[go: up one dir, main page]

WO2017051838A1 - Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element - Google Patents

Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element Download PDF

Info

Publication number
WO2017051838A1
WO2017051838A1 PCT/JP2016/077934 JP2016077934W WO2017051838A1 WO 2017051838 A1 WO2017051838 A1 WO 2017051838A1 JP 2016077934 W JP2016077934 W JP 2016077934W WO 2017051838 A1 WO2017051838 A1 WO 2017051838A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
resin composition
thermosetting resin
semiconductor device
white pigment
Prior art date
Application number
PCT/JP2016/077934
Other languages
French (fr)
Japanese (ja)
Inventor
佑一 深道
一浩 福家
恭也 大薮
広希 河野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016182769A external-priority patent/JP6883185B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017051838A1 publication Critical patent/WO2017051838A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • H10H20/856Reflecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Definitions

  • the present invention includes, for example, a thermosetting resin composition for an optical semiconductor device, which is a material for forming a reflector (reflecting portion) that reflects light emitted from an optical semiconductor element, and a lead frame for an optical semiconductor device obtained using the same.
  • the present invention relates to an optical semiconductor device and an optical semiconductor element.
  • an optical semiconductor device in which an optical semiconductor element is mounted has an optical semiconductor element 3 on a metal lead frame composed of a first plate portion 1 and a second plate portion 2, for example, as shown in FIG.
  • a light reflecting reflector 4 made of a resin material is formed so as to be mounted and to surround the optical semiconductor element 3 so as to fill the space between the first plate portion 1 and the second plate portion 2. It takes the composition that it is.
  • the optical semiconductor element 3 mounted in the recess 5 formed as the inner peripheral surface of the metal lead frame and the reflector 4 is resin-sealed using a transparent resin such as a silicone resin containing a phosphor as necessary. By doing so, the sealing resin layer 6 is formed.
  • 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3, which are provided as necessary.
  • the reflector 4 is manufactured by using, for example, transfer molding or the like, using a thermosetting resin typified by an epoxy resin or the like.
  • a thermosetting resin typified by an epoxy resin or the like.
  • ceramics has been conventionally used, so that there is a problem that cracking occurs when it is thinly formed.
  • this problem is solved by the reflector 4 made of the thermosetting resin.
  • titanium oxide is blended in the thermosetting resin as a white pigment, and light emitted from the optical semiconductor element 3 is reflected (see Patent Document 1).
  • a light reflecting plate forming material in which light reflecting fine particles such as titanium oxide and an inorganic flame retardant are blended in a thermoplastic resin to impart light reflectivity and flame retardancy (patent) Reference 2).
  • an optical semiconductor device having a configuration different from that of the optical semiconductor device and capable of emitting high-energy light is mounted on the substrate 29 as shown in FIG.
  • an LED device 45 including a light emitting element (light emitting diode: LED) 24 and a reflector 25 formed on the entire side surface of the LED 24 mounted on the substrate 29.
  • the sealing resin layer 30 is formed by resin-sealing the LED 24 exposed surface of the LED 24 on which the reflector 25 has been formed and the upper surface of the reflector 25 with a transparent resin such as a silicone resin containing a phosphor as necessary. ing.
  • a transparent resin such as a silicone resin containing a phosphor as necessary.
  • a reflector 25 forming material is used in which a thermosetting resin typified by silicone resin is used and a white pigment is blended therein.
  • a sheet-like reflector 25 is used.
  • the reflector 25 is formed using a forming material.
  • the reflector 4 is formed using a polymer material such as the above-mentioned Patent Documents 1 and 2, the high light reflectivity and the high heat resistance in the optical semiconductor device formed with the reflector 4 are satisfactory. In fact, it is possible to provide a material for forming the reflector 4 that can suppress the occurrence of warpage of the entire optical semiconductor device, for example, by providing high light reflectance and excellent heat resistance. It has been demanded.
  • the desired reflector 25 is formed by covering the LED 24 with a sheet-shaped reflector 25 forming material.
  • the reflector 25 in the LED device 45 is also required to have a high light reflectance as in the case of the optical semiconductor device, and has good sheet formability when the sheet-shaped reflector 25 forming material is manufactured. That is, a material that can be a material for forming the reflector 25 having excellent film forming properties is demanded.
  • thermosetting resin composition for an optical semiconductor device having high heat reflectivity and excellent heat resistance or film-forming property, and light obtained by using the same is to provide a lead frame for a semiconductor device, a highly reliable optical semiconductor device, and an optical semiconductor element.
  • a white pigment present in a molded cured product of a thermosetting resin composition that is a reflector forming material of an optical semiconductor device or an optical semiconductor element.
  • a white pigment present in a molded cured product of a thermosetting resin composition that is a reflector forming material of an optical semiconductor device or an optical semiconductor element.
  • thermosetting resin is an epoxy resin
  • further experiments were repeated focusing on the ratio of the inorganic filler blended with the white pigment.
  • the interparticle distance between the white pigments is 50 to 250 nm and the content of the inorganic filler is 60 to 85% by volume, the light scattering ability inherent to the white pigment is exhibited and the light reflectance is increased.
  • the present inventors have found that, while greatly improving, the dispersibility of the inorganic filler is improved and the heat resistance is improved, and the occurrence of warpage of the optical semiconductor device is further suppressed.
  • the thermosetting resin is a silicone resin
  • the interparticle distance between the white pigments is set to 300 to 420 nm, and the total volume of the organic component and the white pigment in the resin composition
  • the volume ratio of the white pigment to 10 to 23% by volume is achieved, the light scattering ability inherent to the white pigment is exhibited and the light reflectance is greatly improved, and the film-forming property when formed into a sheet is further improved. I found out that I would do it.
  • the present invention provides a thermosetting resin composition for an optical semiconductor device containing a thermosetting resin and a white pigment, wherein the white color in a cured product comprising the thermosetting resin composition.
  • Thermosetting for optical semiconductor devices wherein the interparticle distance between the pigments is 50 to 420 nm, and the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition is 7.5 to 23% by volume.
  • the resin composition is used.
  • the present invention contains the following (A) to (D), the proportion of the (D) inorganic filler in the entire thermosetting resin composition is 60 to 85% by volume, and the thermosetting resin:
  • the first gist is a thermosetting resin composition for an optical semiconductor device in which the distance between particles (C) in the cured product made of the composition is 50 to 250 nm.
  • C White pigment.
  • D An inorganic filler other than the above (C) white pigment.
  • the present invention provides a plate-shaped optical semiconductor having a plurality of plate portions arranged with a gap therebetween and a reflector provided in the gap and capable of mounting an optical semiconductor element only on one side in the thickness direction.
  • a lead frame for an optical semiconductor device comprising a cured product of the thermosetting resin composition for an optical semiconductor device according to the first aspect, wherein the reflector provided in the gap is a second frame.
  • the present invention is a three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region and a reflector formed by surrounding at least part of the optical semiconductor element mounting region.
  • the present invention provides a plurality of plate portions having an optical semiconductor element mounting region on one side thereof, a gap provided between the plate portions so as to separate the plate portions from each other, and a predetermined position of the optical semiconductor element mounting region.
  • An optical semiconductor device provided with an optical semiconductor element mounted on the reflector, wherein a reflector formed of a cured product of the thermosetting resin composition for an optical semiconductor device according to the first aspect is provided in the gap.
  • the optical semiconductor device is a fourth gist.
  • the present invention also includes a lead frame having an optical semiconductor element mounting region, a reflector formed so as to surround the periphery of the element mounting region by at least a part of the lead frame, and mounted at a predetermined position of the element mounting region.
  • An optical semiconductor device comprising: an optical semiconductor element, wherein the reflector is made of a cured product of the thermosetting resin composition for optical semiconductor devices according to the first aspect. .
  • the present invention is a thermosetting resin composition for an optical semiconductor device containing a silicone resin as a thermosetting resin and containing a white pigment, in a cured product comprising the thermosetting resin composition.
  • Thermosetting for optical semiconductor device wherein the distance between the white pigments is 300 to 420 nm, and the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition is 10 to 23% by volume.
  • the resin composition is a sixth gist.
  • this invention is an optical semiconductor element provided with the light emitting element and the reflector which coat
  • the said reflector is thermosetting for optical semiconductor devices of the said 6th summary.
  • An optical semiconductor element made of a cured product of the resin composition is a seventh gist.
  • the interparticle distance between white pigments in a cured product comprising a thermosetting resin composition containing a thermosetting resin and a white pigment is 50 to 420 nm, and the resin composition contains This is a thermosetting resin composition in which the volume ratio of the white pigment to the total volume of the organic component and the white pigment is 7.5 to 23% by volume.
  • high light reflectivity initial light reflectivity
  • heat resistance is further improved, and good film forming properties are imparted. Therefore, in the optical semiconductor device in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device, a highly reliable optical semiconductor device in which the occurrence of warpage is further suppressed can be obtained.
  • a highly reliable optical semiconductor element in which a reflector is formed using a high-quality sheet-shaped reflector forming material can be obtained.
  • thermosetting resin composition containing the said (A) epoxy resin, (B) acid anhydride type hardening
  • the standard deviation in the inter-particle distance between the white pigments (C) in the molded cured product made of the thermosetting resin composition is 100 to 350, it is possible to provide a more excellent warp generation suppressing effect. .
  • the interparticle distance between (C) white pigments in the cured product comprising the thermosetting resin composition is 50 to 235 nm, and the standard deviation in the interparticle distance between (C) white pigments in the molded cured product is 160. When it is ⁇ 270, the initial light reflectance and the effect of suppressing warpage are further improved.
  • the (C) white pigment in the cured product comprising the thermosetting resin composition is a standard in the interparticle distance (x) between the white pigments (C) and the interparticle distance (dispersion) of the white pigment (C).
  • deviation (y) horizontal axis: interparticle distance (x)-vertical axis: standard deviation (y) in interparticle distance between white pigments (C)
  • equations (1) to (4) described later are used. If the region surrounded by (including the boundary line) is satisfied, the initial light reflectance and the effect of suppressing warpage are further improved.
  • the content ratio of the white pigment (C) is 3 to 30% by volume of the whole thermosetting resin composition, a further excellent initial light reflectance is provided.
  • the average particle diameter of the (C) white pigment is 0.1 to 0.5 ⁇ m, the light scattering characteristic inherent to the white pigment is exhibited and the light reflectance is greatly improved.
  • thermosetting resin composition for an optical semiconductor device which contains a silicone resin as a thermosetting resin and contains a white pigment, between particles between white pigments in a cured product comprising the thermosetting resin composition
  • a high light reflectance initial light reflectance
  • It will also be provided with excellent film forming properties. Therefore, it becomes possible to easily produce a sheet-like reflector forming material using the thermosetting resin composition for an optical semiconductor device, and it is possible to produce an optical semiconductor element formed with a reflector.
  • the film has a further excellent film forming property with a high light reflectance.
  • the average particle size of the white pigment is 0.1 to 0.5 ⁇ m, the light scattering characteristic inherent to the white pigment is exhibited and the light reflectance is greatly improved.
  • FIG. 3 is a cross-sectional view taken along the line XX ′ of a plan view schematically showing another configuration of the optical semiconductor device shown in FIG.
  • thermosetting resin composition for optical semiconductor devices of the present invention
  • thermosetting resin composition contains a thermosetting resin and a white pigment.
  • thermosetting resin composition according to a use use (object of reflector formation) etc., it divides roughly,
  • the epoxy resin composition which used the epoxy resin as a thermosetting resin, and silicone as a thermosetting resin Two embodiments of the silicone resin composition using a resin are listed. Hereinafter, it demonstrates for every aspect.
  • Epoxy resin composition is used, for example, as a material for forming the reflectors 4 and 11 in the optical semiconductor device shown in FIG. 1 or the optical semiconductor device shown in FIGS. It is.
  • Such an epoxy resin composition of the present invention is obtained using an epoxy resin (A), an acid anhydride curing agent (B), a white pigment (C), and an inorganic filler (D).
  • A epoxy resin
  • B acid anhydride curing agent
  • C white pigment
  • D inorganic filler
  • it is used as a material for forming the reflectors 4 and 11 in the form of a liquid, a sheet, a powder, or a tablet of the powder and tableted.
  • Epoxy resin examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolac type epoxy resins, and monoglycidyl isocyanate.
  • Nitrogen-containing ring epoxy resins such as nurate, diglycidyl isocyanurate, triglycidyl isocyanurate, hydantoin epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, aliphatic epoxy resin, silicone-modified epoxy resin, Glycidyl ether type epoxy resins, diglycidyl ethers such as alkyl-substituted bisphenols, polyamines such as diaminodiphenylmethane and isocyanuric acid, and epichloro Glycidylamine-type epoxy resin obtained by reaction with dorin, linear aliphatic and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and biphenyl which is the mainstream of low water-absorption-curing type Type epoxy resin, dicyclo ring type epoxy resin, naphthalene type epoxy resin and the like.
  • epoxy resins may be used alone or in combination of two or more.
  • an alicyclic epoxy resin or an isocyanuric ring structure such as triglycidyl isocyanurate alone or in combination from the viewpoint of excellent transparency and discoloration resistance.
  • diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable.
  • glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated.
  • the epoxy resin (A) may be solid or liquid at room temperature, but in general, the epoxy resin used preferably has an average epoxy equivalent of 90 to 1,000. From the viewpoint of convenience in handling, a softening point of 50 to 160 ° C. is preferable. That is, if the epoxy equivalent is too small, the cured epoxy resin composition may become brittle. Moreover, it is because the tendency for the glass transition temperature (Tg) of an epoxy resin composition hardened
  • Acid anhydride curing agent examples include phthalic anhydride, maleic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalene-1,4,5,8-tetracarboxylic acid.
  • Dianhydrides and their nuclear hydrides hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydro Phthalic anhydride, methyl nadic anhydride, cyclohexane-1,2,3-tricarboxylic acid-2,3-anhydride, and its positional isomer, cyclohexane-1,2,3,4-tetracarboxylic acid-3,4 -Anhydrides and their positional isomers, nadic anhydride, glutaric anhydride, dimethyl glutaric anhydride, diethyl glutarate anhydride Acid, methylhexahydrophthalic anhydride, and methyl tetrahydrophthalic anhydride and the like.
  • an oligomer having these acid anhydrides as a terminal group of a saturated fatty chain skeleton, an unsaturated fatty chain skeleton, or a silicone skeleton, or a side chain is used alone or in combination of two or more of them with the above acid anhydride. be able to.
  • phthalic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-Methyltetrahydrophthalic anhydride is preferably used.
  • the acid anhydride curing agent is preferably a colorless or light yellow acid anhydride curing agent.
  • the blending ratio of the epoxy resin (A) and the acid anhydride curing agent (B) is based on 1 equivalent of the epoxy group in the epoxy resin (A), and the acid anhydride curing agent (B).
  • the active group (acid anhydride group or carboxy group) capable of reacting with the epoxy group is preferably set to 0.3 to 1.3 equivalents, more preferably 0.5 to 1.1 equivalents. That is, when there are too few active groups, the curing rate of the epoxy resin composition is slowed and the glass transition temperature (Tg) of the cured product tends to be low, and when there are too many active groups, the moisture resistance decreases. This is because there is a tendency.
  • epoxy resin curing agents other than the above-mentioned acid anhydride curing agent (B) for example, isocyanuric acid derivative curing agents, phenol curing agents, amine curing agents, Curing agents such as those obtained by partial esterification of acid anhydride curing agents with alcohol may be used alone or in combination of two or more in a range that does not impair the effect of the use of acid anhydride curing agent (B). it can.
  • blending ratio should just follow the mixing
  • isocyanuric acid derivative curing agent examples include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5- And tris (3-carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate, and the like.
  • curing agents a colorless or light yellow hardening
  • White pigment examples include inorganic white pigments such as magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, white lead, kaolin, alumina, calcium carbonate, barium carbonate, barium sulfate, Examples thereof include zinc sulfate and zinc sulfide. These may be used alone or in combination of two or more. Among these, from the viewpoint of obtaining an excellent light reflectance, it is preferable to use titanium oxide, and it is particularly preferable to use one having a rutile crystal structure. Among them, it is preferable to use those having an average particle diameter of 0.01 to 1 ⁇ m from the viewpoint of fluidity and light shielding properties. Particularly preferred is 0.1 to 0.5 ⁇ m from the viewpoint of light reflectivity. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.
  • inorganic white pigments such as magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, white lead, kaolin, alumina, calcium
  • the distance between the white pigments (C) in the cured product made of the thermosetting resin composition (epoxy resin composition) is usually 50 to 420 nm, preferably 50 to 250 nm. More preferably, it is 60 to 240 nm, and particularly preferably 65 to 180 nm. Further, when (D) silica fine particles and ordinary silica particles having a larger particle diameter than the silica fine particles are used in combination as the inorganic filler, the interparticle distance between the white pigments (C) is preferably 50 to 235 nm. .
  • the white pigment (C) when the distance between particles is too short, the white pigment (C) is dispersed in an overcrowded state, so that the light scattering property is lowered, and as a result, the light reflectance is lowered. On the other hand, if the interparticle distance is too long, light leakage occurs and the light reflectivity decreases.
  • the interparticle distance between the white pigments (C) refers to a value measured according to the following method.
  • a cured product for example, 50 mm long ⁇ 50 mm wide ⁇ 1 mm thick
  • predetermined curing conditions for example, 175 ° C. ⁇ 2 minutes.
  • cured material is cut
  • the cut surface of the cured product is photographed with a microscope or the like (for example, a scanning electron microscope (SEM: manufactured by Hitachi High-Technologies Corporation, FE-SEM S-4700)).
  • Photographing is performed with a field of view of 1280 ⁇ 960 (pixels), and in order to accurately calculate the inter-particle distance of titanium oxide, the measurement region is selected by excluding the region where one particle occupies more than half of the field of view. .
  • the white pigment (C) is extracted and binarized by image analysis software or the like, and the distance between the centers of gravity between the adjacent three points is calculated. By subtracting the particle size of the white pigment (C) from the distance between the centers of gravity, the standard deviation in the interparticle distance of the white pigment (C) and further the interparticle distance (dispersion) of the white pigment (C) particles is calculated. .
  • the interparticle distance in the adjacent white pigment (C) is specifically defined as follows. For each of the white pigment (C) particles appearing in a certain region of the cross-section observation screen, a perfect circle having the center of gravity Pn of the fine particles [white pigment (C)] Cn as the center and equal to the area of Cn is drawn as an approximate circle Qn. The diameter Ln is calculated. And each gravity center Pn of each approximate circle Qn of each fine particle Cn is set as the center of each fine particle Cn.
  • a straight line Lnm (distance between the centroids) connecting the centroid Pn of the fine particle Cn and the centroid Pm of the fine particle Cm adjacent to the fine particle Cn is drawn, and this straight line Lnm and each approximate circle of the fine particle Cn and the fine particle Cm are drawn.
  • the distance Dnm (the shortest distance between approximate circles) between the intersections Tn and Tm with Qn and Qm is measured.
  • the shortest distance Dnm between the approximate circles is the interparticle distance between the fine particles Cn and Cm, that is, the interparticle distance in the white pigment (C).
  • the adjacent white pigment (C), that is, the fine particles adjacent to each other [white pigment (C)] are the other fine particles Cs when the gravity centers Pn and Pm of the fine particles Cn and Cm are connected by a straight line Lnm.
  • these fine particles Cn and Cm are adjacent to each other.
  • the fine particles C 1 and C 2 are adjacent to each other because there are no other fine particles on the straight line L 12 connecting the centroids P 1 and P 2 of the fine particles C 1 and C 2. I can say that.
  • the fine particle C 1 and the fine particle C 3 are adjacent to each other because there is no other fine particle on the straight line L 13 connecting the centroids P 1 and P 3 of the fine particles C 1 and C 3. .
  • the fine particle C 1 and the fine particle C 4 are adjacent to each other because the approximate circle Q 2 of the fine particle C 2 exists on the straight line L 14 connecting the centroids P 1 and P 4 of the fine particles C 1 and C 4. Not called fine particles.
  • the distance between particles of the white pigment (C) is “in the cured product made of the thermosetting resin composition (epoxy resin composition)”.
  • the white pigment (C) is agglomerated. This is because the property is high and it is easy to form secondary particles. Therefore, in order to measure a more accurate interparticle distance, in the present invention, after dispersing in a cured product of a thermosetting resin composition (epoxy resin composition) to form primary particles, the interparticle distance is measured. is doing.
  • the standard deviation in the interparticle distance between the white pigments (C) is calculated by measuring in the same manner as the interparticle distance between the white pigments (C).
  • the standard deviation in the interparticle distance between the (C) white pigments in the cured product made of the epoxy resin composition is preferably 100 to 350, more preferably 150 to 300.
  • the standard deviation in the interparticle distance between (C) white pigments is 160 to 270. Preferably there is.
  • the standard deviation is within the above range, the initial light reflectance and the effect of suppressing the occurrence of warpage are further improved.
  • the white pigment (C) in the cured product made of the epoxy resin composition is a particle between the white pigment (C) as shown in FIG. Relationship between standard deviation (y) in inter-distance and inter-particle distance (x) between white pigments (C) (vertical axis: standard deviation ⁇ (y) in inter-particle distance-horizontal axis: inter-particle distance (x)) In this case, it is preferable that the region (including the boundary line) enclosed by the following formulas (1) to (4) is satisfied.
  • the white pigment (C) in the cured product composed of the epoxy resin composition has the above-mentioned formulas (1) to (4) in the relationship between the interparticle distance (x) and the standard deviation (y) in the interparticle distance.
  • the dispersibility of the white pigment (C) and the dispersibility of the inorganic filler (D) described later are particularly good. The effect of improving the initial light reflectance and the effect of suppressing the occurrence of warpage can be obtained.
  • the content of the white pigment (C) is preferably 3 to 30% by volume, more preferably 5 to 20% by volume, based on the entire epoxy resin composition. That is, when the content ratio of the white pigment (C) is too small, it tends to be difficult to obtain sufficient light reflectivity, particularly excellent initial light reflectivity. Moreover, when there is too much content rate of a white pigment (C), it is because possibility that difficulty may arise regarding preparation of the epoxy resin composition by kneading
  • the volume ratio of the white pigment (C) to the total volume of the organic component and the white pigment (C) in the resin composition needs to be 7.5 to 23% by volume.
  • the amount is preferably 10 to 23% by volume, particularly preferably 14 to 23% by volume. That is, if the volume ratio of the white pigment (C) is too small, light leakage occurs and the light reflectance is lowered, and if it is too large, the white pigment is dispersed in an overcrowded state and the light scattering characteristics are lowered. As a result, the light reflectance decreases.
  • Inorganic filler As the inorganic filler (D), various inorganic fillers excluding the white pigment (C) described above are used. Examples thereof include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder. Among them, it is preferable to use a fused silica powder from the viewpoint of reducing the linear expansion coefficient, and it is particularly preferable to use a fused spherical silica powder from the viewpoints of high filling property and high fluidity.
  • the average particle diameter of the inorganic filler (D) is preferably 0.05 to 100 ⁇ m.
  • the average particle size of the silica fine particles is less than 0.05 to 10 ⁇ m. Is particularly preferably 10 to 80 ⁇ m.
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.
  • the content of the inorganic filler (D) is preferably set to 60 to 85% by volume, particularly preferably 65 to 80% by volume, based on the entire epoxy resin composition. That is, if the content ratio is too small, problems such as warpage occur during molding. Moreover, when there is too much a content rate, when kneading
  • a curing accelerator, a release agent, and a silane compound can be added to the epoxy resin composition of the present invention as necessary.
  • various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, an antifoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.
  • curing accelerator examples include 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediamine, tri-2,4,6-dimethylaminomethylphenol, N, N-dimethylbenzylamine. , Tertiary amines such as N, N-dimethylaminobenzene and N, N-dimethylaminocyclohexane, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetrafluoro Borate, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, methyltributylphosphonium dimethyl phosphate, tetraphenylphosphonium-o, o-diethyl phosphorodisi Phosphorus compounds such as
  • tertiary amines imidazoles, and phosphorus compounds.
  • phosphorus compound it is particularly preferable to use a phosphorus compound in order to obtain a cured product with little coloring.
  • the content of the curing accelerator is preferably set to 0.001 to 8% by weight, more preferably 0.01 to 5% by weight with respect to the epoxy resin (A). That is, if the content of the curing accelerator is too small, a sufficient curing acceleration effect may not be obtained, and if the content of the curing accelerator is too large, the resulting cured product tends to be discolored. Because.
  • release agent various release agents are used. Among them, it is preferable to use a release agent having an ether bond.
  • a release agent having a structural formula represented by the following general formula ( ⁇ ) Agent for example, a release agent having a structural formula represented by the following general formula ( ⁇ ) Agent.
  • Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]
  • Rm and Rn are a hydrogen atom or a monovalent alkyl group, preferably k is a positive number from 10 to 50, and x is a positive number from 3 to 30. More preferably, Rm and Rn are hydrogen atoms, k is a positive number of 28 to 48, and x is a positive number of 5 to 20. That is, when the value of the number of repetitions k is too small, the releasability is lowered, and when the value of the number of repetitions x is too small, the dispersibility is lowered, so that stable strength and releasability tend not to be obtained. Be looked at.
  • the content of the release agent is preferably set in the range of 0.001 to 3% by weight of the entire epoxy resin composition object, and more preferably in the range of 0.01 to 2% by weight. That is, if the content of the release agent is too little or too much, the strength of the cured product tends to be insufficient or the release property tends to be lowered.
  • silane compound examples include a silane coupling agent and silane.
  • silane coupling agent examples include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethylethoxysilane.
  • silane examples include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethylsilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and dezyltrimethoxy.
  • silane examples include silane, trifluoropropyltrimethoxysilane, hexamethyldisilazane, and siloxane containing a hydrolyzable group. These may be used alone or in combination of two or more.
  • modifier examples include silicones and 1-5 pentahydric alcohols.
  • antioxidant examples include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.
  • the flame retardant examples include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.
  • antifoaming agent examples include general antifoaming agents such as various silicone compounds.
  • the epoxy resin composition of the present invention can be produced, for example, as follows. That is, (A) to (D), further, a curing accelerator and a release agent, and various additives used as necessary are appropriately blended, and then melt-mixed using a kneader or the like.
  • a powdery epoxy resin composition can be obtained by cooling, solidifying, and pulverizing.
  • the cured product obtained by, for example, transfer molding or injection molding the obtained epoxy resin composition preferably has an initial light reflectance of 94% or more at a wavelength of 450 to 800 nm. Particularly preferably, it is 95% or more.
  • the upper limit is usually 100%.
  • the initial light reflectance at a wavelength of 450 nm of the cured product is 94 to 99%.
  • the initial light reflectance is measured as follows. That is, a cured product of an epoxy resin composition having a thickness of 1.0 mm is subjected to predetermined curing conditions, for example, molding at 175 ° C. ⁇ 2 minutes, curing at 150 ° C. ⁇ 2 hours, and within the above range at room temperature (25 ° C.).
  • the initial light reflectivity of the cured product at a wavelength of 1 can be measured by using a spectrophotometer (for example, spectrophotometer V-670 manufactured by JASCO Corporation).
  • An optical semiconductor device using the epoxy resin composition of the present invention is manufactured as follows, for example. That is, a metal lead frame is placed in a mold of a transfer molding machine, and a reflector is formed by transfer molding using the epoxy resin composition. In this manner, a metal lead frame for an optical semiconductor device in which an annular reflector is formed so as to surround the periphery of the optical semiconductor element mounting region is manufactured. Next, an optical semiconductor element is mounted in the optical semiconductor element mounting region on the metal lead frame inside the reflector, and the optical semiconductor element and the metal lead frame are electrically connected using a bonding wire. And the sealing resin layer is formed by resin-sealing the inner area
  • the three-dimensional (cup type) optical semiconductor device shown in FIG. 1 is manufactured.
  • the optical semiconductor element 3 is mounted on the second plate portion 2 of the metal lead frame composed of the first plate portion 1 and the second plate portion 2, and the optical semiconductor device
  • the reflector 4 for light reflection which consists of the epoxy resin composition of this invention is formed so that the circumference
  • the sealing resin layer which consists of resin material (for example, silicone resin etc.) which has the transparency which seals the optical semiconductor element 3 6 is formed.
  • the sealing resin layer 6 contains a phosphor as necessary.
  • 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3.
  • various substrates may be used in place of the metal lead frame shown in FIG.
  • the various substrates include organic substrates, inorganic substrates, and flexible printed substrates.
  • the reflector may be formed by injection molding.
  • an optical semiconductor device shown in FIGS. 2 and 3 (cross-sectional view taken along the line XX ′ in FIG. 2) using a plate-like lead frame for an optical semiconductor device is provided.
  • an optical semiconductor is provided at a predetermined position (the mounting region) on one side in the thickness direction of the metal lead frame 10 in which a plurality of plate portions (optical semiconductor element mounting regions) arranged at a predetermined interval are provided.
  • Each of the elements 3 is mounted, and a reflector 11 for light reflection made of the epoxy resin composition of the present invention is formed in a gap between the plate portions (optical semiconductor element mounting regions) in the metal lead frame 10. . That is, as shown in FIG.
  • a plurality of reflectors 11 formed by filling and curing the epoxy resin composition of the present invention in the gaps between the plate portions (optical semiconductor element mounting regions) in the metal lead frame 10 are formed.
  • reference numeral 12 denotes a bonding wire for electrically connecting the optical semiconductor element 3 and the metal lead frame 10.
  • the metal lead frame 10 is placed in a mold of a transfer molding machine and transfer molding is performed to form gaps between plate portions arranged at intervals and the optical semiconductor element 3 of the metal lead frame 10.
  • Each of the reflectors 11 is formed by filling an epoxy resin composition in a concave portion formed on the surface opposite to the mounting surface and curing it.
  • a sealing resin layer 13 made of a transparent resin material (for example, a silicone resin) is formed on the metal lead frame 10 so as to cover the optical semiconductor element 3 by compression molding or sheet sealing. To do.
  • the sealing resin layer 13 contains a phosphor as necessary. In this manner, the optical semiconductor device shown in FIG. 2 (the sealing resin layer 13 is omitted) and FIG. 3 is manufactured.
  • the silicone resin composition of the present invention is a reflector forming material that covers at least a part of an optical semiconductor element (light emitting element), for example, an optical semiconductor element (light emitting element) 24 in the optical semiconductor device (light emitting apparatus) shown in FIG.
  • the reflector 25 formed on the entire side surface is used as a reflector forming material.
  • the silicone resin composition of the present invention is obtained using a silicone resin and a white pigment, and is usually formed into a sheet shape and used as a reflector forming material.
  • the silicone resin exhibits, for example, two-stage curability, specifically, two-stage thermosetting or two-stage ultraviolet curing, preferably two-stage thermosetting.
  • the silicone resin contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.
  • alkenyl group-containing polysiloxane contains at least one of two or more alkenyl groups and cycloalkenyl groups in the molecule.
  • the alkenyl group-containing polysiloxane is specifically represented by the following average composition formula (I).
  • R 1 represents at least one of an alkenyl group having 2 to 10 carbon atoms and a cycloalkenyl group having 3 to 10 carbon atoms.
  • R 2 represents an unsubstituted or substituted monovalent monovalent group having 1 to 10 carbon atoms.
  • examples of the alkenyl group represented by R 1 include 2 to 10 carbon atoms such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, and octenyl group.
  • examples of the cycloalkenyl group represented by R 1 include cycloalkenyl groups having 3 to 10 carbon atoms such as cyclohexenyl group and norbornenyl group.
  • R 1 is preferably an alkenyl group, more preferably an alkenyl group having 2 to 4 carbon atoms, and still more preferably a vinyl group.
  • the alkenyl groups represented by R 1 may be of the same type or a plurality of types.
  • the monovalent hydrocarbon group represented by R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms other than an alkenyl group and a cycloalkenyl group.
  • Examples of the unsubstituted monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a pentyl group.
  • Examples thereof include cycloalkyl groups such as aryl groups having 6 to 10 carbon atoms such as phenyl group, tolyl group and naphthyl group, for example, aralkyl groups having 7 to 8 carbon atoms such as benzyl group and benzylethyl group.
  • cycloalkyl groups such as aryl groups having 6 to 10 carbon atoms such as phenyl group, tolyl group and naphthyl group, for example, aralkyl groups having 7 to 8 carbon atoms such as benzyl group and benzylethyl group.
  • Preferred are an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferred are a methyl group and a phenyl group.
  • examples of the substituted monovalent hydrocarbon group include those obtained by substituting a hydrogen atom in the above-described unsubstituted monovalent hydrocarbon group with a substituent.
  • substituents examples include a halogen atom such as a chlorine atom, such as a glycidyl ether group.
  • substituted monovalent hydrocarbon group examples include a 3-chloropropyl group and a glycidoxypropyl group.
  • the monovalent hydrocarbon group may be unsubstituted or substituted, and is preferably unsubstituted.
  • the monovalent hydrocarbon groups represented by R 2 may be of the same type or a plurality of types.
  • a methyl group and a phenyl group are used in combination.
  • a is preferably 0.10 to 0.40. Further, b is preferably 1.5 to 1.75.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and 10,000 or less, preferably 5000 or less.
  • the weight average molecular weight of the alkenyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the alkenyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • alkenyl group-containing polysiloxane may be the same type, or two or more types may be used in combination.
  • the hydrosilyl group-containing polysiloxane contains, for example, two or more hydrosilyl groups (SiH groups) in the molecule.
  • the hydrosilyl group-containing polysiloxane is represented by the following average composition formula (II).
  • R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding at least one of an alkenyl group and a cycloalkenyl group), and c is 0.30. 1.0 and 1.0 is 0.90 to 2.0.
  • an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 is an unsubstituted or substituted carbon group represented by R 2 in the above formula (I).
  • Examples thereof are the same as the 10 monovalent hydrocarbon groups.
  • an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a phenyl group.
  • a combination of methyl groups are examples thereof.
  • c is preferably 0.30 to 0.50. Further, d is preferably 1.3 to 1.7.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5000 or less.
  • the weight average molecular weight of the hydrosilyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.
  • the hydrosilyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.
  • At least one hydrocarbon group of R 2 and R 3 includes a phenyl group.
  • both R 2 and R 3 hydrocarbons contain a phenyl group.
  • the alkenyl group-containing polysiloxane represented by the above formula (I) and the formula (II) is prepared as a phenyl silicone resin containing a phenyl group.
  • hydrosilyl group-containing polysiloxane may be the same type, or two or more types may be used in combination.
  • the blending ratio of the hydrosilyl group-containing polysiloxane is the ratio of the number of moles of alkenyl groups and cycloalkenyl groups of the alkenyl group-containing polysiloxane to the number of moles of hydrosilyl groups of the hydrosilyl group-containing polysiloxane (the moles of alkenyl groups and cycloalkenyl groups).
  • the number / the number of moles of hydrosilyl group) is adjusted, for example, preferably 1/30 to 30/1, more preferably 1/3 to 3/1.
  • the hydrosilylation catalyst is a substance (addition catalyst) that improves the reaction rate of a hydrosilylation reaction (hydrosilyl addition) between at least one of an alkenyl group and a cycloalkenyl group of an alkenyl group-containing polysiloxane and a hydrosilyl group of the hydrosilyl group-containing polysiloxane.
  • a metal catalyst examples include platinum catalysts such as platinum black, platinum chloride, chloroplatinic acid, platinum-olefin complexes, platinum-carbonyl complexes, and platinum-acetyl acetate, for example, palladium catalysts such as rhodium catalyst. .
  • the blending ratio of the hydrosilylation catalyst is usually 1.0 ppm to the amount of metal in the metal catalyst (specifically, metal atom) based on the mass based on the alkenyl group-containing polysiloxane and hydrosilyl group-containing polysiloxane. It is 10,000 ppm, preferably 1.0 ppm to 1000 ppm, more preferably 1.0 ppm to 500 ppm.
  • the silicone resin can be prepared by blending the alkenyl group-containing polysiloxane, the hydrosilyl group-containing polysiloxane, and the hydrosilylation catalyst in the above ratio.
  • the silicone resin is formed in a two-stage curable (preferably two-stage thermosetting) resin composition in an A-stage form by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst ( Liquid).
  • the A-stage silicone resin may change from an A-stage (liquid) to a B-stage (semi-cured solid or semi-solid) to a C-stage (fully cured solid). Is possible.
  • the A stage-shaped silicone resin has a heating temperature of 70 to 120 ° C. in which at least one of the alkenyl group and cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane are, for example,
  • the B-stage silicone resin is produced by a hydrosilylation reaction, preferably at 80 to 100 ° C. and under a heating time of 5 to 30 minutes, preferably 8 to 20 minutes.
  • the blending ratio of the silicone resin is usually 20 to 70% by weight, preferably 25 to 50% by weight, more preferably the upper limit is less than 50% by weight, and even more preferably 40% by weight with respect to the entire silicone resin composition. % Or less, particularly preferably 30% by weight or less. When the blending ratio of the silicone resin is within the above range, good film forming properties are imparted.
  • White pigment As said white pigment, the thing similar to the white pigment (C) used in the above-mentioned epoxy resin composition is mention
  • examples include inorganic white pigments such as magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, lead white, kaolin, alumina, calcium carbonate, barium carbonate, barium sulfate, zinc sulfate, zinc sulfide and the like. . These may be used alone or in combination of two or more. Among these, from the viewpoint of obtaining an excellent light reflectance, it is preferable to use titanium oxide, and it is particularly preferable to use one having a rutile crystal structure.
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.
  • the interparticle distance between white pigments in a cured product made of a thermosetting resin composition is usually 50 to 420 nm, preferably 300 to 420 nm. . More preferably, it is 310 to 400 nm, and particularly preferably 330 to 400 nm. That is, if the distance between particles is too short, the white pigment is dispersed in an overcrowded state, so that the light scattering property is lowered and, as a result, the light reflectance is lowered. On the other hand, if the interparticle distance is too long, light leakage occurs and the light reflectivity decreases.
  • the interparticle distance between the white pigments is a value measured according to a method similar to the method described for the white pigment (C) of the epoxy resin composition. That is, using a reflector forming material comprising the silicone resin composition, a cured product having a predetermined size (for example, 50 mm long ⁇ 50 mm wide ⁇ 1 mm thick) under predetermined curing conditions (for example, 150 ° C. ⁇ 3 hours). Is made. It is a value obtained by measuring and calculating in the same manner as described above using this cured product.
  • the interparticle distance between the white pigments is “in the cured product made of the thermosetting resin composition (silicone resin composition)”. This is because it has the property of being easily converted. Therefore, in order to measure a more accurate interparticle distance, in the present invention, the particles are dispersed in a cured product made of a thermosetting resin composition (silicone resin composition) to form primary particles, and then the interparticle distance is measured. Is measuring.
  • the standard deviation in the interparticle distance between the white pigments is calculated by measuring in the same manner as the interparticle distance between the white pigments.
  • the standard deviation in the interparticle distance between the white pigments in the cured product made of the thermosetting resin composition (silicone resin composition) is preferably 100 to 350, more preferably 100 to 300. When the standard deviation is within the above range, the initial light reflectance and film forming property are further improved.
  • the content ratio of the white pigment is preferably 3 to 30% by volume, more preferably 10 to 25% by volume, based on the entire silicone resin composition. That is, when the content ratio of the white pigment is too small, it tends to be difficult to obtain sufficient light reflectivity, particularly excellent initial light reflectivity. Moreover, when there is too much content rate of a white pigment, it is because difficulty may arise regarding preparation of the epoxy resin composition by kneading
  • the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition needs to be 7.5 to 23% by volume. Preferably, it is 12.5 to 20.0% by volume. That is, if the volume ratio of the white pigment is too small, light leakage occurs and the light reflectance decreases, and if it is too large, the white pigment is dispersed in an overcrowded state, resulting in decreased light scattering characteristics. , The light reflectance decreases.
  • Various inorganic fillers other than the above-mentioned white pigment can be blended with the silicone resin composition.
  • the inorganic filler is usually blended for the purpose of improving the sheet moldability of the silicone resin composition.
  • the inorganic filler is blended with an A-stage silicone resin.
  • examples of the inorganic filler include silica (SiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide ( CaO), zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), oxides such as antimony oxide (Sb 2 O 3 ), for example, nitriding
  • examples of the inorganic filler include nitrides such as aluminum (AlN) and silicon nitride (Si 3 N 4 ). These may be used alone or in combination of two or more.
  • examples of the inorganic filler include composite inorganic particles prepared from the above-exemplified inorganic materials, preferably composite inorganic oxide particles (specifically glass particles) prepared from an oxide. It is done.
  • the composite inorganic oxide particles include silica, or silica and boron oxide as main components, and alumina, calcium oxide, zinc oxide, strontium oxide, magnesium oxide, zirconium oxide, barium oxide, and antimony oxide. Etc. are contained as subcomponents.
  • the content ratio of the main component in the composite inorganic oxide particles is, for example, more than 40% by weight, preferably 50% by weight or more, for example, 90% by weight or less, preferably with respect to the composite inorganic oxide particles. Is 80% by weight or less.
  • the content ratio of the subcomponent is the remainder of the content ratio of the main component described above.
  • the composite inorganic oxide particles are blended with the above-mentioned main component and subcomponents, heated and melted, rapidly cooled, and then pulverized by, for example, a ball mill, etc. It is obtained by performing surface processing (specifically, spheroidization etc.).
  • the shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, a plate shape, and a needle shape. Preferably, spherical shape is mentioned from a fluid viewpoint.
  • the average particle size of the inorganic filler is 10 to 50 ⁇ m, preferably 15 to 40 ⁇ m, more preferably 15 to 30 ⁇ m, and particularly preferably 15 to 25 ⁇ m. If the average particle size of the inorganic filler is too large, the inorganic filler tends to settle in the silicone resin composition (varnish-like). On the other hand, if the average particle size of the inorganic filler is too small, the sheet moldability of the silicone resin composition tends to decrease, or the transparency tends to decrease.
  • the average particle size of the inorganic filler is measured by a laser diffraction / scattering particle size distribution meter.
  • nano-sized inorganic filler having an average particle size smaller than that of the inorganic filler can be used in combination.
  • the nano-sized inorganic filler for example, so-called nano silica, fine particles made of silicon dioxide having an average particle size of several tens to several hundreds of nm, specifically, an average particle size of 1 to 200 nm are preferable. Used.
  • the refractive index of the inorganic filler is 1.50 or more, preferably 1.52 or more, and 1.60 or less, preferably 1.58 or less. If the refractive index of the inorganic filler is within the above range, the transparency can be improved when the inorganic filler is formed as a sheet.
  • the refractive index of the inorganic filler is calculated by an Abbe refractometer.
  • the content of the inorganic filler is preferably 1 to 30% by volume, particularly preferably 5 to 20% by volume, based on the total amount of the silicone resin composition, in consideration of applications and the like. That is, when the content ratio is too small, there is a tendency that problems such as non-uniform dispersion of various compounds occur. Moreover, when there is too much a content rate, when mixing and dispersing a compounding component, it will remarkably thicken and it will become difficult to produce the sheet
  • the silicone resin composition of the present invention includes a modifier (plasticizer), an antioxidant, a flame retardant, an antifoaming agent, a leveling agent, an ultraviolet absorber, and the like. These various additives can be appropriately blended.
  • modifier examples include silicones and 1-5 pentahydric alcohols.
  • antioxidant examples include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.
  • the flame retardant examples include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.
  • antifoaming agent examples include general antifoaming agents such as various silicone compounds.
  • a silicone resin composition is prepared by blending a silicone resin, a white pigment, an inorganic filler, and, if necessary, other additives.
  • a silicone resin composition containing an A stage-shaped silicone resin, a white pigment, and an inorganic filler is prepared.
  • a silicone resin composition in which a white pigment and an inorganic filler are dispersed in a silicone resin is prepared as a varnish.
  • the prepared varnish is applied to the surface of a release film such as a polymer film such as a polyethylene film or a polyester film, or a metal foil.
  • a coating film is formed by applying the varnish to the release sheet.
  • the coating film is semi-cured. Specifically, if the silicone resin has a two-stage thermosetting property, the coating film is heated. As heating conditions, the heating temperature is usually 70 to 120 ° C., preferably 80 to 100 ° C. If heating temperature is the said range, a coating film can be reliably made into B stage shape. The heating time is usually 5 to 30 minutes, preferably 8 to 20 minutes.
  • the A-stage silicone resin composition in the coating film is changed to the B-stage. That is, in the silicone resin, the hydrosilylation reaction between at least one of the alkenyl group and the cycloalkenyl group and the hydrosilyl group proceeds halfway, and once stops, the B stage is obtained.
  • FIG. 7 is a process diagram showing an embodiment of a method for manufacturing an optical semiconductor element (light emitting element).
  • a plurality of light emitting elements 24 are arranged on the support sheet 22.
  • the sheet-like silicone resin composition (layer) 25a laminated on the release sheet 33 is disposed above the light emitting element 24 so that the light emitting element 24 and the silicone resin composition (layer) 25a face each other.
  • the silicone resin composition (layer) 25a is pressure-bonded toward the light emitting element 24, and the light emitting element 24 is embedded in the silicone resin composition (layer) 25a. 33 is peeled off and removed.
  • FIG. 7 (c) the whole is heated under a predetermined condition to heat and cure the silicone resin composition (layer) 25a, thereby forming a reflector 25 made of the silicone resin composition 25a. (Heat curing process).
  • the above heating conditions are conditions for completely curing the B-stage silicone resin composition 25a, and the heating temperature is usually 100 to 180 ° C., preferably 135 to 165 ° C.
  • the heating time is usually 30 to 600 minutes, preferably 120 to 240 minutes.
  • the reflector 25 is cut (cutting step).
  • a dicing apparatus using a disc-shaped dicing saw (dicing blade) 41 a cutting apparatus using a cutter, a cutting apparatus using laser irradiation, or the like is used.
  • the cut 28 is cut so as not to penetrate the support sheet 22.
  • the light emitting element (optical semiconductor element) 24 formed with the reflector 25 including the light emitting element 24 and the reflector 25 covering the entire side surface of the light emitting element 24 is obtained in close contact with the surface of the support sheet 22. It is done.
  • the light emitting element 24 with the reflector 25 formed is peeled from the support sheet 22 while the support sheet 22 is stretched in the surface direction. Specifically, as shown by an arrow in FIG. 7D, the support sheet 22 is extended outward in the surface direction. Accordingly, as shown in FIG. 7E, the light emitting element 24 with the reflector 25 formed is in close contact with the support sheet 22, and tensile stress concentrates on the cut 28, so that the cut 28 is widened and each reflector 25 is formed. The light emitting elements 24 are separated from each other, and a gap 39 is formed. Thereafter, the light emitting element 24 with the reflector 25 formed is peeled off from the upper surface of the support sheet 22 (peeling step).
  • the light emitting element 24 with the reflector 25 formed is formed by a pickup device including a pressing member 34 such as a needle and a suction member 36 such as a collet. Peel from support sheet 22.
  • the pressing member 34 pushes the support sheet 22 corresponding to the light emitting element 24 formed with the reflector 25 to be peeled from below (pushes up), thereby pushing up the light emitting element 24 formed with the reflector 25 to be peeled upward.
  • the light-emitting element 24 with the reflector 25 that has been pushed up is peeled off from the support sheet 22 while being sucked by the suction member 36. In this way, the light emitting element 24 with the reflector 25 formed by peeling from the support sheet 22 is obtained.
  • the light emitting element 24 in which the reflector 25 is formed is mounted on the substrate 29. That is, the light emitting element 24 in which the reflector 25 is formed is disposed so as to face the substrate 29 so that the bumps (not shown) of the light emitting element 24 face terminals (not shown) provided on the upper surface of the substrate 29. 25
  • the light emitting element 24 having been formed is flip-chip mounted on the substrate 29.
  • a transparent resin such as a silicone resin containing a phosphor is used so as to cover the light emitting element 24 exposed surface of the light emitting element 24 in which the reflector 25 is formed and the upper surface of the reflector 25.
  • the sealing resin layer 30 is provided.
  • Epoxy resin composition First, each component shown below was prepared prior to the preparation of the epoxy resin composition.
  • FIG. 13 structures vertically and 13 horizontally comprising a reflector 4, a recess 5 formed in the reflector 4, and a first plate portion 1 and a second plate portion 2 provided in the recess 5.
  • a lead frame having an outer dimension of 50 mm ⁇ 59 mm was manufactured.
  • the lead frame (sample) thus obtained was left on a flat table at room temperature (25 ° C.), and a laser displacement meter (manufactured by TETECH Co., Ltd., temperature variable laser three-dimensional measuring machine).
  • a laser displacement meter manufactured by TETECH Co., Ltd., temperature variable laser three-dimensional measuring machine.
  • the maximum warpage amount was 650 ⁇ m or less was evaluated as “ ⁇ ”
  • the case where it exceeded 650 ⁇ m and less than 1000 ⁇ m was evaluated as “ ⁇ ”
  • the case where the maximum warp amount was 1000 ⁇ m or more was evaluated as “X”.
  • the example product formed by blending titanium oxide which is a white pigment having a specific interparticle distance defined in the present invention, has a high initial light reflectance, and the amount of warpage is small even in warpage measurement. Excellent results were obtained.
  • the products of Examples 1 to 9 having a specific standard deviation in the distance between the titanium oxide particles together with the specific interparticle distance are particularly excellent in both or either of the initial light reflectance and the warp measurement. Results were obtained.
  • the titanium oxide in the cured product made of the epoxy resin composition has a relationship between the interparticle distance (y) between titanium oxides and the standard deviation (x) in the distance between titanium oxide particles (vertical axis: particles between titanium oxides).
  • Standard deviation ⁇ (y) in the inter-distance-horizontal axis inter-particle distance between titanium oxides (x)), the region (including the boundary line) enclosed by the above-described formulas (1) to (4): 5), and fused spherical silica powder (silica fine particles) having an average particle size in the range of 0.1 to 5 ⁇ m together with fused silica powder having an average particle size of 20 ⁇ m.
  • fused spherical silica powder sica fine particles having an average particle size in the range of 0.1 to 5 ⁇ m together with fused silica powder having an average particle size of 20 ⁇ m.
  • Comparative Examples 1 and 2 in which titanium oxide is blended so as to have an interparticle distance deviating from the provisions of the present invention have obtained good results with regard to warpage determination, but the initial light reflectance Inferior results were obtained.
  • regulated to this invention is mix
  • the comparative example 3 product from which the volume ratio of a titanium oxide is large outside a regulation range is related with an initial stage light reflectance. Gave excellent results, but resulted in a large amount of warpage and inferior warpage evaluation.
  • optical semiconductor (light emitting) device having the configuration shown in FIG. 1 was manufactured using a tablet-like epoxy resin composition obtained by tableting the powder of Example 1 above. That is, a metal lead frame having a plurality of pairs of a first plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine, and the epoxy resin composition By performing transfer molding (condition: 175 ° C. ⁇ 2 minutes molding + 150 ° C. ⁇ 2 hours curing), the reflector 4 (thinnest thickness 0.2 mm) is formed at a predetermined position of the metal lead frame shown in FIG. Formed.
  • transfer molding condition: 175 ° C. ⁇ 2 minutes molding + 150 ° C. ⁇ 2 hours curing
  • an optical semiconductor (light emitting) element (size: 0.5 mm ⁇ 0.5 mm) 3 is mounted, and the optical semiconductor element 3 and the metal lead frame are electrically connected by bonding wires 7 and 8.
  • a unit including the reflector 4, the metal lead frame, and the optical semiconductor element 3 was manufactured.
  • a recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4 is filled with a silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500), and the optical semiconductor element 3 is resin-sealed (molded).
  • a transparent sealing resin layer 6 was formed, and each reflector was separated into pieces by dicing to produce the optical semiconductor (light emitting) device shown in FIG.
  • the obtained optical semiconductor (light emitting) device was a good device having a high initial light reflectance and a high reliability in which the occurrence of warpage was suppressed.
  • optical semiconductor (light emitting) device having the configuration shown in FIGS. 2 and 3 was manufactured using a tablet-like epoxy resin composition obtained by tableting the powder of Example 1 above. That is, a metal lead frame 10 made of copper (silver plating) is placed in a mold of a transfer molding machine, and transfer molding using the above epoxy resin composition (molding at 175 ° C. ⁇ 2 minutes + 150 ° C. ⁇ 2 hours of curing) ) To form a reflector 11 at a predetermined position of the metal lead frame 10 shown in FIG.
  • optical semiconductor (light emitting) device was manufactured by forming the sealing resin layer 13 on the unit of FIG. 2 by compression molding or sheet sealing (see FIG. 3).
  • the obtained optical semiconductor (light emitting) device was a good device having a high initial light reflectance and a high reliability in which the occurrence of warpage was suppressed.
  • the mixture was heated to reflux for 1 hour. . Then, it cooled, the lower layer (water layer) was isolate
  • the average unit formula and average composition formula of the alkenyl group-containing polysiloxane A are as follows.
  • R 1 is a vinyl group
  • R 2 is a methyl group and a phenyl group
  • the weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane A was measured by gel permeation chromatography and found to be 2300.
  • R 1 is a vinyl group
  • R 2 is a methyl group and a phenyl group
  • polystyrene equivalent weight average molecular weight of the alkenyl group-containing polysiloxane B was measured by gel permeation chromatography and found to be 1000.
  • the average unit formula and average composition formula of the hydrosilyl group-containing polysiloxane C are as follows.
  • polystyrene equivalent weight average molecular weight of the hydrosilyl group-containing polysiloxane C was measured by gel permeation chromatography and found to be 1000.
  • a platinum carbonyl complex (trade name “SIP6829.2”, manufactured by Gelest, platinum concentration of 2.0% by weight) was prepared for the preparation of a silicone resin.
  • silicone resin (Silicone resin) 20 g of alkenyl group-containing polysiloxane A (Synthesis Example 1), 25 g of alkenyl group-containing polysiloxane B (Synthesis Example 2), 25 g of hydrosilyl group-containing polysiloxane C (Synthesis Example 3, crosslinker C), and 5 mg of platinum carbonyl complex A silicone resin was prepared by mixing.
  • the silicone resin composition in the varnish was B-staged (semi-cured). Thereby, a B-stage silicone resin composition was produced.
  • a cured silicone resin composition (length 50 mm ⁇ width 50 mm ⁇ thickness 0.1 mm) was prepared by heat curing (complete curing) at 150 ° C. ⁇ 180 minutes, and this was used as a measurement sample. .
  • the evaluation was not particularly inferior.
  • regulation of this invention obtained the favorable evaluation result regarding film forming property, but it is in initial stage light reflectivity. Inferior results were obtained.
  • an optical semiconductor element (light emitting element) having the configuration shown in FIG. 6 was manufactured using the sheet-like silicone resin composition which is the product of Example 12 above. That is, using the sheet-shaped silicone resin composition, the light-emitting element 24 with the reflector 25 formed thereon was manufactured according to the method for manufacturing an optical semiconductor element (light-emitting element) in which the reflector was formed as shown in FIG. Next, the light emitting element 24 with the reflector 25 formed thereon was flip-chip mounted on the substrate 29. After the mounting, the sealing resin layer 30 was formed using silicone resin so as to seal the light emitting element 24 exposed surface of the light emitting element 24 in which the reflector 25 had been formed and the upper surface of the reflector 25, thereby producing the LED device 45. The obtained LED device 45 was good with high initial light reflectivity.
  • thermosetting resin composition for an optical semiconductor device of the present invention is useful as a reflector forming material that reflects light emitted from an optical semiconductor element incorporated in the optical semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Led Device Packages (AREA)

Abstract

A thermosetting resin composition for optical semiconductor devices, which contains a thermosetting resin and a white pigment, and wherein: the interparticle distances among white pigment particles in a cured product of the thermosetting resin composition is 50-420 nm; and the volume ratio of the white pigment to the total volume of an organic component and the white pigment is 7.5-23% by volume. Consequently, the present invention enables the achievement of: a thermosetting resin composition for optical semiconductor devices, which is provided with high light reflectance as well as excellent heat resistance and film formation properties; a lead frame which is obtained using this thermosetting resin composition for optical semiconductor devices; and an optical semiconductor device and an optical semiconductor element, which have high reliability.

Description

光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子Thermosetting resin composition for optical semiconductor device and lead frame for optical semiconductor device, optical semiconductor device, and optical semiconductor element obtained using the same

 本発明は、例えば、光半導体素子から発する光を反射させる、リフレクタ(反射部)の形成材料となる光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、光半導体装置、光半導体素子に関するものである。 The present invention includes, for example, a thermosetting resin composition for an optical semiconductor device, which is a material for forming a reflector (reflecting portion) that reflects light emitted from an optical semiconductor element, and a lead frame for an optical semiconductor device obtained using the same. The present invention relates to an optical semiconductor device and an optical semiconductor element.

 従来、光半導体素子を搭載してなる光半導体装置は、例えば、図1に示すように、第1のプレート部1と第2のプレート部2とからなる金属リードフレーム上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、さらに第1のプレート部1と第2のプレート部2の間を埋めるように、樹脂材料からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面として形成される凹部5に搭載された光半導体素子3を、必要に応じて蛍光体を含有するシリコーン樹脂等の透明樹脂を用いて樹脂封止することにより封止樹脂層6が形成されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーであり、必要に応じて設けられるものである。 Conventionally, an optical semiconductor device in which an optical semiconductor element is mounted has an optical semiconductor element 3 on a metal lead frame composed of a first plate portion 1 and a second plate portion 2, for example, as shown in FIG. A light reflecting reflector 4 made of a resin material is formed so as to be mounted and to surround the optical semiconductor element 3 so as to fill the space between the first plate portion 1 and the second plate portion 2. It takes the composition that it is. Then, the optical semiconductor element 3 mounted in the recess 5 formed as the inner peripheral surface of the metal lead frame and the reflector 4 is resin-sealed using a transparent resin such as a silicone resin containing a phosphor as necessary. By doing so, the sealing resin layer 6 is formed. In FIG. 1, 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3, which are provided as necessary.

 このような光半導体装置では、近年、上記リフレクタ4を、エポキシ樹脂等に代表される熱硬化性樹脂を用いて、例えば、トランスファー成形等により成形し製造している。リフレクタ4の材料としては、従来ではセラミックスを使用していたため、薄く成形すると割れが生じる問題があったが、上記熱硬化性樹脂製のリフレクタ4により、この問題が解消されている。そして、上記熱硬化性樹脂には、従来から白色顔料として酸化チタンを配合し、上記光半導体素子3から発する光を反射させている(特許文献1参照)。
 一方で、熱可塑性樹脂に、酸化チタン等の光反射性微粒子および無機難燃剤を配合し、光反射性とともに難燃性を付与してなる光反射板形成材料なるものが提案されている(特許文献2参照)。
 また、上記光半導体装置とは構成が異なり、高エネルギーの光を発光することができる光半導体装置(発光装置)として、図6に示すように、基板29と、上記基板29上に実装される発光素子(発光ダイオード:LED)24と、上記基板29上に実装されたLED24の側面全面に形成されてなるリフレクタ25とを備えたLED装置45がある。さらに、上記リフレクタ25形成済みLED24のLED24露呈面およびリフレクタ25上面を、必要に応じて蛍光体を含有するシリコーン樹脂等の透明樹脂を用いて樹脂封止することにより封止樹脂層30が形成されている。上記LED装置45のリフレクタ25においては、シリコーン樹脂に代表される熱硬化性樹脂を用いて、これに白色顔料を配合させてなるリフレクタ25形成材料が用いられており、例えば、シート状のリフレクタ25形成材料を用いて上記リフレクタ25を形成することが行なわれている。
In such an optical semiconductor device, in recent years, the reflector 4 is manufactured by using, for example, transfer molding or the like, using a thermosetting resin typified by an epoxy resin or the like. As the material of the reflector 4, ceramics has been conventionally used, so that there is a problem that cracking occurs when it is thinly formed. However, this problem is solved by the reflector 4 made of the thermosetting resin. Conventionally, titanium oxide is blended in the thermosetting resin as a white pigment, and light emitted from the optical semiconductor element 3 is reflected (see Patent Document 1).
On the other hand, there has been proposed a light reflecting plate forming material in which light reflecting fine particles such as titanium oxide and an inorganic flame retardant are blended in a thermoplastic resin to impart light reflectivity and flame retardancy (patent) Reference 2).
Further, as shown in FIG. 6, an optical semiconductor device (light emitting device) having a configuration different from that of the optical semiconductor device and capable of emitting high-energy light is mounted on the substrate 29 as shown in FIG. There is an LED device 45 including a light emitting element (light emitting diode: LED) 24 and a reflector 25 formed on the entire side surface of the LED 24 mounted on the substrate 29. Further, the sealing resin layer 30 is formed by resin-sealing the LED 24 exposed surface of the LED 24 on which the reflector 25 has been formed and the upper surface of the reflector 25 with a transparent resin such as a silicone resin containing a phosphor as necessary. ing. In the reflector 25 of the LED device 45, a reflector 25 forming material is used in which a thermosetting resin typified by silicone resin is used and a white pigment is blended therein. For example, a sheet-like reflector 25 is used. The reflector 25 is formed using a forming material.

特開2011-258845号公報JP2011-258845A 特開2015-69109号公報JP2015-69109A

 しかしながら、上記特許文献1,2をはじめとする高分子材料を用いてリフレクタ4を形成した場合、高い光反射率とともに、リフレクタ4を形成してなる光半導体装置における高い耐熱性に関して満足のいくものが得られていないのが実情であり、高い光反射率と、優れた耐熱性を備えることにより、例えば、光半導体装置全体の反りの発生を抑制することのできるリフレクタ4形成材料となりうるものが求められている。 However, when the reflector 4 is formed using a polymer material such as the above-mentioned Patent Documents 1 and 2, the high light reflectivity and the high heat resistance in the optical semiconductor device formed with the reflector 4 are satisfactory. In fact, it is possible to provide a material for forming the reflector 4 that can suppress the occurrence of warpage of the entire optical semiconductor device, for example, by providing high light reflectance and excellent heat resistance. It has been demanded.

 一方、上記LED装置45においてリフレクタ25を形成する場合、シート状のリフレクタ25形成材料を用いてLED24を被覆することにより、所望のリフレクタ25を形成することが行なわれている。しかしながら、上記LED装置45におけるリフレクタ25においても、上記の光半導体装置と同様、高い光反射率が要望されているとともに、上記シート状のリフレクタ25形成材料を製造する際の、良好なシート成形性、すなわち、製膜性に優れたリフレクタ25形成材料となりうるものが求められている。 On the other hand, when the reflector 25 is formed in the LED device 45, the desired reflector 25 is formed by covering the LED 24 with a sheet-shaped reflector 25 forming material. However, the reflector 25 in the LED device 45 is also required to have a high light reflectance as in the case of the optical semiconductor device, and has good sheet formability when the sheet-shaped reflector 25 forming material is manufactured. That is, a material that can be a material for forming the reflector 25 having excellent film forming properties is demanded.

 本発明は、このような事情に鑑みなされたもので、高い光反射率とともに、優れた耐熱性あるいは製膜性を備えた光半導体装置用熱硬化性樹脂組成物およびそれを用いて得られる光半導体装置用リードフレーム、ならびに信頼性の高い光半導体装置、光半導体素子の提供をその目的とする。 The present invention has been made in view of such circumstances. A thermosetting resin composition for an optical semiconductor device having high heat reflectivity and excellent heat resistance or film-forming property, and light obtained by using the same. The object is to provide a lead frame for a semiconductor device, a highly reliable optical semiconductor device, and an optical semiconductor element.

 本発明者らは、前記課題を解決するため鋭意研究を重ね、その過程で、光半導体装置や光半導体素子のリフレクタ形成材料である熱硬化性樹脂組成物の成形硬化物中に存在する白色顔料間の粒子間距離に着目した。すなわち、従来のリフレクタ形成材料においては、白色顔料の分散が過密状態であることから、白色顔料が本来有する光散乱能が低下してしまい、目的とする光反射性が得られていないことを突き止めた。このようなことから、白色顔料の有する光散乱能は、硬化体中の上記白色顔料間の粒子間距離が大きく関与するという知見を得たのである。そして、これらの知見に基づき、上記白色顔料間の粒子間距離、さらには樹脂組成物中の白色顔料と有機成分の合計体積量に対する白色顔料の体積比率を中心に実験を重ねた。その結果、上記白色顔料間の粒子間距離を50~420nmとし、かつ樹脂組成物中の白色顔料と有機成分の合計体積量に対する白色顔料の体積比率を7.5~23体積%とすると、白色顔料本来の光散乱能が発揮されて光反射率が大きく向上するとともに、優れた耐熱性を備えるようになり、光半導体装置の反りの発生が抑制される、あるいはシート状に形成する際の製膜性が良好となることを見出したのである。 In order to solve the above-mentioned problems, the present inventors have intensively studied, and in the process, a white pigment present in a molded cured product of a thermosetting resin composition that is a reflector forming material of an optical semiconductor device or an optical semiconductor element. We focused on the interparticle distance. That is, in the conventional reflector forming material, since the dispersion of the white pigment is in an overcrowded state, the light scattering ability inherent to the white pigment is reduced, and the desired light reflectivity is not obtained. It was. For this reason, the light scattering ability of the white pigment has been found to be greatly related to the interparticle distance between the white pigments in the cured product. Based on these findings, experiments were repeated focusing on the interparticle distance between the white pigments, and the volume ratio of the white pigment to the total volume of the white pigment and the organic component in the resin composition. As a result, when the interparticle distance between the white pigments is 50 to 420 nm and the volume ratio of the white pigment to the total volume of the white pigment and the organic component in the resin composition is 7.5 to 23% by volume, The inherent light scattering ability of the pigment is demonstrated to greatly improve the light reflectivity, and it has excellent heat resistance, so that the occurrence of warpage of the optical semiconductor device is suppressed, or it is manufactured when forming into a sheet shape. It has been found that the film properties are good.

 そして、例えば、熱硬化性樹脂がエポキシ樹脂の場合、上記検討に加えて、白色顔料とともに配合される無機質充填剤の割合を中心にさらに実験を重ねた。その結果、上記白色顔料間の粒子間距離を50~250nmとし、かつ無機質充填剤の含有割合を全体の60~85体積%とすると、白色顔料本来の光散乱能が発揮されて光反射率が大きく向上するとともに、無機質充填剤の分散性が良好となり、優れた耐熱性を備えるようになり、光半導体装置の反りの発生が一層抑制されることを見出したのである。 For example, when the thermosetting resin is an epoxy resin, in addition to the above investigation, further experiments were repeated focusing on the ratio of the inorganic filler blended with the white pigment. As a result, when the interparticle distance between the white pigments is 50 to 250 nm and the content of the inorganic filler is 60 to 85% by volume, the light scattering ability inherent to the white pigment is exhibited and the light reflectance is increased. The present inventors have found that, while greatly improving, the dispersibility of the inorganic filler is improved and the heat resistance is improved, and the occurrence of warpage of the optical semiconductor device is further suppressed.

 また、例えば、熱硬化性樹脂がシリコーン樹脂の場合、さらに検討を重ねた結果、上記白色顔料間の粒子間距離を300~420nmとし、かつ樹脂組成物中の有機成分と白色顔料の合計体積量に対する白色顔料の体積比率が10~23体積%とすると、白色顔料本来の光散乱能が発揮されて光反射率が大きく向上するとともに、しかも、シート状に形成する際の製膜性が一層向上するようになることを見出したのである。 Further, for example, when the thermosetting resin is a silicone resin, as a result of further investigation, the interparticle distance between the white pigments is set to 300 to 420 nm, and the total volume of the organic component and the white pigment in the resin composition When the volume ratio of the white pigment to 10 to 23% by volume is achieved, the light scattering ability inherent to the white pigment is exhibited and the light reflectance is greatly improved, and the film-forming property when formed into a sheet is further improved. I found out that I would do it.

〈発明の要旨〉
 上記目的を達成するために、本発明は、熱硬化性樹脂および白色顔料を含有する光半導体装置用熱硬化性樹脂組成物であって、上記熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離が50~420nmであり、かつ樹脂組成物中の有機成分と白色顔料の合計体積量に対する白色顔料の体積比率が7.5~23体積%である光半導体装置用熱硬化性樹脂組成物とする。
<Summary of invention>
In order to achieve the above object, the present invention provides a thermosetting resin composition for an optical semiconductor device containing a thermosetting resin and a white pigment, wherein the white color in a cured product comprising the thermosetting resin composition. Thermosetting for optical semiconductor devices, wherein the interparticle distance between the pigments is 50 to 420 nm, and the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition is 7.5 to 23% by volume. The resin composition is used.

(第1の態様:エポキシ樹脂組成物)
 そして、本発明は、下記の(A)~(D)を含有し、熱硬化性樹脂組成物全体における(D)無機質充填剤の占める割合が60~85体積%であり、かつ熱硬化性樹脂組成物からなる硬化物中の(C)白色顔料間の粒子間距離が50~250nmである光半導体装置用熱硬化性樹脂組成物を第1の要旨とする。
(A)エポキシ樹脂。
(B)酸無水物系硬化剤。
(C)白色顔料。
(D)上記(C)白色顔料以外の無機質充填剤。
(First aspect: epoxy resin composition)
The present invention contains the following (A) to (D), the proportion of the (D) inorganic filler in the entire thermosetting resin composition is 60 to 85% by volume, and the thermosetting resin: The first gist is a thermosetting resin composition for an optical semiconductor device in which the distance between particles (C) in the cured product made of the composition is 50 to 250 nm.
(A) Epoxy resin.
(B) An acid anhydride curing agent.
(C) White pigment.
(D) An inorganic filler other than the above (C) white pigment.

 そして、本発明は、互いに隙間を隔てて配置される複数のプレート部と、上記隙間に設けられたリフレクタとを備えた、厚み方向の片面のみに光半導体素子を搭載可能な板状の光半導体装置用リードフレームであって、上記隙間に設けられたリフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物の硬化物からなる光半導体装置用リードフレームを第2の要旨とする。また、本発明は、光半導体素子搭載領域と、それ自体の少なくとも一部で光半導体素子搭載領域の周囲を囲むよう形成されたリフレクタとを備えた立体状の光半導体装置用リードフレームであって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物の硬化物からなる光半導体装置用リードフレームを第3の要旨とする。 Further, the present invention provides a plate-shaped optical semiconductor having a plurality of plate portions arranged with a gap therebetween and a reflector provided in the gap and capable of mounting an optical semiconductor element only on one side in the thickness direction. A lead frame for an optical semiconductor device comprising a cured product of the thermosetting resin composition for an optical semiconductor device according to the first aspect, wherein the reflector provided in the gap is a second frame. To do. Further, the present invention is a three-dimensional lead frame for an optical semiconductor device comprising an optical semiconductor element mounting region and a reflector formed by surrounding at least part of the optical semiconductor element mounting region. A third gist of the lead frame for an optical semiconductor device, in which the reflector is made of a cured product of the thermosetting resin composition for an optical semiconductor device of the first gist.

 さらに、本発明は、その片面に光半導体素子搭載領域を有する複数のプレート部と、上記プレート部を互いに隔てるよう、プレート部の間に設けられた隙間と、上記光半導体素子搭載領域の所定位置に搭載された光半導体素子とを備えた光半導体装置であって、上記隙間に、第1の要旨の光半導体装置用熱硬化性樹脂組成物の硬化物で形成されたリフレクタが設けられてなる光半導体装置を第4の要旨とする。また、本発明は、光半導体素子搭載領域を備えたリードフレームと、それ自体の少なくとも一部で素子搭載領域の周囲を囲むよう形成されたリフレクタと、上記素子搭載領域の所定位置に搭載されてなる光半導体素子とを備えた光半導体装置であって、上記リフレクタが、上記第1の要旨の光半導体装置用熱硬化性樹脂組成物の硬化物からなる光半導体装置を第5の要旨とする。 Further, the present invention provides a plurality of plate portions having an optical semiconductor element mounting region on one side thereof, a gap provided between the plate portions so as to separate the plate portions from each other, and a predetermined position of the optical semiconductor element mounting region. An optical semiconductor device provided with an optical semiconductor element mounted on the reflector, wherein a reflector formed of a cured product of the thermosetting resin composition for an optical semiconductor device according to the first aspect is provided in the gap. The optical semiconductor device is a fourth gist. The present invention also includes a lead frame having an optical semiconductor element mounting region, a reflector formed so as to surround the periphery of the element mounting region by at least a part of the lead frame, and mounted at a predetermined position of the element mounting region. An optical semiconductor device comprising: an optical semiconductor element, wherein the reflector is made of a cured product of the thermosetting resin composition for optical semiconductor devices according to the first aspect. .

(第2の態様:シリコーン樹脂組成物)
 また、本発明は、熱硬化性樹脂としてシリコーン樹脂を含有し、かつ白色顔料を含有する光半導体装置用熱硬化性樹脂組成物であって、上記熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離が300~420nmであり、かつ樹脂組成物中の有機成分と白色顔料の合計体積量に対する白色顔料の体積比率が10~23体積%である光半導体装置用熱硬化性樹脂組成物を第6の要旨とする。
(Second aspect: silicone resin composition)
Further, the present invention is a thermosetting resin composition for an optical semiconductor device containing a silicone resin as a thermosetting resin and containing a white pigment, in a cured product comprising the thermosetting resin composition. Thermosetting for optical semiconductor device, wherein the distance between the white pigments is 300 to 420 nm, and the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition is 10 to 23% by volume. The resin composition is a sixth gist.

 そして、本発明は、発光素子と、上記発光素子の少なくとも一部を被覆するリフレクタとを備えた、光半導体素子であって、上記リフレクタが、上記第6の要旨の光半導体装置用熱硬化性樹脂組成物の硬化物からなる光半導体素子を第7の要旨とする。 And this invention is an optical semiconductor element provided with the light emitting element and the reflector which coat | covers at least one part of the said light emitting element, Comprising: The said reflector is thermosetting for optical semiconductor devices of the said 6th summary. An optical semiconductor element made of a cured product of the resin composition is a seventh gist.

 このように、本発明は、熱硬化性樹脂および白色顔料を含有する熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離が50~420nmであり、かつ樹脂組成物中の有機成分と白色顔料の合計体積量に対する白色顔料の体積比率が7.5~23体積%である熱硬化性樹脂組成物である。このため、高い光反射率(初期光反射率)を示し、さらに優れた耐熱性をも備え、また良好な製膜性が付与されるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いてリフレクタを形成してなる光半導体装置では、反りの発生が一層抑制された、信頼性の高い光半導体装置が得られる。あるいは、良質なシート状リフレクタ形成材料を用いて、リフレクタが形成された、信頼性の高い光半導体素子が得られるようになる。 Thus, in the present invention, the interparticle distance between white pigments in a cured product comprising a thermosetting resin composition containing a thermosetting resin and a white pigment is 50 to 420 nm, and the resin composition contains This is a thermosetting resin composition in which the volume ratio of the white pigment to the total volume of the organic component and the white pigment is 7.5 to 23% by volume. For this reason, high light reflectivity (initial light reflectivity) is exhibited, heat resistance is further improved, and good film forming properties are imparted. Therefore, in the optical semiconductor device in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device, a highly reliable optical semiconductor device in which the occurrence of warpage is further suppressed can be obtained. Alternatively, a highly reliable optical semiconductor element in which a reflector is formed using a high-quality sheet-shaped reflector forming material can be obtained.

 そして、前記(A)エポキシ樹脂と、(B)酸無水物系硬化剤と、(C)白色顔料と、(D)無機質充填剤を含有する熱硬化性樹脂組成物からなる成形硬化物中の(C)白色顔料間の粒子間距離が50~250nmであり、かつ熱硬化性樹脂組成物全体における(D)無機質充填剤の占める割合が60~85体積%である光半導体装置用熱硬化性樹脂組成物であると、高い光反射率(初期光反射率)を示し、さらに優れた耐熱性をも備えるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いてリフレクタを形成してなる光半導体装置では、反りの発生が一層抑制された、信頼性の高い光半導体装置が得られる。 And in the molding hardened | cured material which consists of said thermosetting resin composition containing the said (A) epoxy resin, (B) acid anhydride type hardening | curing agent, (C) white pigment, and (D) inorganic filler. (C) The thermosetting for an optical semiconductor device in which the interparticle distance between the white pigments is 50 to 250 nm and the proportion of the (D) inorganic filler in the entire thermosetting resin composition is 60 to 85% by volume. When it is a resin composition, it exhibits high light reflectivity (initial light reflectivity) and also has excellent heat resistance. Therefore, in the optical semiconductor device in which the reflector is formed using the thermosetting resin composition for an optical semiconductor device, a highly reliable optical semiconductor device in which the occurrence of warpage is further suppressed can be obtained.

 また、熱硬化性樹脂組成物からなる成形硬化物中の(C)白色顔料間の粒子間距離における標準偏差が100~350であると、より一層優れた反り発生の抑制効果を備えるようになる。 Further, when the standard deviation in the inter-particle distance between the white pigments (C) in the molded cured product made of the thermosetting resin composition is 100 to 350, it is possible to provide a more excellent warp generation suppressing effect. .

 熱硬化性樹脂組成物からなる硬化物中の(C)白色顔料間の粒子間距離が50~235nmであり、上記成形硬化物中の(C)白色顔料間の粒子間距離における標準偏差が160~270であると、より一層優れた初期光反射率および反り発生の抑制効果を備えるようになる。 The interparticle distance between (C) white pigments in the cured product comprising the thermosetting resin composition is 50 to 235 nm, and the standard deviation in the interparticle distance between (C) white pigments in the molded cured product is 160. When it is ˜270, the initial light reflectance and the effect of suppressing warpage are further improved.

 そして、熱硬化性樹脂組成物からなる硬化物中の(C)白色顔料が、白色顔料(C)間の粒子間距離(x)と、白色顔料(C)の粒子間距離(分散)における標準偏差(y)の関係(横軸:粒子間距離(x)-縦軸:白色顔料(C)間の粒子間距離における標準偏差(y))において、後述の式(1)~式(4)にて囲まれた領域(境界線を含む)を満足するものであると、より一層優れた初期光反射率および反り発生の抑制効果を備えるようになる。 And the (C) white pigment in the cured product comprising the thermosetting resin composition is a standard in the interparticle distance (x) between the white pigments (C) and the interparticle distance (dispersion) of the white pigment (C). In the relationship of deviation (y) (horizontal axis: interparticle distance (x)-vertical axis: standard deviation (y) in interparticle distance between white pigments (C)), equations (1) to (4) described later are used. If the region surrounded by (including the boundary line) is satisfied, the initial light reflectance and the effect of suppressing warpage are further improved.

 さらに、上記(C)白色顔料の含有割合が熱硬化性樹脂組成物全体の3~30体積%であると、より一層優れた初期光反射率を備えるようになる。 Furthermore, when the content ratio of the white pigment (C) is 3 to 30% by volume of the whole thermosetting resin composition, a further excellent initial light reflectance is provided.

 また、上記(C)白色顔料の平均粒径が0.1~0.5μmであると、白色顔料本来の光散乱特性が発揮されて光反射率が大きく向上するようになる。 Further, when the average particle diameter of the (C) white pigment is 0.1 to 0.5 μm, the light scattering characteristic inherent to the white pigment is exhibited and the light reflectance is greatly improved.

 熱硬化性樹脂としてシリコーン樹脂を含有し、かつ白色顔料を含有する光半導体装置用熱硬化性樹脂組成物であって、上記熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離が300~420nmであり、かつ樹脂組成物中の有機成分と白色顔料の合計体積量に対する白色顔料の体積比率が10~23体積%であると、高い光反射率(初期光反射率)を示し、さらに優れた製膜性をも備えるようになる。したがって、上記光半導体装置用熱硬化性樹脂組成物を用いて容易にシート状リフレクタ形成材料を製造することが可能となり、リフレクタを形成してなる光半導体素子を製造することが可能となる。 A thermosetting resin composition for an optical semiconductor device, which contains a silicone resin as a thermosetting resin and contains a white pigment, between particles between white pigments in a cured product comprising the thermosetting resin composition When the distance is 300 to 420 nm and the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition is 10 to 23% by volume, a high light reflectance (initial light reflectance) is obtained. It will also be provided with excellent film forming properties. Therefore, it becomes possible to easily produce a sheet-like reflector forming material using the thermosetting resin composition for an optical semiconductor device, and it is possible to produce an optical semiconductor element formed with a reflector.

 また、熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離における標準偏差が100~350であると、高い光反射率とともにより一層優れた製膜性を備えるようになる。 Further, when the standard deviation in the interparticle distance between the white pigments in the cured product made of the thermosetting resin composition is 100 to 350, the film has a further excellent film forming property with a high light reflectance.

 また、上記白色顔料の平均粒径が0.1~0.5μmであると、白色顔料本来の光散乱特性が発揮されて光反射率が大きく向上するようになる。 If the average particle size of the white pigment is 0.1 to 0.5 μm, the light scattering characteristic inherent to the white pigment is exhibited and the light reflectance is greatly improved.

光半導体装置の構成を模式的に示す断面図である。It is sectional drawing which shows the structure of an optical semiconductor device typically. 光半導体装置の他の構成を模式的に示す平面図である。It is a top view which shows typically the other structure of an optical semiconductor device. 上記図2に示す光半導体装置の他の構成を模式的に示す平面図のX-X'矢視断面図である。FIG. 3 is a cross-sectional view taken along the line XX ′ of a plan view schematically showing another configuration of the optical semiconductor device shown in FIG. 熱硬化性樹脂組成物(エポキシ樹脂組成物)からなる硬化物中の、(C)白色顔料の粒子間距離の定義を示す模式図である。It is a schematic diagram which shows the definition of the interparticle distance of the (C) white pigment in the hardened | cured material which consists of a thermosetting resin composition (epoxy resin composition). 熱硬化性樹脂組成物(エポキシ樹脂組成物)からなる硬化物中の、(C)白色顔料間の粒子間距離における標準偏差(y)と、(C)白色顔料間の粒子間距離(x)の関係(縦軸:白色顔料(C)間の粒子間距離における標準偏差σ(y)-横軸:白色顔料(C)間の粒子間距離(x))を示す一次関数の関係図である。Standard deviation (y) in the interparticle distance between white pigments (C) and (C) interparticle distance between white pigments (x) in a cured product composed of a thermosetting resin composition (epoxy resin composition). Is a linear function relationship diagram showing the relationship (vertical axis: standard deviation σ (y) in interparticle distance between white pigments (C) −horizontal axis: interparticle distance (x) between white pigments (C)). . 光半導体装置(発光装置)の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of an optical semiconductor device (light-emitting device). (a)~(e')は光半導体素子(発光素子)の製造工程を示す工程図である。(A)-(e ') is process drawing which shows the manufacturing process of an optical semiconductor element (light emitting element).

 本発明の光半導体装置用熱硬化性樹脂組成物(以下、「熱硬化性樹脂組成物」ともいう)は、熱硬化性樹脂および白色顔料を含有するものである。そして、上記熱硬化性樹脂組成物としては、使用用途(リフレクタ形成の対象物)等に応じ、大別して、熱硬化性樹脂としてエポキシ樹脂を用いたエポキシ樹脂組成物と、熱硬化性樹脂としてシリコーン樹脂を用いたシリコーン樹脂組成物の二つの態様があげられる。
 以下、態様毎に説明する。
The thermosetting resin composition for optical semiconductor devices of the present invention (hereinafter also referred to as “thermosetting resin composition”) contains a thermosetting resin and a white pigment. And as said thermosetting resin composition, according to a use use (object of reflector formation) etc., it divides roughly, The epoxy resin composition which used the epoxy resin as a thermosetting resin, and silicone as a thermosetting resin Two embodiments of the silicone resin composition using a resin are listed.
Hereinafter, it demonstrates for every aspect.

<第1の態様:エポキシ樹脂組成物>
 本発明のエポキシ樹脂組成物は、例えば、先に述べたように、図1に示す光半導体装置あるいは後述の図2および図3に示す光半導体装置の、リフレクタ4,11形成材料として用いられるものである。このような本発明のエポキシ樹脂組成物は、エポキシ樹脂(A)と、酸無水物系硬化剤(B)と、白色顔料(C)と、無機質充填剤(D)とを用いて得られるものであり、通常、液状、あるいはシート状、粉末状、もしくはその粉末を打錠しタブレット状にしてリフレクタ4,11形成材料に供される。
<First aspect: Epoxy resin composition>
The epoxy resin composition of the present invention is used, for example, as a material for forming the reflectors 4 and 11 in the optical semiconductor device shown in FIG. 1 or the optical semiconductor device shown in FIGS. It is. Such an epoxy resin composition of the present invention is obtained using an epoxy resin (A), an acid anhydride curing agent (B), a white pigment (C), and an inorganic filler (D). Usually, it is used as a material for forming the reflectors 4 and 11 in the form of a liquid, a sheet, a powder, or a tablet of the powder and tableted.

〈A:エポキシ樹脂〉
 上記エポキシ樹脂(A)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、モノグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、脂肪族系エポキシ樹脂、シリコーン変性エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタンおよびイソシアヌル酸等のポリアミンとエピクロルヒドリンとの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族および脂環式エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂等があげられる。これらは単独でもしくは2種以上併せて用いることができる。これらエポキシ樹脂の中でも、透明性および耐変色性に優れるという点から、脂環式エポキシ樹脂や、トリグリシジルイソシアヌレート等のイソシアヌル環構造を有するものを単独でもしくは併せて用いることが好ましい。同様の理由から、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、ナジック酸、メチルナジック酸等のジカルボン酸のジグリシジルエステルも好適である。また、芳香環が水素化された脂環式構造を有する核水素化トリメリット酸、核水素化ピロメリット酸等のグリシジルエステル等もあげられる。
<A: Epoxy resin>
Examples of the epoxy resin (A) include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, novolak type epoxy resins such as phenol novolac type epoxy resins and cresol novolac type epoxy resins, and monoglycidyl isocyanate. Nitrogen-containing ring epoxy resins such as nurate, diglycidyl isocyanurate, triglycidyl isocyanurate, hydantoin epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, aliphatic epoxy resin, silicone-modified epoxy resin, Glycidyl ether type epoxy resins, diglycidyl ethers such as alkyl-substituted bisphenols, polyamines such as diaminodiphenylmethane and isocyanuric acid, and epichloro Glycidylamine-type epoxy resin obtained by reaction with dorin, linear aliphatic and alicyclic epoxy resins obtained by oxidizing olefinic bonds with peracids such as peracetic acid, and biphenyl which is the mainstream of low water-absorption-curing type Type epoxy resin, dicyclo ring type epoxy resin, naphthalene type epoxy resin and the like. These may be used alone or in combination of two or more. Among these epoxy resins, it is preferable to use an alicyclic epoxy resin or an isocyanuric ring structure such as triglycidyl isocyanurate alone or in combination from the viewpoint of excellent transparency and discoloration resistance. For the same reason, diglycidyl esters of dicarboxylic acids such as phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methyltetrahydrophthalic acid, nadic acid and methylnadic acid are also suitable. Also included are glycidyl esters such as nuclear hydrogenated trimellitic acid and nuclear hydrogenated pyromellitic acid having an alicyclic structure in which an aromatic ring is hydrogenated.

 上記エポキシ樹脂(A)としては、常温で固形であっても液状であってもよいが、一般に、使用するエポキシ樹脂の平均エポキシ当量が90~1000のものが好ましく、また、固形の場合には、取り扱い性の利便性の観点から、軟化点が50~160℃のものが好ましい。すなわち、エポキシ当量が小さすぎると、エポキシ樹脂組成物硬化物が脆くなる場合がある。また、エポキシ当量が大きすぎると、エポキシ樹脂組成物硬化物のガラス転移温度(Tg)が低くなる傾向がみられるからである。 The epoxy resin (A) may be solid or liquid at room temperature, but in general, the epoxy resin used preferably has an average epoxy equivalent of 90 to 1,000. From the viewpoint of convenience in handling, a softening point of 50 to 160 ° C. is preferable. That is, if the epoxy equivalent is too small, the cured epoxy resin composition may become brittle. Moreover, it is because the tendency for the glass transition temperature (Tg) of an epoxy resin composition hardened | cured material to become low will be seen when an epoxy equivalent is too large.

〈B:酸無水物系硬化剤〉
 上記酸無水物系硬化剤(B)としては、例えば、無水フタル酸、無水マレイン酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、およびその核水素化物、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、シクロヘキサン-1,2,3-トリカルボン酸-2,3-無水物、およびその位置異性体、シクロヘキサン-1,2,3,4-テトラカルボン酸-3,4-無水物、およびその位置異性体、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸等があげられる。これらは単独でもしくは2種以上併せて用いることができる。また、飽和脂肪鎖骨格、不飽和脂肪鎖骨格、またはシリコーン骨格の末端基、ないし、側鎖としてこれら酸無水物を有するオリゴマーも単独で、もしくは2種以上併せて上記酸無水物と併せて用いることができる。これら酸無水物系硬化剤の中でも、無水フタル酸、ヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸を用いることが好ましい。さらに、酸無水物系硬化剤としては、無色ないし淡黄色の酸無水物系硬化剤が好ましい。また、上記酸無水物の加水分解物であるカルボン酸を併用してもよい。
<B: Acid anhydride curing agent>
Examples of the acid anhydride curing agent (B) include phthalic anhydride, maleic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, naphthalene-1,4,5,8-tetracarboxylic acid. Dianhydrides and their nuclear hydrides, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyltetrahydro Phthalic anhydride, methyl nadic anhydride, cyclohexane-1,2,3-tricarboxylic acid-2,3-anhydride, and its positional isomer, cyclohexane-1,2,3,4-tetracarboxylic acid-3,4 -Anhydrides and their positional isomers, nadic anhydride, glutaric anhydride, dimethyl glutaric anhydride, diethyl glutarate anhydride Acid, methylhexahydrophthalic anhydride, and methyl tetrahydrophthalic anhydride and the like. These may be used alone or in combination of two or more. In addition, an oligomer having these acid anhydrides as a terminal group of a saturated fatty chain skeleton, an unsaturated fatty chain skeleton, or a silicone skeleton, or a side chain is used alone or in combination of two or more of them with the above acid anhydride. be able to. Among these acid anhydride curing agents, phthalic anhydride, hexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4-Methyltetrahydrophthalic anhydride is preferably used. Further, the acid anhydride curing agent is preferably a colorless or light yellow acid anhydride curing agent. Moreover, you may use together the carboxylic acid which is a hydrolyzate of the said acid anhydride.

 ここで、上記エポキシ樹脂(A)と上記酸無水物系硬化剤(B)との配合割合は、エポキシ樹脂(A)中のエポキシ基1当量に対して、酸無水物系硬化剤(B)中におけるエポキシ基と反応可能な活性基(酸無水基あるいはカルボキシ基)が0.3~1.3当量となるよう設定することが好ましく、より好ましくは0.5~1.1当量である。すなわち、活性基が少なすぎると、エポキシ樹脂組成物の硬化速度が遅くなるとともに、その硬化物のガラス転移温度(Tg)が低くなる傾向がみられ、活性基が多すぎると耐湿性が低下する傾向がみられるからである。 Here, the blending ratio of the epoxy resin (A) and the acid anhydride curing agent (B) is based on 1 equivalent of the epoxy group in the epoxy resin (A), and the acid anhydride curing agent (B). The active group (acid anhydride group or carboxy group) capable of reacting with the epoxy group is preferably set to 0.3 to 1.3 equivalents, more preferably 0.5 to 1.1 equivalents. That is, when there are too few active groups, the curing rate of the epoxy resin composition is slowed and the glass transition temperature (Tg) of the cured product tends to be low, and when there are too many active groups, the moisture resistance decreases. This is because there is a tendency.

 さらに、その目的等に応じて、上述の酸無水物系硬化剤(B)以外の他のエポキシ樹脂用硬化剤、例えば、イソシアヌル酸誘導体系硬化剤、フェノール系硬化剤、アミン系硬化剤、上記酸無水物系硬化剤をアルコールで部分エステル化したもの等の硬化剤を、酸無水物系硬化剤(B)の使用による効果を阻害しない範囲にて単独でもしくは2種以上併せて用いることができる。なお、これら硬化剤を用いる場合においても、その配合割合は、上述のエポキシ樹脂(A)と酸無水物系硬化剤(B)との配合割合(当量比)に準じればよい。 Furthermore, according to the purpose, etc., other epoxy resin curing agents other than the above-mentioned acid anhydride curing agent (B), for example, isocyanuric acid derivative curing agents, phenol curing agents, amine curing agents, Curing agents such as those obtained by partial esterification of acid anhydride curing agents with alcohol may be used alone or in combination of two or more in a range that does not impair the effect of the use of acid anhydride curing agent (B). it can. In addition, also when using these hardening | curing agents, the mixing | blending ratio should just follow the mixing | blending ratio (equivalent ratio) of the above-mentioned epoxy resin (A) and an acid anhydride type hardening | curing agent (B).

 上記イソシアヌル酸誘導体系硬化剤としては、例えば、1,3,5-トリス(1-カルボキシメチル)イソシアヌレート、1,3,5-トリス(2-カルボキシエチル)イソシアヌレート、1,3,5-トリス(3-カルボキシプロピル)イソシアヌレート、1,3-ビス(2-カルボキシエチル)イソシアヌレート等があげられる。そして、これらイソシアヌル酸誘導体系硬化剤としては、無色ないし淡黄色の硬化剤が好ましい。これらは単独でもしくは2種以上併せて用いることができる。 Examples of the isocyanuric acid derivative curing agent include 1,3,5-tris (1-carboxymethyl) isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5- And tris (3-carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate, and the like. And as these isocyanuric acid derivative type hardening | curing agents, a colorless or light yellow hardening | curing agent is preferable. These may be used alone or in combination of two or more.

〈C:白色顔料〉
 上記白色顔料(C)としては、例えば、無機系の白色顔料である、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化亜鉛、鉛白、カオリン、アルミナ、炭酸カルシウム、炭酸バリウム、硫酸バリウム、硫酸亜鉛、硫化亜鉛等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、優れた光反射率が得られる観点から、酸化チタンを用いることが好ましく、特にルチル型の結晶構造を有するものを用いることが好ましい。さらにそのなかでも、流動性および遮光性という観点から、平均粒径が0.01~1μmのものを用いることが好ましい。特に好ましくは、光反射性という観点から、0.1~0.5μmである。なお、上記平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
<C: White pigment>
Examples of the white pigment (C) include inorganic white pigments such as magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, white lead, kaolin, alumina, calcium carbonate, barium carbonate, barium sulfate, Examples thereof include zinc sulfate and zinc sulfide. These may be used alone or in combination of two or more. Among these, from the viewpoint of obtaining an excellent light reflectance, it is preferable to use titanium oxide, and it is particularly preferable to use one having a rutile crystal structure. Among them, it is preferable to use those having an average particle diameter of 0.01 to 1 μm from the viewpoint of fluidity and light shielding properties. Particularly preferred is 0.1 to 0.5 μm from the viewpoint of light reflectivity. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.

 そして、本発明においては、熱硬化性樹脂組成物(エポキシ樹脂組成物)からなる硬化物中での、白色顔料(C)間の粒子間距離が、通常50~420nmであり、好ましくは50~250nmである。より好ましくは60~240nmであり、特に好ましくは65~180nmである。また、(D)無機質充填剤としてシリカ微粒子とこのシリカ微粒子よりも粒径の大きい通常のシリカ粒子を併用する場合における、上記白色顔料(C)間の粒子間距離は好ましくは50~235nmである。すなわち、粒子間距離が短すぎると、白色顔料(C)が過密状態で分散されていることとなり、光散乱特性が低下し、結果、光反射率が低下することとなる。また、粒子間距離が長すぎると、光抜けが発生し、光反射率が低下することとなる。 In the present invention, the distance between the white pigments (C) in the cured product made of the thermosetting resin composition (epoxy resin composition) is usually 50 to 420 nm, preferably 50 to 250 nm. More preferably, it is 60 to 240 nm, and particularly preferably 65 to 180 nm. Further, when (D) silica fine particles and ordinary silica particles having a larger particle diameter than the silica fine particles are used in combination as the inorganic filler, the interparticle distance between the white pigments (C) is preferably 50 to 235 nm. . That is, when the distance between particles is too short, the white pigment (C) is dispersed in an overcrowded state, so that the light scattering property is lowered, and as a result, the light reflectance is lowered. On the other hand, if the interparticle distance is too long, light leakage occurs and the light reflectivity decreases.

 本発明において、上記白色顔料(C)間の粒子間距離とは、つぎの方法に従って測定される値をいう。まず、リフレクタ形成材料を用いて、所定の硬化条件(例えば、175℃×2分間)にて所定の大きさの硬化物(例えば、縦50mm×横50mm×厚み1mm)を作製する。この硬化物を、その厚み方向、すなわち、表面に対して直交する方向に沿って全長に亘って切断する。つぎに、硬化物の切断面を、顕微鏡等(たとえば、走査型電子顕微鏡(SEM:日立ハイテクノロジーズ社製、FE-SEM S-4700))にて撮影を行う。撮影は1280×960(ピクセル)の視野で行い、酸化チタンの粒子間距離を正確に算出するために、一つの粒子が視野の半分以上の面積を占める領域を除外して、測定領域を選定する。つぎに画像解析ソフト等にて白色顔料(C)を抽出、二値化し、近接する3点間の重心間距離を算出する。この重心間距離から白色顔料(C)の粒径を差し引きすることにより、白色顔料(C)の粒子間距離、さらには白色顔料(C)粒子の粒子間距離(分散)における標準偏差を算出する。 In the present invention, the interparticle distance between the white pigments (C) refers to a value measured according to the following method. First, using a reflector forming material, a cured product (for example, 50 mm long × 50 mm wide × 1 mm thick) having a predetermined size is manufactured under predetermined curing conditions (for example, 175 ° C. × 2 minutes). This hardened | cured material is cut | disconnected over the full length along the thickness direction, ie, the direction orthogonal to the surface. Next, the cut surface of the cured product is photographed with a microscope or the like (for example, a scanning electron microscope (SEM: manufactured by Hitachi High-Technologies Corporation, FE-SEM S-4700)). Photographing is performed with a field of view of 1280 × 960 (pixels), and in order to accurately calculate the inter-particle distance of titanium oxide, the measurement region is selected by excluding the region where one particle occupies more than half of the field of view. . Next, the white pigment (C) is extracted and binarized by image analysis software or the like, and the distance between the centers of gravity between the adjacent three points is calculated. By subtracting the particle size of the white pigment (C) from the distance between the centers of gravity, the standard deviation in the interparticle distance of the white pigment (C) and further the interparticle distance (dispersion) of the white pigment (C) particles is calculated. .

 そして、近接する白色顔料(C)における粒子間距離は、具体的にはつぎのように定義する。断面観察画面の一定の領域内において現れる白色顔料(C)粒子の各々について、微粒子〔白色顔料(C)〕Cnの重心Pnを中心とし、Cnの面積に等しい真円を近似円Qnとして描き、直径Lnを算出する。そして、各微粒子Cnの各近似円Qnの各重心Pnを各微粒子Cnの中心と設定する。各微粒子Cnについて、微粒子Cnの重心Pnと、この微粒子Cnに隣接する微粒子Cmの重心Pmとを結ぶ直線Lnm(重心間距離)を描き、この直線Lnmと、微粒子Cnおよび微粒子Cmの各近似円QnおよびQmとの交点TnおよびTm間の距離Dnm(近似円間の最短距離)を測定する。そして、上記近似円間の最短距離Dnmを微粒子Cn,Cmの粒子間距離、すなわち、白色顔料(C)における粒子間距離とする。 The interparticle distance in the adjacent white pigment (C) is specifically defined as follows. For each of the white pigment (C) particles appearing in a certain region of the cross-section observation screen, a perfect circle having the center of gravity Pn of the fine particles [white pigment (C)] Cn as the center and equal to the area of Cn is drawn as an approximate circle Qn. The diameter Ln is calculated. And each gravity center Pn of each approximate circle Qn of each fine particle Cn is set as the center of each fine particle Cn. For each fine particle Cn, a straight line Lnm (distance between the centroids) connecting the centroid Pn of the fine particle Cn and the centroid Pm of the fine particle Cm adjacent to the fine particle Cn is drawn, and this straight line Lnm and each approximate circle of the fine particle Cn and the fine particle Cm are drawn. The distance Dnm (the shortest distance between approximate circles) between the intersections Tn and Tm with Qn and Qm is measured. The shortest distance Dnm between the approximate circles is the interparticle distance between the fine particles Cn and Cm, that is, the interparticle distance in the white pigment (C).

 なお、上記近接する白色顔料(C)、すなわち、互いに隣接する微粒子〔白色顔料(C)〕とは、微粒子Cn、Cmの重心Pn、Pm同士を直線Lnmで結んだ場合に、他の微粒子Csの近似円Qsが上記直線Lnm上に存在しない場合、これらの微粒子Cn、Cmは互いに隣接する微粒子とする。例えば、図4において、微粒子C1と微粒子C2とは、微粒子C1、C2の重心P1、P2同士を結ぶ直線L12上に他の微粒子が存在しないことから両者は互いに隣接するといえる。また、同様に、微粒子C1と微粒子C3とは、微粒子C1、C3の重心P1、P3同士を結ぶ直線L13上に他の微粒子が存在しないことから両者は互いに隣接するといえる。一方、微粒子C1と微粒子C4とは、微粒子C1、C4の重心P1、P4同士を結ぶ直線L14上に微粒子C2の近似円Q2が存在することから、互いに隣接する微粒子とは言わない。 The adjacent white pigment (C), that is, the fine particles adjacent to each other [white pigment (C)] are the other fine particles Cs when the gravity centers Pn and Pm of the fine particles Cn and Cm are connected by a straight line Lnm. In the case where the approximate circle Qs does not exist on the straight line Lnm, these fine particles Cn and Cm are adjacent to each other. For example, in FIG. 4, the fine particles C 1 and C 2 are adjacent to each other because there are no other fine particles on the straight line L 12 connecting the centroids P 1 and P 2 of the fine particles C 1 and C 2. I can say that. Similarly, the fine particle C 1 and the fine particle C 3 are adjacent to each other because there is no other fine particle on the straight line L 13 connecting the centroids P 1 and P 3 of the fine particles C 1 and C 3. . On the other hand, the fine particle C 1 and the fine particle C 4 are adjacent to each other because the approximate circle Q 2 of the fine particle C 2 exists on the straight line L 14 connecting the centroids P 1 and P 4 of the fine particles C 1 and C 4. Not called fine particles.

 なお、本発明において、白色顔料(C)間の粒子間距離を「熱硬化性樹脂組成物(エポキシ樹脂組成物)からなる硬化物中」とするのは、通常、白色顔料(C)は凝集性が高く二次粒子化しやすい性質だからである。従って、より正確な粒子間距離を測定するため、本発明では、熱硬化性樹脂組成物(エポキシ樹脂組成物)の硬化物中に分散させて一次粒子化させた後、その粒子間距離を測定している。 In the present invention, the distance between particles of the white pigment (C) is “in the cured product made of the thermosetting resin composition (epoxy resin composition)”. Usually, the white pigment (C) is agglomerated. This is because the property is high and it is easy to form secondary particles. Therefore, in order to measure a more accurate interparticle distance, in the present invention, after dispersing in a cured product of a thermosetting resin composition (epoxy resin composition) to form primary particles, the interparticle distance is measured. is doing.

 そして、白色顔料(C)間の粒子間距離における標準偏差は、上記白色顔料(C)間の粒子間距離と同様にして測定して、算出される。上記エポキシ樹脂組成物からなる硬化物中の(C)白色顔料間の粒子間距離における標準偏差は、好ましくは100~350であり、より好ましくは150~300である。また、(D)無機質充填剤としてシリカ微粒子とこのシリカ微粒子よりも粒径の大きい通常のシリカ粒子を併用する場合は、上記(C)白色顔料間の粒子間距離における標準偏差は160~270であることが好ましい。標準偏差が上記範囲内であることにより、より一層優れた初期光反射率および反り発生の抑制効果を備えるようになる。 The standard deviation in the interparticle distance between the white pigments (C) is calculated by measuring in the same manner as the interparticle distance between the white pigments (C). The standard deviation in the interparticle distance between the (C) white pigments in the cured product made of the epoxy resin composition is preferably 100 to 350, more preferably 150 to 300. When (D) silica fine particles and ordinary silica particles having a larger particle diameter than the silica fine particles are used in combination as the inorganic filler, the standard deviation in the interparticle distance between (C) white pigments is 160 to 270. Preferably there is. When the standard deviation is within the above range, the initial light reflectance and the effect of suppressing the occurrence of warpage are further improved.

 さらに、反り発生の抑制効果および初期光反射率の向上の観点から、エポキシ樹脂組成物からなる硬化物中の白色顔料(C)が、図5に示すように、白色顔料(C)間の粒子間距離における標準偏差(y)と、白色顔料(C)間の粒子間距離(x)の関係(縦軸:粒子間距離における標準偏差σ(y)-横軸:粒子間距離(x))において、下記の式(1)~式(4)にて囲まれた領域(境界線を含む)を満足するものであることが好ましい。 Furthermore, from the viewpoint of suppressing the occurrence of warpage and improving the initial light reflectance, the white pigment (C) in the cured product made of the epoxy resin composition is a particle between the white pigment (C) as shown in FIG. Relationship between standard deviation (y) in inter-distance and inter-particle distance (x) between white pigments (C) (vertical axis: standard deviation σ (y) in inter-particle distance-horizontal axis: inter-particle distance (x)) In this case, it is preferable that the region (including the boundary line) enclosed by the following formulas (1) to (4) is satisfied.

y=0.2x+150   ・・・(1)
y=x+30   ・・・(2)
y=0.8x+120   ・・・(3)
y=0.4x+170   ・・・(4)
〔ただし、式(1)において、50≦x≦150であり、式(2)において、150≦x≦233であり、式(3)において、50≦x≦125であり、式(4)において、125≦x≦233である。〕
y = 0.2x + 150 (1)
y = x + 30 (2)
y = 0.8x + 120 (3)
y = 0.4x + 170 (4)
[However, in Formula (1), 50 ≦ x ≦ 150, in Formula (2), 150 ≦ x ≦ 233, in Formula (3), 50 ≦ x ≦ 125, and in Formula (4) 125 ≦ x ≦ 233. ]

 エポキシ樹脂組成物からなる硬化物中の白色顔料(C)が、その粒子間距離(x)と、その粒子間距離における標準偏差(y)の関係において、上記式(1)~式(4)にて囲まれた領域(境界線を含む)を満足することにより、白色顔料(C)の分散性、さらには後述の無機質充填剤(D)の分散性が特に良好となり、結果、より一層の初期光反射率の向上効果および反り発生の抑制効果が得られるようになる。 The white pigment (C) in the cured product composed of the epoxy resin composition has the above-mentioned formulas (1) to (4) in the relationship between the interparticle distance (x) and the standard deviation (y) in the interparticle distance. By satisfying the region surrounded by (including the boundary line), the dispersibility of the white pigment (C) and the dispersibility of the inorganic filler (D) described later are particularly good. The effect of improving the initial light reflectance and the effect of suppressing the occurrence of warpage can be obtained.

 上記白色顔料(C)の含有割合は、エポキシ樹脂組成物全体に対して、好ましくは3~30体積%であり、より好ましくは5~20体積%である。すなわち、白色顔料(C)の含有割合が少なすぎると、充分な光反射性、特に優れた初期光反射率が得られ難くなる傾向がみられる。また、白色顔料(C)の含有割合が多すぎると、著しい増粘により混練等でのエポキシ樹脂組成物の作製に関して困難が生じる可能性がみられるからである。 The content of the white pigment (C) is preferably 3 to 30% by volume, more preferably 5 to 20% by volume, based on the entire epoxy resin composition. That is, when the content ratio of the white pigment (C) is too small, it tends to be difficult to obtain sufficient light reflectivity, particularly excellent initial light reflectivity. Moreover, when there is too much content rate of a white pigment (C), it is because possibility that difficulty may arise regarding preparation of the epoxy resin composition by kneading | mixing etc. by remarkable viscosity increase.

 また、樹脂組成物中の有機成分および白色顔料(C)の合計体積量に対する白色顔料(C)の体積比率は、7.5~23体積%とする必要がある。好ましくは10~23体積%、特に好ましくは14~23体積%である。すなわち、白色顔料(C)の体積比率が小さすぎると、光抜けが発生して光反射率が低下し、大きすぎると、白色顔料が過密状態で分散されていることとなり、光散乱特性が低下し、結果、光反射率が低下する。 Further, the volume ratio of the white pigment (C) to the total volume of the organic component and the white pigment (C) in the resin composition needs to be 7.5 to 23% by volume. The amount is preferably 10 to 23% by volume, particularly preferably 14 to 23% by volume. That is, if the volume ratio of the white pigment (C) is too small, light leakage occurs and the light reflectance is lowered, and if it is too large, the white pigment is dispersed in an overcrowded state and the light scattering characteristics are lowered. As a result, the light reflectance decreases.

〈D:無機質充填剤〉
 上記無機質充填剤(D)は、上述の白色顔料(C)を除く各種無機質充填剤が用いられる。例えば、石英ガラス粉末、タルク、溶融シリカ粉末や結晶性シリカ粉末等のシリカ粉末、アルミナ粉末、窒化アルミニウム粉末、窒化ケイ素粉末等があげられる。中でも、線膨張係数の低減等の観点から、溶融シリカ粉末を用いることが好ましく、特に高充填性および高流動性という観点から、溶融球状シリカ粉末を用いることが好ましい。そして、上記無機質充填剤(D)の平均粒径は、0.05~100μmであることが好ましい。また、シリカ微粒子とこのシリカ微粒子よりも粒径の大きい通常のシリカ粒子を併用する場合は、シリカ微粒子の平均粒径は0.05~10μm未満であり、併用する通常のシリカ粒子の平均粒径は、特に好ましくは10~80μmである。なお、上記平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
<D: Inorganic filler>
As the inorganic filler (D), various inorganic fillers excluding the white pigment (C) described above are used. Examples thereof include silica glass powder, talc, silica powder such as fused silica powder and crystalline silica powder, alumina powder, aluminum nitride powder, and silicon nitride powder. Among them, it is preferable to use a fused silica powder from the viewpoint of reducing the linear expansion coefficient, and it is particularly preferable to use a fused spherical silica powder from the viewpoints of high filling property and high fluidity. The average particle diameter of the inorganic filler (D) is preferably 0.05 to 100 μm. When silica fine particles and ordinary silica particles having a particle size larger than the silica fine particles are used in combination, the average particle size of the silica fine particles is less than 0.05 to 10 μm. Is particularly preferably 10 to 80 μm. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.

 そして、上記無機質充填剤(D)の含有割合は、エポキシ樹脂組成物全体の60~85体積%に設定することが好ましく、特に好ましくは65~80体積%である。すなわち、上記含有割合が少なすぎると、成形時に反りが発生する等の問題が生じる。また、含有割合が多すぎると、配合成分を混練する際、混練機に多大な負荷がかかり、混練が不可能となり、結果、エポキシ樹脂組成物を作製することが困難となる。 The content of the inorganic filler (D) is preferably set to 60 to 85% by volume, particularly preferably 65 to 80% by volume, based on the entire epoxy resin composition. That is, if the content ratio is too small, problems such as warpage occur during molding. Moreover, when there is too much a content rate, when kneading | mixing a compounding component, a great load will be applied to a kneading machine, kneading | mixing will become impossible and as a result, it will become difficult to produce an epoxy resin composition.

 さらに、上記白色顔料(C)と無機質充填剤(D)との混合割合は、初期光反射率の観点から、体積比で、(C)/(D)=0.035~0.25であることが好ましく、より好ましくは0.0375~0.24である。すなわち、白色顔料(C)と無機質充填剤(D)との混合割合が、上記範囲を外れ、体積比が小さすぎると、エポキシ樹脂組成物硬化体の初期光反射率が低下する傾向がみられ、体積比が大きすぎると、エポキシ樹脂組成物の溶融粘度が上昇して混練が困難になる傾向がみられる。 Further, the mixing ratio of the white pigment (C) and the inorganic filler (D) is (C) / (D) = 0.035 to 0.25 in terms of volume ratio from the viewpoint of initial light reflectance. It is preferably 0.0375 to 0.24. That is, when the mixing ratio of the white pigment (C) and the inorganic filler (D) is out of the above range and the volume ratio is too small, the initial light reflectance of the cured epoxy resin composition tends to decrease. If the volume ratio is too large, the melt viscosity of the epoxy resin composition tends to increase and kneading tends to be difficult.

〈他の添加剤〉
 そして、本発明のエポキシ樹脂組成物には、上記(A)~(D)以外に、必要に応じて、硬化促進剤、離型剤、シラン化合物を配合することができる。さらには、変性剤(可塑剤)、酸化防止剤、難燃剤、消泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。
<Other additives>
In addition to the above (A) to (D), a curing accelerator, a release agent, and a silane compound can be added to the epoxy resin composition of the present invention as necessary. Furthermore, various additives such as a modifier (plasticizer), an antioxidant, a flame retardant, an antifoaming agent, a leveling agent, and an ultraviolet absorber can be appropriately blended.

 上記硬化促進剤としては、例えば、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、トリ-2,4,6-ジメチルアミノメチルフェノール、N,N-ジメチルベンジルアミン、N,N-ジメチルアミノベンゼン、N,N-ジメチルアミノシクロヘキサン等の3級アミン類、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフルオロボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、メチルトリブチルホスホニウムジメチルホスフェート、テトラフェニルホスホニウム-o,o-ジエチルホスホロジチオエート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート等のリン化合物、トリエチレンジアンモニウム・オクチルカルボキシレート等の4級アンモニウム塩、有機金属塩類、およびこれらの誘導体等があげられる。これらは単独でもしくは2種以上併せて用いられる。これら硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。その中でも、着色が少ない硬化物を得るためには、リン化合物を用いることが特に好ましい。 Examples of the curing accelerator include 1,8-diaza-bicyclo [5.4.0] undecene-7, triethylenediamine, tri-2,4,6-dimethylaminomethylphenol, N, N-dimethylbenzylamine. , Tertiary amines such as N, N-dimethylaminobenzene and N, N-dimethylaminocyclohexane, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetrafluoro Borate, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium bromide, tetraphenylphosphonium bromide, methyltributylphosphonium dimethyl phosphate, tetraphenylphosphonium-o, o-diethyl phosphorodisi Phosphorus compounds such as tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate, quaternary ammonium salts such as triethylenediammonium octylcarboxylate, organometallic salts, and derivatives thereof. . These may be used alone or in combination of two or more. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds. Among them, it is particularly preferable to use a phosphorus compound in order to obtain a cured product with little coloring.

 上記硬化促進剤の含有量は、上記エポキシ樹脂(A)に対して0.001~8重量%に設定することが好ましく、より好ましくは0.01~5重量%である。すなわち、硬化促進剤の含有量が少なすぎると、充分な硬化促進効果を得られない場合があり、また硬化促進剤の含有量が多すぎると、得られる硬化物に変色が生じる傾向がみられるからである。 The content of the curing accelerator is preferably set to 0.001 to 8% by weight, more preferably 0.01 to 5% by weight with respect to the epoxy resin (A). That is, if the content of the curing accelerator is too small, a sufficient curing acceleration effect may not be obtained, and if the content of the curing accelerator is too large, the resulting cured product tends to be discolored. Because.

 上記離型剤としては、各種離型剤が用いられるが、中でもエーテル結合を有する離型剤を用いることが好ましく、例えば、下記の一般式(α)で表される構造式を備えた離型剤があげられる。 As the release agent, various release agents are used. Among them, it is preferable to use a release agent having an ether bond. For example, a release agent having a structural formula represented by the following general formula (α) Agent.

 CH3・(CH2)k・CH2O(CHRm・CHRn・O)x・H ・・・(α)
[式(α)中、Rm,Rnは水素原子または一価のアルキル基であり、両者は互いに同じであっても異なっていてもよい。また、kは1~100の正数であり、xは1~100の正数である。]
CH 3 · (CH 2 ) k · CH 2 O (CHRm · CHRn · O) x · H (α)
[In the formula (α), Rm and Rn are a hydrogen atom or a monovalent alkyl group, and both may be the same or different. Further, k is a positive number from 1 to 100, and x is a positive number from 1 to 100. ]

 上記式(α)において、Rm,Rnは水素原子または一価のアルキル基であり、好ましくは、kは10~50の正数、xは3~30の正数である。より好ましくはRmおよびRnは水素原子であり、kは28~48の正数、xは5~20の正数である。すなわち、繰り返し数kの値が小さすぎると、離型性が低下し、また繰り返し数xの値が小さすぎると、分散性が低下するため、安定した強度と離型性が得られなくなる傾向がみられる。一方、繰り返し数kの値が大きすぎると、融点が高くなるため混練が困難となり、エポキシ樹脂組成物の製造工程において困難を生じる傾向がみられ、繰り返し数xの値が大きすぎると、離型性が低下する傾向がみられるからである。 In the above formula (α), Rm and Rn are a hydrogen atom or a monovalent alkyl group, preferably k is a positive number from 10 to 50, and x is a positive number from 3 to 30. More preferably, Rm and Rn are hydrogen atoms, k is a positive number of 28 to 48, and x is a positive number of 5 to 20. That is, when the value of the number of repetitions k is too small, the releasability is lowered, and when the value of the number of repetitions x is too small, the dispersibility is lowered, so that stable strength and releasability tend not to be obtained. Be looked at. On the other hand, if the value of the number of repetitions k is too large, the melting point becomes high, so that kneading becomes difficult, and there is a tendency to cause difficulty in the production process of the epoxy resin composition. This is because there is a tendency for the sex to decline.

 上記離型剤の含有量は、エポキシ樹脂組成物体全体の0.001~3重量%の範囲に設定することが好ましく、0.01~2重量%の範囲に設定することがより好ましい。すなわち、離型剤の含有量が少なすぎたり、多すぎたりすると、硬化体の強度不足を招いたり、離型性の低下を引き起こす傾向がみられるからである。 The content of the release agent is preferably set in the range of 0.001 to 3% by weight of the entire epoxy resin composition object, and more preferably in the range of 0.01 to 2% by weight. That is, if the content of the release agent is too little or too much, the strength of the cured product tends to be insufficient or the release property tends to be lowered.

 上記シラン化合物としては、シランカップリング剤やシランがあげられる。上記シランカップリング剤としては、例えば、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルメチルエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等があげられる。また、上記シランとしては、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエチルシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デジルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ヘキサメチルジシラザン、加水分解性基を含むシロキサン等があげられる。これらは単独でもしくは2種以上併せて用いられる。 Examples of the silane compound include a silane coupling agent and silane. Examples of the silane coupling agent include 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-glycidoxypropylmethylethoxysilane. 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like. Examples of the silane include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethylsilane, phenyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and dezyltrimethoxy. Examples thereof include silane, trifluoropropyltrimethoxysilane, hexamethyldisilazane, and siloxane containing a hydrolyzable group. These may be used alone or in combination of two or more.

 上記変性剤(可塑剤)としては、例えば、シリコーン類、1~5価アルコール類等があげられる。 Examples of the modifier (plasticizer) include silicones and 1-5 pentahydric alcohols.

 上記酸化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。 Examples of the antioxidant include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.

 上記難燃剤としては、例えば、水酸化マグネシウム等の金属水酸化物、臭素系難燃剤、窒素系難燃剤、リン系難燃剤等があげられ、さらに三酸化アンチモン等の難燃助剤を用いることもできる。 Examples of the flame retardant include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.

 上記消泡剤としては、例えば、各種シリコーン系化合物等の一般的な消泡剤があげられる。 Examples of the antifoaming agent include general antifoaming agents such as various silicone compounds.

〈エポキシ樹脂組成物〉
 本発明のエポキシ樹脂組成物は、例えば、つぎのようにして製造することができる。すなわち、前記(A)~(D)、さらには硬化促進剤および離型剤、ならびに必要に応じて用いられる各種添加剤を適宜配合した後、混練機等を用いて溶融混合し、ついで、これを冷却し固化して粉砕することにより粉末状のエポキシ樹脂組成物を得ることができる。
<Epoxy resin composition>
The epoxy resin composition of the present invention can be produced, for example, as follows. That is, (A) to (D), further, a curing accelerator and a release agent, and various additives used as necessary are appropriately blended, and then melt-mixed using a kneader or the like. A powdery epoxy resin composition can be obtained by cooling, solidifying, and pulverizing.

 そして、上記得られたエポキシ樹脂組成物を、例えば、トランスファー成形または射出成形することにより得られる硬化物としては、その初期光反射率が、波長450~800nmにおいて94%以上であることが好ましく、特に好ましくは95%以上である。なお、上限は、通常100%である。実質的な好適範囲としては、上記硬化物の波長450nmにおける初期光反射率が94~99%である。上記初期光反射率は、つぎのようにして測定される。すなわち、厚み1.0mmのエポキシ樹脂組成物の硬化物を、所定の硬化条件、例えば、175℃×2分間の成形、150℃×2時間のキュア後、室温(25℃)にて上記範囲内の波長での上記硬化物の初期光反射率を分光光度計(例えば、日本分光社製の分光光度計V-670)を用いることにより測定することができる。 The cured product obtained by, for example, transfer molding or injection molding the obtained epoxy resin composition, preferably has an initial light reflectance of 94% or more at a wavelength of 450 to 800 nm. Particularly preferably, it is 95% or more. The upper limit is usually 100%. As a substantially preferable range, the initial light reflectance at a wavelength of 450 nm of the cured product is 94 to 99%. The initial light reflectance is measured as follows. That is, a cured product of an epoxy resin composition having a thickness of 1.0 mm is subjected to predetermined curing conditions, for example, molding at 175 ° C. × 2 minutes, curing at 150 ° C. × 2 hours, and within the above range at room temperature (25 ° C.). The initial light reflectivity of the cured product at a wavelength of 1 can be measured by using a spectrophotometer (for example, spectrophotometer V-670 manufactured by JASCO Corporation).

 本発明のエポキシ樹脂組成物を用いてなる光半導体装置は、例えば、つぎのようにして製造される。すなわち、金属リードフレームをトランスファー成形機の金型内に設置して上記エポキシ樹脂組成物を用いてトランスファー成形によりリフレクタを形成する。このようにして、光半導体素子搭載領域の周囲を囲うように環状のリフレクタが形成されてなる光半導体装置用の金属リードフレームを作製する。ついで、上記リフレクタの内部の、金属リードフレーム上の光半導体素子搭載領域に光半導体素子を搭載し、光半導体素子と金属リードフレームとをボンディングワイヤーを用いて電気的に接続する。そして、上記光半導体素子を含むリフレクタの内側領域を、シリコーン樹脂等を用いて樹脂封止することにより封止樹脂層が形成される。このようにして、例えば、図1に示す立体状(カップ型)の光半導体装置が作製される。この光半導体装置は、前述のとおり、第1のプレート部1と第2のプレート部2とからなる金属リードフレームの第2のプレート部2上に光半導体素子3が搭載され、上記光半導体素子3の周囲を囲むように、本発明のエポキシ樹脂組成物からなる光反射用のリフレクタ4が形成されているという構成をとる。そして、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5には、光半導体素子3を封止する透明性を有する樹脂材料(例えば、シリコーン樹脂等)からなる封止樹脂層6が形成されている。この封止樹脂層6には必要に応じて蛍光体が含有されている。図1において、7,8は金属リードフレームと光半導体素子3とを電気的に接続するボンディングワイヤーである。 An optical semiconductor device using the epoxy resin composition of the present invention is manufactured as follows, for example. That is, a metal lead frame is placed in a mold of a transfer molding machine, and a reflector is formed by transfer molding using the epoxy resin composition. In this manner, a metal lead frame for an optical semiconductor device in which an annular reflector is formed so as to surround the periphery of the optical semiconductor element mounting region is manufactured. Next, an optical semiconductor element is mounted in the optical semiconductor element mounting region on the metal lead frame inside the reflector, and the optical semiconductor element and the metal lead frame are electrically connected using a bonding wire. And the sealing resin layer is formed by resin-sealing the inner area | region of the reflector containing the said optical semiconductor element using a silicone resin etc. FIG. In this way, for example, the three-dimensional (cup type) optical semiconductor device shown in FIG. 1 is manufactured. In this optical semiconductor device, as described above, the optical semiconductor element 3 is mounted on the second plate portion 2 of the metal lead frame composed of the first plate portion 1 and the second plate portion 2, and the optical semiconductor device The reflector 4 for light reflection which consists of the epoxy resin composition of this invention is formed so that the circumference | surroundings of 3 may be enclosed. And in the recessed part 5 formed with the said metal lead frame and the internal peripheral surface of the reflector 4, the sealing resin layer which consists of resin material (for example, silicone resin etc.) which has the transparency which seals the optical semiconductor element 3 6 is formed. The sealing resin layer 6 contains a phosphor as necessary. In FIG. 1, 7 and 8 are bonding wires for electrically connecting the metal lead frame and the optical semiconductor element 3.

 なお、本発明において、上記図1の金属リードフレームに代えて各種基板を用いてもよい。上記各種基板としては、例えば、有機基板、無機基板、フレキシブルプリント基板等があげられる。また、上記トランスファー成形に変えて、射出成形によりリフレクタを形成してもよい。 In the present invention, various substrates may be used in place of the metal lead frame shown in FIG. Examples of the various substrates include organic substrates, inorganic substrates, and flexible printed substrates. Further, instead of the transfer molding, the reflector may be formed by injection molding.

 また、上記構成と異なる光半導体装置として、板状の光半導体装置用リードフレームを用いた、例えば、図2および図3(図2のX-X′矢視断面図)に示す光半導体装置があげられる。この光半導体装置は、互いに一定間隔を設けて配置されたプレート部(光半導体素子搭載領域)が複数設けられてなる金属リードフレーム10の厚み方向の片面の所定位置(上記搭載領域)に光半導体素子3がそれぞれ搭載され、上記金属リードフレーム10におけるプレート部(光半導体素子搭載領域)間の隙間に本発明のエポキシ樹脂組成物からなる光反射用のリフレクタ11が形成されているという構成をとる。すなわち、図3に示すように、金属リードフレーム10におけるプレート部(光半導体素子搭載領域)間の隙間に本発明のエポキシ樹脂組成物を充填し硬化してなるリフレクタ11が複数箇所形成されている。なお、図2および図3において、12は、上記光半導体素子3と金属リードフレーム10とを電気的に接続するボンディングワイヤーである。このような光半導体装置は、上記金属リードフレーム10をトランスファー成形機の金型内に設置してトランスファー成形により、間隔を設けて配置されたプレート部の隙間および金属リードフレーム10の光半導体素子3搭載面とは反対面に形成された凹部に、エポキシ樹脂組成物を充填し、硬化させることによりリフレクタ11をそれぞれ形成する。ついで、上記金属リードフレーム10の所定位置となる光半導体素子搭載領域に光半導体素子3を搭載した後、光半導体素子3と金属リードフレーム10とをボンディングワイヤー12を用いて電気的に接続する。そして、コンプレッション成形もしくはシート封止等により、上記光半導体素子3を被覆するように、金属リードフレーム10上に透明性を有する樹脂材料(例えば、シリコーン樹脂等)からなる封止樹脂層13を形成する。この封止樹脂層13には必要に応じて蛍光体が含有されている。このようにして、図2(封止樹脂層13は省略)および図3に示す光半導体装置が作製される。 Further, as an optical semiconductor device different from the above configuration, for example, an optical semiconductor device shown in FIGS. 2 and 3 (cross-sectional view taken along the line XX ′ in FIG. 2) using a plate-like lead frame for an optical semiconductor device is provided. can give. In this optical semiconductor device, an optical semiconductor is provided at a predetermined position (the mounting region) on one side in the thickness direction of the metal lead frame 10 in which a plurality of plate portions (optical semiconductor element mounting regions) arranged at a predetermined interval are provided. Each of the elements 3 is mounted, and a reflector 11 for light reflection made of the epoxy resin composition of the present invention is formed in a gap between the plate portions (optical semiconductor element mounting regions) in the metal lead frame 10. . That is, as shown in FIG. 3, a plurality of reflectors 11 formed by filling and curing the epoxy resin composition of the present invention in the gaps between the plate portions (optical semiconductor element mounting regions) in the metal lead frame 10 are formed. . 2 and 3, reference numeral 12 denotes a bonding wire for electrically connecting the optical semiconductor element 3 and the metal lead frame 10. In such an optical semiconductor device, the metal lead frame 10 is placed in a mold of a transfer molding machine and transfer molding is performed to form gaps between plate portions arranged at intervals and the optical semiconductor element 3 of the metal lead frame 10. Each of the reflectors 11 is formed by filling an epoxy resin composition in a concave portion formed on the surface opposite to the mounting surface and curing it. Next, after the optical semiconductor element 3 is mounted in the optical semiconductor element mounting region at a predetermined position of the metal lead frame 10, the optical semiconductor element 3 and the metal lead frame 10 are electrically connected using the bonding wire 12. Then, a sealing resin layer 13 made of a transparent resin material (for example, a silicone resin) is formed on the metal lead frame 10 so as to cover the optical semiconductor element 3 by compression molding or sheet sealing. To do. The sealing resin layer 13 contains a phosphor as necessary. In this manner, the optical semiconductor device shown in FIG. 2 (the sealing resin layer 13 is omitted) and FIG. 3 is manufactured.

<第2の態様:シリコーン樹脂組成物>
 本発明のシリコーン樹脂組成物は、光半導体素子(発光素子)の少なくとも一部を被覆するリフレクタ形成材料、例えば、図6に示す光半導体装置(発光装置)における光半導体素子(発光素子)24の側面全面に形成されるリフレクタ25の、リフレクタ形成材料として用いられるものである。そして、本発明のシリコーン樹脂組成物は、シリコーン樹脂と、白色顔料とを用いて得られるものであり、通常、シート状に成形してリフレクタ形成材料として供される。
<Second aspect: silicone resin composition>
The silicone resin composition of the present invention is a reflector forming material that covers at least a part of an optical semiconductor element (light emitting element), for example, an optical semiconductor element (light emitting element) 24 in the optical semiconductor device (light emitting apparatus) shown in FIG. The reflector 25 formed on the entire side surface is used as a reflector forming material. The silicone resin composition of the present invention is obtained using a silicone resin and a white pigment, and is usually formed into a sheet shape and used as a reflector forming material.

〈シリコーン樹脂〉
 シリコーン樹脂は、例えば、2段階硬化性、具体的には、2段階熱硬化性または2段階紫外線硬化性、好ましくは、2段階熱硬化性を示すものである。
<Silicone resin>
The silicone resin exhibits, for example, two-stage curability, specifically, two-stage thermosetting or two-stage ultraviolet curing, preferably two-stage thermosetting.

(シリコーン樹脂の組成)
 本発明において、シリコーン樹脂は、例えば、アルケニル基含有ポリシロキサンと、ヒドロシリル基含有ポリシロキサンと、ヒドロシリル化触媒とを含有する。
(Composition of silicone resin)
In the present invention, the silicone resin contains, for example, an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst.

 つぎに、上記各成分について説明する。 Next, each of the above components will be described.

<アルケニル基含有ポリシロキサン>
 上記アルケニル基含有ポリシロキサンは、分子内に2個以上のアルケニル基およびシクロアルケニル基の少なくとも一方を含有する。そして、上記アルケニル基含有ポリシロキサンは、具体的には、下記平均組成式(I)で示されるものである。
<Alkenyl group-containing polysiloxane>
The alkenyl group-containing polysiloxane contains at least one of two or more alkenyl groups and cycloalkenyl groups in the molecule. The alkenyl group-containing polysiloxane is specifically represented by the following average composition formula (I).

1 a2 bSiO(4-a-b)/2   ・・・(I)
(式中、R1は、炭素数2~10のアルケニル基および炭素数3~10のシクロアルケニル基の少なくとも一方を示す。R2は、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基を除く。)を示す。aは、0.05~0.50であり、bは、0.80~1.80である。)
R 1 a R 2 b SiO (4-ab) / 2 (I)
(Wherein R 1 represents at least one of an alkenyl group having 2 to 10 carbon atoms and a cycloalkenyl group having 3 to 10 carbon atoms. R 2 represents an unsubstituted or substituted monovalent monovalent group having 1 to 10 carbon atoms. Represents a hydrocarbon group (excluding alkenyl and cycloalkenyl groups), a is 0.05 to 0.50, and b is 0.80 to 1.80.)

 そして、式(I)中、R1で示されるアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基等の炭素数2~10のアルケニル基があげられる。また、R1で示されるシクロアルケニル基としては、例えば、シクロヘキセニル基、ノルボルネニル基等の炭素数3~10のシクロアルケニル基があげられる。 In the formula (I), examples of the alkenyl group represented by R 1 include 2 to 10 carbon atoms such as vinyl group, allyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, and octenyl group. Of the alkenyl group. Examples of the cycloalkenyl group represented by R 1 include cycloalkenyl groups having 3 to 10 carbon atoms such as cyclohexenyl group and norbornenyl group.

 中でも、R1として、好ましくは、アルケニル基、より好ましくは、炭素数2~4のアルケニル基、さらに好ましくは、ビニル基があげられる。 Among them, R 1 is preferably an alkenyl group, more preferably an alkenyl group having 2 to 4 carbon atoms, and still more preferably a vinyl group.

 上記式(I)において、R1で示されるアルケニル基は、同一種類または複数種類のいずれでもよい。 In the above formula (I), the alkenyl groups represented by R 1 may be of the same type or a plurality of types.

 上記式(I)において、R2で示される1価の炭化水素基は、アルケニル基およびシクロアルケニル基以外の非置換または置換の炭素原子数1~10の1価の炭化水素基である。 In the above formula (I), the monovalent hydrocarbon group represented by R 2 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms other than an alkenyl group and a cycloalkenyl group.

 上記非置換の1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ペンチル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等の炭素数1~10のアルキル基、例えば、シクロプロピル、シクロブチル基、シクロペンチル基、シクロヘキシル基等の炭素数3~6のシクロアルキル基、例えば、フェニル基、トリル基、ナフチル基等の炭素数6~10のアリール基、例えば、ベンジル基、ベンジルエチル基などの炭素数7~8のアラルキル基があげられる。好ましくは、炭素数1~3のアルキル基、炭素数6~10のアリール基があげられ、より好ましくは、メチル基およびフェニル基があげられる。 Examples of the unsubstituted monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, and a pentyl group. Group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group and other alkyl groups having 1 to 10 carbon atoms such as cyclopropyl, cyclobutyl group, cyclopentyl group and cyclohexyl group. Examples thereof include cycloalkyl groups such as aryl groups having 6 to 10 carbon atoms such as phenyl group, tolyl group and naphthyl group, for example, aralkyl groups having 7 to 8 carbon atoms such as benzyl group and benzylethyl group. Preferred are an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 10 carbon atoms, and more preferred are a methyl group and a phenyl group.

 一方、置換の1価の炭化水素基は、上記した非置換の1価の炭化水素基における水素原子を置換基で置換したものがあげられる。 On the other hand, examples of the substituted monovalent hydrocarbon group include those obtained by substituting a hydrogen atom in the above-described unsubstituted monovalent hydrocarbon group with a substituent.

 上記置換基としては、例えば、塩素原子等のハロゲン原子、例えば、グリシジルエーテル基等があげられる。 Examples of the substituent include a halogen atom such as a chlorine atom, such as a glycidyl ether group.

 上記置換の1価の炭化水素基としては、具体的には、3-クロロプロピル基、グリシドキシプロピル基等があげられる。 Specific examples of the substituted monovalent hydrocarbon group include a 3-chloropropyl group and a glycidoxypropyl group.

 上記1価の炭化水素基は、非置換および置換のいずれであってもよく、好ましくは、非置換である。 The monovalent hydrocarbon group may be unsubstituted or substituted, and is preferably unsubstituted.

 上記式(I)において、R2で示される1価の炭化水素基は、同一種類または複数種類であってもよい。好ましくは、メチル基およびフェニル基の併用があげられる。 In the above formula (I), the monovalent hydrocarbon groups represented by R 2 may be of the same type or a plurality of types. Preferably, a methyl group and a phenyl group are used in combination.

 そして、式(I)において、aは、好ましくは、0.10~0.40である。また、bは、好ましくは、1.5~1.75である。 In the formula (I), a is preferably 0.10 to 0.40. Further, b is preferably 1.5 to 1.75.

 上記アルケニル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、10000以下、好ましくは、5000以下である。アルケニル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。 The weight average molecular weight of the alkenyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and 10,000 or less, preferably 5000 or less. The weight average molecular weight of the alkenyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.

 上記アルケニル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。 The alkenyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.

 また、アルケニル基含有ポリシロキサンは、同一種類のものを用いてもよく、または2種以上の複数種類のものを併用してもよい。 Further, the alkenyl group-containing polysiloxane may be the same type, or two or more types may be used in combination.

<ヒドロシリル基含有ポリシロキサン>
 上記ヒドロシリル基含有ポリシロキサンは、例えば、分子内に2個以上のヒドロシリル基(SiH基)を含有する。ヒドロシリル基含有ポリシロキサンは、具体的には、下記平均組成式(II)で示される。
<Hydrosilyl group-containing polysiloxane>
The hydrosilyl group-containing polysiloxane contains, for example, two or more hydrosilyl groups (SiH groups) in the molecule. Specifically, the hydrosilyl group-containing polysiloxane is represented by the following average composition formula (II).

c3 dSiO(4-c-d)/2   ・・・(II)
(式中、R3は、非置換または置換の炭素数1~10の1価の炭化水素基(ただし、アルケニル基およびシクロアルケニル基の少なくとも一方を除く。)を示す。cは、0.30~1.0であり、dは、0.90~2.0である。)
H c R 3 d SiO (4-cd) / 2 (II)
(Wherein R 3 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms (excluding at least one of an alkenyl group and a cycloalkenyl group), and c is 0.30. 1.0 and 1.0 is 0.90 to 2.0.)

 式(II)中、R3で示される非置換または置換の炭素数1~10の1価の炭化水素基は、上記式(I)のR2で示される非置換または置換の炭素数1~10の1価の炭化水素基と同一のものが例示される。好ましくは、非置換の炭素数1~10の1価の炭化水素基、より好ましくは、炭素数1~10のアルキル基、炭素数6~10のアリール基があげられ、さらに好ましくは、フェニル基およびメチル基の併用があげられる。 In the formula (II), an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 is an unsubstituted or substituted carbon group represented by R 2 in the above formula (I). Examples thereof are the same as the 10 monovalent hydrocarbon groups. Preferably, an unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and more preferably a phenyl group. And a combination of methyl groups.

 そして、式(II)において、cは、好ましくは、0.30~0.50である。またdは、好ましくは、1.3~1.7である。 In the formula (II), c is preferably 0.30 to 0.50. Further, d is preferably 1.3 to 1.7.

 上記ヒドロシリル基含有ポリシロキサンの重量平均分子量は、例えば、100以上、好ましくは、500以上であり、また、例えば、10000以下、好ましくは、5000以下である。ヒドロシリル基含有ポリシロキサンの重量平均分子量は、ゲル透過クロマトグラフィーによって測定される標準ポリスチレンによる換算値である。 The weight average molecular weight of the hydrosilyl group-containing polysiloxane is, for example, 100 or more, preferably 500 or more, and for example, 10,000 or less, preferably 5000 or less. The weight average molecular weight of the hydrosilyl group-containing polysiloxane is a conversion value based on standard polystyrene measured by gel permeation chromatography.

 上記ヒドロシリル基含有ポリシロキサンは、適宜の方法によって調製され、また、市販品を用いることもできる。 The hydrosilyl group-containing polysiloxane is prepared by an appropriate method, and a commercially available product can also be used.

 上記式(I)および式(II)中、R2およびR3の少なくとも一方の炭化水素基は、フェニル基を含む。好ましくは、R2およびR3の両方の炭化水素が、フェニル基を含むことである。 In the above formulas (I) and (II), at least one hydrocarbon group of R 2 and R 3 includes a phenyl group. Preferably, both R 2 and R 3 hydrocarbons contain a phenyl group.

 上記式(I)および式(II)において、R2およびR3の少なくとも一方がフェニル基を含む場合、上記式(I)で示されるアルケニル基含有ポリシロキサン、および、式(II)で示されるヒドロシリル基含有ポリシロキサンを含有するシリコーン樹脂は、フェニル基を含有するフェニル系シリコーン樹脂として調製される。 In the above formulas (I) and (II), when at least one of R 2 and R 3 contains a phenyl group, the alkenyl group-containing polysiloxane represented by the above formula (I) and the formula (II) The silicone resin containing the hydrosilyl group-containing polysiloxane is prepared as a phenyl silicone resin containing a phenyl group.

 また、上記ヒドロシリル基含有ポリシロキサンは、同一種類のものを用いてもよく、または2種以上の複数種類のものを併用してもよい。 Further, the hydrosilyl group-containing polysiloxane may be the same type, or two or more types may be used in combination.

 上記ヒドロシリル基含有ポリシロキサンの配合割合は、アルケニル基含有ポリシロキサンのアルケニル基およびシクロアルケニル基のモル数の、ヒドロシリル基含有ポリシロキサンのヒドロシリル基のモル数に対する割合(アルケニル基およびシクロアルケニル基のモル数/ヒドロシリル基のモル数)が、例えば、好ましくは1/30~30/1、より好ましくは1/3~3/1となるように調整される。 The blending ratio of the hydrosilyl group-containing polysiloxane is the ratio of the number of moles of alkenyl groups and cycloalkenyl groups of the alkenyl group-containing polysiloxane to the number of moles of hydrosilyl groups of the hydrosilyl group-containing polysiloxane (the moles of alkenyl groups and cycloalkenyl groups). The number / the number of moles of hydrosilyl group) is adjusted, for example, preferably 1/30 to 30/1, more preferably 1/3 to 3/1.

<ヒドロシリル化触媒>
 上記ヒドロシリル化触媒は、アルケニル基含有ポリシロキサンのアルケニル基およびシクロアルケニル基の少なくとも一方と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とのヒドロシリル化反応(ヒドロシリル付加)の反応速度を向上させる物質(付加触媒)であればよく、例えば、金属触媒があげられる。上記金属触媒としては、例えば、白金黒、塩化白金、塩化白金酸、白金-オレフィン錯体、白金-カルボニル錯体、白金-アセチルアセテート等の白金触媒、例えば、パラジウム触媒、例えば、ロジウム触媒等があげられる。
<Hydrosilylation catalyst>
The hydrosilylation catalyst is a substance (addition catalyst) that improves the reaction rate of a hydrosilylation reaction (hydrosilyl addition) between at least one of an alkenyl group and a cycloalkenyl group of an alkenyl group-containing polysiloxane and a hydrosilyl group of the hydrosilyl group-containing polysiloxane. For example, a metal catalyst. Examples of the metal catalyst include platinum catalysts such as platinum black, platinum chloride, chloroplatinic acid, platinum-olefin complexes, platinum-carbonyl complexes, and platinum-acetyl acetate, for example, palladium catalysts such as rhodium catalyst. .

 上記ヒドロシリル化触媒の配合割合は、金属触媒の金属量(具体的には、金属原子)として、アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンに対して、質量基準で、通常、1.0ppm~10000ppm、好ましくは1.0ppm~1000ppm、より好ましくは1.0ppm~500ppmである。 The blending ratio of the hydrosilylation catalyst is usually 1.0 ppm to the amount of metal in the metal catalyst (specifically, metal atom) based on the mass based on the alkenyl group-containing polysiloxane and hydrosilyl group-containing polysiloxane. It is 10,000 ppm, preferably 1.0 ppm to 1000 ppm, more preferably 1.0 ppm to 500 ppm.

(シリコーン樹脂の調製)
 シリコーン樹脂は、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒を、上記した割合で配合することにより調製することができる。
(Preparation of silicone resin)
The silicone resin can be prepared by blending the alkenyl group-containing polysiloxane, the hydrosilyl group-containing polysiloxane, and the hydrosilylation catalyst in the above ratio.

 具体的には、シリコーン樹脂は、アルケニル基含有ポリシロキサン、ヒドロシリル基含有ポリシロキサンおよびヒドロシリル化触媒の配合によって、2段階硬化性(好ましくは、2段階熱硬化性)樹脂組成物のAステージ状(液体状)に調製される。 Specifically, the silicone resin is formed in a two-stage curable (preferably two-stage thermosetting) resin composition in an A-stage form by blending an alkenyl group-containing polysiloxane, a hydrosilyl group-containing polysiloxane, and a hydrosilylation catalyst ( Liquid).

 なお、Aステージ状のシリコーン樹脂は、Aステージ状(液体状)からBステージ状(半硬化の固体状あるいは半固体状)を経由してCステージ状(完全硬化の固体状)となることが可能である。 The A-stage silicone resin may change from an A-stage (liquid) to a B-stage (semi-cured solid or semi-solid) to a C-stage (fully cured solid). Is possible.

 より具体的には、Aステージ状のシリコーン樹脂は、アルケニル基含有ポリシロキサンのアルケニル基およびシクロアルケニル基の少なくとも一方と、ヒドロシリル基含有ポリシロキサンのヒドロシリル基とが、例えば、加熱温度70~120℃、好ましくは80~100℃で、加熱時間5分~30分、好ましくは8分~20分の条件にてヒドロシリル化反応することにより、Bステージ状のシリコーン樹脂を生成する。 More specifically, the A stage-shaped silicone resin has a heating temperature of 70 to 120 ° C. in which at least one of the alkenyl group and cycloalkenyl group of the alkenyl group-containing polysiloxane and the hydrosilyl group of the hydrosilyl group-containing polysiloxane are, for example, The B-stage silicone resin is produced by a hydrosilylation reaction, preferably at 80 to 100 ° C. and under a heating time of 5 to 30 minutes, preferably 8 to 20 minutes.

 シリコーン樹脂の配合割合は、シリコーン樹脂組成物全体に対して、通常、20~70重量%、好ましくは25~50重量%であり、より好ましくは上限値は50重量%未満、さらに好ましくは40重量%以下、特に好ましくは30重量%以下である。シリコーン樹脂の配合割合が上記範囲内であれば、良好な製膜性が付与されることとなる。 The blending ratio of the silicone resin is usually 20 to 70% by weight, preferably 25 to 50% by weight, more preferably the upper limit is less than 50% by weight, and even more preferably 40% by weight with respect to the entire silicone resin composition. % Or less, particularly preferably 30% by weight or less. When the blending ratio of the silicone resin is within the above range, good film forming properties are imparted.

〈白色顔料〉
 上記白色顔料としては、前述のエポキシ樹脂組成物において用いられる白色顔料(C)と同様のものがあげられる。例えば、無機系の白色顔料である、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、酸化亜鉛、鉛白、カオリン、アルミナ、炭酸カルシウム、炭酸バリウム、硫酸バリウム、硫酸亜鉛、硫化亜鉛等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、優れた光反射率が得られる観点から、酸化チタンを用いることが好ましく、特にルチル型の結晶構造を有するものを用いることが好ましい。さらにそのなかでも、流動性および遮光性という観点から、平均粒径が0.01~1μmのものを用いることが好ましい。特に好ましくは、光反射性という観点から、0.1~0.5μmである。なお、上記平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
<White pigment>
As said white pigment, the thing similar to the white pigment (C) used in the above-mentioned epoxy resin composition is mention | raise | lifted. Examples include inorganic white pigments such as magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, zinc oxide, lead white, kaolin, alumina, calcium carbonate, barium carbonate, barium sulfate, zinc sulfate, zinc sulfide and the like. . These may be used alone or in combination of two or more. Among these, from the viewpoint of obtaining an excellent light reflectance, it is preferable to use titanium oxide, and it is particularly preferable to use one having a rutile crystal structure. Among them, it is preferable to use those having an average particle diameter of 0.01 to 1 μm from the viewpoint of fluidity and light shielding properties. Particularly preferred is 0.1 to 0.5 μm from the viewpoint of light reflectivity. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.

 そして、本発明においては、熱硬化性樹脂組成物(シリコーン樹脂組成物)からなる硬化物中での、白色顔料間の粒子間距離は、通常50~420nmであり、好ましくは300~420nmである。より好ましくは310~400nmであり、特に好ましくは330~400nmである。すなわち、粒子間距離が短すぎると、白色顔料が過密状態で分散されていることとなり、光散乱特性が低下し、結果、光反射率が低下することとなる。また、粒子間距離が長すぎると、光抜けが発生し、光反射率が低下することとなる。 In the present invention, the interparticle distance between white pigments in a cured product made of a thermosetting resin composition (silicone resin composition) is usually 50 to 420 nm, preferably 300 to 420 nm. . More preferably, it is 310 to 400 nm, and particularly preferably 330 to 400 nm. That is, if the distance between particles is too short, the white pigment is dispersed in an overcrowded state, so that the light scattering property is lowered and, as a result, the light reflectance is lowered. On the other hand, if the interparticle distance is too long, light leakage occurs and the light reflectivity decreases.

 上記白色顔料間の粒子間距離は、前記エポキシ樹脂組成物の白色顔料(C)で述べた方法と同様の方法に従って測定される値である。すなわち、上記シリコーン樹脂組成物からなるリフレクタ形成材料を用いて、所定の硬化条件(例えば、150℃×3時間)にて所定の大きさの硬化物(例えば、縦50mm×横50mm×厚み1mm)を作製する。この硬化物を用い、前述の同様の方法にて測定し、算出することにより得られる値である。 The interparticle distance between the white pigments is a value measured according to a method similar to the method described for the white pigment (C) of the epoxy resin composition. That is, using a reflector forming material comprising the silicone resin composition, a cured product having a predetermined size (for example, 50 mm long × 50 mm wide × 1 mm thick) under predetermined curing conditions (for example, 150 ° C. × 3 hours). Is made. It is a value obtained by measuring and calculating in the same manner as described above using this cured product.

 なお、本発明において、白色顔料間の粒子間距離を「熱硬化性樹脂組成物(シリコーン樹脂組成物)からなる硬化物中」とするのは、通常、白色顔料は凝集性が高く二次粒子化しやすい性質を有するからである。従って、より正確な粒子間距離を測定するため、本発明では、熱硬化性樹脂組成物(シリコーン樹脂組成物物)からなる硬化物中に分散させて一次粒子化させた後、その粒子間距離を測定している。 In the present invention, the interparticle distance between the white pigments is “in the cured product made of the thermosetting resin composition (silicone resin composition)”. This is because it has the property of being easily converted. Therefore, in order to measure a more accurate interparticle distance, in the present invention, the particles are dispersed in a cured product made of a thermosetting resin composition (silicone resin composition) to form primary particles, and then the interparticle distance is measured. Is measuring.

 そして、白色顔料間の粒子間距離における標準偏差は、上記白色顔料間の粒子間距離と同様にして測定して、算出される。上記熱硬化性樹脂組成物(シリコーン樹脂組成物)からなる硬化物中の白色顔料間の粒子間距離における標準偏差は、好ましくは100~350であり、より好ましくは100~300である。標準偏差が上記範囲内であることにより、より一層優れた初期光反射率および製膜性を備えるようになる。 The standard deviation in the interparticle distance between the white pigments is calculated by measuring in the same manner as the interparticle distance between the white pigments. The standard deviation in the interparticle distance between the white pigments in the cured product made of the thermosetting resin composition (silicone resin composition) is preferably 100 to 350, more preferably 100 to 300. When the standard deviation is within the above range, the initial light reflectance and film forming property are further improved.

 上記白色顔料の含有割合は、シリコーン樹脂組成物全体に対して、好ましくは3~30体積%であり、より好ましくは10~25体積%である。すなわち、白色顔料の含有割合が少なすぎると、充分な光反射性、特に優れた初期光反射率が得られ難くなる傾向がみられる。また、白色顔料の含有割合が多すぎると、著しい増粘により混練等でのエポキシ樹脂組成物の作製に関して困難が生じる可能性がみられるからである。 The content ratio of the white pigment is preferably 3 to 30% by volume, more preferably 10 to 25% by volume, based on the entire silicone resin composition. That is, when the content ratio of the white pigment is too small, it tends to be difficult to obtain sufficient light reflectivity, particularly excellent initial light reflectivity. Moreover, when there is too much content rate of a white pigment, it is because difficulty may arise regarding preparation of the epoxy resin composition by kneading | mixing etc. by remarkable thickening.

 また、樹脂組成物中の有機成分および白色顔料の合計体積量に対する白色顔料の体積比率は、7.5~23体積%とする必要がある。好ましくは12.5~20.0体積%である。すなわち、白色顔料の体積比率が小さすぎると、光抜けが発生して光反射率が低下し、大きすぎると、白色顔料が過密状態で分散されていることとなり、光散乱特性が低下し、結果、光反射率が低下する。 Further, the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition needs to be 7.5 to 23% by volume. Preferably, it is 12.5 to 20.0% by volume. That is, if the volume ratio of the white pigment is too small, light leakage occurs and the light reflectance decreases, and if it is too large, the white pigment is dispersed in an overcrowded state, resulting in decreased light scattering characteristics. , The light reflectance decreases.

 上記シリコーン樹脂組成物には、上述の白色顔料を除く各種無機質充填剤を配合することができる。無機質充填剤は、通常、シリコーン樹脂組成物をシート成形性の向上を図る目的で配合される。具体的には、無機質充填剤は、Aステージ状のシリコーン樹脂に配合される。無機質充填剤としては、例えば、シリカ(SiO2)、タルク(Mg3(Si410)(HO)2)、アルミナ(Al23)、酸化ホウ素(B23)、酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO2)、酸化バリウム(BaO)、酸化アンチモン(Sb23)等の酸化物、例えば、窒化アルミニウム(AlN)、窒化ケイ素(Si34)等の窒化物等、各種無機質充填剤があげられる。これらは単独でもしくは2種以上併せて用いることができる。また、無機質充填剤として、例えば、上記例示の無機物から調製される複合無機物粒子があげられ、好ましくは、酸化物から調製される複合無機酸化物粒子(具体的には、ガラス粒子等)があげられる。 Various inorganic fillers other than the above-mentioned white pigment can be blended with the silicone resin composition. The inorganic filler is usually blended for the purpose of improving the sheet moldability of the silicone resin composition. Specifically, the inorganic filler is blended with an A-stage silicone resin. Examples of the inorganic filler include silica (SiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide ( CaO), zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), oxides such as antimony oxide (Sb 2 O 3 ), for example, nitriding Examples of the inorganic filler include nitrides such as aluminum (AlN) and silicon nitride (Si 3 N 4 ). These may be used alone or in combination of two or more. In addition, examples of the inorganic filler include composite inorganic particles prepared from the above-exemplified inorganic materials, preferably composite inorganic oxide particles (specifically glass particles) prepared from an oxide. It is done.

 上記複合無機酸化物粒子としては、例えば、シリカ、あるいは、シリカおよび酸化ホウ素を主成分として含有し、また、アルミナ、酸化カルシウム、酸化亜鉛、酸化ストロンチウム、酸化マグネシウム、酸化ジルコニウム、酸化バリウム、酸化アンチモン等を副成分として含有する。複合無機酸化物粒子における主成分の含有割合は、複合無機酸化物粒子に対して、例えば、40重量%を超え、好ましくは、50重量%以上であり、また、例えば、90重量%以下、好ましくは、80重量%以下である。副成分の含有割合は、上記した主成分の含有割合の残部となる。 Examples of the composite inorganic oxide particles include silica, or silica and boron oxide as main components, and alumina, calcium oxide, zinc oxide, strontium oxide, magnesium oxide, zirconium oxide, barium oxide, and antimony oxide. Etc. are contained as subcomponents. The content ratio of the main component in the composite inorganic oxide particles is, for example, more than 40% by weight, preferably 50% by weight or more, for example, 90% by weight or less, preferably with respect to the composite inorganic oxide particles. Is 80% by weight or less. The content ratio of the subcomponent is the remainder of the content ratio of the main component described above.

 複合無機酸化物粒子は、上記した主成分および副成分を配合して、加熱して溶融させて、それらの溶融物を急冷し、その後、例えば、ボールミル等によって粉砕し、その後、必要により、適宜の表面加工(具体的には、球体化等)を施して、得られる。 The composite inorganic oxide particles are blended with the above-mentioned main component and subcomponents, heated and melted, rapidly cooled, and then pulverized by, for example, a ball mill, etc. It is obtained by performing surface processing (specifically, spheroidization etc.).

 無機質充填剤の形状は、特に限定されず、例えば、球状、板状、針状等があげられる。好ましくは、流動性の観点から、球状があげられる。無機質充填剤の平均粒径は、10~50μm、好ましくは15~40μmであり、より好ましくは15~30μm、特に好ましくは15~25μmである。無機質充填剤の平均粒径が大きすぎると、シリコーン樹脂組成物(ワニス状)において無機質充填剤が沈降する傾向がある。一方、無機質充填剤の平均粒径が小さすぎると、シリコーン樹脂組成物のシート成形性が低下したり、あるいは、透明性が低下する傾向がある。無機質充填剤の平均粒径は、レーザー回折散乱式粒度分布計により測定される。 The shape of the inorganic filler is not particularly limited, and examples thereof include a spherical shape, a plate shape, and a needle shape. Preferably, spherical shape is mentioned from a fluid viewpoint. The average particle size of the inorganic filler is 10 to 50 μm, preferably 15 to 40 μm, more preferably 15 to 30 μm, and particularly preferably 15 to 25 μm. If the average particle size of the inorganic filler is too large, the inorganic filler tends to settle in the silicone resin composition (varnish-like). On the other hand, if the average particle size of the inorganic filler is too small, the sheet moldability of the silicone resin composition tends to decrease, or the transparency tends to decrease. The average particle size of the inorganic filler is measured by a laser diffraction / scattering particle size distribution meter.

 さらには、上記無機質充填剤に比べて平均粒径がより小さいナノサイズの無機質充填剤を併用することができる。ナノサイズの無機質充填剤としては、例えば、いわゆる、ナノシリカと呼ばれる、平均粒径が数十~数百nm、具体的には平均粒径1~200nmの大きさの二酸化ケイ素からなる微粒子等が好ましく用いられる。 Furthermore, a nano-sized inorganic filler having an average particle size smaller than that of the inorganic filler can be used in combination. As the nano-sized inorganic filler, for example, so-called nano silica, fine particles made of silicon dioxide having an average particle size of several tens to several hundreds of nm, specifically, an average particle size of 1 to 200 nm are preferable. Used.

 無機質充填剤の屈折率は、1.50以上、好ましくは1.52以上であり、また、1.60以下、好ましくは1.58以下である。無機質充填剤の屈折率が上記範囲内にあれば、シートとして成形した場合、透明性を向上させることができる。無機質充填剤の屈折率は、アッベ屈折率計によって算出される。 The refractive index of the inorganic filler is 1.50 or more, preferably 1.52 or more, and 1.60 or less, preferably 1.58 or less. If the refractive index of the inorganic filler is within the above range, the transparency can be improved when the inorganic filler is formed as a sheet. The refractive index of the inorganic filler is calculated by an Abbe refractometer.

 そして、上記無機質充填剤の含有割合は、用途等を考慮して、シリコーン樹脂組成物全体の1~30体積%であることが好ましく、特に好ましくは5~20体積%である。すなわち、上記含有割合が少なすぎると、各種配合物の分散状態が不均一になる等の問題が生じる傾向がある。また、含有割合が多すぎると、配合成分を混合・分散する際、著しく増粘してしまい、結果、シリコーン樹脂組成物製のシートを作製することが困難となる。 The content of the inorganic filler is preferably 1 to 30% by volume, particularly preferably 5 to 20% by volume, based on the total amount of the silicone resin composition, in consideration of applications and the like. That is, when the content ratio is too small, there is a tendency that problems such as non-uniform dispersion of various compounds occur. Moreover, when there is too much a content rate, when mixing and dispersing a compounding component, it will remarkably thicken and it will become difficult to produce the sheet | seat made from a silicone resin composition as a result.

 さらに、上記白色顔料と無機質充填剤との混合割合は、初期光反射率の観点から、体積比で、(C)/(D)=0.6~1.5であることが好ましく、より好ましくは0.7~1.3である。すなわち、白色顔料と無機質充填剤との混合割合が、上記範囲を外れ、体積比が小さすぎると、シリコーン樹脂組成物硬化体の初期光反射率が低下する傾向がみられ、体積比が大きすぎると、シリコーン樹脂組成物の溶融粘度が上昇して、シリコーン樹脂組成物製のシートの作製が困難になる傾向がみられる。 Furthermore, the mixing ratio of the white pigment and the inorganic filler is preferably (C) / (D) = 0.6 to 1.5 in terms of volume ratio from the viewpoint of initial light reflectance, and more preferably. Is 0.7 to 1.3. That is, when the mixing ratio of the white pigment and the inorganic filler is out of the above range and the volume ratio is too small, the initial light reflectance of the cured silicone resin composition tends to decrease, and the volume ratio is too large. And the melt viscosity of a silicone resin composition rises, and the tendency for preparation of the sheet | seat made from a silicone resin composition to become difficult is seen.

〈他の添加剤〉
 そして、本発明のシリコーン樹脂組成物には、上記シリコーン樹脂、白色顔料、無機質充填剤以外に、変性剤(可塑剤)、酸化防止剤、難燃剤、消泡剤、レベリング剤、紫外線吸収剤等の各種添加剤を適宜配合することができる。
<Other additives>
In addition to the silicone resin, white pigment, and inorganic filler, the silicone resin composition of the present invention includes a modifier (plasticizer), an antioxidant, a flame retardant, an antifoaming agent, a leveling agent, an ultraviolet absorber, and the like. These various additives can be appropriately blended.

 上記変性剤(可塑剤)としては、例えば、シリコーン類、1~5価アルコール類等があげられる。 Examples of the modifier (plasticizer) include silicones and 1-5 pentahydric alcohols.

 上記酸化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、ホスフィン系化合物等があげられる。 Examples of the antioxidant include phenol compounds, amine compounds, organic sulfur compounds, phosphine compounds, and the like.

 上記難燃剤としては、例えば、水酸化マグネシウム等の金属水酸化物、臭素系難燃剤、窒素系難燃剤、リン系難燃剤等があげられ、さらに三酸化アンチモン等の難燃助剤を用いることもできる。 Examples of the flame retardant include metal hydroxides such as magnesium hydroxide, bromine-based flame retardants, nitrogen-based flame retardants, phosphorus-based flame retardants and the like, and further use a flame retardant aid such as antimony trioxide. You can also.

 上記消泡剤としては、例えば、各種シリコーン系化合物等の一般的な消泡剤があげられる。 Examples of the antifoaming agent include general antifoaming agents such as various silicone compounds.

〈シリコーン樹脂組成物〉
 本発明のシリコーン樹脂組成物を用いた、シート状のシリコーン樹脂組成物の製造方法について説明する。
 まず、シリコーン樹脂、白色顔料、無機質充填剤、さらには必要に応じて他の添加剤を配合してシリコーン樹脂組成物を調製する。具体的には、シリコーン樹脂が2段階硬化性である場合には、Aステージ状のシリコーン樹脂と、白色顔料、無機質充填剤とを含有するシリコーン樹脂組成物を調製する。これによって、白色顔料および無機質充填剤がシリコーン樹脂中に分散されたシリコーン樹脂組成物を、ワニスとして調製する。
<Silicone resin composition>
The manufacturing method of the sheet-like silicone resin composition using the silicone resin composition of this invention is demonstrated.
First, a silicone resin composition is prepared by blending a silicone resin, a white pigment, an inorganic filler, and, if necessary, other additives. Specifically, when the silicone resin is two-stage curable, a silicone resin composition containing an A stage-shaped silicone resin, a white pigment, and an inorganic filler is prepared. Thus, a silicone resin composition in which a white pigment and an inorganic filler are dispersed in a silicone resin is prepared as a varnish.

 ついで、調製したワニスを、ポリエチレンフィルム、ポリエステルフィルム等の高分子フィルムや、金属箔等の剥離シート表面に塗布する。このワニスの離型シートへの塗布によって、塗膜が形成される。 Next, the prepared varnish is applied to the surface of a release film such as a polymer film such as a polyethylene film or a polyester film, or a metal foil. A coating film is formed by applying the varnish to the release sheet.

 その後、塗膜を半硬化させる。具体的には、シリコーン樹脂が2段階熱硬化性を有するものであれば、塗膜を加熱する。加熱条件として、加熱温度が、通常、70~120℃、好ましくは80~100℃である。加熱温度が上記範囲であれば、塗膜を確実にBステージ状にすることができる。また、加熱時間は、通常、5~30分、好ましくは8~20分である。 Then, the coating film is semi-cured. Specifically, if the silicone resin has a two-stage thermosetting property, the coating film is heated. As heating conditions, the heating temperature is usually 70 to 120 ° C., preferably 80 to 100 ° C. If heating temperature is the said range, a coating film can be reliably made into B stage shape. The heating time is usually 5 to 30 minutes, preferably 8 to 20 minutes.

 これによって、塗膜におけるAステージ状のシリコーン樹脂組成物をBステージ状にする。すなわち、シリコーン樹脂において、アルケニル基およびシクロアルケニル基の少なくとも一方と、ヒドロシリル基とのヒドロシリル化反応が途中まで進行して、一旦、停止することによりBステージとなるのである。 Thereby, the A-stage silicone resin composition in the coating film is changed to the B-stage. That is, in the silicone resin, the hydrosilylation reaction between at least one of the alkenyl group and the cycloalkenyl group and the hydrosilyl group proceeds halfway, and once stops, the B stage is obtained.

 つぎに、上記シート状のシリコーン樹脂組成物を用いてリフレクタが形成されてなる光半導体素子(発光素子)の製造方法について説明する。 Next, a method for producing an optical semiconductor element (light emitting element) in which a reflector is formed using the sheet-like silicone resin composition will be described.

 図7は、光半導体素子(発光素子)の製造方法の一実施形態を示す工程図である。図7(a)に示すように、支持シート22上に複数の発光素子24を配置する。一方、発光素子24の上方には、剥離シート33上に積層形成されたシート状のシリコーン樹脂組成物(層)25aを、発光素子24とシリコーン樹脂組成物(層)25aが対峙するよう配置する。ついで、図7(b)に示すように、シリコーン樹脂組成物(層)25aを発光素子24に向けて圧着させ、シリコーン樹脂組成物(層)25a内に発光素子24を埋設した後、剥離シート33を剥離し除去する。ついで、図7(c)に示すように、全体を所定の条件にて加熱することにより、シリコーン樹脂組成物(層)25aを加熱硬化させることにより、シリコーン樹脂組成物25aからなるリフレクタ25を形成する(加熱硬化工程)。 FIG. 7 is a process diagram showing an embodiment of a method for manufacturing an optical semiconductor element (light emitting element). As shown in FIG. 7A, a plurality of light emitting elements 24 are arranged on the support sheet 22. On the other hand, the sheet-like silicone resin composition (layer) 25a laminated on the release sheet 33 is disposed above the light emitting element 24 so that the light emitting element 24 and the silicone resin composition (layer) 25a face each other. . Next, as shown in FIG. 7B, the silicone resin composition (layer) 25a is pressure-bonded toward the light emitting element 24, and the light emitting element 24 is embedded in the silicone resin composition (layer) 25a. 33 is peeled off and removed. Next, as shown in FIG. 7 (c), the whole is heated under a predetermined condition to heat and cure the silicone resin composition (layer) 25a, thereby forming a reflector 25 made of the silicone resin composition 25a. (Heat curing process).

 上記加熱条件は、Bステージ状のシリコーン樹脂組成物25aを完全硬化させるための条件であり、加熱温度は、通常、100~180℃、好ましくは135~165℃である。また、加熱時間は、通常、30~600分、好ましくは120~240分である。 The above heating conditions are conditions for completely curing the B-stage silicone resin composition 25a, and the heating temperature is usually 100 to 180 ° C., preferably 135 to 165 ° C. The heating time is usually 30 to 600 minutes, preferably 120 to 240 minutes.

 つぎに、図7(d)の破線で示すように、リフレクタ25を切断する(切断工程)。切断に際しては、例えば、円盤状のダイシングソー(ダイシングブレード)41を用いるダイシング装置、カッターを用いるカッティング装置、レーザー照射による切断装置等が用いられる。また、切断工程では、例えば、切り目28が支持シート22を貫通しないように切断する。上記切断工程によって、発光素子24と、上記発光素子24の側面全面を被覆するリフレクタ25とを備えたリフレクタ25形成済み発光素子(光半導体素子)24を、支持シート22面に密着した状態で得られる。 Next, as shown by a broken line in FIG. 7D, the reflector 25 is cut (cutting step). For cutting, for example, a dicing apparatus using a disc-shaped dicing saw (dicing blade) 41, a cutting apparatus using a cutter, a cutting apparatus using laser irradiation, or the like is used. In the cutting step, for example, the cut 28 is cut so as not to penetrate the support sheet 22. By the cutting step, the light emitting element (optical semiconductor element) 24 formed with the reflector 25 including the light emitting element 24 and the reflector 25 covering the entire side surface of the light emitting element 24 is obtained in close contact with the surface of the support sheet 22. It is done.

 つぎに、上記切断工程後、図7(e)に示すように、支持シート22を面方向に延伸させながら、支持シート22からリフレクタ25形成済み発光素子24を剥離する。具体的には、図7(d)において矢印で示すように、支持シート22を面方向外側に延伸させる。これによって、図7(e)に示すように、リフレクタ25形成済み発光素子24は、支持シート22に密着した状態で、切り目28に引張応力が集中するので、切り目28が広がり、各リフレクタ25形成済み発光素子24が互いに離間して、隙間39が形成される。その後、リフレクタ25形成済み発光素子24を支持シート22の上面から剥離する(剥離工程)。 Next, after the cutting step, as shown in FIG. 7E, the light emitting element 24 with the reflector 25 formed is peeled from the support sheet 22 while the support sheet 22 is stretched in the surface direction. Specifically, as shown by an arrow in FIG. 7D, the support sheet 22 is extended outward in the surface direction. Accordingly, as shown in FIG. 7E, the light emitting element 24 with the reflector 25 formed is in close contact with the support sheet 22, and tensile stress concentrates on the cut 28, so that the cut 28 is widened and each reflector 25 is formed. The light emitting elements 24 are separated from each other, and a gap 39 is formed. Thereafter, the light emitting element 24 with the reflector 25 formed is peeled off from the upper surface of the support sheet 22 (peeling step).

 上記剥離工程を具体的に説明すると、図7(e')に示すように、針などの押圧部材34と、コレットなどの吸引部材36とを備えるピックアップ装置によって、リフレクタ25形成済み発光素子24を支持シート22から剥離する。上記ピックアップ装置では、押圧部材34が、剥離したいリフレクタ25形成済み発光素子24に対応する支持シート22を下方から押圧する(押し上げる)ことによって、剥離したいリフレクタ25形成済み発光素子24を上方に押し上げて、押し上げられたリフレクタ25形成済み発光素子24を吸引部材36によって吸引しながら支持シート22から剥離する。このようにして、支持シート22から剥離されてなるリフレクタ25形成済み発光素子24が得られる。 When the peeling process is specifically described, as shown in FIG. 7 (e ′), the light emitting element 24 with the reflector 25 formed is formed by a pickup device including a pressing member 34 such as a needle and a suction member 36 such as a collet. Peel from support sheet 22. In the pick-up device, the pressing member 34 pushes the support sheet 22 corresponding to the light emitting element 24 formed with the reflector 25 to be peeled from below (pushes up), thereby pushing up the light emitting element 24 formed with the reflector 25 to be peeled upward. Then, the light-emitting element 24 with the reflector 25 that has been pushed up is peeled off from the support sheet 22 while being sucked by the suction member 36. In this way, the light emitting element 24 with the reflector 25 formed by peeling from the support sheet 22 is obtained.

 そして、剥離工程後、図6に示すように、リフレクタ25形成済み発光素子24を基板29に実装する。すなわち、リフレクタ25形成済み発光素子24を、発光素子24のバンプ(図示せず)が基板29の上面に設けられる端子(図示せず)と対向するよう、基板29と対向配置させることにより、リフレクタ25形成済み発光素子24を基板29にフリップチップ実装する。 Then, after the peeling process, as shown in FIG. 6, the light emitting element 24 in which the reflector 25 is formed is mounted on the substrate 29. That is, the light emitting element 24 in which the reflector 25 is formed is disposed so as to face the substrate 29 so that the bumps (not shown) of the light emitting element 24 face terminals (not shown) provided on the upper surface of the substrate 29. 25 The light emitting element 24 having been formed is flip-chip mounted on the substrate 29.

 その後、必要に応じて、図6に示すように、リフレクタ25形成済み発光素子24の発光素子24露呈面およびリフレクタ25上面を被覆するように、蛍光体を含有するシリコーン樹脂等の透明樹脂を用いて封止樹脂層30を設ける。このようにして、リフレクタ25形成済み発光素子24が搭載されたLED装置45(すなわち、光半導体装置)が得られる。 Thereafter, if necessary, as shown in FIG. 6, a transparent resin such as a silicone resin containing a phosphor is used so as to cover the light emitting element 24 exposed surface of the light emitting element 24 in which the reflector 25 is formed and the upper surface of the reflector 25. The sealing resin layer 30 is provided. Thus, the LED device 45 (that is, the optical semiconductor device) on which the light emitting element 24 with the reflector 25 formed is mounted is obtained.

 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

<第1の態様:エポキシ樹脂組成物>
 まず、エポキシ樹脂組成物の作製に先立って下記に示す各成分を準備した。
<First aspect: Epoxy resin composition>
First, each component shown below was prepared prior to the preparation of the epoxy resin composition.

[エポキシ樹脂(A)]
 トリグリシジルイソシアヌレート(エポキシ当量100)
[Epoxy resin (A)]
Triglycidyl isocyanurate (epoxy equivalent 100)

[酸無水物系硬化剤(B)]
 4-メチルヘキサヒドロ無水フタル酸(酸無水物当量168)
[Acid anhydride curing agent (B)]
4-Methylhexahydrophthalic anhydride (acid anhydride equivalent 168)

[硬化促進剤]
 メチルトリブチルホスホニウムジメチルホスフェート(日本化学工業社製,ヒシコーリンPX-4MP)
[Curing accelerator]
Methyltributylphosphonium dimethyl phosphate (Nippon Chemical Industry Co., Ltd., Hishicolin PX-4MP)

[酸化チタン(C)]
 ルチル型、平均粒径0.36μm
[Titanium oxide (C)]
Rutile type, average particle size 0.36μm

[シリカ粉末D1]
 溶融球状シリカ粉末(平均粒径20μm)
[シリカ粉末D2]
 溶融球状シリカ粉末(シリカ微粒子:平均粒径0.1μm)
[シリカ粉末D3]
 溶融球状シリカ粉末(シリカ微粒子:平均粒径5μm)
[シリカ粉末D4]
 溶融球状シリカ粉末(シリカ微粒子:平均粒径0.5μm)
[Silica powder D1]
Fused spherical silica powder (average particle size 20μm)
[Silica powder D2]
Fused spherical silica powder (silica fine particles: average particle size 0.1 μm)
[Silica powder D3]
Fused spherical silica powder (silica fine particles: average particle size 5 μm)
[Silica powder D4]
Fused spherical silica powder (silica fine particles: average particle size 0.5 μm)

〔実施例1~11、比較例1~3〕
 まず、エポキシ樹脂組成物の硬化物中での、酸化チタン(白色顔料)の粒子間距離、および、粒子間距離における標準偏差の各値を得るため、つぎのようにして測定を行なった。すなわち、上記の各材料を用いて、後記の表1に示す配合割合となるように、各材料を配合し、混練機にて溶融混練(温度25~150℃)を行ない、室温(25℃)まで冷却した後、粉砕することにより粉末状のエポキシ樹脂組成物を作製した。ついで、上記エポキシ樹脂組成物を用いて、175℃×2分間にて加熱硬化、さらに150℃×2時間のキュアを行なうことにより、樹脂硬化体(縦50mm×横50mm×厚み1mm)を作製し、これを測定用試料とした。
[Examples 1 to 11, Comparative Examples 1 to 3]
First, in order to obtain each value of the interparticle distance of titanium oxide (white pigment) and the standard deviation in the interparticle distance in the cured product of the epoxy resin composition, the measurement was performed as follows. That is, using each of the above materials, each material was blended so as to have the blending ratio shown in Table 1 below, and melt kneading (temperature 25 to 150 ° C.) was performed with a kneader, and room temperature (25 ° C.). After cooling down to pulverization, a powdery epoxy resin composition was prepared. Next, by using the above epoxy resin composition, heat curing at 175 ° C. × 2 minutes, and further curing at 150 ° C. × 2 hours, to produce a cured resin (length 50 mm × width 50 mm × thickness 1 mm). This was used as a measurement sample.

〔酸化チタンの粒子間距離・標準偏差の測定〕
 上記測定用試料を用い、走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ社製、FE-SEM S-4700)にて、10000倍の倍率で撮影してSEM断面画像の観察を行ない、画像解析ソフトImageJ Igolにて酸化チタンを二値化し、近接する3点間の重心間距離を算出した。この重心間距離から酸化チタンの粒径を差し引きすることにより、酸化チタンの粒子間距離、さらには酸化チタン粒子の粒子間距離における標準偏差を算出した。
[Measurement of inter-particle distance and standard deviation of titanium oxide]
Using the above measurement sample, a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, FE-SEM S-4700) was photographed at a magnification of 10,000 times to observe the SEM cross-sectional image, and image analysis software Titanium oxide was binarized using ImageJ Imol, and the distance between the centers of gravity between three adjacent points was calculated. By subtracting the particle diameter of titanium oxide from the distance between the centers of gravity, the standard deviation in the inter-particle distance of titanium oxide particles and further in the inter-particle distance of titanium oxide particles was calculated.

 これらの結果を後記の表1に併せて示す。 These results are also shown in Table 1 below.

<エポキシ樹脂組成物の作製>
 上記の各材料を、後記の表1に示す割合で配合し、ニーダーで溶融混練(温度25~150℃)を行ない、熟成した後、室温(25℃)まで冷却して粉砕することにより目的とする粉末状のエポキシ樹脂組成物を作製した。
<Preparation of epoxy resin composition>
Each of the above materials is blended in the proportions shown in Table 1 below, melt kneaded (temperature 25 to 150 ° C.) with a kneader, aged, cooled to room temperature (25 ° C.) and pulverized. A powdery epoxy resin composition was prepared.

 このようにして得られた実施例および比較例のエポキシ樹脂組成物を用い、下記の方法に従って各種評価[初期光反射率、反り量測定]の測定を行なった。その結果を後記の表1に示す。 Using the epoxy resin compositions of Examples and Comparative Examples thus obtained, various evaluations [initial light reflectance and warpage amount measurement] were measured according to the following methods. The results are shown in Table 1 below.

[初期光反射率]
 上記各エポキシ樹脂組成物を用い、厚み1mmの試験片を所定の硬化条件(条件:175℃×2分間の成形+150℃×2時間のキュア)にて作製し、この試験片(硬化物)を用いて初期光反射率を測定した。なお、測定装置として日本分光社製の分光光度計V-670を使用して、波長450nmの光反射率を室温(25℃)にて測定した。なお、判定では、初期光反射率が95%以上のものを「◎」、初期光反射率が94%のものを「○」、初期反射率が93%以下のものを「×」と評価した。
[Initial light reflectance]
Using each of the epoxy resin compositions described above, a test piece having a thickness of 1 mm was prepared under predetermined curing conditions (conditions: molding at 175 ° C. × 2 minutes + cure at 150 ° C. × 2 hours), and this test piece (cured product) was prepared. The initial light reflectance was measured. A spectrophotometer V-670 manufactured by JASCO Corporation was used as a measuring apparatus, and the light reflectance at a wavelength of 450 nm was measured at room temperature (25 ° C.). In the determination, an initial light reflectance of 95% or more was evaluated as “◎”, an initial light reflectance of 94% as “◯”, and an initial reflectance as 93% or less as “X”. .

[反り量測定]
 上記各エポキシ樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製のリードフレームをトランスファー成形機に設置し、トランスファー成形(成形条件:175℃×2分間の成形+150℃×2時間のキュア)を行なうことにより、図1に示す、リフレクタ4と、そのリフレクタ4に形成された凹部5と、その凹部5内に設けられた第1のプレート部1と第2のプレート部2とからなる構造を縦に13個、横に13個配置した外寸が50mm×59mmのリードフレームを製造した。
[Measure warpage]
An optical semiconductor (light emitting) device having the configuration shown in FIG. 1 was manufactured using each of the epoxy resin compositions. That is, by installing a lead frame made of copper (silver plating) on a transfer molding machine and performing transfer molding (molding conditions: 175 ° C. × 2 minutes of molding + 150 ° C. × 2 hours of curing), FIG. 13 structures vertically and 13 horizontally comprising a reflector 4, a recess 5 formed in the reflector 4, and a first plate portion 1 and a second plate portion 2 provided in the recess 5. A lead frame having an outer dimension of 50 mm × 59 mm was manufactured.

 このようにして得られた上記リードフレーム(サンプル)を、常温(25℃)にて平坦な台の上に静置して、レーザー変位計(ティーテック社製、温度可変レーザー三次元測定機)を用い、台からみてサンプルの位置する最高点と最低点を測定し、その差を最大の反り量とした。その結果、最大の反り量が650μm以下のものを「◎」、650μmを超え1000μm未満のものを「○」、1000μm以上のものを「×」として評価した。 The lead frame (sample) thus obtained was left on a flat table at room temperature (25 ° C.), and a laser displacement meter (manufactured by TETECH Co., Ltd., temperature variable laser three-dimensional measuring machine). Was used to measure the highest and lowest points of the sample as viewed from the table, and the difference was taken as the maximum amount of warpage. As a result, the case where the maximum warpage amount was 650 μm or less was evaluated as “◎”, the case where it exceeded 650 μm and less than 1000 μm was evaluated as “◯”, and the case where the maximum warp amount was 1000 μm or more was evaluated as “X”.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 上記結果から、本発明に規定した特定の粒子間距離を備えた白色顔料である酸化チタンを配合してなる実施例品は、高い初期光反射率が得られ、反り測定においても反り量が小さく優れた結果が得られた。そして、上記特定の粒子間距離とともに、酸化チタン粒子間距離における特定の標準偏差を備えた実施例1~9品は、初期光反射率および反り測定の双方とも、あるいはいずれか一方において、特に優れた結果が得られた。中でも、エポキシ樹脂組成物からなる硬化物中の酸化チタンが、酸化チタン間の粒子間距離(y)と、酸化チタン粒子間距離における標準偏差(x)の関係(縦軸:酸化チタン間の粒子間距離における標準偏差σ(y)-横軸:酸化チタン間の粒子間距離(x))において、前述の式(1)~式(4)にて囲まれた領域(境界線を含む:図5参照)を満足する実施例1~4,9品、および、平均粒径20μmの溶融シリカ粉末とともに平均粒径が0.1~5μmの範囲の溶融球状シリカ粉末(シリカ微粒子)を併用してなる実施例5~7品は、初期光反射率および反り測定の双方ともに、特に優れた結果が得られた。 From the above results, the example product formed by blending titanium oxide, which is a white pigment having a specific interparticle distance defined in the present invention, has a high initial light reflectance, and the amount of warpage is small even in warpage measurement. Excellent results were obtained. The products of Examples 1 to 9 having a specific standard deviation in the distance between the titanium oxide particles together with the specific interparticle distance are particularly excellent in both or either of the initial light reflectance and the warp measurement. Results were obtained. Among these, the titanium oxide in the cured product made of the epoxy resin composition has a relationship between the interparticle distance (y) between titanium oxides and the standard deviation (x) in the distance between titanium oxide particles (vertical axis: particles between titanium oxides). Standard deviation σ (y) in the inter-distance-horizontal axis: inter-particle distance between titanium oxides (x)), the region (including the boundary line) enclosed by the above-described formulas (1) to (4): 5), and fused spherical silica powder (silica fine particles) having an average particle size in the range of 0.1 to 5 μm together with fused silica powder having an average particle size of 20 μm. In Examples 5-7, particularly excellent results were obtained in both initial light reflectance and warpage measurement.

 これに対して、本発明の規定から外れる粒子間距離を備えるよう酸化チタンを配合してなる比較例1,2品は、反り判定に関しては良好な結果が得られたが、初期光反射率に劣る結果が得られた。また、本発明に規定した特定の粒子間距離を備えた白色顔料である酸化チタンを配合しているが、酸化チタンの体積比率が規定範囲を外れ大きい比較例3品は、初期光反射率に関しては優れた結果が得られたが、反り量が多く反り評価に劣る結果となった。 On the other hand, Comparative Examples 1 and 2 in which titanium oxide is blended so as to have an interparticle distance deviating from the provisions of the present invention have obtained good results with regard to warpage determination, but the initial light reflectance Inferior results were obtained. Moreover, although the titanium oxide which is a white pigment provided with the specific interparticle distance prescribed | regulated to this invention is mix | blended, the comparative example 3 product from which the volume ratio of a titanium oxide is large outside a regulation range is related with an initial stage light reflectance. Gave excellent results, but resulted in a large amount of warpage and inferior warpage evaluation.

[1.光半導体(発光)装置(1)の作製]
 つぎに、上記実施例1品である粉末を打錠したタブレット状のエポキシ樹脂組成物を用いて、図1に示す構成の光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の複数の対となった第1のプレート部1と第2のプレート部2を有する金属リードフレームをトランスファー成形機の金型内に設置し、上記エポキシ樹脂組成物を用いてトランスファー成形(条件:175℃×2分間の成形+150℃×2時間のキュア)を行なうことにより、図1に示す、金属リードフレームの所定位置にリフレクタ4(最薄厚み0.2mm)を形成した。ついで、光半導体(発光)素子(大きさ:0.5mm×0.5mm)3を搭載し、この光半導体素子3と上記金属リードフレームをボンディングワイヤー7,8にて電気的に接続することにより、リフレクタ4と、金属リードフレームと、光半導体素子3とを備えたユニットを製造した。
[1. Fabrication of optical semiconductor (light emitting) device (1)]
Next, an optical semiconductor (light emitting) device having the configuration shown in FIG. 1 was manufactured using a tablet-like epoxy resin composition obtained by tableting the powder of Example 1 above. That is, a metal lead frame having a plurality of pairs of a first plate portion 1 and a second plate portion 2 made of copper (silver plating) is placed in a mold of a transfer molding machine, and the epoxy resin composition By performing transfer molding (condition: 175 ° C. × 2 minutes molding + 150 ° C. × 2 hours curing), the reflector 4 (thinnest thickness 0.2 mm) is formed at a predetermined position of the metal lead frame shown in FIG. Formed. Next, an optical semiconductor (light emitting) element (size: 0.5 mm × 0.5 mm) 3 is mounted, and the optical semiconductor element 3 and the metal lead frame are electrically connected by bonding wires 7 and 8. A unit including the reflector 4, the metal lead frame, and the optical semiconductor element 3 was manufactured.

 つぎに、上記金属リードフレームとリフレクタ4の内周面とで形成される凹部5に、シリコーン樹脂(信越シリコーン社製、KER-2500)を充填して上記光半導体素子3を樹脂封止(成形条件:150℃×4時間)することにより透明な封止樹脂層6を形成し、リフレクタごとにダイシングにより個片化し、図1に示す光半導体(発光)装置を作製した。得られた光半導体(発光)装置は、高い初期光反射率を備えるとともに反り発生が抑制された高信頼性を備えた良好なものであった。 Next, a recess 5 formed by the metal lead frame and the inner peripheral surface of the reflector 4 is filled with a silicone resin (manufactured by Shin-Etsu Silicone Co., Ltd., KER-2500), and the optical semiconductor element 3 is resin-sealed (molded). (Condition: 150 ° C. × 4 hours), a transparent sealing resin layer 6 was formed, and each reflector was separated into pieces by dicing to produce the optical semiconductor (light emitting) device shown in FIG. The obtained optical semiconductor (light emitting) device was a good device having a high initial light reflectance and a high reliability in which the occurrence of warpage was suppressed.

[2.光半導体(発光)装置(2)の作製]
 上記実施例1品である粉末を打錠したタブレット状のエポキシ樹脂組成物を用いて、図2および図3に示す構成を備えた光半導体(発光)装置を製造した。すなわち、銅(銀メッキ)製の金属リードフレーム10をトランスファー成形機の金型内に設置し、上記エポキシ樹脂組成物を用いてトランスファー成形(175℃×2分間の成形+150℃×2時間のキュア)を行なうことにより、図2に示す、金属リードフレーム10の所定位置にリフレクタ11を形成した。ついで、光半導体(発光)素子(大きさ:0.5mm×0.5mm)3を搭載し、この光半導体素子3と上記金属リードフレーム10をボンディングワイヤー12にて電気的に接続することにより、リフレクタ11と、金属リードフレーム10と、光半導体素子3とを備えたユニットを製造した。
[2. Fabrication of optical semiconductor (light emitting) device (2)]
An optical semiconductor (light emitting) device having the configuration shown in FIGS. 2 and 3 was manufactured using a tablet-like epoxy resin composition obtained by tableting the powder of Example 1 above. That is, a metal lead frame 10 made of copper (silver plating) is placed in a mold of a transfer molding machine, and transfer molding using the above epoxy resin composition (molding at 175 ° C. × 2 minutes + 150 ° C. × 2 hours of curing) ) To form a reflector 11 at a predetermined position of the metal lead frame 10 shown in FIG. Next, by mounting an optical semiconductor (light emitting) element (size: 0.5 mm × 0.5 mm) 3 and electrically connecting the optical semiconductor element 3 and the metal lead frame 10 with a bonding wire 12, A unit including the reflector 11, the metal lead frame 10, and the optical semiconductor element 3 was manufactured.

 つぎに、図2のユニット上に、コンプレッション成形もしくはシート封止により、封止樹脂層13を形成することで、光半導体(発光)装置を作製した(図3参照)。得られた光半導体(発光)装置は、高い初期光反射率を備えるとともに反り発生が抑制された高信頼性を備えた良好なものであった。 Next, an optical semiconductor (light emitting) device was manufactured by forming the sealing resin layer 13 on the unit of FIG. 2 by compression molding or sheet sealing (see FIG. 3). The obtained optical semiconductor (light emitting) device was a good device having a high initial light reflectance and a high reliability in which the occurrence of warpage was suppressed.

<第2の態様:シリコーン樹脂組成物>
 まず、シート状のシリコーン樹脂組成物の作製に先立って下記に示す各成分を準備した。
<Second aspect: silicone resin composition>
First, each component shown below was prepared prior to preparation of the sheet-like silicone resin composition.

<アルケニル基含有ポリシロキサンおよびヒドロシリル基含有ポリシロキサンの合成>
(合成例1)
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつメチルフェニルジメトキシシラン729.2gとフェニルトリメトキシシラン330.5gの混合物1時間かけて滴下し、滴下終了後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。その後、酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンAを得た。アルケニル基含有ポリシロキサンAの平均単位式および平均組成式は、以下の通りである。
<Synthesis of alkenyl group-containing polysiloxane and hydrosilyl group-containing polysiloxane>
(Synthesis Example 1)
In a four-necked flask equipped with a stirrer, reflux condenser, charging port and thermometer, 93.2 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 140 g of water, trifluoromethanesulfone 0.38 g of acid and 500 g of toluene were added and mixed. While stirring, a mixture of 729.2 g of methylphenyldimethoxysilane and 330.5 g of phenyltrimethoxysilane was added dropwise over 1 hour. After completion of the addition, the mixture was heated to reflux for 1 hour. . Then, it cooled, the lower layer (water layer) was isolate | separated and removed, and the upper layer (toluene solution) was washed with water 3 times. 0.40 g of potassium hydroxide was added to the toluene solution washed with water, and the mixture was refluxed while removing water from the water separation tube. After completion of water removal, the mixture was further refluxed for 5 hours and cooled. Thereafter, 0.6 g of acetic acid was added for neutralization, and then the toluene solution obtained by filtration was washed with water three times. Then, liquid alkenyl group containing polysiloxane A was obtained by concentrating under reduced pressure. The average unit formula and average composition formula of the alkenyl group-containing polysiloxane A are as follows.

 平均単位式:
(CH2=CH(CH32SiO1/20.15(CH365SiO2/20.60(C65SiO3/20.25
 平均組成式:
(CH2=CH)0.15(CH30.90(C650.85SiO1.05
Average unit formula:
(CH 2 = CH (CH 3 ) 2 SiO 1/2 ) 0.15 (CH 3 C 6 H 5 SiO 2/2 ) 0.60 (C 6 H 5 SiO 3/2 ) 0.25
Average composition formula:
(CH 2 = CH) 0.15 (CH 3 ) 0.90 (C 6 H 5 ) 0.85 SiO 1.05

 すなわち、アルケニル基含有ポリシロキサンAは、式(I)において、R1がビニル基、R2がメチル基およびフェニル基であり、a=0.15、b=1.75である。 That is, in the alkenyl group-containing polysiloxane A, in formula (I), R 1 is a vinyl group, R 2 is a methyl group and a phenyl group, and a = 0.15 and b = 1.75.

 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンAのポリスチレン換算の重量平均分子量を測定したところ、2300であった。 The weight average molecular weight in terms of polystyrene of the alkenyl group-containing polysiloxane A was measured by gel permeation chromatography and found to be 2300.

(合成例2)
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン93.2g、水140g、トリフルオロメタンスルホン酸0.38gおよびトルエン500gを投入して混合し、撹拌しつつジフェニルジメトキシシラン173.4gとフェニルトリメトキシシラン300.6gの混合物1時間かけて滴下し、滴下終了後、1時間加熱還流した。その後、冷却し、下層(水層)を分離して除去し、上層(トルエン溶液)を3回水洗した。水洗したトルエン溶液に水酸化カリウム0.40gを加え、水分離管から水を除去しながら還流した。水の除去完了後、さらに5時間還流し、冷却した。酢酸0.6gを投入して中和した後、ろ過して得られたトルエン溶液を3回水洗した。その後、減圧濃縮することにより、液体状のアルケニル基含有ポリシロキサンBを得た。アルケニル基含有ポリシロキサンBの平均単位式および平均組成式は、以下の通りである。
(Synthesis Example 2)
In a four-necked flask equipped with a stirrer, reflux condenser, charging port and thermometer, 93.2 g of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 140 g of water, trifluoromethanesulfone 0.38 g of acid and 500 g of toluene were added and mixed. While stirring, a mixture of 173.4 g of diphenyldimethoxysilane and 300.6 g of phenyltrimethoxysilane was added dropwise over 1 hour. After completion of the addition, the mixture was heated to reflux for 1 hour. Then, it cooled, the lower layer (water layer) was isolate | separated and removed, and the upper layer (toluene solution) was washed with water 3 times. 0.40 g of potassium hydroxide was added to the toluene solution washed with water, and the mixture was refluxed while removing water from the water separation tube. After completion of water removal, the mixture was further refluxed for 5 hours and cooled. After neutralizing by adding 0.6 g of acetic acid, the toluene solution obtained by filtration was washed with water three times. Then, liquid alkenyl group containing polysiloxane B was obtained by concentrating under reduced pressure. The average unit formula and average composition formula of the alkenyl group-containing polysiloxane B are as follows.

 平均単位式:
(CH2=CH(CH32SiO1/20.31((C652SiO2/20.22(C65SiO3/20.47
 平均組成式:
(CH2=CH)0.31(CH30.62(C650.91SiO1.08
Average unit formula:
(CH 2 = CH (CH 3 ) 2 SiO 1/2 ) 0.31 ((C 6 H 5 ) 2 SiO 2/2 ) 0.22 (C 6 H 5 SiO 3/2 ) 0.47
Average composition formula:
(CH 2 = CH) 0.31 (CH 3 ) 0.62 (C 6 H 5 ) 0.91 SiO 1.08

 すなわち、アルケニル基含有ポリシロキサンBは、式(I)において、R1がビニル基、R2がメチル基およびフェニル基であり、a=0.31、b=1.53である。 That is, in the alkenyl group-containing polysiloxane B, in formula (I), R 1 is a vinyl group, R 2 is a methyl group and a phenyl group, and a = 0.31 and b = 1.53.

 また、ゲル透過クロマトグラフィーによって、アルケニル基含有ポリシロキサンBのポリスチレン換算の重量平均分子量を測定したところ、1000であった。 Further, the polystyrene equivalent weight average molecular weight of the alkenyl group-containing polysiloxane B was measured by gel permeation chromatography and found to be 1000.

(合成例3)
 撹拌機、還流冷却管、投入口および温度計が装備された四ツ口フラスコに、ジフェニルジメトキシシラン325.9g、フェニルトリメトキシシラン564.9g、およびトリフルオロメタンスルホン酸2.36gを投入して混合し、1,1,3,3-テトラメチルジシロキサン134.3gを加え、撹拌しつつ酢酸432gを30分かけて滴下した。滴下終了後、混合物を撹拌しつつ50℃に昇温して3時間反応させた。室温まで冷却した後、トルエンと水を加え、良く混合して静置し、下層(水層)を分離して除去した。その後、上層(トルエン溶液)を3回水洗した後、減圧濃縮することにより、ヒドロシリル基含有ポリシロキサンC(架橋剤C)を得た。
(Synthesis Example 3)
Diphenyldimethoxysilane (325.9 g), phenyltrimethoxysilane (564.9 g), and trifluoromethanesulfonic acid (2.36 g) were added to a four-necked flask equipped with a stirrer, reflux condenser, inlet, and thermometer. Then, 134.3 g of 1,1,3,3-tetramethyldisiloxane was added, and 432 g of acetic acid was added dropwise over 30 minutes while stirring. After completion of dropping, the mixture was heated to 50 ° C. with stirring and reacted for 3 hours. After cooling to room temperature, toluene and water were added, mixed well and allowed to stand, and the lower layer (aqueous layer) was separated and removed. Thereafter, the upper layer (toluene solution) was washed with water three times and then concentrated under reduced pressure to obtain hydrosilyl group-containing polysiloxane C (crosslinking agent C).

 ヒドロシリル基含有ポリシロキサンCの平均単位式および平均組成式は、以下の通りである。 The average unit formula and average composition formula of the hydrosilyl group-containing polysiloxane C are as follows.

 平均単位式:
(H(CH32SiO1/20.33((C652SiO2/20.22(C65PhSiO3/20.45
 平均組成式:
0.33(CH30.66(C650.89SiO1.06
Average unit formula:
(H (CH 3 ) 2 SiO 1/2 ) 0.33 ((C 6 H 5 ) 2 SiO 2/2 ) 0.22 (C 6 H 5 PhSiO 3/2 ) 0.45
Average composition formula:
H 0.33 (CH 3 ) 0.66 (C 6 H 5 ) 0.89 SiO 1.06

 すなわち、ヒドロシリル基含有ポリシロキサンCは、式(II)において、R3がメチル基およびフェニル基であり、c=0.33、d=1.55である。 That is, in the hydrosilyl group-containing polysiloxane C, in formula (II), R 3 is a methyl group and a phenyl group, and c = 0.33 and d = 1.55.

 また、ゲル透過クロマトグラフィーによって、ヒドロシリル基含有ポリシロキサンCのポリスチレン換算の重量平均分子量を測定したところ、1000であった。 Further, the polystyrene equivalent weight average molecular weight of the hydrosilyl group-containing polysiloxane C was measured by gel permeation chromatography and found to be 1000.

 さらに、シリコーン樹脂の調製のために、白金カルボニル錯体(商品名「SIP6829.2」、Gelest社製、白金濃度2.0重量%)を準備した。 Furthermore, a platinum carbonyl complex (trade name “SIP6829.2”, manufactured by Gelest, platinum concentration of 2.0% by weight) was prepared for the preparation of a silicone resin.

[シリコーン樹脂の調製]
(シリコーン樹脂)
 アルケニル基含有ポリシロキサンA(合成例1)20g、アルケニル基含有ポリシロキサンB(合成例2)25g、ヒドロシリル基含有ポリシロキサンC(合成例3、架橋剤C)25g、および、白金カルボニル錯体5mgを混合して、シリコーン樹脂を調製した。
[Preparation of silicone resin]
(Silicone resin)
20 g of alkenyl group-containing polysiloxane A (Synthesis Example 1), 25 g of alkenyl group-containing polysiloxane B (Synthesis Example 2), 25 g of hydrosilyl group-containing polysiloxane C (Synthesis Example 3, crosslinker C), and 5 mg of platinum carbonyl complex A silicone resin was prepared by mixing.

[複合無機酸化物粒子]
 屈折率1.55、組成および組成比率(重量%):SiO2/Al23/CaO/MgO=60/20/15/5の複合無機酸化物粒子であり、平均粒子径20μmである。
[Composite inorganic oxide particles]
Composite inorganic oxide particles having a refractive index of 1.55, a composition and a composition ratio (% by weight): SiO 2 / Al 2 O 3 / CaO / MgO = 60/20/15/5, and an average particle diameter of 20 μm.

[ナノシリカ]
 R976S(日本アエロジル社製、フュームドシリカ)
[Nanosilica]
R976S (Nippon Aerosil, fumed silica)

[酸化チタン]
 ルチル型、平均粒径0.36μm
[Titanium oxide]
Rutile type, average particle size 0.36μm

〔実施例12~13、比較例4〕
 まず、シリコーン樹脂組成物の硬化物中での、酸化チタン(白色顔料)の粒子間距離、および、粒子間距離における標準偏差の各値を得るため、つぎのようにして測定を行なった。すなわち、上記の各材料を用いて、後記の表2に示す配合割合となるように、各材料を配合し、シリコーン樹脂組成物のワニスとして調製した。ついで、調製したワニスを、アプリケータにて、厚み600μmの剥離シート(PTEシート、商品名「SS4C」、ニッパ社製)の表面に、加熱後の厚みが600μmとなるように塗布し、その後、90℃で9.5分、加熱することにより、ワニスにおけるシリコーン樹脂組成物をBステージ状化(半硬化)させた。これにより、Bステージ状のシリコーン樹脂組成物を製造した。つぎに、150℃×180分間にて加熱硬化(完全硬化)を行なうことにより、シリコーン樹脂組成物硬化体(縦50mm×横50mm×厚み0.1mm)を作製し、これを測定用試料とした。
[Examples 12 to 13, Comparative Example 4]
First, in order to obtain each value of the distance between particles of titanium oxide (white pigment) and the standard deviation in the distance between particles in the cured product of the silicone resin composition, the measurement was performed as follows. That is, using each of the above materials, each material was blended so as to have a blending ratio shown in Table 2 below, and prepared as a varnish for the silicone resin composition. Next, the prepared varnish was applied to the surface of a release sheet (PTE sheet, trade name “SS4C”, manufactured by Nipper Co., Ltd.) having a thickness of 600 μm with an applicator so that the thickness after heating becomes 600 μm, By heating at 90 ° C. for 9.5 minutes, the silicone resin composition in the varnish was B-staged (semi-cured). Thereby, a B-stage silicone resin composition was produced. Next, a cured silicone resin composition (length 50 mm × width 50 mm × thickness 0.1 mm) was prepared by heat curing (complete curing) at 150 ° C. × 180 minutes, and this was used as a measurement sample. .

〔酸化チタンの粒子間距離・標準偏差の測定〕
 上記測定用試料を用い、走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ社製、FE-SEM S-4700)にて、10000倍の倍率で撮影してSEM断面画像の観察を行ない、画像解析ソフトImageJ Igolにて酸化チタンを二値化し、近接する3点間の重心間距離を算出した。この重心間距離から酸化チタンの粒径を差し引きすることにより、酸化チタンの粒子間距離、さらには酸化チタン粒子の粒子間距離における標準偏差を算出した。
[Measurement of inter-particle distance and standard deviation of titanium oxide]
Using the above measurement sample, a scanning electron microscope (SEM) (manufactured by Hitachi High-Technologies Corporation, FE-SEM S-4700) was photographed at a magnification of 10,000 times to observe the SEM cross-sectional image, and image analysis software Titanium oxide was binarized using ImageJ Imol, and the distance between the centers of gravity between three adjacent points was calculated. By subtracting the particle diameter of titanium oxide from the distance between the centers of gravity, the standard deviation in the inter-particle distance of titanium oxide particles and further in the inter-particle distance of titanium oxide particles was calculated.

 これらの結果を後記の表2に併せて示す。 These results are also shown in Table 2 below.

<シリコーン樹脂組成物の作製>
 上記の各材料を、後記の表2に示す割合で配合し、上記と同様にして目的とするシート状のシリコーン樹脂組成物(Bステージ状)を作製した。
<Preparation of silicone resin composition>
Each of the above materials was blended in the proportions shown in Table 2 below, and the target sheet-like silicone resin composition (B-stage shape) was produced in the same manner as described above.

 このようにして得られた実施例および比較例のシリコーン樹脂組成物を用い、下記の方法に従って各種評価[初期光反射率、製膜性]の測定・評価を行なった。その結果を後記の表2に示す。 Using the silicone resin compositions of Examples and Comparative Examples thus obtained, various evaluations [initial light reflectance, film forming property] were measured and evaluated according to the following methods. The results are shown in Table 2 below.

[初期光反射率]
 上記各シート状のシリコーン樹脂組成物(Bステージ状)を用い、厚み0.1mmの試験片を所定の硬化条件(条件:150℃×180分間)にて作製し、この試験片(硬化物)を用いて初期光反射率を測定した。なお、測定装置として日本分光社製の分光光度計V-670を使用して、波長450nmの光反射率を室温(25℃)にて測定した。なお、判定では、初期光反射率が95%以上のものを「◎」、初期光反射率が94%のものを「○」、初期反射率が93%以下のものを「×」と評価した。
[Initial light reflectance]
Using each of the sheet-like silicone resin compositions (B-stage), a test piece having a thickness of 0.1 mm was prepared under predetermined curing conditions (conditions: 150 ° C. × 180 minutes), and this test piece (cured product) Was used to measure the initial light reflectance. A spectrophotometer V-670 manufactured by JASCO Corporation was used as a measuring apparatus, and the light reflectance at a wavelength of 450 nm was measured at room temperature (25 ° C.). In the determination, an initial light reflectance of 95% or more was evaluated as “◎”, an initial light reflectance of 94% as “◯”, and an initial reflectance as 93% or less as “X”. .

[製膜性(シート生産性)]
 上記シート状のシリコーン樹脂組成物(Bステージ状)を作製した際の塗膜の膜厚均一性に着目し、つぎの基準に従い評価した。すなわち、気泡の巻き込みがなく塗膜の膜厚が均一な状態を「○」、気泡を巻き込みシートの膜厚が不均一な状態を「△」、気泡の巻き込みが著しくシートとしての性状をなさないものを「×」と評価した。
[Film formability (sheet productivity)]
Attention was paid to the film thickness uniformity of the coating film when the sheet-shaped silicone resin composition (B-stage shape) was produced, and evaluation was performed according to the following criteria. That is, “◯” indicates that there is no bubble entrainment and the coating film has a uniform film thickness, “Δ” indicates that the film entrains bubbles and the film thickness is not uniform, and the bubble entrainment does not remarkably form the sheet. Things were rated as “x”.

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 上記結果から、本発明に規定した特定の粒子間距離を備えた白色顔料である酸化チタンを配合してなる実施例12,13品は、高い初期光反射率が得られ、製膜性においても特に劣る評価ではなかった。これに対して、本発明の規定から外れる粒子間距離を備えるよう酸化チタンを配合してなる比較例4品は、製膜性に関しては良好な評価結果が得られたが、初期光反射率に劣る結果が得られた。 From the above results, the products of Examples 12 and 13 formed by blending titanium oxide, which is a white pigment having a specific interparticle distance defined in the present invention, have a high initial light reflectivity, and also in film-forming properties. The evaluation was not particularly inferior. On the other hand, the comparative example 4 product which mix | blends titanium oxide so that it may have the distance between particle | grains which remove | deviate from the prescription | regulation of this invention obtained the favorable evaluation result regarding film forming property, but it is in initial stage light reflectivity. Inferior results were obtained.

[3.LED装置の作製]
 つぎに、上記実施例12品であるシート状のシリコーン樹脂組成物を用いて、図6に示す構成の光半導体素子(発光素子)を製造した。すなわち、シート状のシリコーン樹脂組成物を用い、先に述べた図7に示す、リフレクタが形成されてなる光半導体素子(発光素子)の製造方法に従い、リフレクタ25形成済み発光素子24を製造した。ついで、上記リフレクタ25形成済み発光素子24を基板29にフリップチップ実装した。実装後、リフレクタ25形成済み発光素子24の発光素子24露呈面およびリフレクタ25上面を封止するように、シリコーン樹脂を用いて封止樹脂層30を形成してLED装置45を作製した。得られたLED装置45は、高い初期光反射率を備えた良好なものであった。
[3. Production of LED device]
Next, an optical semiconductor element (light emitting element) having the configuration shown in FIG. 6 was manufactured using the sheet-like silicone resin composition which is the product of Example 12 above. That is, using the sheet-shaped silicone resin composition, the light-emitting element 24 with the reflector 25 formed thereon was manufactured according to the method for manufacturing an optical semiconductor element (light-emitting element) in which the reflector was formed as shown in FIG. Next, the light emitting element 24 with the reflector 25 formed thereon was flip-chip mounted on the substrate 29. After the mounting, the sealing resin layer 30 was formed using silicone resin so as to seal the light emitting element 24 exposed surface of the light emitting element 24 in which the reflector 25 had been formed and the upper surface of the reflector 25, thereby producing the LED device 45. The obtained LED device 45 was good with high initial light reflectivity.

 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.

 本発明の光半導体装置用熱硬化性樹脂組成物は、光半導体装置に内蔵された光半導体素子から発する光を反射させるリフレクタの形成材料として有用である。 The thermosetting resin composition for an optical semiconductor device of the present invention is useful as a reflector forming material that reflects light emitted from an optical semiconductor element incorporated in the optical semiconductor device.

 1 第1のプレート部
 2 第2のプレート部
 3,24 光半導体素子(発光素子)
 4,11,25 リフレクタ
 5 凹部
 6,30 封止樹脂層
 7,8,12 ボンディングワイヤー
10 金属リードフレーム
29 基板
45 LED装置
DESCRIPTION OF SYMBOLS 1 1st plate part 2 2nd plate part 3,24 Optical semiconductor element (light emitting element)
4, 11, 25 Reflector 5 Concave portion 6, 30 Sealing resin layer 7, 8, 12 Bonding wire 10 Metal lead frame 29 Substrate 45 LED device

Claims (18)

 熱硬化性樹脂および白色顔料を含有する光半導体装置用熱硬化性樹脂組成物であって、上記熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離が50~420nmであり、かつ樹脂組成物中の有機成分と白色顔料の合計体積量に対する白色顔料の体積比率が7.5~23体積%であることを特徴とする光半導体装置用熱硬化性樹脂組成物。 A thermosetting resin composition for an optical semiconductor device comprising a thermosetting resin and a white pigment, wherein the interparticle distance between the white pigments in the cured product comprising the thermosetting resin composition is 50 to 420 nm. A thermosetting resin composition for an optical semiconductor device, wherein the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition is 7.5 to 23% by volume.  下記の(A)~(D)を含有し、熱硬化性樹脂組成物全体における(D)無機質充填剤の占める割合が60~85体積%であり、かつ熱硬化性樹脂組成物からなる硬化物中の(C)白色顔料間の粒子間距離が50~250nmである請求項1記載の光半導体装置用熱硬化性樹脂組成物。
(A)エポキシ樹脂。
(B)酸無水物系硬化剤。
(C)白色顔料。
(D)上記(C)白色顔料以外の無機質充填剤。
A cured product comprising the following (A) to (D), wherein the proportion of the (D) inorganic filler in the entire thermosetting resin composition is 60 to 85% by volume, and comprising the thermosetting resin composition: The thermosetting resin composition for an optical semiconductor device according to claim 1, wherein the interparticle distance between the white pigment (C) is 50 to 250 nm.
(A) Epoxy resin.
(B) An acid anhydride curing agent.
(C) White pigment.
(D) An inorganic filler other than the above (C) white pigment.
 熱硬化性樹脂組成物からなる硬化物中の(C)白色顔料間の粒子間距離における標準偏差が100~350である請求項2記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for an optical semiconductor device according to claim 2, wherein the standard deviation in the interparticle distance between (C) white pigments in the cured product comprising the thermosetting resin composition is 100 to 350.  熱硬化性樹脂組成物からなる硬化物中の(C)白色顔料間の粒子間距離が50~235nmであり、上記硬化物中の(C)白色顔料間の粒子間距離における標準偏差が160~270である請求項2または3記載の光半導体装置用熱硬化性樹脂組成物。 The distance between particles (C) in the cured product comprising the thermosetting resin composition is 50 to 235 nm, and the standard deviation in the distance between particles (C) in the cured product is 160 to 235 nm. The thermosetting resin composition for optical semiconductor devices according to claim 2 or 3, wherein the thermosetting resin composition is 270.  熱硬化性樹脂組成物からなる硬化物中の(C)白色顔料が、白色顔料(C)間の粒子間距離における標準偏差(y)と、白色顔料(C)間の粒子間距離(x)の関係(すなわち、縦軸:白色顔料(C)間の粒子間距離における標準偏差(y)-横軸:白色顔料(C)間の粒子間距離(x))において、境界線を含む下記の式(1)~式(4)にて囲まれた領域を満足するものである請求項2~4のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物。
y=0.2x+150   ・・・(1)
y=x+30   ・・・(2)
y=0.8x+120   ・・・(3)
y=0.4x+170   ・・・(4)
〔ただし、式(1)において、50≦x≦150であり、式(2)において、150≦x≦233であり、式(3)において、50≦x≦125であり、式(4)において、125≦x≦233である。〕
The (C) white pigment in the cured product composed of the thermosetting resin composition has a standard deviation (y) in the interparticle distance between the white pigment (C) and the interparticle distance (x) between the white pigment (C). (Ie, vertical axis: standard deviation (y) in interparticle distance between white pigments (C) -horizontal axis: interparticle distance between white pigments (C) (x)) The thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 4, which satisfies a region surrounded by the formulas (1) to (4).
y = 0.2x + 150 (1)
y = x + 30 (2)
y = 0.8x + 120 (3)
y = 0.4x + 170 (4)
[However, in Formula (1), 50 ≦ x ≦ 150, in Formula (2), 150 ≦ x ≦ 233, in Formula (3), 50 ≦ x ≦ 125, and in Formula (4) 125 ≦ x ≦ 233. ]
 (C)白色顔料の含有割合が熱硬化性樹脂組成物全体の3~30体積%である請求項2~5のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物。 6. The thermosetting resin composition for an optical semiconductor device according to claim 2, wherein the content ratio of (C) the white pigment is 3 to 30% by volume of the entire thermosetting resin composition.  (C)白色顔料の平均粒径が0.1~0.5μmである請求項2~6のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 6, wherein (C) the average particle diameter of the white pigment is 0.1 to 0.5 µm.  熱硬化性樹脂としてシリコーン樹脂を含有し、かつ白色顔料を含有する光半導体装置用熱硬化性樹脂組成物であって、上記熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離が300~420nmであり、かつ樹脂組成物中の有機成分と白色顔料の合計体積量に対する白色顔料の体積比率が10~23体積%である請求項1記載の光半導体装置用熱硬化性樹脂組成物。 A thermosetting resin composition for an optical semiconductor device, which contains a silicone resin as a thermosetting resin and contains a white pigment, between particles between white pigments in a cured product comprising the thermosetting resin composition 2. The thermosetting resin for an optical semiconductor device according to claim 1, wherein the distance is 300 to 420 nm, and the volume ratio of the white pigment to the total volume of the organic component and the white pigment in the resin composition is 10 to 23% by volume. Composition.  熱硬化性樹脂組成物からなる硬化物中の白色顔料間の粒子間距離における標準偏差が100~350である請求項8記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for an optical semiconductor device according to claim 8, wherein the standard deviation in the interparticle distance between white pigments in the cured product comprising the thermosetting resin composition is 100 to 350.  シート状である請求項8または9記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for optical semiconductor devices according to claim 8 or 9, which is in the form of a sheet.  白色顔料の平均粒径が0.1~0.5μmである請求項8~10のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物。 The thermosetting resin composition for an optical semiconductor device according to any one of claims 8 to 10, wherein the average particle diameter of the white pigment is 0.1 to 0.5 µm.  互いに隙間を隔てて配置される複数のプレート部と、上記隙間に設けられたリフレクタとを備えた、厚み方向の片面のみに光半導体素子を搭載可能な板状の光半導体装置用リードフレームであって、上記隙間に設けられたリフレクタが、請求項2~7のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物の硬化物からなることを特徴とする光半導体装置用リードフレーム。 A plate-shaped lead frame for an optical semiconductor device, which includes a plurality of plate portions arranged with a gap between each other and a reflector provided in the gap, and is capable of mounting an optical semiconductor element only on one surface in the thickness direction. A lead frame for an optical semiconductor device, wherein the reflector provided in the gap comprises a cured product of the thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 7. .  光半導体素子搭載領域と、それ自体の少なくとも一部で光半導体素子搭載領域の周囲を囲むよう形成されたリフレクタとを備えた立体状の光半導体装置用リードフレームであって、上記リフレクタが、請求項2~7のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物の硬化物からなることを特徴とする光半導体装置用リードフレーム。 A three-dimensional lead frame for an optical semiconductor device, comprising: an optical semiconductor element mounting region; and a reflector formed so as to surround at least a part of the optical semiconductor element mounting region. Item 8. A lead frame for optical semiconductor devices, comprising a cured product of the thermosetting resin composition for optical semiconductor devices according to any one of Items 2 to 7.  リードフレームの片面にのみ上記リフレクタが設けられた請求項13記載の光半導体装置用リードフレーム。 14. The lead frame for an optical semiconductor device according to claim 13, wherein the reflector is provided only on one side of the lead frame.  その片面に光半導体素子搭載領域を有する複数のプレート部と、上記プレート部を互いに隔てるよう、プレート部の間に設けられた隙間と、上記光半導体素子搭載領域の所定位置に搭載された光半導体素子とを備えた光半導体装置であって、上記隙間に、請求項2~7のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物の硬化物で形成されたリフレクタが設けられてなることを特徴とする光半導体装置。 A plurality of plate portions having an optical semiconductor element mounting region on one side thereof, a gap provided between the plate portions so as to separate the plate portions from each other, and an optical semiconductor mounted at a predetermined position of the optical semiconductor element mounting region An optical semiconductor device comprising an element, wherein a reflector formed of a cured product of the thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 7 is provided in the gap. An optical semiconductor device characterized by comprising:  光半導体素子搭載領域を備えたリードフレームと、それ自体の少なくとも一部で素子搭載領域の周囲を囲むよう形成されたリフレクタと、上記素子搭載領域の所定位置に搭載されてなる光半導体素子とを備えた光半導体装置であって、上記リフレクタが、請求項2~7のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物の硬化物からなることを特徴とする光半導体装置。 A lead frame having an optical semiconductor element mounting region, a reflector formed so as to surround the periphery of the element mounting region by at least a part of the lead frame, and an optical semiconductor element mounted at a predetermined position of the element mounting region. An optical semiconductor device comprising the optical semiconductor device, wherein the reflector is made of a cured product of the thermosetting resin composition for an optical semiconductor device according to any one of claims 2 to 7.  リフレクタで囲まれた光半導体素子を含む領域がシリコーン樹脂からなる封止樹脂層に形成されてなる請求項16記載の光半導体装置。 The optical semiconductor device according to claim 16, wherein a region including the optical semiconductor element surrounded by the reflector is formed in a sealing resin layer made of silicone resin.  発光素子と、上記発光素子の少なくとも一部を被覆するリフレクタとを備えた、光半導体素子であって、上記リフレクタが、請求項8~11のいずれか一項に記載の光半導体装置用熱硬化性樹脂組成物の硬化物からなることを特徴とする光半導体素子。 An optical semiconductor element comprising a light emitting element and a reflector that covers at least a part of the light emitting element, wherein the reflector is a thermosetting for an optical semiconductor device according to any one of claims 8 to 11. An optical semiconductor element comprising a cured product of a conductive resin composition.
PCT/JP2016/077934 2015-09-24 2016-09-23 Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element WO2017051838A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015186982 2015-09-24
JP2015-186982 2015-09-24
JP2016-182769 2016-09-20
JP2016182769A JP6883185B2 (en) 2015-09-24 2016-09-20 Thermosetting resin composition for opto-semiconductor devices and lead frames for opto-semiconductor devices, opto-semiconductor devices, opto-semiconductor devices obtained using the same.

Publications (1)

Publication Number Publication Date
WO2017051838A1 true WO2017051838A1 (en) 2017-03-30

Family

ID=58386660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077934 WO2017051838A1 (en) 2015-09-24 2016-09-23 Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element

Country Status (1)

Country Link
WO (1) WO2017051838A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222317A (en) * 2011-04-14 2012-11-12 Nitto Denko Corp Reflection resin sheet, light emitting diode device, and manufacturing method of the same
WO2014192707A1 (en) * 2013-05-28 2014-12-04 日東電工株式会社 Epoxy resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, sealed optical semiconductor element, and optical semiconductor device
WO2014199728A1 (en) * 2013-06-13 2014-12-18 日東電工株式会社 Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222317A (en) * 2011-04-14 2012-11-12 Nitto Denko Corp Reflection resin sheet, light emitting diode device, and manufacturing method of the same
WO2014192707A1 (en) * 2013-05-28 2014-12-04 日東電工株式会社 Epoxy resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, sealed optical semiconductor element, and optical semiconductor device
WO2014199728A1 (en) * 2013-06-13 2014-12-18 日東電工株式会社 Epoxy resin composition for optical semiconductor reflectors, thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using said thermosetting resin composition for optical semiconductor devices, sealed optical semiconductor element, and optical semiconductor device

Similar Documents

Publication Publication Date Title
US10381533B2 (en) Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection
CN102010571B (en) Resin composition for optical semiconductor device, optical-semiconductor-device lead frame obtained using the same, and optical semiconductor device
JP5976806B2 (en) Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device, encapsulated optical semiconductor element and optical semiconductor device obtained using the same
WO2014136805A1 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP2011258845A (en) Epoxy resin composition for optical semiconductor device and lead frame for optical semiconductor device obtained by using the same, and optical semiconductor device
JP2017103470A (en) Board for mounting optical semiconductor element and manufacturing method therefor, and optical semiconductor device
WO2015083576A1 (en) Heat-curable resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, and optical semiconductor device
JP5825650B2 (en) Epoxy resin composition for optical semiconductor reflector, thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, encapsulated optical semiconductor element, and optical semiconductor device
KR20160094365A (en) Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device and obtained using same, sealed semiconductor element, and optical semiconductor device
JP2017171696A (en) Curable resin composition, cured product, sealing material, and semiconductor device
JP6883185B2 (en) Thermosetting resin composition for opto-semiconductor devices and lead frames for opto-semiconductor devices, opto-semiconductor devices, opto-semiconductor devices obtained using the same.
WO2015083629A1 (en) Thermosetting resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained using said composition, and optical semiconductor device
WO2017051838A1 (en) Thermosetting resin composition for optical semiconductor devices, lead frame for optical semiconductor devices obtained using same, optical semiconductor device and optical semiconductor element
JP6322929B2 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP7567317B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP7459878B2 (en) Light-reflecting thermosetting resin composition, optical semiconductor element mounting substrate, and optical semiconductor device
JP2015017271A (en) Thermosetting resin composition, substrate for mounting optical semiconductor element and method for manufacturing the same, and optical semiconductor device
WO2021038766A1 (en) Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
WO2021038771A1 (en) Thermosetting resin composition for optical reflection, substrate for mounting optical semiconductor element, and optical semiconductor device
JP2015000885A (en) Epoxy resin composition for optical semiconductor device, lead frame for optical semiconductor device obtained by using the same, and optical semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848626

Country of ref document: EP

Kind code of ref document: A1