有复数个凸起 11, 所述凸起 11表面沉积有介质层 22, 所述介 质层 22表面和凸起间隙表面 111沉积有氮化铝层 40。 当将此衬底 10应用于外延生 长吋, 利用相邻凸起间隙表面 111处非介质层表面的多晶态氮化铝层 41更易生长 氮化镓基外延层, 而凸起侧面 112的非晶态氮化铝层 42不易生长的特性, 使氮化 镓基外延层选择性生长于多晶态氮化铝层 41表面; 而凸起侧面 112不易生长, 减 小了侧面氮化镓基外延层生长几率, 降低侧向生长氮化镓基外延层与凸起间隙 面 111正向生长的氮化镓基外延层合并吋的晶格缺陷密度, 提升最终形成的半导 体元件的性能; 同吋, 由于抑制了侧向氮化镓基外延层生长, 使正向生长的氮 化镓基外延层更容易合并成一个平整表面, 随后在此平整表面继续沉积第一半 导体层 60、 发光层 70和第二半导体层 80得到晶体质量优良的半导体元件。
[0041] 实施例 2
[0042] 参看附图 8和 9, 本实施例与实施例 1的区别在于, 本实施例中图形化衬底 10的 凸起还具有顶面平台 113结构, 所述凸起 11为圆台结构、 椭圆台结构、 棱台结构 中的一种; 所述介质层 20不仅沉积于凸起侧面 112, 也沉积于凸起顶面平台 113 , 而后续制程中的氮化铝层 40也依次沉积于凸起间隙面 111、 凸起侧面 112处介 质层 22和凸起平台 113处介质层 23的表面; 利用介质层 22表面氮化铝层 42和顶面 平台介质层 23表面氮化铝层 43的非晶态特性及凸起间隙面 112的氮化铝层 41的晶 态特性, 抑制外延层在图形侧面及间隙面的竞相生长现象, 从而提升半导体元 件的晶体质量。
[0043] 应当理解的是, 上述具体实施方案为本发明的优选实施例, 本发明的范围不限 于该实施例, 凡依本发明所做的任何变更, 皆属本发明的保护范围之内。
Claims
[权利要求 1] 图形化衬底, 具有相对的第一表面和第二表面, 其中第一表面均匀分 布有复数个凸起, 所述各个凸起之间具有间隙, 其特征在于: 所述凸 起表面沉积有介质层, 所述凸起间隙的表面无所述介质层; 所述介质 层的表面及所述凸起间隙的表面沉积有氮化铝层, 所述介质层表面的 氮化铝层抑制图形化衬底表面的侧向外延生长。
[权利要求 2] 根据权利要求 1所述的图形化衬底, 其特征在于: 所述凸起间隙表面 的氮化铝层比所述介质层表面的氮化铝层更易于生长氮化镓基材料。
[权利要求 3] 根据权利要求 2所述的图形化衬底, 其特征在于: 所述凸起表面上的 氮化铝层为非晶态层, 所述凸起间隙表面上的氮化铝层为由微小晶粒 组成的多晶态层。
[权利要求 4] 根据权利要求 1所述的图形化衬底, 其特征在于: 所述相邻凸起间距 为 50nm~5000nm。
[权利要求 5] 根据权利要求 1所述的图形化衬底, 其特征在于: 所述介质层厚度为 1 nm〜200nm。
[权利要求 6] 根据权利要求 1所述的图形化衬底, 其特征在于: 所述氮化铝层厚度 为 lnm〜200nm。
[权利要求 7] —种图形化衬底的制备方法, 包括如下步骤:
51、 提供一具有平坦表面的衬底, 于所述平坦表面制备复数个均匀分 布的凸起, 各个凸起之间具有间隙;
52、 在经过上述处理的衬底表面上形成介质层, 其仅覆盖在所述凸起 的表面上, 未覆盖所述凸起间隙的表面;
53、 于所述介质层的表面上和所述凸起间隙的表面上沉积氮化铝层, 构成图形化衬底, 所述介质层表面的氮化铝层抑制图形化衬底表面的 侧向外延生长, 降低外延层正向生长合并吋的晶体缺陷。
[权利要求 8] 根据权利要求 7所述的图形化衬底的制备方法, 其特征在于: 所述步 骤 S2通过下面方法形成:
在经过步骤 S1处理的衬底表面上形成介质层, 其覆盖所述凸起的表面
及所述凸起间隙的表面;
在所述介质层表面涂布光阻, 利用刻蚀技术去除所述凸起间隙表面的 光阻和介质层, 保留所述凸起表面的光阻和介质层;
去除所述凸起表面的光阻, 形成凸起表面具有介质层、 而凸起间隙表 面无介质层的衬底。
[权利要求 9] 根据权利要求 7所述的一种降低晶体缺陷的图形化衬底的制备方法, 其特征在于: 所述介质层厚度为 lnm~200nm。
[权利要求 10] 根据权利要求 7所述的一种降低晶体缺陷的图形化衬底, 其特征在于 : 所述氮化铝层厚度为 lnm~200nm。
[权利要求 11] 发光二极管, 包括图形化衬底和形成于所述图形化衬底上的发光外延 叠层, 所述图形化衬底具有相对的第一表面和第二表面, 其中第一表 面均匀分布有复数个凸起, 所述各个凸起之间具有间隙, 所述凸起表 面沉积有介质层, 所述凸起间隙的表面无所述介质层; 所述介质层的 表面及所述凸起间隙表面沉积有氮化铝层, 所述介质层表面的氮化铝 层抑制图形化衬底表面的侧向外延生长。
[权利要求 12] 根据权利要求 11所述的发光二极管, 其特征在于: 所述凸起表面上的 氮化铝层为非晶态层, 所述凸起间隙表面上的氮化铝层为由微小晶粒 组成的多晶态层。
[权利要求 13] 根据权利要求 11所述的发光二极管, 其特征在于: 所述发光外延叠层 选择性生长于所述凸起间隙表面上的氮化铝层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510691884.4A CN105355739A (zh) | 2015-10-23 | 2015-10-23 | 图形化衬底、制备方法及发光二极管 |
CN201510691884.4 | 2015-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017067333A1 true WO2017067333A1 (zh) | 2017-04-27 |
Family
ID=55331667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/097799 WO2017067333A1 (zh) | 2015-10-23 | 2016-09-01 | 图形化衬底、制备方法及发光二极管 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105355739A (zh) |
WO (1) | WO2017067333A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021126445A1 (en) * | 2019-12-19 | 2021-06-24 | Lumileds Llc | Light emitting diode device with high density texture |
US11081622B2 (en) | 2017-12-22 | 2021-08-03 | Lumileds Llc | III-nitride multi-wavelength LED for visible light communication |
US11264530B2 (en) | 2019-12-19 | 2022-03-01 | Lumileds Llc | Light emitting diode (LED) devices with nucleation layer |
CN115132754A (zh) * | 2022-06-30 | 2022-09-30 | 惠科股份有限公司 | 背光模组及其制备方法、显示面板 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105355739A (zh) * | 2015-10-23 | 2016-02-24 | 安徽三安光电有限公司 | 图形化衬底、制备方法及发光二极管 |
TWI621219B (zh) * | 2017-03-07 | 2018-04-11 | 環球晶圓股份有限公司 | 磊晶用碳化矽基板及半導體晶片 |
CN107452839B (zh) * | 2017-07-11 | 2019-05-14 | 华灿光电(浙江)有限公司 | 一种发光二极管外延片及其制作方法 |
CN107731978B (zh) | 2017-09-30 | 2019-03-08 | 厦门乾照光电股份有限公司 | 一种led的外延结构及其制作方法 |
CN108615798A (zh) * | 2018-04-27 | 2018-10-02 | 福建兆元光电有限公司 | 氮化物led外延层结构及制造方法 |
CN109599468B (zh) * | 2018-11-20 | 2020-09-11 | 华中科技大学鄂州工业技术研究院 | 超宽禁带氮化铝材料外延片及其制备方法 |
CN110112266B (zh) * | 2019-05-22 | 2020-04-28 | 湘能华磊光电股份有限公司 | Led外延片衬底结构及制作方法 |
CN111206213B (zh) * | 2020-02-25 | 2021-08-13 | 西安交通大学 | 一种AlN非晶薄膜及其制备方法 |
CN114864774B (zh) * | 2022-06-07 | 2023-10-20 | 淮安澳洋顺昌光电技术有限公司 | 图形化衬底的制备方法及具有空气隙的led外延结构 |
CN117613663B (zh) * | 2024-01-19 | 2024-05-10 | 武汉云岭光电股份有限公司 | 激光器及其制作方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102169936A (zh) * | 2011-02-16 | 2011-08-31 | 亚威朗光电(中国)有限公司 | 图形衬底和led芯片 |
CN102447023A (zh) * | 2010-09-30 | 2012-05-09 | 丰田合成株式会社 | 生产iii族氮化物半导体发光器件的方法 |
CN102576663A (zh) * | 2009-07-17 | 2012-07-11 | 应用材料公司 | 在图案化基材上藉由氢化物气相外延法(hvpe)形成三族氮化物结晶膜的方法 |
CN103022291A (zh) * | 2011-09-24 | 2013-04-03 | 山东浪潮华光光电子有限公司 | 一种具有全方位反射镜的图形衬底及其制备方法 |
CN103227258A (zh) * | 2012-01-30 | 2013-07-31 | 隆达电子股份有限公司 | 图案化基板及堆栈发光二极管结构 |
CN105355739A (zh) * | 2015-10-23 | 2016-02-24 | 安徽三安光电有限公司 | 图形化衬底、制备方法及发光二极管 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101232067B (zh) * | 2005-05-16 | 2013-05-15 | 索尼株式会社 | 发光二极管及其制造方法、集成发光二极管、以及显示器 |
JP4637781B2 (ja) * | 2006-03-31 | 2011-02-23 | 昭和電工株式会社 | GaN系半導体発光素子の製造方法 |
JP5908979B2 (ja) * | 2012-06-13 | 2016-04-26 | シャープ株式会社 | 窒化物半導体発光素子及びその製造方法 |
US9099381B2 (en) * | 2012-11-15 | 2015-08-04 | International Business Machines Corporation | Selective gallium nitride regrowth on (100) silicon |
CN104576845A (zh) * | 2014-12-16 | 2015-04-29 | 深圳市德上光电有限公司 | 一种图形化的蓝宝石衬底的制造方法 |
-
2015
- 2015-10-23 CN CN201510691884.4A patent/CN105355739A/zh active Pending
-
2016
- 2016-09-01 WO PCT/CN2016/097799 patent/WO2017067333A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102576663A (zh) * | 2009-07-17 | 2012-07-11 | 应用材料公司 | 在图案化基材上藉由氢化物气相外延法(hvpe)形成三族氮化物结晶膜的方法 |
CN102447023A (zh) * | 2010-09-30 | 2012-05-09 | 丰田合成株式会社 | 生产iii族氮化物半导体发光器件的方法 |
CN102169936A (zh) * | 2011-02-16 | 2011-08-31 | 亚威朗光电(中国)有限公司 | 图形衬底和led芯片 |
CN103022291A (zh) * | 2011-09-24 | 2013-04-03 | 山东浪潮华光光电子有限公司 | 一种具有全方位反射镜的图形衬底及其制备方法 |
CN103227258A (zh) * | 2012-01-30 | 2013-07-31 | 隆达电子股份有限公司 | 图案化基板及堆栈发光二极管结构 |
CN105355739A (zh) * | 2015-10-23 | 2016-02-24 | 安徽三安光电有限公司 | 图形化衬底、制备方法及发光二极管 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11081622B2 (en) | 2017-12-22 | 2021-08-03 | Lumileds Llc | III-nitride multi-wavelength LED for visible light communication |
US11594572B2 (en) | 2017-12-22 | 2023-02-28 | Lumileds Llc | III-nitride multi-wavelength LED for visible light communication |
WO2021126445A1 (en) * | 2019-12-19 | 2021-06-24 | Lumileds Llc | Light emitting diode device with high density texture |
US11211527B2 (en) | 2019-12-19 | 2021-12-28 | Lumileds Llc | Light emitting diode (LED) devices with high density textures |
US11264530B2 (en) | 2019-12-19 | 2022-03-01 | Lumileds Llc | Light emitting diode (LED) devices with nucleation layer |
KR20220107068A (ko) * | 2019-12-19 | 2022-08-01 | 루미레즈 엘엘씨 | 고밀도 텍스처들을 갖는 발광 다이오드(led) 디바이스들 |
JP2022551340A (ja) * | 2019-12-19 | 2022-12-08 | ルミレッズ リミテッド ライアビリティ カンパニー | 高密度テクスチャを有する発光ダイオード(led)装置 |
KR102497403B1 (ko) | 2019-12-19 | 2023-02-10 | 루미레즈 엘엘씨 | 고밀도 텍스처들을 갖는 발광 다이오드(led) 디바이스들 |
JP7325641B2 (ja) | 2019-12-19 | 2023-08-14 | ルミレッズ リミテッド ライアビリティ カンパニー | 高密度テクスチャを有する発光ダイオード(led)装置 |
CN115132754A (zh) * | 2022-06-30 | 2022-09-30 | 惠科股份有限公司 | 背光模组及其制备方法、显示面板 |
Also Published As
Publication number | Publication date |
---|---|
CN105355739A (zh) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017067333A1 (zh) | 图形化衬底、制备方法及发光二极管 | |
TWI574434B (zh) | A substrate for the growth of Group III-V nitride and a preparation method thereof | |
JP5117596B2 (ja) | 半導体発光素子、ウェーハ、および窒化物半導体結晶層の製造方法 | |
CN104332541B (zh) | 图形化衬底制备方法及外延片制作方法 | |
WO2006108359A1 (fr) | PROCÉDÉ DE FABRICATION D'UNE COUCHE DE InGaAlN ET DISPOSITIF D’ÉMISSION DE LUMIÈRE SUR UN SUBSTAT DE SILICIUM | |
JP2009123717A5 (zh) | ||
CN113066911B (zh) | Led外延片衬底结构及其制备方法、led芯片及其制备方法 | |
CN104766910B (zh) | 一种GaN纳米线及其制备方法 | |
CN104037293B (zh) | 一种生长在Si图形衬底上的LED外延片及其制备方法 | |
CN108615798A (zh) | 氮化物led外延层结构及制造方法 | |
CN103956418A (zh) | 一种复合图形化衬底及其制备方法 | |
CN101814426A (zh) | 蓝宝石图形衬底的制作方法 | |
CN109360871A (zh) | 一种图形化衬底、发光二极管外延片及其制备方法 | |
CN104409577A (zh) | 一种GaN基LED外延有源区基础结构的外延生长方法 | |
CN101866831B (zh) | 低表面缺陷密度的外延基板及其制造方法 | |
WO2017041661A1 (zh) | 一种半导体元件及其制备方法 | |
CN104485406A (zh) | 一种蓝宝石图形衬底的制备方法 | |
CN111525012B (zh) | 一种发光二极管及其制作方法 | |
TWI725418B (zh) | 磊晶於異質基板之結構及其製備方法 | |
CN105826438B (zh) | 一种具有金属缓冲层的发光二极管及其制备方法 | |
WO2016173359A1 (zh) | 一种发光二极管结构及其制备方法 | |
CN108172670A (zh) | Led外延片衬底结构及制造方法 | |
JP2015129057A (ja) | 凹凸構造を有する結晶基板 | |
WO2017076119A1 (zh) | 图形化蓝宝石衬底、发光二极管及其制作方法 | |
CN111509095A (zh) | 复合式基板及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16856767 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16856767 Country of ref document: EP Kind code of ref document: A1 |