WO2017065109A1 - Nta paste - Google Patents
Nta paste Download PDFInfo
- Publication number
- WO2017065109A1 WO2017065109A1 PCT/JP2016/079947 JP2016079947W WO2017065109A1 WO 2017065109 A1 WO2017065109 A1 WO 2017065109A1 JP 2016079947 W JP2016079947 W JP 2016079947W WO 2017065109 A1 WO2017065109 A1 WO 2017065109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nta
- electrode
- glass
- paste
- bus bar
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/93—Interconnections
- H10F77/933—Interconnections for devices having potential barriers
- H10F77/935—Interconnections for devices having potential barriers for photovoltaic devices or modules
- H10F77/937—Busbar structures for modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention is composed of a main material that combines particles to form conductivity, an organic material that combines particles of the main material, an organic solvent that adjusts the concentration, and a resin that combines the whole and adheres to the coating material.
- the present invention relates to an NTA paste for sintering a kneaded product to form a conductive electrode.
- the solar cell has an N-type / P-type silicon substrate 43 that converts solar energy into electric energy, and a silicon substrate. 43 prevents the reflection of the surface of the silicon nitride film 45, which is an insulating thin film, the finger electrode 42 that extracts the electrons generated in the silicon substrate 43, the bus bar electrode 41 that collects the electrons extracted by the finger electrode 42, and the bus bar electrode 41 It consists of each element of the lead electrode 47 for taking out the electrons to the outside.
- silver (silver paste) and lead (lead glass) are used for the bus bar electrode (bus electrode) 41, the finger electrode 42 and the lead lead wire 47, and the amount of silver used is eliminated or reduced. Furthermore, it has been desired to reduce or eliminate the amount of lead (lead glass) used, and to reduce costs and pollution.
- the conventional silver paste contains a silver component (powder), a glass component (lead glass), an organic material component, an organic solvent component, and a resin component
- silver (silver paste) and lead (lead glass as a binder) are used for the finger electrode 42, the bus bar electrode 41, the lead lead wire 47, and the like.
- the appearance of a new paste is desired that eliminates or reduces the amount of silver used and reduces or eliminates the use of lead (lead glass), thereby reducing the cost of manufacturing solar cells and making them pollution-free. .
- NTA paste is not limited to the above-described solar cell bus electrodes, but can also be used as a conductive paste for forming electrodes by screen printing or the like.
- the present invention eliminates the use amount of silver or mixes it slightly and reduces or eliminates the use amount of lead (lead glass), for example, a bus electrode (bus bar electrode) that is a component of a solar cell. ), Etc., are made with NTA paste (for example, screen printing) and baked to eliminate or reduce the amount of silver and lead (lead glass) used.
- lead lead glass
- Etc. are made with NTA paste (for example, screen printing) and baked to eliminate or reduce the amount of silver and lead (lead glass) used.
- the present invention is composed of a main material that binds particles to form conductivity, an organic material that binds particles of the main material, an organic solvent that adjusts the concentration, and a resin that combines the whole and adheres to the coating material,
- a paste for sintering these kneaded materials to form a conductive electrode is composed of a kneaded material prepared by mixing vanadate glass powder as a main material, and the prepared kneaded material is heated to 340 ° C to 900 ° C. This is an NTA paste that is sintered within a range of 1 second to 60 seconds to form a conductive electrode.
- silver powder 0 to 50 wt% is mixed in the vanadate glass powder instead of the main material vanadate glass powder.
- the sintering is performed within the range of 340 ° C. to 900 ° C. and within the range of 1 second to 60 seconds by irradiating with infrared rays or far infrared rays.
- lamps, ceramic heaters, or lasers that irradiate infrared rays or far infrared rays are used.
- the electrode is a solar cell electrode.
- the present invention uses an NTA paste made of 100% conductive NTA glass and an NTA paste further reduced to about 50% (may be further reduced in content) instead of the conventional silver paste.
- NTA paste made of 100% conductive NTA glass
- NTA paste further reduced to about 50% (may be further reduced in content) instead of the conventional silver paste.
- the amount of silver used in conventional silver paste can be eliminated or reduced, and the amount of lead (lead glass) used can be reduced or eliminated, making it less expensive and pollution-free. It was.
- NTA glass which is a conductive vanadate glass (see registered trademark 5009023, Japanese Patent No. 5333976, etc.) 100%, and further 50% To the extent, it was possible to eliminate or reduce the amount of Ag used instead of the silver paste, and to reduce or eliminate the amount of lead (lead glass) used.
- NTA glass is (1) conductive
- the NTA glass is used so that the finger electrode has the same height as the upper surface of the bus bar electrode (bus electrode) or the portion protruding through the upper surface.
- the finger electrode and the bus bar electrode are formed using a paste containing glass frit that is different.
- a phenomenon called fire-through is a finger electrode that breaks through the insulating layer of the silicon nitride film formed on the surface layer of the silicon substrate by the action of component molecules in the glass frit used as a sintering aid for silver, for example, lead molecules in lead glass.
- the fire-through phenomenon is not necessary for the formation of the bus bar electrode.
- the bus bar electrode was also sintered using lead glass containing lead component as a sintering aid, but although the structure is different, an electrical conduction path between the bus bar electrode and the silicon substrate is formed to reduce the conversion efficiency. It was a thing. By using NTA glass that does not cause a fire-through phenomenon as a sintering aid used for forming the bus bar electrode, reduction in conversion efficiency could be eliminated.
- FIG. 1 shows a flowchart for preparing the NTA glass powder of the present invention.
- S1 prepares and melts (from 900 ° C. to 1200 ° C.) a raw material of NTA glass.
- an NTA glass raw material is melted within a range of 900 ° C. to 1200 ° C. in an electric furnace (preferably in an inert atmosphere).
- NTA glass vanadate glass
- Japanese Patent No. 5333976 see Japanese Patent No. 5333976.
- when melting the existing lump of NTA glass it is melted at about 600 ° C.
- S2 creates NTA glass pieces 3-5mm.
- NTA glass melted in S1 is poured between chilled rollers to produce fragments.
- S3 performs coarse pulverization. This is done by roughly crushing the NTA glass fragments prepared in S2 to a powder of about 2 to 3 mm.
- S4 performs fine grinding. This is done by finely pulverizing NTA glass powder prepared by coarse pulverization in S3 by jet mill pulverization to a size of about 2 to 3 ⁇ m or even a submicron size.
- NTA glass vanadate glass
- NTA glass fragments which are coarsely pulverized and finely pulverized to obtain a desired size (2 to 3 ⁇ m or submicron).
- FIG. 2 shows an NTA paste creation flowchart of the present invention.
- FIG. 2 shows a flowchart
- (b) of FIG. 2 shows examples of materials (1), (2), (3), and (4).
- S11 stirs the inside of the container. In this step, stirring is started in the container before sequentially entering (injecting) the container in S12.
- S12 is put in the container in the order of (1), (2), (3), (4). This is put in a container in the order of (1) main material, (2) organic material, (3) organic solvent, and (4) resin described in FIG. The order may be changed as necessary.
- S13 determines whether the end. This is to determine if all ingredients have been placed in the container and stirring has been completed. In the case of YES, the paste is completed in S14. In the case of NO, it returns to S12 and repeats putting the next material in a container and stirring.
- FIG. 3 shows an example of the NTA paste composition of the present invention.
- FIG. 3 shows a composition example of NTA 100 wt%. In this example, the following is shown.
- Main material vanadate glass powder 2 to 3 ⁇ m (see FIG. 2), a concentration range of 75 to 80 wt%, and a material that exhibits electrode conductivity (silver Ag in a conventional silver paste)
- the material corresponding to the powder in this example, the silver Ag powder is 0 wt%, i.e. no silver).
- Organic material Diethylene glycol monobutyl acetate or the like, which has a concentration range of 10 to 15 wt%, and is a material for binding main material particles.
- Organic solvent tapineol, a concentration range of 5 to 10 wt%, and a material for adjusting the concentration of NTA paste (particularly, adjusting the concentration suitable for screen printing).
- Resin Cellulosic resin, a concentration range of 1 to 5% wt. It is a material for collecting the whole and adhering to a coating material (for example, adhering to a film on which a solar cell electrode is created).
- organic solvents include ethyl alcohol, propyl cellulose, butyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxybutyl cellulose, and acetyl cellulose.
- the resin it is desirable to employ a composition containing at least one kind of epoxy resin, polyester resin, silicon resin, urea resin, acrylic resin, and the like.
- NTA paste NTA glass 100% having the above composition according to the flowcharts of FIGS.
- (B) in FIG. 3 shows a composition example of NTA 50 wt% and Ag 50 wt%. In this example, the following is shown.
- Main material vanadate glass powder 2 to 3 ⁇ m (see FIG. 2), a concentration range of 35 to 40 wt%, and a material that develops electrode conductivity (mixed main material silver Ag powder) Is also a material that develops the conductivity of the electrode (in this example, it contains the same amount of Ag powder as the NTA glass powder).
- Main material Silver powder 2 to 3 ⁇ m, concentration range 35 to 40 wt%, and a material that develops the conductivity of the electrode.
- Organic material Diethylene glycol monobutyl acetate, a concentration range of 10 to 15 wt%, which is a material for binding main material particles.
- Organic solvent tapineol, a concentration range of 5 to 10 wt%, and a material for adjusting the concentration of NTA paste (particularly, adjusting the concentration suitable for screen printing).
- Resin Cellulosic resin, 1 to 5%, which is a material for collecting the whole and adhering to a coating material (for example, adhering to a film of a solar cell electrode fabrication target).
- NTA paste (NTA powder 50%, Ag powder 50%) having the above composition can be prepared in accordance with the flow charts of FIGS.
- blend powders in order to express a fire through etc.
- glass lead glass
- FIG. 4 shows an NTA paste application flowchart of the present invention. This is a flowchart for creating an electrode of a solar cell using NTA paste (NTA glass 100%).
- S21 screen-prints the NTA paste and prints the bus bar electrode pattern.
- the bus bar electrode 15 shown in FIG. 9 (f) constituting a solar cell described later is screen-printed using NTA paste (NTA glass 100%).
- the screen printing may be performed a plurality of times to adjust the film thickness.
- S22 is left in a dry atmosphere (2 to 24 hours).
- a dry BOX drying box or container
- the like is used for this drying.
- this process may be omitted.
- S24 is left in a dry atmosphere (2 to 24 hours).
- a dry BOX drying box or container
- the like is used for this drying.
- this process may be omitted.
- S25 performs firing (sintering).
- sintering As a condition ⁇
- Sintering As an example of far-infrared sintering equipment, : Sintering in the range of 340 to 900 ° C. and in the range of 3 to 60 seconds.
- a sintering apparatus using infrared rays instead of the far infrared sintering apparatus is also possible.
- a lamp far-infrared lamp
- the present invention is not limited to this, and any ceramic heater, laser, or the like that emits infrared rays or far-infrared rays may be used.
- other means may be used as long as the temperature and the sintering time within the above ranges can be sintered (for example, hot air heated with a gas such as air).
- the film thickness may be adjusted by screen printing and sintering a plurality of times.
- the bus bar electrode of the solar battery was screen-printed with the NTA paste of the present invention (NTA glass 100%, further 50%, etc.) and sintered within the above range (temperature, sintering time).
- the solar cell efficiency (conversion efficiency) was almost the same as or slightly better than that of the silver paste (silver powder 100%) (see FIG. 6 and later described later).
- FIG. 5 shows an example of screen conditions used for screen printing according to the present invention.
- the screen conditions are, for example: Screen wire diameter: 16 ⁇ m ⁇ Mesh: 325 / inch -Opening (opening): 62 ⁇ m ⁇ Space ratio: 63% It is.
- the condition of the screen is changed or (2) the concentration of the organic solvent in the NTA paste is changed.
- the back electrode (aluminum layer) 46 is conventionally aluminum, and in some cases, silver may be used, but the NTA paste of the present invention (NTA glass 100% and further silver added (for example, 0) % Or more to about 50%).
- FIG. 6 shows a structural diagram of one embodiment of the present invention (process completion drawing: sectional view).
- a silicon substrate 11 is a known semiconductor silicon substrate.
- the high electron concentration region (diffusion doping layer) 12 is a known region (layer) in which a desired p-type / n-type layer is formed on the silicon substrate 11 by diffusion doping or the like. This is a region where electrons are generated (power generation) in the silicon substrate 11 when light is incident and the electrons are accumulated. Here, the accumulated electrons are taken out upward by an electron outlet (finger electrode (silver)) 14 (see the effect of the invention).
- the insulating film (silicon nitride film) 13 is a known film that allows sunlight to pass (transmits) and electrically insulates the bus bar electrode 15 from the high electron concentration region 12.
- the electron outlet (finger electrode (silver)) 14 is an opening (finger electrode) for taking out electrons accumulated in the high electron concentration region 12 through a hole formed in the insulating film 13.
- the finger electrode 14 is the same as the height of the upper surface of the bus bar electrode 15 or A portion protruding through and projecting to the upper surface is formed (fired) (by controlling the thickness of the NTA paste), and electrons in the high electron concentration region 12 directly flow into the lead wire 17 through the finger electrode 14 (Electrons can be taken out directly).
- the bus bar electrode (electrode 1 (NTA glass 100%)) 15 is an electrode for electrically connecting a plurality of electron outlets (finger electrodes) 14 and is an electrode to be used to eliminate or reduce the amount of Ag used. Yes (see effect of invention).
- the back electrode (electrode 2 (aluminum)) 16 is a known electrode formed on the lower surface of the silicon substrate 11.
- the lead wire (solder formation) 17 takes out electrons (current I) electrically connected to the plurality of bus bar electrodes 15 to the outside, and in the present invention, the finger electrode 14 has the same height as the upper surface of the bus bar electrode 15. It is a lead wire that takes out the electrons (current) to the outside by ultrasonic soldering the lead wire to the portion or the protruding portion.
- the bus bar electrode 15 is mixed with NTA glass (conductive glass) 100% to 71% (more or less, see FIG. 14) as glass frit in the paste. It is possible to eliminate or reduce the amount of Ag used. Details will be sequentially described below.
- FIG. 7 shows a flowchart for explaining the operation of the present invention
- FIGS. 8 and 9 show the detailed structure of each process.
- S2 is cleaned. These S1 and S2 cleanly clean the surface (surface on which the high electron concentration region 12 is formed) of the silicon substrate 11 prepared in S1, as shown in FIG.
- S3 is diffusion doped. As shown in FIG. 8B, this involves performing known diffusion doping on the silicon substrate 11 cleaned in FIG. 38A to form a high electron concentration region 12.
- S4 forms an antireflection film (silicon nitride film).
- the high electron concentration region 12 of FIG. 8 (b) is formed, and an antireflection film (sunlight is passed through and surface reflection is made as much as possible.
- a silicon nitride film is formed by a known method as the reduced film.
- S5 screen-prints the finger electrodes.
- the pattern of the finger electrode 14 to be formed is screen-printed on the silicon nitride film 13 shown in FIG. 8 (c).
- the printing material for example, silver mixed with lead glass as a frit is used.
- the finger electrode is fired and fired through. This is because the finger electrode 14 pattern (mixed with silver and lead glass frit) screen-printed in FIG. 8 (d) is baked, and the silicon nitride film 13 is formed as shown in FIG. 8 (e).
- the finger electrode 14 in which silver (conductivity) is formed is formed through fire-through.
- S7 screen-prints the bus bar electrode (electrode 1). As shown in FIG. 9 (f), the pattern of the bus bar electrode 15 to be formed is screen-printed on the finger electrode 14 shown in FIG. 8 (e).
- NTA gas 100%) is used as a frit.
- the bus bar electrode is fired. This is because the bus bar electrode 15 pattern (NTA glass (100%) frit) screen-printed in FIG. 9 (f) is fired (fired within 1 minute at the longest and fired within 1 to 3 seconds). 9 (g), the bus bar electrode 15 is formed in the uppermost layer, and the finger electrode 14 is the same height as the upper surface of the bus bar electrode 15 formed in the uppermost layer, which is a feature of the present invention. Or a portion that has been penetrated. (This is done by controlling the film thickness.) Note that S5 and S7 may be printed and both may be fired simultaneously.
- S9 forms the back electrode (electrode 2).
- an aluminum electrode is formed on the lower side (rear surface) of the silicon substrate 11 as shown in FIG.
- S10 solders the lead wire.
- the lead wires for electrically connecting the bus bar electrodes in FIG. 9 (g) are formed by soldering, for example, by ultrasonic soldering, they are electrically connected.
- High electron concentration region 12, finger electrode 14, bus bar electrode 15, lead wire 17 path 1 (conventional route 1) and high electron concentration region 12, finger electrode 14, lead wire 17 route 2 (added in the present invention) In both the paths 2) and 2), the electrons (current) in the high electron concentration region 12 can be taken out via the lead wire 17, and the resistance between the high electron concentration region 12 and the lead wire 17 can be extracted. The value can be made very small to reduce loss and improve solar cell efficiency.
- one end of the finger electrode 14 is in the high electron concentration region 12, and the other end is a portion having the same height as the upper surface of the bus bar electrode 15 made of NTA glass 100% Since the lead wire is directly joined to this portion (direct joining by ultrasonic soldering), the path 2 of the high electron concentration region 12, the finger electrode 14, and the lead wire 17 is formed.
- the route 1 is a conventional route.
- a solar cell can be formed on a silicon substrate.
- FIG. 10 shows a detailed explanatory view of the present invention (firing of bus bar electrodes).
- FIG. 10 (a) schematically shows an example in which the bus bar electrode is baked with 100% silver and NTA 0% (weight ratio)
- FIG. 10 (b) shows the bus bar electrode with 50% silver and NTA 50% (weight ratio)
- FIG. 10C schematically shows an example in which the bus bar electrode is fired at 100% NTA (weight ratio). The firing time was 1 to 3 seconds or longer within 1 minute at the longest.
- NTA glass is composed of vanadium, barium, and iron.
- iron is strongly bonded internally and stays in the interior, and its bonding property is extremely small even when mixed with other materials. (See Japanese Patent No. 5333976 and the like), and it is presumed to be due to the improvement of the path between the high electron concentration region of the present invention and the lead wire (path 1 and path 2 are in parallel).
- FIG 11 and 12 are explanatory diagrams (bus bar electrodes) of the present invention.
- FIG. 11 (a) and 11 (b) are NTA 50% and Ag 50%, FIG. 11 (a) shows an overall plan view, and FIG. 11 (b) shows an enlarged view. .
- FIG. 12 (c) shows NTA 100% Ag 0%, and FIG. 12 (c) shows an enlarged view.
- the bus bar electrode 15 is a long bar-shaped electrode as shown in the overall plan view of FIG. 11 (a), and this is enlarged with an optical microscope. Then, a structure as shown in FIG. 11B was observed.
- the bus bar electrode 15 was fired with the conventional Ag and NTA glass frit when it was fired with the conventional Ag and lead glass frit.
- the conversion efficiency when manufactured as a solar cell was about 16.9% even in the experiment.
- the firing temperature is 500 ° C. to 900 ° C., but it is necessary to determine the optimum temperature by experiment when it is produced as a solar cell. If it is too low or too high, the structure as shown in FIG. 11B is not obtained, and it is necessary to determine it by experiment.
- the bus bar electrode 15 is a wide bar-shaped electrode in the lateral direction of the center portion shown in the figure, and shows an example of an enlarged photograph of NTA 100% according to the present invention.
- the bus bar electrode 15 in FIG. 12C has a portion in which the finger electrode 14 narrow in the vertical direction penetrates the bus bar electrode 15 and slightly protrudes upward, and the periphery of the protruding portion is the original finger. It turns out that it is thicker than the width of the electrode 14. Then, ultrasonic soldering is performed on the bus bar electrode 15 as shown in FIG. 13 to be described later in detail with a width that is the same as the width of the bus bar electrode 15, slightly smaller or slightly larger. High in both paths 1 (path 1 of photoelectron concentration region 12, finger electrode 14, bus bar electrode 15, lead wire 17) and path 2 (path 2 of photoelectron concentration region 12, finger electrode 14, lead wire 17) described above.
- the concentration electron region and the lead wire are conductively connected to reduce the loss of electrons (current) and can be efficiently extracted to the outside.
- the conversion efficiency is substantially the same as in FIGS. 11A and 11B. Alternatively, a slightly high conversion efficiency (about 17.2%) was obtained.
- the firing temperature is approximately 500 ° C. to 900 ° C. as in FIGS. 11 (a) and 11 (b), but it is necessary to determine the optimum temperature by experiment when it is fabricated as a solar cell. If it is too low or too high, a structure as shown in FIG. 12C cannot be obtained, and it is necessary to determine by experiment.
- FIG. 13 shows an explanatory diagram (ultrasonic soldering) of the present invention. This is the case of the NTA 100% in FIG. 12C described above (in the same manner, it may be applied to FIGS. 11A and 11B).
- FIG. 13 shows the state after the finger electrode 14 is baked.
- FIG. 13B shows a conventional soldering of a slightly larger (or the same or smaller) lead wire 17 shown by a dotted line on the bus bar electrode 15 of FIG. 13A.
- An example of In this conventional example since normal soldering is performed, the portion (Ag) where the finger electrode 14 protrudes and the lead wire 17 are soldered together, but the portion where the finger electrode 14 does not protrude (portion of NTA 100%) The lead wire 17 is not sufficiently soldered and the mechanical strength is not sufficient.
- ultrasonic soldering of FIG. 13C described later solder bonding was performed, and the mechanical strength was greatly improved.
- FIG. 13C a slightly larger lead wire 17 indicated by a dotted line is ultrasonically soldered on the bus bar electrode 15 in FIG. 13A (the bus bar electrode 15 in FIG. 12C).
- the example of this invention is shown.
- the soldering is performed by ultrasonic soldering, the portion (Ag) from which the finger electrode 14 protrudes and the lead wire 17 are soldered together, and further, the portion without the finger electrode 14 (portion of NTA 100%)
- the lead wire 17 is also soldered to significantly improve the mechanical strength, and the conductivity of the path 2 (the high electron concentration region 12, the finger electrode 14, the bus bar electrode 15, the path 2 of the lead wire 17) described above is improved. did.
- FIG. 14 shows a measurement example (efficiency) of the present invention.
- FIG. 14 is a good measurement example when the NTA is changed from 100% to 70% for the bus bar electrode 15 described above.
- the horizontal axis in FIG. 14 indicates the sample number, and the vertical axis indicates the efficiency. (%).
- sample, ⁇ NTA 100% Ag 0% ⁇ NTA 90% Ag 10% ⁇ NTA 80% Ag 20% ⁇ NTA 70% Ag 30% were used to make solar cells, and each measurement result (efficiency) was as shown.
- FIG. 1 is a structural view of one embodiment of the present invention (process completion drawing: sectional view). It is an operation
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本発明は、粒子を結合させて導電性を形成する主材、主材の粒子を結合させる有機材、濃度を調整する有機溶媒、および全体をまとめると共に塗布材料に接着させる樹脂からなり、これらの混練物を焼結して導電性の電極を形成するNTAペーストに関するものである。 The present invention is composed of a main material that combines particles to form conductivity, an organic material that combines particles of the main material, an organic solvent that adjusts the concentration, and a resin that combines the whole and adheres to the coating material. The present invention relates to an NTA paste for sintering a kneaded product to form a conductive electrode.
従来、再生可能エネルギー利用の一つである太陽電池は、20世紀の主役である半導体技術をベースにその開発が行われている。人類の生存を左右する地球レベルの重要な開発である。その開発の課題は太陽光を電気エネルギーに変換する効率ばかりではなく製造コストの低減および無公害という課題にも向き合いながら進められている。これらを実現する取り組みは、特に、電極に使用されている銀(Ag)や鉛(Pb)の使用量を低減ないし無くすことが重要とされている。 Conventionally, solar cells, which are one of the renewable energy uses, have been developed based on semiconductor technology, the leading role of the 20th century. It is an important development at the global level that affects the survival of humankind. The challenge of the development is progressing while facing not only the efficiency of converting sunlight into electric energy but also the problem of reduction in manufacturing costs and pollution-free. In efforts to achieve these, it is particularly important to reduce or eliminate the amount of silver (Ag) and lead (Pb) used in the electrodes.
一般に、太陽電池の構造は、図15の(a)の平面図および(b)の断面図に示すように、太陽光エネルギーを電気エネルギーに変換するN型/P型のシリコン基板43、シリコン基板43の表面の反射を防止および絶縁体薄膜である窒化シリコン膜45、シリコン基板43中に発生した電子を取り出すフィンガー電極42、フィンガー電極42で取り出した電子を集めるバスバー電極41、バスバー電極41に集めた電子を外部に取り出す引出リード電極47の各要素より構成されている。 In general, as shown in the plan view of FIG. 15A and the cross-sectional view of FIG. 15B, the solar cell has an N-type / P-type silicon substrate 43 that converts solar energy into electric energy, and a silicon substrate. 43 prevents the reflection of the surface of the silicon nitride film 45, which is an insulating thin film, the finger electrode 42 that extracts the electrons generated in the silicon substrate 43, the bus bar electrode 41 that collects the electrons extracted by the finger electrode 42, and the bus bar electrode 41 It consists of each element of the lead electrode 47 for taking out the electrons to the outside.
このうち、バスバー電極(バス電極)41、フィンガー電極42および引出リード線47に、銀(銀ペースト)および鉛(鉛ガラス)が使用されており、これの銀の使用量を無くし、あるいは低減し、更に、鉛(鉛ガラス)の使用量を低減ないし無くし、低コストかつ無公害にすることが望まれていた。 Of these, silver (silver paste) and lead (lead glass) are used for the bus bar electrode (bus electrode) 41, the finger electrode 42 and the lead lead wire 47, and the amount of silver used is eliminated or reduced. Furthermore, it has been desired to reduce or eliminate the amount of lead (lead glass) used, and to reduce costs and pollution.
特に、従来の銀ペーストは、銀成分(粉末)、ガラス成分(鉛ガラス)、有機材の成分、有機溶媒の成分、樹脂の成分を含んでいるので、この先頭2つの銀成分(粉末)およびガラス成分(鉛ガラス)を無くし、代わりのものに置き換え、望むらくは1つの材料(例えば本発明のNTAガラス)で置き換えて、銀、鉛を無くしあるいは低減して、低コストかつ無公害にすることが望まれている。 In particular, since the conventional silver paste contains a silver component (powder), a glass component (lead glass), an organic material component, an organic solvent component, and a resin component, the first two silver components (powder) and Eliminate the glass component (lead glass) and replace it with a substitute, preferably replace with one material (eg NTA glass of the present invention) to eliminate or reduce silver and lead, making it low cost and pollution free. It is hoped that.
上述した従来の図15の太陽電池の構成要素のうち、フィンガー電極42、バスバー電極41、引出リード線47などに銀(銀ペースト)および鉛(バインダーとしての鉛ガラス)が使用されており、これの銀の使用量を無くし、ないし低減し、および鉛(鉛ガラス)の使用量を低減ないし無くし、太陽電池の製造コストの低減かつ無公害にするという、新たなペーストの出現が望まれている。 Among the components of the conventional solar cell of FIG. 15 described above, silver (silver paste) and lead (lead glass as a binder) are used for the finger electrode 42, the bus bar electrode 41, the lead lead wire 47, and the like. The appearance of a new paste is desired that eliminates or reduces the amount of silver used and reduces or eliminates the use of lead (lead glass), thereby reducing the cost of manufacturing solar cells and making them pollution-free. .
本発明者らは、ペーストに後述するNTAガラス(バナジン酸塩ガラス)100%を用いてAgとガラス(鉛ガラス)を含まない、あるいは若干混入したペースト(以下NTAペーストという)を用いてバス電極等を実験的に作成したところ上述した従来の銀粉末とガラスを含む銀ペーストを用いてバス電極等を作成したときと変わらないあるいは優れた特性を有する太陽電池の作成が可能(後述する)であることを発見した。このNTAペーストは、上述した太陽電池のバス電極等に限らず、スクリーン印刷などで電極を作成する導電性ペーストとしも使えるものである。 The present inventors use 100% NTA glass (vanadate glass), which will be described later, as a paste, and use a paste that does not contain Ag and glass (lead glass) or is slightly mixed (hereinafter referred to as NTA paste). As a result of experimentally creating a solar cell having the same or superior characteristics as the bus electrode or the like using the above-described conventional silver powder and silver paste containing glass, it is possible to create a solar cell (described later). I discovered that there is. This NTA paste is not limited to the above-described solar cell bus electrodes, but can also be used as a conductive paste for forming electrodes by screen printing or the like.
本発明は、これら発見に基づき、銀の使用量を無くし、ないし若干混入し、および鉛(鉛ガラス)の使用量を低減ないし無くすために、例えば太陽電池の構成要素であるバス電極(バスバー電極)等を形成するのに、NTAペーストで作成(例えばスクリーン印刷)して焼成し、銀および鉛(鉛ガラス)の使用量を無くし、ないし低減することを可能にした。 Based on these findings, the present invention eliminates the use amount of silver or mixes it slightly and reduces or eliminates the use amount of lead (lead glass), for example, a bus electrode (bus bar electrode) that is a component of a solar cell. ), Etc., are made with NTA paste (for example, screen printing) and baked to eliminate or reduce the amount of silver and lead (lead glass) used.
そのため、本発明は、粒子を結合させて導電性を形成する主材、主材の粒子を結合させる有機材、濃度を調整する有機溶媒、および全体をまとめると共に塗布材料に接着させる樹脂からなり、これらの混練物を焼結して導電性の電極を形成するペーストにおいて、主材としてバナジン酸塩ガラスの粉末を混入して作成した混練物からなり、作成した混練物を340℃ないし900℃の範囲内、かつ1秒ないし60秒の範囲内で焼結して導電性の電極を形成させるNTAペーストである。 Therefore, the present invention is composed of a main material that binds particles to form conductivity, an organic material that binds particles of the main material, an organic solvent that adjusts the concentration, and a resin that combines the whole and adheres to the coating material, A paste for sintering these kneaded materials to form a conductive electrode is composed of a kneaded material prepared by mixing vanadate glass powder as a main material, and the prepared kneaded material is heated to 340 ° C to 900 ° C. This is an NTA paste that is sintered within a range of 1 second to 60 seconds to form a conductive electrode.
この際、主材のバナジン酸塩ガラスの粉末の代わりに、バナジン酸塩ガラスの粉末に銀粉末0以上から50wt%を混入するようにしている。
At this time,
また、340℃ないし900℃の範囲内、かつ1秒ないし60秒の範囲内で焼結するとして、赤外線あるいは遠赤外線を照射して行うようにしている。 Further, the sintering is performed within the range of 340 ° C. to 900 ° C. and within the range of 1 second to 60 seconds by irradiating with infrared rays or far infrared rays.
また、赤外線あるいは遠赤外線を照射するランプ、セラミックヒータ、あるいはレーザとするようにしている。 Also, lamps, ceramic heaters, or lasers that irradiate infrared rays or far infrared rays are used.
また、電極は、太陽電池の電極とするようにしている。 Also, the electrode is a solar cell electrode.
本発明は、上述したように、導電性のNTAガラス100%のNTAペースト、更に50%程度迄(更に含有量を少なくしても可)にしたNTAペーストを、従来の銀ペーストの代わりに用いて焼成することにより、従来の銀ペースト中の銀の使用量を無くし、あるいは低減し、かつ鉛(鉛ガラス)の利用量を低減ないし無くすことができ、低コストかつ無公害にすることができた。これらにより、下記の特徴がある。 As described above, the present invention uses an NTA paste made of 100% conductive NTA glass and an NTA paste further reduced to about 50% (may be further reduced in content) instead of the conventional silver paste. By baking, the amount of silver used in conventional silver paste can be eliminated or reduced, and the amount of lead (lead glass) used can be reduced or eliminated, making it less expensive and pollution-free. It was. These have the following characteristics.
第1に、例えば太陽電池のバスバー電極(バス電極)を形成するのに導電性のバナジン酸塩ガラスであるNTAガラス(登録商標第5009023号、特許第5333976号等参照)100%、更に50%程度迄を、銀ペーストの代わりに用い、Agの使用量を無くし、ないし低減し、更に、鉛(鉛ガラス)の使用量を低減ないし無くすことができた。 First, for example, to form a bus bar electrode (bus electrode) of a solar cell, NTA glass which is a conductive vanadate glass (see registered trademark 5009023, Japanese Patent No. 5333976, etc.) 100%, and further 50% To the extent, it was possible to eliminate or reduce the amount of Ag used instead of the silver paste, and to reduce or eliminate the amount of lead (lead glass) used.
第2に、例えばバスバー電極(バス電極)をNTAガラス100%ないし50%程度(更に含有量を少なくしても可)を用いることにより、太陽光エネルギーを電子エネルギーに変換する効率がほぼ同じあるいは若干高い、バスバー電極としての効果を発揮する電極形成が現初期段階の実験結果として得られた(図14参照)。これはNTAガラスが(1)導電性を有すること、(2)NTAガラスを用いたことでフィンガー電極が当該バスバー電極(バス電極)の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分が形成され、これら部分がリード電極の超音波半田付けで接合され、結果として高電子濃度領域とリード電極とが直接にフィンガー電極で接続されること、その他の要因(例えば下記の「第3に」を参照)に起因すると考察される。 Second, for example, by using about 100% to 50% of NTA glass as a bus bar electrode (bus electrode) (the content can be further reduced), the efficiency of converting solar energy into electronic energy is substantially the same or A slightly higher electrode formation exhibiting the effect as a bus bar electrode was obtained as an experimental result at the present initial stage (see FIG. 14). This is because NTA glass is (1) conductive, and (2) the NTA glass is used so that the finger electrode has the same height as the upper surface of the bus bar electrode (bus electrode) or the portion protruding through the upper surface. These portions are joined by ultrasonic soldering of the lead electrode, and as a result, the high electron concentration region and the lead electrode are directly connected by finger electrodes, and other factors (for example, “third” described below) This is considered to be caused by
第3に、従来と異なり、フィンガー電極の形成とバスバー電極の形成とを異なるガラスフリットを含有したペーストを用いることにある。従来、フィンガー電極の形成においてはファイアスルーと呼ばれる現象を生ずる必要があった。これは、銀の焼結助剤として用いているガラスフリットの中の成分分子、例えば鉛ガラス中の鉛分子の働きによってシリコン基板の表層に形成された窒化シリコン膜の絶縁層を突き破ってフィンガー電極を形成するようにしてシリコン基板に生成された電子を効率よく集めていた。しかし、バスバー電極の形成については、ファイアスルー現象は必要でない。従来はバスバー電極も鉛成分を含んだ鉛ガラスを焼結助剤にして焼結していたので構造は異なるもののバスバー電極とシリコン基板との電気的な導通路が形成されて変換効率を低減する事となっていた。バスバー電極形成に用いる焼結助剤をファイアスルー現象の生じないNTAガラスを用いることによって変換効率の低減を無くすことができた。 Thirdly, unlike the conventional method, the finger electrode and the bus bar electrode are formed using a paste containing glass frit that is different. Conventionally, it has been necessary to generate a phenomenon called fire-through in the formation of finger electrodes. This is a finger electrode that breaks through the insulating layer of the silicon nitride film formed on the surface layer of the silicon substrate by the action of component molecules in the glass frit used as a sintering aid for silver, for example, lead molecules in lead glass. As a result, the electrons generated on the silicon substrate were efficiently collected. However, the fire-through phenomenon is not necessary for the formation of the bus bar electrode. Conventionally, the bus bar electrode was also sintered using lead glass containing lead component as a sintering aid, but although the structure is different, an electrical conduction path between the bus bar electrode and the silicon substrate is formed to reduce the conversion efficiency. It was a thing. By using NTA glass that does not cause a fire-through phenomenon as a sintering aid used for forming the bus bar electrode, reduction in conversion efficiency could be eliminated.
第4に、銀粉末材料の使用による太陽電池のコスト高(原材料費高)の問題がある。また、銀材料の過剰な需要によって材料調達の問題も浮上している。導電ガラスであるNTAガラスの含有比率100%ないし50%に大幅に増加してその分の銀量を少なくしても変換効率を低減することなく太陽電池を作製出来ることができたことは産業界に大きなインパクトを与えると思慮する。 Fourth, there is a problem of high cost (raw material costs) of solar cells due to the use of silver powder material. The problem of material procurement has also emerged due to excessive demand for silver materials. The industry has been able to produce solar cells without reducing the conversion efficiency even if the content ratio of NTA glass, which is conductive glass, is greatly increased to 100% to 50% and the amount of silver is reduced accordingly. I think it will have a big impact on
第5に、従来のバスバー電極の形成に使用していた鉛ガラスの使用を無くすこと、即ち鉛フリーにすることができた。これによって鉛公害の環境問題を皆無にすることが可能となる。 Fifth, it was possible to eliminate the use of lead glass that was used to form the conventional bus bar electrode, that is, lead-free. This makes it possible to eliminate the environmental problems of lead pollution.
図1は、本発明のNTAガラス粉末の作成フローチャートを示す。 FIG. 1 shows a flowchart for preparing the NTA glass powder of the present invention.
図1において、S1は、NTAガラスの原料を調合し溶解(900℃から1200℃)する。これは、電気炉(不活性雰囲気中が望ましい)でNTAガラスの原料を例えば900℃から1200℃の範囲内で溶解する。NTAガラス(バナジン酸塩ガラス)については、特許第5333976号等を参照。尚、既にあるNTAガラスの塊を溶融する場合は、600℃程度で溶かす。 In FIG. 1, S1 prepares and melts (from 900 ° C. to 1200 ° C.) a raw material of NTA glass. In this method, an NTA glass raw material is melted within a range of 900 ° C. to 1200 ° C. in an electric furnace (preferably in an inert atmosphere). For NTA glass (vanadate glass), see Japanese Patent No. 5333976. In addition, when melting the existing lump of NTA glass, it is melted at about 600 ° C.
S2は、 NTAガラス破片3~5mmを作成する。例えばS1で溶解したNTAガラスを、冷やしたローラーの間に流し込んで破片を作製する。 S2 creates NTA glass pieces 3-5mm. For example, NTA glass melted in S1 is poured between chilled rollers to produce fragments.
S3は、粗粉砕を行う。これは、S2で作成したNTAガラス破片を、粗粉砕して粉末2~3mm程度にする。 S3 performs coarse pulverization. This is done by roughly crushing the NTA glass fragments prepared in S2 to a powder of about 2 to 3 mm.
S4は、微粉砕を行う。これは、S3で粗粉砕して作成したNTAガラスの粉末を、ジェットミル粉砕により微粉砕し、2~3μm程度、あるいは更にサブミクロンサイズににする。 S4 performs fine grinding. This is done by finely pulverizing NTA glass powder prepared by coarse pulverization in S3 by jet mill pulverization to a size of about 2 to 3 μm or even a submicron size.
S5は、NTAガラス粉末が完成する。 S5 completes NTA glass powder.
以上によって、NTAガラス(バナジン酸塩ガラス)を溶融して冷やしたローラーの間に流し込んでNTAガラス破片を作成し、これを粗粉砕、微粉砕して所望のサイズ(2~3μm、あるいはサブミクロン)に粉砕してNTAガラス粉末を作成することが可能となる。 As described above, NTA glass (vanadate glass) is melted and poured into a cooled roller to produce NTA glass fragments, which are coarsely pulverized and finely pulverized to obtain a desired size (2 to 3 μm or submicron). ) To produce NTA glass powder.
図2は、本発明のNTAペースト作成フローチャートを示す。 FIG. 2 shows an NTA paste creation flowchart of the present invention.
図2の(a)はフローチャートを示し、図2の(b)は材料(1)、(2)、(3)、(4)の例を示す。 (A) of FIG. 2 shows a flowchart, and (b) of FIG. 2 shows examples of materials (1), (2), (3), and (4).
図2の(a)において、S11は、容器の中を攪拌する。これは、これに続くS12で順次容器に入れる(投入する)前に容器の中を攪拌開始する。 2 (a), S11 stirs the inside of the container. In this step, stirring is started in the container before sequentially entering (injecting) the container in S12.
S12は、(1)、(2)、(3)、(4)の順に容器に入れる。これは、図2の(b)に記載の(1)主材、(2)有機材、(3)有機溶媒、(4)樹脂の順番に容器に入れる。尚、必要に応じて順番を入れ替えてもよい。 S12 is put in the container in the order of (1), (2), (3), (4). This is put in a container in the order of (1) main material, (2) organic material, (3) organic solvent, and (4) resin described in FIG. The order may be changed as necessary.
S13は、終わりか判別する。これは、全ての材料を容器の中に入れて攪拌を完了したか判別する。YESの場合には、S14でペースト完成する。NOの場合には、S12に戻り、次の材料を容器の中に入れて攪拌することを繰り返す。 S13 determines whether the end. This is to determine if all ingredients have been placed in the container and stirring has been completed. In the case of YES, the paste is completed in S14. In the case of NO, it returns to S12 and repeats putting the next material in a container and stirring.
以上によって、(1)主材、(2)有機材、(3)有機溶媒、(4)樹脂を順次容器に入れて攪拌して混練物を作成し、NTAペーストを作成することが可能となる。 As described above, (1) main material, (2) organic material, (3) organic solvent, and (4) resin are sequentially put in a container and stirred to prepare a kneaded product, thereby making it possible to prepare an NTA paste. .
図3は、本発明のNTAペースト組成例を示す。 FIG. 3 shows an example of the NTA paste composition of the present invention.
図3の(a)はNTA100wt%の組成例を示す。この例では、図示の下記のようになる。
(A) of FIG. 3 shows a composition example of
(1)主材:バナジン酸塩ガラスの粉末2~3μm(図2参照)、濃度範囲75~80wt%であって、電極の導電性を発現する材料である(従来の銀ペースト中の銀Ag粉末に対応する材料である(この例では、銀Ag粉末は0wt%、即ち銀無である))。 (1) Main material: vanadate glass powder 2 to 3 μm (see FIG. 2), a concentration range of 75 to 80 wt%, and a material that exhibits electrode conductivity (silver Ag in a conventional silver paste) The material corresponding to the powder (in this example, the silver Ag powder is 0 wt%, i.e. no silver).
(2)有機材:ジエチレングリコールモノブチルアセテート等、濃度範囲10~15wt%であって、主材粒子を結合するための材料である。 (2) Organic material: Diethylene glycol monobutyl acetate or the like, which has a concentration range of 10 to 15 wt%, and is a material for binding main material particles.
(3)有機溶媒:タピネオール、濃度範囲5~10wt%であって、NTAペーストの濃度調整(特に、スクリーン印刷時に適合する濃度調整)するための材料である。 (3) Organic solvent: tapineol, a concentration range of 5 to 10 wt%, and a material for adjusting the concentration of NTA paste (particularly, adjusting the concentration suitable for screen printing).
(4)樹脂:セルロース系樹脂、濃度範囲1~5%wtであって、全体をまとめる、および塗布材料に接着(例えば太陽電池の電極作成対象の膜に接着)するための材料である。 (4) Resin: Cellulosic resin, a concentration range of 1 to 5% wt. It is a material for collecting the whole and adhering to a coating material (for example, adhering to a film on which a solar cell electrode is created).
尚、(3)有機溶媒として、他に、エチルアルコール、プロピルセルロース、ブチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシブチルセルロース、アセチルセルロース等がある。 In addition, (3) Other organic solvents include ethyl alcohol, propyl cellulose, butyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxybutyl cellulose, and acetyl cellulose.
(4)樹脂として、他に、エポキシ樹脂、ポリエステル樹脂、ケイ素樹脂、ユリア樹脂、アクリル樹脂などから1種類以上を含む組成を採用することが望ましい。 (4) As the resin, it is desirable to employ a composition containing at least one kind of epoxy resin, polyester resin, silicon resin, urea resin, acrylic resin, and the like.
以上の組成からなるNTAペースト(NTAガラス100%)を既述した図1、図2のフローチャートに従い作成することが可能となる。
It becomes possible to create an NTA paste (
図3の(b)はNTA50wt%、Ag50wt%の組成例を示す。この例では、図示の下記のようになる。
(B) in FIG. 3 shows a composition example of
(1)主材:バナジン酸塩ガラスの粉末2~3μm(図2参照)、濃度範囲35~40wt%であって、電極の導電性を発現する材料である(混合した主材の銀Ag粉末も電極の導電性を発現する材料である(この例では、NTAガラス粉末と同量のAg粉末を含む))。 (1) Main material: vanadate glass powder 2 to 3 μm (see FIG. 2), a concentration range of 35 to 40 wt%, and a material that develops electrode conductivity (mixed main material silver Ag powder) Is also a material that develops the conductivity of the electrode (in this example, it contains the same amount of Ag powder as the NTA glass powder).
(1)主材:銀粉末2~3μm、濃度範囲35~40wt%であって、電極の導電性を発現する材料である。
(1) Main material: Silver powder 2 to 3 μm,
(2)有機材:ジエチレングリコールモノブチルアセテート、濃度範囲10~15wt%であって、主材粒子を結合するための材料である。 (2) Organic material: Diethylene glycol monobutyl acetate, a concentration range of 10 to 15 wt%, which is a material for binding main material particles.
(3)有機溶媒:タピネオール、濃度範囲5~10wt%であって、NTAペーストの濃度調整(特に、スクリーン印刷時に適合する濃度調整)するための材料である。 (3) Organic solvent: tapineol, a concentration range of 5 to 10 wt%, and a material for adjusting the concentration of NTA paste (particularly, adjusting the concentration suitable for screen printing).
(4)樹脂:セルロース系樹脂、1~5%であって、全体をまとめる、および塗布材料に接着(例えば太陽電池の電極作製対象の膜に接着)するための材料である。 (4) Resin: Cellulosic resin, 1 to 5%, which is a material for collecting the whole and adhering to a coating material (for example, adhering to a film of a solar cell electrode fabrication target).
以上の組成からなるNTAペースト(NTA粉末50%、Ag粉末50%)を既述した図1、図2のフローチャートに従い作成することが可能となる。尚、必要に応じてガラス(鉛ガラス)等粉末を混入(ファイアスルーを発現させるため等)するようにしてもよい。
NTA paste (
図4は、本発明のNTAペースト適用フローチャートを示す。これは、NTAペースト(NTAガラス100%)を用いて太陽電池の電極を作成するフローチャートである。
FIG. 4 shows an NTA paste application flowchart of the present invention. This is a flowchart for creating an electrode of a solar cell using NTA paste (
図4において、S21は、NTAペーストをスクリーン印刷して、バスバー電極パターンを印刷する。これは、後述する太陽電池を構成する図9の(f)のバスバー電極15をNTAペースト(NTAガラス100%)を用いてスクリーン印刷する。尚、スクリーン印刷は複数回行い膜厚等を調整してもよい。
4, S21 screen-prints the NTA paste and prints the bus bar electrode pattern. In this process, the
S22は、乾燥した大気中に放置(2~24時間)する。この乾燥は、例えば
・乾燥BOX(乾燥用の箱、容器)等を使用する。
S22 is left in a dry atmosphere (2 to 24 hours). For this drying, for example, a dry BOX (drying box or container) or the like is used.
・場合によっては、本工程を省略する場合もある。 ・ In some cases, this process may be omitted.
S23は、印刷したNTAペーストの溶剤((3)有機溶媒)を揮発させる。例えば、条件として、
・40~100℃程度の温度領域で、
・100分程度の熱処理(乾燥処理)(溶媒飛ばし工程)
を行う。これにより、NTAペーストをスクリーン印刷した太陽電池のバスバー電極の部分(パターン部分)に含まれる(4)溶剤が揮発され、かつ太陽電池のバスバー電極の下地の部分に接着されることとなる。
S23 volatilizes the solvent ((3) organic solvent) of the printed NTA paste. For example, as a condition
・ In the temperature range of about 40-100 ℃
・ Heat treatment (drying) for about 100 minutes (solvent removal process)
I do. Thereby, the solvent (4) contained in the bus bar electrode portion (pattern portion) of the solar cell on which the NTA paste is screen-printed is volatilized and adhered to the underlying portion of the bus bar electrode of the solar cell.
S24は、乾燥した大気中に放置(2~24時間)する。この乾燥は、例えば
・乾燥BOX(乾燥用の箱、容器)等を使用する。
S24 is left in a dry atmosphere (2 to 24 hours). For this drying, for example, a dry BOX (drying box or container) or the like is used.
・場合によっては、本工程を省略する場合もある。 ・ In some cases, this process may be omitted.
S25は、焼成(焼結)を行う。条件として、
・遠赤外線焼結装置の1例として、
:340~900℃の範囲内で、かつ3~60秒の範囲で
焼結する。
S25 performs firing (sintering). As a condition
・ As an example of far-infrared sintering equipment,
: Sintering in the range of 340 to 900 ° C. and in the range of 3 to 60 seconds.
尚、約1(3が好ましい)~60秒の範囲であればよい。また、遠赤外線焼結装置に代えて赤外線を用いた焼結装置でも可能である。遠赤外線、赤外線による焼結として、上記例ではランプ(遠赤外線ランプ)を用いたが、これに限らず、セラミックヒータ、レーザなどでも赤外線、遠赤外線を放出するものであれば何でも良い。更に、上記範囲内での温度、焼結時間が焼結可能であれば、他の手段でもよい(例えば空気等の気体を加熱した熱風などでもよい)。 It should be noted that it may be in the range of about 1 (3 is preferred) to 60 seconds. A sintering apparatus using infrared rays instead of the far infrared sintering apparatus is also possible. In the above example, a lamp (far-infrared lamp) is used as sintering by far-infrared rays and infrared rays. However, the present invention is not limited to this, and any ceramic heater, laser, or the like that emits infrared rays or far-infrared rays may be used. Further, other means may be used as long as the temperature and the sintering time within the above ranges can be sintered (for example, hot air heated with a gas such as air).
尚、複数回スクリーン印刷及び焼結を行い膜厚を調整してもよい。 The film thickness may be adjusted by screen printing and sintering a plurality of times.
以上によって、実験では太陽電池のバスバー電極を本発明のNTAペースト(NTAガラス100%、更に50%等)をスクリーン印刷して上記範囲内(温度、焼結時間)で焼結を行い、従来の銀ペースト(銀粉末100%)とほぼ同じあるいは若干良い太陽電池の効率(変換効率)を測定することができた(後述する図6以降を参照)。
As described above, in the experiment, the bus bar electrode of the solar battery was screen-printed with the NTA paste of the present invention (
図5は、本発明のスクリーン印刷に使用するスクリーンの条件例を示す。 FIG. 5 shows an example of screen conditions used for screen printing according to the present invention.
図5に記載の通り、スクリーンの条件は、例えば
・スクリーン線径:16μm
・メッシュ :325本/inch
・目開き(オープニング):62μm
・空間率 :63%
である。ここで、太陽電池のバスバー電極の膜厚をコントロールするには、上記スクリーンの条件を変えるか、あるいはNTAペースト中の(2)有機溶材の濃度を変えることで行う。
As shown in FIG. 5, the screen conditions are, for example: Screen wire diameter: 16 μm
・ Mesh: 325 / inch
-Opening (opening): 62 μm
・ Space ratio: 63%
It is. Here, in order to control the film thickness of the bus bar electrode of the solar cell, the condition of the screen is changed or (2) the concentration of the organic solvent in the NTA paste is changed.
尚、図15において、裏面電極(アルミ層)46は、従来はアルミであり、一部では銀を用いる場合もあるが、本発明のNTAペースト(NTAガラス100%、更に銀を添加(例えば0%以上~50%位)を用いて作成してもよい。
In FIG. 15, the back electrode (aluminum layer) 46 is conventionally aluminum, and in some cases, silver may be used, but the NTA paste of the present invention (
以下、上述した本発明のNTAペースト(NTAガラス100%)およびAg粉末を混入したNTAペーストを用いて太陽電池のバスバー電極15を作成したときの実施例(実験例)を詳細に説明する(以下の実施例は特願2015-180720号(出願日:平成27年9月14日)の発明者、出願人が同一の出願の[実施例]のコピー(括弧内は、今回追加したもの)である)。以下はNTAペーストの一応用例である。
Hereinafter, an example (experimental example) when the solar cell
図6は、本発明の1実施例構造図(工程の完成図:断面図)を示す。 FIG. 6 shows a structural diagram of one embodiment of the present invention (process completion drawing: sectional view).
図6において、シリコン基板11は、公知の半導体のシリコン基板である。 In FIG. 6, a silicon substrate 11 is a known semiconductor silicon substrate.
高電子濃度領域(拡散ドーピング層)12は、シリコン基板11の上に所望のp型/n型の層を拡散ドーピングなどで形成した公知の領域(層)であって、図では上方向から太陽光が入射するとシリコン基板11で電子を発生(発電)し、その電子を蓄積する領域である。ここでは、蓄積した電子は電子取出口(フィンガー電極(銀))14によって上方向に取り出されるものである(発明の効果参照)。 The high electron concentration region (diffusion doping layer) 12 is a known region (layer) in which a desired p-type / n-type layer is formed on the silicon substrate 11 by diffusion doping or the like. This is a region where electrons are generated (power generation) in the silicon substrate 11 when light is incident and the electrons are accumulated. Here, the accumulated electrons are taken out upward by an electron outlet (finger electrode (silver)) 14 (see the effect of the invention).
絶縁膜(窒化シリコン膜)13は、太陽光を通過(透過)させ、かつバスバー電極15と高電子濃度領域12とを電気的に絶縁する公知の膜である。
The insulating film (silicon nitride film) 13 is a known film that allows sunlight to pass (transmits) and electrically insulates the
電子取出口(フィンガー電極(銀))14は、高電子濃度領域12中に蓄積した電子を絶縁膜13に形成した穴を介して取り出す口(フィンガー電極)である。フィンガー電極14は、本発明では、図示のように、バスバー電極15をNTAガラス100%(ないし71%程度)で焼成した場合には、フィンガー電極14がバスバー電極15の上面の高さと同じ部分あるいは突き抜けて上面に突出した部分を形成(焼成)し(NTAペーストの厚さをコントロールすることで行う)、高電子濃度領域12中の電子を当該フィンガー電極14を介してリード線17に直接に流入させる(電子を直接に取り出させる)ことが可能となる。つまり、高電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路1(従来の経路1)と、高電子濃度領域12、フィンガー電極14、リード線17の経路2(本発明で追加された経路2)との2つの経路で高電子濃度領域12中の電子(電流)をリード線17を介して外部に取り出すことができ、結果として、高電子濃度領域12とリード線17との間の抵抗値を非常に小さくすることが可能となり、損失を低減して結果として太陽電池の効率を向上させることができる。
The electron outlet (finger electrode (silver)) 14 is an opening (finger electrode) for taking out electrons accumulated in the high electron concentration region 12 through a hole formed in the insulating
バスバー電極(電極1(NTAガラス100%))15は、複数の電子取出口(フィンガー電極)14を電気的に接続する電極であって、Agの使用量を無くす、ないし削減する対象の電極である(発明の効果参照)。
The bus bar electrode (electrode 1 (
裏面電極(電極2(アルミ))16は、シリコン基板11の下面に形成した公知の電極である。 The back electrode (electrode 2 (aluminum)) 16 is a known electrode formed on the lower surface of the silicon substrate 11.
リード線(ハンダ形成)17は、複数のバスバー電極15を電気的に連結した電子(電流I)を外部に取り出したり、更に、本発明ではフィンガー電極14がバスバー電極15の上面と同じ高さの部分あるいは突き抜けた部分に、当該リード線を超音波半田付けして接合し電子(電流)を外部に取出したりするリード線である。
The lead wire (solder formation) 17 takes out electrons (current I) electrically connected to the plurality of
以上の図6の構造のもとで、上から下方向に太陽光を照射すると、太陽光はリード線17および電子取出口14の無い部分と絶縁膜13を通過し、シリコン基板11に入射して電子を発生する。その後、高電子濃度領域12に蓄積した電子は、電子取出口(フィンガー電極)14、バスバー電極15、リード線17の経路1、および電子取出口(フィンガー電極)14、リード線17の経路2の両経路を介して外部に取り出される。この際、図7から図14で後述するように、バスバー電極15を、ペーストにガラスフリットとしてNTAガラス(導電性ガラス)100%ないし71%(更に少なくても可、図14参照)を混入して焼成して形成し、Agの使用量を無くし、ないし低減することが可能となる。以下順次詳細に説明する。
Under the structure shown in FIG. 6, when sunlight is irradiated from the top to the bottom, the sunlight passes through the portion without the lead wire 17 and the electron outlet 14 and the insulating
図7は、本発明の動作説明フローチャートを示し、図8および図9は各工程の詳細構造を示す。 FIG. 7 shows a flowchart for explaining the operation of the present invention, and FIGS. 8 and 9 show the detailed structure of each process.
図7において、S1は、シリコン基板を準備する。 7, S1 prepares a silicon substrate.
S2は、クリーニングする。これらS1、S2は、図8の(a)に示すように、S1で準備したシリコン基板11の面(高電子濃度領域12を形成する面)を綺麗にクリーニングする。 S2 is cleaned. These S1 and S2 cleanly clean the surface (surface on which the high electron concentration region 12 is formed) of the silicon substrate 11 prepared in S1, as shown in FIG.
S3は、拡散ドーピングする。これは、図8の(b)に示すように、図38(a)でクリーニングしたシリコン基板11の上に公知の拡散ドーピングを行い、高電子濃度領域12を形成する。 S3 is diffusion doped. As shown in FIG. 8B, this involves performing known diffusion doping on the silicon substrate 11 cleaned in FIG. 38A to form a high electron concentration region 12.
S4は、反射防止膜(窒化シリコン膜)を形成する。これは、図8の(c)に示すように、図8の(b)の高電子濃度領域12を形成した上に、反射防止膜(太陽光を通過させ、かつ表面反射を可及的に低減した膜)として例えば窒化シリコン膜を公知の手法で形成する。 S4 forms an antireflection film (silicon nitride film). As shown in FIG. 8 (c), the high electron concentration region 12 of FIG. 8 (b) is formed, and an antireflection film (sunlight is passed through and surface reflection is made as much as possible. For example, a silicon nitride film is formed by a known method as the reduced film.
S5は、フィンガー電極をスクリーン印刷する。これは、図8の(d)に示すように、図8の(c)の窒化シリコン膜13を形成した上に、形成するフィンガー電極14のパターンをスクリーン印刷する。印刷材料は、例えば銀にフリットとして鉛ガラスを混入したものを用いる。
S5 screen-prints the finger electrodes. As shown in FIG. 8 (d), the pattern of the finger electrode 14 to be formed is screen-printed on the
S6は、フィンガー電極を焼成し、ファイヤースルーさせる。これは、図8の(d)でスクリーン印刷したフィンガー電極14のパターン(銀と鉛ガラスのフリットを混入したもの)を焼成し、図8の(e)に示すように、窒化シリコン膜13にファイヤースルーさせてその中に銀(導電性)を形成したフィンガー電極14を形成する。
In S6, the finger electrode is fired and fired through. This is because the finger electrode 14 pattern (mixed with silver and lead glass frit) screen-printed in FIG. 8 (d) is baked, and the
S7は、バスバー電極(電極1)をスクリーン印刷する。これは、図9の(f)に示すように、図8の(e)のフィンガー電極14を形成した上に、形成するバスバー電極15のパターンをスクリーン印刷する。印刷材料は、例えばフリットとしてNTAガス(100%)のものを用いる。
S7 screen-prints the bus bar electrode (electrode 1). As shown in FIG. 9 (f), the pattern of the
S8は、バスバー電極を焼成する。これは、図9の(f)でスクリーン印刷したバスバー電極15のパターン(NTAガラス(100%)のフリット)を焼成(焼成時間は長くても1分以内、1~3秒以上で焼成)し、図9の(g)に示すように、バスバー電極15が最上層に形成され、かつ本発明の特徴である、フィンガー電極14が当該最上層に形成されたバスバー電極15の上面と同じ高さの部分、あるいは突き抜けた部分が形成される。(これは膜厚コントロールで行う。)
尚、S5及びS7の印刷を行い、両者を同時に焼成してもよい。
In S8, the bus bar electrode is fired. This is because the
Note that S5 and S7 may be printed and both may be fired simultaneously.
S9は、裏面電極(電極2)を形成する。これは、図9の(h)に示すように、シリコン基板11の下側(裏面)に例えばアルミ電極を形成する。 S9 forms the back electrode (electrode 2). For example, an aluminum electrode is formed on the lower side (rear surface) of the silicon substrate 11 as shown in FIG.
S10は、リード線をハンダ形成する。これは、図9の(i)に示すように、図9の(g)のバスバー電極を電気的に接続するリード線をハンダで形成、例えば超音波半田付けで形成して電気的に接続すると、高電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路1(従来の経路1)と、高電子濃度領域12、フィンガー電極14、リード線17の経路2(本発明で追加した経路2)との両経路で、高電子濃度領域12中の電子(電流)をリード線17を介して外部に取り出すことが可能となり、高電子濃度領域12とリード線17との間の抵抗値を非常に小さくしてロスを低減して太陽電池の効率を向上させることができる。すなわち、本発明で追加した経路2は、フィンガー電極14の一端が高電子濃度領域12の中にあり、他端がNTAガラス100%のバスバー電極15の上面と同じ高さの部分あるいは突き抜けた部分があり、この部分にリード線が直接接合(超音波半田付けで直接接合)されるので、高電子濃度領域12、フィンガー電極14、リード線17の経路2が形成される。なお、経路1は、従来の経路である。
S10 solders the lead wire. As shown in FIG. 9 (i), when the lead wires for electrically connecting the bus bar electrodes in FIG. 9 (g) are formed by soldering, for example, by ultrasonic soldering, they are electrically connected. , High electron concentration region 12, finger electrode 14,
以上の工程により、シリコン基板に太陽電池を作成することが可能となる。 Through the above steps, a solar cell can be formed on a silicon substrate.
図10は、本発明の詳細説明図(バスバー電極の焼成)を示す。 FIG. 10 shows a detailed explanatory view of the present invention (firing of bus bar electrodes).
図10の(a)はバスバー電極を銀100%、NTA0%(重量比)で焼成した例を模式的に示し、図10の(b)はバスバー電極を銀50%、NTA50%(重量比)で焼成した例を模式的に示し、図10の(c)はバスバー電極をNTA100%(重量比)で焼成した例を模式的に示す。焼成時間は、長くても1分以内で、1~3秒以上とした。
FIG. 10 (a) schematically shows an example in which the bus bar electrode is baked with 100% silver and
図10の(a)と図10の(b)と図10の(c)とで図示のようにほぼ同構造となるように形成した太陽電池の試作実験では下記のような実験結果が得られた。 In a prototype experiment of a solar cell formed so as to have substantially the same structure as shown in FIGS. 10 (a), 10 (b) and 10 (c), the following experimental results are obtained. It was.
太陽電池の変換効率
図10の(a)のAg 100%、NTA 0% 平均約17.0%
図10の(b)のAg 50%、NTA 50% 平均約17.0%
図10の(c)のAg 0%、NTA 100% 平均約17.2%
試作実験結果は、バスバー電極のパターンを印刷する材料として、図10の(a)と、図10の(b)とでは太陽電池を作成したときの変換効率が平均約17.0%でほぼ同じ結果が得られ、更に、図10の(c)では変換効率が平均約17.2%が得られた。これら図10の(a)から(c)のいずれもほぼ同じ変換効率の範囲内か、あるいは図10の(c)のNTA 100%が若干高い変換効率であることが初期実験結果から判明する。尚、NTAガラスは、バナジウム、バリウム、鉄から構成され、特に鉄は内部的に強く結合して当該内部に留まっており、他の材料と混合してもその結合性は極めて小さい性質を有すること(特許第5333976号等参照)、更に既述した本発明の高電子濃度領域とリード線との間の経路(経路1と、経路2とが並列)の改善によると推測される。
Conversion efficiency of
Fig. 10 (b)
Fig. 10 (c)
As a result of the prototype experiment, the conversion efficiency when solar cells are formed is almost the same at an average of about 17.0% in FIG. 10 (a) and FIG. 10 (b) as materials for printing the bus bar electrode pattern. The results were obtained. Further, in FIG. 10C, the average conversion efficiency was about 17.2%. It can be seen from the initial experimental results that all of (a) to (c) in FIG. 10 are within the same conversion efficiency range, or that
図11および図12は、本発明の説明図(バスバー電極)を示す。 11 and 12 are explanatory diagrams (bus bar electrodes) of the present invention.
図11の(a)および図11の(b)はNTA 50%、Ag50%のものであって、図11の(a)は全体平面図を示し、図11の(b)は拡大図を示す。図12の(c)はNTA 100% Ag 0%のものであって、図12の(c)は拡大図を示す。
11 (a) and 11 (b) are
図11の(a)および図11の(b)において、バスバー電極15は、図11の(a)の全体平面図に示すように、長いバー状の電極であって、これを光学顕微鏡で拡大すると図11の(b)に示すような構造が観察された。
11 (a) and 11 (b), the
図11の(b)において、バスバー電極15は、従来のAgと鉛ガラスのフリットで焼成した場合にはAgが均一に分散していたが、本発明のAgとNTAガラスのフリットで焼成(長くても1分以内、1~3秒以上の焼成)した場合には当該図11の(b)に示すように、バスバー電極15の中央部分にAgが集まって形成されることが判明した。そのため、発明の効果の欄で説明したように、AgにNTAガラスを混入して短時間焼成(長くても1分、1~3秒以上の焼成)するとAgが中央部分に集まって導電性が向上し(従来はAgは均一に分散していた場合に比較して導電性が向上し)、かつNTAガラス自身も導電性を有することなどの総合的な作用によりAgの割合を減らしてNTAガラスを増やしても、太陽電池として製造した場合の変換効率は既述したように約16.9%と実験ではほぼ同じ結果が得られた。
In FIG. 11 (b), the
尚、焼成温度は、500℃から900℃であるが、太陽電池として作成した場合に最適な温度を実験により決定することが必要である。低すぎても高すぎても図11の(b)のような構造が得られず、実験で決定することが必要である。 The firing temperature is 500 ° C. to 900 ° C., but it is necessary to determine the optimum temperature by experiment when it is produced as a solar cell. If it is too low or too high, the structure as shown in FIG. 11B is not obtained, and it is necessary to determine it by experiment.
図12の(c)において、バスバー電極15は、図示の中央部分の横方向の幅の広いバー状の電極であって、本発明に係るNTA 100%の拡大写真の1例を示す。
12 (c), the
この図12の(c)のバスバー電極15は、縦方向に幅の狭いフィンガー電極14が当該バスバー電極15を突き抜けて上側に少し突出した部分があり、かつ当該突出した部分の周囲が元のフィンガー電極14の幅よりも太くなっていることが判明する。そして、図示のバスバー電極15の上に、当該バスバー電極15の幅と同じ、若干小さい、あるいは若干大きい幅で、後述する図13で詳細に説明するように、超音波半田付けすることにより、既述した経路1(光電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路1)および経路2(光電子濃度領域12、フィンガー電極14、リード線17の経路2)の両経路で高濃度電子領域と当該リード線とを導電接続し、電子(電流)の損失を低減して外部に効率的に取り出すことが可能となり、図11の(a)、(b)とほぼ同じ変換効率、あるいは若干高い変換効率(約17.2%)が得られた。
The
尚、焼成温度は、図11の(a)、(b)とほぼ同じ500℃から900℃であるが、太陽電池として作成した場合に最適な温度を実験により決定することが必要である。低すぎても高すぎても図12の(c)のような構造が得られず、実験で決定することが必要である。 The firing temperature is approximately 500 ° C. to 900 ° C. as in FIGS. 11 (a) and 11 (b), but it is necessary to determine the optimum temperature by experiment when it is fabricated as a solar cell. If it is too low or too high, a structure as shown in FIG. 12C cannot be obtained, and it is necessary to determine by experiment.
図13は、本発明の説明図(超音波半田付け)を示す。これは、既述した図12の(c)のNTA 100% の場合のものである(尚、同様に、図11の(a)、(b)に適用してもよい)。
FIG. 13 shows an explanatory diagram (ultrasonic soldering) of the present invention. This is the case of the
図13の(a)は、フィンガー電極14を焼成した後の状態を示す。 (A) of FIG. 13 shows the state after the finger electrode 14 is baked.
図13の(b)は、図13の(a)のバスバー電極15の上に、点線で示す、ここでは、若干大きめ(あるいは同じ、あるいは小さくてもよい)のリード線17を半田付けする従来の例を示す。この従来の例では、通常の半田付けで行うので、フィンガー電極14が突出した部分(Ag)とリード線17とは半田接合するが、フィンガー電極14の突出していない部分(NTA100%の部分)とリード線17とは十分に半田接合しなく、機械的強度が十分ではない。一方、後述する図13の(c)の超音波半田付けした場合には、半田接合し、機械的強度が大幅に向上した。
FIG. 13B shows a conventional soldering of a slightly larger (or the same or smaller) lead wire 17 shown by a dotted line on the
図13の(c)は、図13の(a)のバスバー電極15(図12の(c)のバスバー電極15)の上に、点線で示す、若干大きめのリード線17を超音波半田付けする本発明の例を示す。この本発明の例では、超音波半田付けで行うので、フィンガー電極14が突出した部分(Ag)とリード線17とは半田接合し、更に、フィンガー電極14のない部分(NTA100%の部分)とリード線17とも半田接合し、機械的強度が大幅に向上すると共に、既述した経路2(高電子濃度領域12、フィンガー電極14、バスバー電極15、リード線17の経路2)の導電性が向上した。
In FIG. 13C, a slightly larger lead wire 17 indicated by a dotted line is ultrasonically soldered on the
図14は、本発明の測定例(効率)を示す。本図14は、既述したバスバー電極15について、NTAを100%から70%に変化させたときの良好な測定例であって、図14の横軸はサンプルの番号を示し、縦軸は効率(%)を示す。サンプルは、
・NTA 100% Ag 0%
・NTA 90% Ag 10%
・NTA 80% Ag 20%
・NTA 70% Ag 30%
とし、これらで太陽電池を作成し、各測定結果(効率)は図示の通りであった。尚、初期実験であるので、測定結果には図示のようにかなりのバラツキがあるが、16.9から17.5の範囲内に収まっており、NTA 100%でバスバー電極15を作成(つまり、Agなしで作成)して太陽電池を製造した場合でも、NTA 70%(あるいは、更に80%、90%)に比して同程度ないし若干高い効率が得られ、NTA 100%でも使えることが判明した(発明者らはこの事実を発見した)。
FIG. 14 shows a measurement example (efficiency) of the present invention. FIG. 14 is a good measurement example when the NTA is changed from 100% to 70% for the
・
・
・
・
These were used to make solar cells, and each measurement result (efficiency) was as shown. In addition, since it is an initial experiment, there are considerable variations in the measurement results as shown in the figure, but they are within the range of 16.9 to 17.5, and the
11:シリコン基板
12:高電子濃度領域(拡散ドーピング)
13:絶縁膜(窒化シリコン膜)
14:電子取出口(フィンガー電極)
15:バスバー電極
16:裏面電極
17:リード線
11: Silicon substrate 12: High electron concentration region (diffusion doping)
13: Insulating film (silicon nitride film)
14: Electron outlet (finger electrode)
15: Bus bar electrode 16: Back electrode 17: Lead wire
Claims (5)
前記主材としてバナジン酸塩ガラスの粉末を混入して作成した混練物からなり、該作成した混練物を340℃ないし900℃の範囲内、かつ1秒ないし60秒の範囲内で焼結して導電性の電極を形成させることを特徴とするNTAペースト。 It consists of a main material that combines particles to form conductivity, an organic material that binds the particles of the main material, an organic solvent that adjusts the concentration, and a resin that combines the whole and adheres to the coating material. In a paste that is sintered to form a conductive electrode,
The kneaded material was prepared by mixing vanadate glass powder as the main material, and the prepared kneaded material was sintered in the range of 340 ° C. to 900 ° C. and in the range of 1 second to 60 seconds. An NTA paste characterized by forming a conductive electrode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-202461 | 2015-10-13 | ||
JP2015202461A JP6659074B2 (en) | 2015-10-13 | 2015-10-13 | NTA paste |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017065109A1 true WO2017065109A1 (en) | 2017-04-20 |
Family
ID=58517179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/079947 WO2017065109A1 (en) | 2015-10-13 | 2016-10-07 | Nta paste |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6659074B2 (en) |
KR (2) | KR101998207B1 (en) |
CN (1) | CN106571171B (en) |
TW (1) | TWI631087B (en) |
WO (1) | WO2017065109A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018110178A (en) * | 2016-12-30 | 2018-07-12 | アートビーム有限会社 | Solar cell and method for manufacturing solar cell |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5084421A (en) * | 1990-07-27 | 1992-01-28 | Johnson Matthey, Inc. | Silver-glass pastes |
JP2011144077A (en) * | 2010-01-15 | 2011-07-28 | Tokyo Electronics Chemicals Corp | Highly electroconductive paste composition |
US20110180139A1 (en) * | 2010-01-25 | 2011-07-28 | Hitachi Chemical Company, Ltd. | Paste composition for electrode and photovoltaic cell |
JP2011251880A (en) * | 2010-06-03 | 2011-12-15 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Vanadate-phosphate glass excellent in water resistance and chemical durability |
JP2016192539A (en) * | 2015-03-30 | 2016-11-10 | 農工大ティー・エル・オー株式会社 | Solar cell and method for manufacturing solar cell |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008059641A1 (en) * | 2006-11-13 | 2008-05-22 | Tokai Industry Corp. | Electrical/electronic circuit system with conductive glass member |
JP5120477B2 (en) * | 2011-04-07 | 2013-01-16 | 日立化成工業株式会社 | Electrode paste composition and solar cell |
JP5791102B2 (en) | 2011-07-05 | 2015-10-07 | 学校法人近畿大学 | Vanadate-tungstate glass with excellent water resistance and chemical durability |
CN102796488B (en) * | 2012-07-26 | 2014-08-20 | 深圳大学 | High-temperature resistance insulation adhesive |
-
2015
- 2015-10-13 JP JP2015202461A patent/JP6659074B2/en active Active
-
2016
- 2016-06-15 TW TW105118738A patent/TWI631087B/en active
- 2016-06-23 KR KR1020160078511A patent/KR101998207B1/en not_active Expired - Fee Related
- 2016-07-08 CN CN201610537480.4A patent/CN106571171B/en not_active Expired - Fee Related
- 2016-10-07 WO PCT/JP2016/079947 patent/WO2017065109A1/en active Application Filing
-
2019
- 2019-06-13 KR KR1020190069928A patent/KR20190071651A/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5084421A (en) * | 1990-07-27 | 1992-01-28 | Johnson Matthey, Inc. | Silver-glass pastes |
JP2011144077A (en) * | 2010-01-15 | 2011-07-28 | Tokyo Electronics Chemicals Corp | Highly electroconductive paste composition |
US20110180139A1 (en) * | 2010-01-25 | 2011-07-28 | Hitachi Chemical Company, Ltd. | Paste composition for electrode and photovoltaic cell |
JP2011251880A (en) * | 2010-06-03 | 2011-12-15 | Kitakyushu Foundation For The Advancement Of Industry Science & Technology | Vanadate-phosphate glass excellent in water resistance and chemical durability |
JP2016192539A (en) * | 2015-03-30 | 2016-11-10 | 農工大ティー・エル・オー株式会社 | Solar cell and method for manufacturing solar cell |
Non-Patent Citations (2)
Title |
---|
K. FUKUDA ET AL.: "A Significant improvement of the electrical conductivity of semiconducting vanadate glasses caused by Heat Treatment", SOLID STATE PHENOM., vol. 90, no. 91, 2003, pages 215 - 219, XP003018338 * |
SHIRO KUBUKI ET AL.: "Crystallization and Structural Relaxation of xBaO · (90-X) V205 · 10Fe2O3 Glasses Accompanying an Enhancement of the Electric Conductivity", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 115, no. 11, 2007, pages 776 - 779 * |
Also Published As
Publication number | Publication date |
---|---|
KR20190071651A (en) | 2019-06-24 |
TWI631087B (en) | 2018-08-01 |
JP2017076486A (en) | 2017-04-20 |
TW201713604A (en) | 2017-04-16 |
JP6659074B2 (en) | 2020-03-04 |
KR101998207B1 (en) | 2019-09-27 |
CN106571171A (en) | 2017-04-19 |
CN106571171B (en) | 2018-06-12 |
KR20170043432A (en) | 2017-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106458708A (en) | Conductor for a solar cell | |
KR20120042903A (en) | Cu-al alloy powder, alloy paste utilizing same, and electronic component | |
TW201140869A (en) | Method for applying full back surface field and silver busbar to solar cell | |
WO2012111480A1 (en) | Conductive paste and solar cell | |
KR20200138136A (en) | Solar cell and process of manufacture of solar cell | |
CN106251934B (en) | Hyperfine electronic printing slurry | |
JP6696665B2 (en) | Ultrasonic soldering method and ultrasonic soldering apparatus | |
JP2012521100A (en) | Conductor paste for solar cell electrode | |
JP6659074B2 (en) | NTA paste | |
WO2014050704A1 (en) | Conductive paste and solar cell | |
WO2012111478A1 (en) | Conductive paste and solar cell | |
CN107622812A (en) | A kind of two-sided PERC crystal-silicon solar cells aluminium paste of p-type and preparation method thereof | |
JP7058390B2 (en) | Solar cells and methods for manufacturing solar cells | |
CN111180106B (en) | Glass, glass powder, conductive paste and solar cell | |
KR101791480B1 (en) | Solar cell and process of manufacture of solar cell | |
JP2013504177A (en) | Conductor for photovoltaic cells | |
TW202214533A (en) | Glass frit, glass frit manufacturing method, and silver paste | |
CN104465875A (en) | Preparation method of photovoltaic cell silver grid line | |
JP2024080550A (en) | Glass frit, glass frit manufacturing method, silver paste, silver paste manufacturing method, multilayer ceramic capacitor, and multilayer ceramic capacitor manufacturing method | |
WO2014052253A2 (en) | Conductive silver paste for a metal-wrap-through silicon solar cell | |
TW202420608A (en) | Solar cell | |
TW202027292A (en) | Solar cell and method for manufacturing solar cell | |
JP2020141141A (en) | Solar cells and solar cell manufacturing methods | |
CN110379868A (en) | The manufacturing method of solar cell and solar cell | |
TW201409487A (en) | Conductive compositions containing Li2RuO3 and ion-exchanged Li2RuO3 and their use in the manufacture of semiconductor devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16855363 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16855363 Country of ref document: EP Kind code of ref document: A1 |