[go: up one dir, main page]

WO2017057171A1 - Flow channel material for forward osmosis membrane separation, separation membrane unit, and separation membrane element. - Google Patents

Flow channel material for forward osmosis membrane separation, separation membrane unit, and separation membrane element. Download PDF

Info

Publication number
WO2017057171A1
WO2017057171A1 PCT/JP2016/077973 JP2016077973W WO2017057171A1 WO 2017057171 A1 WO2017057171 A1 WO 2017057171A1 JP 2016077973 W JP2016077973 W JP 2016077973W WO 2017057171 A1 WO2017057171 A1 WO 2017057171A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
membrane
flow path
separation membrane
forward osmosis
Prior art date
Application number
PCT/JP2016/077973
Other languages
French (fr)
Japanese (ja)
Inventor
誠 小泓
康弘 宇田
友葉 岡▲崎▼
勝視 石井
孝夫 土井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017057171A1 publication Critical patent/WO2017057171A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/089Modules where the membrane is in the form of a bag, membrane cushion or pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a forward osmosis membrane separation channel material used for forward osmosis membrane separation that separates permeate using forward osmotic pressure, a separation membrane unit using the same, a separation membrane laminate in which this is laminated, and The present invention relates to a separation membrane element using this.
  • a membrane element with a structure different from the RO membrane used for seawater desalination, wastewater treatment, etc. is used as a forward osmosis membrane (Forward osmosis, hereinafter referred to as FO) for the semipermeable membrane separating the two liquids.
  • the DS of the pressure and the low osmotic pressure solution (Feed solution, hereinafter referred to as FS) are respectively passed through the cross flow. Due to the phenomenon of forward osmosis (FO), the salt concentration decreases near the membrane surface, which is defined as external concentration polarization on the DS side, and the salt concentration increases near the membrane surface due to the reverse transport of salt from the DS side and the FS solute on the FS side.
  • the shape of the flow path material is related to the pressure loss of the module, and the higher the pressure loss, the greater the energy consumption of the pump. For this reason, for example, in osmotic membrane power generation, the produced electric power is offset by the energy consumed by the pump, and in addition to the stirring effect, a flow path material shape having a low pressure loss is required.
  • the FO membrane in Pressure Retarded Osmosis mode such as osmotic membrane power generation
  • PRO Pressure Retarded Osmosis mode
  • the high osmotic pressure solution is on the skin layer side and the low osmosis solution
  • the pressurized solution is cross-flowed to the support layer side. This is because the power generation capacity of the turbine is determined by the product of pressure and forward osmotic flow, so if the high osmotic pressure solution is cross-flowed on the support layer side and the low osmotic pressure solution is cross-flowed on the skin layer side, the support layer side is pressurized. This is because peeling of the skin layer occurs.
  • the FO membrane in FO operation is formed of a skin layer and its support layer in the same manner as the RO membrane, the high osmotic pressure solution is cross-flowed to the support layer side, and the low osmotic pressure solution is cross-flowed to the skin layer side. It is considered desirable to operate and is operated without applying dynamic water pressure. The reason for this is that membrane fouling is likely to occur particularly on the support side of the FO membrane where the low osmotic pressure solution is cross-flowed, and the support generally has a porous structure, and contaminants smaller than the pore diameter are internal. This is because accumulation tends to occur.
  • a flow path material spacer
  • a flow path material spacer
  • Patent Document 1 discloses that the hydraulic diameter defined by 4 ⁇ (flow path cross-sectional area) / (flow path wet length) is at least 0.2 to A channel material having a channel cross section of 1.0 mm has been proposed.
  • This channel material is used for elements that do not have a single flow direction in the leaf, such as a spiral forward osmosis membrane element, and the pressure loss increases when flowing perpendicular to the groove direction of the channel material. Therefore, it is characterized by a structure in which a flow field is easily generated in all directions by calendaring or the like.
  • Patent Document 2 a laminated membrane separation device in which two flow paths in a membrane leaf can flow linearly.
  • a plurality of cylindrical sheet-shaped separation membranes with a permeate-side flow path material inserted therein are stacked at intervals, and the cylindrical sheet-shaped separation membranes are opened on two sides.
  • a permeate discharge unit is provided, and the remaining two sides are provided with a stock solution supply unit and a concentrate discharge unit.
  • This structure of the membrane separation apparatus is convenient for reducing the pressure loss because the flow path is linear.
  • the membrane separation device described in Patent Document 2 is prepared in such a manner that a cylindrical sheet-like separation membrane in which a flow path material is disposed is prepared in advance, and a plurality of these are stacked and the flow path is opened. Since it is necessary to seal a part with a sealing material, the manufacturing process of the separation membrane laminated body was very complicated.
  • the forward osmosis membrane separation flow path material described in Patent Document 1 assumes a case where the flow path in the membrane leaf is not linear, and when the flow path is straight, There was room to improve the stirring effect and pressure loss.
  • an object of the present invention is to provide a flow membrane material for forward osmosis membrane separation that has a good stirring effect and pressure loss near the membrane surface even when the flow channel is linear in forward osmosis membrane separation. It is in.
  • Another object of the present invention is that in the forward osmosis membrane separation, the stirring effect and pressure loss in the vicinity of the membrane surface by the flow path material are good, and the separation membrane laminate can be easily produced, and the handling property is also good.
  • An object of the present invention is to provide a separation membrane unit, a laminate thereof, and a separation membrane element using the same, which are favorable and can simplify the structure for forming a flow path.
  • the forward osmosis membrane separation channel material of the present invention has a network structure including resin fibers in two directions, the resin fibers intersect at an intersection angle of 40 to 90 degrees, and a thickness of 0.1 to 1 0.0 mm.
  • the stirring effect and pressure loss near the membrane surface Will be good.
  • the linear flow velocity increases when the flow rate is the same (the pump discharge flow rate is constant), the stirring effect is increased by the shearing force, and external concentration polarization can be reduced.
  • the intersection angle is smaller than 90 degrees, the pressure loss can be particularly improved.
  • the arrangement density of the resin fibers in the two directions is preferably 5 to 50 / 2.54 cm. Such an arrangement density can particularly improve the pressure loss.
  • the forward osmosis membrane separation channel material of the present invention is a forward osmosis membrane used by being disposed in the high osmotic pressure side channel or the low osmotic pressure side channel of the forward osmosis membrane in wastewater treatment or seawater desalination due to the above-described effects. It is useful as a separation channel material. For the same reason, it is useful as a channel material for separating a normal osmosis membrane used by being disposed in a high osmotic pressure side channel of a forward osmosis membrane in osmosis membrane power generation.
  • the separation membrane unit of the present invention includes a partition member having a first channel recess on one surface and a second channel recess on the other surface, and the first channel recess or the second channel recess.
  • a separation membrane unit for separating a forward osmosis membrane comprising: a sheet-like separation membrane disposed so as to cover the channel; and a channel material disposed in the first channel recess and / or the second channel recess.
  • at least one of the channel materials is the channel material for forward osmosis membrane separation according to claim 1 or 2.
  • the separation membrane unit of the present invention since the channel material of the present invention is used, in the forward osmosis membrane separation, the stirring effect and pressure loss near the membrane surface by the channel material are good. Further, the first flow path recesses form the first flow path so as to be in contact with both surfaces of the sheet-shaped separation film by simply laminating a plurality of the partition wall members and the sheet-shaped separation films alternately, and the second flow path recesses A second flow path is formed. At that time, the first channel and the second channel can be communicated with the end surface of the laminate by the first channel recess and the second channel recess.
  • the partition member has a function of reinforcing the laminated body, the handling of the laminated body is improved, and the flow path is opened at the end face of the strong laminated body, so that the structure for forming the flow path can be simplified. Can be formed.
  • a separation membrane unit capable of simplifying the structure for forming can be provided.
  • the flow path direction of the first flow path recess and the flow path direction of the second flow path recess intersect at an angle of 60 to 120 °. According to such a structure, the 1st flow path and 2nd flow path of a laminated body can be arrange
  • the sheet-like separation membrane has a shape having four sides, the first channel recess is arranged in a direction along two opposite sides of the sheet-like separation membrane, and the remaining second channel recess is opposed. It is preferable that it is arranged in a direction along the two sides. According to such a structure, the first flow path and the second flow path of the laminated body can be arranged to be open on the two opposite sides of the four sides and the remaining two sides. The structure for forming is also simpler.
  • the separation membrane laminated body for forward osmosis membrane separation of the present invention is characterized in that a plurality of the separation membrane units described above are laminated.
  • the separation membrane laminate of the present invention since it is formed by the separation membrane unit having the above-described effects, it can be easily manufactured, has good handling properties, and has a simple structure for forming a flow path.
  • the separation membrane laminate can be provided.
  • a separation membrane element for separating a forward osmosis membrane includes a separation membrane laminate in which a plurality of the separation membrane units described above are laminated, and both sides of a first flow path recess of the separation membrane laminate. Forming a first space portion communicating with the first cover member having a first liquid supply / discharge port, and forming a second space portion communicating from both sides with the second flow path recess of the separation membrane laminate, And a second cover member having a supply / discharge port for the second liquid.
  • the separation membrane laminate can be easily manufactured, the handling property is good, and the structure for forming the flow path using the first cover member and the second cover member is also simple. It will be something.
  • a separation membrane element for separating a forward osmosis membrane includes a separation membrane laminate in which a plurality of the separation membrane units described above are laminated, the separation membrane laminate, and a side wall portion and a bottom surface.
  • a housing having a portion and an upper surface portion, wherein the housing has two first space portions communicating between the inner surface and the end surface of the laminate from both sides of the first flow path recess,
  • the second channel recess has two second spaces communicating from both sides, the first liquid supply / discharge port provided in each of the first spaces, and the second space provided in each of the second spaces.
  • a second liquid supply / discharge port is a separation membrane laminate in which a plurality of the separation membrane units described above are laminated, the separation membrane laminate, and a side wall portion and a bottom surface.
  • the separation membrane stack is accommodated, and the two first space portions that communicate with the first channel from both sides, and the two second space portions that communicate with the second channel from both sides, Are formed in the housing, the members for forming the four spaces are not required individually. Further, since the housing is formed by the side wall portion, the bottom surface portion, and the top surface portion, the housings can be brought close to each other and stacked. As a result, it can be easily manufactured with a small number of parts, and space efficiency can be improved by using a plurality of stacked layers.
  • the channel material for forward osmosis membrane separation of the present invention is a channel material used for forward osmosis membrane separation.
  • forward osmosis membrane separation include forward osmosis membrane separation using forward osmosis, such as wastewater treatment, pretreatment for seawater desalination or concentrated water treatment, and osmosis membrane power generation.
  • a forward osmosis membrane for performing forward osmosis membrane separation is used, and the flow path material is used by being disposed in a high osmotic pressure side flow path or a low osmotic pressure side flow path of the forward osmosis membrane.
  • the channel material is used for the purpose of securing the channel and obtaining a stirring effect near the membrane surface, but the low osmotic pressure side channel of the osmotic membrane power generation has a support function for suppressing the depression of the forward osmosis membrane. Necessary.
  • the forward osmosis membrane separation channel material of the present invention is used by being disposed in the high osmotic pressure side channel or the low osmotic pressure side channel of the forward osmosis membrane in wastewater treatment or seawater desalination, or osmosis It is preferable that the membrane is used by being disposed in a high osmotic pressure side channel of a forward osmosis membrane in membrane power generation.
  • the forward osmosis membrane separation channel material of the present invention has a network structure including resin fibers 13a and 13b in two directions as shown in FIGS.
  • the network structure includes a net, a woven fabric, a knitted fabric, and the like.
  • the two-direction resin fibers 13a and 13b may not be joined together, but are preferably joined by adhesion, fusion, or the like.
  • a net obtained by simultaneously extruding and fusing the two-direction resin fibers 13a and 13b is preferably used.
  • the resin fibers 13a and 13b may be multifilaments, but monofilaments are preferable from the viewpoint of reducing pressure loss.
  • Examples of the cross-sectional shape of the resin fibers 13a and 13b include a circular shape and an elliptical shape, but those having an elliptical cross-sectional shape are preferable from the viewpoint of improving strength while reducing the thickness t.
  • the major axis / minor axis ratio is preferably 1.1 to 3.0, more preferably 1.5 to 2.0. At this time, it is preferable that the long diameter is arranged parallel to the flow path member 13.
  • the intersection angle ⁇ between the resin fibers 13a and 13b is preferably 40 to 90 degrees, and more preferably 55 to 75 degrees.
  • One of the resin fibers 13a and 13b is preferably arranged in parallel to the flow path from the viewpoint of reducing pressure loss. Further, from the viewpoint of reducing the pressure loss, it is preferable that both of the resin fibers 13a and 13b are arranged to be inclined from the direction of the flow path.
  • the inclination angle (intersection angle with respect to the fluid flow direction) at this time is preferably 20 to 45 degrees.
  • the thickness t of the flow path member 13 is 0.1 to 1.0 mm, preferably 0.2 to 0.8 mm, and more preferably 0.25 to 0.6 mm.
  • the diameter or short diameter of the resin fibers 13a and 13b is preferably 50 to 500 ⁇ m, and more preferably 100 to 400 ⁇ m.
  • the arrangement density (number of strands) of the resin fibers 13a and 13b is preferably 5 to 50 / 2.54 cm, and more preferably 7 to 15 / 2.54 cm.
  • the arrangement density means the number of resin fibers arranged in a width of about 2.54 cm in a cross section perpendicular to the arrangement direction of the fibers.
  • Examples of the material of the resin fibers 13a and 13b include materials mainly composed of polypropylene, polyethylene, polysulfone, polytetrafluoroethylene, polyvinyl chloride, polyvinylidene fluoride, polyphenylene sulfide polyphenylene ether, polycarbonate, and nylon.
  • resin fiber 13a, 13b when it uses for the flow path where progress of fouling is predicted, resin fiber 13a, 13b contains an antibacterial agent, and uses the material currently disperse
  • the separation membrane unit of the present invention is used for forward osmosis membrane separation.
  • the separation membrane unit of the present invention includes a partition member 12 having a first channel recess 12d on one surface and a second channel recess 12e on the other surface, and a first channel recess. 12d or the sheet-like separation membrane 10 disposed so as to cover the second flow path recess 12e, and the flow path material 13 described above includes the first flow path recess 12d and / or the second flow path recess. 12e.
  • the flow path material 13 of the present invention described above is disposed in the first flow path recess 12d
  • the flow path material 14 is provided in the second flow path recess 12e.
  • the material constituting the partition member 12 may be any of resin, metal, ceramics, etc., but resin is preferable from the viewpoint of ease of molding and manufacturing cost.
  • the resin include a thermosetting resin, a thermoplastic resin, and a heat resistant resin.
  • thermoplastic resin examples include ABS resin, vinyl chloride resin, polyethylene, polypropylene, polystyrene, acrylic resin, fluororesin, polyester, and polyamide.
  • heat resistant resin examples include polysulfone, polyethersulfone, aromatic polyimide, polyamide, and polyester.
  • thermosetting resin examples include epoxy resins, unsaturated polyester resins, phenol resins, amino resins, polyurethane resins, silicone resins, and thermosetting polyimide resins. Of these, thermoplastic resins such as ABS resin and vinyl chloride resin are preferably used. These resins can be appropriately selected depending on the type of separation membrane and the use of the unit.
  • the long side is 200 to 1000 mm
  • the short side is 200 to 1000 mm
  • the height is about 20 to 500 mm.
  • the flow path direction of the first flow path recess 12d formed in the partition wall member 12 and the flow path direction of the second flow path recess 12e may be the same or different, but the flow path of the first flow path recess 12d Direction and the flow path direction of the second flow path recess 12e preferably intersect at an angle of 60 to 120 °, more preferably at an angle of 80 to 100 °, and at an angle of 90 °. Most preferably, they intersect. In the present embodiment, an example in which the two intersect at an angle of 90 ° is shown.
  • the flow path directions of the first flow path recess 12d and the second flow path recess 12e may be any direction with respect to each side of the partition wall member 12, but the sheet-like separation membrane 10 or the partition wall
  • the first channel recess 12d is arranged in a direction along two opposing sides of the sheet-like separation membrane 10 or the like, and the remaining two sides facing the second channel recess 12e. It is preferable that it is arranged in the direction along.
  • the first flow path recess 12d and the second flow path recess 12e are formed over two opposing sides of the partition wall member 12, so that the first flow path or the second flow is formed on the end surface of the laminate of the separation membrane units.
  • a path opening can be formed.
  • the separation membrane unit is From the viewpoint of liquid tightness at the time of lamination, the width is preferably 1 to 30 mm, more preferably 5 to 20 mm.
  • the depth of the first flow path recess 12d or the second flow path recess 12e is determined according to the thickness of the flow path materials 13 and 14.
  • the depth of the first flow path recess 12d or the second flow path recess 12e is preferably 0.1 to 2 mm, and more preferably 0.2 to 1 mm.
  • a forward osmosis membrane is used, but a nanofiltration membrane, a reverse osmosis membrane, a dialysis membrane, or the like may be used as it is.
  • a forward osmosis membrane a composite semipermeable membrane can be used as in the case of a reverse osmosis membrane, but a structure having a lower pressure resistance than a reverse osmosis membrane, that is, a structure having a sparse support layer, etc. Can be used.
  • the sheet-like separation membrane 10 a material corresponding to the type of the membrane can be selected.
  • the porous support layer is a porous membrane formed of polysulfone, polyethersulfone, epoxy resin, polyamide, polyimide, or the like.
  • a nonwoven fabric formed of polyester, polyamide, polyolefin or the like is used.
  • the sheet-like separation membrane 10 has a case where the separation active layer is disposed on the high osmotic pressure DS side and a case where the separation active layer is disposed on the low osmotic pressure FS side. Is called the FO mode.
  • the separation active layer examples include those formed of polyamide, cellulose acetate, polysulfone, polyethersulfone, vinylidene fluoride, polyacrylonitrile, polyvinyl chloride-polyacrylonitrile copolymer, epoxy resin, polyimide, polyvinyl alcohol, and the like. It is also possible to use a single-layer separation membrane formed of these materials.
  • the thickness of the sheet-like separation membrane 10 is preferably 0.01 to 1.0 mm, more preferably 0.02 to 0.3 mm.
  • the above-described forward osmosis membrane separation channel material of the present invention is used.
  • the second channel material 14 the forward osmosis membrane separation channel material of the present invention described above can be used as in the first channel material 13.
  • the second flow path member 14 a net made of resin or the like, a woven fabric, a knitted fabric, or the like is preferably used, and the opening shape of the net is a triangle, a rectangle (rhombus, square, rectangle, parallelogram, etc.). ) And hexagons.
  • the thickness of the net is, for example, 0.12 to 2 mm.
  • the net yarn diameter constituting the net is, for example, 0.06 to 1 mm.
  • the net aperture ratio is 70 to 95%.
  • Examples of the material of the second flow path material 14 include materials mainly composed of polypropylene, polyethylene, polysulfone, polytetrafluoroethylene, polyvinyl chloride, polyvinylidene fluoride, polyphenylene sulfide polyphenylene ether, polycarbonate, and nylon.
  • the partition wall member 12 and the sheet-like separation membrane 10 are preferably fixed at any part. From the viewpoint of enhancing liquid tightness, the end portions 12a on both sides of the partition wall member 12 are used. It is more preferable that the sheet-like separation membrane 10 is fixed.
  • the partition wall member 12 and the flow path materials 13 and 14 are separate. However, it is preferable that it is fixed to the sheet-like separation membrane 10 at any site from the viewpoint of handling properties.
  • the partition member 12 is molded, it is possible to fix part of the flow path members 13 and 14 or to mold both of them integrally.
  • first flow path recess 12d and the second flow path recess 12e are respectively provided on the front and back of the partition wall member 12
  • a plurality of second flow path recesses 12e may be provided on the front and back of the partition wall member 12, respectively. Even in the case of such a structure, the channel material can be omitted. It is also possible to provide a channel material in each of the plurality of first channel recesses 12d and second channel recesses 12e.
  • the shape of the partition wall member 12 in plan view is a rectangle, but the shape of the partition wall member 12 in plan view may be any shape, and may be any rectangle, pentagon, or hexagon other than a rectangle. Alternatively, it may be circular or elliptical. That is, in the present invention, the opening of the flow path formed on the end face of the partition wall member 12 may not be linear.
  • the separation membrane laminate of the present invention is used for forward osmosis membrane separation.
  • the separation membrane laminate of the present invention is obtained by laminating a plurality of separation membrane units U as described above.
  • the first flow path opens to two opposite sides of the laminate 11 and communicates from one end surface to one surface of the sheet-like separation membrane 10.
  • P1 and a second flow path P2 that opens to the remaining two sides of the sheet-like separation membrane 10 and communicates from the end surfaces on both sides to the other surface of the sheet-like separation membrane 10 can be formed.
  • the number of separation membrane units U in the separation membrane laminate 11 is, for example, 2 to 200, and preferably 20 to 100.
  • the laminate 11 includes a plurality of sheet-like separation membranes 10 having four sides, a plurality of first flow passage members 13 arranged on the first flow passage side of the sheet-like separation membrane 10, and a second flow passage side.
  • the separation membrane units U When stacking, it is necessary to fix the separation membrane units U together so that the first flow path P1 and the second flow path P2 communicating with both surfaces of the separation membrane unit U do not circulate with each other. Therefore, the end portions 12a on both sides provided on one surface in the vicinity of the two opposing sides of the partition wall member 12 and the end portions of the sheet-like separation membrane 10 are fixed so as to be liquid-tight. Moreover, the edge part 12a of the both sides provided in the other surface of the vicinity of the remaining two opposite sides and the edge part of the sheet-like separation membrane 10 are fixed so as to be liquid-tight.
  • edge part 12a provided in four places of the partition member 12 is being fixed to the sheet-like separation membrane 10 over the full length, and the edge part 12a provided in four places is the substantially whole surface. More preferably, it is fixed to the sheet-like separation membrane 10.
  • the separation membrane units U in which the sheet-like separation membrane 10 and the partition member 12 are integrated may be fixed together by adhesion or the like, but the adjacent partition member 12 with the sheet-like separation membrane 10 interposed therebetween. They may be fixed in a liquid-tight state by bonding or the like.
  • the separation membrane laminate of the present invention may be a laminate in which a plurality of separation membrane units U are not fixed to each other and are laminated separately.
  • the partition members 12 arranged on both the uppermost and lowermost sides of the laminate 11 have a function as the outer wall plate 18, and the first flow path recess 12 d and the second flow path are formed on the uppermost surface and the lowermost surface.
  • the channel recess 12e is not provided.
  • an outer wall plate 18 that does not have the first flow path recess 12d and the second flow path recess 12e may be separately provided on both sides.
  • the separation membrane element of the present invention is used for forward osmosis membrane separation, and includes a separation membrane laminate 11 in which a plurality of separation membrane units U as described above are laminated.
  • the separation membrane stacked body 11 is preferably formed by fixing the separation membrane units U to each other, but may be a plurality of separated membrane units U stacked together without being fixed to each other. Even in this case, it is possible to maintain the liquid tightness between the flow paths by bringing the separation membrane laminates 11 into close contact with each other by a housing or the like.
  • the separation membrane element of the present embodiment includes the separation membrane laminate 11 and first space portions 21 a and 21 b that communicate with the first flow path recess 12 d of the separation membrane laminate 11 from both sides.
  • the first cover members 31a and 31b having the first liquid supply / discharge ports 23a to 23b and the second space portions 22a and 22b communicating with the second flow path recess 12e of the separation membrane laminate 11 from both sides are formed.
  • second cover members 32a and 32b having second liquid supply / discharge ports 24a to 24b.
  • Examples of the material of the first cover members 31a and 31b and the second cover members 32a and 32b include resins such as vinyl chloride, polycarbonate, and polypropylene, fiber reinforced resins obtained by reinforcing various resins with fibers such as glass, aluminum, and copper. Metals, ceramics, etc. can be used, but fiber reinforced resins are most preferred.
  • the first cover members 31a and 31b and the second cover members 32a and 32b can be fixed to the end face of the separation membrane laminate 11 by adhesion or the like. In addition, it is also possible to use what integrated one part or all of 1st cover member 31a, 31b and 2nd cover member 32a, 32b.
  • a pipe for supplying and discharging the first liquid or the second liquid is connected to the supply / discharge ports 23a to 24b through a connecting member as necessary.
  • a low-concentration liquid for example, fresh water FW, liquid to be treated FS, etc.
  • the high concentration liquid for example, seawater SW, draw solution DS, etc.
  • the element can be used for forward osmosis membrane separation.
  • the raw liquid is supplied from the supply / discharge port 24a and the permeate separated by the separation membrane is discharged from the supply / discharge port 23b while discharging the concentrate from the supply / discharge port 24b. It becomes possible to do. At this time, it is also possible to perform membrane separation while supplying the sweep flow from the supply / discharge port 23a.
  • cylindrical second cover member 32c can form the second space portions 22a and 22b communicating with the second flow path recess 12e of the separation membrane laminate 11 from both sides.
  • first space member communicated from both sides to the first flow path recess 12d of the separation membrane laminate 11 by the flat plate-like first cover members 31a and 31b provided at both ends of the cylindrical second cover member 32c. 21a and 21b can be formed.
  • the separation membrane element of the present invention houses a laminate 11 in which a plurality of separation membrane units U are laminated, the laminate 11, and includes a side wall portion 35 and a bottom portion 36.
  • the housing 30 which has the upper surface part 37 may be provided.
  • the illustrated example shows an example in which the side wall 35 of the housing 30 is cylindrical.
  • resins such as vinyl chloride, polycarbonate, and polypropylene
  • fiber reinforced resins obtained by reinforcing various resins with fibers such as glass, metals such as aluminum and copper, ceramics, and the like can be used. Is most preferred.
  • the housing 30 is formed by integrally molding the side wall portion 35 and the bottom surface portion 36, and after housing the laminate 11, the upper surface portion 37 is bonded, welded, or the like to join the supply / discharge ports 23a to 24b.
  • the part other than can be made into a liquid-tight structure.
  • Two second spaces 22a and 22b are provided.
  • the separation membrane element is used, the first liquid and the second liquid are filled in the first space 21a and 21b and the second space 22a and 22b, respectively, as necessary.
  • the housing 30 may be of a size that can accommodate the laminate 11, but the effective membrane area can be reduced by making the corner of the laminate 11 close to the inner surface of the side wall portion 35. It is preferable from the viewpoint of easily sealing the corner while increasing the number. In that case, the inner surface of the side wall portion 35 and the corner portion of the laminated body 11 can be sealed with a sealing resin, but an elastic body (not shown) is interposed between the two and adjacent to each other. The space portions may be sealed.
  • a method of sealing the bottom surface and the bottom surface portion 36 of the laminated body 11 by adhesion, or a method of sealing using a sealing material made of an elastic body can be mentioned.
  • the sealing between the upper surface of the laminated body 11 and the upper surface portion 37 can be similarly performed.
  • the elastic body rubber, thermoplastic elastomer or the like can be used, and the cross-sectional shape is preferably L-shaped or U-shaped so that it can be easily circumscribed on the corner of the laminate 11. Moreover, it is also possible to use an elastic body having a shape that circumscribes all the sides (12 sides) of the laminate 11. Thereby, a seal
  • the housing 30 includes first liquid supply / discharge ports 23a, 23b provided in the first spaces 21a, 21b, and second liquid supply / discharge ports 24a, 24b provided in the second spaces 22a, 22b, respectively. And having.
  • the first liquid supply / discharge ports 23 a and 23 b of the housing 30 are provided in the bottom surface portion 36 and the top surface portion 37
  • the second liquid supply and discharge ports 24 a and 24 b are provided in the bottom surface portion 36 and the top surface portion 37.
  • These supply / discharge ports 23a to 24b can supply and discharge the liquid using a connected pipe.
  • the first space portions 21a and 21b and the second space portions 22a and 22b are respectively provided with two upper and lower supply / discharge ports 23a to 24b.
  • the upper and lower supply / exhaust ports 23a to 24b that is closed at the top and bottom.
  • the shape of the housing 30 in plan view may be any.
  • it may be a polygon such as an ellipse, an octagon, a square, a diamond, or a hexagon.
  • Example 1 Using a test cell with a membrane area of 232 cm 2 , in the PRO mode of FO operation, flow path materials with different thicknesses and angles and forward osmosis membranes (manufactured by Nitto Denko, developed product, thickness of about 50 ⁇ m and porosity of about 45%) A polyamide skin layer was formed on an epoxy porous membrane), the average concentration of Draw solution was 28,000 ppm NaCl, the linear velocity was unified to 0.01 m / sec, and the flux was measured at 20 ° C.
  • the channel material is a diamond type and the following six types are used, and the flux value in each channel material is described.
  • Example 2 Using a test cell with a membrane area of 56 cm 2 , with PRO operation (pressure difference 1 MPa), flow path materials with different thicknesses and forward osmosis membranes (Nitto Denko, developed product, with a thickness of about 50 ⁇ m and a porosity of about 45% Set an epoxy porous layer on a porous epoxy membrane), set the average concentration of Draw solution to 28,000 ppm NaCl, change the linear velocity, and perform flux measurement at 20 ° C. The power generation capacity was calculated from the relationship.
  • the channel material is a diamond type, and the following three types are used. The power generation capacity of each channel material is shown in FIG.
  • the stirrer effect can be expected as the obtuse angle.
  • no difference was found in the difference between the intersection angles of 73 ° and 107 °.
  • the laminated module does not wind up with tension, so it can be modularized even if the angle is set to an acute angle or the pitch is widened to deteriorate the rigidity of the channel material. .
  • Sheet Separation Membrane 11 Laminate (Separation Membrane Laminate) 12 Partition member 12d First channel recess 12e Second channel recess 13 First channel material (channel material for forward osmosis membrane separation) 13a, 13b Resin fiber 14 Second flow path material 21a, 21b First space 22a, 22b Second space 23a, 23b First liquid supply / discharge port 24a, 24b Second liquid supply / discharge port 30 Housing 35 Side wall 36 bottom surface portion 37 upper surface portion P1 first flow path P2 second flow path U separation membrane unit ⁇ intersection angle t thickness of flow path material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a flow channel material for forward osmosis membrane separation, which provides a good agitation effect and a favorable pressure loss property in the vicinity of a membrane surface in forward osmosis membrane separation even in the case where the flow channel is of rectilinear configuration. Another purpose of the present invention is to provide a separation membrane unit, a laminate thereof, and a separation membrane element using the same, all of which provides a good agitation effect and a favorable pressure loss property in the vicinity of the membrane surface in forward osmosis membrane separation, and which further enable easy production of a separation membrane laminate, are easy to handle, and allow a flow channel to be formed in a simplified structure. The flow channel material for forward osmosis membrane separation according to the present invention has a thickness t of 0.1-1.0 mm and has a network-patterned structure comprising resin fibers 13a, 13b oriented in two directions in which the resin fibers 13a, 13b intersect with each other at an intersection angle α of 40-90 degrees.

Description

正浸透膜分離用流路材、分離膜ユニット及び分離膜エレメントForward osmosis membrane separation channel material, separation membrane unit and separation membrane element
 本発明は、正浸透圧を利用して透過液を分離する正浸透膜分離に使用する正浸透膜分離用流路材、これを用いた分離膜ユニット、これを積層した分離膜積層体、及びこれを用いた分離膜エレメントに関するものである。 The present invention relates to a forward osmosis membrane separation channel material used for forward osmosis membrane separation that separates permeate using forward osmotic pressure, a separation membrane unit using the same, a separation membrane laminate in which this is laminated, and The present invention relates to a separation membrane element using this.
 近年、排水処理、海水淡水化、浸透膜発電など、正浸透現象を用いた正浸透膜分離に使用する膜システムの開発、利用が活発化している。排水処理では、高浸透圧の液(Draw Solution、以下DSという)を用いて排水中の水を抽出し、排水の減容化を図る。海水淡水化では、前処理に用いることで海水の浸透圧を下げて省エネルギーを図ったり、濃縮水処理に用いることで濃縮水の塩濃度を下げて環境負荷を低減することが行われる。浸透膜発電では、高濃度液と低濃度液の浸透圧差により水流を作り出して水力タービンを回し、環境に優しい再生可能エネルギーを創出する。このように正浸透現象を利用した技術開発が活発化しているため、それに用いることができる高効率で経済的、かつ信頼性の高い正浸透膜モジュールが強く求められている。 In recent years, the development and use of membrane systems used for forward osmosis membrane separation using forward osmosis, such as wastewater treatment, seawater desalination, and osmotic membrane power generation, has become active. In the wastewater treatment, water in the wastewater is extracted using a high osmotic pressure liquid (Draw Solution, hereinafter referred to as DS) to reduce the volume of the wastewater. In seawater desalination, energy saving is achieved by reducing the osmotic pressure of seawater by using it for pretreatment, or the environmental load is reduced by reducing the salt concentration of concentrated water by using it for concentrated water treatment. In osmotic membrane power generation, a water flow is created by the difference in osmotic pressure between high-concentration liquid and low-concentration liquid, and a hydro turbine is turned to create environmentally friendly renewable energy. Thus, since technological development utilizing the forward osmosis phenomenon has been activated, a highly efficient, economical and reliable forward osmosis membrane module that can be used therefor is strongly demanded.
 ここで、2液を隔てる半透膜には正浸透膜(Forward osmosis、以下FOという)として、海水淡水化や排水処理等に使用されるRO膜と異なる構造の膜エレメントが使用され、高浸透圧のDS及び低浸透圧の溶液(Feed solution、以下FSという)は、それぞれクロスフローで通水される。正浸透の現象(FO)により、DS側では外部濃度分極と定義される膜面近傍の塩濃度低下、FS側ではDS側からの塩の逆輸送やFSの溶質から膜面近傍の塩濃度上昇が生じるため、バルクの浸透圧差に対して、実際の浸透圧差が低下する。更に、この外部濃度分極に加えて、FO膜の支持体内部でFSの塩濃度やDSからの逆輸送による塩により内部濃度分極が生じる。 Here, a membrane element with a structure different from the RO membrane used for seawater desalination, wastewater treatment, etc. is used as a forward osmosis membrane (Forward osmosis, hereinafter referred to as FO) for the semipermeable membrane separating the two liquids. The DS of the pressure and the low osmotic pressure solution (Feed solution, hereinafter referred to as FS) are respectively passed through the cross flow. Due to the phenomenon of forward osmosis (FO), the salt concentration decreases near the membrane surface, which is defined as external concentration polarization on the DS side, and the salt concentration increases near the membrane surface due to the reverse transport of salt from the DS side and the FS solute on the FS side. Therefore, the actual osmotic pressure difference is reduced with respect to the bulk osmotic pressure difference. Further, in addition to this external concentration polarization, internal concentration polarization occurs due to the salt concentration of FS and the salt due to reverse transport from DS inside the support of the FO membrane.
 従って、クロスフローをさせるにあたり、流路部材の選定としては、より撹拌効果の高い流路材を適用することが求められる。加えて、流路材の形状はモジュールの圧力損失に関わり、圧力損失が高いほどポンプの消費エネルギーが大きくなる。このため、例えば浸透膜発電においては、生産された電力がポンプ消費エネルギーで相殺されていくこととなり、撹拌効果に加えて、低圧損である流路材形状が求められる。 Therefore, when cross-flowing is performed, it is required to select a flow path member that has a higher stirring effect. In addition, the shape of the flow path material is related to the pressure loss of the module, and the higher the pressure loss, the greater the energy consumption of the pump. For this reason, for example, in osmotic membrane power generation, the produced electric power is offset by the energy consumed by the pump, and in addition to the stirring effect, a flow path material shape having a low pressure loss is required.
 一方、浸透膜発電のような、Pressure Retarded Osmosis mode(PRO)におけるFO膜は、RO膜と同様にスキン層とその支持層で形成される場合、高浸透圧溶液がスキン層側で、低浸透圧溶液が支持層側にクロスフローされる。これはタービンでの発電能力が圧力と正浸透流の積で決まることから、仮に支持層側に高浸透圧溶液を、スキン層側に低浸透圧溶液をクロスフローさせて、支持層側を昇圧させるとスキン層の剥離が生じてしまうためである。 On the other hand, when the FO membrane in Pressure Retarded Osmosis mode (PRO), such as osmotic membrane power generation, is formed with a skin layer and its support layer like the RO membrane, the high osmotic pressure solution is on the skin layer side and the low osmosis solution The pressurized solution is cross-flowed to the support layer side. This is because the power generation capacity of the turbine is determined by the product of pressure and forward osmotic flow, so if the high osmotic pressure solution is cross-flowed on the support layer side and the low osmotic pressure solution is cross-flowed on the skin layer side, the support layer side is pressurized. This is because peeling of the skin layer occurs.
 これに対して、FO運転におけるFO膜は、RO膜と同様にスキン層とその支持層で形成される場合、高浸透圧溶液は支持層側で、低浸透圧溶液はスキン層側にクロスフローされることが望ましいと考えられ、動的な水圧がかかることなく運転される。その理由は、膜ファウリングは、特に低浸透圧溶液がクロスフローされるFO膜の支持体側にて生じやすく、支持体が一般的に多孔体構造であり、その孔径よりも小さい汚染物は内部から蓄積が生じやすいためである。 On the other hand, when the FO membrane in FO operation is formed of a skin layer and its support layer in the same manner as the RO membrane, the high osmotic pressure solution is cross-flowed to the support layer side, and the low osmotic pressure solution is cross-flowed to the skin layer side. It is considered desirable to operate and is operated without applying dynamic water pressure. The reason for this is that membrane fouling is likely to occur particularly on the support side of the FO membrane where the low osmotic pressure solution is cross-flowed, and the support generally has a porous structure, and contaminants smaller than the pore diameter are internal. This is because accumulation tends to occur.
 従って、2液をクロスフローさせる際に、流路確保のため、スキン層側及び支持層側それぞれに流路材(スペーサ)を組み込むが、流路材の選定としては、PRO運転においては加圧状態での膜ダメージを避けることができるように支持膜側では膜面の陥没抑制等が必要である。 Therefore, when cross-flowing the two liquids, a flow path material (spacer) is incorporated on each of the skin layer side and the support layer side in order to secure the flow path. In order to avoid film damage in a state, it is necessary to suppress the depression of the film surface on the support film side.
 以上のような正浸透膜分離用の流路材として、特許文献1には、4×(流路断面積)/(流路濡れ長さ)で定義される水力直径が、少なくとも0.2~1.0mmの流路断面を有した流路材が提案されている。この流路材は、スパイラル型正浸透膜エレメントのようにリーフ内で流れ方向が単一ではないエレメントに用いられ、流路材の溝方向と垂直に流れるときに、圧力損失が大きくなってしまうため、カレンダー加工等により、全方向に流れ場が生じ易い構造を特徴とするものである。 As a flow path material for forward osmosis membrane separation as described above, Patent Document 1 discloses that the hydraulic diameter defined by 4 × (flow path cross-sectional area) / (flow path wet length) is at least 0.2 to A channel material having a channel cross section of 1.0 mm has been proposed. This channel material is used for elements that do not have a single flow direction in the leaf, such as a spiral forward osmosis membrane element, and the pressure loss increases when flowing perpendicular to the groove direction of the channel material. Therefore, it is characterized by a structure in which a flow field is easily generated in all directions by calendaring or the like.
 一方、膜リーフ内の2つの流路が直線的に流動可能な構造になる積層型の膜分離装置が知られている(例えば、特許文献2)。この文献に記載された膜分離装置では、透過側流路材を内挿した筒状のシート状分離膜の複数が間隔を隔てて積層され、筒状のシート状分離膜が開口する二辺に透過液の排出部が設けられ、残りの二辺に原液の給液部と濃縮液の排出部が設けられている。この膜分離装置の構造は、流路が直線的であるため、低圧損化のためには好都合である。 On the other hand, there is known a laminated membrane separation device in which two flow paths in a membrane leaf can flow linearly (for example, Patent Document 2). In the membrane separation apparatus described in this document, a plurality of cylindrical sheet-shaped separation membranes with a permeate-side flow path material inserted therein are stacked at intervals, and the cylindrical sheet-shaped separation membranes are opened on two sides. A permeate discharge unit is provided, and the remaining two sides are provided with a stock solution supply unit and a concentrate discharge unit. This structure of the membrane separation apparatus is convenient for reducing the pressure loss because the flow path is linear.
特開2015-85234号公報Japanese Patent Laying-Open No. 2015-85234 特開平6-277463号公報JP-A-6-277463
 しかしながら、特許文献2に記載された膜分離装置は、流路材を内部に配置した筒状のシート状分離膜を予め作製した上で、これらを複数積層し、流路が開口するように端部を封止材で封止する必要があるため、分離膜積層体の製造工程が非常に煩雑となっていた。 However, the membrane separation device described in Patent Document 2 is prepared in such a manner that a cylindrical sheet-like separation membrane in which a flow path material is disposed is prepared in advance, and a plurality of these are stacked and the flow path is opened. Since it is necessary to seal a part with a sealing material, the manufacturing process of the separation membrane laminated body was very complicated.
 また、筒状のシート状分離膜の両側の端部のみが封止されているため、補強板を上下に設けないと、分離膜積層体のハンドリング性が悪く、また、筒状のシート状分離膜の外側に連通する流路を形成するための構造が複雑になるという問題もあった。 In addition, since only the ends on both sides of the cylindrical sheet-shaped separation membrane are sealed, if the reinforcing plates are not provided above and below, the handling property of the separation membrane laminate is poor, and the cylindrical sheet-shaped separation There is also a problem that the structure for forming the flow path communicating with the outside of the membrane is complicated.
 また、特許文献1に記載された正浸透膜分離用の流路材は、膜リーフ内の流路が直線的でない場合を想定しており、流路が直線的である場合に、膜面での攪拌効果および圧力損失を改善する余地があった。 Further, the forward osmosis membrane separation flow path material described in Patent Document 1 assumes a case where the flow path in the membrane leaf is not linear, and when the flow path is straight, There was room to improve the stirring effect and pressure loss.
 そこで、本発明の目的は、正浸透膜分離において、流路が直線的である場合にも、膜面付近での攪拌効果および圧力損失が良好な正浸透膜分離用流路材を提供することにある。 Accordingly, an object of the present invention is to provide a flow membrane material for forward osmosis membrane separation that has a good stirring effect and pressure loss near the membrane surface even when the flow channel is linear in forward osmosis membrane separation. It is in.
 また、本発明の別の目的は、正浸透膜分離において、流路材による膜面付近での攪拌効果および圧力損失が良好であり、しかも分離膜積層体が簡易に製造でき、またハンドリング性も良好であり、流路を形成するための構造も簡易化できる分離膜ユニット、その積層体、及びこれを用いた分離膜エレメントを提供することにある。 Another object of the present invention is that in the forward osmosis membrane separation, the stirring effect and pressure loss in the vicinity of the membrane surface by the flow path material are good, and the separation membrane laminate can be easily produced, and the handling property is also good. An object of the present invention is to provide a separation membrane unit, a laminate thereof, and a separation membrane element using the same, which are favorable and can simplify the structure for forming a flow path.
 上記目的は、下記の如き本発明により達成できる。   
 即ち、本発明の正浸透膜分離用流路材は、2方向の樹脂繊維を含む網状構造を有し、前記樹脂繊維同士が交点角度40~90度で交差し、厚みが0.1~1.0mmであることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the forward osmosis membrane separation channel material of the present invention has a network structure including resin fibers in two directions, the resin fibers intersect at an intersection angle of 40 to 90 degrees, and a thickness of 0.1 to 1 0.0 mm.
 本発明の正浸透膜分離用流路材によると、実施例の結果が示すように、正浸透膜分離において、流路が直線的である場合にも、膜面付近での攪拌効果および圧力損失が良好なものとなる。つまり、厚みが比較的薄いため、同じ流量(ポンプ吐出流量が一定)の場合に線流速が大きくなり、剪断力により攪拌効果が高まり、外部濃度分極を低減することができる。また、交点角度が90度より小さい場合には、特に圧力損失を改善することができる。 According to the forward osmosis membrane separation channel material of the present invention, as shown in the results of the examples, in the forward osmosis membrane separation, even when the channel is linear, the stirring effect and pressure loss near the membrane surface Will be good. In other words, since the thickness is relatively thin, the linear flow velocity increases when the flow rate is the same (the pump discharge flow rate is constant), the stirring effect is increased by the shearing force, and external concentration polarization can be reduced. Further, when the intersection angle is smaller than 90 degrees, the pressure loss can be particularly improved.
 上記において、前記2方向の樹脂繊維の配列密度が、ともに5~50本/2.54cmであることが好ましい。このような配列密度により、特に圧力損失を改善することができる。 In the above, the arrangement density of the resin fibers in the two directions is preferably 5 to 50 / 2.54 cm. Such an arrangement density can particularly improve the pressure loss.
 本発明の正浸透膜分離用流路材は、上記の効果により、排水処理又は海水淡水化における正浸透膜の高浸透圧側流路又は低浸透圧側流路に配置して使用される正浸透膜分離用流路材として有用である。また、同様の理由により、浸透膜発電における正浸透膜の高浸透圧側流路に配置して使用される正浸透膜分離用流路材として有用である。 The forward osmosis membrane separation channel material of the present invention is a forward osmosis membrane used by being disposed in the high osmotic pressure side channel or the low osmotic pressure side channel of the forward osmosis membrane in wastewater treatment or seawater desalination due to the above-described effects. It is useful as a separation channel material. For the same reason, it is useful as a channel material for separating a normal osmosis membrane used by being disposed in a high osmotic pressure side channel of a forward osmosis membrane in osmosis membrane power generation.
 一方、本発明の分離膜ユニットは、第1流路凹部を一方の面に有し第2流路凹部を他方の面に有する隔壁部材と、前記第1流路凹部又は前記第2流路凹部を覆って配置されたシート状分離膜と、前記第1流路凹部及び/又は前記第2流路凹部に配置される流路材と、を備える正浸透膜分離用の分離膜ユニットであって、前記流路材の少なくとも一方は、請求項1又は2に記載の正浸透膜分離用流路材であることを特徴とする。 On the other hand, the separation membrane unit of the present invention includes a partition member having a first channel recess on one surface and a second channel recess on the other surface, and the first channel recess or the second channel recess. A separation membrane unit for separating a forward osmosis membrane, comprising: a sheet-like separation membrane disposed so as to cover the channel; and a channel material disposed in the first channel recess and / or the second channel recess. In addition, at least one of the channel materials is the channel material for forward osmosis membrane separation according to claim 1 or 2.
 本発明の分離膜ユニットによると、本発明の前記流路材を使用するため、正浸透膜分離において、流路材による膜面付近での攪拌効果および圧力損失が良好となる。また、隔壁部材とシート状分離膜とを交互に複数積層するだけで、シート状分離膜の両面に接するように、第1流路凹部により第1流路が形成され、第2流路凹部により第2流路が形成される。その際、第1流路凹部と第2流路凹部により、第1流路と第2流路とを積層体の端面に連通させることができる。また、隔壁部材が積層体の補強機能を有するため、積層体のハンドリング性も良好となると共に、強固な積層体の端面に流路が開口するため、流路を形成するための構造も簡易に形成することができるようになる。 According to the separation membrane unit of the present invention, since the channel material of the present invention is used, in the forward osmosis membrane separation, the stirring effect and pressure loss near the membrane surface by the channel material are good. Further, the first flow path recesses form the first flow path so as to be in contact with both surfaces of the sheet-shaped separation film by simply laminating a plurality of the partition wall members and the sheet-shaped separation films alternately, and the second flow path recesses A second flow path is formed. At that time, the first channel and the second channel can be communicated with the end surface of the laminate by the first channel recess and the second channel recess. In addition, since the partition member has a function of reinforcing the laminated body, the handling of the laminated body is improved, and the flow path is opened at the end face of the strong laminated body, so that the structure for forming the flow path can be simplified. Can be formed.
 その結果、正浸透膜分離において、流路材による膜面付近での攪拌効果および圧力損失が良好であり、しかも分離膜積層体が簡易に製造でき、またハンドリング性も良好であり、流路を形成するための構造も簡易化できる分離膜ユニットを提供できる。 As a result, in the forward osmosis membrane separation, the stirring effect and pressure loss near the membrane surface by the flow path material are good, the separation membrane laminate can be easily manufactured, and the handling property is also good. A separation membrane unit capable of simplifying the structure for forming can be provided.
 上記において、前記第1流路凹部の流路方向と前記第2流路凹部の流路方向とが60~120°の角度で交差していることが好ましい。このような構造によると、積層体の第1流路と第2流路とを異なる部位に配置することができ、流路を形成するための構造もより簡易なものとなる。 In the above, it is preferable that the flow path direction of the first flow path recess and the flow path direction of the second flow path recess intersect at an angle of 60 to 120 °. According to such a structure, the 1st flow path and 2nd flow path of a laminated body can be arrange | positioned in a different site | part, and the structure for forming a flow path will also become simpler.
 また、前記シート状分離膜が4辺を有する形状であり、前記第1流路凹部が前記シート状分離膜の対向する二辺に沿う方向に配され、前記第2流路凹部が対向する残りの二辺に沿う方向に配されていることが好ましい。このような構造によると、積層体の第1流路と第2流路とを、4辺のうち対向する二辺と残りの二辺とに開口して配置することができるため、流路を形成するための構造もより簡易なものとなる。 Further, the sheet-like separation membrane has a shape having four sides, the first channel recess is arranged in a direction along two opposite sides of the sheet-like separation membrane, and the remaining second channel recess is opposed. It is preferable that it is arranged in a direction along the two sides. According to such a structure, the first flow path and the second flow path of the laminated body can be arranged to be open on the two opposite sides of the four sides and the remaining two sides. The structure for forming is also simpler.
 一方、本発明の正浸透膜分離用の分離膜積層体は、上記いずれかに記載の分離膜ユニットが複数積層されていることを特徴とする。本発明の分離膜積層体によると、上記のごとき作用効果を有する分離膜ユニットにより形成されているため、簡易に製造でき、またハンドリング性も良好であり、流路を形成するための構造も簡易化できる分離膜積層体を提供できる。 On the other hand, the separation membrane laminated body for forward osmosis membrane separation of the present invention is characterized in that a plurality of the separation membrane units described above are laminated. According to the separation membrane laminate of the present invention, since it is formed by the separation membrane unit having the above-described effects, it can be easily manufactured, has good handling properties, and has a simple structure for forming a flow path. The separation membrane laminate can be provided.
 他方、本発明の正浸透膜分離用の分離膜エレメントは、上記いずれかに記載の分離膜ユニットが複数積層されている分離膜積層体と、前記分離膜積層体の第1流路凹部に両側から連通する第1空間部を形成し、第1液体の給排出口を有する第1カバー部材と、前記分離膜積層体の第2流路凹部に両側から連通する第2空間部を形成し、第2液体の給排出口を有する第2カバー部材と、を備えることを特徴とする。 On the other hand, a separation membrane element for separating a forward osmosis membrane according to the present invention includes a separation membrane laminate in which a plurality of the separation membrane units described above are laminated, and both sides of a first flow path recess of the separation membrane laminate. Forming a first space portion communicating with the first cover member having a first liquid supply / discharge port, and forming a second space portion communicating from both sides with the second flow path recess of the separation membrane laminate, And a second cover member having a supply / discharge port for the second liquid.
 本発明の分離膜エレメントによると、分離膜積層体が簡易に製造でき、またハンドリング性も良好であり、第1カバー部材と第2カバー部材を用いた、流路を形成するための構造も簡易なものとなる。 According to the separation membrane element of the present invention, the separation membrane laminate can be easily manufactured, the handling property is good, and the structure for forming the flow path using the first cover member and the second cover member is also simple. It will be something.
 また、本発明の正浸透膜分離用の分離膜エレメントは、上記いずれかに記載の分離膜ユニットが複数積層されている分離膜積層体と、前記分離膜積層体を収容し、側壁部と底面部と上面部とを有するハウジングと、を備え、前記ハウジングは、その内面と前記積層体の端面との間に、前記第1流路凹部に両側から連通する2つの第1空間部と、前記第2流路凹部に両側から連通する2つの第2空間部とを有すると共に、前記第1空間部の各々に設けた第1液体の給排出口と、前記第2空間部の各々に設けた第2液体の給排出口と、を有することを特徴とする。この分離膜エレメントによると、前記分離膜積層体を収容して、第1流路に両側から連通する2つの第1空間部と、第2流路に両側から連通する2つの第2空間部とを、ハウジング内に形成しているため、4つの空間部を形成するための部材が個々に必要でなくなる。また、ハウジングが側壁部と底面部と上面部とで形成される構造のため、ハウジング同士を接近して併設、積層することが可能となる。その結果、少ない部品点数で簡易に製造でき、また複数を積層して使用することでスペース効率を高めることができる。 Further, a separation membrane element for separating a forward osmosis membrane according to the present invention includes a separation membrane laminate in which a plurality of the separation membrane units described above are laminated, the separation membrane laminate, and a side wall portion and a bottom surface. A housing having a portion and an upper surface portion, wherein the housing has two first space portions communicating between the inner surface and the end surface of the laminate from both sides of the first flow path recess, The second channel recess has two second spaces communicating from both sides, the first liquid supply / discharge port provided in each of the first spaces, and the second space provided in each of the second spaces. And a second liquid supply / discharge port. According to the separation membrane element, the separation membrane stack is accommodated, and the two first space portions that communicate with the first channel from both sides, and the two second space portions that communicate with the second channel from both sides, Are formed in the housing, the members for forming the four spaces are not required individually. Further, since the housing is formed by the side wall portion, the bottom surface portion, and the top surface portion, the housings can be brought close to each other and stacked. As a result, it can be easily manufactured with a small number of parts, and space efficiency can be improved by using a plurality of stacked layers.
本発明の正浸透膜分離用流路材の一例を示す図であり、(a)は平面図、(b)A-A矢視断面図。It is a figure which shows an example of the flow-path material for forward osmosis membrane separation of this invention, (a) is a top view, (b) AA arrow sectional drawing. 本発明の分離膜ユニットの一例を示す斜視図であり、(a)は組立図、(b)は組立後の図。It is a perspective view which shows an example of the separation membrane unit of this invention, (a) is an assembly drawing, (b) is the figure after an assembly. 本発明の分離膜ユニットの一例を積層した積層体を示す斜視図。The perspective view which shows the laminated body which laminated | stacked an example of the separation membrane unit of this invention. 本発明の分離膜エレメントの一例を示す横断面図。The cross-sectional view which shows an example of the separation membrane element of this invention. 本発明の分離膜エレメントの他の例示す図であり、(a)は正面視断面図、(b)は側面視断面図。It is a figure which shows the other example of the separation membrane element of this invention, (a) is front sectional drawing, (b) is side sectional drawing. 本発明の分離膜エレメントの他の例示す分解斜視図。The disassembled perspective view which shows the other example of the separation membrane element of this invention. 実験例2の結果を示すグラフ。The graph which shows the result of Experimental example 2. 実験例3の結果を示すグラフ。The graph which shows the result of Experimental example 3.
 (正浸透膜分離用流路材)
 本発明の正浸透膜分離用流路材は、正浸透膜分離に用いられる流路材である。正浸透膜分離としては、排水処理、海水淡水化の前処理又は濃縮水処理、浸透膜発電など、正浸透現象を用いた正浸透膜分離が挙げられる。
(Forward osmosis membrane separation channel material)
The channel material for forward osmosis membrane separation of the present invention is a channel material used for forward osmosis membrane separation. Examples of forward osmosis membrane separation include forward osmosis membrane separation using forward osmosis, such as wastewater treatment, pretreatment for seawater desalination or concentrated water treatment, and osmosis membrane power generation.
 これらの用途では、正浸透膜分離を行うための正浸透膜が使用され、流路材は、正浸透膜の高浸透圧側流路又は低浸透圧側流路に配置して使用される。流路材は、流路の確保、膜面付近での攪拌効果を得る目的で使用されるが、浸透膜発電の低浸透圧側流路では、正浸透膜の陥没を抑制するための支持機能が必要となる。 In these applications, a forward osmosis membrane for performing forward osmosis membrane separation is used, and the flow path material is used by being disposed in a high osmotic pressure side flow path or a low osmotic pressure side flow path of the forward osmosis membrane. The channel material is used for the purpose of securing the channel and obtaining a stirring effect near the membrane surface, but the low osmotic pressure side channel of the osmotic membrane power generation has a support function for suppressing the depression of the forward osmosis membrane. Necessary.
 このため、本発明の正浸透膜分離用流路材は、排水処理又は海水淡水化における正浸透膜の高浸透圧側流路又は低浸透圧側流路に配置して使用されるか、又は、浸透膜発電における正浸透膜の高浸透圧側流路に配置して使用されることが好ましい。 Therefore, the forward osmosis membrane separation channel material of the present invention is used by being disposed in the high osmotic pressure side channel or the low osmotic pressure side channel of the forward osmosis membrane in wastewater treatment or seawater desalination, or osmosis It is preferable that the membrane is used by being disposed in a high osmotic pressure side channel of a forward osmosis membrane in membrane power generation.
 本発明の正浸透膜分離用流路材は、図1(a)~(b)に示すように、2方向の樹脂繊維13a、13bを含む網状構造を有している。網状構造には、ネット、織物、編物などが含まれる。また、2方向の樹脂繊維13a、13bは、両者が接合されていなくてもよいが、接着、融着等により両者が接合されていることが好ましい。特に、2方向の樹脂繊維13a、13bを同時に押し出し成形して融着させたネットが好ましく用いられる。 The forward osmosis membrane separation channel material of the present invention has a network structure including resin fibers 13a and 13b in two directions as shown in FIGS. The network structure includes a net, a woven fabric, a knitted fabric, and the like. The two- direction resin fibers 13a and 13b may not be joined together, but are preferably joined by adhesion, fusion, or the like. In particular, a net obtained by simultaneously extruding and fusing the two- direction resin fibers 13a and 13b is preferably used.
 樹脂繊維13a、13bは、マルチフィラメントでもよいが、圧力損失を低減する観点から、モノフィラメントが好ましい。樹脂繊維13a、13bの断面形状は、円形、楕円形などが挙げられるが、厚みtを薄くしながら、強度を向上させる観点から、楕円形の断面形状を有するものが好ましい。 The resin fibers 13a and 13b may be multifilaments, but monofilaments are preferable from the viewpoint of reducing pressure loss. Examples of the cross-sectional shape of the resin fibers 13a and 13b include a circular shape and an elliptical shape, but those having an elliptical cross-sectional shape are preferable from the viewpoint of improving strength while reducing the thickness t.
 樹脂繊維13a、13bの断面形状が楕円形の場合、長径/短径の比率は、1.1~3.0が好ましく、1.5~2.0がより好ましい。このとき、長径が流路材13に平行になるように配置されることが好ましい。 When the cross-sectional shape of the resin fibers 13a and 13b is elliptical, the major axis / minor axis ratio is preferably 1.1 to 3.0, more preferably 1.5 to 2.0. At this time, it is preferable that the long diameter is arranged parallel to the flow path member 13.
 樹脂繊維13a、13b同士の交点角度αは、40~90度であることが好ましく、より好ましくは、55~75度である。樹脂繊維13a、13bは、圧力損失を低減する観点から、何れか一方が流路に平行に配置されることが好ましい。また、圧力損失を低減する観点から、樹脂繊維13a、13bの両者が流路の方向から傾斜して配置されることが好ましい。このときの傾斜角度(流体流れ方向に対する交点角度)は、20~45度が好ましい。 The intersection angle α between the resin fibers 13a and 13b is preferably 40 to 90 degrees, and more preferably 55 to 75 degrees. One of the resin fibers 13a and 13b is preferably arranged in parallel to the flow path from the viewpoint of reducing pressure loss. Further, from the viewpoint of reducing the pressure loss, it is preferable that both of the resin fibers 13a and 13b are arranged to be inclined from the direction of the flow path. The inclination angle (intersection angle with respect to the fluid flow direction) at this time is preferably 20 to 45 degrees.
 流路材13の厚みtは0.1~1.0mmであり、好ましくは0.2~0.8mmであり、より好ましくは0.25~0.6mmである。このような厚みtとするとともに、膜面付近での攪拌効果および圧力損失のバランスの観点から、樹脂繊維13a、13bの直径又は短径は、50~500μmが好ましく、100~400μmがより好ましい。 The thickness t of the flow path member 13 is 0.1 to 1.0 mm, preferably 0.2 to 0.8 mm, and more preferably 0.25 to 0.6 mm. In view of the thickness t and the balance between the stirring effect and pressure loss in the vicinity of the membrane surface, the diameter or short diameter of the resin fibers 13a and 13b is preferably 50 to 500 μm, and more preferably 100 to 400 μm.
 また、樹脂繊維13a、13bの配列密度(ストランド数)は、ともに5~50本/2.54cmであることが好ましく、7~15本/2.54cmであることがより好ましい。ここで、配列密度とは、繊維の配列方向に垂直な断面における幅2.54cm辺りの樹脂繊維の配列本数を意味する。 Further, the arrangement density (number of strands) of the resin fibers 13a and 13b is preferably 5 to 50 / 2.54 cm, and more preferably 7 to 15 / 2.54 cm. Here, the arrangement density means the number of resin fibers arranged in a width of about 2.54 cm in a cross section perpendicular to the arrangement direction of the fibers.
 樹脂繊維13a、13bの材質としては、ポリプロピレン、ポリエチレン、ポリスルホン、ポリテトラフルオロエチレン、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリフェニレンサルファイドポロフェニレンエーテル、ポリカーボネート、ナイロンを主原料とするものが挙げられる。 Examples of the material of the resin fibers 13a and 13b include materials mainly composed of polypropylene, polyethylene, polysulfone, polytetrafluoroethylene, polyvinyl chloride, polyvinylidene fluoride, polyphenylene sulfide polyphenylene ether, polycarbonate, and nylon.
 樹脂繊維13a、13bの材質については、ファウリングの進行が予測される流路に使用される場合、樹脂繊維13a、13bが抗菌剤を含有し、樹脂中に分散されている材質を用いることで、ファウリングの進行を抑制することができる。このような流路材の詳細は、特許第52131362号公報に記載されている。 About the material of resin fiber 13a, 13b, when it uses for the flow path where progress of fouling is predicted, resin fiber 13a, 13b contains an antibacterial agent, and uses the material currently disperse | distributed in resin. The progress of fouling can be suppressed. Details of such a channel material are described in Japanese Patent No. 5213362.
 (分離膜ユニット)
 本発明の分離膜ユニットは、正浸透膜分離に用いられるものである。本発明の分離膜ユニットは、図2に示すように、第1流路凹部12dを一方の面に有し第2流路凹部12eを他方の面に有する隔壁部材12と、第1流路凹部12d又は第2流路凹部12eを覆って配置されたシート状分離膜10と、を備えており、前述した流路材13は、前記第1流路凹部12d及び/又は前記第2流路凹部12eに配置される。本実施形態では、第1流路凹部12dに前述した本発明の流路材13が配置され、第2流路凹部12eに流路材14を備える例を示す。
(Separation membrane unit)
The separation membrane unit of the present invention is used for forward osmosis membrane separation. As shown in FIG. 2, the separation membrane unit of the present invention includes a partition member 12 having a first channel recess 12d on one surface and a second channel recess 12e on the other surface, and a first channel recess. 12d or the sheet-like separation membrane 10 disposed so as to cover the second flow path recess 12e, and the flow path material 13 described above includes the first flow path recess 12d and / or the second flow path recess. 12e. In the present embodiment, an example is shown in which the flow path material 13 of the present invention described above is disposed in the first flow path recess 12d, and the flow path material 14 is provided in the second flow path recess 12e.
 隔壁部材12を構成する材料としては、樹脂、金属、セラミックスなど何れでもよいが、成形のし易さや製造コストなどの観点から樹脂が好ましい。樹脂としては、熱硬化性樹脂、熱可塑性樹脂、耐熱性樹脂などが挙げられる。 The material constituting the partition member 12 may be any of resin, metal, ceramics, etc., but resin is preferable from the viewpoint of ease of molding and manufacturing cost. Examples of the resin include a thermosetting resin, a thermoplastic resin, and a heat resistant resin.
 熱可塑性樹脂としては、ABS樹脂、塩化ビニル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、フッ素樹脂、ポリエステル、ポリアミドなどが挙げられる。また、耐熱性樹脂としては、ポリスルホン、ポリエーテルサルホン、芳香族系のポリイミド、ポリアミド、ポリエステルなどが挙げられる。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、アミノ樹脂、ポリウレタン樹脂、シリコーン樹脂、または熱硬化性ポリイミド樹脂等が挙げられる。なかでも、ABS樹脂、塩化ビニル樹脂などの熱可塑性樹脂が好ましく用いられる。これらの樹脂は、分離膜の種類およびユニットの用途により適宜選択することが可能である。 Examples of the thermoplastic resin include ABS resin, vinyl chloride resin, polyethylene, polypropylene, polystyrene, acrylic resin, fluororesin, polyester, and polyamide. Examples of the heat resistant resin include polysulfone, polyethersulfone, aromatic polyimide, polyamide, and polyester. Examples of the thermosetting resin include epoxy resins, unsaturated polyester resins, phenol resins, amino resins, polyurethane resins, silicone resins, and thermosetting polyimide resins. Of these, thermoplastic resins such as ABS resin and vinyl chloride resin are preferably used. These resins can be appropriately selected depending on the type of separation membrane and the use of the unit.
 隔壁部材12の外形のサイズとしては、直方体形状の場合、例えば長辺が200~1000mm、短辺が200~1000mm、高さが20~500mm程度である。 As the size of the outer shape of the partition member 12, in the case of a rectangular parallelepiped shape, for example, the long side is 200 to 1000 mm, the short side is 200 to 1000 mm, and the height is about 20 to 500 mm.
 隔壁部材12に形成される第1流路凹部12dの流路方向と、第2流路凹部12eの流路方向とは、同じでも異なっていてもよいが、第1流路凹部12dの流路方向と第2流路凹部12eの流路方向とが60~120°の角度で交差していることが好ましく、80~100°の角度で交差していることがより好ましく、90°の角度で交差していることが最も好ましい。本実施形態では、両者が90°の角度で交差している例を示す。 The flow path direction of the first flow path recess 12d formed in the partition wall member 12 and the flow path direction of the second flow path recess 12e may be the same or different, but the flow path of the first flow path recess 12d Direction and the flow path direction of the second flow path recess 12e preferably intersect at an angle of 60 to 120 °, more preferably at an angle of 80 to 100 °, and at an angle of 90 °. Most preferably, they intersect. In the present embodiment, an example in which the two intersect at an angle of 90 ° is shown.
 また、第1流路凹部12dおよび第2流路凹部12eの流路方向は、隔壁部材12の各辺に対して、どのような方向を向いていてもよいが、シート状分離膜10又は隔壁部材12が4辺を有する形状である場合、第1流路凹部12dがシート状分離膜10等の対向する二辺に沿う方向に配され、第2流路凹部12eが対向する残りの二辺に沿う方向に配されていることが好ましい。第1流路凹部12dおよび第2流路凹部12eが、隔壁部材12の対向する二辺にわたって形成されることで、分離膜ユニットの積層体において、その端面に、第1流路又は第2流路の開口を形成することができる。 Further, the flow path directions of the first flow path recess 12d and the second flow path recess 12e may be any direction with respect to each side of the partition wall member 12, but the sheet-like separation membrane 10 or the partition wall When the member 12 has a shape having four sides, the first channel recess 12d is arranged in a direction along two opposing sides of the sheet-like separation membrane 10 or the like, and the remaining two sides facing the second channel recess 12e. It is preferable that it is arranged in the direction along. The first flow path recess 12d and the second flow path recess 12e are formed over two opposing sides of the partition wall member 12, so that the first flow path or the second flow is formed on the end surface of the laminate of the separation membrane units. A path opening can be formed.
 上記の場合、隔壁部材12の対向する二辺の付近(端部12a)には、第1流路凹部12dおよび第2流路凹部12eが形成されていない部分が存在するが、分離膜ユニットを積層する際の液密性の観点から、その幅は1~30mmが好ましく、5~20mmがより好ましい。 In the above case, there are portions where the first flow path recess 12d and the second flow path recess 12e are not formed in the vicinity (end 12a) of the two opposing sides of the partition wall member 12, but the separation membrane unit is From the viewpoint of liquid tightness at the time of lamination, the width is preferably 1 to 30 mm, more preferably 5 to 20 mm.
 本実施形態のように、第1流路凹部12dおよび第2流路凹部12eに、流路材13、14が設けられる場合、一定又は略一定の深さの凹部を形成するのが好ましい。その場合、第1流路凹部12dまたは第2流路凹部12eの深さは、流路材13、14の厚みに応じて決定される。第1流路凹部12dまたは第2流路凹部12eの深さは、0.1~2mmが好ましく、0.2~1mmがより好ましい。 When the flow path materials 13 and 14 are provided in the first flow path recess 12d and the second flow path recess 12e as in the present embodiment, it is preferable to form a recess having a constant or substantially constant depth. In that case, the depth of the first flow path recess 12d or the second flow path recess 12e is determined according to the thickness of the flow path materials 13 and 14. The depth of the first flow path recess 12d or the second flow path recess 12e is preferably 0.1 to 2 mm, and more preferably 0.2 to 1 mm.
 シート状分離膜10としては、正浸透膜が用いられるが、ナノろ過膜、逆浸透膜、透析膜などを、そのまま使用できる場合もある。正浸透膜としては、逆浸透膜と同様に、複合半透膜を使用することができるが、逆浸透膜と比較して、耐圧性が低い構造、即ち支持層が疎である構造のものなどを使用することができる。 As the sheet-like separation membrane 10, a forward osmosis membrane is used, but a nanofiltration membrane, a reverse osmosis membrane, a dialysis membrane, or the like may be used as it is. As a forward osmosis membrane, a composite semipermeable membrane can be used as in the case of a reverse osmosis membrane, but a structure having a lower pressure resistance than a reverse osmosis membrane, that is, a structure having a sparse support layer, etc. Can be used.
 シート状分離膜10としては、上記の膜の種類に応じた材質が選択可能である。例えば、シート状分離膜10が分離活性層と多孔性支持層とを有する場合、多孔性支持層としては、ポリスルホン、ポリエーテルサルホン、エポキシ樹脂、ポリアミド、ポリイミド、などで形成された多孔質膜、また、ポリエステル、ポリアミド、ポリオレフィンなどで形成された不織布などが使用される。
 本発明において、シート状分離膜10は、分離活性層が、高浸透圧のDS側に配置される場合と、低浸透圧のFS側に配置される場合とがあり、前者をPROモード、後者をFOモードと呼ぶ。
As the sheet-like separation membrane 10, a material corresponding to the type of the membrane can be selected. For example, when the sheet-like separation membrane 10 has a separation active layer and a porous support layer, the porous support layer is a porous membrane formed of polysulfone, polyethersulfone, epoxy resin, polyamide, polyimide, or the like. In addition, a nonwoven fabric formed of polyester, polyamide, polyolefin or the like is used.
In the present invention, the sheet-like separation membrane 10 has a case where the separation active layer is disposed on the high osmotic pressure DS side and a case where the separation active layer is disposed on the low osmotic pressure FS side. Is called the FO mode.
 分離活性層としては、ポリアミド、酢酸セルロース、ポリスルホン、ポリエーテルスルホン、フッ化ビニリデン、ポリアクリロニトリル、ポリ塩化ビニル-ポリアクリロニトリル共重合体、エポキシ樹脂、ポリイミド、ポリビニルアルコールなどで形成されたものが挙げられる。これらの材料で形成した単層の分離膜を使用することも可能である。 Examples of the separation active layer include those formed of polyamide, cellulose acetate, polysulfone, polyethersulfone, vinylidene fluoride, polyacrylonitrile, polyvinyl chloride-polyacrylonitrile copolymer, epoxy resin, polyimide, polyvinyl alcohol, and the like. . It is also possible to use a single-layer separation membrane formed of these materials.
 シート状分離膜10の厚みとしては、0.01~1.0mmが好ましく、0.02~0.3mmがより好ましい。 The thickness of the sheet-like separation membrane 10 is preferably 0.01 to 1.0 mm, more preferably 0.02 to 0.3 mm.
 第1流路材13としては、前述した本発明の正浸透膜分離用流路材が使用される。第2流路材14としては、第1流路材13と同様に、前述した本発明の正浸透膜分離用流路材を使用することができる。 As the first channel material 13, the above-described forward osmosis membrane separation channel material of the present invention is used. As the second channel material 14, the forward osmosis membrane separation channel material of the present invention described above can be used as in the first channel material 13.
 一般的には、第2流路材14としては、樹脂等からなるネット、織物、編み物などが好ましく用いられ、ネットの開口形状としては、三角形、四角形(菱形、正方形、長方形、平行四辺形等)、六角形などが挙げられる。 In general, as the second flow path member 14, a net made of resin or the like, a woven fabric, a knitted fabric, or the like is preferably used, and the opening shape of the net is a triangle, a rectangle (rhombus, square, rectangle, parallelogram, etc.). ) And hexagons.
 ネットの厚みは、例えば0.12~2mmが挙げられる。ネットを構成するネット糸径は例えば0.06~1mmが挙げられる。ネットの開口率は例えば70~95%が挙げられる。 The thickness of the net is, for example, 0.12 to 2 mm. The net yarn diameter constituting the net is, for example, 0.06 to 1 mm. For example, the net aperture ratio is 70 to 95%.
 第2流路材14の材質としては、ポリプロピレン、ポリエチレン、ポリスルホン、ポリテトラフルオロエチレン、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリフェニレンサルファイドポロフェニレンエーテル、ポリカーボネート、ナイロンを主原料とするものが挙げられる。 Examples of the material of the second flow path material 14 include materials mainly composed of polypropylene, polyethylene, polysulfone, polytetrafluoroethylene, polyvinyl chloride, polyvinylidene fluoride, polyphenylene sulfide polyphenylene ether, polycarbonate, and nylon.
 本発明の分離膜ユニットにおいて、隔壁部材12とシート状分離膜10とは、何れかの部位で固着されていることが好ましく、液密性を高める観点から、隔壁部材12の両側の端部12aにおいて、シート状分離膜10が固着されていることがより好ましい。 In the separation membrane unit of the present invention, the partition wall member 12 and the sheet-like separation membrane 10 are preferably fixed at any part. From the viewpoint of enhancing liquid tightness, the end portions 12a on both sides of the partition wall member 12 are used. It is more preferable that the sheet-like separation membrane 10 is fixed.
 また、第1流路凹部12dおよび第2流路凹部12eに、流路空間を保持するための流路材13、14を更に備える場合、隔壁部材12と流路材13、14とが別体であってもよいが、シート状分離膜10と何れかの部位で固着されていることが、ハンドリング性の観点から好ましい。隔壁部材12を成形する際に、流路材13、14の一部を固着したり、両者を一体的に成形することも可能である。 When the first flow path recess 12d and the second flow path recess 12e are further provided with flow path materials 13 and 14 for holding the flow path space, the partition wall member 12 and the flow path materials 13 and 14 are separate. However, it is preferable that it is fixed to the sheet-like separation membrane 10 at any site from the viewpoint of handling properties. When the partition member 12 is molded, it is possible to fix part of the flow path members 13 and 14 or to mold both of them integrally.
 (分離膜ユニットの他の実施形態)
 (1)前述の実施形態では、第1流路凹部12dに本発明の正浸透膜分離用流路材が配置される例を示したが、第2流路凹部12eに本発明の正浸透膜分離用流路材を配置することも可能である。また、第1流路凹部12dと第2流路凹部12eに本発明の正浸透膜分離用流路材を配置することも可能である。
(Another embodiment of the separation membrane unit)
(1) In the above-described embodiment, the example in which the forward osmosis membrane separation flow path material of the present invention is disposed in the first flow path recess 12d is shown. However, the forward osmosis membrane of the present invention is disposed in the second flow path recess 12e. It is also possible to arrange a separation channel material. It is also possible to arrange the forward osmosis membrane separation channel material of the present invention in the first channel recess 12d and the second channel recess 12e.
 (2)前述の実施形態では、第1流路凹部12dおよび第2流路凹部12eを、隔壁部材12の表裏に各々1つ有している例を示したが、第1流路凹部12d又は第2流路凹部12eを、隔壁部材12の表裏に各々複数有していてもよい。このような構造の場合にも、流路材を省略することが可能となる。また、複数の第1流路凹部12dおよび第2流路凹部12eの各々に、流路材を設けることも可能である。 (2) In the above-described embodiment, the example in which the first flow path recess 12d and the second flow path recess 12e are respectively provided on the front and back of the partition wall member 12 is shown. A plurality of second flow path recesses 12e may be provided on the front and back of the partition wall member 12, respectively. Even in the case of such a structure, the channel material can be omitted. It is also possible to provide a channel material in each of the plurality of first channel recesses 12d and second channel recesses 12e.
 (3)前述の実施形態では、隔壁部材12の平面視の形状が、長方形である場合を示したが、隔壁部材12の平面視の形状は何れでもよく、長方形以外の四角形、五角形、六角形や、円形、楕円形などでもよい。つまり、本発明において、隔壁部材12の端面に形成される流路の開口は、直線状でなくてもよい。 (3) In the above-described embodiment, the case where the shape of the partition wall member 12 in plan view is a rectangle, but the shape of the partition wall member 12 in plan view may be any shape, and may be any rectangle, pentagon, or hexagon other than a rectangle. Alternatively, it may be circular or elliptical. That is, in the present invention, the opening of the flow path formed on the end face of the partition wall member 12 may not be linear.
 (分離膜積層体)
 本発明の分離膜積層体は、正浸透膜分離に用いられるものである。本発明の分離膜積層体は、図3に示すように、以上のような分離膜ユニットUが複数積層されたものである。このように、本発明の分離膜ユニットUを複数積層することで、積層体11の対向する二辺に開口し、両側の端面からシート状分離膜10の一方の面に連通する第1流路P1と、シート状分離膜10の残りの二辺に開口し、両側の端面からシート状分離膜10の他方の面に連通する第2流路P2と、を形成ことができる。分離膜積層体11における分離膜ユニットUの数は、例えば2~200枚であり、20~100枚であることが好ましい。
(Separation membrane stack)
The separation membrane laminate of the present invention is used for forward osmosis membrane separation. As shown in FIG. 3, the separation membrane laminate of the present invention is obtained by laminating a plurality of separation membrane units U as described above. Thus, by laminating a plurality of separation membrane units U of the present invention, the first flow path opens to two opposite sides of the laminate 11 and communicates from one end surface to one surface of the sheet-like separation membrane 10. P1 and a second flow path P2 that opens to the remaining two sides of the sheet-like separation membrane 10 and communicates from the end surfaces on both sides to the other surface of the sheet-like separation membrane 10 can be formed. The number of separation membrane units U in the separation membrane laminate 11 is, for example, 2 to 200, and preferably 20 to 100.
 本実施形態では、積層体11が、四辺を有する複数のシート状分離膜10と、シート状分離膜10の第1流路側に配置した複数の第1流路材13と、第2流路側に配置した複数の第2流路材14と、第1流路と第2流路とが混合するのを防止する隔壁部材12と、を備えている例を示す。 In the present embodiment, the laminate 11 includes a plurality of sheet-like separation membranes 10 having four sides, a plurality of first flow passage members 13 arranged on the first flow passage side of the sheet-like separation membrane 10, and a second flow passage side. The example provided with the some 2nd flow-path material 14 arrange | positioned and the partition member 12 which prevents that a 1st flow path and a 2nd flow path mix.
 積層の際、分離膜ユニットUの両側の面に連通する第1流路P1と第2流路P2とが、相互に流通しないように、分離膜ユニットU同士を固着する必要がある。そのため、隔壁部材12の対向する二辺の付近の一方の面に設けられた両側の端部12aと、シート状分離膜10の端部とが、液密になるように固着される。また、残りの対向する二辺の付近の他方の面に設けられた両側の端部12aと、シート状分離膜10の端部とが、液密になるように固着される。その際、隔壁部材12の4箇所に設けられた端部12aが、その全長にわたってシート状分離膜10と固着されていることが好ましく、4箇所に設けられた端部12aが、その略全面でシート状分離膜10と固着されていることがより好ましい。 When stacking, it is necessary to fix the separation membrane units U together so that the first flow path P1 and the second flow path P2 communicating with both surfaces of the separation membrane unit U do not circulate with each other. Therefore, the end portions 12a on both sides provided on one surface in the vicinity of the two opposing sides of the partition wall member 12 and the end portions of the sheet-like separation membrane 10 are fixed so as to be liquid-tight. Moreover, the edge part 12a of the both sides provided in the other surface of the vicinity of the remaining two opposite sides and the edge part of the sheet-like separation membrane 10 are fixed so as to be liquid-tight. In that case, it is preferable that the edge part 12a provided in four places of the partition member 12 is being fixed to the sheet-like separation membrane 10 over the full length, and the edge part 12a provided in four places is the substantially whole surface. More preferably, it is fixed to the sheet-like separation membrane 10.
 積層体11は、シート状分離膜10と隔壁部材12とが一体化した分離膜ユニットU同士を接着等によって固着してもよいが、シート状分離膜10を介在させつつ、隣接する隔壁部材12同士を接着等によって液密状態で固着してもよい。また、本発明の分離膜積層体は、分離膜ユニットU同士が固着されずに、別体として複数積層されたものであってもよい。 In the laminated body 11, the separation membrane units U in which the sheet-like separation membrane 10 and the partition member 12 are integrated may be fixed together by adhesion or the like, but the adjacent partition member 12 with the sheet-like separation membrane 10 interposed therebetween. They may be fixed in a liquid-tight state by bonding or the like. Further, the separation membrane laminate of the present invention may be a laminate in which a plurality of separation membrane units U are not fixed to each other and are laminated separately.
 このような積層体11の最上部と最下部の両側に配置した隔壁部材12は、外壁板18としての機能を備えており、最上面と最下面には、第1流路凹部12dおよび第2流路凹部12eが設けられていない。また、このような隔壁部材12を設ける代わりに、別途、第1流路凹部12dおよび第2流路凹部12eを有していない外壁板18を両側に設けてもよい。 The partition members 12 arranged on both the uppermost and lowermost sides of the laminate 11 have a function as the outer wall plate 18, and the first flow path recess 12 d and the second flow path are formed on the uppermost surface and the lowermost surface. The channel recess 12e is not provided. Further, instead of providing such a partition member 12, an outer wall plate 18 that does not have the first flow path recess 12d and the second flow path recess 12e may be separately provided on both sides.
 (分離膜エレメント)
 本発明の分離膜エレメントは、正浸透膜分離に用いられるものであり、上記のような分離膜ユニットUが複数積層されている分離膜積層体11を備えている。分離膜積層体11は、分離膜ユニットU同士が固着されていることが好ましいが、分離膜ユニットU同士が固着されずに、別体として複数積層されたものであってもよい。この場合でも、ハウジング等によって分離膜積層体11同士を密着させることで、流路間の液密性を保つことが可能である。
(Separation membrane element)
The separation membrane element of the present invention is used for forward osmosis membrane separation, and includes a separation membrane laminate 11 in which a plurality of separation membrane units U as described above are laminated. The separation membrane stacked body 11 is preferably formed by fixing the separation membrane units U to each other, but may be a plurality of separated membrane units U stacked together without being fixed to each other. Even in this case, it is possible to maintain the liquid tightness between the flow paths by bringing the separation membrane laminates 11 into close contact with each other by a housing or the like.
 本実施形態の分離膜エレメントは、図4に示すように、当該分離膜積層体11と、前記分離膜積層体11の第1流路凹部12dに両側から連通する第1空間部21a、21bを形成し、第1液体の給排出口23a~23bを有する第1カバー部材31a、31bと、分離膜積層体11の第2流路凹部12eに両側から連通する第2空間部22a、22bを形成し、第2液体の給排出口24a~24bを有する第2カバー部材32a、32bと、を備える。 As shown in FIG. 4, the separation membrane element of the present embodiment includes the separation membrane laminate 11 and first space portions 21 a and 21 b that communicate with the first flow path recess 12 d of the separation membrane laminate 11 from both sides. The first cover members 31a and 31b having the first liquid supply / discharge ports 23a to 23b and the second space portions 22a and 22b communicating with the second flow path recess 12e of the separation membrane laminate 11 from both sides are formed. And second cover members 32a and 32b having second liquid supply / discharge ports 24a to 24b.
 第1カバー部材31a、31bと第2カバー部材32a、32bとの材質としては、塩化ビニル、ポリカーボネート、ポリプロピレン等の樹脂、各種樹脂をガラス等の繊維で補強した繊維強化樹脂、アルミ、銅等の金属、セラミックスなどが使用可能であるが、繊維強化樹脂が最も好ましい。 Examples of the material of the first cover members 31a and 31b and the second cover members 32a and 32b include resins such as vinyl chloride, polycarbonate, and polypropylene, fiber reinforced resins obtained by reinforcing various resins with fibers such as glass, aluminum, and copper. Metals, ceramics, etc. can be used, but fiber reinforced resins are most preferred.
 第1カバー部材31a、31bと第2カバー部材32a、32bとは、分離膜積層体11の端面に、接着等によって固着することができる。なお、第1カバー部材31a、31bと第2カバー部材32a、32bの一部又は全部を一体化したものを使用することも可能である。 The first cover members 31a and 31b and the second cover members 32a and 32b can be fixed to the end face of the separation membrane laminate 11 by adhesion or the like. In addition, it is also possible to use what integrated one part or all of 1st cover member 31a, 31b and 2nd cover member 32a, 32b.
 給排出口23a~24bには、第1液体又は第2液体の給排出を行なうための配管が、必要に応じて接続部材を介して接続される。例えば、配管を経由して給排出口23aから第1液体として低濃度液(例えば淡水FW、被処理液FSなど)を供給し、膜分離後の低濃度液を給排出口23bから排出しながら、給排出口24aから第2液体として高濃度液(例えば海水SW、ドローソリューションDSなど)を供給し、膜分離後の高濃度液を給排出口24bから排出することで、本発明の分離膜エレメントを正浸透膜分離に利用することができる。 A pipe for supplying and discharging the first liquid or the second liquid is connected to the supply / discharge ports 23a to 24b through a connecting member as necessary. For example, a low-concentration liquid (for example, fresh water FW, liquid to be treated FS, etc.) is supplied as the first liquid from the supply / discharge port 23a via a pipe, and the low-concentration liquid after membrane separation is discharged from the supply / discharge port 23b. The high concentration liquid (for example, seawater SW, draw solution DS, etc.) is supplied as the second liquid from the supply / discharge port 24a, and the high concentration liquid after membrane separation is discharged from the supply / discharge port 24b. The element can be used for forward osmosis membrane separation.
 また、その他の膜分離方式においても、例えば給排出口24aから原液を供給して、濃縮液を給排出口24bから排出しながら、分離膜で分離された透過液を給排出口23bなどから排出することが可能となる。その際、スイープ流を給排出口23aから供給しながら、膜分離を行なうことも可能である。 Also in other membrane separation systems, for example, the raw liquid is supplied from the supply / discharge port 24a and the permeate separated by the separation membrane is discharged from the supply / discharge port 23b while discharging the concentrate from the supply / discharge port 24b. It becomes possible to do. At this time, it is also possible to perform membrane separation while supplying the sweep flow from the supply / discharge port 23a.
 (分離膜エレメントの他の実施形態)
 (1)前述の実施形態では、分離膜積層体11の4つの端面に、第1カバー部材31a、31bと第2カバー部材32a、32bとが設けられる例を示したが、図5に示すように、筒状の第2カバー部材32cを設けたり、あるいは筒状の第1カバー部材を設けてもよい。
(Other embodiment of separation membrane element)
(1) In the above-described embodiment, the example in which the first cover members 31a and 31b and the second cover members 32a and 32b are provided on the four end surfaces of the separation membrane laminate 11 is shown, but as shown in FIG. Alternatively, a cylindrical second cover member 32c may be provided, or a cylindrical first cover member may be provided.
 図示した例の場合、筒状の第2カバー部材32cによって、分離膜積層体11の第2流路凹部12eに両側から連通する第2空間部22a、22bを形成することができる。 In the case of the illustrated example, the cylindrical second cover member 32c can form the second space portions 22a and 22b communicating with the second flow path recess 12e of the separation membrane laminate 11 from both sides.
 また、この筒状の第2カバー部材32cの両端に設けた、平板状の第1カバー部材31a、31bによって、分離膜積層体11の第1流路凹部12dに両側から連通する第1空間部21a、21bを形成させることができる。 In addition, the first space member communicated from both sides to the first flow path recess 12d of the separation membrane laminate 11 by the flat plate-like first cover members 31a and 31b provided at both ends of the cylindrical second cover member 32c. 21a and 21b can be formed.
 (2)また、本発明の分離膜エレメントは、図6に示すように、分離膜ユニットUが複数積層された積層体11と、前記積層体11を収容し、側壁部35と底面部36と上面部37とを有するハウジング30と、を備えているものでもよい。図示した例では、ハウジング30の側壁部35が円筒形である場合の例を示す。 (2) Further, as shown in FIG. 6, the separation membrane element of the present invention houses a laminate 11 in which a plurality of separation membrane units U are laminated, the laminate 11, and includes a side wall portion 35 and a bottom portion 36. The housing 30 which has the upper surface part 37 may be provided. The illustrated example shows an example in which the side wall 35 of the housing 30 is cylindrical.
 ハウジング30の材質としては、塩化ビニル、ポリカーボネート、ポリプロピレン等の樹脂、各種樹脂をガラス等の繊維で補強した繊維強化樹脂、アルミ、銅等の金属、セラミックスなどが使用可能であるが、繊維強化樹脂が最も好ましい。 As the material of the housing 30, resins such as vinyl chloride, polycarbonate, and polypropylene, fiber reinforced resins obtained by reinforcing various resins with fibers such as glass, metals such as aluminum and copper, ceramics, and the like can be used. Is most preferred.
 ハウジング30は、例えば、側壁部35と底面部36とを一体成形した成形体に、積層体11を収容した後、上面部37を接着、溶着等で接合することで、給排出口23a~24b以外の部分を液密な構造とすることができる。 For example, the housing 30 is formed by integrally molding the side wall portion 35 and the bottom surface portion 36, and after housing the laminate 11, the upper surface portion 37 is bonded, welded, or the like to join the supply / discharge ports 23a to 24b. The part other than can be made into a liquid-tight structure.
 本発明では、ハウジング30の内面と積層体11の端面との間に、第1流路P1に両側から連通する2つの第1空間部21a、21bと、第2流路P2に両側から連通する2つの第2空間部22a、22bとを有している。分離膜エレメントの使用時には、必要に応じて、これらの第1空間部21a、21b、第2空間部22a、22bに、第1液体と第2液体とがそれぞれ満たされる。 In the present invention, between the inner surface of the housing 30 and the end surface of the multilayer body 11, two first spaces 21a and 21b that communicate with the first flow path P1 from both sides and the second flow path P2 communicate with both sides. Two second spaces 22a and 22b are provided. When the separation membrane element is used, the first liquid and the second liquid are filled in the first space 21a and 21b and the second space 22a and 22b, respectively, as necessary.
 ハウジング30は、前記積層体11を収容可能なサイズであればよいが、その側壁部35の内面に前記積層体11の角部を接近させて収容可能なサイズとすることが、有効膜面積を増加させつつ、角部のシールを簡易に行なう観点から好ましい。その場合、側壁部35の内面と積層体11の角部とを、封止樹脂で封止することも可能であるが、両者の間には弾性体(図示省略)を介在させて、隣接する空間部同士をシールしてもよい。 The housing 30 may be of a size that can accommodate the laminate 11, but the effective membrane area can be reduced by making the corner of the laminate 11 close to the inner surface of the side wall portion 35. It is preferable from the viewpoint of easily sealing the corner while increasing the number. In that case, the inner surface of the side wall portion 35 and the corner portion of the laminated body 11 can be sealed with a sealing resin, but an elastic body (not shown) is interposed between the two and adjacent to each other. The space portions may be sealed.
 また、積層体11と底面部36又は上面部37とのシールも行なうことが好ましい。その場合、積層体11の底面と底面部36とを接着により封止する方法や、弾性体からなるシール材を用いて封止する方法が挙げられる。積層体11の上面と上面部37とのシールについても同様に行なうことができる。 It is also preferable to perform a seal between the laminate 11 and the bottom surface portion 36 or the top surface portion 37. In that case, a method of sealing the bottom surface and the bottom surface portion 36 of the laminated body 11 by adhesion, or a method of sealing using a sealing material made of an elastic body can be mentioned. The sealing between the upper surface of the laminated body 11 and the upper surface portion 37 can be similarly performed.
 弾性体としては、ゴム、熱可塑性エラストマーなどが使用可能であり、断面形状としては、積層体11の角部に外接させ易いように、L字型、コの字型などが好ましい。また、積層体11の全ての辺(12辺)に外接するような形状の弾性体を使用することも可能である。これにより、角部と上面と底面とのシールを好適に行なうことができる。 As the elastic body, rubber, thermoplastic elastomer or the like can be used, and the cross-sectional shape is preferably L-shaped or U-shaped so that it can be easily circumscribed on the corner of the laminate 11. Moreover, it is also possible to use an elastic body having a shape that circumscribes all the sides (12 sides) of the laminate 11. Thereby, a seal | sticker with a corner | angular part, an upper surface, and a bottom face can be performed suitably.
 ハウジング30は、第1空間部21a、21bの各々に設けた第1液体の給排出口23a、23bと、第2空間部22a、22bの各々に設けた第2液体の給排出口24a、24bと、を有する。本実施形態では、ハウジング30の第1液体の給排出口23a、23bが底面部36と上面部37とに設けられ、第2液体の給排出口24a、24bが底面部36と上面部37に設けられている例を示す。これらの給排出口23a~24bは、接続された配管を利用して、液体の給排出を行なうことができる。 The housing 30 includes first liquid supply / discharge ports 23a, 23b provided in the first spaces 21a, 21b, and second liquid supply / discharge ports 24a, 24b provided in the second spaces 22a, 22b, respectively. And having. In the present embodiment, the first liquid supply / discharge ports 23 a and 23 b of the housing 30 are provided in the bottom surface portion 36 and the top surface portion 37, and the second liquid supply and discharge ports 24 a and 24 b are provided in the bottom surface portion 36 and the top surface portion 37. An example is shown. These supply / discharge ports 23a to 24b can supply and discharge the liquid using a connected pipe.
 図6に示した例では、第1空間部21a、21bおよび第2空間部22a、22bの各々に、上下2つずつの給排出口23a~24bが設けられているが、分離膜エレメントを単数で用いる場合、例えば、上下2つずつ設けられている給排出口23a~24bのうち、上下何れかを閉塞させて使用することも可能である。 In the example shown in FIG. 6, the first space portions 21a and 21b and the second space portions 22a and 22b are respectively provided with two upper and lower supply / discharge ports 23a to 24b. For example, it is also possible to use one of the upper and lower supply / exhaust ports 23a to 24b that is closed at the top and bottom.
 (3)前述の実施形態では、平面視で円筒形のハウジング30を用いる例を示したが、本発明では、ハウジング30の平面視における形状は何れでもよい。例えば、楕円形、八角形、正方形、菱型、六角形などの多角形でもよい。 (3) In the above-described embodiment, an example in which the cylindrical housing 30 is used in plan view is shown, but in the present invention, the shape of the housing 30 in plan view may be any. For example, it may be a polygon such as an ellipse, an octagon, a square, a diamond, or a hexagon.
 (4)前述の実施形態では、液体の給排出口給排出口23a~24bがハウジング30の底面部36と上面部37とに設けられている例を示したが、本発明では、ハウジング30の側壁部35に、液体の給排出口給排出口23a~24bを設けてもよい。 (4) In the above-described embodiment, the example in which the liquid supply / discharge ports 23a to 24b are provided in the bottom surface portion 36 and the top surface portion 37 of the housing 30 has been described. The side wall portion 35 may be provided with liquid supply / discharge ports 23a to 24b.
 以下、本発明の効果を確認するための実験例について詳細に説明する。 Hereinafter, experimental examples for confirming the effects of the present invention will be described in detail.
 (実験例1)
 膜面積232cmのテストセルを用いて、FO運転のPROモードで、厚み及び角度の異なる流路材と、正浸透膜(日東電工製、開発品、厚み約50μmで空孔率約45%のエポキシ多孔質膜上にポリアミド系スキン層を形成したもの)をセットし、Draw solutionの平均濃度を28,000ppmNaCl、線速を0.01m/secに統一して、Fluxを20℃で測定した。流路材はダイヤ型で下記6種類を使用しており、各流路材におけるFlux値を記載した。
(Experimental example 1)
Using a test cell with a membrane area of 232 cm 2 , in the PRO mode of FO operation, flow path materials with different thicknesses and angles and forward osmosis membranes (manufactured by Nitto Denko, developed product, thickness of about 50 μm and porosity of about 45%) A polyamide skin layer was formed on an epoxy porous membrane), the average concentration of Draw solution was 28,000 ppm NaCl, the linear velocity was unified to 0.01 m / sec, and the flux was measured at 20 ° C. The channel material is a diamond type and the following six types are used, and the flux value in each channel material is described.
 交点角度の検証として、次の2種を測定した。
1)厚みt=37mil(0.93mm),流体流れ方向に対する交点角度107°,配列密度8本/2.54cmの場合:Flux値は0.43m/d
2)厚みt=36mil(0.91mm),流体流れ方向に対する交点角度91°,配列密度10本/2.54cmの場合:Flux値は0.44m/d
 ピッチの検証として、次の4種を測定した。
3)厚みt=20mil(0.51mm),流体流れ方向に対する交点角度90°,配列密度16本/2.54cmの場合:Flux値は0.36m/d
4)厚みt=20mil(0.51mm),流体流れ方向に対する交点角度90°,配列密度44本/2.54cmの場合:Flux値は0.36m/d
5)厚みt=33mil(0.84mm),流体流れ方向に対する交点角度90°,配列密度7本/2.54cmの場合:Flux値は0.42m/d
6)厚みt=34mil(0.86mm),流体流れ方向に対する交点角度90°,配列密度5本/2.54cm場合:Flux値は0.42m/d
 以上の結果より、鈍角かつピッチが狭いほど撹拌効果が期待できるとも考えられるが、DSが同一線速の場合、交点角度やピッチの影響は見られず、低圧損のために角度は鋭角とし、ピッチは広幅であることが適していることが分かった。
As verification of the intersection angle, the following two types were measured.
1) In the case of thickness t = 37 mil (0.93 mm), intersection angle 107 ° with respect to the fluid flow direction, and array density of 8 pieces / 2.54 cm: the flux value is 0.43 m / d
2) In the case of thickness t = 36 mil (0.91 mm), intersection angle with respect to the fluid flow direction of 91 °, and array density of 10 / 2.54 cm: the flux value is 0.44 m / d
The following four types were measured as pitch verification.
3) In the case of thickness t = 20 mil (0.51 mm), intersection angle 90 ° with respect to the fluid flow direction, arrangement density 16 / 2.54 cm: Flux value is 0.36 m / d
4) In the case of thickness t = 20 mil (0.51 mm), intersection angle 90 ° with respect to the fluid flow direction, arrangement density 44 / 2.54 cm: Flux value is 0.36 m / d
5) In case of thickness t = 33 mil (0.84 mm), intersection angle 90 ° with respect to fluid flow direction, arrangement density 7 pieces / 2.54 cm: Flux value is 0.42 m / d
6) Thickness t = 34 mil (0.86 mm), intersection angle 90 ° with respect to fluid flow direction, arrangement density 5 / 2.54 cm: Flux value is 0.42 m / d
From the above results, it is considered that as the obtuse angle and the pitch are narrower, the stirring effect can be expected, but when the DS is the same linear velocity, the influence of the intersection angle and pitch is not seen, the angle is an acute angle due to low pressure loss, It has been found that a wide pitch is suitable.
 (実験例2)
 膜面積56cmのテストセルを用いて、PRO運転(圧力差1MPa)で、厚みの異なる流路材と、正浸透膜(日東電工製、開発品、厚み約50μmで空孔率約45%のエポキシ多孔質膜上にポリアミド系スキン層を形成したもの)をセットし、Draw solutionの平均濃度を28,000ppmNaClとし、線速を変更してFlux測定を20℃で実施し、Fluxと運転圧力の関係から発電能力を計算した。流路材はダイヤ型で下記3種類を使用しており、各流路材における発電能力を図7に記載した。
1)#2015:厚みt=20mil(0.51mm),流体流れ方向に対する交点角度90°,配列密度15本/2.54cm
2)#2609:厚みt=26mil(0.66mm),流体流れ方向に対する交点角度90°,配列密度9本/2.54cm
3)#6034:厚みt=34mil(0.86mm),流体流れ方向に対する交点角度90°,配列密度6本/2.54cm
 その結果、図7に示すように、線速を上昇させていくことで発電能力が高まることが確認できており、同一流量においては厚みが薄くなることで性能の増加が期待できることが示されている。
(Experimental example 2)
Using a test cell with a membrane area of 56 cm 2 , with PRO operation (pressure difference 1 MPa), flow path materials with different thicknesses and forward osmosis membranes (Nitto Denko, developed product, with a thickness of about 50 μm and a porosity of about 45% Set an epoxy porous layer on a porous epoxy membrane), set the average concentration of Draw solution to 28,000 ppm NaCl, change the linear velocity, and perform flux measurement at 20 ° C. The power generation capacity was calculated from the relationship. The channel material is a diamond type, and the following three types are used. The power generation capacity of each channel material is shown in FIG.
1) # 2015: Thickness t = 20 mil (0.51 mm), intersection angle 90 ° with respect to fluid flow direction, array density 15 / 2.54 cm
2) # 2609: Thickness t = 26 mil (0.66 mm), intersection angle 90 ° with respect to fluid flow direction, array density 9 / 2.54 cm
3) # 6034: thickness t = 34 mil (0.86 mm), intersection angle 90 ° with respect to fluid flow direction, array density 6 / 2.54 cm
As a result, as shown in FIG. 7, it has been confirmed that the power generation capacity is increased by increasing the linear velocity, and it is shown that an increase in performance can be expected by reducing the thickness at the same flow rate. Yes.
(実験例3)
 正浸透膜(日東電工製、開発品、厚み約50μmで空孔率約45%のエポキシ多孔質膜上にポリアミド系スキン層を形成したもの)を用いて、1リーフあたりの膜面積が約0.2mのリーフを交点角度の異なる流路材を挟みながら10リーフ積層させて、エレメント化し、FO運転のPROモードでDraw solutionの平均濃度を28,000ppmNaClとし、線速を変更してFlux測定を20℃で実施した。流路材としては、次のものを使用した。
1)厚みt=37mil(0.93mm),流体流れ方向に対する交点角度73°,配列密度8本/2.54cm
2)厚みt=37mil(0.93mm),流体流れ方向に対する交点角度107°,配列密度8本/2.54cm
 その結果、鈍角ほど撹拌効果が期待できるとも考えられるが、図8に示すように、73°と107°の交点角度の差では結果に差異は見られなかった。積層型のモジュールにおいてはスパイラル形状と異なりテンションをかけて巻きあげることも無い為、角度を鋭角にすることや、ピッチを広幅化して流路材の剛性が悪化してもモジュール化は可能である。
(Experimental example 3)
Using a forward osmosis membrane (manufactured by Nitto Denko, developed product, a polyamide skin layer formed on an epoxy porous membrane with a thickness of about 50 μm and a porosity of about 45%), the membrane area per leaf is about 0 .10 2 leaves are stacked with 2 m 2 leaves sandwiching channel materials with different intersection angles, and converted into elements. In the PRO mode of FO operation, the average concentration of Draw solution is 28,000 ppm NaCl, and flux measurement is performed by changing the linear velocity. Was carried out at 20 ° C. The following materials were used as the channel material.
1) Thickness t = 37 mil (0.93 mm), intersection angle with fluid flow direction 73 °, arrangement density 8 / 2.54 cm
2) Thickness t = 37 mil (0.93 mm), intersection angle 107 ° with respect to fluid flow direction, array density 8 / 2.54 cm
As a result, it is considered that the stirrer effect can be expected as the obtuse angle. However, as shown in FIG. 8, no difference was found in the difference between the intersection angles of 73 ° and 107 °. Unlike the spiral shape, the laminated module does not wind up with tension, so it can be modularized even if the angle is set to an acute angle or the pitch is widened to deteriorate the rigidity of the channel material. .
10    シート状分離膜
11    積層体(分離膜積層体)
12    隔壁部材
12d   第1流路凹部
12e   第2流路凹部
13    第1流路材(正浸透膜分離用流路材)
13a、13b    樹脂繊維
14    第2流路材
21a、21b    第1空間部
22a、22b    第2空間部
23a、23b    第1液体の給排出口
24a、24b    第2液体の給排出口
30    ハウジング
35    側壁部
36    底面部
37    上面部
P1    第1流路
P2    第2流路
U     分離膜ユニット
α     交点角度
t     流路材の厚み
10 Sheet Separation Membrane 11 Laminate (Separation Membrane Laminate)
12 Partition member 12d First channel recess 12e Second channel recess 13 First channel material (channel material for forward osmosis membrane separation)
13a, 13b Resin fiber 14 Second flow path material 21a, 21b First space 22a, 22b Second space 23a, 23b First liquid supply / discharge port 24a, 24b Second liquid supply / discharge port 30 Housing 35 Side wall 36 bottom surface portion 37 upper surface portion P1 first flow path P2 second flow path U separation membrane unit α intersection angle t thickness of flow path material

Claims (10)

  1.  2方向の樹脂繊維を含む網状構造を有し、前記樹脂繊維同士が交点角度40~90度で交差し、厚みが0.1~1.0mmである正浸透膜分離用流路材。 A channel material for forward osmosis membrane separation having a network structure including resin fibers in two directions, the resin fibers intersecting at an intersection angle of 40 to 90 degrees, and having a thickness of 0.1 to 1.0 mm.
  2.  前記2方向の樹脂繊維の配列密度が、ともに5~50本/2.54cmである請求項1に記載の正浸透膜分離用流路材。 The flow path material for forward osmosis membrane separation according to claim 1, wherein the arrangement density of the resin fibers in the two directions is 5 to 50 / 2.54 cm.
  3.  排水処理又は海水淡水化における正浸透膜の高浸透圧側流路又は低浸透圧側流路に配置して使用される請求項1又は2に記載の正浸透膜分離用流路材。 3. A flow membrane material for forward osmosis membrane separation according to claim 1 or 2, which is used by being disposed in a high osmotic pressure side flow channel or a low osmotic pressure side flow channel of a forward osmosis membrane in wastewater treatment or seawater desalination.
  4.  浸透膜発電における正浸透膜の高浸透圧側流路に配置して使用される請求項1又は2に記載の正浸透膜分離用流路材。 3. The forward osmosis membrane separation channel material according to claim 1 or 2, which is used by being disposed in a high osmotic pressure side channel of a forward osmosis membrane in osmosis membrane power generation.
  5.  第1流路凹部を一方の面に有し第2流路凹部を他方の面に有する隔壁部材と、前記第1流路凹部又は前記第2流路凹部を覆って配置されたシート状分離膜と、前記第1流路凹部及び/又は前記第2流路凹部に配置される流路材と、を備える正浸透膜分離用の分離膜ユニットであって、
     前記流路材の少なくとも一方は、請求項1又は2に記載の正浸透膜分離用流路材である分離膜ユニット。
    A partition member having a first channel recess on one surface and a second channel recess on the other surface, and a sheet-like separation membrane disposed so as to cover the first channel recess or the second channel recess A separation membrane unit for forward osmosis membrane separation comprising: a first flow path recess and / or a flow path material disposed in the second flow path recess,
    3. A separation membrane unit, wherein at least one of the flow channel materials is a forward osmosis membrane separation flow channel material according to claim 1 or 2.
  6.  前記第1流路凹部の流路方向と前記第2流路凹部の流路方向とが60~120°の角度で交差している請求項5に記載の分離膜ユニット。 The separation membrane unit according to claim 5, wherein the flow path direction of the first flow path recess and the flow path direction of the second flow path recess intersect at an angle of 60 to 120 °.
  7.  前記シート状分離膜が4辺を有する形状であり、前記第1流路凹部が前記シート状分離膜の対向する二辺に沿う方向に配され、前記第2流路凹部が対向する残りの二辺に沿う方向に配されている請求項5又は6に記載の分離膜ユニット。 The sheet-like separation membrane has a shape having four sides, the first flow path recess is arranged in a direction along two opposite sides of the sheet-like separation membrane, and the remaining two flow path recesses face each other. The separation membrane unit according to claim 5 or 6, which is arranged in a direction along the side.
  8.  請求項5~7いずれかに記載の分離膜ユニットが複数積層されている正浸透膜分離用の分離膜積層体。 A separation membrane laminate for separating a forward osmosis membrane, wherein a plurality of the separation membrane units according to any one of claims 5 to 7 are laminated.
  9.  請求項5~7いずれかに記載の分離膜ユニットが複数積層されている分離膜積層体と、
     前記分離膜積層体の第1流路凹部に両側から連通する第1空間部を形成し、第1液体の給排出口を有する第1カバー部材と、
     前記分離膜積層体の第2流路凹部に両側から連通する第2空間部を形成し、第2液体の給排出口を有する第2カバー部材と、
    を備える正浸透膜分離用の分離膜エレメント。
    A separation membrane laminate in which a plurality of separation membrane units according to any one of claims 5 to 7 are laminated;
    A first cover member that forms a first space communicating with both sides of the first flow path recess of the separation membrane laminate, and has a first liquid supply / discharge port;
    A second cover member that forms a second space communicating with both sides of the second flow path recess of the separation membrane laminate, and has a second liquid supply / discharge port;
    A separation membrane element for forward osmosis membrane separation comprising:
  10.  請求項5~7いずれかに記載の分離膜ユニットが複数積層されている分離膜積層体と、
     前記分離膜積層体を収容し、側壁部と底面部と上面部とを有するハウジングと、を備え、
     前記ハウジングは、その内面と前記積層体の端面との間に、前記第1流路凹部に両側から連通する2つの第1空間部と、前記第2流路凹部に両側から連通する2つの第2空間部とを有すると共に、前記第1空間部の各々に設けた第1液体の給排出口と、前記第2空間部の各々に設けた第2液体の給排出口と、を有する正浸透膜分離用の分離膜エレメント。
     
    A separation membrane laminate in which a plurality of separation membrane units according to any one of claims 5 to 7 are laminated;
    A housing that houses the separation membrane laminate and has a side wall, a bottom surface, and a top surface;
    The housing has two first space portions that communicate with the first flow path recess from both sides, and two second spaces that communicate with the second flow path recess from both sides, between the inner surface and the end surface of the laminate. Forward osmosis having two space portions, and a first liquid supply / discharge port provided in each of the first space portions, and a second liquid supply / discharge port provided in each of the second space portions. Separation membrane element for membrane separation.
PCT/JP2016/077973 2015-09-30 2016-09-23 Flow channel material for forward osmosis membrane separation, separation membrane unit, and separation membrane element. WO2017057171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-193194 2015-09-30
JP2015193194A JP2017064629A (en) 2015-09-30 2015-09-30 Flow path material for forward osmosis membrane, separation membrane unit and separation membrane element

Publications (1)

Publication Number Publication Date
WO2017057171A1 true WO2017057171A1 (en) 2017-04-06

Family

ID=58427406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077973 WO2017057171A1 (en) 2015-09-30 2016-09-23 Flow channel material for forward osmosis membrane separation, separation membrane unit, and separation membrane element.

Country Status (2)

Country Link
JP (1) JP2017064629A (en)
WO (1) WO2017057171A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109012205A (en) * 2018-08-23 2018-12-18 山东九章膜技术有限公司 A kind of production water filter, method for coiling and reverse-osmosis membrane element
CN112165982A (en) * 2018-05-18 2021-01-01 日东电工株式会社 Flow path spacer and spiral membrane element
CN112610433A (en) * 2020-12-08 2021-04-06 南京工业大学 Forward osmosis-electric salt difference energy efficient continuous power generation device based on porous medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341719B2 (en) * 2019-05-13 2023-09-11 国立大学法人高知大学 Wastewater treatment equipment and method for manufacturing wastewater treatment equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031464A (en) * 1973-05-25 1975-03-27
WO2014003170A1 (en) * 2012-06-28 2014-01-03 東レ株式会社 Separation membrane element
US20140175011A1 (en) * 2012-12-21 2014-06-26 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
WO2014150475A1 (en) * 2013-03-15 2014-09-25 Oasys Water, Inc. Membrane modules
JP2015085233A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Channel member and forward osmosis membrane element
JP2015085234A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Forward osmosis membrane element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031464A (en) * 1973-05-25 1975-03-27
WO2014003170A1 (en) * 2012-06-28 2014-01-03 東レ株式会社 Separation membrane element
US20140175011A1 (en) * 2012-12-21 2014-06-26 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
WO2014150475A1 (en) * 2013-03-15 2014-09-25 Oasys Water, Inc. Membrane modules
JP2015085233A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Channel member and forward osmosis membrane element
JP2015085234A (en) * 2013-10-29 2015-05-07 日東電工株式会社 Forward osmosis membrane element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165982A (en) * 2018-05-18 2021-01-01 日东电工株式会社 Flow path spacer and spiral membrane element
CN112165982B (en) * 2018-05-18 2022-11-11 日东电工株式会社 Flow path spacer and spiral membrane element
CN109012205A (en) * 2018-08-23 2018-12-18 山东九章膜技术有限公司 A kind of production water filter, method for coiling and reverse-osmosis membrane element
CN109012205B (en) * 2018-08-23 2020-11-13 山东九章膜技术有限公司 Water production separation net, rolling method and reverse osmosis membrane element
CN112610433A (en) * 2020-12-08 2021-04-06 南京工业大学 Forward osmosis-electric salt difference energy efficient continuous power generation device based on porous medium

Also Published As

Publication number Publication date
JP2017064629A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
EP2934727B1 (en) Separation systems utilizing stacked membranes and spacers
WO2017057171A1 (en) Flow channel material for forward osmosis membrane separation, separation membrane unit, and separation membrane element.
CA2748567C (en) Modular apparatus for a saltwater desalinating system, and method for using same
US9914077B2 (en) End member for spiral separation membrane element, spiral separation membrane element and separation membrane module
US20160279575A1 (en) Flow path member and forward osmosis membrane element
US20140138299A1 (en) Membrane distillation apparatus
JP5961469B2 (en) Spiral forward osmosis membrane element and forward osmosis membrane module
KR20150131053A (en) Membrane modules
CN103167902A (en) Membrane separation module
JP2010125418A (en) Sheet-like separation membrane and separation membrane element
CN103796743B (en) Lipophilicity infiltration vaporization membrane module
KR101477433B1 (en) Spiral separation membrane element, porous hollow tube and production method for same
WO2016199727A1 (en) Separation membrane unit and separation membrane element
JP2015107483A (en) Spiral flow water treatment apparatus
WO2016199726A1 (en) Separation membrane element and membrane separation device
JP2010099591A (en) Separation membrane element
WO2023210275A1 (en) Separation membrane element and separation device
KR101837554B1 (en) Block type membrane distillation module and stacked membrane distillation system using thereby
US20160325234A1 (en) Forward osmosis water treatment device
JP7713997B2 (en) Separation membrane element and separation device
JP5355200B2 (en) Water treatment filter module and water treatment filter device
WO2023176647A1 (en) Forward osmosis membrane element and forward osmosis membrane module
JP2025005944A (en) Separation membrane element and separation device
AU2011218729B2 (en) Mecs dialyzer
JPS6054713A (en) Electrodialysis tank for high temperature operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851345

Country of ref document: EP

Kind code of ref document: A1