WO2017063351A1 - 用于选择性激光烧结的聚烯烃树脂粉末及其制备方法 - Google Patents
用于选择性激光烧结的聚烯烃树脂粉末及其制备方法 Download PDFInfo
- Publication number
- WO2017063351A1 WO2017063351A1 PCT/CN2016/079396 CN2016079396W WO2017063351A1 WO 2017063351 A1 WO2017063351 A1 WO 2017063351A1 CN 2016079396 W CN2016079396 W CN 2016079396W WO 2017063351 A1 WO2017063351 A1 WO 2017063351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- parts
- polyolefin resin
- temperature
- powder
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 164
- 229920005672 polyolefin resin Polymers 0.000 title claims abstract description 85
- 238000000110 selective laser sintering Methods 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title description 2
- 239000002245 particle Substances 0.000 claims abstract description 113
- 239000000203 mixture Substances 0.000 claims abstract description 67
- 238000000034 method Methods 0.000 claims abstract description 65
- 238000009826 distribution Methods 0.000 claims abstract description 49
- 239000007788 liquid Substances 0.000 claims abstract description 48
- 238000010438 heat treatment Methods 0.000 claims abstract description 33
- 239000003960 organic solvent Substances 0.000 claims abstract description 18
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000000926 separation method Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 claims abstract description 4
- 238000001035 drying Methods 0.000 claims abstract description 3
- -1 polypropylene Polymers 0.000 claims description 94
- 239000004743 Polypropylene Substances 0.000 claims description 81
- 229920001155 polypropylene Polymers 0.000 claims description 81
- 229920005989 resin Polymers 0.000 claims description 66
- 239000011347 resin Substances 0.000 claims description 66
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 64
- 229920013716 polyethylene resin Polymers 0.000 claims description 62
- JKIJEFPNVSHHEI-UHFFFAOYSA-N Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphite (3:1) Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC=C1OP(OC=1C(=CC(=CC=1)C(C)(C)C)C(C)(C)C)OC1=CC=C(C(C)(C)C)C=C1C(C)(C)C JKIJEFPNVSHHEI-UHFFFAOYSA-N 0.000 claims description 40
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 claims description 40
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 25
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 18
- 239000003963 antioxidant agent Substances 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- 229920000098 polyolefin Polymers 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- 230000003078 antioxidant effect Effects 0.000 claims description 14
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 claims description 13
- 235000013539 calcium stearate Nutrition 0.000 claims description 13
- 239000008116 calcium stearate Substances 0.000 claims description 13
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- 229920005633 polypropylene homopolymer resin Polymers 0.000 claims description 12
- 239000005995 Aluminium silicate Substances 0.000 claims description 11
- 235000012211 aluminium silicate Nutrition 0.000 claims description 11
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 11
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 claims description 11
- 239000003242 anti bacterial agent Substances 0.000 claims description 9
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 9
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 8
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 8
- 239000003365 glass fiber Substances 0.000 claims description 8
- 239000002667 nucleating agent Substances 0.000 claims description 8
- 239000011787 zinc oxide Substances 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 7
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 7
- 239000000292 calcium oxide Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- WGECXQBGLLYSFP-UHFFFAOYSA-N 2,3-dimethylpentane Chemical compound CCC(C)C(C)C WGECXQBGLLYSFP-UHFFFAOYSA-N 0.000 claims description 6
- BZHMBWZPUJHVEE-UHFFFAOYSA-N 2,3-dimethylpentane Natural products CC(C)CC(C)C BZHMBWZPUJHVEE-UHFFFAOYSA-N 0.000 claims description 6
- 239000002216 antistatic agent Substances 0.000 claims description 6
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 5
- 239000006229 carbon black Substances 0.000 claims description 5
- ZISSAWUMDACLOM-UHFFFAOYSA-N triptane Chemical compound CC(C)C(C)(C)C ZISSAWUMDACLOM-UHFFFAOYSA-N 0.000 claims description 5
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 claims description 4
- CXOWYJMDMMMMJO-UHFFFAOYSA-N 2,2-dimethylpentane Chemical compound CCCC(C)(C)C CXOWYJMDMMMMJO-UHFFFAOYSA-N 0.000 claims description 4
- ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 2,3-dimethylbutane Chemical compound CC(C)C(C)C ZFFMLCVRJBZUDZ-UHFFFAOYSA-N 0.000 claims description 4
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Chemical compound CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 claims description 4
- AEXMKKGTQYQZCS-UHFFFAOYSA-N 3,3-dimethylpentane Chemical compound CCC(C)(C)CC AEXMKKGTQYQZCS-UHFFFAOYSA-N 0.000 claims description 4
- AORMDLNPRGXHHL-UHFFFAOYSA-N 3-ethylpentane Chemical compound CCC(CC)CC AORMDLNPRGXHHL-UHFFFAOYSA-N 0.000 claims description 4
- VLJXXKKOSFGPHI-UHFFFAOYSA-N 3-methylhexane Chemical compound CCCC(C)CC VLJXXKKOSFGPHI-UHFFFAOYSA-N 0.000 claims description 4
- PFEOZHBOMNWTJB-UHFFFAOYSA-N 3-methylpentane Chemical compound CCC(C)CC PFEOZHBOMNWTJB-UHFFFAOYSA-N 0.000 claims description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 claims description 4
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 4
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 4
- 229960001545 hydrotalcite Drugs 0.000 claims description 4
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 4
- 239000012752 auxiliary agent Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 claims description 2
- 239000000539 dimer Substances 0.000 claims description 2
- 229920001519 homopolymer Polymers 0.000 claims description 2
- 239000010445 mica Substances 0.000 claims description 2
- 229910052618 mica group Inorganic materials 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 229940114930 potassium stearate Drugs 0.000 claims description 2
- ANBFRLKBEIFNQU-UHFFFAOYSA-M potassium;octadecanoate Chemical compound [K+].CCCCCCCCCCCCCCCCCC([O-])=O ANBFRLKBEIFNQU-UHFFFAOYSA-M 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims 1
- 229910052906 cristobalite Inorganic materials 0.000 claims 1
- 235000012239 silicon dioxide Nutrition 0.000 claims 1
- 229910052682 stishovite Inorganic materials 0.000 claims 1
- 229910052905 tridymite Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 239000000654 additive Substances 0.000 abstract description 2
- 230000000996 additive effect Effects 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 67
- 229910052799 carbon Inorganic materials 0.000 description 29
- 229910052757 nitrogen Inorganic materials 0.000 description 28
- 239000000498 cooling water Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 18
- 239000002904 solvent Substances 0.000 description 14
- 238000005516 engineering process Methods 0.000 description 13
- 238000000149 argon plasma sintering Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 11
- 229960000829 kaolin Drugs 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- 229920000573 polyethylene Polymers 0.000 description 8
- 229960003563 calcium carbonate Drugs 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000000835 fiber Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 4
- 229940105289 carbon black Drugs 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 238000001226 reprecipitation Methods 0.000 description 4
- 238000001291 vacuum drying Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 229940092690 barium sulfate Drugs 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical class [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 2
- VUWCWMOCWKCZTA-UHFFFAOYSA-N 1,2-thiazol-4-one Chemical class O=C1CSN=C1 VUWCWMOCWKCZTA-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010011469 Crying Diseases 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 229940087373 calcium oxide Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940043356 mica Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229930003658 monoterpene Natural products 0.000 description 1
- 150000002773 monoterpene derivatives Chemical class 0.000 description 1
- 235000002577 monoterpenes Nutrition 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 150000008379 phenol ethers Chemical class 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- 229940043774 zirconium oxide Drugs 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/14—Powdering or granulating by precipitation from solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/007—Treatment of sinter powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/02—Conditioning or physical treatment of the material to be shaped by heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/04—Conditioning or physical treatment of the material to be shaped by cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/06—Conditioning or physical treatment of the material to be shaped by drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/10—Making granules by moulding the material, i.e. treating it in the molten state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/06—Treatment of polymer solutions
- C08F6/12—Separation of polymers from solutions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B2009/125—Micropellets, microgranules, microparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/10—Polymers of propylene
- B29K2023/12—PP, i.e. polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/25—Solid
- B29K2105/251—Particles, powder or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2206—Oxides; Hydroxides of metals of calcium, strontium or barium
Definitions
- the present invention relates to the field of polymer processing technology, and in particular to a method for preparing a polyolefin resin powder and a polyolefin resin powder obtained thereby and use thereof for selective laser sintering.
- SLS Selective Laser Sintering
- molding materials that can be used in SLS technology, such as polymers, paraffins, metals, ceramics, and composites thereof.
- the properties and properties of the molding material are an important factor in the successful sintering of the SLS technology, which directly affects the molding speed, precision, physical and chemical properties and overall performance of the molded part.
- polymer powder raw materials that can be directly applied to SLS technology and successfully manufactured molded articles having small dimensional errors, regular surface irregularities, and low porosity are rarely seen on the market. Therefore, there is an urgent need to develop and improve the types of polymers suitable for SLS technology and their corresponding solid powder materials.
- a pulverization method such as a cryogenic pulverization method is usually employed to prepare a powder raw material suitable for SLS.
- a deep crying is disclosed in CN104031319A
- the polypropylene powder obtained by the pulverization method requires not only specific equipment, but also the prepared powder raw material particles have a rough surface, an insufficient particle diameter, and an irregular shape, which is disadvantageous for the formation of the sintered compact and affects the properties of the molded body.
- a precipitation method is also available to prepare a polymer powder raw material such as a polyamide powder.
- the polyamide is usually dissolved in a suitable solvent, and the material is uniformly distributed in a solvent by stirring and cooled to precipitate a powder precipitate.
- CN103374223A discloses a precipitated polymer powder based on AABB-type polyamide obtained by reprecipitation of a polyamide obtained by polycondensation of a diamine and a dicarboxylic acid.
- an alcohol solvent is employed in the reprecipitation process.
- a first aspect of the present invention provides a polyolefin resin powder, a method for producing the same, and an application for selective laser sintering.
- the polyolefin resin powder provided according to the present invention has good oxidation resistance, good powder fluidity, suitable size, suitable bulk density, uniform particle shape and uniform particle size distribution, and is particularly suitable for selective laser Sintering to prepare various molded articles.
- a method of producing a polyolefin resin powder according to the present invention comprising the steps of:
- the difference between the solubility parameter of the organic solvent and the polyolefin resin is within 0-20% of the solubility parameter of the polyolefin resin.
- a second aspect of the invention resides in a polyolefin resin powder obtained by the method of the invention.
- a third aspect of the invention resides in a method of selective laser sintering.
- a fourth aspect of the invention resides in the use of a polyolefin resin powder obtained by the method of the invention in a method of producing a three-dimensional object.
- the polyolefin suitable for use in the process of the invention may be selected from polymers obtained by the polymerization or copolymerization of linear, branched or cyclic olefins, for example C 2 -C 10 olefins, preferably ⁇ -olefins, or these polymers. mixture.
- Suitable olefins include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, and the like.
- the polyolefin is selected from the group consisting of polypropylene (PP) and polyethylene (PE) or mixtures thereof. More preferably, the polyolefin is one of polypropylene or polyethylene.
- the polypropylene is at least one of a homopolypropylene resin and a random polypropylene resin.
- the isotactic polypropylene resin has an isotacticity of ⁇ 95%, for example, 95 to 98%; and the random polypropylene resin has an isotacticity of ⁇ 95%, for example, 91 to 94.5%.
- the homopolymer polypropylene resin and the random polypropylene resin have a melt index of from 20 to 100 g/10 min, preferably from 30 to 80 g/10 min, measured at 210 ° C and a load of 2.16 kg.
- the polyethylene resin has a density of ⁇ 0.900 g/cm 3 , preferably 0.910 to 0.990 g/cm 3 ; and a melt index of 190 ° C and a load of 2.16 kg for 20 ⁇ . 100 g/10 min, preferably 30 to 80 g/10 min. Within this range, the polyolefin resin has good fluidity and is advantageous for the laser sintering process.
- the selection of an organic solvent for dissolving the polyolefin resin is important, and the selected organic solvent should be a poor solvent of the polyolefin resin at normal temperature and pressure. Therefore, the solubility parameter of the organic solvent is selected to be less than or equal to the polyolefin resin solubility parameter, and the difference is within 0-20%, preferably 0-15%, such as 0-12% of the polyolefin resin solubility parameter.
- the solvent is selected to be a further low boiling solvent.
- the term "low boiling point" means that the solvent has a boiling point of not higher than 160 ° C at normal pressure, such as not higher than 150 ° C or 130 ° C.
- the organic solvent is used in an amount of from 600 to 1200 parts by weight, preferably from 800 to 1000 parts by weight, based on 100 parts by weight of the polyolefin resin.
- the amount of the organic solvent used is within this range, a polyolefin resin powder having a good morphology and dispersibility can be obtained.
- the organic solvent is selected from the group consisting of C 5 -C 12 alkanes, preferably C 5 -C 9 alkanes, more preferably selected from n-pentane, isopentane, n-hexane, 2-methylpentane , 3-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, cyclohexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 3-ethylpentane, 2,2 At least one of 3-trimethylbutane, n-octane and n-decane.
- the organic solvent is selected from the group consisting of C 6 -C 8 alkanes such as n-hexane, n-heptane and/or n-octane.
- the inventors of the present invention further discovered through extensive experimentation that when an organic solvent such as n-hexane and/or n-heptane as described above is used to dissolve the polyolefin resin and precipitated by temperature drop, the polyolefin resin can be made spherical and/or Or a spheroidal trait, It also has a particle diameter of 25 to 150 ⁇ m.
- the obtained polyolefin powder resin has a smooth surface, good dispersibility and small size distribution, and is particularly suitable for selective laser sintering technology.
- the polyolefin resin is advantageously heated to a temperature of from 60 to 200 ° C, for example from 70 to 190 ° C or from 80 to 160 ° C.
- the polypropylene resin is heated to 90 to 180 ° C, preferably 100 to 150 ° C, more preferably 110 to 140 ° C.
- the polyethylene is heated to 70 to 150 ° C, preferably 80 to 130 ° C, more preferably 90 to 110 ° C.
- the polyolefin resin solution may be maintained at the heating temperature for 30 to 90 minutes for sufficient dissolution. Further, it is also preferred to carry out the heating under an inert gas, preferably nitrogen gas, and the pressure thereof may be 0.1 to 0.5 MPa, preferably 0.2 to 0.3 MPa.
- the dissolution process of step a) and the reprecipitation process of step b) are advantageously carried out under pressure.
- the pressure can be formed by the vapor pressure of the solvent in a closed system.
- a nucleating agent may optionally be added in step a) selected from at least silica, calcium oxide, calcium carbonate, barium sulfate, hydrotalcite, hydrotalcite, carbon black, kaolin and mica.
- the nucleating agent may be used in an amount of 0.01 to 2 parts by weight, preferably 0.05 to 1 part by weight, based on 100 parts by weight of the polyolefin resin, and preferably 0.1 to 0.5 part by weight.
- the inventors of the present invention found in the test that when these nucleating agents are added, the crystallization rate of the polyolefin resin can be increased, and the surface smoothness, heat resistance and mechanical properties of the obtained polyolefin powder can be improved.
- a nucleating agent is used in the case where a polypropylene resin powder is used as the polyolefin resin.
- the average temperature drop rate is from 0.1 ° C/min to 1 ° C/min. Further, it is preferred to cool the polyolefin resin solution to a target temperature and maintain it at a target temperature of 30 to 90 minutes, preferably 10 to 30 ° C, for example, room temperature (i.e., about 25 ° C).
- the temperature reduction of the polyolefin resin solution can be carried out at a uniform rate in one step or in a stepwise manner.
- the polyolefin resin solution is cooled to a target temperature via one or more intermediate temperatures and maintained at the intermediate temperature for 30 to 90 minutes, the intermediate temperature being between 40 and 100 ° C or 50 to 90 ° C range.
- the intermediate temperature is preferably 60 to 100 ° C, more preferably 70 to 90 ° C; and for polyethylene, the intermediate temperature is preferably 40 to 80 ° C, more preferably 50 to 70 ° C. This will result in better precipitation.
- the intermediate temperature refers to the temperature between the heating temperature of step a) and the target temperature of step b).
- the solution of the homopolyolefin resin such as homopolypropylene
- the solution of the random polyolefin resin can be lowered from the heating temperature to 70 to 80 ° C and held for 30 to 90 minutes, a better precipitation effect can be obtained.
- the polyethylene resin solution can be lowered from a heating temperature of 110 ° C to 60 to 70 ° C and maintained at this temperature for 30 to 90 minutes, and then lowered to room temperature; or directly from a heating temperature of 110 ° C. To room temperature.
- the heating and cooling means of the present invention it is possible to ensure that powder particles having a uniform particle size distribution are obtained, and thus are particularly suitable for selective laser sintering applications.
- auxiliaries can optionally be added to the solid-liquid mixture.
- auxiliaries are known in the processing of polyolefin resins, and include, inter alia, powder release agents, antioxidants, antistatic agents, antibacterial agents and/or glass fiber reinforcements.
- the antioxidant may be selected from the group consisting of antioxidant 1010 and/or antioxidant 168, preferably a combination of the two. Further preferably, the antioxidant is used in an amount of 0.1 to 0.5 part by weight, preferably 0.2 to 0.4 part by weight, based on 100 parts by weight of the polyolefin resin.
- the inventors of the present invention found in the experiment that the addition of an antioxidant not only prevents oxidation
- the chain transfer of the reaction can also improve the stability of the polyolefin resin such as polypropylene to light, slow down the oxidation of the polyolefin resin, improve the heat stability and processing stability of the obtained polypropylene resin powder, and achieve a prolonged service life. purpose.
- the powder release agent may be a metal soap, that is, an alkali metal or alkaline earth metal based on an alkane monocarboxylic acid or a dimer acid, preferably selected from the group consisting of sodium stearate, potassium stearate, zinc stearate, and calcium stearate. And at least one of lead stearate.
- the powder release agent may also be a nano-oxide and/or a nano metal salt, preferably selected from at least one of silica, titania, alumina, zinc oxide, zirconium oxide, calcium carbonate and barium sulfate nanoparticles. .
- the powder release agent is used in an amount of from 0.01 to 10 parts by weight, preferably from 0.1 to 5 parts by weight, based on 100 parts by weight of the polyolefin resin, preferably from 0.5 to 1 part by weight.
- a powder release agent prevents the bonding between the particles of the polyolefin resin powder and contributes to the improvement of the processability.
- the powder release agent can also synergize with the antioxidant, and in particular, a polyolefin resin powder which is excellent in dispersibility and fluidity and is suitable for selective laser sintering can be obtained.
- the antistatic agent is selected from the group consisting of carbon black, graphite, graphene, carbon nanotubes, and at least one of conductive metal powder/fiber and metal oxide, preferably selected from the group consisting of acetylene black, superconducting carbon black, and special carbon black.
- conductive metal powder/fiber and metal oxide preferably selected from the group consisting of acetylene black, superconducting carbon black, and special carbon black.
- the antistatic agent may be used in an amount of 0.05 to 15 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.25 to 5 parts by weight, based on 100 parts by weight of the polyolefin resin.
- Antistatic agents can be used to impart excellent laser-sintered polyolefin products Antistatic property, while reducing the electrostatic interaction between the polyolefin resin powder particles, the polyolefin resin powder particles and the equipment, and improving the processing performance. Further, the powdery antistatic agent can also provide a certain barrier effect to improve the dispersibility and fluidity between the polyolefin resin powder particles.
- the antibacterial agent is selected from the group consisting of inorganic antibacterial agents such as supported, nano metal and metal oxides, and/or organic hydrazines, quaternary ammonium salts, phenol ethers, pyridines, imidazoles, isothiazolinones and organometallics.
- inorganic antibacterial agents such as supported, nano metal and metal oxides, and/or organic hydrazines, quaternary ammonium salts, phenol ethers, pyridines, imidazoles, isothiazolinones and organometallics.
- At least one of the organic antibacterial agents preferably selected from the group consisting of zeolites, zirconium phosphates, calcium phosphates, hydroxyapatite, supported antimicrobial agents such as glass or activated carbon supported silver ions, zinc ions or copper ions, nanogold or nanosilver, At least one of zinc oxide or titanium dioxide and polyhexamethylene sulfonium hydrochloride or polyhexamethylene sulfonium phosphate.
- the antibacterial agent may be used in an amount of 0.05 to 1.5 parts by weight, preferably 0.05 to 1.0 part by weight, more preferably 0.1 to 0.5 part by weight, based on 100 parts by weight of the polyolefin resin.
- an antibacterial agent can impart excellent antibacterial properties to a selectively laser sintered polyolefin product and improve the hygienic safety of the polyolefin product. Further, when the antibacterial agent is an inorganic powder, the polyolefin resin powder can serve as an auxiliary barrier to improve dispersibility and fluidity.
- the glass fiber reinforcing agent is a glass fiber having a diameter of 5 to 20 ⁇ m and a length of 100 to 500 ⁇ m. Preferred are alkali-free ultrashort glass fibers having a diameter of 5 to 15 ⁇ m and a length of 100 to 250 ⁇ m.
- the glass fiber reinforcing agent may be used in an amount of 5 to 60 parts by weight, preferably 5 to 50 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the polyolefin resin.
- glass fibers can effectively improve the physical and mechanical properties of polyolefin articles. At the same time, due to the high heat shrinkage rate of polyolefin, the addition of glass fiber also contributes to the dimensional stability of polyolefin products.
- a second aspect of the invention resides in a polyolefin tree obtained by the method of the invention
- the polyolefin resin powder provided according to the present invention is particularly suitable for selective laser sintering technology, and has high sintering success rate, and the obtained sintered product has small dimensional error with a predetermined product, small cross-sectional holes, uniform shape and good mechanical properties.
- a third aspect of the present invention provides a method of selective laser sintering in which a polyolefin resin powder prepared by the method as described above is used as a raw material of a sintered powder.
- a fourth aspect of the invention resides in the use of a polyolefin resin powder obtained by the method of the invention in a method of producing a three-dimensional object, in particular a method in which a three-dimensional object is produced by selective laser sintering.
- Example 1 is a scanning electron microscope (SEM) image of a polypropylene resin powder provided according to Example 1 of the present invention.
- 2 is a scanning electron microscope (SEM) image of a polyethylene resin powder provided according to Example 17 of the present invention.
- Figure 3 is a scanning electron micrograph of a commercially available polyamide 12 powder prepared by reprecipitation for selective laser sintering for comparison with the present invention ( Figures 1 and 2).
- the particle size and particle size distribution of the obtained polyolefin resin powder were characterized using a laser particle size analyzer (Mastersizer 2000, Malvern, UK).
- the obtained solid-liquid mixture is added with 0.1 parts by weight of antioxidant 1010 and 0.1 parts by weight of antioxidant 168, and 0.75 parts by weight of nano-silica, and then the mixture is centrifuged and vacuum-dried to obtain a suitable solution.
- Selective laser sintered polypropylene resin powder The particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the material After adding 0.2 parts by weight of the antioxidant 1010 and 0.2 parts by weight of the antioxidant 168, and 0.6 parts by weight of the nano calcium carbonate to the obtained solid-liquid mixture, the material is centrifuged and vacuum-dried to obtain a suitable Selective laser sintered polypropylene resin powder.
- the particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of sodium stearate, and then the mixture is centrifuged and vacuum dried to obtain a suitable solution.
- Selective laser sintered polypropylene resin powder The particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of sodium stearate, and then the mixture is centrifuged and vacuum dried to obtain a suitable solution.
- Selective laser sintered polypropylene resin powder The particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- atactic polypropylene resin isotacticity 92.6%, melt index (210 ° C, 2.16 kg) of 70 g/10 min, solubility parameter of 16.7 MPa 1/2 ) and 1200 parts by weight of n-hexane (dissolved)
- degree parameter was 14.9 MPa 1/2 ) and placed in an autoclave, and 0.8 parts by weight of silica was added and mixed.
- High purity nitrogen gas was introduced to 0.1 MPa; then the temperature was raised to 110 ° C, and the temperature was maintained at this temperature for 90 minutes; the temperature was lowered to room temperature at a rate of 0.1 ° C/min.
- the obtained solid-liquid mixture is added with 0.1 parts by weight of antioxidant 1010 and 0.1 parts by weight of antioxidant 168, and 0.75 parts by weight of nano-silica, and then the mixture is centrifuged and vacuum-dried to obtain a suitable solution.
- a random polypropylene resin powder for selective laser sintering The particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the material After adding 0.2 parts by weight of the antioxidant 1010 and 0.2 parts by weight of the antioxidant 168, and 0.6 parts by weight of the nano calcium carbonate to the obtained solid-liquid mixture, the material is centrifuged and vacuum-dried to obtain a suitable Selective laser sintered random polypropylene resin powder.
- the particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of sodium stearate, and then the mixture is centrifuged and vacuum dried to obtain a suitable solution.
- a random polypropylene resin powder for selective laser sintering The particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of sodium stearate, and then the mixture is centrifuged and vacuum dried to obtain a suitable solution.
- a random polypropylene resin powder for selective laser sintering The particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of sodium stearate, and then the mixture is centrifuged and vacuum dried to obtain a suitable solution.
- a random polypropylene resin powder for selective laser sintering The particle size and particle size distribution results of the obtained polypropylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 0.5 parts by weight of calcium stearate, and then centrifuged and vacuum-dried to obtain suitable for selection.
- Laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 1 part by weight of zinc stearate, and then the mixture is centrifuged and vacuum-dried to obtain a suitable solution.
- Selective laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.1 parts by weight of antioxidant 1010 and 0.1 parts by weight of antioxidant 168, and 0.75 parts by weight of nano-silica, and then the mixture is centrifuged and vacuum-dried to obtain a suitable solution.
- Selective laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.3 parts by weight of the antioxidant 1010 and 0.3 parts by weight of the antioxidant 168, and 0.9 parts by weight of the nano-zinc oxide, and then the mixture is centrifuged and vacuum-dried to obtain a suitable Selective laser sintered polyethylene resin powder.
- the particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the material After adding 0.2 parts by weight of the antioxidant 1010 and 0.2 parts by weight of the antioxidant 168, and 0.6 parts by weight of the nano calcium carbonate to the obtained solid-liquid mixture, the material is centrifuged and vacuum-dried to obtain a suitable Selective laser sintered polyethylene resin powder.
- the particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of sodium stearate, and then the mixture is centrifuged and vacuum dried to obtain a suitable solution.
- Selective laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 0.5 parts by weight of calcium stearate, and then centrifuged and vacuum-dried to obtain suitable for selection.
- Laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 0.5 parts by weight of calcium stearate, and then centrifuged and vacuum-dried to obtain suitable for selection.
- Laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 0.5 parts by weight of calcium stearate, and then centrifuged and vacuum-dried to obtain suitable for selection.
- Laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 1 part by weight of zinc stearate, and then the mixture is centrifuged and vacuum-dried to obtain a suitable solution.
- Selective laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.1 parts by weight of antioxidant 1010 and 0.1 parts by weight of antioxidant 168, and 0.75 parts by weight of nano-silica, and then the mixture is centrifuged and vacuum-dried to obtain a suitable solution.
- Selective laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.3 parts by weight of the antioxidant 1010 and 0.3 parts by weight of the antioxidant 168, and 0.9 parts by weight of the nano-zinc oxide, and then the mixture is centrifuged and vacuum-dried to obtain a suitable Selective laser sintered polyethylene resin powder.
- the particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the material After adding 0.2 parts by weight of the antioxidant 1010 and 0.2 parts by weight of the antioxidant 168, and 0.6 parts by weight of the nano calcium carbonate to the obtained solid-liquid mixture, the material is centrifuged and vacuum-dried to obtain a suitable Selective laser sintered polyethylene resin powder.
- the particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, and 0.8 parts by weight of sodium stearate, and then the mixture is centrifuged and vacuum dried to obtain a suitable solution.
- Selective laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 0.5 parts by weight of calcium stearate, and then centrifuged and vacuum-dried to obtain suitable for selection.
- Laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture is added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, and 0.5 parts by weight of calcium stearate, and then centrifuged and vacuum-dried to obtain suitable for selection.
- Laser sintered polyethylene resin powder The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture was added with 0.25 parts by weight of antioxidant 1010 and 0.25 parts by weight of antioxidant 168, 0.5 parts by weight of calcium stearate, and 2.5 parts by weight of conductive carbon black and 0.1 parts by weight of carbon. After the nanotubes are centrifuged and vacuum dried, a polyethylene resin powder suitable for selective laser sintering is obtained. The particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture was added with 0.2 parts by weight of antioxidant 1010 and 0.2 parts by weight of antioxidant 168, 0.6 parts by weight of nano calcium carbonate and 0.05 parts by weight of zinc pyrithione, and then the material was centrifuged. Separation and vacuum drying gave a polyethylene resin powder suitable for selective laser sintering.
- the particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- the obtained solid-liquid mixture was added with 0.15 parts by weight of antioxidant 1010 and 0.15 parts by weight of antioxidant 168, 0.8 parts by weight of sodium stearate, and 50 parts by weight of ultrashort glass having a diameter of 5 ⁇ m and a length of 150 ⁇ m.
- the material is subjected to centrifugal separation and vacuum drying to obtain a polyethylene resin powder suitable for selective laser sintering.
- the particle size and particle size distribution results of the obtained polyethylene resin powder are shown in Table 1.
- Example 1 was repeated except that the nucleating agent calcium oxide was not used. Since there is no nucleating agent in this embodiment, the molten polypropylene crystallizes less nucleation sites and has a larger spherulitic size.
- Example 1 was repeated except that no antioxidant was used therein. Since there is no in this embodiment There is an antioxidant, which results in the obtained polypropylene powder being used for laser sintering and being easily degraded by heat and yellowing. Although it can meet the basic requirements of the laser sintering process, the mechanical properties of the printed product obtained are compared with those of the first embodiment. insufficient.
- Example 1 was repeated except that no release agent was used therein. Since there is no release agent in this embodiment, the obtained polypropylene powder is easily bonded in a small amount compared to Example 1, and the fluidity is slightly inferior, and although the basic requirements of the laser sintering process can be satisfied, the obtained printed product surface is obtained. The finish is slightly worse.
- Example 20 was repeated except that no antioxidant was used therein. Since there is no antioxidant in this embodiment, the obtained polyethylene powder is applied to the laser sintering when it is heated and crosslinked compared to the embodiment 20. Although the basic requirements of the laser sintering process can be satisfied, the obtained printed product is easily shrunk. .
- Example 20 was repeated except that no release agent was used therein. Since there is no release agent in this embodiment, the obtained polyethylene powder is more easily bonded in a small amount than in Example 20, and the fluidity is slightly poor. Although the basic requirements of the laser sintering process can be satisfied, the surface finish of the printed product obtained is slightly difference.
- Example 20 was repeated except that no release agent and antioxidant were used therein. Since there is no antioxidant and a release agent in this embodiment, the obtained polyethylene powder is easily cross-linked by heat when applied to laser sintering, and the powder is easily bonded in a small amount, and the fluidity is slightly poor, although it can be satisfied. The basic requirements of the laser sintering process, but the resulting prints are The product is easy to shrink and the surface finish is slightly worse.
- the xylene solvent was used instead of the n-hexane solvent (solubility parameter was 18.2 MPa 1/2 ). Since the xylene solvent used in this comparative example is a good solvent for polypropylene, the rate of crystallization at a
- Example 1 was repeated except that a toluene solvent (solubility parameter of 18.4 MPa 1/2 ) was used instead of the n-hexane solvent. Since the toluene solvent used in this comparative example is a good solvent for polypropylene, the rate of crystallization at a reduced temperature is very slow after the dissolution of the polypropylene.
- a toluene solvent solubility parameter of 18.4 MPa 1/2
- the polyolefin resin powder obtained by the method of the present invention has good oxidation resistance, good powder fluidity, suitable size, suitable bulk density, uniform particle shape, and uniform particles.
- the diameter distribution is suitable for selective laser sintering to prepare various moldings.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
本发明提供了一种聚烯烃树脂粉末的制备方法,其包括以下步骤: a)将聚烯烃树脂加热溶解于溶度参数小于或等于聚烯烃树脂溶度参数的有机溶剂中,得到聚烯烃树脂溶液; b)将聚烯烃树脂溶液降温,使固体沉淀析出,得到固液混合物; c)任选地向固液混合物中加入助剂并混合; d)固液分离并干燥,得到适用于选择性激光烧结的聚烯烃树脂粉末;其中,所述有机溶剂与聚烯烃树脂的溶度参数的差值在聚烯烃树脂溶度参数的0-20%以内。根据本发明得到的聚烯烃树脂粉末具有良好的抗氧化性、良好的粉末流动性、大小适中的尺寸、圆滑的表面、适宜的堆密度、合适的分散性和粒径分布。该聚烯烃树脂粉末特别适用于选择性激光烧结方法。
Description
本发明涉及聚合物加工技术领域,具体涉及一种聚烯烃树脂粉末的制备方法和由此获得的聚烯烃树脂粉末及其用于选择性激光烧结的用途。
选择性激光烧结(Selective Laser Sintering,SLS)技术是一种快速成型技术,是目前增材制造技术中应用最广泛且最具市场前景的技术,近年来呈现出快速发展的趋势。SLS技术是由计算机首先对三维实体进行扫描,然后通过高强度激光照射预先在工作台或零部件上铺上的材料粉末,将其选择性地逐层地熔融烧结,进而实现逐层成型的技术。SLS技术具有高度的设计柔性,能够制造出精确的模型和原型,可以成型具有可靠结构的并可以直接使用的零部件,并且缩短生产周期,简化工艺,因此特别适合于新产品的开发。
理论上,能够用于SLS技术的成型材料种类较为广泛,例如聚合物、石蜡、金属、陶瓷以及它们的复合材料。然而,成型材料的性能、性状是SLS技术烧结成功的一个重要因素,它直接影响成型件的成型速度、精度,以及物理、化学性能及其综合性能。目前,能够直接应用于SLS技术并成功制造出尺寸误差小、表面规整、孔隙率低的模塑品的聚合物粉末原料在市场上鲜见。因此,亟待开发和改善适用于SLS技术的聚合物种类及其相应的固体粉末原料。
现有技术中,通常采用粉碎法、如深冷粉碎法来制备适合于SLS的粉末原料。例如,在CN104031319A中公开了一种用深冷
粉碎法得到的聚丙烯粉末。但是,这种方法不仅需要特定设备,而且制备得到的粉末原料颗粒表面较粗糙、粒径不够均匀、形状不规则,不利于烧结成型体的形成,并影响成型体的性能。
另外,还存在沉淀法来制备聚合物粉末原料,例如聚酰胺粉末。在该方法中,通常将聚酰胺溶解于合适的溶剂中,通过搅拌使物料在溶剂中均匀分布并冷却析出粉末沉淀。
例如,CN103374223A公开了一种以AABB-型聚酰胺为基础的沉淀聚合物粉末,其通过对通过二胺和二羧酸的缩聚作用获得的聚酰胺进行再沉淀而获得。在该专利描述的方法中,在再沉淀过程中采用醇类溶剂。
发明概述
本发明的第一个方面在于提供一种聚烯烃树脂粉末以及其制备方法和用于选择性激光烧结的应用。根据本发明提供的聚烯烃树脂粉末,具有良好的抗氧化性、良好的粉末流动性、合适的尺寸大小、合适的堆密度、匀称的颗粒外形以及均匀的粒径分布,特别适用于选择性激光烧结来制备各种模塑品。
根据本发明的聚烯烃树脂粉末的制备方法,其包括以下步骤:
a)将聚烯烃树脂加热溶解于溶度参数小于或等于聚烯烃树脂溶度参数的有机溶剂中,得到聚烯烃树脂溶液;
b)将聚烯烃树脂溶液降温,使固体沉淀析出,得到固液混合物;
c)任选地向固液混合物中加入助剂并混合;
d)固液分离并干燥,得到适用于选择性激光烧结的聚烯烃树脂粉末;
其中,所述有机溶剂与聚烯烃树脂的溶度参数的差值在聚烯烃树脂溶度参数的0-20%以内。
本发明的第二个方面在于根据本发明的方法获得的聚烯烃树脂粉末。
本发明的第三个方面在于一种选择性激光烧结的方法。
本发明的第四个方面在于根据本发明的方法获得的聚烯烃树脂粉末在制造三维物体的方法的用途。
发明详述
在根据本发明的聚烯烃树脂粉末的制备方法中,对于合适的聚烯烃并无特别的限制,只要其能够被制成为粉末材料。
适用于本发明方法的聚烯烃可以选自由直链、支链或环状的烯烃,例如C2-C10的烯烃,优选α-烯烃单独聚合或共聚合而得到的聚合物或者这些聚合物的混合物。合适的烯烃包括例如乙烯、丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等。
在一个优选的实施方式中,聚烯烃选自聚丙烯(PP)和聚乙烯(PE)或其混合物。更优选地,所述聚烯烃为聚丙烯或聚乙烯之一。
在另一个优选的实施方式中,所述聚丙烯为均聚聚丙烯树脂和无规聚丙烯树脂中的至少一种。优选地,所述均聚聚丙烯树脂的等规度≥95%,例如为95~98%;所述无规聚丙烯树脂的等规度<95%,例如为91~94.5%。
在本发明的优选实施方案中,所述均聚聚丙烯树脂和无规聚丙烯树脂熔融指数在210℃,2.16kg载量下测定为20~100g/10min,优选30~80g/10min。在本发明的另一优选实施方案中,所述聚乙烯树脂的密度≥0.900g/cm3,优选为0.910-0.990g/cm3;熔融指数在190℃,2.16kg载量下测定为20~100g/10min,优选30~80g/10min。在该范围内时,聚烯烃树脂具有良好的流动性,有利于激光烧结工艺。
尽管有机溶剂沉淀技术已经被用于分离和提纯生化物质,尤其是蛋白质,或者用于析出制备晶体。但是,目前关于采用有机溶剂沉淀法制备用于选择性激光烧结技术的树脂材料粉末、特别是聚烯烃树脂粉末的报道很少。在根据本发明的方法中,用于溶解聚烯烃树脂的有机溶剂的选择是重要的,所选择的有机溶剂应当在常温常压下是聚烯烃树脂的不良溶剂。因此,选择所述有机溶剂的溶度参数小于或等于聚烯烃树脂溶度参数,且差值在聚烯烃树脂溶度参数的0-20%以内、优选0-15%以内、例如0-12%以内。
此外,在另一个有利的实施方式中,选择所述溶剂进一步地是低沸点的溶剂。在本发明范畴内,术语“低沸点”指的是溶剂在常压下具有不高于160℃,如不高于150℃或130℃的沸点。
优选地,在步骤a)中,以100重量份数的所述聚烯烃树脂计,所述有机溶剂的用量为600~1200重量份数,优选为800~1000重量份数。当有机溶剂的用量为该范围内时,能够获得形貌、分散性较好的聚烯烃树脂粉末。
在一个有利的实施方式中,所述有机溶剂选自C5-C12烷烃、优选C5-C9烷烃,更优选选自正戊烷、异戊烷、正己烷、2-甲基戊烷、3-甲基戊烷、2,2-二甲基丁烷、2,3-二甲基丁烷、环己烷、正庚烷、2-甲基己烷、3-甲基己烷、2,2-二甲基戊烷、2,3-二甲基戊烷、2,4-二甲基戊烷、3,3-二甲基戊烷、3-乙基戊烷、2,2,3-三甲基丁烷、正辛烷和正壬烷中的至少一种。
在一个更优选的实施方式中,所述有机溶剂选自C6-C8烷烃如正己烷、正庚烷和/或正辛烷。
本发明的发明人进一步通过大量的实验探索发现,当使用如上所述有机溶剂,特别是正己烷和/或正庚烷来溶解聚烯烃树脂并降温析出时,能够使聚烯烃树脂以球形和/或类球形的性状析出,
并且具有25~150μm的粒径。所得的聚烯烃粉末树脂表面圆滑,分散性好,尺寸分布小,特别适用于选择性激光烧结技术。
在根据本发明方法的步骤a)中,有利地将聚烯烃树脂加热到60~200℃、例如70~190℃或者80~160℃的温度。在一个具体的实施方式中,将聚丙烯树脂加热到90~180℃、优选100~150℃、更优选110~140℃。在另一个具体的实施方式中,将聚乙烯加热到70~150℃,优选80~130℃,更优选90~110℃。
在一个优选实施方案中,为了充分溶解,可以将聚烯烃树脂溶液在所述加热温度下保持30~90分钟。此外,还优选在惰性气体下进行加热,所述惰性气体优选氮气并且其压力可以为0.1~0.5MPa、优选0.2~0.3MPa。
在根据本发明的方法中,步骤a)的溶解过程和步骤b)的再沉淀过程有利地在压力下进行。压力可以通过一个密闭系统内的溶剂的蒸汽压力形成。
此外,可以任选地在步骤a)中加入成核剂,所述成核剂选自二氧化硅、氧化钙、碳酸钙、硫酸钡、水滑石、水滑石、炭黑、高岭土和云母的至少一种。以100重量份聚烯烃树脂计,所述成核剂用量可以为0.01~2重量份,优选为0.05~1重量份,优选为0.1~0.5重量份。
本发明的发明人在试验中发现,当加入这些成核剂时,能够提高聚烯烃树脂的结晶速度,并能提高制得的聚烯烃粉末的表面光洁度、耐热性和力学性能。优选地,在采用聚丙烯树脂粉末作为聚烯烃树脂的情况下使用成核剂。
在步骤b)中,优选地,平均降温速率为0.1℃/min~1℃/min。此外,优选将聚烯烃树脂溶液降温至目标温度并在目标温度保持30~90分钟,所述目标温度优选为10~30℃,例如室温(即约25℃)。
聚烯烃树脂溶液的降温可以一步匀速进行,也可以分步进行。
在步骤b)的一个优选的实施方式中,将聚烯烃树脂溶液经由一个或多个中间温度降温至目标温度并在所述中间温度保持30~90分钟,所述中间温度在40~100℃或50~90℃的范围内。例如,对于聚丙烯,所述中间温度优选为60~100℃,更优选为70~90℃;而对于聚乙烯,所述中间温度优选为40~80℃,更优选为50~70℃。这样能够获得更好的析出效果。在采用两个或更多中间温度时,有利地使得相邻两个中间温度之间的温度差值在10℃以上。
容易理解,所述中间温度是指步骤a)的加热温度和步骤b)的目标温度之间的温度。例如,在一个具体的实施方式中,可以将均聚聚烯烃树脂(如均聚丙烯)溶液从加热温度130℃降至90℃并且在90℃下保持60分钟,随后再降至室温;或者直接从加热温度130℃降至室温。在另一些优选实施方案中,如果将无规聚烯烃树脂(如无规聚丙烯)溶液从加热温度降至70~80℃并保温30~90分钟,则能够获得较好的析出效果。在另一个具体的实施方式中,可以将聚乙烯树脂溶液从加热温度110℃降至60~70℃并且在该温度下保持30~90分钟,随后降至室温;或者从加热温度110℃直接降至室温。
通过本发明的加热和降温方式,能够保证获得粒径分布均匀的粉末颗粒,因而特别适于选择性激光烧结应用。
此外,在根据本发明方法的步骤c)中,可以任选地向固液混合物中加入一种或多种助剂。这些助剂是聚烯烃树脂加工中已知的,尤其包括粉末隔离剂、抗氧剂、抗静电剂、抗菌剂和/或玻璃纤维增强剂。
所述抗氧剂可以选自抗氧剂1010和/或抗氧剂168,优选其两者的组合。进一步优选地,以100重量份聚烯烃树脂计,所述抗氧剂用量为0.1~0.5重量份,优选为0.2~0.4重量份。
本发明的发明人在试验中发现,加入抗氧剂不仅能够阻止氧化
反应的链传递,还能提高聚烯烃树脂如聚丙烯对光的稳定性,减缓聚烯烃树脂的氧化,提高制得的聚丙烯树脂粉末的耐热稳定性和加工稳定性,达到延长使用寿命的目的。
所述粉末隔离剂可以为金属皂,即基于链烷一元羧酸或二聚酸的碱金属或碱土金属,优选选自硬脂酸钠、硬脂酸钾、硬脂酸锌、硬脂酸钙和硬脂酸铅中的至少一种。此外,所述粉末隔离剂还可以是纳米氧化物和/或纳米金属盐,优选选自二氧化硅、二氧化钛、氧化铝、氧化锌、氧化锆、碳酸钙和硫酸钡纳米颗粒中的至少一种。
在本发明中,以100重量份聚烯烃树脂计,粉末隔离剂用量为0.01~10重量份数,优选为0.1~5重量份数,优选为0.5~1重量份数。
采用粉末隔离剂可以防止聚烯烃树脂粉末颗粒之间发生粘结,有助于提高其加工性能。另一方面也可以防止抗氧剂的粘结,使其更均匀的分散在聚烯烃树脂中发挥抗氧化性能。更进一步的,粉末隔离剂还能与抗氧剂协同作用,尤其能够获得分散性和流动性良好、适合于选择性激光烧结的聚烯烃树脂粉末。
所述抗静电剂选自炭黑、石墨、石墨烯、碳纳米管以及导电金属粉末/纤维及金属氧化物中的至少一种,优选选自乙炔炭黑、超导炭黑、特导炭黑、天然石墨、可膨胀石墨、单壁碳纳米管、多壁碳纳米管、含有金、银、铜、铁、铝、镍或不锈钢成分的金属粉末/纤维、合金粉末/纤维、复合粉末/纤维、氧化钛、氧化锌、氧化锡、氧化铟和氧化镉中的至少一种。
本发明中,以100重量份聚烯烃树脂计,所述抗静电剂的用量可以为0.05~15重量份,优选0.1~10重量份,更优选0.25~5重量份。
采用抗静电剂可以赋予选择性激光烧结的聚烯烃制品优异的
抗静电性能,同时降低聚烯烃树脂粉末颗粒之间、聚烯烃树脂粉末颗粒与设备之间的静电作用,提高其加工性能。更进一步的,粉末状的抗静电剂也可以起到一定的隔离作用,改善聚烯烃树脂粉末颗粒之间的分散性和流动性。
所述抗菌剂选自负载型、纳米金属及金属氧化物等无机抗菌剂和/或有机胍类、季铵盐类、酚醚类、吡啶类、咪唑类、异噻唑啉酮类及有机金属类等有机抗菌剂的至少一种,优选选自沸石、磷酸锆、磷酸钙、羟基磷灰石、诸如玻璃或活性炭负载银离子、锌离子或铜离子的负载型抗菌剂、纳米金或纳米银、氧化锌或二氧化钛以及聚六亚甲基胍盐酸盐或聚六亚甲基胍磷酸盐中的至少一种。
本发明中,以100重量份聚烯烃树脂计,所述抗菌剂的用量可以为0.05~1.5重量份,优选0.05~1.0重量份,更优选0.1~0.5重量份。
采用抗菌剂可以赋予选择性激光烧结的聚烯烃制品优异的抗菌性能,提高聚烯烃制品的卫生安全性。更进一步的,当抗菌剂为无机粉体时,对聚烯烃树脂粉末可以起到辅助隔离作用,改善分散性和流动性。
所述玻璃纤维增强剂为直径5-20μm,长度100-500μm的玻璃纤维。优选为直径5-15μm,长度100-250μm的无碱超短玻璃纤维。本发明中,以100重量份聚烯烃树脂计,所述玻璃纤维增强剂的用量可以为5~60重量份,优选5~50重量份,更优选10~50重量份。
玻璃纤维的加入可以有效地提高聚烯烃制品的物理机械性能。同时,由于聚烯烃的热收缩率较大,加入玻璃纤维还对聚烯烃制品的尺寸稳定性有一定的帮助。
本发明的第二个方面在于根据本发明的方法获得的聚烯烃树
脂粉末,所述粉末的颗粒为球形和/或类球形,表面圆滑、分散性和流动性好且粒径分布均匀,堆密度适宜。优选地,聚烯烃树脂粉末颗粒的粒径大小为25~150μm,并且粒径分布D10=41~69μm、D50=61~103μm、D90=85~138μm。根据本发明提供的该聚烯烃树脂粉末尤其适用于选择性激光烧结技术,烧结成功率高,得到的烧结产品与预定产品尺寸误差小,断面孔洞少,外形匀称并且机械性能好。
此外,本发明的第三个方面在于提供一种选择性激光烧结的方法,其中将通过如上所述的方法制备的聚烯烃树脂粉末作为烧结粉末原料。通过本发明提供的该选择性激光烧结方法,能够制备得到具有规则外形、表面匀称光滑且机械性能良好的聚烯烃模塑品。
最后,本发明的第四个方面在于根据本发明的方法获得的聚烯烃树脂粉末在制造三维物体的方法的用途,特别是其中采用选择性激光烧结来制造三维物体的方法。
图1是根据本发明实施例1提供的聚丙烯树脂粉末的扫描电子显微镜(SEM)图。图2是根据本发明实施例17提供的聚乙烯树脂粉末的扫描电子显微镜(SEM)图。
图3是市售的用于选择性激光烧结的通过再沉淀法制备的聚酰胺12粉末的扫描电子显微镜图,用于与本发明(图1和图2)对比。
下面将通过具体实施例对本发明做进一步地说明,但应理解,本发明的范围并不限于此。
在下列实施例中,采用激光粒度仪(Mastersizer 2000,英国Malvern公司)表征所获得的聚烯烃树脂粉末的粒径大小和粒径分布。
实施例1
将100重量份的均聚聚丙烯树脂(等规度95%,熔融指数(210℃,2.16kg)为30g/10min,溶度参数为16.7MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.2重量份数的氧化钙混合。通入高纯氮气至0.2MPa;随后升温至130℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至90℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例2
将100重量份的均聚聚丙烯树脂(等规度97%,熔融指数(210℃,2.16kg)为50g/10min,溶度参数为16.7MPa1/2)和800重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.4重量份数的氧化钙混合。通入高纯氮气至0.3MPa;随后升温至140℃,在此温度下恒温30分钟;恒温结束后经冷却水以1.0℃/min的速率降至85℃,在此温度下恒温60分钟;以1.0℃/min的速率降至20℃,并在20℃保持60分钟。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及1重量份数的硬脂酸锌后,将物料经离心分离和
真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例3
将100重量份的均聚聚丙烯树脂(等规度96%,熔融指数(210℃,2.16kg)为50g/10min,溶度参数为16.7MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.8重量份数的氧化钙混合。通入高纯氮气至0.1MPa;随后升温至120℃,在此温度下恒温90分钟;以0.1℃/min的速率降至室温。得到的固液混合物中加入0.1重量份数的抗氧剂1010和0.1重量份数的抗氧剂168,以及0.75重量份数的纳米二氧化硅后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例4
将100重量份的均聚聚丙烯树脂(等规度96%,熔融指数(210℃,2.16kg)为80g/10min,溶度参数为16.7MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.3重量份数的高岭土混合。通入高纯氮气至0.1MPa;随后升温至120℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至85℃,在此温度下恒温60分钟;以0.1℃/min的速率降至室温,在室温中保持60分钟。得到的固液混合物中加入0.3重量份数的抗氧剂1010和0.3重量份数的抗氧剂168,以及0.9重量份数的纳米氧化锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例5
将100重量份的均聚聚丙烯树脂(等规度96%,熔融指数(210℃,2.16kg)为60g/10min,溶度参数为16.7MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.5重量份数的高岭土混合。通入高纯氮气至0.3MPa;随后升温至140℃,在此温度下恒温30分钟;恒温结束后经冷却水以0.5℃/min的速率降至30℃,并在30℃保持30分钟。得到的固液混合物中加入0.2重量份数的抗氧剂1010和0.2重量份数的抗氧剂168,以及0.6重量份数的纳米碳酸钙后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例6
将100重量份的均聚聚丙烯树脂(等规度95%,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为16.7MPa1/2)和1200重量份的正庚烷(溶度参数为15.2MPa1/2)置于高压反应釜中,并加入0.9重量份数的高岭土混合。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至80℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例7
将100重量份的均聚聚丙烯树脂(等规度95%,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为16.7MPa1/2)和1200重量份的环己烷(溶度参数为16.6MPa1/2)置于高压反应釜中,并加入0.2重量份数的二氧化硅混合。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至80℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例8
将100重量份的均聚聚丙烯树脂(等规度95%,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为16.7MPa1/2)和1200重量份的2,2,3-三甲基丁烷(溶度参数为15.7MPa1/2)置于高压反应釜中,并加入0.3重量份数的高岭土混合。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至80℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例9
将100重量份的无规聚丙烯树脂(等规度93.9%,熔融指数
(210℃,2.16kg)为35g/10min,溶度参数为16.7MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.2重量份数的二氧化硅混合。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至80℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例10
将100重量份的无规聚丙烯树脂(等规度94.1%,熔融指数(210℃,2.16kg)为55g/10min,溶度参数为16.7MPa1/2)和800重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.4重量份数的二氧化硅混合。通入高纯氮气至0.3MPa;随后升温至130℃,在此温度下恒温30分钟;恒温结束后经冷却水以1.0℃/min的速率降至75℃,在此温度下恒温60分钟;以1.0℃/min的速率降至20℃,并在20℃保持60分钟。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及1重量份数的硬脂酸锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例11
将100重量份的无规聚丙烯树脂(等规度92.6%,熔融指数(210℃,2.16kg)为70g/10min,溶度参数为16.7MPa1/2)和1200
重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.8重量份数的二氧化硅混合。通入高纯氮气至0.1MPa;随后升温至110℃,在此温度下恒温90分钟;以0.1℃/min的速率降至室温。得到的固液混合物中加入0.1重量份数的抗氧剂1010和0.1重量份数的抗氧剂168,以及0.75重量份数的纳米二氧化硅后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例12
将100重量份的无规聚丙烯树脂(等规度93.2%,熔融指数(210℃,2.16kg)为60g/10min,溶度参数为16.7MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.3重量份数的高岭土混合。通入高纯氮气至0.1MPa;随后升温至110℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至75℃,在此温度下恒温60分钟;以0.1℃/min的速率降至室温,在室温中保持60分钟。得到的固液混合物中加入0.3重量份数的抗氧剂1010和0.3重量份数的抗氧剂168,以及0.9重量份数的纳米氧化锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例13
将100重量份的无规聚丙烯树脂(等规度94%,熔融指数(210℃,2.16kg)为65g/10min,溶度参数为16.7MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.5重量份数的高岭土混合。通入高纯氮气至0.3MPa;随
后升温至110℃,在此温度下恒温30分钟;恒温结束后经冷却水以0.5℃/min的速率降至30℃,并在30℃保持30分钟。得到的固液混合物中加入0.2重量份数的抗氧剂1010和0.2重量份数的抗氧剂168,以及0.6重量份数的纳米碳酸钙后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例14
将100重量份的无规聚丙烯树脂(等规度93.5%,熔融指数(210℃,2.16kg)为40g/10min,溶度参数为16.7MPa1/2)和1200重量份的正庚烷(溶度参数为15.2MPa1/2)置于高压反应釜中,并加入0.9重量份数的高岭土混合。通入高纯氮气至0.2MPa;随后升温至110℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至70℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例15
将100重量份的无规聚丙烯树脂(等规度93.5%,熔融指数(210℃,2.16kg)为40g/10min,溶度参数为16.7MPa1/2)和1200重量份的正戊烷(溶度参数为14.4MPa1/2)置于高压反应釜中,并加入0.2重量份数的二氧化硅混合。通入高纯氮气至0.2MPa;随后升温至110℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至70℃,在此温度下恒温90分钟;以
0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例16
将100重量份的无规聚丙烯树脂(等规度93.5%,熔融指数(210℃,2.16kg)为40g/10min,溶度参数为16.7MPa1/2)和1200重量份的正辛烷(溶度参数为15.0MPa1/2)置于高压反应釜中,并加入0.3重量份数的高岭土混合。通入高纯氮气至0.2MPa;随后升温至110℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至70℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例17
将100重量份的均聚聚丙烯树脂(等规度95%,熔融指数(210℃,2.16kg)为35g/10min,溶度参数为16.7MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.2重量份数的氧化钙混合。通入高纯氮气至0.2MPa;随后升温至130℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至90℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量
份数的抗氧剂1010和0.25重量份数的抗氧剂168,0.5重量份数的硬脂酸钙,以及0.5重量分数的单璧碳纳米管后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例18
将100重量份的均聚聚丙烯树脂(等规度96%,熔融指数(210℃,2.16kg)为45g/10min,溶度参数为16.7MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.3重量份数的高岭土混合。通入高纯氮气至0.1MPa;随后升温至120℃,在此温度下恒温90分钟;以0.1℃/min的速率降至室温。得到的固液混合物中加入0.1重量份数的抗氧剂1010和0.1重量份数的抗氧剂168,0.75重量份数的纳米二氧化硅以及0.5重量分数的磷酸锆载银抗菌剂后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例19
将100重量份的无规聚丙烯树脂(等规度93.9%,熔融指数(210℃,2.16kg)为35g/10min,溶度参数为16.7MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中,并加入0.2重量份数的二氧化硅混合。通入高纯氮气至0.2MPa;随后升温至120℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至80℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,0.5重量份数的硬脂酸钙以及25重量分数的直径10μm、长度250μm的超短
玻璃纤维后,经离心分离和真空干燥后得到适用于选择性激光烧结的无规聚丙烯树脂粉末。所获得的聚丙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例20
将100重量份的聚乙烯树脂(密度0.950g/cm3,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为17.0MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至110℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至70℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例21
将100重量份的聚乙烯树脂(密度0.960g/cm3,熔融指数(190℃,2.16kg)为60g/10min,溶度参数为17.0MPa1/2)和800重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至120℃,在此温度下恒温30分钟;恒温结束后经冷却水以1.0℃/min的速率降至65℃,在此温度下恒温60分钟;以1.0℃/min的速率降至20℃,并在20℃保持60分钟。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及1重量份数的硬脂酸锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径
分布结果见表1。
实施例22
将100重量份的聚乙烯树脂(密度0.970g/cm3,熔融指数(190℃,2.16kg)为50g/10min,溶度参数为17.0MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.1MPa;随后升温至100℃,在此温度下恒温90分钟;以0.1℃/min的速率降至室温。得到的固液混合物中加入0.1重量份数的抗氧剂1010和0.1重量份数的抗氧剂168,以及0.75重量份数的纳米二氧化硅后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例23
将100重量份的聚乙烯树脂(密度0.954g/cm3,熔融指数(190℃,2.16kg)为70g/10min,溶度参数为17.0MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.1MPa;随后升温至100℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至65℃,在此温度下恒温60分钟;以0.1℃/min的速率降至室温,在室温中保持60分钟。得到的固液混合物中加入0.3重量份数的抗氧剂1010和0.3重量份数的抗氧剂168,以及0.9重量份数的纳米氧化锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例24
将100重量份的聚乙烯树脂(密度0.948g/cm3,熔融指数(190℃,2.16kg)为65g/10min,溶度参数为17.0MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至100℃,在此温度下恒温30分钟;恒温结束后经冷却水以0.5℃/min的速率降至30℃,并在30℃保持30分钟。得到的固液混合物中加入0.2重量份数的抗氧剂1010和0.2重量份数的抗氧剂168,以及0.6重量份数的纳米碳酸钙后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例25
将100重量份的聚乙烯树脂(密度0.962g/cm3,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为17.0MPa1/2)和1200重量份的正庚烷(溶度参数为15.2MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至100℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至60℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例26
将100重量份的聚乙烯树脂(密度0.950g/cm3,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为17.0MPa1/2)和1000重量份的环己烷(溶度参数为16.6MPa1/2)置于高压反应釜中。
通入高纯氮气至0.2MPa;随后升温至110℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至70℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例27
将100重量份的聚乙烯树脂(密度0.950g/cm3,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为17.0MPa1/2)和1000重量份的2,2,3-三甲基丁烷(溶度参数为15.7MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至110℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至70℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例28
将100重量份的聚乙烯树脂(密度0.930g/cm3,熔融指数(190℃,2.16kg)为30g/10min,溶度参数为17.0MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至100℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至60℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的
固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例29
将100重量份的聚乙烯树脂(密度0.927g/cm3,熔融指数(190℃,2.16kg)为70g/10min,溶度参数为17.0MPa1/2)和800重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至110℃,在此温度下恒温30分钟;恒温结束后经冷却水以1.0℃/min的速率降至55℃,在此温度下恒温60分钟;以1.0℃/min的速率降至20℃,并在20℃保持60分钟。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及1重量份数的硬脂酸锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例30
将100重量份的聚乙烯树脂(密度0.920g/cm3,熔融指数(190℃,2.16kg)为50g/10min,溶度参数为17.0MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.1MPa;随后升温至90℃,在此温度下恒温90分钟;以0.1℃/min的速率降至室温。得到的固液混合物中加入0.1重量份数的抗氧剂1010和0.1重量份数的抗氧剂168,以及0.75重量份数的纳米二氧化硅后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙
烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例31
将100重量份的聚乙烯树脂(密度0.915g/cm3,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为17.0MPa1/2)和1200重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.1MPa;随后升温至90℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至55℃,在此温度下恒温60分钟;以0.1℃/min的速率降至室温,在室温中保持60分钟。得到的固液混合物中加入0.3重量份数的抗氧剂1010和0.3重量份数的抗氧剂168,以及0.9重量份数的纳米氧化锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例32
将100重量份的聚乙烯树脂(密度0.935g/cm3,熔融指数(190℃,2.16kg)为60g/10min,溶度参数为17.0MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至90℃,在此温度下恒温30分钟;恒温结束后经冷却水以0.5℃/min的速率降至30℃,并在30℃保持30分钟。得到的固液混合物中加入0.2重量份数的抗氧剂1010和0.2重量份数的抗氧剂168,以及0.6重量份数的纳米碳酸钙后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例33
将100重量份的聚乙烯树脂(密度0.924g/cm3,熔融指数(190℃,2.16kg)为45g/10min,溶度参数为17.0MPa1/2)和1200重量份的正庚烷(溶度参数为15.2MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至90℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至50℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,以及0.8重量份数的硬脂酸钠后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例34
将100重量份的聚乙烯树脂(密度0.930g/cm3,熔融指数(190℃,2.16kg)为30g/10min,溶度参数为17.0MPa1/2)和1000重量份的正戊烷(溶度参数为14.4MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至100℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至60℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例35
将100重量份的聚乙烯树脂(密度0.930g/cm3,熔融指数(190℃,2.16kg)为30g/10min,溶度参数为17.0MPa1/2)和1000
重量份的正辛烷(溶度参数为15.4MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至100℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至60℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,以及0.5重量份数的硬脂酸钙后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例36
将100重量份的聚乙烯树脂(密度0.950g/cm3,熔融指数(190℃,2.16kg)为35g/10min,溶度参数为17.0MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至110℃,在此温度下恒温60分钟;恒温结束后经冷却水以1.0℃/min的速率降至70℃,在此温度下恒温60分钟;继续以1.0℃/min的速率降至室温。得到的固液混合物中加入0.25重量份数的抗氧剂1010和0.25重量份数的抗氧剂168,0.5重量份数的硬脂酸钙以及2.5重量分数的导电炭黑和0.1重量分数的碳纳米管后,经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例37
将100重量份的聚乙烯树脂(密度0.948g/cm3,熔融指数(190℃,2.16kg)为60g/10min,溶度参数为17.0MPa1/2)和1000重量份的正己烷(溶度参数为14.9MPa1/2)置于高压反应釜中。通入高纯氮气至0.3MPa;随后升温至100℃,在此温度下恒温30
分钟;恒温结束后经冷却水以0.5℃/min的速率降至30℃,并在30℃保持30分钟。得到的固液混合物中加入0.2重量份数的抗氧剂1010和0.2重量份数的抗氧剂168,0.6重量份数的纳米碳酸钙以及0.05重量分数的吡啶硫酮锌后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
实施例38
将100重量份的聚乙烯树脂(密度0.924g/cm3,熔融指数(190℃,2.16kg)为40g/10min,溶度参数为17.0MPa1/2)和1200重量份的正庚烷(溶度参数为15.2MPa1/2)置于高压反应釜中。通入高纯氮气至0.2MPa;随后升温至90℃,在此温度下恒温90分钟;恒温结束后经冷却水以0.5℃/min的速率降至50℃,在此温度下恒温90分钟;以0.2℃/min的速率降至室温。得到的固液混合物中加入0.15重量份数的抗氧剂1010和0.15重量份数的抗氧剂168,0.8重量份数的硬脂酸钠以及50重量分数的直径5μm、长度150μm的超短玻璃纤维后,将物料经离心分离和真空干燥后得到适用于选择性激光烧结的聚乙烯树脂粉末。所获得的聚乙烯树脂粉末的粒径大小和粒径分布结果见表1。
表1
实施例39
重复实施例1,除了其中不使用成核剂氧化钙。由于该实施例中没有成核剂,导致熔融聚丙烯结晶时成核点较少,球晶尺寸较大。最终得到的激光烧结聚丙烯粉末颗粒的粒径尺寸较大,粒径范围70~150μm,D10=92μm,D50=113μm,D90=132μm。虽然所制得的聚丙烯树脂粉末可以满足激光烧结工艺的基本要求,但相比于实施例1大粒径部分偏多。
实施例40
重复实施例1,除了其中不使用抗氧剂。由于该实施例中没
有抗氧剂,导致得到的聚丙烯粉末应用于激光烧结时受热易降解且颜色变黄,虽然可以满足激光烧结工艺的基本要求,但制得的打印成品力学性能相比于实施例1有所不足。
实施例41
重复实施例1,除了其中不使用隔离剂。由于该实施例中没有隔离剂,导致得到的聚丙烯粉末相比于实施例1而言易少量粘结,流动性略差,虽然可以满足激光烧结工艺的基本要求,但制得的打印成品表面光洁度略差。
实施例42
重复实施例20,除了其中不使用抗氧剂。由于该实施例中没有抗氧剂,导致得到的聚乙烯粉末应用于激光烧结时相比于实施例20受热易交联,虽然可以满足激光烧结工艺的基本要求,但制得的打印成品易收缩。
实施例43
重复实施例20,除了其中不使用隔离剂。由于该实施例中没有隔离剂,导致得到的聚乙烯粉末相比于实施例20更易少量粘结,流动性略差,虽然可以满足激光烧结工艺的基本要求,但制得的打印成品表面光洁度略差。
实施例44
重复实施例20,除了其中不使用隔离剂和抗氧剂。由于该实施例中没有抗氧剂和隔离剂,导致得到的聚乙烯粉末应用于激光烧结时相比于实施例20受热易交联,且粉末易少量粘结,流动性略差,虽然可以满足激光烧结工艺的基本要求,但制得的打印成
品易收缩且表面光洁度略差。
对比例1
重复实施例1,除了其中不使用正己烷溶剂而改用二甲苯溶剂(溶度参数为18.2MPa1/2)。由于该对比例中所使用的二甲苯溶剂是聚丙烯的良溶剂,导致聚丙烯溶解以后,降低温度时的结晶速率非常慢。在与实施例1相同的实验时间内,得到的激光烧结聚丙烯粉末颗粒的粒径尺寸过小且粒径分布更差(粒径范围10~55μm,D10=15μm,D50=24μm,D90=49μm),所制得的聚丙烯树脂粉末不能较好地满足激光烧结工艺的要求。
对比例2
重复实施例1,除了其中不使用正己烷溶剂而改用甲苯溶剂(溶度参数为18.4MPa1/2)。由于该对比例中所使用的甲苯溶剂是聚丙烯的良溶剂,导致聚丙烯溶解以后,降低温度时的结晶速率非常慢。在与实施例1相同的实验时间内,得到的激光烧结聚丙烯粉末颗粒的粒径尺寸过小并且粒径分布更差(粒径范围16~52μm,D10=25μm,D50=34μm,D90=40μm),所制得的聚丙烯树脂粉末不能较好地满足激光烧结工艺的要求。
以上实施例和对比例说明,根据本发明的方法得到的聚烯烃树脂粉末具有良好的抗氧化性、良好的粉末流动性、合适的尺寸大小、合适的堆密度、匀称的颗粒外形以及均匀的粒径分布,适用于选择性激光烧结制备各种模塑品。通过本发明提供的选择性激光烧结方法,能够制备得到具有规则外形、表面匀称光滑、机械性能良好的聚烯烃模塑品。
虽然本发明已作了详细描述,但对本领域技术人员来说,在
本发明精神和范围内的修改将是显而易见的。此外,应当理解的是,本发明记载的各方面、不同具体实施方式的各部分、和列举的各种特征可被组合或全部或部分互换。在上述的各个具体实施方式中,那些参考另一个具体实施方式的实施方式可适当地与其它实施方式组合,这是将由本领域技术人员所能理解的。此外,本领域技术人员将会理解,前面的描述仅是示例的方式,并不旨在限制本发明。
Claims (16)
- 一种聚烯烃树脂粉末的制备方法,其包括以下步骤:a)将聚烯烃树脂加热溶解于溶度参数小于或等于聚烯烃树脂溶度参数的有机溶剂中,得到聚烯烃树脂溶液;b)将聚烯烃树脂溶液降温,使固体沉淀析出,得到固液混合物;c)任选地向固液混合物中加入助剂并混合;d)固液分离并干燥,得到适用于选择性激光烧结的聚烯烃树脂粉末;其中,所述有机溶剂与聚烯烃树脂的溶度参数的差值在聚烯烃树脂溶度参数的0-20%以内。
- 根据权利要求1所述的方法,其特征在于,在步骤a)中,所述聚烯烃树脂选自聚丙烯树脂和聚乙烯树脂中的至少一种,优选选自均聚聚丙烯树脂和无规聚丙烯树脂中的至少一种。
- 根据权利要求1或2所述的方法,其特征在于,所述均聚聚丙烯树脂和无规聚丙烯树脂熔融指数在210℃,2.16kg载量下测定为20~100g/10min,优选30~80g/10min;所述聚乙烯树脂的熔融指数在190℃,2.16kg载量下测定为20~100g/10min,优选30~80g/10min。
- 根据权利要求1至3任一项所述的方法,其特征在于,以100重量份所述聚烯烃树脂计,所述有机溶剂用量为600~1200重量份数,优选800~1000重量份数。
- 根据权利要求1至4任一项所述的方法,其特征在于,所述有机溶剂选自C5-C12烷烃,优选C5-C9烷烃,更优选选自正戊烷、异戊烷、正己烷、2-甲基戊烷、3-甲基戊烷、2,2-二甲基丁烷、2,3-二甲基丁烷、环己烷、正庚烷、2-甲基己烷、3-甲基己烷、2,2- 二甲基戊烷、2,3-二甲基戊烷、2,4-二甲基戊烷、3,3-二甲基戊烷、3-乙基戊烷、2,2,3-三甲基丁烷、正辛烷和正壬烷中的至少一种,最优选选自正己烷、正庚烷和/或正辛烷。
- 根据权利要求1至5任一项所述的方法,其特征在于,步骤a)中将聚烯烃树脂加热到60~200℃、例如70~190℃或者80~160℃的温度;并且优选将聚烯烃树脂溶液在所述加热温度保持30~90分钟。
- 根据权利要求1至6任一项所述的方法,其特征在于,在步骤b)中以平均降温速率0.1℃/min~1℃/min将聚烯烃树脂溶液降温至目标温度,并在该目标温度下保持30~90分钟,所述目标温度为10~30℃。
- 根据权利要求1至7任一项所述的方法,其特征在于,在步骤b)中,将聚烯烃树脂溶液经由一个或多个中间温度降温至目标温度并在所述中间温度保持30~90分钟,所述中间温度在40~100℃或50~90℃范围内。
- 根据权利要求1至8任一项所述的方法,其特征在于,在步骤a)中加入成核剂,所述成核剂优选自二氧化硅、氧化钙、碳酸钙、硫酸钡、水滑石、水滑石、炭黑、高岭土和云母的至少一种。
- 根据权利要求9所述的方法,其特征在于,以100重量份聚烯烃树脂计,所述成核剂用量为0.01~2重量份,优选0.05~1重量份,更优选0.1~0.5重量份。
- 根据权利要求1至10任一项所述的方法,其特征在于,在步骤c)中所述助剂选自抗氧剂、粉末隔离剂、抗静电剂、抗菌剂和/或玻璃纤维增强剂,优选选自抗氧剂和/或粉末隔离剂。
- 根据权利要求11所述的方法,其特征在于,所述抗氧剂选自抗氧剂1010和/或抗氧剂168,并且优选以100重量份聚烯烃树 脂计,所述抗氧剂用量为0.1~0.5重量份,优选0.2~0.4重量份。
- 根据权利要求11所述的方法,其特征在于,所述粉末隔离剂选自基于链烷一元羧酸或二聚酸的碱金属或碱土金属、纳米氧化物和纳米金属盐中的至少一种,优选选自硬脂酸钠、硬脂酸钾、硬脂酸锌、硬脂酸钙、硬脂酸铅、二氧化硅、二氧化钛、氧化铝、氧化锌、氧化锆、碳酸钙和硫酸钡中的至少一种;并且优选以100重量份聚烯烃树脂计,所述粉末隔离剂的用量为0.01~10重量份,优选0.1~5重量份,更优选0.5~1重量份。
- 根据权利要求1至13任一项所述的方法制备得到的聚烯烃树脂粉末,所述粉末的颗粒为球形和/或类球形,颗粒的粒径大小为25~150μm,并且粒径分布D10=43~69μm、D50=61~103μm和D90=85~138μm。
- 一种选择性激光烧结的方法,其中将根据权利要求1至13任一项所述的方法制备的聚烯烃树脂粉末作为烧结粉末原料。
- 根据权利要求1至13任一项所述的方法制备得到的聚烯烃树脂粉末在制造三维物体的方法的用途,特别是其中采用选择性激光烧结来制造三维物体的方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018519486A JP6903052B2 (ja) | 2015-10-13 | 2016-04-15 | 選択的レーザー焼結に好適なポリオレフィン樹脂粉末及びその調製方法 |
US15/768,429 US10920025B2 (en) | 2015-10-13 | 2016-04-15 | Polyolefin resin powder suitable for selective laser sintering and its preparation method |
ES16854740T ES2794673T3 (es) | 2015-10-13 | 2016-04-15 | Polvo de resina de poliolefina para sinterización selectiva por láser y método de preparación del mismo |
EP16854740.4A EP3363849B1 (en) | 2015-10-13 | 2016-04-15 | Polyolefin resin powder for selective laser sintering and preparation method therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510665024.3A CN106589418A (zh) | 2015-10-13 | 2015-10-13 | 用于选择性激光烧结的聚丙烯树脂粉末及其制备方法和应用 |
CN201510665024.3 | 2015-10-13 | ||
CN201510750235.7 | 2015-11-06 | ||
CN201510750235.7A CN106674550A (zh) | 2015-11-06 | 2015-11-06 | 用于选择性激光烧结的聚乙烯树脂粉末及其制备和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017063351A1 true WO2017063351A1 (zh) | 2017-04-20 |
Family
ID=58517034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/079396 WO2017063351A1 (zh) | 2015-10-13 | 2016-04-15 | 用于选择性激光烧结的聚烯烃树脂粉末及其制备方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10920025B2 (zh) |
EP (1) | EP3363849B1 (zh) |
JP (1) | JP6903052B2 (zh) |
ES (1) | ES2794673T3 (zh) |
WO (1) | WO2017063351A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108659351A (zh) * | 2018-06-21 | 2018-10-16 | 安徽鸿森塑业有限公司 | 一种低气味聚丙烯母粒的制备方法 |
JP2019202466A (ja) * | 2018-05-23 | 2019-11-28 | コニカミノルタ株式会社 | 粉末材料、およびこれを用いた立体造形物の製造方法 |
CN112080042A (zh) * | 2019-06-12 | 2020-12-15 | 中国石油化工股份有限公司 | 助剂组合物及其制备方法、线性低密度聚乙烯组合物及其制备方法和聚乙烯流延包装膜 |
JPWO2019117055A1 (ja) * | 2017-12-15 | 2020-12-17 | 住友電気工業株式会社 | 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル |
JP2021506637A (ja) * | 2017-12-22 | 2021-02-22 | ブラスケム アメリカ インコーポレイテッドBraskem America,Inc. | 3次元プリントの方法、および結果として得られる多孔質構造の物品 |
EP3727802A4 (en) * | 2018-03-21 | 2022-02-23 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
WO2022223951A1 (en) * | 2021-04-19 | 2022-10-27 | PDR Flow Limited | 3d printing process |
US11548216B2 (en) | 2018-03-21 | 2023-01-10 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
US11613646B2 (en) | 2018-03-21 | 2023-03-28 | Hewlett-Packard Development Company, L.P. | Material for three-dimensional printing comprising specific polypropylene block copolymer |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018121552A1 (de) * | 2018-09-04 | 2020-03-05 | Karl Leibinger Medizintechnik Gmbh & Co. Kg | Lasergesinterter Filter, Verfahren zum Herstellen des Filters sowie Verfahren zum Flüssigkeitstransport |
WO2020164728A1 (en) * | 2019-02-15 | 2020-08-20 | Robert Bosch Gmbh | Particles for selective laser sintering, process of producing the particles and their use |
JP2020189965A (ja) * | 2019-05-17 | 2020-11-26 | 株式会社リコー | 樹脂粉末、立体造形用樹脂粉末、立体造形物、立体造形物の製造方法、及び立体造形物の製造装置 |
US20200362142A1 (en) * | 2019-05-17 | 2020-11-19 | Akira Saito | Thermoplastic resin powder, resin powder, resin powder for producing three-dimensional object, three-dimensional object, three-dimensional object producing apparatus, and three-dimensional object producing method |
JP7279506B2 (ja) * | 2019-05-17 | 2023-05-23 | 株式会社リコー | 熱可塑性樹脂粉末、立体造形用樹脂粉末、立体造形物の製造装置、及び立体造形物の製造方法 |
EP4043514A4 (en) * | 2019-10-11 | 2023-11-08 | LX Hausys, Ltd. | POLYPROPYLENE PARTICLES, METHOD FOR PREPARING THEM, BIPOLAR PLATE MANUFACTURED USING SAME, AND REDOX FLOW BATTERY COMPRISING THE SAME |
DE102020119683A1 (de) | 2020-06-25 | 2021-12-30 | Rehau Ag + Co | Verfahren zur Herstellung eines Bauteils im Wege der additiven Fertigung |
US11975482B2 (en) * | 2020-11-03 | 2024-05-07 | Eos Of North America, Inc. | Pretreated material for laser sintering |
CN115678145B (zh) * | 2022-09-29 | 2024-02-27 | 神华(北京)新材料科技有限公司 | 高流动性的粉体材料及其制备方法和应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004113042A2 (en) * | 2003-05-21 | 2004-12-29 | Z Corporation | Thermoplastic powder material system for appearance models from 3d printing systems |
CN103467823A (zh) * | 2013-09-18 | 2013-12-25 | 张兴华 | 一种热塑性塑料球形颗粒的制备方法 |
CN103980608A (zh) * | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 一种可用于3d打印的聚丙烯纳米复合材料及其制备方法和应用 |
CN103980401A (zh) * | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 一种可用于3d打印的纳米粒子/聚丙烯无规共聚物复合树脂及其制备方法和应用 |
CN103992560A (zh) * | 2014-04-30 | 2014-08-20 | 中国科学院化学研究所 | 一种可用于3d打印的高橡胶含量的聚丙烯多相共聚物树脂及其制备方法和应用 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2265802A1 (zh) * | 1974-03-26 | 1975-10-24 | Hercules Inc | |
JPS5219756A (en) * | 1975-08-06 | 1977-02-15 | Exxon Research Engineering Co | Process for producing polymer powder |
JPS6416806A (en) | 1987-07-09 | 1989-01-20 | Japan Synthetic Rubber Co Ltd | Production of polypropylene |
US5527877A (en) * | 1992-11-23 | 1996-06-18 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
DE69602037T2 (de) * | 1995-01-13 | 1999-09-23 | Mitsui Chemicals, Inc. | Syndiotaktische Polypropylenharzzusammensetzung |
US5733497A (en) * | 1995-03-31 | 1998-03-31 | Dtm Corporation | Selective laser sintering with composite plastic material |
DE102004024440B4 (de) | 2004-05-14 | 2020-06-25 | Evonik Operations Gmbh | Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver |
JP4846425B2 (ja) * | 2005-04-20 | 2011-12-28 | トライアル株式会社 | 粉末焼結積層造形法に使用される微小球体、その製造方法、粉末焼結積層造形物及びその製造方法 |
CN101138651B (zh) | 2007-09-14 | 2012-04-18 | 华中科技大学 | 用高分子微球进行选择性激光烧结的组织支架的制造方法 |
JP2010247348A (ja) * | 2009-04-10 | 2010-11-04 | Atect Corp | スタティックミキサの製造方法 |
JP5626952B2 (ja) * | 2009-10-02 | 2014-11-19 | 東邦チタニウム株式会社 | ポリプロピレン微粒子の製造方法 |
CN102140246A (zh) | 2010-12-21 | 2011-08-03 | 湖南华曙高科技有限责任公司 | 一种制备选择性激光烧结用尼龙粉末的方法 |
CN102399371B (zh) | 2011-10-17 | 2015-11-04 | 湖南华曙高科技有限责任公司 | 一种用于选择性激光烧结的聚酰胺粉末制备方法 |
DE102012205908A1 (de) | 2012-04-11 | 2013-10-17 | Evonik Industries Ag | Polymerpulver mit angepasstem Schmelzverhalten |
WO2015081001A1 (en) | 2013-11-26 | 2015-06-04 | Kraton Polymers U.S. Llc | Laser sintering powder, laser sintering article, and a method of making a laser sintering article |
CN103951971B (zh) * | 2014-05-12 | 2016-07-06 | 湖南华曙高科技有限责任公司 | 一种用于选择性激光烧结的碳纤维增强树脂粉末材料 |
CN104031319B (zh) | 2014-06-30 | 2016-08-24 | 广东银禧科技股份有限公司 | 选择性激光烧结聚丙烯粉末材料的制备及应用方法 |
CN104497323B (zh) | 2014-12-17 | 2017-02-22 | 湖南华曙高科技有限责任公司 | 一种用于选择性激光烧结的尼龙粉末制备方法 |
-
2016
- 2016-04-15 EP EP16854740.4A patent/EP3363849B1/en active Active
- 2016-04-15 WO PCT/CN2016/079396 patent/WO2017063351A1/zh active Application Filing
- 2016-04-15 JP JP2018519486A patent/JP6903052B2/ja active Active
- 2016-04-15 US US15/768,429 patent/US10920025B2/en active Active
- 2016-04-15 ES ES16854740T patent/ES2794673T3/es active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004113042A2 (en) * | 2003-05-21 | 2004-12-29 | Z Corporation | Thermoplastic powder material system for appearance models from 3d printing systems |
CN103467823A (zh) * | 2013-09-18 | 2013-12-25 | 张兴华 | 一种热塑性塑料球形颗粒的制备方法 |
CN103980608A (zh) * | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 一种可用于3d打印的聚丙烯纳米复合材料及其制备方法和应用 |
CN103980401A (zh) * | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 一种可用于3d打印的纳米粒子/聚丙烯无规共聚物复合树脂及其制备方法和应用 |
CN103992560A (zh) * | 2014-04-30 | 2014-08-20 | 中国科学院化学研究所 | 一种可用于3d打印的高橡胶含量的聚丙烯多相共聚物树脂及其制备方法和应用 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3363849A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7272276B2 (ja) | 2017-12-15 | 2023-05-12 | 住友電気工業株式会社 | 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル |
JPWO2019117055A1 (ja) * | 2017-12-15 | 2020-12-17 | 住友電気工業株式会社 | 絶縁材用樹脂組成物、絶縁材、絶縁電線及びケーブル |
US11718735B2 (en) | 2017-12-22 | 2023-08-08 | Braskem America, Inc. | Method of 3D printing, and resulting article having porous structure |
JP7319276B2 (ja) | 2017-12-22 | 2023-08-01 | ブラスケム アメリカ インコーポレイテッド | 3次元プリントの方法、および結果として得られる多孔質構造の物品 |
JP2021506637A (ja) * | 2017-12-22 | 2021-02-22 | ブラスケム アメリカ インコーポレイテッドBraskem America,Inc. | 3次元プリントの方法、および結果として得られる多孔質構造の物品 |
EP3727802A4 (en) * | 2018-03-21 | 2022-02-23 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
US11548216B2 (en) | 2018-03-21 | 2023-01-10 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
US11613646B2 (en) | 2018-03-21 | 2023-03-28 | Hewlett-Packard Development Company, L.P. | Material for three-dimensional printing comprising specific polypropylene block copolymer |
US11745417B2 (en) | 2018-03-21 | 2023-09-05 | Hewlett-Packard Development Company, L.P. | Three-dimensional printing |
JP7172134B2 (ja) | 2018-05-23 | 2022-11-16 | コニカミノルタ株式会社 | 粉末材料、およびこれを用いた立体造形物の製造方法 |
JP2019202466A (ja) * | 2018-05-23 | 2019-11-28 | コニカミノルタ株式会社 | 粉末材料、およびこれを用いた立体造形物の製造方法 |
CN108659351A (zh) * | 2018-06-21 | 2018-10-16 | 安徽鸿森塑业有限公司 | 一种低气味聚丙烯母粒的制备方法 |
CN112080042B (zh) * | 2019-06-12 | 2022-02-18 | 中国石油化工股份有限公司 | 助剂组合物及其制备方法、线性低密度聚乙烯组合物及其制备方法和聚乙烯流延包装膜 |
CN112080042A (zh) * | 2019-06-12 | 2020-12-15 | 中国石油化工股份有限公司 | 助剂组合物及其制备方法、线性低密度聚乙烯组合物及其制备方法和聚乙烯流延包装膜 |
WO2022223951A1 (en) * | 2021-04-19 | 2022-10-27 | PDR Flow Limited | 3d printing process |
Also Published As
Publication number | Publication date |
---|---|
US20180355122A1 (en) | 2018-12-13 |
JP6903052B2 (ja) | 2021-07-14 |
US10920025B2 (en) | 2021-02-16 |
EP3363849B1 (en) | 2020-04-29 |
JP2018534398A (ja) | 2018-11-22 |
ES2794673T3 (es) | 2020-11-18 |
EP3363849A1 (en) | 2018-08-22 |
EP3363849A4 (en) | 2019-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017063351A1 (zh) | 用于选择性激光烧结的聚烯烃树脂粉末及其制备方法 | |
CN103980401B (zh) | 一种可用于3d打印的纳米粒子/聚丙烯无规共聚物复合树脂及其制备方法和应用 | |
WO2017063352A1 (zh) | 一种适用于选择性激光烧结的脂肪族聚酯粉末及其制备方法 | |
CN103980609B (zh) | 一种可用于3d打印的含纳米粒子的聚丙烯釜内合金及其制备方法和应用 | |
CN103980395B (zh) | 一种可用于3d打印的超高分子量无规聚丙烯树脂及其制备方法和应用 | |
CN103980592B (zh) | 一种用于3d打印的高填充量微纳粉体/聚合物复合材料及其制备方法和制品 | |
CN103980608B (zh) | 一种可用于3d打印的聚丙烯纳米复合材料及其制备方法和应用 | |
CN107108906B (zh) | 聚酰胺微粒 | |
CN103992560B (zh) | 一种可用于3d打印的高橡胶含量的聚丙烯多相共聚物树脂及其制备方法和应用 | |
CN107257818B (zh) | 导热复合材料 | |
CN103980396B (zh) | 一种可用于3d打印的超高分子量等规聚丙烯树脂及其制备方法和应用 | |
CN111511830A (zh) | 在三维打印中具有改善的尺寸稳定性的聚烯烃、由其形成的制品及其方法 | |
JP2021053887A (ja) | 粉末床溶融結合方式による3dプリンター用樹脂粉粒体およびその製造方法、および樹脂粉粒体を用いた三次元造形物の製造方法 | |
CN111566161A (zh) | 用于3d打印的改进的长丝 | |
KR101923465B1 (ko) | 카본나노튜브를 포함하는 고강도 고분자 복합재 | |
BR112020012507B1 (pt) | Composição, artigo com estrutura porosa, métodos para impressão tridimensional e para produzir um artigo poroso, e, artigo poroso | |
JP2013245345A (ja) | オレフィン系重合体組成物および該組成物からなるフィルム | |
CN106832885A (zh) | 含聚多巴胺粒子的聚合物复合材料及其应用 | |
CN102757599B (zh) | 聚丙烯树脂组合物及由其形成的薄膜 | |
CN103980402B (zh) | 一种可用于3d打印的交联聚丙烯树脂及其制备方法和应用 | |
CN114920960B (zh) | 一种聚芳醚酮树脂或其复合材料超细粉的制备方法 | |
WO2020252224A1 (en) | Polypropylene-based particles for additive manufacturing | |
US20230374215A1 (en) | New polyamide-containing powders for powder bed fusion printing process and printed articles thereof | |
CN117279982A (zh) | 树脂粉末混合物及其制造方法、以及三维造型物的制造方法 | |
CN113004622A (zh) | 一种用于选择性激光烧结3d打印的聚丙烯粉末及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16854740 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2018519486 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016854740 Country of ref document: EP |