WO2017057064A1 - 高温超電導導体、高温超電導コイル及び高温超電導コイルの接続構造 - Google Patents
高温超電導導体、高温超電導コイル及び高温超電導コイルの接続構造 Download PDFInfo
- Publication number
- WO2017057064A1 WO2017057064A1 PCT/JP2016/077464 JP2016077464W WO2017057064A1 WO 2017057064 A1 WO2017057064 A1 WO 2017057064A1 JP 2016077464 W JP2016077464 W JP 2016077464W WO 2017057064 A1 WO2017057064 A1 WO 2017057064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature superconducting
- thin film
- conductor
- layer
- superconducting conductor
- Prior art date
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 155
- 239000010409 thin film Substances 0.000 claims abstract description 122
- 229910052751 metal Inorganic materials 0.000 claims abstract description 63
- 239000002184 metal Substances 0.000 claims abstract description 63
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000010410 layer Substances 0.000 claims description 99
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 40
- 229910052709 silver Inorganic materials 0.000 claims description 40
- 239000004332 silver Substances 0.000 claims description 40
- 238000004804 winding Methods 0.000 claims description 33
- 239000011347 resin Substances 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 230000000087 stabilizing effect Effects 0.000 claims description 9
- 239000011241 protective layer Substances 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000005470 impregnation Methods 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 20
- 238000010168 coupling process Methods 0.000 abstract description 20
- 238000005859 coupling reaction Methods 0.000 abstract description 20
- 230000006641 stabilisation Effects 0.000 abstract description 17
- 238000011105 stabilization Methods 0.000 abstract description 17
- 238000010030 laminating Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 19
- 239000010949 copper Substances 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 238000005219 brazing Methods 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- 150000002910 rare earth metals Chemical class 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 5
- 239000002887 superconductor Substances 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 235000012771 pancakes Nutrition 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 229910000846 In alloy Inorganic materials 0.000 description 3
- 229910001128 Sn alloy Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/02—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
- H01B12/08—Stranded or braided wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/06—Coils, e.g. winding, insulating, terminating or casing arrangements therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/58—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
- H01R4/62—Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
- H01R4/625—Soldered or welded connections
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/20—Permanent superconducting devices
- H10N60/203—Permanent superconducting devices comprising high-Tc ceramic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/80—Constructional details
- H10N60/81—Containers; Mountings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Definitions
- Embodiments of the present invention relate to a high-temperature superconducting conductor having a high-temperature superconducting layer, a high-temperature superconducting coil provided with the high-temperature superconducting conductor, and a connection structure of the high-temperature superconducting coil.
- the high-temperature superconducting thin film wire includes a rare earth metal (Rear Earth; RE) such as yttrium (Y) or gadolinium (Gd), and has a composition represented by (RE) Ba 2 Cu 3 O 7 Is made into a wire.
- RE rare earth metal
- Y yttrium
- Gd gadolinium
- a thin film layer of about several ⁇ m in which a crystal such as CeO 2 or MgO, which is called an intermediate layer, is biaxially oriented is laminated on a metal substrate having a thickness of about 100 ⁇ m, and the crystal is biaxially formed thereon. It has a structure in which oriented high-temperature superconducting layers having a thickness of about several ⁇ m are laminated.
- a protective layer such as silver is applied to the surface of the high-temperature superconducting layer, and a stabilizing layer such as copper is formed on the outer side to bypass the current when the normal conducting transition occurs. It is common.
- Such a thin film wire is characterized by a large current capacity under a high magnetic field and a good stress resistance in the longitudinal direction. Therefore, it is expected that a high-current superconducting coil having a high current density and high stress necessary for generating a high magnetic field can be realized, and is applied to an MRI magnet, a single crystal pulling device magnet, an accelerator magnet, etc. Development is underway.
- Thin film wire has a high allowable stress when a mechanical load is applied in the longitudinal direction, but extremely weak stress is applied to the direction in which the laminated intermediate layer, high-temperature superconducting layer, etc. are peeled off (peeling direction). It is known that high temperature superconducting layers are destroyed. For example, when a thin film wire is wound and impregnated with resin, a force in the peeling direction acts on the thin film wire due to thermal stress during cooling, and various countermeasures have been proposed.
- another member such as a structure in which the outer surface of the thin film wire is covered with a cover member made of metal tape, or two thin film wires are superconducting
- a structure in which two layers of thin film wires are connected on the metal substrate side and covered with a conductive structure is disclosed.
- a reinforcing tape wire is arranged so as to surround the thin film wire, a structure in which the reinforcing tape wire and the thin film wire are separated, a structure in which a stabilization layer (material) having a hollow portion is joined to the thin film wire, and a thin film wire
- a structure is disclosed in which is sealed with a sheet of copper or the like.
- a structure that prevents the force in the peeling direction from acting on the high-temperature superconducting layer for example, a structure that prevents the stress in the peeling direction from acting by providing a release material around the wire, and reinforcement with a thin film wire
- a structure is disclosed in which a plate is surrounded and restrained by an insulating tape and a release material is provided on the surface where the thin film wire and the reinforcing plate are in sliding contact, and a structure in which the thin film wire and the release tape are wound together.
- JP 2012-169237 A Special table 2003-50587 gazette Special table 2009-503794 gazette JP 2011-3494 A JP 2013-232297 A Special table 2003-505848 gazette JP 2008-244249 A JP 2011-113933 A JP 2012-33947 A
- the peeling direction force acting on the high temperature superconducting layer from the outside is reinforced with another member, the peeling direction force acting on the high temperature superconducting layer cannot be completely zero, and the high temperature superconducting layer is damaged. There is a fear.
- non-insulated coil as a protection measure for high-temperature superconducting coils in the case of a method in which a release material is arranged around a thin film wire or a structure in which the thin film wire is constrained by an insulating tape.
- the non-insulated coil is designed to reduce the current at the part that has been transferred to normal conduction by electrically connecting adjacent winding turns. If insulated, the function as a non-insulated coil is lost.
- the object of the present invention has been made in consideration of the above-mentioned circumstances, and can prevent damage to the high-temperature superconducting layer against a mechanical load to ensure reliability and ensure high critical current density. It is to provide a superconducting conductor.
- an object of the present invention is to provide a high-temperature superconducting coil that can satisfactorily ensure superconducting characteristics against a mechanical load generated in accordance with a manufacturing process or use situation.
- an object of the present invention is to provide a high temperature superconducting coil connection structure that can satisfactorily connect a high temperature superconducting conductor of a high temperature superconducting coil and a metal conductor with a low electrical resistance value.
- a laminated body is formed by laminating a high-temperature superconducting layer on one side of a flexible and tape-shaped metal substrate via an intermediate layer, and a protective layer is formed around the laminated body.
- a thin film wire is formed by providing a stabilization layer, and a plurality of the thin film wires are arranged in the thickness direction, and the plurality of thin film wires are arranged on the outermost side.
- the thin film wire is positioned with the surface on the metal substrate side facing outward, the surface on the high-temperature superconducting layer side is held in a non-adhered state with the opposing surface, and both ends in the width direction are longitudinally conductive. It is characterized by being connected over the whole area.
- the high-temperature superconducting coil according to the present invention is characterized in that the high-temperature superconducting conductor according to the present invention is wound around a winding frame.
- connection structure of the high-temperature superconducting coil according to the present invention is a silver sheath wire in which the longitudinal ends of the high-temperature superconducting conductor constituting the high-temperature superconducting coil in the invention are configured by mixing high-temperature superconducting filaments in a silver matrix. It is configured to be connected to a metal conductor via a wire.
- the high-temperature superconducting conductor in which a plurality of thin-film wires are arranged in the thickness direction is positioned such that the thin-film wire arranged on the outermost side faces the metal substrate side outward, and the thin-film wire
- the surface on the high-temperature superconducting layer side is configured to be held in a non-adhered state with the opposing surface. For this reason, when a mechanical load acts on the high-temperature superconducting conductor from the outside, it can be suppressed that this load acts on the high-temperature superconducting layer of the thin film wire as a force in the peeling direction.
- the high-temperature superconducting conductor in which a plurality of thin film wires are arranged in the thickness direction is configured such that both ends in the width direction of the thin film wires are coupled in the longitudinal direction in a conductive state. Therefore, the ratio of members other than the thin film wire is small in the transverse area perpendicular to the longitudinal direction of the high-temperature superconducting conductor. As a result, it is possible to provide a high-temperature superconducting conductor that can be satisfactorily secured without reducing the critical current density of the high-temperature superconducting conductor.
- connection length is substantially increased, so that the high-temperature superconducting conductor and the metal conductor of the high-temperature superconducting coil are connected.
- a connection structure of a high-temperature superconducting coil that can be connected well with a low electric resistance value can be provided.
- FIG. 2 is a cross-sectional view showing a current flow of the high-temperature superconducting conductor of FIG. 1.
- the cross-sectional view which shows the 1st modification of the high-temperature superconducting conductor of FIG.
- the high temperature superconducting coil which concerns on one Embodiment which concerns on this invention is shown, (A) is whole sectional drawing, (B) is an expanded sectional view which expands and shows the A section of FIG. 6 (A).
- the one embodiment in the connection structure of the high temperature superconducting coil concerning the present invention is shown, (A) is a longitudinal section and (B) is a transverse section.
- FIG. 1 is a cross-sectional view perpendicular to the longitudinal direction showing an embodiment of a high-temperature superconducting conductor according to the present invention.
- the high-temperature superconducting conductor 10 of the first embodiment has a plurality of long-shaped high-temperature superconducting thin film wires (hereinafter referred to as thin film wires 11) arranged in the thickness direction (for example, two). Is configured.
- the thin film wire 11 is formed by laminating a high-temperature superconducting layer 14 on one side of a flexible and tape-shaped metal substrate 12 via an intermediate layer 13 to form a laminated body 15.
- a stabilization layer 17 is provided via a protective layer 16.
- the intermediate layer 13 and the protective layer 16 are not shown in FIGS.
- the metal substrate 12 is a high-strength metal such as a Ni-based alloy.
- the intermediate layer 13 is an electrically insulating layer such as CeO 2 or MgO.
- the high-temperature superconducting layer 14 is a superconducting layer having a composition represented by (RE) Ba 2 Cu 3 O 7 , including rare earth metals (RE) such as yttrium (Y) and gadolinium (Gd).
- the protective layer 16 is a noble metal layer such as silver.
- the stabilization layer 17 is a layer made of a low resistance metal such as copper.
- the thin-film wire 11 (two thin-film wires 11 in this embodiment) disposed on the outermost side is positioned with the surface 18 on the metal substrate 12 side facing outward, and the high-temperature superconductivity of the thin-film wire 11
- the surface 14 on the layer 14 side is held in a non-fixed state with the facing surface (in this embodiment, the surfaces 19 on the high-temperature superconducting layer 14 side facing each other of the two thin film wires 11 are held in a non-fixed state).
- the high-temperature superconducting conductor 10 is configured such that both ends in the width direction of the thin film wire 11 are coupled by the conductive coupling member 20 over the longitudinal direction of the thin film wire 11 in a conductive state.
- the conductive coupling member 20 is preferably a low melting point metal such as tin, tin alloy, indium, or indium alloy.
- the high-temperature superconducting layer 14 of the thin-film wire 11 is sandwiched from the outside by the metal substrate 12, and the surface 19 of the thin-film wire 11 on the high-temperature superconducting layer 14 side is in an unfixed state.
- the high-strength metal substrate 12 and the stabilization layer 17 support the mechanical loads.
- the force in the peeling direction with respect to the thin film wire 11 is hardly transmitted to the high temperature superconducting layer 14.
- the force F is applied to the stabilization layer 17 and the metal substrate. 12, the force that pulls the conductive coupling member 20 through 12, and the force that peels off the high-temperature superconducting layer 14 is extremely difficult.
- a stabilization layer 17 is formed so as to cover the entire thin film wire 11. For this reason, as shown in FIG. 2, since the current 21 flows from the outer surface of the high-temperature superconducting conductor 10 to the high-temperature superconducting layer 14 via the stabilization layer 17, it is easy to introduce a current from the outside.
- the intermediate layer 13 formed between the metal substrate 12 and the high-temperature superconducting layer 14 of both thin film wires 11 constituting the high-temperature superconducting conductor 10 is generally an electrical insulator, the outer surface of the high-temperature superconducting conductor 10 Therefore, the current 21 cannot flow in the stacking direction (thickness direction) of the thin film wire 11 as follows: stabilization layer 17 ⁇ protection layer 16 ⁇ metal substrate 12 ⁇ intermediate layer 13 ⁇ high temperature superconducting layer 14.
- the high-temperature superconducting conductor 10 has a function of allowing currents 21 flowing through the two thin film wires 11 to be interchanged by electrically connecting the two thin film wires 11 with the conductive coupling member 20. For example, even if an electric current 21 flows from one side of the outer surface of the high-temperature superconducting conductor 10, that is, from the surface 18 on the metal substrate 12 side of one thin film wire 11, the other thin film wire 11 is passed through the conductive coupling member 20. Current 21 also flows.
- the stabilization layer 17 in the thin film wire 11 may be formed by a method of plating a low-resistance metal such as copper, or as shown in the first modified form of FIG. It may be fixed via the brazing material 22.
- a low melting point metal such as tin, tin alloy, indium or indium alloy is suitable.
- the two thin film wires 11 may be covered with the tape-like conductive coupling member 23, and the two thin film wires 11 may be fixed to the conductive coupling member 23 with the brazing material 22, or the two thin films
- the entire wire 11 may be plated with copper or the like.
- the surface 19 of the stabilization layer 17 on the high temperature superconducting layer 14 side of the thin film wire 11 is not fixed to the surface 19 of the stabilizing layer 17 on the high temperature superconducting layer 14 side of the opposing thin film wire 11.
- the conductive coupling member 20 of FIGS. 1 to 3 and the brazing material 22 of FIG. 4 protrude greatly, the surfaces of the two thin film wires 11 facing the high-temperature superconducting layer 14 facing each other are important. 19 may stick in a wide range.
- an anti-adhesion member 24 may be inserted and interposed between the two thin film wires 11 as shown in the third modification of FIG.
- the adhesion preventing member 24 is preferably made of a metal that does not adhere to the conductive coupling member 20 and the brazing material 22 such as aluminum or stainless steel, or a polymer material such as fluororesin or polyimide.
- the number of thin film wires 11 need not be two, and three or more thin film wires 11 may be used. Furthermore, a stainless steel tape or a copper tape may be interposed between the plurality of thin film wires 11 for the purposes of manufacturability, reinforcement, and protection.
- the thin-film wire 11 arranged on the outermost side in the high-temperature superconducting conductor 10 is positioned so that the surface 18 on the metal substrate 12 side becomes the outer surface.
- each thin-film wire 11 is composed of the high-temperature superconducting layer 14. The surface 19 of the stabilization layer 17 on the side needs to be held in a non-adhered state with the opposing surface.
- the following effects (1) to (4) are obtained.
- the thin film wire 11 arranged on the outermost side is on the metal substrate 12 side.
- the surface 19 of the thin film wire 11 on the high temperature superconducting layer 14 side is held in a non-adhered state with the surface 19 of the opposing thin film wire 11 on the high temperature superconducting layer 14 side.
- both ends of the thin film wire 11 in the width direction can be conducted by the conductive coupling members 20 and 23. And are configured to be coupled along the longitudinal direction. Therefore, the ratio of members other than the thin film wire 11 is small in the cross-sectional area perpendicular to the longitudinal direction of the high-temperature superconducting conductor 10. As a result, the critical current density in the cross section of the high-temperature superconducting conductor 10 can be ensured satisfactorily without decreasing.
- the high-temperature superconducting conductor 10 uses a thin film wire 11 having a stabilization layer 17 formed around it, and both ends of the thin film wire 11 in the width direction are electrically conductive coupling members 20.
- the conductive coupling member 23 is configured to be coupled in the longitudinal direction in a conductive state. For this reason, the current 21 can easily flow from the outer surface of the high temperature superconducting conductor 10 through the stabilization layer 17 of the thin film wire 11 to the high temperature superconducting layer 14 of the thin film wire 11, and the conductive coupling member 20 or the conductive material. The current 21 can be interchanged between the two thin film wires 11 by the coupling member 23.
- FIGS. 6 to 8) 6A and 6B show an embodiment of the high-temperature superconducting coil according to the present invention, in which FIG. 6A is an overall cross-sectional view, and FIG. 6B is an enlarged cross-sectional view showing an A portion of FIG.
- the high-temperature superconducting coil 30 shown in FIG. 6 is produced by laminating the tape-shaped high-temperature superconducting conductor 10 in the first embodiment on, for example, a winding frame (not shown in FIGS. 6 to 8) and winding it.
- the pancake coils 31 are stacked so that their respective axis centers 0 coincide with each other.
- Each pancake coil 31 winds the high temperature superconducting conductor 10 and the insulating tape 32 together, and each winding turn of the high temperature superconducting conductor 10 and the insulating tape 32 is impregnated with an insulating resin 33 and fixed. .
- Insulating materials 34 are disposed at both axial ends of the pancake coils 31, and cooling plates 35 for cooling the high-temperature superconducting conductor 10 are installed outside the insulating materials 34.
- the cooling plate 35 is finally thermally connected to cooling means (for example, a refrigerator) through various members.
- the high-temperature superconducting coil 30 impregnated with the resin 33 When the high-temperature superconducting coil 30 impregnated with the resin 33 is cooled, tensile stress is generated in the high-temperature superconducting coil 30 in the coil radial direction due to the anisotropy of the heat shrinkage rate. This tensile stress acts as a force in the peeling direction on the high-temperature superconducting conductor 10 of the high-temperature superconducting coil 30.
- the high temperature superconducting coil 30 is wound using the high temperature superconducting conductor 10 that hardly transmits any force to the high temperature superconducting layer 14 of the thin film wire 11 even if a force in the peeling direction acts.
- the high temperature superconducting layer 14 of the thin film wire 11 in the high temperature superconducting conductor 10 constituting the high temperature superconducting coil 30 is not damaged, and the superconducting characteristics of the high temperature superconducting coil 30 do not deteriorate.
- the high temperature superconducting coil 30 is excellent in terms of cooling. That is, in order to avoid breakage of the high-temperature superconducting layer 14 in the thin film wire 11 of the high-temperature superconducting conductor 10 constituting the high-temperature superconducting coil 30, a separation process is performed without fixing the winding turns of the high-temperature superconducting coil 30 with the resin 33. In this case, there is a structure that prevents the force in the peeling direction from acting on the high-temperature superconducting layer 14, but in that case, it becomes difficult to transfer heat in the release part, and thus the cooling of the thin film wire 11 may be insufficient. There is.
- the high-temperature superconducting conductor 10 can be reliably cooled.
- the high temperature superconducting coil 30 functions as an uninsulated coil in which the winding turns are electrically connected. That is, FIG. 7 shows a winding configuration of the first modified form of the high-temperature superconducting coil 30 that is an uninsulated coil.
- the insulating tape 32 is not interposed between the adjacent high-temperature superconducting conductors 10, and each winding turn composed of only the high-temperature superconducting conductor 10 is fixed by the resin 33 and at the same time the longitudinal length of the high-temperature superconducting conductor 10.
- the inter-turn contact part 37 extending in the direction is provided so as to be conductive.
- the high-temperature superconducting conductor 10 constituting the high-temperature superconducting coil 30 has a function that does not act on the high-temperature superconducting layer 14 of the thin film wire 11 in the peeling direction,
- the adjacent winding turns of the high-temperature superconducting conductor 10 can be brought into contact with each other by 33, and the gap can be filled and fixed with a resin or the like. It becomes possible to make an insulating coil.
- the contact electrical resistance value of the contact part 37 between turns becomes a value several times to several orders of magnitude larger than the electrical resistance value of the electroconductive coupling member 20 which electrically connects the thin film wire 11.
- the winding turns of the high-temperature superconducting conductor 10 are not fixed between the resin 33 (release).
- the adjacent high-temperature superconducting conductor 10 is directly contacted by the inter-turn contact portion 37 shown in FIG. 7, and the high-temperature superconducting coil shown in FIG.
- the electrically conductive member 38 wound together with the high temperature superconductor 10 may be disposed between adjacent winding turns of the high temperature superconductor 10. Since the electrically conductive member 38 is a conductive material and needs to be in good contact with the high-temperature superconducting conductor 10, a soft metal such as indium, a wire mesh such as copper or stainless steel, carbon fiber, or the like is preferable. .
- the electrical conducting member 38 By appropriately selecting the electrical conducting member 38, the contact state between the electrical conducting member 38 and the high temperature superconducting conductor 10 and the electrical resistance value between the high temperature superconducting conductors 10 can be changed.
- the high temperature superconducting coil 30 has a high temperature superconducting conductor 10 that hardly transmits to the high temperature superconducting layer 14 of the thin film wire 11 even when a force in the peeling direction acts. It is comprised using. For this reason, even if a mechanical load acts on the superconducting coil 30 in the manufacturing process or use situation of the superconducting coil 30 and a force in the peeling direction acts on the thin film wire 11 in the high-temperature superconducting conductor 10 constituting the superconducting coil 30.
- the high temperature superconducting layer 14 of the high temperature superconducting coil 30 can be prevented from being damaged. As a result, it can be ensured satisfactorily without degrading the superconducting characteristics of the high-temperature superconducting coil 30.
- the high-temperature superconducting coil 30 has a high-temperature superconducting conductor 10 that hardly acts on the high-temperature superconducting layer 14 of the thin film wire 11 even when a force in the peeling direction acts. It is comprised using. For this reason, in order to avoid that the high temperature superconducting layer 14 of the thin film wire 11 in the high temperature superconducting conductor 10 constituting the high temperature superconducting coil 30 is damaged by the force in the peeling direction, each winding turn of the high temperature superconducting conductor 10 is made of resin 33. There is no need to form a release part for preventing the fixing.
- the high temperature superconducting conductor 10 and the surrounding members (insulating material 34, cooling plate 35, etc.) in the high temperature superconducting coil 30 can be fixed by the resin 33, so that the heat flow 36 is not hindered.
- the cooling performance of the high-temperature superconducting conductor 10 of the high-temperature superconducting coil 30 can be improved.
- the high-temperature superconducting coil 30 is configured using a high-temperature superconducting conductor 10 that hardly transmits to the high-temperature superconducting layer 14 of the thin film wire 11 even if a force in the peeling direction acts. Yes. For this reason, each winding turn of the high-temperature superconducting conductor 10 constituting the high-temperature superconducting coil 30 is fixed by the resin 33, and adjacent winding turns of the high-temperature superconducting conductor 10 are brought into contact with each other by the contact portion 37 between the turns. Yes. As a result, the high temperature superconducting coil 30 can be configured as an uninsulated coil in which the winding turns are electrically connected.
- each winding turn of the high-temperature superconducting conductor 10 constituting the high-temperature superconducting coil 30 is fixed by the resin 33, and a conductive material is used between adjacent winding turns of the high-temperature superconducting conductor 10.
- the configured electrical conduction member 38 is disposed in contact with the high temperature superconducting conductor 10.
- FIG. 9 shows an embodiment of the connection structure of the high-temperature superconducting coil according to the present invention, in which (A) is a longitudinal sectional view and (B) is a transverse sectional view.
- the high-temperature superconducting coil connection structure 40 shown in FIG. 9 includes a high-temperature superconducting silver sheath wire (hereinafter referred to as a silver sheath) that connects a longitudinal end portion of the high-temperature superconducting conductor 10 and the metal conductor 41 in the high-temperature superconducting coil 30 of the second embodiment. This structure is electrically connected via a wire 42).
- the silver sheath wire 42 is electrically connected to the longitudinal direction end portion of the high temperature superconducting conductor 10 constituting the high temperature superconducting coil 30 in parallel with the high temperature superconducting conductor 10 using the solder 43, and the silver sheath wire 42.
- the metal conductor 41 is electrically connected using the solder 43 to form the connection structure 40.
- the connection length L1 between the high-temperature superconducting conductor 10 and the silver sheath wire 42 of the high-temperature superconducting coil 30 is set to be longer than the connection length L2 between the silver sheath wire 42 and the metal conductor 41.
- the connection length with the conductor 41 is substantially increased by the silver sheath wire 42.
- the silver sheath wire 42 has a tape shape like the thin film wire 11, but its internal structure is significantly different from that of the thin film wire 11. That is, the silver sheath wire 42 is not a laminated structure like the thin film wire 11 but has a structure in which the high-temperature superconducting filament 45 is embedded and mixed in a silver matrix 44 as a base material. Bi 2 Sr 2 Ca 2 Cu 3 O 10 is used as the material of the high-temperature superconducting filament 45 of the silver sheath wire 42 put into practical use. Further, as shown in FIG. 10, the silver sheath wire 42 may be one in which a reinforcing material 46 is fixed and reinforced by, for example, a brazing material 22 on the front surface and the back surface thereof.
- solder 43 As the material of the solder 43, a low melting point metal such as tin, tin alloy, indium or indium alloy is suitable. For the connection between the high-temperature superconducting conductor 10 and the silver sheath wire 42 and the connection between the silver sheath wire 42 and the metal conductor 41, a solder 43 made of a different material may be used in consideration of ease of manufacturing.
- the metal conductor 41 introduces a current at the lead electrode 41A fixed to the winding frame 47 in order to start winding the high-temperature superconducting conductor 10, and at the winding end as shown in FIG.
- This is a lead electrode 41B for connecting, or a connecting conductor 41C between the pancake coils 31 as shown in FIG.
- a low resistance metal such as silver or copper is used as the material of the metal conductor 41, but the thin film wire 11 or the silver sheath wire 42 may be used as the metal conductor 41.
- the outer surface of the high-temperature superconducting conductor 10 and the metal conductor 41 are directly electrically connected without the silver sheath wire 42, the outer surface of the high-temperature superconducting conductor 10 is the stabilizing layer 17 on the metal substrate 12 side of the thin film wire 11. Therefore, the current 21 flows to the high-temperature superconducting layer 14 through the thin stabilizing layer 17 of about several tens ⁇ m of the thin film wire 11. For this reason, as compared with the case where the metal conductor 41 is directly connected to the stabilization layer 17 on the high temperature superconducting layer 14 side of the thin film wire 11 as in the normal thin film wire 11, the high temperature superconducting conductor 10 without the silver sheath wire 42 is used.
- connection can be made with a low electrical resistance value by increasing the connection length from several hundred mm to about 1 m.
- the metal conductor 41 used for the lead electrodes 41A and 41B and the connection conductor 41C is usually difficult to have a length of about 100 mm or more due to dimensions, manufacturing restrictions, and the like.
- the silver sheath wire 42 has substantially zero electrical resistance in the longitudinal direction and penetrates the back surface and the surface of the silver sheath wire 42. Also in the (thickness direction), the current 21 can flow with a low electric resistance through the silver matrix 44 as a base material. For this reason, in the connection between the high-temperature superconducting conductor 10 and the metal conductor 41 of the high-temperature superconducting coil 30, the substantial connection length is increased by the silver sheath wire 42, and it becomes possible to electrically connect with a low electric resistance value. .
- the following effect (9) is obtained.
- the longitudinal end of the high temperature superconducting conductor 10 of the high temperature superconducting coil 30 is connected to the metal conductor 41 via the silver sheath wire 42.
- the connection length L1 between the high temperature superconducting conductor 10 and the silver sheath wire 42 is The silver sheath wire 42 is set to be longer than the connection length L2 between the silver sheath wire 42 and the metal conductor 41.
- the silver sheath wire 42 the substantial connection length between the high temperature superconducting conductor 10 and the metal conductor 41 of the high temperature superconducting coil 30 is increased. ing.
- the high-temperature superconducting conductor 10 and the metal conductor 41 can be connected with a low electrical resistance value, so that heat generation at this connecting portion can be suppressed.
- SYMBOLS 10 High temperature superconducting conductor, 11 ... Thin film wire, 12 ... Metal substrate, 13 ... Intermediate layer, 14 ... High temperature superconducting layer, 15 ... Laminated body, 16 ... Protective layer, 17 ... Stabilizing layer, 18 ... Metal substrate side surface , 19 ... surface on the high-temperature superconducting layer side, 20, 23 ... conductive coupling member, 24 ... anti-adhesion member, 30 ... high-temperature superconducting coil, 33 ... resin, 37 ... contact portion between turns, 38 ... electric conduction member, 40 ... Connection structure of high-temperature superconducting coil, 41 ... metal conductor, 42 ... silver sheath wire, 44 ... silver matrix, 45 ... high-temperature superconducting filament, 47 ... winding frame, L1, L2 ... connection length.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
高温超電導導体10は、可撓性で且つテープ状の金属基板12の片側面に中間層13を介して高温超電導層14が積層されて積層体15が形成され、この積層体の周囲に保護層16介して安定化層17が設けられて薄膜線材11が形成され、この薄膜線材が厚さ方向に複数配置されて構成された高温超電導導体10であって、複数の薄膜線材11は、最も外側に配置される薄膜線材が金属基板12側の面18を外側に向けて位置づけられ、高温超電導層14側の面19が対向する面と非固着状態に保持され、幅方向両端部が導電性結合部材20により導電可能な状態で長手方向に亘って結合されて構成されたものである。
Description
本発明の実施形態は、高温超電導層を有する高温超電導導体、この高温超電導導体を備えた高温超電導コイル、及びこの高温超電導コイルの接続構造に関する。
高温超電導薄膜線材(薄膜線材)は、イットリウム(Y)やガドリニウム(Gd)等の希土類金属(Rear Earth;RE)を含み、(RE)Ba2Cu3O7に代表される組成の高温超電導層を線材化したものである。この薄膜線材は、厚さ百μm程度の金属基板上に、中間層と呼ばれるCeO2やMgOなどの結晶を2軸配向させた数μm程度の薄膜層を積層し、その上に結晶を2軸配向させた厚さ数μm程度の高温超電導層を積層した構造となっている。実用の薄膜線材では、高温超電導層の表面に銀などの保護層を施し、更にその外側に、常電導転移した際に電流を迂回させるための銅などの安定化層が形成されているのが一般的である。
このような薄膜線材は、高磁場下での電流容量が大きく、更に長手方向の耐応力特性が良いという特徴がある。そのため、高磁場を発生させるために必要な高電流密度、高応力の高温超電導コイルを実現できることが期待されており、MRI用磁石や単結晶引き上げ装置用磁石、加速器用磁石等に適用するための開発が進められている。
薄膜線材は、その長手方向に機械的負荷を作用させた場合の許容応力が高い一方で、積層した中間層、高温超電導層等を引きはがす方向(剥離方向)に対しては、極めて弱い応力で高温超電導層が破壊されることが知られている。例えば、薄膜線材を巻線して樹脂含浸すると、冷却時の熱応力等によって薄膜線材に剥離方向の力が作用するが、その対策が様々に提案されている。
つまり、外部から高温超電導層に作用する剥離方向の力を別の部材で分担させる構造として、例えば、薄膜線材の外表面を金属テープからなるカバー部材で覆う構造や、2枚の薄膜線材を超電導層側で貼り合わせる構造、2枚の薄膜線材を金属基板側で接続し導電性構造で覆う構造等が開示されている。一方、薄膜線材の周囲を取り囲むように補強テープ線を配置し、補強テープ線と薄膜線材間を離形する構造、中空部を有する安定化層(材)を薄膜線材に接合する構造、薄膜線材を銅などのシートで密閉する構造が開示されている。
また、剥離方向の力が高温超電導層に作用することを回避する構造として、例えば、線材の周囲に離形材を設けることで剥離方向の応力が作用しないようにする構造や、薄膜線材と補強板を絶縁テープで包囲して拘束し、薄膜線材と補強板が摺接する面に離型材を設ける構造、薄膜線材と離形テープを共巻する構造が開示されている。
薄膜線材を巻き回し樹脂含浸して作製した高温超電導コイルにおいて、薄膜線材の剥離を防止する構造は、前述のように様々に開示されているが、それぞれの構造には以下に示す課題がある。
即ち、外部から高温超電導層に作用する剥離方向の力を別の部材で補強する構造では、高温超電導層に作用する剥離方向の力を完全にゼロにすることができず、高温超電導層が破損する恐れがある。
また、薄膜線材の外部を補強テープで覆ったり、内部に中空部を有する安定化材を追加したりすることで、剥離方向の力を高温超電導層に伝達しないようにした構造では、補強テープや安定化材を追加した分だけ薄膜線材の横断面積が増加し、この横断面での臨界電流密度が低下するという課題がある。
更に、薄膜線材の周囲に離形材を配置する方法や、薄膜線材を絶縁テープで拘束する構造の場合には、高温超電導コイルの保護対策としての“無絶縁コイル”を適用することが困難になるという課題がある。無絶縁コイルは、隣接する巻線ターン間を電気的に導通させることで、常電導に転移した部位の電流を減少させるものであるが、離形材や絶縁テープによって巻線ターン間が電気的に絶縁されると、無絶縁コイルとしての機能が喪失してしまう。
本発明の目的は、上述の事情を考慮してなされたものであり、機械的負荷に対して高温超電導層の破損を防止して信頼性を確保できると共に、臨界電流密度を良好に確保できる高温超電導導体を提供することにある。
また、本発明の目的は、製造工程や使用状況に応じて発生する機械的負荷に対して超電導特性を良好に確保できる高温超電導コイルを提供することにある。
更に、本発明の目的は、高温超電導コイルの高温超電導導体と金属導体とを低い電気抵抗値で良好に接続できる高温超電導コイルの接続構造を提供することにある。
本発明に係る高温超電導導体は、可撓性で且つテープ状の金属基板の片側面に中間層を介して高温超電導層が積層されて積層体が形成され、この積層体の周囲に保護層を介して安定化層が設けられて薄膜線材が形成され、この薄膜線材が厚さ方向に複数配置されて構成された高温超電導導体であって、複数の前記薄膜線材は、最も外側に配置される前記薄膜線材が前記金属基板側の面を外側に向けて位置づけられ、前記高温超電導層側の面が対向する面と非固着状態に保持され、幅方向両端部が導電可能な状態で長手方向に亘って結合されて構成されたことを特徴とするものである。
また、本発明に係る高温超電導コイルは、前記発明における高温超電導導体が巻枠に巻き回されて構成されたことを特徴とするものである。
更に、本発明に係る高温超電導コイルの接続構造は、前記発明における高温超電導コイルを構成する高温超電導導体の長手方向端部が、銀マトリックス中に高温超電導フィラメントが混在して構成された銀シース線材を介して、金属導体に接続されるよう構成されたことを特徴とするものである。
本発明によれば、複数の薄膜線材が厚さ方向に配置されてなる高温超電導導体は、最も外側に配置される薄膜線材が金属基板側の面を外側に向けて位置づけられると共に、薄膜線材の高温超電導層側の面が対向する面と非固着状態に保持されて構成される。このため、高温超電導導体に外部から機械的荷重が作用したとき、この荷重が薄膜線材の高温超電導層に剥離方向の力として作用することを抑制できる。この結果、外部からの機械的負荷に対して高温超電導層の破損を防止して、高温超電導導体の信頼性を確保できる高温超電導導体を提供できる。従って、この高温超電導導体を巻枠に巻き回して構成される高温超電導コイルに、その製造時または使用時に機械的負荷が作用した場合にも、高温超電導コイルの超電導特性を良好に確保できる高温超電導コイルを提供できる。
また、複数の薄膜線材が厚さ方向に配置されてなる高温超電導導体は、薄膜線材の幅方向両端部が導電可能な状態で長手方向に亘って結合されて構成される。従って、高温超電導導体の長手方向に垂直な横断面積において薄膜線材以外の部材の割合が少ない。この結果、高温超電導導体の臨界電流密度を低下させることなく良好に確保できる高温超電導導体を提供できる。
更に、高温超電導コイルの高温超電導導体の長手方向端部が銀シース線材を介して金属導体に接続され、接続長が実質的に長くなることで、高温超電導コイルの高温超電導導体と金属導体とを低い電気抵抗値で良好に接続できる高温超電導コイルの接続構造を提供できる。
以下、本発明を実施するための実施形態を図面に基づき説明する。
[A]第1実施形態(図1~図5)
図1は、本発明に係る高温超電導導体の一実施形態を示す長手方向に垂直な横断面図である。この図1に示すように、本第1実施形態の高温超電導導体10は、長尺形状の高温超電導薄膜線材(以下、薄膜線材11と称する)が厚さ方向に複数枚(例えば2枚)配置されて構成されたものである。
[A]第1実施形態(図1~図5)
図1は、本発明に係る高温超電導導体の一実施形態を示す長手方向に垂直な横断面図である。この図1に示すように、本第1実施形態の高温超電導導体10は、長尺形状の高温超電導薄膜線材(以下、薄膜線材11と称する)が厚さ方向に複数枚(例えば2枚)配置されて構成されたものである。
薄膜線材11は、可撓性で且つテープ形状の金属基板12の片側面に、中間層13を介して高温超電導層14が積層されて積層体15が形成され、この積層体15の周囲に、保護層16を介して安定化層17が設けられて形成される。ここで、中間層13及び保護層16については、図3~図9において図示を省略している。
金属基板12は、Ni基合金等の高強度金属である。また、中間層13は、CeO2やMgO等の電気絶縁性の層である。更に、高温超電導層14は、イットリウム(Y)やガドリニウム(Gd)等の希土類金属(RE)を含み、(RE)Ba2Cu3O7に代表される組成の超電導層である。また、保護層16は、銀などの貴金属の層である。更に、安定化層17は、銅などの低抵抗金属からなる層である。
高温超電導導体10は、最も外側に配置される薄膜線材11(本実施形態では2枚の薄膜線材11)が金属基板12側の面18を外側に向けて位置づけられると共に、薄膜線材11の高温超電導層14側の面19が対向する面と非固着状態(本実施形態では、2枚の薄膜線材11のそれぞれ対向する高温超電導層14側の面19が非固着状態)に保持されて構成される。更に、高温超電導導体10は、薄膜線材11の幅方向両端部が導電性結合部材20により、導電可能な状態で薄膜線材11の長手方向に亘って結合されて構成される。ここで、導電性結合部材20は、錫や錫合金またはインジウムやインジウム合金等の低融点金属が好ましい。
本第1実施形態の高温超電導導体10では、薄膜線材11の高温超電導層14が金属基板12によって外側から挟まれ、更に、薄膜線材11の高温超電導層14側の面19が非固着状態に構成されている。このため、高温超電導導体10の外側から様々な方向の機械的負荷(曲げ、引張り、加熱等)が作用したとしても、この機械的荷重を高強度の金属基板12や安定化層17が支持し、薄膜線材11に対する剥離方向の力は、高温超電導層14にほとんど伝達しない。例えば、高温超電導導体10の外表面である金属基板12側の安定化層17の面18に、外部からの力Fが引っ張る方向に作用したとしても、その力Fは安定化層17及び金属基板12を介して導電性結合部材20を引っ張る力となり、高温超電導層14を剥離させる力には極めてなりにくい。
また、高温超電導導体10では、薄膜線材11の全体を覆うように安定化層17が形成されている。このため、図2に示すように、高温超電導導体10の外表面から安定化層17を介して高温超電導層14へ電流21が流れるので、外部からの電流導入が容易である。なお、高温超電導導体10を構成する両薄膜線材11の金属基板12と高温超電導層14との間に形成される中間層13が一般的に電気絶縁体であるため、高温超電導導体10の外表面から、安定化層17→保護層16→金属基板12→中間層13→高温超電導層14のように、薄膜線材11の積層方向(厚さ方向)に電流21を流すことはできない。
また、高温超電導導体10は、2枚の薄膜線材11を導電性結合部材20により電気的に接続することで、2枚の薄膜線材11に流れる電流21を互いに融通する機能がある。例えば、高温超電導導体10の外表面の片側、即ち一方の薄膜線材11の金属基板12側の面18から電流21を流したとしても、導電性結合部材20を介して、他方の薄膜線材11へも電流21が流れる。また、一方の薄膜線材11における長手方向の一部に局所的に臨界電流値が低い性能低下部分が存在し、通電電流値がその性能低下部分で臨界電流値を越えそうになったとしても、電流21が他方の薄膜線材11へ導電性結合部材20を経て分流する。このため、性能低下部分が常電導導体に変化することを防止でき、高温超電導導体10に熱暴走が発生しにくくなる。
ここで、薄膜線材11における安定化層17は、銅等の低抵抗金属をメッキする方法で形成してもよいし、図3の第1変形形態に示すように、銅等のテープ材を、ろう材22を介して固着させてもよい。ろう材22としては、錫や錫合金またはインジウムやインジウム合金等の低融点金属が好適である。
また、2枚の薄膜線材11を、導電性結合部材20を用いて幅方向両端部(つまり横断面両端部)のみで固着するほか、図4の第2変形形態に示すように、銅製等のテープ状の導電性結合部材23を用いて2枚の薄膜線材11を覆い、ろう材22を用いて2枚の薄膜線材11を導電性結合部材23に固着させてもよいし、2枚の薄膜線材11の全体を銅等でメッキしても良い。導電性結合部材23を用いたり、全体をメッキしたりする場合には、2枚の薄膜線材11は、幅方向両端部を含む周囲が互いに結合されることになる。
また、高温超電導導体10では、薄膜線材11の高温超電導層14側の安定化層17の面19が、対向する薄膜線材11の高温超電導層14側の安定化層17の面19と非固着状態に保持されることが重要になるが、図1~3の導電性結合部材20や図4のろう材22が大きくはみ出ると、これらの両薄膜線材11における互いに対向する高温超電導層14側の面19が、広い範囲で固着してしまう可能性がある。それを防止するために、図5の第3変形形態に示すように、2枚の薄膜線材11間に固着防止部材24を挿入して介在させてもよい。この固着防止部材24は、アルミニウムやステンレスなどのように、導電性結合部材20及びろう材22と固着しない金属、またはフッ素樹脂やポリイミド等の高分子材料を用いるのが好ましい。
なお、高温超電導導体10において、薄膜線材11は2枚である必要はなく、3枚以上の薄膜線材11を用いてもよい。更に、製作性や補強、保護等の目的で、複数枚の薄膜線材11間にステンレステープや銅テープを介在させてもよい。この場合には、高温超電導導体10において最も外側に配置される薄膜線材11は、金属基板12側の面18が外表面になるように位置づけられ、更に、各薄膜線材11は、高温超電導層14側の安定化層17の面19が、対向する面と非固着状態に保持される必要がある。
以上のように構成されたことから、本第1実施形態によれば、次の効果(1)~(4)を奏する。
(1)図1に示すように、複数枚(例えば2枚)の薄膜線材11が厚さ方向に配置されてなる高温超電導導体10は、最も外側に配置される薄膜線材11が金属基板12側の面18を外側に向けて位置づけられると共に、薄膜線材11の高温超電導層14側の面19が、対向する薄膜線材11の高温超電導層14側の面19と非固着状態に保持されて構成される。このため、高温超電導導体10に外部から機械的荷重が作用して薄膜線材11の金属基板12側の安定化層17の面18に力Fが作用したとき、この力Fが薄膜線材11の高温超電導層14に剥離方向の力として作用することを抑制できる。この結果、外部からの機械的負荷に対して高温超電導層14の破損を防止でき、高温超電導導体10の信頼性を確保できる。
(1)図1に示すように、複数枚(例えば2枚)の薄膜線材11が厚さ方向に配置されてなる高温超電導導体10は、最も外側に配置される薄膜線材11が金属基板12側の面18を外側に向けて位置づけられると共に、薄膜線材11の高温超電導層14側の面19が、対向する薄膜線材11の高温超電導層14側の面19と非固着状態に保持されて構成される。このため、高温超電導導体10に外部から機械的荷重が作用して薄膜線材11の金属基板12側の安定化層17の面18に力Fが作用したとき、この力Fが薄膜線材11の高温超電導層14に剥離方向の力として作用することを抑制できる。この結果、外部からの機械的負荷に対して高温超電導層14の破損を防止でき、高温超電導導体10の信頼性を確保できる。
(2)複数枚(例えば2枚)の薄膜線材11が厚さ方向に配置されてなる高温超電導導体10は、薄膜線材11の幅方向両端部が導電性結合部材20、23により導電可能な状態で長手方向に亘って結合されて構成される。従って、高温超電導導体10の長手方向に垂直な横断面積において薄膜線材11以外の部材の割合が少ない。この結果、高温超電導導体10の横断面における臨界電流密度を、低下させることなく良好に確保できる。
(3)図1及び図4に示すように、高温超電導導体10は、周囲に安定化層17が形成された薄膜線材11を用い、この薄膜線材11の幅方向両端部が導電性結合部材20または導電性結合部材23により、導電可能な状態で長手方向に亘って結合されて構成される。このため、高温超電導導体10の外表面から薄膜線材11の安定化層17を通って薄膜線材11の高温超電導層14へ電流21を容易に流すことができ、且つ導電性結合部材20または導電性結合部材23により2枚の薄膜線材11間で電流21を融通することができる。この結果、高温超電導導体10の外部からの電流導入が容易であり、更に、薄膜線材11における臨界電流値の低い性能低下部分にその臨界電流値を越える電流21が流れてその部分が常電導導体に変化することを防止できるので、高温超電導導体10に熱暴走が発生することを防止できる。
(4)図5に示すように、高温超電導導体10における薄膜線材11間に固着防止部材24が挿入して介在された場合には、対向する薄膜線材11の高温超電導層14側の面19が、導電性結合部材20またはろう材22により広範囲に亘って固着することを防止でき、非固着状態を確実に保持できる。この結果、機械的荷重に対する高温超電導導体10の信頼性を向上させることができる。
[B]第2実施形態(図6~図8)
図6は、本発明に係る高温超電導コイルの一実施形態を示し、(A)が全体断面図、(B)が図6(A)のA部を拡大して示す拡大断面図である。この図6の高温超電導コイル30は、第1実施形態におけるテープ形状の高温超電導導体10を例えば巻枠(図6~図8には不図示)に積層して巻き回してパンケーキコイル31を作製し、これらのパンケーキコイル31を、それぞれの軸心0を一致させて積み重ねて構成される。
図6は、本発明に係る高温超電導コイルの一実施形態を示し、(A)が全体断面図、(B)が図6(A)のA部を拡大して示す拡大断面図である。この図6の高温超電導コイル30は、第1実施形態におけるテープ形状の高温超電導導体10を例えば巻枠(図6~図8には不図示)に積層して巻き回してパンケーキコイル31を作製し、これらのパンケーキコイル31を、それぞれの軸心0を一致させて積み重ねて構成される。
各パンケーキコイル31は、高温超電導導体10と絶縁テープ32とを共に巻線し、これらの高温超電導導体10及び絶縁テープ32の各巻線ターンが、絶縁性の樹脂33により含浸されて固着される。これらのパンケーキコイル31の軸方向両端に絶縁材34が配設され、この絶縁材34の外側に、高温超電導導体10を冷却するための冷却板35が設置されている。冷却板35は、様々な部材を介して最終的に冷却手段(例えば冷凍機など)に熱的に接続される。
樹脂33で含浸された高温超電導コイル30を冷却すると、この高温超電導コイル30には、熱収縮率の異方性によってコイル径方向に引張応力が発生する。この引張応力は、高温超電導コイル30の高温超電導導体10にとって剥離方向の力として作用する。但し、高温超電導コイル30は、剥離方向の力が作用したとしても薄膜線材11の高温超電導層14にほとんど力が伝達しない高温超電導導体10を用いて巻線されている。このため、この高温超電導コイル30では、高温超電導コイル30を構成する高温超電導導体10における薄膜線材11の高温超電導層14が破損して、高温超電導コイル30の超電導特性が低下することがない。
また、高温超電導コイル30は、冷却の観点においても優れている。つまり、高温超電導コイル30を構成する高温超電導導体10の薄膜線材11における高温超電導層14の破損を回避するために、高温超電導コイル30の巻線ターン間を樹脂33で固着せず離形処理することで、高温超電導層14に剥離方向の力が作用することを防止する構造があるが、その場合、離形部で熱を伝えにくくなるため、薄膜線材11の冷却が不十分になる可能性がある。しかしながら、本実施形態の高温超電導コイル30では、巻線ターンの高温超電導導体10及び絶縁テープ32を周囲の部材(絶縁材34、冷却板35など)と樹脂33で固着させても、高温超電導導体10における薄膜線材11の高温超電導層14が破損することがない。従って、高温超電導コイル30を構成する高温超電導導体10の周囲に、熱の流れ36を阻害する離形部が存在しないので、高温超電導導体10を確実に冷却できる。
また、高温超電導コイル30は、巻線ターン間を電気的に導通させた無絶縁コイルとして機能する。つまり、図7は、無絶縁コイルとした高温超電導コイル30の第1変形形態の巻線構成を示す。この高温超電導コイル30では、隣接する高温超電導導体10間に絶縁テープ32が介在せず、高温超電導導体10のみからなる各巻線ターンは、樹脂33で固着されると同時に、高温超電導導体10の長手方向に延在するターン間接触部37により導電可能に設けられる。
この図7に示す第1変形形態では、高温超電導コイル30を構成する高温超電導導体10自体が、薄膜線材11の高温超電導層14に剥離方向の力を作用させない機能を有しているため、樹脂33によって高温超電導導体10の隣接する巻線ターンを接触させ、隙間を樹脂などで充填し固着することが可能であり、ターン間接触部37により巻線ターン間の電気的導通を確保して無絶縁コイルにすることが可能になる。なお、ターン間接触部37の接触電気抵抗値は、薄膜線材11を電気的に接続する導電性結合部材20の電気抵抗値よりも数倍から数桁大きい値となる。
また、高温超電導コイル30を構成する高温超電導導体10における薄膜線材11の高温超電導層14が破損することを回避するために、高温超電導導体10の巻線ターン間を樹脂33で固着させない(離形する)ことで、薄膜線材11の高温超電導層14に剥離方向の力が作用することを避ける手段もあるが、その手段では、離形部によって巻線ターン間の電気的な導通が無くなる、もしくは不確実になり、高温超電導コイル30を無絶縁コイルとして成立させることが不可能になる。
高温超電導導体10の巻線ターン間の電気的な導通を確保する手段としては、図7に示すターン間接触部37により隣接する高温超電導導体10を直接接触させるほか、図8に示す高温超電導コイル30の第2変形形態のように、高温超電導導体10と共巻した電気導通部材38を、高温超電導導体10の隣接する巻線ターン間に配置してもよい。電気導通部材38は、導電材料であると共に、高温超電導導体10と良好な接触状態が得られる必要があることから、インジウム等の柔らかい金属、銅やステンレス等の金網、炭素繊維等が好適である。この電気導通部材38を適切に選択することで、電気導通部材38と高温超電導導体10との接触状態や、高温超電導導体10間の電気抵抗値を変更することが可能になる。
以上のように構成されたことから、本第2実施形態によれば、次の効果(5)~(8)を奏する。
(5)図6、図7及び図8に示すように、高温超電導コイル30は、剥離方向の力が作用してもこの力が薄膜線材11の高温超電導層14にほとんど伝達しない高温超電導導体10を用いて構成されている。このため、超電導コイル30の製造工程または使用状況において超電導コイル30に機械的負荷が作用して、この超電導コイル30を構成する高温超電導導体10における薄膜線材11に剥離方向の力が作用しても、この力が薄膜線材11の高温超電導層14に伝達されることがほとんどないので、この高温超電導コイル30の高温超電導層14の破損を防止できる。この結果、高温超電導コイル30の超電導特性を低下させることなく良好に確保できる。
(5)図6、図7及び図8に示すように、高温超電導コイル30は、剥離方向の力が作用してもこの力が薄膜線材11の高温超電導層14にほとんど伝達しない高温超電導導体10を用いて構成されている。このため、超電導コイル30の製造工程または使用状況において超電導コイル30に機械的負荷が作用して、この超電導コイル30を構成する高温超電導導体10における薄膜線材11に剥離方向の力が作用しても、この力が薄膜線材11の高温超電導層14に伝達されることがほとんどないので、この高温超電導コイル30の高温超電導層14の破損を防止できる。この結果、高温超電導コイル30の超電導特性を低下させることなく良好に確保できる。
(6)図6、図7及び図8に示すように、高温超電導コイル30は、剥離方向の力が作用してもこの力が薄膜線材11の高温超電導層14にほとんど作用しない高温超電導導体10を用いて構成されている。このため、高温超電導コイル30を構成する高温超電導導体10における薄膜線材11の高温超電導層14が剥離方向の力によって破損することを回避するために、高温超電導導体10の各巻線ターンを樹脂33で固着させないための離形部を形成する必要がない。従って、高温超電導コイル30における高温超電導導体10と周囲部材(絶縁材34、冷却板35など)とを樹脂33で固着させることが可能になるので、熱の流れ36が阻害されない。この結果、高温超電導コイル30の高温超電導導体10の冷却性能を向上させることができる。
(7)図7に示すように、高温超電導コイル30は、剥離方向の力が作用してもこの力が薄膜線材11の高温超電導層14にほとんど伝達しない高温超電導導体10を用いて構成されている。このため、高温超電導コイル30を構成する高温超電導導体10の各巻線ターンが樹脂33により固着されると共に、高温超電導導体10の隣接する巻線ターンがターン間接触部37により導電可能に接触している。この結果、高温超電導コイル30を、巻線ターンが電気的に導通された無絶縁コイルとして構成することができる。
(8)図8に示すように、高温超電導コイル30を構成する高温超電導導体10の各巻線ターンが樹脂33により固着されると共に、高温超電導導体10の隣接する巻線ターン間に、導電材料から構成された電気導通部材38が高温超電導導体10に接触して配置されている。この電気導通部材38を適切に選択することで、高温超電導導体10の巻線ターン間の電気抵抗値が容易に変更できるので、高温超電導コイル30の無絶縁コイルとしての機能性を高めることができる。
[C]第3実施形態(図9~図13)
図9は、本発明に係る高温超電導コイルの接続構造における一実施形態を示し、(A)が縦断面図、(B)が横断面図である。この図9に示す高温超電導コイルの接続構造40は、第2実施形態の高温超電導コイル30における高温超電導導体10の長手方向端部と金属導体41とを、高温超電導銀シース線材(以下、銀シース線材42と称する)を介して電気的に接続する構造である。
図9は、本発明に係る高温超電導コイルの接続構造における一実施形態を示し、(A)が縦断面図、(B)が横断面図である。この図9に示す高温超電導コイルの接続構造40は、第2実施形態の高温超電導コイル30における高温超電導導体10の長手方向端部と金属導体41とを、高温超電導銀シース線材(以下、銀シース線材42と称する)を介して電気的に接続する構造である。
つまり、高温超電導コイル30を構成する高温超電導導体10の長手方向端部に、この高温超電導導体10と平行して銀シース線材42が半田43を用いて電気的に接続され、この銀シース線材42に、半田43を用いて金属導体41が電気的に接続されて接続構造40が構成される。このとき、高温超電導コイル30の高温超電導導体10と銀シース線材42との接続長L1は、銀シース線材42と金属導体41との接続長L2よりも長く設定されて、高温超電導導体10と金属導体41との接続長が銀シース線材42により実質的に長くなっている。
銀シース線材42は、薄膜線材11と同様にテープ形状であるが、その内部構造は薄膜線材11とは大きく異なる。つまり、銀シース線材42は、薄膜線材11のような積層構造ではなく、母材である銀マトリクス44中に高温超電導フィラメント45が埋め込まれて混在した構造になっている。実用化された銀シース線材42の高温超電導フィラメント45の材質としては、Bi2Sr2Ca2Cu3O10が用いられる。また、銀シース線材42は、図10に示すように、その表面及び裏面に補強材46が、例えばろう材22によって固着されて補強されたものを用いてもよい。
半田43の材質としては、錫や錫合金またはインジウムやインジウム合金等の低融点金属が好適である。高温超電導導体10と銀シース線材42との接続、銀シース線材42と金属導体41との接続には、製造上の容易さ等を踏まえて異なる材質の半田43を用いてもよい。
金属導体41は、例えば、図11に示すような、高温超電導導体10を巻き始めるために巻枠47に固定された口出し用電極41A、図12に示すような、巻終わり部において電流を導入するための口出し用電極41B、または、図13に示すようなパンケーキコイル31間の接続導体41Cである。金属導体41の材質としては、銀や銅などの低抵抗金属が用いられるが、薄膜線材11や銀シース線材42が金属導体41として用いられてもよい。
仮に、高温超電導導体10の外表面と金属導体41とを銀シース線材42なしで直接電気的に接続した場合、高温超電導導体10の外表面が薄膜線材11の金属基板12側の安定化層17の面18であるため、電流21は、薄膜線材11の数十μm程度の薄い安定化層17を通って高温超電導層14に流れる。このため、通常の薄膜線材11で行うように薄膜線材11の高温超電導層14側の安定化層17に金属導体41を直接接続した場合と比較すると、銀シース線材42なしで高温超電導導体10の外表面と金属導体41とを直接接続した場合には、電流21が流れる距離が長く、且つ断面積が小さくなるため、高温超電導導体10と金属導体41との接続部の電気抵抗が高くなり、発熱が大きくなってしまう。
この銀シース線材42なしで高温超電導導体10と金属導体41とを接続した場合、接続長を数百mmから1m程度まで長くすれば、低い電気抵抗値で接続することが可能である。ところが、口出し用電極41A、41Bや接続導体41Cで用いられる金属導体41は、寸法や製造上の制約等により、通常100mm程度以上の長さにすることが困難である。
これに対し、本第3実施形態における高温超電導コイルの接続構造40であれば、銀シース線材42は長手方向の電気抵抗がほぼゼロであると共に、銀シース線材42の裏面と表面を貫通する方向(厚さ方向)にも、母材である銀マトリクス44を通して低い電気抵抗で電流21を流すことができる。このため、高温超電導コイル30の高温超電導導体10と金属導体41との接続において、銀シース線材42によって実質的な接続長が長くなり、低い電気抵抗値で電気的に接続することが可能になる。
以上のように構成されたことから、本第3実施形態によれば、次の効果(9)を奏する。
(9)高温超電導コイル30の高温超電導導体10の長手方向端部が銀シース線材42を介して金属導体41に接続され、このとき、高温超電導導体10と銀シース線材42との接続長L1が、銀シース線材42と金属導体41との接続長L2よりも長く設定されて、銀シース線材42により、高温超電導コイル30の高温超電導導体10と金属導体41との実質的な接続長が長くなっている。この結果、高温超電導導体10と金属導体41とを低い電気抵抗値で接続できるので、この接続部での発熱を抑制できる。
(9)高温超電導コイル30の高温超電導導体10の長手方向端部が銀シース線材42を介して金属導体41に接続され、このとき、高温超電導導体10と銀シース線材42との接続長L1が、銀シース線材42と金属導体41との接続長L2よりも長く設定されて、銀シース線材42により、高温超電導コイル30の高温超電導導体10と金属導体41との実質的な接続長が長くなっている。この結果、高温超電導導体10と金属導体41とを低い電気抵抗値で接続できるので、この接続部での発熱を抑制できる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができ、また、それらの置き換えや変更は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…高温超電導導体、11…薄膜線材、12…金属基板、13…中間層、14…高温超電導層、15…積層体、16…保護層、17…安定化層、18…金属基板側の面、19…高温超電導層側の面、20、23…導電性結合部材、24…固着防止部材、30…高温超電導コイル、33…樹脂、37…ターン間接触部、38…電気導通部材、40…高温超電導コイルの接続構造、41…金属導体、42…銀シース線材、44…銀マトリクス、45…高温超電導フィラメント、47…巻枠、L1、L2…接続長。
Claims (8)
- 可撓性で且つテープ状の金属基板の片側面に中間層を介して高温超電導層が積層されて積層体が形成され、この積層体の周囲に保護層を介して安定化層が設けられて薄膜線材が形成され、この薄膜線材が厚さ方向に複数配置されて構成された高温超電導導体であって、
複数の前記薄膜線材は、最も外側に配置される前記薄膜線材が前記金属基板側の面を外側に向けて位置づけられ、前記高温超電導層側の面が対向する面と非固着状態に保持され、幅方向両端部が導電可能な状態で長手方向に亘って結合されて構成されたことを特徴とする高温超電導導体。 - 前記薄膜線材における高温超電導層側の面とこの面に対向する面との間に、これら両面の固着を防止するための固着防止部材が介在されたことを特徴とする請求項1に記載の高温超電導導体。
- 請求項1に記載の高温超電導導体が巻き回されて構成されたことを特徴とする高温超電導コイル。
- 前記高温超電導導体の各巻線ターンが、絶縁性の樹脂の含浸により固着して構成されたことを特徴とする請求項3に記載の高温超電導コイル。
- 前記高温超電導導体の隣接する巻線ターンが、ターン間接触部により導電可能に設けられたことを特徴とする請求項3に記載の高温超電導コイル。
- 前記高温超電導導体の隣接する巻線ターン間に、導電材料から構成された電気導通部材が前記高温超電導導体に接触して配置されたことを特徴とする請求項3に記載の高温超電導コイル。
- 請求項3に記載の高温超電導コイルを構成する高温超電導導体の長手方向端部が、銀マトリックス中に高温超電導フィラメントが埋め込まれて構成された銀シース線材を介して、金属導体に接続されるよう構成されたことを特徴とする高温超電導コイルの接続構造。
- 前記高温超電導導体と銀シース線材との接続長が、前記銀シース線材と金属導体との接続長よりも長く設定されたことを特徴とする請求項7に記載の高温超電導コイルの接続構造。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/761,530 US10886041B2 (en) | 2015-09-28 | 2016-09-16 | High-temperature superconducting conductor, high-temperature superconducting coil, and connecting structure of high-temperature superconducting coil |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015190318A JP6505565B2 (ja) | 2015-09-28 | 2015-09-28 | 高温超電導導体、高温超電導コイル及び高温超電導コイルの接続構造 |
JP2015-190318 | 2015-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057064A1 true WO2017057064A1 (ja) | 2017-04-06 |
Family
ID=58423725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077464 WO2017057064A1 (ja) | 2015-09-28 | 2016-09-16 | 高温超電導導体、高温超電導コイル及び高温超電導コイルの接続構造 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10886041B2 (ja) |
JP (1) | JP6505565B2 (ja) |
WO (1) | WO2017057064A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3499519A4 (en) * | 2016-08-09 | 2020-04-15 | Fujikura Ltd. | OXIDE SUPERCONDUCTING WIRE |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6991775B2 (ja) * | 2017-08-02 | 2022-01-13 | 中部電力株式会社 | 無絶縁超電導コイル用の超電導体及びそれを用いた超電導コイル |
JP6871117B2 (ja) * | 2017-09-25 | 2021-05-12 | 株式会社東芝 | 高温超電導コイル装置及び高温超電導マグネット装置 |
GB201814357D0 (en) * | 2018-09-04 | 2018-10-17 | Tokamak Energy Ltd | Alignment of HTS tapes |
JP2021015729A (ja) * | 2019-07-12 | 2021-02-12 | 株式会社フジクラ | 酸化物超電導線材及びその製造方法 |
JP7438830B2 (ja) * | 2020-04-10 | 2024-02-27 | 株式会社東芝 | バンドル巻き高温超電導コイル装置 |
NL2025477B1 (en) * | 2020-05-01 | 2021-11-09 | Vdl Enabling Tech Group Eindhoven B V | An electromagnet coil assembly. |
JP7614993B2 (ja) | 2021-09-21 | 2025-01-16 | 株式会社東芝 | 超電導コイル及び超電導コイル装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013247291A (ja) * | 2012-05-28 | 2013-12-09 | Chubu Electric Power Co Inc | 超電導コイル装置 |
JP2014017090A (ja) * | 2012-07-06 | 2014-01-30 | Fujikura Ltd | 超電導線材および超電導コイル |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6444917B1 (en) | 1999-07-23 | 2002-09-03 | American Superconductor Corporation | Encapsulated ceramic superconductors |
US6765151B2 (en) | 1999-07-23 | 2004-07-20 | American Superconductor Corporation | Enhanced high temperature coated superconductors |
AU771872B2 (en) | 1999-07-23 | 2004-04-01 | American Superconductor Corporation | Joint high temperature superconducting coated tapes |
US7816303B2 (en) | 2004-10-01 | 2010-10-19 | American Superconductor Corporation | Architecture for high temperature superconductor wire |
JP5342749B2 (ja) | 2007-03-28 | 2013-11-13 | 株式会社東芝 | 高温超電導コイル |
JP5512175B2 (ja) | 2009-06-22 | 2014-06-04 | 株式会社東芝 | 補強高温超電導線およびそれを巻線した高温超電導コイル |
JP5558794B2 (ja) | 2009-11-30 | 2014-07-23 | 株式会社東芝 | 超電導線およびそれを用いた超電導コイル |
JP5684601B2 (ja) | 2011-01-25 | 2015-03-18 | 株式会社フジクラ | 酸化物超電導線材およびその製造方法 |
JP5395870B2 (ja) | 2011-09-27 | 2014-01-22 | 株式会社東芝 | 高温超電導コイルおよびその製造方法 |
JP5847009B2 (ja) | 2012-04-27 | 2016-01-20 | 株式会社フジクラ | 酸化物超電導線材 |
KR101404534B1 (ko) * | 2012-06-11 | 2014-06-09 | 가부시키가이샤후지쿠라 | 산화물 초전도 선재 및 초전도 코일 |
JP2015028912A (ja) * | 2013-07-05 | 2015-02-12 | 中部電力株式会社 | 超電導線材及びそれを用いた超電導コイル |
-
2015
- 2015-09-28 JP JP2015190318A patent/JP6505565B2/ja active Active
-
2016
- 2016-09-16 US US15/761,530 patent/US10886041B2/en active Active
- 2016-09-16 WO PCT/JP2016/077464 patent/WO2017057064A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013247291A (ja) * | 2012-05-28 | 2013-12-09 | Chubu Electric Power Co Inc | 超電導コイル装置 |
JP2014017090A (ja) * | 2012-07-06 | 2014-01-30 | Fujikura Ltd | 超電導線材および超電導コイル |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3499519A4 (en) * | 2016-08-09 | 2020-04-15 | Fujikura Ltd. | OXIDE SUPERCONDUCTING WIRE |
Also Published As
Publication number | Publication date |
---|---|
JP6505565B2 (ja) | 2019-04-24 |
US10886041B2 (en) | 2021-01-05 |
US20180350489A1 (en) | 2018-12-06 |
JP2017068931A (ja) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017057064A1 (ja) | 高温超電導導体、高温超電導コイル及び高温超電導コイルの接続構造 | |
JP5823116B2 (ja) | 超電導コイル | |
JP5259487B2 (ja) | 超電導コイル | |
JP5512175B2 (ja) | 補強高温超電導線およびそれを巻線した高温超電導コイル | |
JP5342749B2 (ja) | 高温超電導コイル | |
JP6678509B2 (ja) | 超電導テープ線、超電導テープを用いた超電導電流リード、永久電流スイッチおよび超電導コイル | |
US9691532B2 (en) | Connection structure of high-temperature superconducting wire piece, high-temperature superconducting wire using connection structure, and high-temperature superconducting coil using connection structure | |
JP2018117042A (ja) | 高温超電導永久電流スイッチ及び高温超電導磁石装置 | |
JP5022279B2 (ja) | 酸化物超電導電流リード | |
JP6548916B2 (ja) | 高温超電導コイル | |
JP2001093721A (ja) | 高温超電導マグネット | |
JP7222622B2 (ja) | 超電導コイル及び超電導コイル装置 | |
JP7247080B2 (ja) | 超電導コイル装置 | |
JP2020025014A (ja) | 高温超電導コイル及び超電導磁石装置 | |
WO2020067335A1 (ja) | 酸化物超電導コイルおよびその製造方法 | |
JP6871117B2 (ja) | 高温超電導コイル装置及び高温超電導マグネット装置 | |
JP2022174411A (ja) | 超電導コイルおよび超電導コイルの製造方法 | |
JP4634954B2 (ja) | 超電導装置 | |
JP6327794B2 (ja) | 超電導コイル装置 | |
JP7438830B2 (ja) | バンドル巻き高温超電導コイル装置 | |
JP7614993B2 (ja) | 超電導コイル及び超電導コイル装置 | |
JP2014179526A (ja) | 電流リード | |
JP7234080B2 (ja) | 高温超電導コイル | |
JP2019040771A (ja) | 超電導テープ線、この超電導テープ線を用いた超電導電流リード、永久電流スイッチおよび超電導コイル | |
JP2013207088A (ja) | 超電導コイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851238 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851238 Country of ref document: EP Kind code of ref document: A1 |